
l

NASA Contractor Report 181677

lCASE REPORT NO. 88-39
NASA-CR-181677
19880015865

ICASE
HIGH DEGREE INTERPOLATION

POLYNOMIAL IN NEWTON FORM

Hillel Tal-Ezer

Contract No. NASl-18107
June 1988

•• r -. ~

L~. ~;"; (.,.·,t~ .• ·; ~." :: > •. '~ .• ;~ .•• , :.'~ .. '~ :,' :~/ -, t·.; ~ • _ ~ ."4 ~ '.; ;.1 ~: !) ;.; J

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research Cent.
Hampton. Virginia 23665

[1111111111111 ~~~ ~~ ~~11111111111111

"

HIGH DEGREE INTERPOLATION POLYNOMIAL

IN NEWTON FORM

Hillel Tal-Ezer

Division of Applied Mathematics

Brown University

and

Institute for Computer Applications in Sciences and Engineering

ABSTRACT

Polynomial interpolation is an essential subject in numerical analysis. Dealing with a

real interval, it is well-known that even if !(x) is an analytic function, interpolating at

equally spaced points can diverge [Davi75]. On the otherhand, interpolating at the zeroes

of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this

result of convergence is true only on the theoretical level. It is shown that the algorithm

which computes the divided differences is numerically stable only if: 1.) the interpolating

points are arranged in a certain order, 2.) the size of the interval is 4.

This research was supported by the National Aeronautics and Space Administration under NASA Con­
tract No. NASl-18107 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Additional support was
provided by the Air Force Office of Scientific Research Grant No. 85-0303.

1. INTRODUCTION

Let f(x) be a real function defined on the interval [a, bj and {Xi}~o be a set of N + 1

points in [a, bj then the general formulation of Newton interpolating polynomial of degree

N is
N

PN(X) = L akRk(x)
k=O

where ak are the divided differences

and

Ro(x) = 1

If EN(X) is the error at point x€[a, bj then we have the following theorem [CodB82j.

(1.1)

(1.2)

(1.3)

(1.4)

Theorem 1.1: Let f(x) be a real valued function defined on [a, bj and N + 1 times

differentiable on [a, bj. If PN(X) is the polynomial of degree ~ N which interpolates f(x)

at N + 1 distinct points Xo,··· ,XN in [a,bj, then for all x€[a,bj, there exists € = €(x)E(a,b)

such that

(1.5)

It is well-known that if Xo,···, XN are equally spaced points then maxIRN+1(X) I
increases as x moves towards the ends of the interval and divergence can occur. A well-

known remedy for this phenomenon is to choose as interpolating points the zeroes of the

corresponding scaled and translated Chebyshev polynomial

1 [(2i + 1)7r 1
Xi=- (b-a)cos N +b+a

2 2 +2
i = O,···,N. (1.6)

Using (1.6) results in a uniform distribution of the error and convergence is achieved.

This result of convergence is true only in theory. Practically, an interpolating polyno­

mial based on (1.6) will not converge to f(x) because of the finite accuracy of the computer.

The numerical instability can be traced to two sources:

1

1.) The algorithm which computes the divided differences is very vulnerable to roundoff

errors and overflow. The super sensitivity to roundoff errors is explained by the fact that

for N large, the first k points (k ~ N) are very close to each other (minlxi+l-Xil '" 1/N2).

But even if roundoff errors were eliminated, we still would face overflow because the first

k points (k ~ N) are concentrated on one side of the interval. This distribution will lead

to nonuniformity of RA;(X) and EA;{X). It is this nonuniformity which will cause overflow at

intermediate stages of the interpolation process.

2.) Eliminating the first source of numerical instability (by taking the points in a

different order) results in "almost" uniformity of RA;(X) k = 1, .. , N, but still, RA;(X) satisfies

(see Section 3)

(1.7)

Observing (1.1) and (1.7) it is obvious that we will face overflow (for k large enough) while

computing the a~s.

We are going to approach this phenomenon in the more general context of interpolation

in the complex plane. Background material is given in Section 2. Based on the theory we

show that by:

(1) arranging the interpolating points in a certain order,

(2) making a simple change of variables such that the interval is of size 4,

we get

1 ~ k ~ N. (1.8)

Thus these two modifications result in a stable Newton interpolation process. Algorithm

2.1 presented in Section 2 generates N interpolating points such that (1.8) is satisfied.

