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ABSTRACT

We investigated the influence of transport phenomena on the
morphology of crystalline materials. Two problems were studied:
one dealt with the effects of convection on the crystallization
of pure materials, the other with the crystallization of proteins
from solution. In the first study we were interested in how
convection alters the stability of the growth process and the
relation betweern undercooling and the growth speed. In the
second, we sought to find out why protein crystals grow as slowly
as they do and how crystal morphology depends on the growth rate
and crystal size. In both studies the research focussed on
developing fundamental data that is a prerequisite for any
microgravity experiments.

In the study of dendrite morphology, a computation scheme was
developed which simulates the evolution of a needle-shaped
crystal in an undercooled melt in the presence of convective heat
transfer. The algorithm provides a model of crystal growth which
includes the physical processes cuwrrently thought to govern
growth., The only approximations are those necessary to the
numerical solution of the equations, i.e., representation of the
snlution at a finite number of "points" using a boundary integral
method for tracking the interface. We did not resort to
linpearization nor did we assume quasi-static behavior of the

temperature field., Thus, the evolution of the interface can be
tracked in space and time to ascertain its form and stability.
The algorithm wes wsed to study the inflouence of convection and

interfacial energy (the Gibbs-Thompson effect) on growth
Proresses.,

A new class of steady state shapes was found for growth in the
presence of fluid motion. The relation between growth rate,
uwndercooling, flow strength, and the other parameters was
derived. The relation reduces to the well-known Ivantsov form
‘when convection is absent. The stability of these shapes, as
well as those found in the absence of convection, was
investigated by following the non-linear evolution of the
interface after it was perturbed. These interfaces were always
unstable and the well-known tip-splitting instability appeared.
Adding the effect of interface curvature on temperature (the
Gibbs-Thompson effect) produced new interface configurations,
which were almost paraboloidal. These shapes were always stable.
These results are contrary to those found in connection with
either the theory of marginal stability or microscopic
solvability. The reasons for this are unknown. The algorithm is a
solution of the full non-linear problem so some discrepancies are
to be expected. However, the qualitative difference in behavior
deserves further study and the numerical algorithm should be
carefully checked. If the numerical algorithm is indeed error
free, then currently accepted theories will need revision. One
paper derived from this part of the study has been published in
Fhysical Review A, others are in preparation.



The work on proteln oryesbtal growbih was pobt carried as far
that on dendrite morphology due to the need to develop
experimental apparatus. In the first part of this study the
influence of fluid motion and other transport processes was
investigated. Theoretical work disclosed that flow processes
appear to be too weak to slow crystal growth or cause it to
terminate. Criteria were developed to indicate when diffusion
rates would begin to influence crystal growth. According to the
criteria, none of the extant studies on growth kinetics could
have been limited by transport rates. In each case, observations
ceased before the crystals had grown large enough for diffusion
to play a signifticant role.

With the results of the theoretical study in hand, we
proceeded to develop apparatus to measure growth rates of single
protein crystals. Apparatus was constructed to grow single
crystals on a sting under carefully controlled conditions and
record the growth process with a digital imaging system. We
believe it is imperative teo study growth processes quantitatively
in systems where crystals are allowed to grow to the size (larger
than ©.1mm) where mass transfer effects could be important. These
studies should include measwements of structure designed to
ascertain whether or not there are changes associated with the
growth rate itself. At present, we are ready to proceed with the
experimental study and have arranged to collaborate with a
protein crystallographer in Frinceton’'s Chemistry Department.



SUMMARY. % CONCLUSIONS

DENDRITIC CRYSTAL GROWTH IN THE FRESEMCE OF CONVECTION
Background

Extant theories of crystallization deal primarily with
diffusion controlled growth. However, experimental work on the
crystallization of a model compoundl1] shows that natural
convection has a strong influence at low undercoolings. This is
particularly vexing since low undercoolings are of interest when
one seeks to establish a correspondence between theory and
experiment for dendritic growth. Low undercoolings promote slow
growth and crystals with large tips, which make photographic
studies easier. Accordingly, it has been suggested that
experiments in a microgravity environment would enable one to
test theories under relatively quiescent conditions. Current
theories omit convective transport, however, and it is clear that
a general understanding of the role of convection is necessary.
Indeed, natural convection is always present in the terrestrial
environment and it might be advantageous to add forced convection
to alter the growth process. The presence of convective
transport makes the theory much more complicated, especially when
the flow is generated by buoyancy driven motions due to the
inevitable coupling between the equation of motion and the
temperature (or concentration) field. Nevertheless, a rigorous
theory which includes convective transport would be exstremsly
useful. A theory describing the effects of forced convection is
a logical step towards developing a comprehensive understanding.

Summary'Of Completed Work

We studied situations where forced convection is aligned with'
the crystal axis. The detailed results of that study are
contained in a FhD thesis by F. J. Beaghton. A -paper on our
steady state model was published in Physical Review A ( copies of -
the thesis and the paper are appended to this report) and papers
dealing with the steady state model and our tracking scheme were
given at meetings of the American FPhysical Society Division of
Fluid Dynamics and The American Institute of Chemical Engineers.
Other papers are in preparation. )

Ivantsov’'s theory deals with the growth of needle—shaped
crystals in a pure, subcooled melt but no allowance is made for
the effects of interfacial energy on the melting point (the
Gibbs—Thompson effect) or convective heat transfer.

Nevertheless, this theory depicts many features of the growth
process correctly, so it is the legical vantage point from which
to consider other factors. Recently, the influence of
interfacial energy ("surface tension”) and anisotropy have been
studied and a theory known as "microscopic solvability” developed
(2-61.



To investigate the influence of convection, we first looked
into the steady state growth of an axisymmetric crystal. Using
the integral equation describing growth of an isothermal crystal
in the presence of forced convection aligned with the crystal
aris, we uncovered a new set of steady, self-similar solutions
analogous to those of Ivantsov, viz., paraboloids of revolution.
Here the flow is'represehted by an exact solution to the
Navier-Stokes equations in the Oseen approximation; the
convective terms in the energy equation are taken into account
rigorously. A relation between the growth rate, undercooling,
and strength of the imposed flow was derived. It reduces to the
Ivantsov result in the absence of convection. We calculated the
effects of the flow strength on the Feclet number-—undercooling
relation and, as expected, there is a strong effect. To
establish the relation between growth rate, tip radius,
undercoonling, and flow strength, however, another expression is
needed, just as was the case with the Ivantsov theory.

