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Abstract

An abstract approximation and convergence theory for the closed-loop solution of discrete-time
linear-quadratic regulator problems for parabolic systems with unbounded input is developed.
Under relatively mild stabilizability and detectability assumptions, functional analytic, operator
theoretic techniques are used to demonstrate the norm convergence of Galerkin-based
approximations to the optimal feedback control gains. The application of the general theory to a
class of abstract boundary control systems is considered. Two examples, one involving the
Neumann boundary control of a one dimensonal heat equation, and the other, the vibration control
of a cantilevered viscoelastic beam via shear input at the free end, are discussed.
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1. Introduction

In this paper we develop an abstract approximation framework for linear quadratic regulator
(LQR) problems for infinite dimensional discrete-time parabolic systems with unbounded input.
More specifically, we consider the application of the abstract approximation theory developed in
[9] to the class of systems which are open-loop abstract parabolic and whose input operators have
range in some space larger than the standard state space in which the problem is usually formulated.
The theory we present here is a discrete-time analog of the results given in [3] for continuous-time
parabolic systems. However, in contrast to the treatment in [3] which is restricted to the case of
bounded input, we on the other hand are able to handle a relatively wide class of systems involving
unbounded input. Our framework is applicable for example, to a variety of boundary control
systems.

The abstract framework we develop here leads to a set of three relatively easily verified
conditions (stabilizability, detectability, and strong convergence of the othogonal projections
corresponding to the approximating Galerkin subspaces) which when satisfied yield norm
convergence of finite dimensional approximations to the optimal feedback gains. We employ a
functional analytic, operator theoretic approach to obtain a relatively complete and reasonably
general theory which is easily applied in practice to a wide class of important problems.

An outline of the remainder of the paper is as follows. In section 2 we briefly outline the
abstract theory and approximation results for infinite dimensional discrete-time LQR problems
developed in [9]. Section 3 is concerned with abstract parabolic control systems with unbounded
input, their operator theoretic and discrete-time formulation, and the associated infinite dimensional
optimal control problem. The approximation and convergence theories are discussed in section 4.
In section 5 we consider abstract boundary control systems and present two examples; one
involves the Neumann boundary control of a one dimensional heat equation, and the second is
concerned with the vibration control of a cantilevered viscoelastic beam via a shear input at the free
end. In section 6 we summarize our findings and make some concluding remarks. In an appendix
we prove a discrete-time version of a continuous-time result due to Datko which is required in
section 4.

2. The Discrete-Time LOR Problem-Feedback Solution and Approximation Theory

In this section we briefly outline and summarize the infinite dimensional discrete-time
linear-quadratic theory developed in [17] and the approximation results from [9]. Let X be a

Hilbert space with inner product (-,-)x and corresponding induced norm |l . We consider the

optimal control problem given by

(®) Findu= {ﬁk} ;:0 £ 2,50, o R™M) which minimizes the quadratic performance index



00

1) Iuxg) = Y (Qeux)y + ulRu,

k=0
subject to the linear discrete-time control system
(2.2) Xpp1 = Tx + By, k=0,1,2,.
(2.3) xg€ X

where T, Q€ B(X) with Q nonnegative self-adjoint, B £ ZB(R™M, X), and R is an m X m positive

definite symmetric matrix.

An input sequence u = {uk}IZ:O € 25(0, =; R™) is called admissible for the initial data xy if

J(u;x() <eo. Anoperator ITe H(X) is called a solution to the algebraic Riccati equation
corresponding to the plant defined by T,B,Q, and R if it satisfies

2.4) T =T - TIBR + B TIB) 1B*mMT + Q.

We have the following theorem concemning the solution of problem (%).

Theorem 2.1 There exists a nonnegative self-adjoint solution to the algebraic Riccati equation (2.4)
if and only if there exists an admissible control for each xy € X. If there exists an admissible

control for each x, € X, then the unique solution to problem (%) is givenin linear state feedback
form by

U =-Fx, k=0,12,.
with the corresponding optimal trajectory X = {x} ;=0 given by

Xe1= SK k=012,

Xo =Xo
where Fe B(X,RMand S e B(X) are given by
(2.5) F =R +B*TIB)IB*TIT,
and
S=T- BF,

and T1 & B(X) is the minimal nonnegative self-adjoint solution to (2.4). We have min J(u;x() =

J (ﬁ;xo) = (ﬁxo,xo)x. If, in addition, any admissible control drives the state Xy to zero

lkigmlxklx = 0; this would be true for example, if Q >0)

asymptotically as k —ee (i.e.
then the Riccati equation (2.4) admits a unique nonnegative self-adjoint solution TI. If there
exists an admissible control for each x3€ X, and Q > 0, then the spectral radius of S isless
thanone and S is uniformly exponentially stable. In particular if Q=8> 0 then| Ski < Mk,
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k=0,12,. with M=ITII/ 8 and r=1-&1TII <1.

In our discussion of the approximation theory below, we shall assume that the following
hypothesis is satisfied.

(HI) There exists an admissible control for each x; € X, and any admissible control drives the
state to zero asymptotically.

We note that since F given by (2.5) is anelementin I (X, R™) we have

u =-Fx, =-Ex)x, k=012,

where T = (T, Tpps T) 1 with ?J e X, j=1,2,..,m, isreferred to as the optimal functional
feedback control gain.

The approximation theory in [9] is based upon the finite dimensional approximation of the
space X and the operators T,B, and Q. Foreach N =1,2,... let XN be a finite dimensional
subspace of X and let PN : X — XN be the corresponding orthogonal projection of X onto XN,
We take TN, QN e Z(XN), BN g L(R™M, X) and consider the following sequence of finite
dimensional linear-quadratic regulator problems.

(®*N)  Find uN= {EE} ;::0 € £5(0, eo; R™) which minimizes the quadratic performance index

JN(u;xgr) = 2 (QN)EI\I(,)I{)X + u};Ruk
k=0

subject to the linear discrete-time control system

(2.6) X, =T +Bu, k=012,.

@) xy=P'x, & X' .

We require that the following hypothesis holds.