In practice we would like to be able to add points, if necessary, without restarting the

interpolation process. It is well-known that the Newton algorithm potentially has this

feature; adding another point results in computing only one additional ter.m. (In contrast

to the Lagrange process where one has to start the calculations all over again.) But by

using Chebyshev zeroes, (1.6), we would not capitalize on this property since increasing

2

N results in changing all the previous points. To this end, we construct Algorithm 2.2

which enables us to add interpolating points such that (1.8) is asymptotically satisfied.

Observe from (1.1) and (1.8) that the a~s behave asymptotically like the interpolation

error. Thus one can use the algorithm which computes the divided differences (related to

the points generated by Algorithm 2.2) as a numerical device for estimating the degree

of the polynomial needed to achieve a given accuracy. This technique can be very useful

when the mathematical expression of the error (1.5) is difficult to analyze.

The need for high degree interpolation is confronted in approximating a finite operator

which can be presented as J(A) where A is another finite operator. (The case J(z) = exp(z)

is a popular example [MoVa78].) Approximating J(A) can be reduced to a problem of

approximating J(z) where z belongs to a domain D in the complex plane which includes all

the eigenvalues of A. A possible approach is to expand the function as a sum of orthogonal

polynomials. In [Tale86], [Tale85] we have used it for the function J(z) = exp(tz) where

the domains were [-iR,iR], [-R,O] respectively. The algorithm which results make use of

the three term recurrence relation satisfied by the polynomials (scaled and translated

Chebyshev). For more complicated domains, the related polynomial of degree k satisfies

a k term recurrence relation and therefore the expansion approach is not suitable. An

alternative way is to use interpolation. A brief description of the method is given in

Section 4.

A particular and very important case of polynomial approximation of J(A) is an itera­

tive solution to a linear system Ax = b. Finding optimal parameters CXk for solving Ax = b

by the Richardson algorithm

(1.9)

can be achieved by considering polynomial interpolation to the function J(z) = 1/ z

[Tale87]. When D is on one side of the real line, this method is widely treated in the

numerical analysis literature (Chebyshev acceleration [HaY081]). It is also known that the

fact of having to decide on the number of iterations before starting the algorithm reduces

3

its efficiency. A Richardson process which uses points generated by Algorithm 2.2 is free of

this disadvantage. (For a more elaborate discussion and numerical examples see [Tale87].)

We conclude the paper in Section 5 by giving some numerical results.

2. INTERPOLATION IN THE COMPLEX PLANE

Let D be a bounded continuum in C such that the complement of D is simply connected

in the extended plane and contains the point at infinity. Considering interpolation in the

domain D, one is faced with the problem - which are the "good" interpolating points?

The solution to this question is based on the following:

Let 4>(z) be a conformal mapping which maps the complement of D to the complement

of a disc of radius p such that

lim 4>(z) = 1.
z-+oo Z

(2.1)

p is the logarithmic capacity of D [SmLe68]. (Having a domain D,4> and p are defined

uniquely.) Define tP(w) to be the inverse of 4>(z). Then we have [Wals56]:

Definition 2.1: Let r R be the image under tP of the circle Iwi = R (R > p) and IR

be the closed Jordan region whose boundary is r R • If J(z) is single valued and analytic on

IR then the sequence of polynomials Pm(z) is said to converge to J(z) on D maximally if

ZED (2.2)

where C depends on pi R but not on m or z.

Definition 2.2: The set of interpolating points Zj = tP(Wj) is said to be uniformly

distributed on rD (the boundary of D) if Wj are equally distributed on the circle Iwl = p.

This set (known also as Fejer points) is one possible set of "good" points. The polyno­

mial which interpolates J(z) at these points satisfies (2.2) [Wals56].

Another possibility is to interpolate at the zeroes of the correspondin~ Faber polyno­

mial. Let D and 4>(z) be as defined previously. We have [Mark77]

(2.3)

4

The Faber polynomial of degree m related to D is the polynomial part of (2.3)

Fm(z) = Cmzm + ... + Co.

Interpolating at the zeroes of Fm(z) satisfies (2.2) [Mark77]. When

D = {zl - 1 ~ Rez ~ 1 Imz = a},

then

Fm(z) = Tm(z) = cos(mcos-1 (z)),

and the m zeroes are the Chebyshev points (1.6).