To develop the second relation needed to set the tip speed we
could have reworked the microscopic solvability theory (assuming
it is the correct approach) in a form which includes convection.
We did not do this. First, it is not yet proven that microscopic
solvability will explain the selection of tip speeds and sizes
observed experimentally; more experimental results are needed
with materiales having different degrees of anisotropy. In
addition, it is not obvious that flow alters events on the
aubmicroscopic scale of the capillary length in a significant
fashion. It may be that microscopic solvability is unaffected,
CThis is certainly an important issfie but some understanding of
the global character of the problem should be obtained first.
Thus, ouw efforts are directed towards developing a numerical
scheme in which convective transport and non-—-linear effects are
taken into account so as to enable us to track large scale
interface motion.

A rather general numerical algorithm was developed to compute
the motion of an axisymmetric crystal. (The algorithm is
described in Beaghton’'s PhD thesis.) For example,; with the
algorithm we can start a needle shaped crystal in the steady
state configuration determined by diffusion and convection, add
surface tension and track the system as it moves to its new
steady state shape. This solution gives the shape of the
interface and the relation between the various parameters in the
presence of flow and capillary effects. Then the interface can
be perturbed and the stability of the new state ascertained.
Perturbations can also be added arbitrarily during the evolution.

- Owr numerical algorithm mitigates, to a substantial degree,
the prohibitively large cost and storage requirements of other
PDE solvers when applied to this sort of problem. The technigue
is based on the transformation of the transient
convective-diffusion equation and the equations of motion for the
fluid and the interface into a boundary integral problem.
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Neecordingly, the major part of the computational effort is the
evaluation of integrals. Traditional PDE integration schemes
such as finite differences or finite elements would require
discretization of an infinitely large domain and the subsequent
calculation of internal values of the temperature that are
increasingly less relevant as one moves away from the solid-melt
boundary. Our method is superior to the aforementioned
techniques since the internal points can be distributed in an
optimal fashion and efficient schemes are available to evaluate
integrals. We recalculate the perturbed flow and temperature
fields as the system evolves. Interface shape is calculated
explicitly at each time step and regridding avoided.

Thus far we have:

Estahlished that the computation method is "stable" and
"converges" as the size of the time step is reduced and the
number of pointe on the interface increased. In several tests
we set the system on steady state solutions derived from either
the Ivantsov theory or our convective theory. The system was
then allowed to evolve (in time) without adding any sort of
perturbation. The robustness of the algorithm was apparent
from fact that the system stayed on the original solution.

Investigated the stability of the Ivantasov solution {(which
makes no allowance for interfacial energy or convection).
Since this contiguration is kroown to be unstable to
infinitesimal perturbations it hardly comes as a suprise to
find it unstable to finite amplitude pertuwbations.

Investigated the stability of interface shapes present when
there is forced convection but no surface tension. They were
unstable and small, finite amplitude perturbations grew without
bound in the situations studied. Figure 1 illustrates the
results of calculations in the absence of suwface tension.

Note the presence of "tip splitting”.

Tracked the evolution from the Ivantsov solution to a state

where the Gibbs-Thompson (interfacial tension or energy) effect
was present. We also added anisotropy, in part. At present our
algorithm is restricted to axisymmetric shapes, which precludes
exact computation of anisotropic phenomena. Therefore we simply
added a term analogous to that used in 2-dimensional
calculations, i.e., the surface tension was made to depend on the
angle between the local normal to the interface and the crystal
axis. In the calculations done thus far the effect of this sort
of "anisotropy" was small.

Investigated the stability of steady state solutions
representing the effects of convection and surface tension. In
the cases studied thus far, the system was stable to finite
amplitude perturbations.
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FIGURE 1 - A diagram showing evolution of a tip splitting instability on an
axisymmetric crystal. Heat transfer is by diffusion and convection, surface
tension is absent.” The diagram was produced by the numerical algorithm that -
solves the time-dependent integral equation for the evolution of the

crystal interface. '



The Current State-0F-Affairs

We have constructed a new steady state theory which accounts
for the effect of forced convection on dendritic growth. It
shows that heat transfer by forced convection has a strong
influence on quantitative aspects of dendritic growth but the
qualitative features remain unchanged, i.e. the shape remains a
paraboloid of revolution in the absence of the Gibbs-Thompson
effect.

A new algorithm has been developed to track the non-linear
evolution of a dendritic interface. The scheme accounts for
effects of convection and surface tension with axisymmetric
crystals. At present, we can study effects due to the strength
of the external flow, the degree of supercooling, the amount of
surface tension, and, in a somewhat ad hoc fashion, crystal
anisotropy. However, only a relatively small number of
situations have been investigated to date and we have not yet
looked at regions very close to the tip of the dendrite in any
detail. It should be possible to examine questions of
"solvability" in a dynamic sense by computing the interface shape
in more detail near the tip. Furthermore, the code can be
expanded to cover non-axisymmebric growth by allowing for
azimuthal variations in the shape of the interface and the
velocity and tempereture fields. This would allow us to account
for anisotropy in a rigorous fashion.

FROTEIN CRYSTALLIZATION
Backaground

The crystallization of proteins is & key step in determining
their molecular structure from x-ray crystallography, but the
precise conditions under which a newly isolated protein will
crystallize are unknown and must be found by trial and error over
a wide range of pH, ionic strength, and protein concentration.
Because proteins often form crystals which are too small or too
disordered to diffraect well, finding crystallization conditions
is no guarantee that the resultant crystals will be suitable for
¥—ray analysis. It has been suggested that growth of suitable
crystals is sometimes the limiting step in obtaining structural
information7l. Thus, if the reasons for such contrary behavior
were known, it might be possible to optimize growth conditions to
produce higher quality crystals for structure determination.
Convection, in one form or another, has been observed to inhibit
growth but results are still fragmentary [81. If convection
turns out to inhibit growth in general or alter crystals in other
deleterious ways, then experiments in quiescent environments
could lead to improved crystals. A microgravity environment,
where convection and sedimentation are reduced compared to the
terrestrial milieu, might provide a suitable venue.