. - N
(H2) Foreach N=1,2,..,, there exists an admissible control for every x, € XN and any
.. . N .
admissible control drives the state x,  to zero, asymptotically as k — oo

It then follows from Theorem 2.1 that for each N =1,2,... there exists a unique, nonnegative

self-adjoint solution TINe BEXN) to the algebraic Riccati equation

TN = (1* (@N - VBN + (BN VBN 1BN* TN + QN
. |



The unique solution to problem (PN) is given by

W =-FE, k=012,
with
-N NN _N_ N
X, =S X, k=0,12,..., X, =P x,,
where

N = R+ @N" TIN BNy 1(BN)*TINTN

N N —N =N
andS = 'I‘N - BNF . We have min JN(u;xlg) = JN(EN ;xlg) =1 XBI»XI(;I)X » S has spectral

radius less than one and is uniformly exponentially stable. Since FN & IS(R™, XN) it follows that
=N _ _FN=N —
u = - (f ’Xk)X s k=0,12,..

where ?N = (?lN,..., ?,E)T with ?jN € XN, j=1.2,.,m

The convergence theorem requires that the following hypothesis be satisfied.

(H3) Foreach ¢ € X, PN — ¢, TNPNG — To, (TN)*PNo — T*¢, and QNPNY — Qb as
N — o0, and BN - Bin BZERM, X) as N — oo,

Theorem 2.2 Assume that hypotheses (H1) - (H3) hold. Suppose further that there exist positive
constants M;, M,, and r,, independent of N with r, < 1, for which

(2.8) TNl < M,
and _
2.9) SN € Myrh,  k=0,12, ... .

Then for each ¢ £ X, TINPNG — TI¢ and SNPN¢ — S, as N — co, FNPNo — Fin B(X, RM),

- . . - - . =N - .
fj - fJ in X, j=12,..,m, and up — u in R™ and Xy — Xp in X, for each

k=0,12,..., as N — oo,

3. Abstract Parabolic Systems with Unbounded Input

Let H be a Hilbert space with inner product (:,-) and corresponding induced norm Il. Let V be
another Hilbert space with inner product <-,-> and corresponding norm (Il and assume that V is
densely and continuously embedded in H with ol < pllg]] for ¢ e V. If we identify H with its
dual, H*, it then follows that V< H= H* c V* with H densely and continuously embedded in
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V*, the dual of V, endowed with the usual operator norm II-II*. We have llpll < wol for peH
and II(plI* < uzllcpll for @ € V. We assume further that the embedding V < H is compact.

Let a(-,;): VXV — C be abounded, coercive, sesquilinear form on V. That is, there exist
real constants o, y>0 and B for which

Re a(¢,9) = allolZ - Blof2, eV
la(p, )| < Yol lwll, o, yeV.

The form a(-,-) defines an operator 4 € ZB(V,V*) via

(AP)) = (AQ,y) = —a(Q,y), QyeV

where (-,-) in the above definition denotes the natural extension of the H inner product to the
duality pairing between V and V*. If we define Dom(4) = { @€V : 40 eH]}, then Dom(2) =H
and 4: Dom (2) c H— H is the infinitesimal generator of an analytic semigroup {97(t) : t = 0}
of bounded linear operators on H with |J"(t)| < e(B-o/mt 20 (see [16]). In addition, it is shown
in [16] that {J7(t) : t 20} can be extended to an analytic semigroup on V*, and in [2] that it can be
restricted to an analytic semigroup on V.

It is not difficult to argue (see [16]) that the H adjoint of 4, 4" : Dom (ﬁl*) cH — H,is given
by ﬂ*(p =\, where y is that element in H for which -a(8,¢) = (y,0), forall6 &V, and
Dom (ﬂl*_) consists of all those elements ¢ € V for which such a y € H exists. The operator 4
extends to an operator in 33(V,V*) via

@) (W) = (A0, ¥) = -a(y,0) = -2 @y),

for ¢,y e V. It immediately follows that the sesquilinear form a*(-,-) :VxV —>C defined
above satisfies

Rea (9,0) 2 cllol® - Blol?, peV

2@l < Molllvll, o, weV,

and consequently that 4" is the infinitesimal generator of an analytic semigroup {‘J'*(t) :t20} on
V.H, and V¥ with 19" ")l < eB-0/0t t>0. It also follows that T *(t) = ()", the H adjoint of
T (1), forall t=0. '

We consider the continuous time control system

(3.1 x(t) = 2x(t) + Bu(t), t>0
(3.2) x(0) =x

where 4 € SG(V,V*) is as it was defined above, B & £(Rm,V*), ugL,y(0, 0; R™M), and
5



x € H. We note that the fact that B is assumed to have range in V* rather than H indicates that
our framework will be able to handle certain classes of unbounded input - for example, certain
types of boundary control. This will become clearer when we discuss examples below. We shall
be concerned with the so called mild solution to the initial value problem (3.1), (3.2). The mild
solution to the system (3.1), (3.2) is the function x € LZ(O,tf ;V) N C(, te H) N Hl(O,tf; V*) for
any tr>0 given by

t
(33)  x(t) = T(t-s)x(s) + jﬁ“(t-c)%u(c)dc, 0<s<t<T,

B4 x(0) =xq,

where the integral in (3.3) is interpreted as an integral in A
To derive the discrete-time system of the form (2.2), (2.3) corresponding to the system (3.1),
(3.2), we let T> 0 denote the length of the sampling interval, and consider piecewise constant
(zero-order hold) controls of the form
u®) = up , t efkt, k+D)1), k=0,1,2,.
where for each k, uy is a constant vector in RM, Defining X = x(kt), k=0,1,2,.., from
(3.3), (3.4) we obtain
Xg+1 = Txg + By, k=0,1,2..
xo € H

T
where Te B(H) and Be BR", H) are givenby T=9(t) and B = J‘ T (1)WBdt, respectively.
. 0
In setting up the LQR problem, in the performance index (2.1) we assumed that Q € L(H) is

nonnegative self-adjoint and that R is an mxm positive definite symmetric matrix. We make the
following standing assumptions.

(A) The pair {T,B} is uniformly exponentially stabilizable. That is, there exists an operator

Fe B{H,RM) for which the operator S = T - BF is uniformly exponentially stable; i.e. there
exist positive constants M and r with r < 1 for which ISkl < MK k =0,1,2,...

(B) Thereexistsa 8> 0 for which Q=8 (ie. (Qy,9)= 8|3 ¢ € H).

