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ABSTRACT 

Polynomial interpolation is an essential subject in numerical analysis. Dealing with a 

real interval, it is well-known that even if !(x) is an analytic function, interpolating at 

equally spaced points can diverge [Davi75]. On the otherhand, interpolating at the zeroes 

of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this 

result of convergence is true only on the theoretical level. It is shown that the algorithm 

which computes the divided differences is numerically stable only if: 1.) the interpolating 

points are arranged in a certain order, 2.) the size of the interval is 4. 
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1. INTRODUCTION 

Let f(x) be a real function defined on the interval [a, bj and {Xi}~o be a set of N + 1 

points in [a, bj then the general formulation of Newton interpolating polynomial of degree 

N is 
N 

PN(X) = L akRk(x) 
k=O 

where ak are the divided differences 

and 

Ro(x) = 1 

If EN(X) is the error at point x€[a, bj then we have the following theorem [CodB82j. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

Theorem 1.1: Let f(x) be a real valued function defined on [a, bj and N + 1 times 

differentiable on [a, bj. If PN(X) is the polynomial of degree ~ N which interpolates f(x) 

at N + 1 distinct points Xo,··· ,XN in [a,bj, then for all x€[a,bj, there exists € = €(x)E(a,b) 

such that 

(1.5) 

It is well-known that if Xo,···, XN are equally spaced points then maxIRN+1(X) I 
increases as x moves towards the ends of the interval and divergence can occur. A well-

known remedy for this phenomenon is to choose as interpolating points the zeroes of the 

corresponding scaled and translated Chebyshev polynomial 

1 [ (2i + 1)7r 1 
Xi=- (b-a)cos N +b+a 

2 2 +2 
i = O,···,N. (1.6) 

Using (1.6) results in a uniform distribution of the error and convergence is achieved. 

This result of convergence is true only in theory. Practically, an interpolating polyno­

mial based on (1.6) will not converge to f(x) because of the finite accuracy of the computer. 

The numerical instability can be traced to two sources: 
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1.) The algorithm which computes the divided differences is very vulnerable to roundoff 

errors and overflow. The super sensitivity to roundoff errors is explained by the fact that 

for N large, the first k points (k ~ N) are very close to each other (minlxi+l-Xil '" 1/N2 ). 

But even if roundoff errors were eliminated, we still would face overflow because the first 

k points (k ~ N) are concentrated on one side of the interval. This distribution will lead 

to nonuniformity of RA;(X) and EA;{X). It is this nonuniformity which will cause overflow at 

intermediate stages of the interpolation process. 

2.) Eliminating the first source of numerical instability (by taking the points in a 

different order) results in "almost" uniformity of RA;(X) k = 1, .. , N, but still, RA;(X) satisfies 

(see Section 3) 

(1.7) 

Observing (1.1) and (1.7) it is obvious that we will face overflow (for k large enough) while 

computing the a~s. 

We are going to approach this phenomenon in the more general context of interpolation 

in the complex plane. Background material is given in Section 2. Based on the theory we 

show that by: 

(1) arranging the interpolating points in a certain order, 

(2) making a simple change of variables such that the interval is of size 4, 

we get 

1 ~ k ~ N. (1.8) 

Thus these two modifications result in a stable Newton interpolation process. Algorithm 

2.1 presented in Section 2 generates N interpolating points such that (1.8) is satisfied. 

In practice we would like to be able to add points, if necessary, without restarting the 

interpolation process. It is well-known that the Newton algorithm potentially has this 

feature; adding another point results in computing only one additional ter.m. (In contrast 

to the Lagrange process where one has to start the calculations all over again.) But by 

using Chebyshev zeroes, (1.6), we would not capitalize on this property since increasing 
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N results in changing all the previous points. To this end, we construct Algorithm 2.2 

which enables us to add interpolating points such that (1.8) is asymptotically satisfied. 

Observe from (1.1) and (1.8) that the a~s behave asymptotically like the interpolation 

error. Thus one can use the algorithm which computes the divided differences (related to 

the points generated by Algorithm 2.2) as a numerical device for estimating the degree 

of the polynomial needed to achieve a given accuracy. This technique can be very useful 

when the mathematical expression of the error (1.5) is difficult to analyze. 