An intensive study was begun by scientists at NASA and at
several universities to see what advantages might accrue. The



overall effort is cocordinated through Dr. Robert Snyder, Chief .
of the Biophysics Branch 2t MSFD. Az the work unfolded, it was
found that knowledge of the kinetics of protein crystallization
is meager compared to that for inorganic crystals. For example,
until recently there was no phase diagram for lysozyme, one of
the most widely studied proteins, or any other protein. Hence a
considerable part of the overall effort is devoted to very basic
studies. Our study belongs to this class. ’

The work at Frinceton was done by Mr. Marshall Grant, a PhD
candidate. Because the field is moving rapidly, we kept in close
contact with others working on the problem. An extensive '
presentation was made to MASA scientists and their collaborators
on protein crystallization in March of 1987. The purpose of the
meeting was to set out our plans to insure that we had a viable
approach and would not duplicate work already in progress. The
meeting was chaired by Dr. Snyder. (Others in attendance were Dr.
K. Naumann, Chief Scientist at the Space 8Science Laboratory, Dr.
Charles Bugg, Director of the Center for Macromolecular -
Crystallography at the University of Alabama(Rirmingham), Dr.
Franz Rosenberger, Director of the Materials Research Center at
the University of Alabama(Huntsville) and members of their '
research groups. OGur plans were given strong endorsement. More
recently (August of 1987), Dr. Marc Fusey of MSFC visited our
laboratory to inspect the experimental set-up; Dr. Ray Salemme, a
protein crystallographer at E. I. DufFont visited us in September
to present a seminar and discuss our work. )

The study of protein crystallization is difficult because
protein molecules are extremely complex and there are strong
intramolecular interactions in addition to interactions with
solvent molecuwles and other proteins. It 1s often difficult to
determine the state of a protein syvstem because the
physicochemical data (phase diagrems, activity coefficients,
diffusion coefficients, state of aggregation, etc.) have either
not been determined or have not been published. There are
conflicts between data reported by different workers. For

example, at pH 4, 20°C, and 50 mg/ml NaCl, the reported values
for lysozyme solubility range from 1.7 mg/ml £91 to 4.3 mg/ml
[10,113. PFusey and Gernert (121 recently found that the
solubilities of the orthorhombic, and tetragonal forms are quite
different,; although differences between the molecular structures
in the two forms are minorf131. This lack of data makes it
almost impossible to draw general conclusions regarding growth
behavior and its relation to the quality of the resultant
crystals. In the absence of verifiable relationships between
system conditions and crystal properties, the protein
crystallographer is forced to rely on intuition and repetition to
obtain suitable crystals. Some proteins, moreover, have not
vielded satisfactory crystals despite these efforts.

The small size and inherent disorder of protein crystals are
two major concerns. A third, related, point is the question of
conformation changes upon crystallization and their effect on
protein crystal growth. :
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In the remaining part of this section we summarize results of
an extensive survey made to clarify issues connected with the
role of transport proceszsss. Then we describe the apparatus
constructed for our work.

Summary of Completed HWork

Our initial effort focused on understanding why protein
crystals grow slowly and terminate growth at relatively small
sizes. Theoretical investigations were made of: (i) effects of
fluid shear on protein binding; (ii) association of protein
monomer in the bulk; (iii) salt gradients; (iv) contaminants; and
(v) interface kinetics and mass transfer. The gist of our
findings is described nexts; the full report is reproduced in the
appendix.

Based on the experimental observation that crystals grown from
stirred solutions tend to be smaller than those grown from
quiescent solutions, crystallographers have recently sought to
explain the small size of protein crystals in terms of various
forms of convection. In particular, buoyancy-driven flows have
attracted attention as a disruptive mechanism in protein crystal
growth. We examined several scenarios wherein convective flows
might interfere with the normal bhinding of protein molecules to
the crystal suwrface and found that the fluid velocities which
arise from density differences are too small to produce the
proposed effects. Specifically, under "normal conditions" shear
from natural convection spoears insuwfficient: (1) to denature
individual protein molecules or strip protein molecules from the
crystal surface (the bond strength is too large to be affected by
the relatively weak draq émrca); or (1i) to impose a preferred
orientation on protein molecules at the surface (rotatiomnal
diffusion quickly eliminates any bias due to shear).

Association of monomer may reduce concentrations significantly
in the bulk and this would reduce growth rates but extant
experimental techniques are not able to resolve the issue
unambiguously. Salt gradients due to salt rejection at the
crystal—-tluid interface appear too weak to influence diffusion
rates significantly. Contaminants which adsorb protein may
reduce the protein concentration in the bulk significantly but

perimental studies of contaminant effects are lacking.

As crystals grown in more—-ar-less quiescent environments get
larger, the protein flux due to natural convection becomes much
greater than the diffusive flux. At this point convective mass
transfer effects may affect crystal growth. According to our
calculations, previous work on protein crystal growth kinetics
was done on crystals which were too small for convective effects
to be significant insofar as mass transfer rates are concerned.
Bimply stated, it was shown that with the small crystals used in
the quantitative studies, diffusion was so rapid that the
intertace concentration remained unchanged at the initial bulk

ORIGINAL PAGE IS
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value throughout the qrowth periad. Thus, the extant kinetic

gata do not dndicate whe convection pls a role.

Neverthelsss, expesrimental work by Puseyl8] shows an
unambiguous effect of forced :nHVPrflun or the rate of growth of
lysoryme crystals.,  We believe it is imperative to study growth
processes quantitatively in systems where crystals are allowed to
grow to the size {(larger than O.1mm) where mass transfer sffects
could be manifest. These studies should include measurements of
structure designed to ascertain whether or not there are changes
assmc1ated_w1th the growth rate itself.