Lemma 3.1 If assumptions (A) and (B) hold then hypothesis (H1) is satisfied.

Proof Letx,€H be given and set uy = -Fx;, k=0,1,2... where F is the operator in
L(H,R™) guaranteed to exist by assumption (A). Then x; = Skxo, = -FSkxO, k=0,12...
where S =T - BF ¢ L(H), and

Y Aok, ok k_ \Tprok
Q%) + ufRu, = D (QS"%,, S'x) + (FS*x) 'RFS*x,
k=0

M

J(u; xy) =
k

I
(]



. 2 2.k 2 N
< kzé QIS x,* + RITEC 1S 4" < (1Q1 + IRIE?) M2 D = QU RIFAM? /1 - <o
= k=0

Also, Q=8> 0 implies that any admissible control must drive the state x, to zero asymptotically

as k — oo, and the lemma is proved.

4. Galerkin Approximation and Convergence
For each N =1,2,... let HN be a finite dimensional subspace of H with HN c V for all N. Let

PN H — HN denote the corresponding orthogonal projection of Honto HN. We make the
following assumption concerning the approximation properties of the subspaces HN,

. N
(C) Foreach ¢&V, lim IIP 6~ oll=0.

Note that assumption (C) implies that PN — ¢ in Has N — oo foreach ¢ ¢ H and that
IPNg — ¢]| < V]|o|l forall g€V and some v >0 which does not depend upon @ or N.

We use a standard Galerkin approach to define the operators Ne LG(HN). For (pN € HN,
Let aN (pN = \;IN where \|IN is the unique element in HN guaranteed to exist by the Riesz

Representation Theorem which satisfies -a((pN,GN) = (\VN,BN ) for all oNeg HN . If we set

cJ'N(t) = exp(ﬁth), t =0, then {‘J‘N(t) :t20} is a semigroup of bounded linear operators on

G-

HY with 19 (0l <e , t20,N=12,... The adjoint of L, (A)* & BE), is given

by (AN oN =y where yN ¢ HY satisfies -a"(o™N,0N) = wN,6V ), 6N e HN. It follows that

TNO* = exp((@)*), t2 0.

Lemma4.1 If assumption (C) holds, then for each ¢ &€ H we have IN@®) PN(p — T ()9, and

‘J"N(t)*PN(p - ‘J"(t)*(p, as N — oo, uniformly in t for t in bounded subintervals of [0,o0).

Proof The result will follow from the Trotter-Kato semigroup approximation theorem (see [12])
once we have shown that (N - 1)"1PNg — (2- 1) 1e and (AN)" - 1) 1PNg — (2*- 1) 1o

as N — e foreach ¢ ¢ H and some A 2> . We argue that the first convergence holds only; the
proof that the second holds as well is completely analogous.

Let e H and set Wy = (aN- 1) 1PN and y = (4- A )¢ for some fixed A = B. (Note that A

> B impliesAep (AN p () forall N =1,2,...). Then



oliy™ - PN < Re aqy™ - Py - Py) + By - PNy
= Re(( @ - NN - Py, yN - PNy + (B - ) 1y - PNy
< -Re(® @, YN - P y) + Re (A- VP - y), Y~ - P y) +Re((2- Wy, - Py)
—Re(o - PN o,y - PNy) - Re a(P™y - wiu® - PNy) - A Re(@y - wu® - PNy)

< 1o - PYollyN - Py | + P -yl W - PRyl + APy -yl ™ - PNy

¥

<L o1o-PNoP + gy -PNy P + T BNy - yir?

1

T 4de
2

+yely™-Phyl” + 2 My -yl ey Py

for any €>0. Recalling that 18] < p|6]] for 6 € V, and choosing £ > 0 so that o0 — z—:(2p.2 +Y) =

o/4, we obtain the estimate

g™ - PNyl < (o) 1o - P o + il PNy - wil? + APNy - iy,

the right hand side of which tends to zero as N — e by assumption (C). It follows that

-yt < N PRyl PNy -yl < ity - PN+ Py -

which tends to zero as N — oo by the previous estimate and assumption (C), and the lemma is

proved.

Setting TN = 9'N(7) ¢ Z(HN), Lemma 4.1 implies TNPNg — T and (TN)*PNg - T*
as N— oo foreach ¢eH.

Define BN ¢ ZR™, HY) by BNy = \yN , where for veR™, \|IN is that element in HN
which satisfies (again by the Riesz Representation Theorem) (TBV)(ON) = (\vN, GN), for all

T
o\ e . Define B™ ¢ ZR™ HY) by BN = J' gNo® dt.
0



Lemma 4.2 If assumption (C) holds, then BN 5B in LRM H)asN — .,

Proof Weassume B>0. If B <0, then B can be taken equal to zero in the argument that

t
follows. For t= 0,ve R™, and N =1,2,... set z(t) =f T (s)Bvds and zN(t) = J. ‘J’N(S)TBNV ds.
0

Then z, zN £ Ly (0,5; V) N C(O, 7; H) N HL(0,5; V),
Z()=2z(t) + Bv, t>0, z(0)=0

No = DN + BNy, t>0, 20) =0,
and Bv = z(t) and BNv =2zN(t). It follows that

ocJ BN - 2(0)Pdt
0

< J' “PtRe a(1) - 2(t), 2N®) - 2)) + & PBINW) - 2 ae
0

T

= _[-e‘ B Re(aN(®) - 22(t), 2N0) - Pz®) + Be PN - zr) at

hE

T

] j - P Re(aN (1) - 4z(t), PMa(®) - 2(t))dt

0

- J-e"‘B‘ Re(2(®) - 2(0), 2°) - P z(®) + e PN - z(nide
0

+ J “4P Re(az(t) - A1), P 2(t) - z(H)dt
0



T
- j ~e B Re (1) - %{PNz(t)}, @) - PNz(0) + Be” B 1N - z0)Pdt
0

" Je““" Re(Az(t) - a2N(), PNz(t) - z(t))dt
0

where in the last equality above we have used the fact that the definition of generalized derivative
implies that