The need for high degree interpolation is confronted in approximating a finite operator 

which can be presented as J(A) where A is another finite operator. (The case J(z) = exp(z) 

is a popular example [MoVa78].) Approximating J(A) can be reduced to a problem of 

approximating J(z) where z belongs to a domain D in the complex plane which includes all 

the eigenvalues of A. A possible approach is to expand the function as a sum of orthogonal 

polynomials. In [Tale86], [Tale85] we have used it for the function J(z) = exp(tz) where 

the domains were [-iR,iR], [-R,O] respectively. The algorithm which results make use of 

the three term recurrence relation satisfied by the polynomials (scaled and translated 

Chebyshev). For more complicated domains, the related polynomial of degree k satisfies 

a k term recurrence relation and therefore the expansion approach is not suitable. An 

alternative way is to use interpolation. A brief description of the method is given in 

Section 4. 

A particular and very important case of polynomial approximation of J(A) is an itera­

tive solution to a linear system Ax = b. Finding optimal parameters CXk for solving Ax = b 

by the Richardson algorithm 

(1.9) 

can be achieved by considering polynomial interpolation to the function J(z) = 1/ z 

[Tale87]. When D is on one side of the real line, this method is widely treated in the 

numerical analysis literature (Chebyshev acceleration [HaY081]). It is also known that the 

fact of having to decide on the number of iterations before starting the algorithm reduces 
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its efficiency. A Richardson process which uses points generated by Algorithm 2.2 is free of 

this disadvantage. (For a more elaborate discussion and numerical examples see [Tale87].) 

We conclude the paper in Section 5 by giving some numerical results. 

2. INTERPOLATION IN THE COMPLEX PLANE 

Let D be a bounded continuum in C such that the complement of D is simply connected 

in the extended plane and contains the point at infinity. Considering interpolation in the 

domain D, one is faced with the problem - which are the "good" interpolating points? 

The solution to this question is based on the following: 

Let 4>(z) be a conformal mapping which maps the complement of D to the complement 

of a disc of radius p such that 

lim 4>(z) = 1. 
z-+oo Z 

(2.1) 

p is the logarithmic capacity of D [SmLe68]. (Having a domain D,4> and p are defined 

uniquely.) Define tP(w) to be the inverse of 4>(z). Then we have [Wals56]: 

Definition 2.1: Let r R be the image under tP of the circle Iwi = R (R > p) and IR 

be the closed Jordan region whose boundary is r R • If J(z) is single valued and analytic on 

IR then the sequence of polynomials Pm(z) is said to converge to J(z) on D maximally if 

ZED (2.2) 

where C depends on pi R but not on m or z. 

Definition 2.2: The set of interpolating points Zj = tP( Wj) is said to be uniformly 

distributed on rD (the boundary of D) if Wj are equally distributed on the circle Iwl = p. 

This set (known also as Fejer points) is one possible set of "good" points. The polyno­

mial which interpolates J(z) at these points satisfies (2.2) [Wals56]. 

Another possibility is to interpolate at the zeroes of the correspondin~ Faber polyno­

mial. Let D and 4>(z) be as defined previously. We have [Mark77] 

(2.3) 
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The Faber polynomial of degree m related to D is the polynomial part of (2.3) 

Fm(z) = Cmzm + ... + Co. 

Interpolating at the zeroes of Fm(z) satisfies (2.2) [Mark77]. When 

D = {zl - 1 ~ Rez ~ 1 Imz = a}, 

then 

Fm(z) = Tm(z) = cos(mcos-1 (z)), 

and the m zeroes are the Chebyshev points (1.6). 

(2.4) 

(2.5) 

(2.6) 

For a general domain in the complex plane finding the zeroes of Fm(z) for large mean 

be troublesome. Thus, it is preferable to use Fejer points since only knowledge of 7jJ (w) is 

required. 

Assume now that Zj, 1 ~ j ~ m, are uniformally distributed points. Then [Wals56]: 

From (2.7) it is clear that in order to satisfy (1.8) we need: 

1. p = 1 

(2.7) 

2. Every subset of interpolating points Zi,"', Zk, 1 ~ k ~ N, has to be uniformly 

(or "almost" uniformly, see Algorithm 2.1) distributed. 

Hence, by making the change of variables 

z = zip (2.9) 

and arranging the interpolating points such that the second requirement is satisfied we 

eliminate the numerical instability mentioned in Section 1. The following algorithm is 

designed for this purpose. 