At this point we tuwned to the deglgn and FDﬁ‘tFULLIOn of
apparatus to study the relation between growth rate, size and
structure. The apparatus for this was puwchased and assembled
using funds from a Shell Foundation Institutional Grant to
Frinceton Un1ver«1+y,

Owr intention is to examine the effect of crystal size on the
growth and quality of a single crystal. Fublished experiments on
the kinetics of protein crystal growth have been confined to
crystals which are too small to exhibit significant size effects.
The experimental procedure used to dete (which involves
introducing supersaturated protein sclution inte a sample cell,
nucleating crystals on the sides of the cuntain@r, and

photographing the growing crystals) has severe limitations.
First, only those crystals which are prmnerly oriented with
respect to the camera can be measwed. Second, the crystals are

often crowded so that the ef#&cté of neighboring crystals are
significant and only average growth rates can be obtained.
Finally, the surface of the sample cell probably alters the
growth rate so that the behavior of an isolated crystal suspended
in solution is still unknown,

We designed our experimental apparatus (Figuwes 2 and 3) to
avoid the limitations listed above. Individual crystals are
nucleated on a glase fiber "sting”, which ds then mounted on a
microtranslator to provide "xyz" motion for positioning the
crystal in the cell; a single rotator orients the crystal about
the vertical axis. The samplé cell is approx imately 2 cm on a
side to reduce wall effects. Once the crystal is in position,
digitized images of the crystal can be captured at specific
intervals using a video camera. This provides electronic, time
sequenced images of the growing crystal. The capture time is
1/30 = and as many as six separate frames can be stored in the
computer RAM and a video frame buffer. Writing each frame to
disk can take about 10 seconds, but this does not present a
serious limitation because most of owr work will be in the size
range where the time between images will be considerably longer
than the disk access time. (This results from the combination of
slow growth rates and relatively low magnification required to
examine crystals larger than 100 microns in diameter.)

The Mitutoyo FS50 microscope and objectives are capable of
magn1§1cat1onb between 2X and 100X with a minimum working
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FIGURE 2 - Experimental apparatus for the protein crystal growth experiments.
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General Layout

FIGURE 3 - Photographs of the expenmental equipment for protein
crystal growth.
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distance of 20.5mm. Thus, growth measurements of a crystal
suspended in the chambor can be made withoot difficulty over the
entire size range of interest. The microscope is mounted on a
racl and pinion track to allow coarse focusing of the crystal
image, while the microscope’'s focus adjustment will be used for
fine focusing of the crystal image. A Hitachi EP-23ZZ2 MOS camera
sends the image to the video digitizing board (Matrox FIP-640)
where it can be analyzed using an IBM PC-AT. An image of a 0.2mm
lysozyme crystal which was digitized through a SX objective is
shown in Figure 4. Mounting the microscope track on a rotary
table gives us the option of slowly rotating the microscope about
the crystal so that measurements of different faces can be made
in sequence. This feature is an improvement over the techniques
of previous workers in that the growth of different faces of the
same crystal can now be measuwed. The current design allows
rotation through a minimuam of 200 degress of arc.

Temperature control utilizes a Lauda RMS5-6 refrigerated
circulator, which can control fluid temperature to within (.01
degree K. The circulator pumps water through the sample cell as
part of a cooling loop. (See Figure O for a schematic of the
apparatus.) Reservoirs of protein/buffer solution and
precipitant (salt) /buffer solution areé immersed in the
circulator ' recservoir to maintain the temperature of the feed
solutions. A peristaltic cassette pump supplies fresh solution
to the growbth cell in s once-through areangemesni. Different
concentrations of precipitant can be supplied by mixing salt
solutions of different concesntrations, while the total flow rate
can be adiusted by changing the number of channels wused to pump
the solutions and by a flow control valve upstream of the growth
cell.

The pH and ionic strength of the scolution are monitored
continuously using a computer interfaced to an Orion system which
performs the actual measuwrement. At this time, there are no
plans for active contral of pH and ionic strength during the
evperiment.

The Current State—-0r—-Affairs

A careful study of the field shows that the protein crystals
studied by previous experimenters were not large enough to .
exhibit mass transfer limitations, should they exist. Apparatus
has been assembled which will allow us to study growth in a
controlled environment and record and analyze crystal size using
a video imaging system. With this apparatus single crystal
growth rates can be measured over a range eof crystal sizes.

ORIGINAL PAGE 1S
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FIGURE 4 - A digitized image of a lysozyme crystal on the sting mounted in the
apparatus shown in Figure 3.
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CRECOMMERNDAT I OND

CRYSTAL GROWTH IN THE PRESENCE OF CONVECTION

Recommendations for this portion of the work revolve around
testing (and improving) the interface tracking algorithm. The

wor k

would provide a theoretical framework for evaluating

grperimental results on crystals grown in  terrestrial or
microgravity environments. This would lead to a computational
algorithm which includes all the physics currently believed to
influence crystal growth. o :

CGpecific topics for investigation are:

1.

L]
P

Vel

Exploration of the capabilities of the current algorithm.

To date we have not covered a wide range of undercoolings,
convective flow strengths, surface tension parameters, or
other fluid properties. Thus, a genesral study of the
program’'s capabilities is in order. In the process we would
investigate the effect of flow on crystal shape and stability
in some detail. :

Frpand the program s as to allow for fine scale

resaolution af the reqgion near the dendrite tip.

This is mainly a guestion of increased compubter storage and
execution time. First one should establish how much can be
accomplished on the IBM 3081 mainframe and assess the
advantages in moving to a supercomputer. The use of other
systems would also be explored. (nce this has been done we
will be in a position to investigate "microscopic
sOlvability” in the presence of convection.

Expand the algorithm to account for non—arisymmetric

crystal Shnpmg,

Here again the limitation appears to be one of storage and
erecution time. We already do azimuthal integrations as part
of the boundary integral technique so the extension should be
relatively straightforward. This will allow us to include
effects of crystal anisotropy on the surface tension.

PROTEIN CRYSTAL GROWTH

Here we present recommendations on how to determine relations
between the quality of protein crystals, crystallization
conditions, and protein properties. The experimental work would

util

ize apparatus described earlier. The program would establish

certain fundamental aspects of protein crystal growth and forms
an essential part of a broader effort aimed at assessing the
advantages and disadvantages of growing protein crystals in a



-19-

microgravity environment.

8]

Three related topics should be investigated. These are:

The Effect of Convective Mass Transfer on FProtein Crystal
Growth

Crystal growth rates should be measured as a function of
crystal zize (which is eqguivalent to time) in order to
determine if convection has an inhibitory effect on crystal
growth. In some experiments the growth environment should be
quiescent, in others forced convection will be present.