J (% (P20} - 2(0), 0 (D)dt =
0

for all 8N € L, (0, 7;V). Continuing; we find that

o J' e PN -z dt
0
< J' B Re N - L < d P2}, 20 - PNz) + 2B PN - PNzt
0
+ 2B Je"‘ﬁ‘ IPNz(t) - 20 dt + je“B‘Re(zz(t) - 22N, PNz(t) - z(t)de
0 0

T T
- J % g{ e PN - PN2(oPde + 2BJe'4Bt IPN2(t) - z(oPdt
0 0

T

+j 4B Re (2(t) - 22N, P 2(t) - z()dt

0
T
< - L o971 Ny PNy + 2[5_[ PN2(0) - 2(1%dt

0

T ' ’Yz T

+ @ Jllz(t) - Nt + I jllPNz(t) - 2o,
0 0
and hence that
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1N - PRyl < 4B JT.IPNz(t) - z(t)Pdt + et flIPNz(t) -zt dt
< — .
0 0

Assumption (C), the remark immediately following it, the fact that z € L,(0,t;V) N C(0,t;H),
and the dominated convergence theorem therefore imply that [BNv - PNBvl — 0 as N — oo for

each veRM, The triangle inequality, assumption (C) and the finite dimensionality of R™ then
immediately yield the desired result.

If we define QN € JS(HN) by QN = PNQ then QN is nonnegative (in fact positive, by
assumption (B)), self-adjoint, and by assumption (C) satisfies QNPN(p — Q¢ as N — oo foreach
¢ € H. This together with Lemmas 4.1 and 4.2 yield the following result.

Lemma 4.3 For HN, PN, TN, BN and QN as defined above, assumption (C) implies that
hypothesis (H3) is satisfied.

To verify that hypothesis (H2) and the conditions of the convergence theorem, Theorem 2.2, are
satisfied we shall require the fact that the operators BN : R™ — HN are uniformly bounded in

LRM, V). Toward this end, we note that it can be argued (see [2]) that NNl = 1g Nl < CeBt,
t=0 where Cis a positive constant which does not depend upon N.
Lemma 4.4 If assumption (C) holds then there exists a constant L; > 0 which does not depend on

N for which IIBNvII < Lqlvl, veR™; that is the operators BN are uniformly bounded in

LR™, V).

Proof For veR™M we have

BNV I? < Re a@B™v, BN) + BB W

T
- -Re(,qN-[ N B vdt, BM) + p@™y, BM)
0

= Re(® v- 7 () By, B') + BB, B\Y)
11



Re (Bv, BW) - Re(Bv, 7 (0% BY) + BBy, BN

1vil, BN + CePe v, 1B™vil + 18] (B i, 1B Vil

IN

181 {1 + CeP™) v BMNvin + 11BN BNy,

IN

Thus
BN < (1B 11/ 0){1 + CeP¥} vl + (Bl / o)) 1BV,

which together with Lemma 4.3 yields the desired result.

Lemma 4.5 Suppose that assumptions (A) and (C) hold and let F ¢ Z(H, R™) be the operator in

assumption (A) which uniformly exponentially stabilizes the pair {T,B}. Then for all N
sufficiently large, F uniformly exponentially stabilizes the pairs {TN,BN}. That is, the pairs
{TN BN} are uniformly exponentially stabilizable, uniformly in N for all N sufficiently large.

Proof Let SN=TN-BNF andletS = T- BNF. Then Lemma 4.3 implies that SNPNg — So and

(SN)*PN(p - S*(p as N — e foreach ¢ eH. It follows that there exists a constant K; >0 for
which ISN| = l(SN)*I <K, and ISI= 15" < K, , and consequently that the spectra of the operators

S, %, SN, and (SN)* are contained in the closed disc {z:1zI<K;} inthe complex plane. Let
Nn>Kj. Thennep(S) N p(SN) and since SNPN converges strongly to S as N — oo, and the
embedding V < H is compact, it follows (see [1]) that there exists a constant K, > 0 which does

not depend on N for which I( - SN)"IPN} < K, . Therefore for ¢ ¢ H we have

I(n - SNy 1PNg — (1 - S) ol
<itm - SY'PNe - PN - )Mol + 1PN - D - 8) ol

N,-1,N, NN

=1t - S PSP - ) - 8) ol + 1P - (- ) o

< KIS PN -8)m - Yol + 1Y - D@ - 5) ol

12



which by Lemma 4.3 tends to zero as N — eo. Analogously it can be shown that

M- SN 1PN » M-S")lp as N— e foreach e H andn>X;.
We claim next that for some positive integer N, we have
O o™ cz:1d e

N=N o

4.1)

for some €< 1. Suppose not. Then there exists a sequence of positive integers {Nj} j=1
. . N: = . N.
with Nj — o0 as j — oo and sequences of complex numbers {A J} j=1 and elements in H J,
Nj. = . N;  N;_. . . . N;
{o '} j=1 for which[A 7, @ J]is an eigenvalue / eigenvector pair for the operator S J with

N. N. N. N: =
IV J1>1-1/j andlp J I=1. Now A 1I1<K;. Therefore {A J}j=1 must admit a convergent
N,

Koo r v o : .
subsequence {A '}, with limit & satisfying (M > 1. For convenience we re-index and

say lim 7LN =4. We claim that 4. is an eigenvalue of S. Indeed, forn > K, we have
N—3oo 1

M- A\NoN = m - NN, or
(4.2) oN=m-SNylm-al N

L
The estimate (see [16]) II‘J’N(t)\yNII < Tz I\VNI, t>0, \yN € HN, for some positive constant
t

L, which does not depend on N, and Lemma 4.4 imply

N = 1N = 1sNeNI < 19N @eM + IBNFN

L L
< 2 1M + L IFpN = =2 + L IFI.
g T = E T
Recalling that AN — A and | A | 2 1, it follows that the sequence {¢™} liesin a bounded subset

of V. The assumption that the embedding V < H is compact then implies that {(pN} admits an

N. A
H-convergent subsequence {¢ !} with limit ¢ £ H. Once again we re-index and assume that
Jim loN — @] = 0. Then for any & H, (4.2) yields

@ -2, - SHY'PNy) = @Y, PNy = ().