(2.4)

(2.5)

(2.6)

For a general domain in the complex plane finding the zeroes of Fm(z) for large mean

be troublesome. Thus, it is preferable to use Fejer points since only knowledge of 7jJ (w) is

required.

Assume now that Zj, 1 ~ j ~ m, are uniformally distributed points. Then [Wals56]:

From (2.7) it is clear that in order to satisfy (1.8) we need:

1. p = 1

(2.7)

2. Every subset of interpolating points Zi,"', Zk, 1 ~ k ~ N, has to be uniformly

(or "almost" uniformly, see Algorithm 2.1) distributed.

Hence, by making the change of variables

z = zip (2.9)

and arranging the interpolating points such that the second requirement is satisfied we

eliminate the numerical instability mentioned in Section 1. The following algorithm is

designed for this purpose.

Algorithm 2.1: [Generates m uniformly distributed points (m even)]

j=£=1

5

S9 = 27r-jm. (2.13)

Find the largest k such that k is power of 2 and k < m/2

Ok = k X 60 (2.14)

1 For i = 1 untill do:

if(11 ~ IT) go to 1

j=j+1 (2.15)

OJ = 11

end do

l=j

Ok = Ok/2

if(Ok < 60)stop

go to 1

Algorithm 2.1 generates ~ arguments of points on the upper part of the unit circle (includes

1 but not -1). Thus

W2j-l = exp{iOj)

[

. m
2<) <­- - 2
. m

2 <) <-. - - 2

(2.16a)

(2.16b)

(2.16c)

(2.16d)

Using Algorithm 2.1 results in uniform distribution of Zi,··· ,Zm while Zi,·:· ,zk{k < m)

are "almost" uniformly distributed.

As mentioned in the introduction, we would like to he we an interpolating process which

will allow us .to add points if desired. To this end, we present the next algorithm. It

generates an infinite set of interpolating points. Using this algorithm we do not have

6

decide on the degree of the polynomial ahead of time. The set is asymptotically uniformally

distributed and therefore the interpolating polynomial satisfies (2.2).

Algorithm 2.2:

80 = 11"

k=1

Zl = 1/;(1)

1 For i = 1 until k or until satisfied do

end do

80 = 80/2

k = 2k

go to 1

The set of points generated by Algorithm 2.2 is uniformally distributed when the num­

ber points is a power of two and "almost" uniformally distributed otherwise.

Remark: In order to implement the algorithms presented in this section, we need the

conformal mapping function. For some domains, we do have an analytic expression of

this function. In more complicated situations, one has to resort to numerical techniques.

When D is a polygon, 1/;(w) is a Schwartz-Cristoffel transformation. Numerical routines

for this case, written by L. N. Trefethen (based on [Tref80j), are available through the

Netlib facilities. (See also [Tale87] for a description of how to implement the routines.)

7

3. INTERPOLATION ON THE REAL LINE

Let

D = [-b,b]. (3.1)

The conformal mapping ~(w) which maps the complement of the unit disc on the comple­

ment of Dis [Mark77]

Using (2.1) we get that

p = b/2.

Therefore, one should make the following change of variables

A 2x
X=-

b

in order to get

b = [-2,2]

p = 1.

Similarly, if

D= [a,b]

then
A 4x
x=--.

b- a

Thus, without loss of generality, we assume that

D = [-2,2].

Using (3.2), we get that Fejer points are

-1
Xj = Wj + Wj

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

where Wj can be generated by the algorithms given in Section 2. Observe that the Xj IS

are double interpolation points (except for 2 and -2).

8

Faber polynomials which correspond to D are scaled Chebyshev polynomials [Mark77]

whose zeroes are

- x Tm(x) = cos(m(cos- l
(-)))
2

(2j - 1)11"
y' = 2cos -'-----'--

J 2m j = 1,···,m.

(3.11)

(3.12)

Using Algorithm 2.1, we can get the zeroes of Tm(x), arranged in a stable order, as follows:

so
Xj = 2cos(Oj + "2) j=l,···,m. (3.13)

A popular set of interpolating points on the real line is the extremas of Chebyshev

polynomial of degree N. This set is not exactly Fejer points but can be shown to satisfy

(2.2). Using the algorithms given in Section 2 we have

Xl = 2; X2 =-2

Xj = 2cosOj j ;::: 3

where OJ are generated by Algorithm 2.1. or

Xl = 2

Xj = 2COS02j+1

where 02j+1 are generated by Algorithm 2.2.