Studies on Crystal Disorder

Crystals of different sizes should be examined using x—ray
analysis to determine if there is a relation between crystal
disorder and size. In particular, the evolution of crystal
disorder should be studied to see if it can be related to
growth conditione Theoretical studies of crystal packing
would indicate the effect of packing deecLS on solvation
stabilization of the protein crystal.

Role of Conformation Change on Protein Crystal Growth

The crystallization of a polypeptide, which is known to
undergo large conformation changes upon crystallization,
should bhe studied. The degree of similarity between the
polypeptide’'s crystal growth bebavior and that of a
globular protein, which is not believed to undergo drastic
conformation changes, would serve as an indication of the
relative importance of molecular perEFthS in determining
crystal growth mechanisms.
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ABSTRACT

The motion of the freezing front between a dendritié crystal and a supercooled
liquid is studied using an interface evolution equation derived from a boundary
integral transformation of the transient convective-diffusion equation.

A new steady-state theory is introduced that incorporates the effects of con-
vection in dendritic growth. It is shown that in the absence of capillary effects
the shape of the crystal-melt interface is a paraboloid of revolution, similar to that
found in situations where diffusion is the sole heat transfer mechanism. A relation
between the supercooling, the product of the tip velocity and tip radius, and the
strength of the ﬂoQ is derived which reduces to the well-known Ivantsov theory in
the absenée of convection.

A non-linear interface-tracking algorithm ;s developéd and used to study the
temporal and spatial evolution of 'the dendritic interface. The important role of
capillarity and convection on the interfa,cg dynamics is established and the response
of the interface to finite amplitude disturbances is examined for the first time. Tip
splitting is identified as the dominant destabilization mechanism in the limit of zero
surface tension. Finite surface tension leads to interface stabilization, irrespective

of the magnitude and structure of the external perturbations. Finally, convection

significantly decreases the magnitude of the freezing velocity.
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CHAPTER 1: INTRODUCTION

The interrelation between non-equilibrium systems and complex growth forms
was recognized long ago [1]. Over the past decade there has been renewed interest in
the study of such systems and, in particular, processes of pattern formation in phys-
ical, chemical, and biological systems. Unfortunately, understanding phenomena as

common as solidification or dendritic growth is hampered by the mathematical

~ complexity of the problem and the subtle effects of microscopic mechanisms such

as capillarity and interface attachment kinetics. Dendritic* growth, the formation
of branchea, tree-like structures, frequently appears in systems where an interface
advances into a metastable phase such as a supercooled melt or a supersaturated
solution. Often a needle-shaped tip propagates at a constant speed while sidearms
appear continuously along the sides. The mathematical problem resembles the clas-
sical Stefan problem, where the diffusion equation for the temperature (or the solute
concentration) must be solved with boundary conditions specified on the moving
interface, the propagation velocity of which is determined by the heat (of solute)
flux. On the other hand, important differences exist:
e The complex interface shape leads to mathematical problem that defies ana-
lytical solution.
e Natural convection due to thermal (or solutal) gradients destroys the mathe-
matical simplicity of the diffusion equation necessitating a considerable increase

in computational effort.

* from the Greek word Sevépov (tree).
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o The curved interface is not isothermal. Local deviations from the melting
temperature of the crystal arise from the 4interaction betweeﬁ the interfacial
energy and the local curvature of the solid-liquid interface (the Gibbs-Thomson
relation). The capillary term lea(-ls} to a singular perturbation problem which
has only recently been ide-nt'iﬁed [2-5).

Ivantsov’s theory [6] is a cornerstone of our unaerstanding of dendritic growth
but deals only. with situations where fluid motion and surface tension are absent. His
theory describes a family of uniformly prOpagating “needle-crystals” in the form of
isothermal paraboloids of revolution (or parabolas in two dirﬂensions), characterized
by the single relation between tvhe dimensionless supercooling A = (Ty — Too)cp/L
and the Péclet number p = pV/2a. Here the tip radius is p, the tip velocity is
V and a is the heat diffuéiidty of the melt. The difference between the melting
temperature Ty aﬁd the bulk temperature T is scaled with the ratio of the latent
héat of fusion, L, to the heat capacity, ¢p.

The Ivantsov family of solutions is degenerate: for a given supercooling there
~ exist an infinite number of paraboloidal solutions sirice only the product of the |
tip velocity and tip radius can be determined. In addition, linear stability analysis
shows that the Ivantsov paraboloids are unstable to inﬁnites;imal perturbations. The
dominant destabilization mechanism is tip splitting, whereby the initially smooth
tip splits into an increasing number of unstable fingers. This indeterminacy can -
be removed by introducing the effects of surface tension. According to the Gibbs-
Thompson thermodynamic equation (derived in Appendix E), the (dimensionless)
temperature of the solid-melt interface is given by Tr=A — (do/p) K, where K is the

dimensionless local curvature and dy = v Tacp/L? is a capillary length proportional
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to the solid-liquid surface tension (see Appendix E). The first analysis of the effects
of surface tension used the Ivantsov solution as a basic state and treated the capil-
lary term in the Gibbs-Thompson boundary condition using a regular perturbation
around the zero surface tension state [7]. For values of o = dy/(pp) greater than

a critical value, 0*, a continuous family of stable, modified Ivantsov dendrites ‘was

_found.

The marginal stability hypothesis, developed by Langer and Miller-Krumbhaar
[7], employs the linearized stability result along with speculations about the role
of the non-linear effects. Every needle-shaped crystal displays sidebranches, i.e.
dendritic growth, which is thought to be a result of non-linear processes. Tip
splitting is supposed to be a phenomenon described by the linear theory whereas
sidebranching is non-linear and therefore outside extant stability theories based on
small amplitude (i.e. linearized) analyses. Accordingly, if we imagine a paraboloidal
crystal growing into a supercooled melt, the operating point of the system (the tip
radius and the tip speed that correspond to a given supercooling) would be set as
follows. Suppose ¢ > o*, because either the tip is slender or the velocity small.
Non-linear effects leading to sidebrances broaden the tip and o decreases. If o goes
below o*, tip splitting occurs and forms more slender tips. This suggests that the
natural operating point for the dendrite is determined by the marginally st_able
solution, 0 = o¢*, which furniéhes a second relation between p and V. Langer [8]
acknowledges that the hypothesis is theoretically incomplete and a fully non-linear
analysis is needed to test it.