13



Taking the limit as N — oo we obtain

-1
@-0%, -8H"w =@, ),
or S¢=K @;ie [ 4 @] isan eigenvalue/eigenvector pair for the operator S. But this is a
 contradiction since IX] = 1 and S =T - BF is assumed to be uniformly exponentially stable. It

follows that (4.1) must hold for some positive integer N sufficiently large.

N
Now for N2 NO, let xNe HN and set Xy = (SN)kxN. If we denote the z-transform of the

sequence {xN}”= by xN(z), then xN(z) = (- z"ISN)1xN, and
k 7 k=0

x{f = 2—16 j (z - SN)-lxNzde

where the integral in the above expression is around a closed contour in the complex plane which
contains the spectrum of the operator SN in its interior. If we choose the contour to be the circle

z=1ei%,0 <0 <2r with £<r< 1, we obtain Ixy | < Kyr*1ixNl, k = 0,1,2,..., or
(SOKI < MK, k=0,1.2,..

with M = K,r and the proof is complete.

Theorem 4.1 If assumptions (A), (B), and (C) hold, then the conditions of Theorem 2.2 are
satisfied and therefore the convergence results stated as the conclusions of that theorem are valid for

the class of problems considered in section 3.
Proof. Lemma 3.1 implies that hypothesis (H1) is satisfied and Lemma 4.3 implies that hypothesis

(H3) holds. Assumption (B) and the definition of QN yields (QNgN,o™) = PNQoN, o) =

(Q(pN, (pN) 2 8[(le2, (pN e HN. This together with Lemma 4.5 and the same arguments used to
prove Lemma 3.1 imply that hypothesis (H2) is satisfied. Thus we need only to verify (2.8) and
(2.9). Toward this end we note that

@3) = sup (TGN, 0% : oNeH, IoM = 1) = sup T@ 50"

_ lo =1
where N is the optimal control corresponding to the initial data (pN. For (pN e HN with
oM =1 define uN = {u} }z_o byuy =-Fxp, k=0,12,.. where Fe Z(E, R™)is the

N, . . .
operator from assumption (A) and {xy };_q is given by (2.6), (2.7) with x;= (pN. Then for N =

N, with SN =T .BNF, Lemma 4.5 implies
14



F@s oM< o = D @EH N, 6N+ ES Y N REE ) G
k=0

SN, Nk N2 2 Nk N2 =
< kzalQ ™M+ RIFS) O < (11 + RUFAMAGN? ) 2%
= k=0

= {IQl + RIFAM?/(1-1) =M,
which together with (4.3) establishes (2.8).

Now [T uniformly bounded implies that the operators SN=TN_.BNEN gre uniformly
bounded. Thus

(4.4) ISNX <K k=0,1,2...
for some positivé constant s which does not depend on N. Also, for cpN € N
= N-=Ng Nk —N 2
@5 Y @ )N G < (T oY < Mg
k=0

Since QN 2 0>0, (4.4) and (4.5) together with a discrete-time version of a result due to

Datko [5] (see the Appendix) establishes (2.9) for some M,,r, >0 with r, < 1 and the theorem is

proved.

Finally we note that once a basis has been selected for the finite dimensional subspace HN, the

matrix representations for the operators TN,BN and QN, which are required to solve the

N
N
approximating optimal control problem (¥ ), are easily computed. Indeed, if {(pqu}?:l

N N N N

denotes a basis for HN, then [4)] = - (¢; 050! a@y L9 )T with [TN] = exp (1[2N]).

. . . N N N 4 N T th :
Similarly we find [3%] = (g; , ; ) (e, 0, )' where ey denotes the k™ standard unit

T
vectorin R™, [BY] = J exp (AR 1dt, and [Q] = (@, o1 QaY, o). A more
0

complete and detailed treatment of the computational and implementational aspects of solving the

finite dimensional approximating linear-quadratic regulator problems (®N) can be found in [9].

5. Examples

We describe a generic class of boundary control systems and some specific examples to which
the abstract approximation framework and theory we have developed above applies. Let H be a

15



Hilbert space with inner product (,-) and corresponding induced norm I-l, and let W be another
Hilbert space with inner product and norm [,-] and lll-lll respectively. Let <-,>be another
inner product defined on WxW and let the corresponding induced norm he denoted by [I-ll. We
assume that W < H and that there exist positive constants L and p for which

lpl <plipll < plilglll, forall @ e W.
We consider the generic boundary control system given by

5.1 x(t) = Ax(®), t>0

(5.2) Ix@®) = u(t), t>0
5.3 x(0) =xg

where x(t) e H, u(t) eR™, xpeH,Ae ZL(W,H) and I'e BW, RM) is assumed to be
surjective. Let W(y denote the null space of I', T (). Thatis, Wy = {¢ € W :T'¢ =0} and define

V to be the completion of W, with respect to the norm 1l It follows that V is a Hilbert space

with inner product <-,-> and corresponding induced norm II-|]. We shall require the following

assumptions:
(1) V isdensein H

(2) The embedding V c H is compact
3) WcV.

Then choosing H as our pivot space, we have VcHc V* with the embeddings dense and

continuous.
Define the bounded sesquilinear form 6(-,-) : W xH — C by o(@,y) = -(Ag,y) for pe W

and € H, and assume that there exist real constants o, 3,y with o,y > 0, for which

4) Reo(0,0) 2 oflol® - Blol®, @eW,

) lo(e.wl<viloll v, ¢, yeW,.

Define the sesquilinear form a(-,") : Wy X Wy — € to be the restriction of the form o(:,-) to

16



Wy x W), It follows from density and continuity (i.e. assumption (5) above) that a(:,-) admits a
unique extension to a bounded coercive form on V X V. Thus assumptions (4) and (5) continue to
hold with o(:,-) replaced by a(:,-) and the space Wy replaced by V, and consequently we may
define an operator 4¢€ QG(V,V*) via

(A9)(v) = (A9,¥) =-a(p,y), Q,yeV.
If we restrict 4 to Dom () = {@peV : 49 e H} then 4:Dom( 42) c H — His densely defined
and is the infinitesimal generator of an analytic semigroup {J7(t) : t =2 0} of bounded linear

operators on H with | ()l < e®B~/l)t 1> 0. Also, {97(t) : t=0} admits an extensionanda °
restriction to an analytic semigroup of bounded linear operators on V*andV, respectively.