Algorithm 2.1: [Generates m uniformly distributed points (m even)] 

j=£=1 

5 

S9 = 27r-jm. (2.13) 



Find the largest k such that k is power of 2 and k < m/2 

Ok = k X 60 (2.14) 

1 For i = 1 untill do: 

if(11 ~ IT) go to 1 

j=j+1 (2.15) 

OJ = 11 

end do 

l=j 

Ok = Ok/2 

if(Ok < 60)stop 

go to 1 

Algorithm 2.1 generates ~ arguments of points on the upper part of the unit circle (includes 

1 but not -1). Thus 

W2j-l = exp{iOj) 

[ 

. m 
2<) <­- - 2 
. m 

2 <) <-. - - 2 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

Using Algorithm 2.1 results in uniform distribution of Zi,··· ,Zm while Zi,·:· ,zk{k < m) 

are "almost" uniformly distributed. 

As mentioned in the introduction, we would like to he we an interpolating process which 

will allow us .to add points if desired. To this end, we present the next algorithm. It 

generates an infinite set of interpolating points. Using this algorithm we do not have 
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decide on the degree of the polynomial ahead of time. The set is asymptotically uniformally 

distributed and therefore the interpolating polynomial satisfies (2.2). 

Algorithm 2.2: 

80 = 11" 

k=1 

Zl = 1/;(1) 

1 For i = 1 until k or until satisfied do 

end do 

80 = 80/2 

k = 2k 

go to 1 

The set of points generated by Algorithm 2.2 is uniformally distributed when the num­

ber points is a power of two and "almost" uniformally distributed otherwise. 

Remark: In order to implement the algorithms presented in this section, we need the 

conformal mapping function. For some domains, we do have an analytic expression of 

this function. In more complicated situations, one has to resort to numerical techniques. 

When D is a polygon, 1/;(w) is a Schwartz-Cristoffel transformation. Numerical routines 

for this case, written by L. N. Trefethen (based on [Tref80j), are available through the 

Netlib facilities. (See also [Tale87] for a description of how to implement the routines.) 
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3. INTERPOLATION ON THE REAL LINE 

Let 

D = [-b,b]. (3.1) 

The conformal mapping ~(w) which maps the complement of the unit disc on the comple­

ment of Dis [Mark77] 

Using (2.1) we get that 

p = b/2. 

Therefore, one should make the following change of variables 

A 2x 
X=-

b 

in order to get 

b = [-2,2] 

p = 1. 

Similarly, if 

D= [a,b] 

then 
A 4x 
x=--. 

b- a 

Thus, without loss of generality, we assume that 

D = [-2,2]. 

Using (3.2), we get that Fejer points are 

-1 
Xj = Wj + Wj 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where Wj can be generated by the algorithms given in Section 2. Observe that the Xj IS 

are double interpolation points (except for 2 and -2). 
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Faber polynomials which correspond to D are scaled Chebyshev polynomials [Mark77] 

whose zeroes are 

- x Tm(x) = cos(m(cos- l
( -))) 
2 

(2j - 1)11" 
y' = 2cos -'-----'--

J 2m j = 1,···,m. 

(3.11) 

(3.12) 

Using Algorithm 2.1, we can get the zeroes of Tm(x), arranged in a stable order, as follows: 

so 
Xj = 2cos(Oj + "2) j=l,···,m. (3.13) 

A popular set of interpolating points on the real line is the extremas of Chebyshev 

polynomial of degree N. This set is not exactly Fejer points but can be shown to satisfy 

(2.2). Using the algorithms given in Section 2 we have 

Xl = 2; X2 =-2 

Xj = 2cosOj j ;::: 3 

where OJ are generated by Algorithm 2.1. or 

Xl = 2 

Xj = 2COS02j+1 

where 02j+1 are generated by Algorithm 2.2. 

. > 1 J_ 

(3.14a) 

(3.14b) 

(3.15a) 

(3.15b) 

4. POLYNOMIAL APPROXIMATION OF A FUNCTION OF A MATRIX 

Let A be an N X N matrix and J(z) a function analytic in a domain D in the complex 

plane which includes all the eigenvalues of A. Let w be the vector which results from 

operating with J(A) on a vector v 

w = [J(A)]v. (4.1) 

Getting an approximation of w is a problem frequently confronted in applied mathematics. 