Recent studies have focused on the subtle effects of surface tension on the math-

ematical structure of the problem. The curvature operator in the Gibbs-Thompson
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equation contains higher order derivatives of the interface shape, multiplied b)-"tlle
very small coefﬁc_ient (do/p). This leads to a singular perturbation problem with
respect to the dimensionless capillary length (or the surface tension) and the in-
terface shape cannot be represented as a regular perturbation about the Ivantsov
steady-state. Since the capillary length dy is several orders of magnitude smaller
than the tip radius p, the éteady-state correction to the Ivantsov solution in the
presence of -surface tension is negligibly small. As a result, the marginal stability
théory assumes that the smoofhness of the Ivantsov solution is not affected by the
inclusion of the capillary terms. However, a different approach is needed because
the singular nature of the problem dictates the interface dynamics and the singular
behavior is omitted from maréinal stability. The recently developed microscopic
solvability theory is implemented through numerical solution of the equations with
the surface tension term taken into account rigorously near the tip.* The solution
is joined onto the Ivantsov solution far from the tip, i.e., the surface tension correc-
tion to the shape is assumed to vanish as the crystal thickens (exponentially small
corrections to th-e intefface sha,pe far from the tip are neglected). The microscopic
solvability theory proposes the following:

a) For finite surface tension the steady-state correction to the Ivantsov solution
is not smooth at the tip [2-5]. The numerical solution of an integral evolution
equation shows that the resulting interface shapes have a sharp tip. However,

cusp-like tips are not permitted by the diffusional kinetics that govern dendritic

'growth. In accordance to the microscopic soIva.bility hypothesis, all admissible

interface shapes should satisfy a mathematical solvability condition that requires a

* In contrast to the marginallstability analysis, the interface shape is not repre-
sented as a regular perturbation about the Ivantsov steady-state solution.

4
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zero slope at the tip. The slope at the tip decays ezponentially fast as surface tension
approaches zero and the zero-slope-condition is only satisfied by the zero-surface-
tension Ivantsov solution. This explains the failure of the regular perturbation
analysis; the capillarity-induced correction is exponentially small and thus cannot
be represented in terms of algebraic powers of the surface tension.

b) The microscopic solvability analysis also indicates that some finite degree
of crystalline anisotropy produces dendrites with smooth tips {4,5]. The Gibbs-

Thompson relation is modified to include the effects of surface tension anisotropy:
Tr = A —(do/p) (1 - f(61,62)]1K, -

where 8; represents the angle between the outward-pointing normal and the crys-
tallographic axis . The function f(6), which in general depends on the geometric
parameters of the crystal;melt interface, represents a measure of the surface *ension
énisofropy (f = 0 corresponds to isotropic surface tension). For sufficiently large
amounts of anisotropy, there is always a discrete set of finite-surface-tension solu-
tions that satisfy the microscopic s’olvability condition and thus have smooth tips
[4,5]).

c) Linear stability analysis shows that only the fastest growing dendrite is stable
[9). All the other members of the discr.ete set of allowed steady-states are unstable.
As a consequence, the: fastest growing mode represents the operating point of the
dendrite. o

Thg success of the microscopic solvability ’gheory stems from its ability to deter-
mine a unique operating point for the dendrite. Nevertheless, a number of important

fundamental issues are still unresolved:
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e The sidebranch emission seems to be the result of the non-linear evolution of
finite amplitude noisg which cannot be incorporated in a linear stability analy-
sis. Kessler and Levine argue that the tip instability in isotropic systems must
be thought of as a non-linear instability [9]. They also state that sideBranching
must be understood via a non-linear analysis of the amplification of finite noise
as the disturbance moves away from the tip.

e In most of the theoretical work to date, the temperature (or solute concen-
tration) ﬁeld- has been assumed to respond insta.ntanedusly to changes in the
interface shape, which in turn irﬁplies that the diffusion equation can be solved
in the “quasistatic” limit. This cannot be true for large supercoolings A where .
the diffusion length is comparable to the tip radius or the distance between
sidebranches.

e There is as yet no evidence that the critical amount of anisotropic surface
tension required to produce a unique, linearly stable, steady-state can be forced
to remain constant as the interface evolves in time.

e Experiments in the low supercooling regime show that the sidebranch growth is
orientation dependent and measured-growth parameters such as the 4tip radius
and the freezing velocity devéat’e from their pure diffusion predictions [10] Ex-
isting dendritic growth models clearly cannot be used to study these impqrtant
convective effects.

One of the reasons for the lack of a transient, convective-diffusion model of den-
dritic growth, aside from the computational difficulties to be described later, is the
remarkable success of the quasistatic Ivanstsov theory. This simple theory remains,

6
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despite its limitations. a valuable starting point since it accurately predicts the re-
lationship between supercooling and Péclet number for a wide range of moderate to
large supercoolings. Furthermore, the shape of a real dendritic tip region is unmis-
takably paraboloidal as in the Ivantsov theory. Sidebranches are encountered only
after one moves five or ten tip radii away from the nose of the dendrite.

On the other hand, even under icarefully controlled experimental conditions,
thermal gradients in th.e melt generate buoyancy-driven flows which disturb the
diffusion-dominated temperature profiles. Expériments by Glicksman and Huang
[10] show how convection alters the morphology of the crystal and imposes an
orientation dependence on the érowth parameters. Figures 1 and 2 depict the tip

velocity and the tip radius they measured with pure succinonitrile dendrites. The

" deviation from the pure diffusion predictions is clear at low supercoolings. Figure 3

shows the effect of convection on the morphology of the dendrite. The temperature.
field is severely distorted and an orientation-dependent elimination of sidebranches
occurs. Although»t.he purely diffusive Ivantsov theory can be applied to predict
the experimentally rﬁeasured Péclet number for supercoolings higher than 1°C (or,
in dimensionless form, A > 0.05), there is a strong deviation from the Ivantsov
solution for smaller undercoolings (Fig. 4). Given these striking experimental
results, it is worth considering how convection alters the theory. Convection has
not been treated in theoretical work to date for several reasons*. The basic reason

is the computational difficulty. The boundary integral formulation of the problem,

* McFadden and Corriell [11] recently extended the Ivantsov solution to include
the effect of a flow field due to a density difference between the two phases.
Their analysis, however, does not apply to motion driven by other forces and
will not account for the orientation dependence of the experimentally grown
crystals or explain the low supercooling deviation from the pure diffusion the-
ory.
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used almost 'excluéi\re])-' in recent yeai‘s, loses much of its simplicity when fluid flow
is added since domain integrals are required to describe the effects of convection
in the melt. In addition, the shape of the tip region remains paraboloidal, even
for very small supercoolings, and this may have prompted investigators to neglect
any heat transport mechanism that might destroy the paraboloidal symmetry of
the pure diffusion case.