. > 1 J_

(3.14a)

(3.14b)

(3.15a)

(3.15b)

4. POLYNOMIAL APPROXIMATION OF A FUNCTION OF A MATRIX

Let A be an N X N matrix and J(z) a function analytic in a domain D in the complex

plane which includes all the eigenvalues of A. Let w be the vector which results from

operating with J(A) on a vector v

w = [J(A)]v. (4.1)

Getting an approximation of w is a problem frequently confronted in applied mathematics.

An elaborate description of this topic is given in [Tale87]. It is shown there that one

9

can get an "almost" optimal polynomial algorithm by using the polynomial Pm(z) which

interpolates f(z) at points uniformally distributed on the boundary of D. (Without loss

of generality we assume that p(D) = 1. If not, we define A = !A and consider](z) = p

f(pz) = f(z)). Let w be an approximation of w

w = [Pm(A)]v. (4.2)

When A is normal, the error vector satisfies

IIw - wll = IIU(A) - Pm (A)) v II ~ If(z) - Pm(z)llIvll· (4.3)

Hence

IIw-wli
E = II v ll ~ If(z) - Pm(z)l. (4.4)

Using (2.2) we get that E is asymptotically bounded by (ii)m. Thus one can get a prediction

of the degree of the approximating polynomial. (When f(z) is an entire function (R = 00)

one can use the idea of computing the corresponding divided differences in order to get an

estimation of m.) In this case, we will use Algorithm 2.1 as a generator of the interpolating

points Zj. Once we have Zj we compute the divided differences aj. Having these two sets of

numbers, we can write the following algorithm:

Algorithm 4.1:

u=v

For i = 2, ... , m do

u = (A - zj_1I)u

end do

When A is diagonalizable but not normal we have the following

(4.5)

10

where T is the matrix which diagonalize A. Since IITII liT-III is unknown we usually

would not have an estimation of m before starting the algorithm. In this case we can use

Algorithm 2.2 as a generator of points. The criterion for stopping will be the norm of the

relative residual Ilaiull/llwil. (Because of the asymptotic behavior, the decision should be

made checking by a few residuals.)

Algorithm 4.2:

u=v

For i = 2,· . ·,until satisfied do

check for convergence

When A is a real matrix and J(z) is real for z real, the algorithms have to be modified in

order to eliminate complex arithmetic. (Observe that in this case the domain is symmetric

around the real axis.) To this end, we first arrange the points such that each point with

nonzero imaginary part will be followed by its conjugate. Thus, we change (2.16d) to read

W2j = W2j-l. The modified version of Algorithm 4.1 is:

Algorithm 4.3:

For i = 1 ... m-l do , , 2

end do

11

(The superscripts R,I stand for the real and imaginary parts respectively.)

Using Algorithm 2.2, we will order the points as follows: Zh Z2, Z3, Z3, •• ·,where Z2i+1

are generated by the algorithm. The modified version of Algorithm 4.2 will read:

Algorithm 4.4:

For i = 1,· . ·,until satisfied do

check for convergence

An iterative solution to a general linear system

Ax = b (4.7)

is a particular case of approximating J(A) where J(z) - ~. Applying Algorithms 4.1 -

4.4 for this problem can be shown to be equivalent to a Richardson type process [Tale87].

Having an initial approximation Xl, Algorithm 4.1 will result in

Algorithm 4.5:

For j = 1 until m do

end do

Where the relaxation parameters are

1
Cij= -.

Zj

12

(4.8)

Thus, for this particular function we do not have to compute the divided differences.

Therefore, the change of variables (2.9) is not significant here. But still rearranging the

points is important. Otherwise, we can face numerical instability due to the nonuniformity

of the error at intermediate stages. This phenomenon is treated also in [AnGo72], [LeFi76],

and [FiRe87]. The algorithm (based on bit-reversed binary representation of the iteration

count) proposed in [FiRe87] results in the same set of parameters generated by Algorithm

2.2. When A is real, Algorithm 4.4 will read

Algorithm 4.6:

for ;' = 2 until satisfied do

check the residuals

end do

5. NUMERICAL RESULTS

All the numerical experiments reported in this section were performed on an IBM 3270.