Recall that I was assumed to be surjective and let I't & ZERM, W) denote a fixed but arbitrary
right inverse of T'. Thatis TTTu=u forueRM. Define B € 33(V,V*) by
(3.4 (Bu)(@) = (Bu,p) =al"u,9) - o u,9),
for ueR™ andpeV. We noté that the operator T is indeed well defined. For if I‘; and 1’;
are two distinct right inverses of I" and we let %, and %3, denote the corresponding operators
defined as in (5.4), then for any u € R™ and ¢ € V we have I‘;u - I‘;u = (F; - I‘; Ju e Wjand
+ + + +
(Bw(@) —(Bou)(@) = a((Ty - TH)u,¢) —o (@] - TH)u, ¢)
+ + + +
=o(@y - Tu, @) -c (@) - Ty)u,9) = 0,
or 331 = '032 .

Following Curtain and Salmon [4], for any t; >0 we call x € L,(0,t;; V) N CO, t5s H) N
Hl(O,tf; V*) the weak solution to the boundary control system (5.1) - (5.3) if it is the unique mild

solution to the initial value problem

x(t) =ax(t) + Bu(), t>0
X(O) =X

That is, if

t
x(t)=:r(t-s)x(s)+_[<a'(t-o)frsu(c)dc, 0< s<t<t, .

17



x(s) =X .
For the discrete-time system, with T denoting the length of the sampling interval, we have

T
T=9(t)e BLEH) and B = JU" OBt ¢ BR"™, H). From (5.4) together with the definitions
0 .

of the forms o(:,-) and a(-,), we obtain

T

T T T
Bu = Js'(tmudt =J‘J’(t)(A—ﬂ)I"+udt = J.‘J'(t)AI"+udt- %S‘(t)r+udt
0 0 0 0

- I-T@)u + fv(t)Ar*udt.
0

Similarly, for the approximating input operators BN we find
N £ N
BY = (- V)P + J's' ©PVA T udt.
0

If T'" is chosen so that R,(I"") < N (A), the discrete-time input operators B and BN take on the

particularly simple forms B = (I - " () = @ - T)I'* and BN = (1 - N(2))PN = (1 - T) PN,

We discuss two specific examples of boundary control systems of the general form that we
have just described, and outline the arguments necessary to verify that assumptions (A) - (C) are
satisfied. '

Example 5.1 We consider a system whose dynamics are described by the one dimensional heat
equation

: 2
55 ) =2, ¥ wm), >0, 0<n<l
at 0 anZ
where ag > 0, with a homogeneous Dirichlet boundary condition at =0,

(5.6) w(t,0) =0, t>0

and Neumann boundary control atn = 1,

5.7) a2 (1) = u@®,  t>0.
The initial conditions are assumed to be of the form

(5.8) w(0,n) =wy(M), 0<n<l1

18



where wy€L,(0,1) is given.
To put the system (5.5) - (5.8) in the form of (5.1) - (5.3) we take H =L,(0,1), and

W= H2(0,1)ﬂHI{ (0,1) where H{‘ (0,1) = {¢eHY(0,1) : (0) = 0}. The inner products

(,-), <>, and [-,-] are taken to be

1
(o9) = J oV, oyeH
0

1
<Qy> = J' D@Dy, oyeW
0

1 1 1
[(P,\lf] = J.(P\If + ID(PD\V + JDZ(\DDZ\V’ (P,WGW‘
0 0 0

The operators A e Z(W,H) andI"e JK(W,RI) are given by A¢ = aODZ(p and I'g = agDe(1), for
¢ e W. We then have Wy=N({) = {¢p¢e H2(0,1) : ¢(0)=Do(1) = 0}, o(-,): WxH—-C
given by o(@,¥) =-(agD%@,¥), 9 e W, ye H, V=H] (0,1), V* cH1(0,1), and a(,):
Vx V= C givenby a(p,y) =(ayDo,Dy), ¢,y e V. The operator 2e LV ,V*) takes the form
(AQ)(Y) = - (agD,Dy) for @,y e V. It follows that 4: Dom(A) cH — H is given by A¢ =
ayD?¢ for ¢ € Dom(4) = W), and is self-adjoint. We have
a0.0) 2aglel’, eV
la(e,y) | < agllelllivll,  @weV,

and therefore that (A¢,9) < - aOI(pl2 for ¢ e Dom(4). Thus 4 is the infinitesimal generator of

an analytic semigroup {J'(t) : t =0} of bounded, self-adjoint linear operators on H (and V and
V™) which is uniformly exponentially stable; that is

(5.9) @l <e 0, 20,

We take I'" e L(RLW) to be (T*u) () = (w/ag)n, 0<m <1 and note that with this choice
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of T"'we have R, (I'") € 1(A). We note further that W is indeed a subset of V and thus
B e 33(R1,V*) as defined in (5.4) is given by (Bu)(¢) = ug(1), for ue R and ¢ € V. The
discrete-time input operator B & (R V™) will take the form Bu = (I- 9°(t)) "u. We have

x(t) =w(ty), t20 and xg=w(.

The space V is densely, continuously, and compactly embedded in H, it is clear frorh (5.9) that
assumption (A) is satisfied and if, for example , we choose Q € L (H) to be Qp =q¢ where

q € L(0,1) is such that q(M) > 0, a.e. € [0.1], then assumption (B) will be satisfied as well.

With regard to approximation, a linear spline based scheme is one for which assumption (C) can be

N
shown to hold. Foreach N=1,2,... let {(pJN} i=0 denote the usual N + 1 linear B-splines (i.e.