The ﬁrimary objective of this work was to incorporate convection in a tfan-
sient, three-dimensional dendritic growth mociel based on the convective heat dif-
fusion equation without any ad hoc approximations. A new steady-state theory -
was developed that shows convection is compatible with the paraboloidal shape of
the interface. This “convective” steady-state solution was then used as a starting
point for a non-linear interface tracking algorithm. The numerical scheme solves
an integral evolution equation for the interface shape and the Oseen hydrodynamic
equation for the flow velocity simultaneously. Representative results indicate that
capil.larity and convection play im.porta.nt roles in the dynamics of dendritic growth.

This thesis is structurally divided in two major parts: a steady-state analysis
of the convective effects is presented in Chapter 2 and a non-linear scheme tracking
the interface evolution is presented in Chapter 3. The details of the mathematical
derivations can be found in Appendices A-E.

In Chapter 2, a complement to Ivantsov’s theory is presented to provide a basis
for more detailed investigations where convection is present. In natural convection
the temperature field is coupled to the equation of motion through the buoyancy
term, which makes the problem all but intractable for most interface shapes unless

one resorts to numerical methods to solve the partial differential equations. Thus,

8



a simpler flow, such as forced convection past a paraboloid of revolution, is used to
express the; salient effects of convection on the -so]idiﬁcat.ion front.

The velocity field used here is that for flow directed parallel to the axis of a
paraboloidal crystal. An exact solution to the equations of motion in the Oseen
approximation is used to represent the flow so that viscous and pressure forces are
balanced with a small contribution from inertia. In Sec. 2.1 the integral equation:
that represents the interface shape is analyzed. Capillary effects are ignored, so
the interface is isothermal. It is shown that uniformly-translating paraboloidal
solidification fronts are admissible solutions. Then, an expr¢ssion is given relating
the supercooling t§ the Péclet number and the strength of the flow. The‘a.pp‘lica,tion
of the steady-state analysis to the experimental system used by Glicksman and
Huang [10] is discussed in Sec. 2.9. |

In Chap.’cer 3, a non-linear interface traCking schefne_ based on a boundary
integral transformation of the transient convective-diffusion equation is introduced.
With this algorithm all the unresolved issues can be addressed and the validity of
“steady-staté” results, such as the macroscopic solvability hypothesis, can be tested
with a fully transient, non-linear calculation.

Boundary integral equations have received increased usage over the last few
years*. These equations are very uséful when evolution of a boundary is to be
calculated, because, in contrast to treatments using partial differential equations,
the solid-liquid interface discontinuity is embedded in the singular kernel of the

integral equation and there is no need to divide the domain in two or more regions.

* Because of the range of problems, reports in the scientific literature are widely
scattered. However, a useful treatise on boundary integral methods and their
applicability to the solution of transport problems has been compiled by Breb-
bia et al. [12].
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Recent steady-state models of dendritic growth make use of the integral equivé]ent
of the diffusion equation to obtain the crystal-melt interface shape: The formu]aﬁon
bresented here, although based on similar principles, actually represents a scheme -
for tracking the interface shaf)e as it evolves in time and space. The presence of the
convective term, which rep%esents the effects of fluid flow in the melt, increases the
dimensionality of the integral equation and requires special treatment. The problem
must be solved numerically, and since the integral kernel is a non-linear function of
the interface shape, Newton’s iteration method is used to obtain the position of the
interface at each time step.

The results presented in this thesis cover the moderate and high supercooling
regimes and apply only to interface shapes that are single-valued functions of the
radial coordinate. A summary of conclusions follows:

(i) The tip is unstable to ﬁnite amplitude perturbations if surface tension is ab-
sent, irrespective of flow strength. Given the results from the linearized theory
without flow, this is not surprising. But it is important to know that the desta-
bilization mechanism appears to be tip splitting. Noisy interface perturbations
seem to invariébly focus themselves on the tip region and incipient sidebranches
aré not seen.

(i) Surface tension, however small, appears to stabilize the crystal ihterface for
any flow strength. A steady-state is always reached, irrespective of the sf;ruc- [

{
ture or the magnitude of the initial perturbation on the interface shape. The ,’

growth velocity of the dendrite decreases with increasing surface tension but
the difference from the zero surface tension case is small. Convection is found

10



(iii)

(iv)

to significantly decrease the magnitude of the growth velocity but has no qual-
itative effect on the stability of the interface.

Anisotropy does not appear to have an important effect, qualitatively or quan-
titatively, on the dynamics of the interface. However, fully-three-dimensional
(i.e., non-axisymmetric) perturbations will need té be tested before a complete
understandinng of the role of anisotropy can be gained.

The operating point of the dendrite is not established from the non-linear
analysis presented here. However, the results of the analysis call into question
all those obtained with the linearized theories now extant. Consider, first, the
marginal stability hypothesis. Given the robust stability of shapes investigated
here, it appears that the margi-nal stability hypothesis is wrong. The surface-
tension adjusted shapes are found to be stable to finite amplitude perturbations.
Thus, the central fsature of marginal stability, a critical value of o, simply does
not exist when surface tension is considered in the context of finite amplitude
effects. Second, microscopic solvability appears incomplete, at best. All tixe
shapes investigated in this work are stable when finite amplitude effects were
considered. Yet one feature of microscopic solvability is that only the fastest
growing, shooth tip is stable. If fhis conclusion holds when finer resolution
is considered at the tip, then the operating point selection mechanism is even
more subtle than the microscopic solvability would suggest.