Let Pm(x) be the interpolating polynomial. The maximal error

E = max If(x) - Pm (x) I
:1:£[-1,1)

(5.1)

was approximated by

(5.2)

where Xi are checkpoints

Xi = -1 + 2(i - 1)/19 1 ~ i ~ 20. (5.3)

13

In the first set of experiments, the interpolated function is

1
f(x) = 0.005 + x2

By the following change of variables

y= xb

we get

1
f(x) = g(y) = 0.005 + (fP

-1:S;x:S;1.

- b:S; y:S; b.

(5.4)

(5.5)

(5.6)

The interpolating points are uniformally distributed on [-b,b] (as defined in Section 2)

but taken in two different orderings: yJ are arranged in the standard order

y} = bcos(7ri/m) (5.7)

and Yl are generated by Algorithm (2.1). In the first experiment we have used single

precision. The polynomial is of degree 80. Selected divided differences and the numerical

maximal error are presented in Table 1.

Table 1. (m = 80)

k b=1 b=2 b=3
ak(yl) ak{y2) ak{yl) ak{y2) ak{yl) ak (y2)

10 -5.44+09 -4.75+03 -1.06+07 -9.28+00 -2.08+04 -1.81-02
20 -5.31+17 2.045+06 -1.02+12 3.89+00 -1.93+06 7.44-06
30 -1.75+21 -8.94+08 -3.26+12 -1.66+00 -6.07+03 -3.10-09
40 -1.46+22 3.45+11 -2.65 +10 6.36-01 -4.83-02 1.16-12
50 -2.54+21 -2.14+14 -4.50+06 -3.80-01 -8.00-09 -6.74-16
60 -4.28+21 9.27+16 -7.42+03 1.61-01 -1.29-14 2.80-19
70 -1.73+22 -3.43+19 -2.94+01 -5.82-02 -4.98-20 -9.86-23
80 -8.79+16 2.90+18 -1.46-07 4.80-02 -2.41-31 7.94-30

II Eap II 4.68+23 I 3.48-01 II 4.68+23 I 3.48-01 II - I 3.48-01 II
Table 1 verifies the fact that yJ are useless for high degree Newton interpolation. Since

no overflow (underflow) has occurred in computing the divided differences, the error related

to yJ is the same in all the three cases. However, observe the "nice" behavior of the

14

coefficients which correspond to b = 2. The last ones are close to the interpolation error,

as predicted by the theory.

Next we took m = 160. The results are presented in Table 2.

Table 2. (m = 160)

k b=l b=2 b=3
ak(yl) ak(Y:':) ak(yl) ak(y2) ak(yl) ak(y2)

20 3.91+29 2.42+06 7.46+23 4.62+00 1.42+18 8.81-06
40 - 5.44+11 6.49+33 9.90-01 1.18+22 1.78-12
60 - 1.36+17 9.31+34 2.35-01 1.65+17 4.08-19
80 - 2.34+17 7.43+30 3.88-02 1.23+07 6.43-26

100 - 7.24+27 2.10+23 1.14-02 3.31-07 1.80-32
120 - 1.67+33 3.28+13 2.51-03 4.93-23 3.77-39
140 - - 1.01+02 2.45-04 1.45-40 0.00+00
160 - - -5.35-08 -2.60-05 0.00+00 0.00+00

II Eap II -I -II -I 7.29-04 II -I -II
Now, overflow or underflow is taking over in all the cases except for YJ and b = 2. As

in the previous example, the last coefficients are close to the error itself.

Next we interpolated the function

f(x) = cos(2000x) -l::;x::;1. (5.8)

In this case, one needs a super high degree polynomial. We took m = 2100 and used

double precision. The divided differences are presented in Table 3.