"hat" functions) defined on [0,1] with respect to the uniform mesh {0, 1/N, 2/N,...,1}. Let HN be
the N-dimensional subspace of V = H}J (0,1) given by H = span {(p?}?il , and let PNH- Tl

denote the corresponding orthogonal projection of L,(0,1) onto HN, Using the approximation

properties of interpolatory splines (see [15]), the Schmidt inequality (see [16]), and the variational
properties of the orthogonal projection, it is not difficult to argue that Il\}gm IIPN(p —@ll =0 foreach

1
¢ € Hy (0,1) and consequently that assumption (C) is satisfied. We note that other commonly used

finite element methods for the heat equation can be shown to lead to approximation schemes for
which assumption (C) holds, including for example, modal and spectral methods.
For the system which has just been discussed, the optimal functional feedback control gain

takes the form of a function fe L,(0,1) with the optimal control given by '

1
i, =- J'?(n)W(kc,n)dn, k=0,1,....
0

The approximating optimal gain is a function TN ¢ HN with

1
_N
T =- J' F)w (kt,)dn,  k=0,1,2...
0

where W is the system state which results from the input o= {ﬁllj}:zo . Our theory yields
N -
that I1\}m If -fl=0 and numerical studies that we have carried out and reported on elsewhere
—00

(see, for example, [7], [9], [10], [13]) substantiate our theoretical findings.
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Example 5.2 In this example we consider the control of the transverse vibration of a cantilevered
Euler-Bernoulli beam with Kelvin-Voigt viscoelastic damping and shear boundary control at the
free end. The dynamics of such a system are described by

82w o' ow B4w
(5.10) ?(t’n) + coé;F a—t(t,n) + aogn—‘t— (tn) =0, t>0, O0<n«l1
(5.11)  w(t0) = %n"i (t,0) =0, >0
3* aw *w
(5.12) Co -an—z T(t’l) + a, 8_112- 1 =0, t>0

2> ow o’
(5.13) 'CO 5T1—3 7 (t,l) - aoﬁ-(t,l)% U(t), t>0

G149 wom=wm, Lom=wm), 0<n<l,

where a;,c,>0,and w, € HE(O,I) ={Q€e H2(0,1): ¢(0) =Dg(0) =0}, and w, € L,0,1)
are given. o
To put the boundary control system (5.10) - (5.14) in the form of (5.1) - (5.3), we let

H= Hi(O,l) x L,(0,1) with inner product
1 1
2 2 :
(@) (@ ¥,)) = 2, J D¢, D'p, + J VAZE
0 0
and let W = {(@,y) e H: cgy + agp € HY(0,1), w(0) = Dy(0) =0, c;D2y(1) + agD2¢(1) = 0}

endowed with the inner product [-,-] taken to be the standard inner product on H4(O,1). We

define the inner product <-,-> on W by

1 1
2 2
<0, W) (@,W,)> = aojDzwlD ®, + JDZWID Y, -
-0 0

The operators A g I5(W,H) and T & B(W,RY) are given by A(@,¥) = (v, - ¢,D*y - 2,D"0)
and T(@,y) =- ¢,Dy(1) - a,D’o(1), for (,y) € W. It follows that W, = ((¢,y) € W: -
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coD3w(1) - 3,D%(1) =0} and that V =H-(0,1) x H- (0,1). The form o(,): W xH — T
is given by

1 1 1
S((@), (8:0) = - a, [ DD+, [Dlor + ¢, [ Dy
0 0 0

for ( @,w) e W and (6,%) € H, and the form a(:,’) : VXV — C is given by

1 1 1
2 2 2 2 2 2
a(((Pl,\Ifl), (@23”’2)) =- a() J‘ D WID (pz + a() J‘ D (‘plD WZ + cO J' D "lle WZ ,
0 0 0

for ((pi,\yi) eV, i=1.2.

It is not difficult to show that

(@), (@) 2 c @I = cyl@)l
l2((@), O < J2max(L,ey) oWl B

for (Q,y), (0,) € V. With the operator 4¢ ;G(V,V*) defined by

(A(p,y) (8,%) = -a ((p,¥), (6,%))

for (o,y), (8,x) €V, we have 4: Dom(2)c H— H given by A(p,y) = A(Q,y) for
(@.y) e Dom(A)=W,. The operator 4: Dom(2)c H — H is densely defined and the

infinitesimal generator of an analytic semigroup of contractions { 97(t) : t =0} on H. Moreover, it

can be shown (see [6]) that the semigroup {9 (t) : t 2 0} is in fact uniformly exponentially stable.

Let ¢, be the cubic polynomial which satisfies the interpolatory conditions
0p(0) = D (0) = D2 (1) = 0, D3y(1) = -1/ay. We choose I'" & BRLW) as I*u = (yu,0),
ueRL Once again we note that '(R,(I"*') c N(A), and , since W c V, the operator B as defined
by (5.4) is an element in £(R1,V*) with (Bu)(Q,y) =uy(l), ue Rl ( o,¥) V. The
discrete-time state transition operator is given byl T =9(t) e Z(H) and the discrete-time input
operator is givenby B=(I-T) It e ZRL, H).

The uniform exponential stability of the open-loop semigroup {97 (t) : t = 0} implies that
assumption (A) is satisfied. In flexible structure control problems such as the one we have just
described, the state penalization operator Q in the performance index is frequently chosen to be the
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identity (i.e. the energy of the system is to be driven to zero). Thus when this is the case, we have
that assumption (B) is also satisfied.

For an approximation scheme, for each N = 1,2,... we let {B?};ii denote the standard
cubic B-spline functions defined on the interval [0,1] with respect to the uniform
mesh {0, 1I/N, 2/N,...,,1}. Let {d\jl}jli:l denote the modified cubic B-splines which satisfy
N N _n:_ . oN_ N ,oN . N N N . _
[3j ) = DBj 0)=0,j=12,.,N+1 (thatis, B, =B, -2B, -2B ,, [3j = BJ. y j = 2,3, ,N+1),

N

N
A N .
and Set BJ = (BJ ,0), J = 1,2,-.-, N+1’ ﬁN'Fl“"j

= (O,B?),j =12,..N+1. Let

AN
o = span {BJ. }j.‘:+2 cVandletPN:H—H" denote the orthogonal projection of H onto ",

Once again elementary properties of spline functions (see [15]) and standard techniques from the
theory of approximation (see [14]) can be used to argue that %\}& ||PN((p,\|l) - (o, ¥)|| =0 for

each (@,y) € V, -and consequently that assumption (C) is satisfied.
The optimal functional feedback control gains are of the form f= (-f_l, FZ) eH(.e.

fe H2(0,1), Tye L, (0,1)) with

1 1
T, = -a _[Dz £, m)D*W(kt,n)dn — J?Z(n)W(kr,n)d(p, k =0,1.2,..
0 0

(note that in this example we have x(t) = (w(t,), w(t,")), t > 0). The approximating

N _N_

functional feedback control gains are of the form f = (f,, fg )E HN, and our theory yields
N - N -

lim f1 =f in H2 and lim fN =f inL,. Numerical studies for a flexible structure

example such as the one we have described above were reported on in [8] and [13].