An elaborate description of this topic is given in [Tale87]. It is shown there that one 
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can get an "almost" optimal polynomial algorithm by using the polynomial Pm(z) which 

interpolates f(z) at points uniformally distributed on the boundary of D. (Without loss 

of generality we assume that p(D) = 1. If not, we define A = !A and consider ](z) = p 

f(pz) = f(z)). Let w be an approximation of w 

w = [Pm(A)]v. (4.2) 

When A is normal, the error vector satisfies 

IIw - wll = IIU(A) - Pm (A)) v II ~ If(z) - Pm(z)llIvll· (4.3) 

Hence 

IIw-wli 
E = II v ll ~ If(z) - Pm(z)l. (4.4) 

Using (2.2) we get that E is asymptotically bounded by (ii)m. Thus one can get a prediction 

of the degree of the approximating polynomial. (When f(z) is an entire function (R = 00) 

one can use the idea of computing the corresponding divided differences in order to get an 

estimation of m.) In this case, we will use Algorithm 2.1 as a generator of the interpolating 

points Zj. Once we have Zj we compute the divided differences aj. Having these two sets of 

numbers, we can write the following algorithm: 

Algorithm 4.1: 

u=v 

For i = 2, ... , m do 

u = (A - zj_1I)u 

end do 

When A is diagonalizable but not normal we have the following 

(4.5) 
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where T is the matrix which diagonalize A. Since IITII liT-III is unknown we usually 

would not have an estimation of m before starting the algorithm. In this case we can use 

Algorithm 2.2 as a generator of points. The criterion for stopping will be the norm of the 

relative residual Ilaiull/llwil. (Because of the asymptotic behavior, the decision should be 

made checking by a few residuals.) 

Algorithm 4.2: 

u=v 

For i = 2,· . ·,until satisfied do 

check for convergence 

When A is a real matrix and J(z) is real for z real, the algorithms have to be modified in 

order to eliminate complex arithmetic. (Observe that in this case the domain is symmetric 

around the real axis.) To this end, we first arrange the points such that each point with 

nonzero imaginary part will be followed by its conjugate. Thus, we change (2.16d) to read 

W2j = W2j-l. The modified version of Algorithm 4.1 is: 

Algorithm 4.3: 

For i = 1 ... m-l do , , 2 

end do 
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(The superscripts R,I stand for the real and imaginary parts respectively.) 

Using Algorithm 2.2, we will order the points as follows: Zh Z2, Z3, Z3, •• ·,where Z2i+1 

are generated by the algorithm. The modified version of Algorithm 4.2 will read: 

Algorithm 4.4: 

For i = 1,· . ·,until satisfied do 

check for convergence 

An iterative solution to a general linear system 

Ax = b (4.7) 

is a particular case of approximating J(A) where J(z) - ~. Applying Algorithms 4.1 -

4.4 for this problem can be shown to be equivalent to a Richardson type process [Tale87]. 

Having an initial approximation Xl, Algorithm 4.1 will result in 

Algorithm 4.5: 

For j = 1 until m do 

end do 

Where the relaxation parameters are 

1 
Cij= -. 

Zj 

12 
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Thus, for this particular function we do not have to compute the divided differences. 

Therefore, the change of variables (2.9) is not significant here. But still rearranging the 

points is important. Otherwise, we can face numerical instability due to the nonuniformity 

of the error at intermediate stages. This phenomenon is treated also in [AnGo72], [LeFi76], 

and [FiRe87]. The algorithm (based on bit-reversed binary representation of the iteration 

count) proposed in [FiRe87] results in the same set of parameters generated by Algorithm 

2.2. When A is real, Algorithm 4.4 will read 

Algorithm 4.6: 

for ;' = 2 until satisfied do 

check the residuals 

end do 

5. NUMERICAL RESULTS 

All the numerical experiments reported in this section were performed on an IBM 3270. 

Let Pm(x) be the interpolating polynomial. The maximal error 

E = max If(x) - Pm (x) I 
:1:£[-1,1) 

(5.1) 

was approximated by 

(5.2) 

where Xi are checkpoints 

Xi = -1 + 2(i - 1)/19 1 ~ i ~ 20. (5.3) 
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In the first set of experiments, the interpolated function is 

1 
f(x) = 0.005 + x2 

By the following change of variables 

y= xb 

we get 

1 
f(x) = g(y) = 0.005 + (fP 

-1:S;x:S;1. 