Table 3. (m = 2100)

k lakl k lakl k lakl k lakl
1 3.67-01 801 2.36-02 1601 1.71-02 2031 1.98-05

201 8.52+00 1001 3.80-03 1801 4.47-02 2051 1.12-06
401 3.78-01 1201 1.51-02 2001 5.13-02 2071 5.77-08
601 5.69-03 1401 1.22-02 2011 2.78-03 2091 2.18-10

The numerical error is

Eap = 5.89 - 09. (5.9)

Observe that the asymptotic decay of the coefficients starts when k crosses 2000. One

encounters a similar behavior of coefficients while expanding (5.8) in Chebyshev polyno-

15

mials.
00

cos(2000x) = L bkTk(X),

It can be shown [AbSt72] that

k=O

{
Ok odd

bk = 2Jk (2000) k even

(5.10)

(5.11)

where Jk are Bessel functions of order k. By asymptotic analysis of Bessel functions we

know that Jk(R) goes to zero exponentially fast only when k > R. This similarity between

ak and bk could be anticipated since Tk(X) satisfies

Ixi ~ 1

2. Its zeroes are uniformally distributed.

Where Rk(x) satisfies

Ixi ~ 2

2. Its zeroes are "almost" uniformally distributed.

Polynomial approximation of a function of a matrix

Let us consider the following parabolic P.D.E

Ixl < I,lyl < 1

4

U(x,O) = L sin(1rkx)sin(1rky)
k=l

U = 0 on the boundaries of the unit square.

U sing the following space discretization

Uij = U(Xh Yj, t)

Xi = -1 + illx

Yj = -1 + jlly 1 ~j~ N

2
Ilx= Ily =-­

N+I

16

(5.12a)

(5.12b)

(5.13a)

(5.13b)

(5.13c)

(5.13d)

'-.

where N is the number of grid points in each direction, we approximate the space deriva-

tives by the standard second order central differencing

(5.14a)

(5.14b)

Thus we get the following semidiscrete representation of (5.12)

(5.15a)

(5.15b)

where UN is a vector of dimension N 2, G N is a N 2 X N 2 matrix which results from the

space discretization and

1 ~ i,i ~ N. (5.16)

The formal solution of (5.15) is

(5.17)

Now, by using polynomial approximation of exp(tGN) we get

(5.18)

where Pk(tZ) approximates exp(tz) in the domain which includes all the eigenvalues of GN.

The numerical solution was computed at t = 0.1. A simple Fourier analysis shows that

D is on the negative real line. Therefore we took (3.12b) as interpolating points and used

Algorithm 4.2 to get Ufy. The exact solution of (5.12) is

4

U(x, y, t) = L exp(-(k7r)2t)sin(k7rx)sin(k7rY). (5.19)
k=l

The following tables present the dependence of three factors on k, the degree of the inter­

polating polynomial.

17

lakl- the absolute value of the maximal divided difference.

Tk/Uk- the relative residual which represents the time accuracy.

ek/uk- the relative error which represents the space + time accuracy.

For N = 8 Dis

D = {xl- 160 :S x :S -4}

and the results are given in Table 4.

Table 4. (N = 8)

k lakl Tk/Uk ek/uk k lakl Tk/Uk ek/uk

2 2.45-01 7.79+00 7.01+00 12 2.73-03 1.85-02 8.30-02
4 1.79-01 5.42+00 3.27+00 14 2.25-05 1.92-03 8.23-02
6 8.29-02 2.32+00 1.74+00 16 1.11-06 1.48-04 8.23-02
8 1.31-02 5.81-01 2.54-01 18 6.15-08 1.77-06 8.23-02
10 2.40-03 9.18-02 1.06-01 20 2.97-09 1.94-07 8.23-02

For N = 16 Dis

D = {xl- 640 :S x :S -4}

and the results are given in Table 5.

Table 5. (N = 16)

k lakl Tk/Uk ek/uk k lakl Tk/Uk ek/uk

3 1.67-01 2.44-01 9.19+00 18 9.50-04 3.28-02 9.76-02
6 2.88-02 1.67-01 2.64+00 21 6.32-05 1.80-03 2.28-02
9 2.29-02 5.19-01 3.59+00 24 1.64-05 3.05-03 2.29-02

12 4.08-02 1.35+00 2.36-01 27 5.92-06 3.71-04 2.26-02
15 6.50-03 3.05-01 2.46-01 30 2.56-07 4.96-05 2.26-02

(5.20)

(5.21)

Observing Tables 4 and 5 we see that for N = 8 we need 14 iterations to recover the

space accuracy and for N = 16 we need 27 iterations. This result compares favorably with

a standard explicit algorithm like Forward Euler or Runge-Kutta where the number of

iterations(time steps) is multiplied by4 (due to stability limitations) whenever we increase

the space resolution by two. In [Tale85] we describe an algorithm which is spectral in time.