Finally we note that both of the examples that were treated above admit generalization to higher
dimensions with the approximation subspaces HN being formed via tensor products of one
dimensional elements. Also, it is worth noting that not every control system involving unbounded
input that we might formulate will conform to our general framework. For example, if we replace

(5.7) with Dirichlet boundary control, such a system results. In this case we have that W is not a

subset of V and consequently the continuous-time input operator % will have range in some space

larger than V*. More specifically ®, (%) will be contained in the dual of Dom(ﬂ*) (see [4], [8],

[101, [13]), and the range of the discrete-time input operator, R,(%) will be a subset of W rather
than V. While it is in fact possible to apply the theory outlined in section 2 to this particular
example (see [9]), the question as to whether or not the results in section 3 and 4 can be extended
so as to be able to handle this more general class of systems with unbounded input, at present,
remains open.
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6. Summary and Concluding Remark

We have developed a rather complete abstract approximation framework for discrete-time LQR
problems for parabolic systems with unbounded input. Our results are in some sense analogous to
those found in [3] for continuous time systems but also represent an extension in that the theory
developed here can handle at least some, but certainly not all, forms of unbounded
(continuous-time) input. Requiring only that (1) the infinite dimensional open-loop discrete-time
system be uniformly exponentially stabilizable, (2) that the state penalization operator in the
quadratic performance index be positive definite, and (3) that the usual Galerkin hypothesis on the
finite dimensional approximation subspaces (i.e. the strong V-norm convergence of the
corresponding orthogonal projections) be satisfied, we are able to apply the theory developed in [9]
to obtain norm convergence of the approximating optimal feedback gains.

In addition to the question raised at the end of the previous section, other related open problems
remain. For example, in regard to the condition (1) above, one might ask if the uniform
exponential stabilizability of the open-loop continuous-time system implies uniform exponential
stabilizability of the corresponding discrete-time system. In a finite dimensional setting, this notion
is treated in a paper by Hautus [11]. It is shown there that the answer to this question is yes for all
but a finite number of sampling interval lengths t. The extension of this result to the most general
of infinite dimensional systems is not immediately clear, and is worthy of some consideration.

The extension of our theory to the LQG problem for infinite dimensional discrete-time systems

with both unbounded input and oﬁtput in the spirit of the treatment of this problem in [10] should
also be looked at. In particular, since the semigroup {9 (t) : t =0} is analytic, the discrete-time

input operator B is in fact an element in B (R™M,V). Therefore, if the output operator is bounded
on V, one might attempt to develop a general theory wherein the problem is formulated in the state

space V rather than H. However, without additional structure, for example, the operator 2

self-adjoint, such results may be difficult to obtain.
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Appendix: A Discrete-Time Version of a Result of Datko's

Let X be a Banach space with norm Ily and suppose S € &(X). Suppose further that there

exist positive constants My, M, and ry withr; > 1 for which ISkI < erl; , k=0,1,2... and
An D sy < Mk, xeX.
k=0

Then there exist positive constants M and r with r < 1 such that IS < Mrk, k=0,1,2,....

Proof. Following Datko's proof in the continuous time case we first show that there exists an

M; > 0 such that ISkxIX < M3leX , k= 0,1,2,...,. x € X. Suppose not. Then there exist

sequences {(k., k,,)} and {x,} with 0k, <k, <o andIx | =1 such that
n’ ~n n n n n

(A2) Min €18 ™ "x I, 'S M

Then for k€ [k, k ] an integer, we have

k.k kk T x kk
5y e MRSy

<
Mpn < n'x 11 n'x

1
which implies

- (k.k k-k,
nr(")SIS n

] Xpl

X*

Squaring both sides of the last inequality and summing fromk =k, tok=k_ - 1, we obtain

ky-1 _ k-1 -
5 - 2(®,k) K, 2
D n?r < YIS Tk
=kn =kn
But
el = kk,
n_ 2 2 2
DS xS < YIS T < My P =M,
k=k, k=k
and
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kp-1 _ _ Kkl 5 - 2Ek)
2.-Akyk) _ 9 -2 k= 2 (1-r, 00

Z n‘r, = n°r r% r% 1 1 )

k=kp k=k,
Thus

n2 (-t 2(En-kn)) <M
| = Y

rr-1

Now (A.2) implies n’SrI;“-k“, or k,-k, = log; n. Therefore for some n, sufficiently
2k 1 ‘ 22

large we have 1 -1 > 5 forall n2 n,. Thus foralln = n, we have n“/2( 1" < M2’

which is a contradicton.
We next argue that given any £ >0 with _/ M, e<1lthereexistaKe 2" with 0 <K< 1/¢?

for which ISK xI‘X < ./Mz £ lxlX for all x € X. The bound (A.1) implies that for each x # 0

there exists a K =K(x,e) such that

K
IS"xly < /M, ekly and /M, elxl, <IS%ly , 0 < k < K.

This implies that
K-1
MG K < Y IS0y < Myl
k=0

which in turn implies that e2K<1 or K= K(e) <1/ 2. ThusK may be chosen independently of

x € X and the claim is established. :
Now let 8 > 0 be given and choose € >0 so small that /M, e<1 and M, /M, £<38.

Then fork > K(e) wehavek=K +4£, £20and

k ’ K +2 A K K
IS xly = IS xIX = |S"S xIX < M3IS xlX <M, /M2 € Ixly <8leX

for any x € X. Therefore S is uniformly asymptotically stable.

Since S is uniformly asymptotically stable there exists a K > 0, an integer, such that
ISkI < % ,k 2 K. Now any k =0,1,2,... can be written as k =nK + m where n is a natural

number and m is an integer such that 0 <m < K. Then fork =0,1,2..

nK+m

n min
159= 15" < 1s™HS™ < ISTHISST sMm )" =M ein2
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(mlnr, +(m/K)In2) _
M.e 1 e (k/K)In2 <

Kinr, + n2 _ In 2
. sMe 1 K

1

I
%]
=
T

3]

I
=

e

where M=2M 1\ andr=1/¥2 <1.
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