- b:S; y:S; b. 

(5.4) 

(5.5) 

(5.6) 

The interpolating points are uniformally distributed on [-b,b] (as defined in Section 2) 

but taken in two different orderings: yJ are arranged in the standard order 

y} = bcos(7ri/m) (5.7) 

and Yl are generated by Algorithm (2.1). In the first experiment we have used single 

precision. The polynomial is of degree 80. Selected divided differences and the numerical 

maximal error are presented in Table 1. 

Table 1. (m = 80) 

k b=1 b=2 b=3 
ak(yl) ak{y2) ak{yl) ak{y2) ak{yl) ak (y2) 

10 -5.44+09 -4.75+03 -1.06+07 -9.28+00 -2.08+04 -1.81-02 
20 -5.31+17 2.045+06 -1.02+12 3.89+00 -1.93+06 7.44-06 
30 -1.75+21 -8.94+08 -3.26+12 -1.66+00 -6.07+03 -3.10-09 
40 -1.46+22 3.45+11 -2.65 +10 6.36-01 -4.83-02 1.16-12 
50 -2.54+21 -2.14+14 -4.50+06 -3.80-01 -8.00-09 -6.74-16 
60 -4.28+21 9.27+16 -7.42+03 1.61-01 -1.29-14 2.80-19 
70 -1.73+22 -3.43+19 -2.94+01 -5.82-02 -4.98-20 -9.86-23 
80 -8.79+16 2.90+18 -1.46-07 4.80-02 -2.41-31 7.94-30 

II Eap II 4.68+23 I 3.48-01 II 4.68+23 I 3.48-01 II - I 3.48-01 II 
Table 1 verifies the fact that yJ are useless for high degree Newton interpolation. Since 

no overflow (underflow) has occurred in computing the divided differences, the error related 

to yJ is the same in all the three cases. However, observe the "nice" behavior of the 
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coefficients which correspond to b = 2. The last ones are close to the interpolation error, 

as predicted by the theory. 

Next we took m = 160. The results are presented in Table 2. 

Table 2. (m = 160) 

k b=l b=2 b=3 
ak(yl ) ak(Y:':) ak(yl ) ak(y2) ak(yl) ak(y2) 

20 3.91+29 2.42+06 7.46+23 4.62+00 1.42+18 8.81-06 
40 - 5.44+11 6.49+33 9.90-01 1.18+22 1.78-12 
60 - 1.36+17 9.31+34 2.35-01 1.65+17 4.08-19 
80 - 2.34+17 7.43+30 3.88-02 1.23+07 6.43-26 

100 - 7.24+27 2.10+23 1.14-02 3.31-07 1.80-32 
120 - 1.67+33 3.28+13 2.51-03 4.93-23 3.77-39 
140 - - 1.01+02 2.45-04 1.45-40 0.00+00 
160 - - -5.35-08 -2.60-05 0.00+00 0.00+00 

II Eap II -I -II -I 7.29-04 II -I -II 
Now, overflow or underflow is taking over in all the cases except for YJ and b = 2. As 

in the previous example, the last coefficients are close to the error itself. 

Next we interpolated the function 

f(x) = cos(2000x) -l::;x::;1. (5.8) 

In this case, one needs a super high degree polynomial. We took m = 2100 and used 

double precision. The divided differences are presented in Table 3. 

Table 3. (m = 2100) 

k lakl k lakl k lakl k lakl 
1 3.67-01 801 2.36-02 1601 1.71-02 2031 1.98-05 

201 8.52+00 1001 3.80-03 1801 4.47-02 2051 1.12-06 
401 3.78-01 1201 1.51-02 2001 5.13-02 2071 5.77-08 
601 5.69-03 1401 1.22-02 2011 2.78-03 2091 2.18-10 

The numerical error is 

Eap = 5.89 - 09. (5.9) 

Observe that the asymptotic decay of the coefficients starts when k crosses 2000. One 

encounters a similar behavior of coefficients while expanding (5.8) in Chebyshev polyno-
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mials. 
00 

cos(2000x) = L bkTk(X), 

It can be shown [AbSt72] that 

k=O 

{
Ok odd 

bk = 2Jk (2000) k even 

(5.10) 

(5.11) 

where Jk are Bessel functions of order k. By asymptotic analysis of Bessel functions we 

know that Jk(R) goes to zero exponentially fast only when k > R. This similarity between 

ak and bk could be anticipated since Tk(X) satisfies 

Ixi ~ 1 

2. Its zeroes are uniformally distributed. 

Where Rk(x) satisfies 

Ixi ~ 2 

2. Its zeroes are "almost" uniformally distributed. 

Polynomial approximation of a function of a matrix 

Let us consider the following parabolic P.D.E 

Ixl < I,lyl < 1 

4 

U(x,O) = L sin(1rkx)sin(1rky) 
k=l 

U = 0 on the boundaries of the unit square. 