It is shown there that for a parabolic problem, the time resolution parameter depends

almost linearly on the space resolution parameter. Since the algorithm used in the present

18

paper can be considered also as spectral in time, it explains this improvement in the number

of matrix vector multiplications needed to march the solution to a given time level.

19

References

[AbSt72] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Pub­

lications, Inc., New-York (1972).

[AnGo72] R. S. Anderssen, G. H. Golub, "Richardson's non-stationary matrix iterative

procedure," Rep. STAN-CS-72-304, Computer Science Dept., Stanford Univer­

sity, Stanford, CA (1972).

[CodB82] S. D. Conte, C. de Boor, Elementary numerical analysis, McGraw-Hill Interna­

tional Student Edition, 1982.

[Davi75] P. J. Davis, Interpolation and Approximation, Dover Publication, Inc., New

York, 1975.

[FiRe87] B. Fischer, L. Reichel, "A stable Richardson iteration method for complex linear

systems," Preprint 10, Institute fur Angewandte Mathematik der Universitat

Hamburg, 1987.

[HaYo81] L. Hayeman, D. Young, Applied Iterative Methods, Academic Press, New York,

1981.

[LeFi76] V. I. Lebedev, S. A. Finogenov, "Utilization of ordered Chebyshev parameters in

iterative methods," U.S.S.R. Comput. Math. Phys., 16, No.4, pp. 70-83, (1976).

[Mark77] A. I. Markushevich, Theory of Functions of a Complex Variable, Chelsea, New

York (1977).

[MoVa78] C. B. Moler, C. F. Van Loan, "Nineteen dubious ways to compute the exponen­

tial of a matrix," SIAM Review, 20, pp. 801-836 (1978).

[SmLe68] V. I. Smirnov, N. A. Lebedov, Functions of a Complex Variable, London ILIFFE

Books Ltd. (1968).

20

[Tale86] H. Tal-Ezer, "Spectral methods in time for hyperbolic equations," SIAM J.

Numer. Anal., 23, No.1 (1986), pp. 11-26.

[Tale85] H. Tal-Ezer, "Spectral methods in time for parabolic problems," ICASE Report

No. 85-9, Langley Research Center, Hampton, VA (1985).

[Tale87] H. Tal-Ezer, "Polynomial approximation of functions of matrices and its appli­

cation to the solution of a general system of linear equations," ICASE Report

No. 87-63, NASA Langley Research Center, Hampton, VA (1987).

[TrefSO] L. N. Trefethen, "Numerical computation of the Schwarz-Christoffel transfor­

mation," SIAM J. Sci. Stat. Comput. 1 (1980), pp. 82-102.

[Wals56] J. L. Walsh, "Interpolation and approximation by rational functions in the com­

plex domain," American Mathematical Society, Providence, Rhode Island, 1956.

21

I\U\SI\ Report Documentation Page Nat(Jr'lal AerCYIaUICS ana
Soace ~Slra1O'1

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-I81677
ICASE Report No. 88-39

4. Title and Subtitle 5. Report Date

HIGH DEGREE INTERPOLATION POLYNOMIAL IN June 1988
NEWTON FORM

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Hillel Tal-Ezer 88-39

10. Work Unit No.

9. Performing Organization Name and Address
505-90-21-01

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering NASI-I8I07
Mail Stop l32C, NASA Langley Research Center

13. Type of Report and Period Covered U"mnt-,," VA ?':Ie.e.<: .<:??<:
12. Sponsoring Agency Name and Address

Contractor Report
National Aeronautics and Space Administration

14. Sponsoring),I.gency Code Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to SIAM J. Sci.
Richard W. Barnwell Comput.

Final Report

16. Abstract

Polynomial interpolation is an essential subject in numerical analysis.
Dealing with a real interval, it is well-known that even if f(x) is an analytic
function, interpolating at equally spaced points can diverge [Davi75] • On the
other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial
will converge. Using the Newton formula, this result of convergence is true only
on the theoretical level. It is shown that the algorithm which computes the
divided differences is numerically stable only if: 1.) the interpolating points
are arranged in a certain order, 2.) the size of the interval is 4.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

interpolation, Newton form, divided 64 - Numerical Analysis
differences

Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 23 AOZ

NASA FORM 1626 OCT 86 NASA-langley, 1988

End of Document