U sing the following space discretization 

Uij = U(Xh Yj, t) 

Xi = -1 + illx 

Yj = -1 + jlly 1 ~j~ N 

2 
Ilx= Ily =-­

N+I 

16 

(5.12a) 

(5.12b) 

(5.13a) 

(5.13b) 

(5.13c) 

(5.13d) 
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where N is the number of grid points in each direction, we approximate the space deriva-

tives by the standard second order central differencing 

(5.14a) 

(5.14b) 

Thus we get the following semidiscrete representation of (5.12) 

(5.15a) 

(5.15b) 

where UN is a vector of dimension N 2, G N is a N 2 X N 2 matrix which results from the 

space discretization and 

1 ~ i,i ~ N. (5.16) 

The formal solution of (5.15) is 

(5.17) 

Now, by using polynomial approximation of exp(tGN ) we get 

(5.18) 

where Pk(tZ) approximates exp(tz) in the domain which includes all the eigenvalues of GN. 

The numerical solution was computed at t = 0.1. A simple Fourier analysis shows that 

D is on the negative real line. Therefore we took (3.12b) as interpolating points and used 

Algorithm 4.2 to get Ufy. The exact solution of (5.12) is 

4 

U(x, y, t) = L exp(-(k7r)2t)sin(k7rx)sin(k7rY). (5.19) 
k=l 

The following tables present the dependence of three factors on k, the degree of the inter­

polating polynomial. 
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lakl- the absolute value of the maximal divided difference. 

Tk/Uk- the relative residual which represents the time accuracy. 

ek/uk- the relative error which represents the space + time accuracy. 

For N = 8 Dis 

D = {xl- 160 :S x :S -4} 

and the results are given in Table 4. 

Table 4. (N = 8) 

k lakl Tk/Uk ek/uk k lakl Tk/Uk ek/uk 

2 2.45-01 7.79+00 7.01+00 12 2.73-03 1.85-02 8.30-02 
4 1.79-01 5.42+00 3.27+00 14 2.25-05 1.92-03 8.23-02 
6 8.29-02 2.32+00 1.74+00 16 1.11-06 1.48-04 8.23-02 
8 1.31-02 5.81-01 2.54-01 18 6.15-08 1.77-06 8.23-02 
10 2.40-03 9.18-02 1.06-01 20 2.97-09 1.94-07 8.23-02 

For N = 16 Dis 

D = {xl- 640 :S x :S -4} 

and the results are given in Table 5. 

Table 5. (N = 16) 

k lakl Tk/Uk ek/uk k lakl Tk/Uk ek/uk 

3 1.67-01 2.44-01 9.19+00 18 9.50-04 3.28-02 9.76-02 
6 2.88-02 1.67-01 2.64+00 21 6.32-05 1.80-03 2.28-02 
9 2.29-02 5.19-01 3.59+00 24 1.64-05 3.05-03 2.29-02 

12 4.08-02 1.35+00 2.36-01 27 5.92-06 3.71-04 2.26-02 
15 6.50-03 3.05-01 2.46-01 30 2.56-07 4.96-05 2.26-02 

(5.20) 

(5.21) 

Observing Tables 4 and 5 we see that for N = 8 we need 14 iterations to recover the 

space accuracy and for N = 16 we need 27 iterations. This result compares favorably with 

a standard explicit algorithm like Forward Euler or Runge-Kutta where the number of 

iterations(time steps) is multiplied by4 (due to stability limitations) whenever we increase 

the space resolution by two. In [Tale85] we describe an algorithm which is spectral in time. 

It is shown there that for a parabolic problem, the time resolution parameter depends 

almost linearly on the space resolution parameter. Since the algorithm used in the present 

18 



paper can be considered also as spectral in time, it explains this improvement in the number 

of matrix vector multiplications needed to march the solution to a given time level. 
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