The outline of Chapter 3 is as follows. The formulation of the boundary in-

tegral equation for the interface shape is presented in Sec. 3.1.a. This evolution

equation can be used to model growth under the most general conditions and is

directly extendable to solute-transfer governed dendritic growth. An optimal set

11
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of numerical discretization points, based on Gaussian quadrature formulae, is in-
troduced in Sec. 3:1.b. and the boundary integral equation is transformed into a
set of non-linear algebraic equations. The Oseen equation is also transformed in
a boundary integral equation which is solved numerically for the velocity around
the perturbed dendrité (the georneﬁ‘il: complexiﬁy'of ‘the dendritic interface posed
a challenging computational problem that was successfully handled by the integral
formulation of fhe hydrodyn&mic equation). Sec. 3.2.a covers the numerical tests
that show the excellent convergence cﬁaracteristics of the numerical scheme. Rep-
résentative results showing the profound effects of capillarity and convection are
f)resented in Sec. 3.2.b. The role bf anisotropy in the growfh dynamics is discussed

in Sec. 3.2.c. In addition, some ideas for future development are presented, includ-

‘ing three-dimensional calculations to test the transient validity of the microscopic

solvability hypothesis and a finer length scale for the tip region at low supercoolings.

The core of the mathematical derivations is presented in Appendices A through
D. The appendices represent an integral part of this thesis and are grouped at the.
end of the manuscript for easy access. Appendix A contains the derivation of the
ihtegral evolution equation for the interface. The next two appendices highlight the
difﬁculties associated with the numerical solution of integral equations. A series
of variable transformations is empléyed and the integrals are finally transformed
into finite sums. The temporal discretization of 'the-boundary integrals is presented
in Appendix B, while Appendix C describes théir spatial discretization. The fluid
velocity around the perturbed interface is calculated in Appendix D. The hydrody-
namic equation is transformed to an integral equation which is solved numerically

12
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using the boundary element method. The Gibbs-Thompson thermodynamic equa-
tion is derived in Appendix E. Figures and a listing of the FORTRAN code are

presented in Appendices I' and G. respectively.
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CHAPTER 2: STEADY-STATE THEORY

A new steady-state theory is introduced that incorporates the effects
of convection in dendritic growth. It is shown that in the absence of
capillary effects the shape of the crystal-melt interface is a paraboloid
of revolution, similar to that found in situations where diffusion is the
sole heat transfer mechanism. A relation between the supercooling, the
product of the tip velocity and tip radius, and the strength of the flow is
derived which reduces to the well-known Ivantsov theory in the absence of .
convection.

2.1. Development of the theory

Consider the steady uniform propagation of an isothermal solid-liquid interface
with a constant freezing veloéity V1i,, as illustrated in Fig. 5. Densities of solid and
liquid are assumed to be identical. In a frame of reference traveling with the front
vélocity V, the. steady temperature field in vthe supercooled melt is governed by the

convective-diffusion equation:*
oV 4+ V= =+v.VT, (2.1)

where Vv is a steady flow field that satisfies the incompressible Navier-Stokes equa-
tions and the no-slip and mass conservation condifions on the solid-liquid interface. -
Since interface motion does not generate convection unless there is a density dif-
ference between the solid and liquid phase, ¥ = 0 in the absence of an externally
imposed flow:

Capillary effects are neglected and the entire solid is assumed to be at its

melting temperature Ty, while the bulk liquid phase is supercooled at T,,. The

* The convective term V%—f arises from the motion of the coordinate system.
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heat conservation condition at the interface z = ((, #) reduces to

-£Vn; = —aVT - i, (2.2)

Cp

where i1 is the outward unit normal with n; as its Z-component (in the zero-surface-
tension limit, and in the absence of interiof heat sources or sinks, the entire solici is
isothermal).

Next, introduce a dimensionless temperature T = (T — Tw)ép/L and a di-
~mensionless velocity v = V/Us, and scale the lengths with 2a/V. In terms of

dimensionless variables the equations are:

V3T + 2%1; =2\v- VT, (2.3)
VT. ﬁ|z=c(z,y) =-2n., (249
T|42=C(I,’y) =A, B (2.5)

ac b

where A = Uo/V; Us represents the characteristic flow velocity. The interface
z = ((z,y) and the solid are now at the temperature A = (T — Too)cp/L (the
dimensionless supercooling), whereas the dimensionless temperature goes to zero as
zZ — oo.

The problem stated above can be cast in terms of integral equations. However,
since the analysis is lengthy, it is preseﬁted in its entirety in Appendix A. Equation
(A13) is a reformulation of the problem in terms of the integral evolution equation

for the interface shape ((z,y):
oo oo
A= / da:'/ dy' 2Gss(xr, Xr)
-—C0 -—00
e ] oo oo
—/\/ da:'/ dy’/ dz' 2G,s(xr,x') v(X') - VT(x') , (2.6)
/ —oo —oo ¢(z',y") ) :
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where x = (2,¥,2) and Xr = (z,y,({(z,y)). Gss(x,x') denotes the Green’s function
corresponding to steady heat diffusion due to a point source at x in the reference
frame moving with velocity V. In the pure diffusion problem A = 0, so the temper-
ature field is represented by an integral superposition of point heat soﬁrces along
thg solid-liquid interface (. The boundary temperature A can then be expressed
in terms of two-dimensional integra}s despite the three-dimensional structure of the
temperature field.- This reductioﬁ of the dimensiona.lity.of the problem'r'nal'(es_ the
integral formulation very conveniént when investigating interface rnotion. if convec-
tion is absent.

The integral representation of the convective-diffusion equation involves inte-
gration over the entire fluid domain. (In the limit of pure diffusion, the second term
on the right-hand-side of Eq. (2.6) vanishes). This increase in the dimension;mlitsr of
the integral equation is due to .tb.e-lack of appropriate Green’s functions for partial
differential equations with variable coefficients. -Nevertheless, a scheme based on
the integral formulation has many computational advantages over other methods
even when there is flow in the melt.

The integral expression is now used to search for uniformly translating inter-
face shapes in the presence of fluid flow. Experiments in the “convective” regime
(low supercoolings) suggest that the tip region remains paraboloidal even when the
characteristic flow velocity is much larger than the freezing velocity. Thus one needs
to look for a class of temperature fields (and the corresponding flow fields) that sat-
isfies the integral equation in cases where the interface is a paraboloid of revolution,

viz.,

2=(a,y) =7 (1 - “”2%”2) . @)
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Here the Péclet number, p, can be viewed as the dimensionless radius of curvature
at the tip of the paraboloid.
. The search for interface shapes is patterned after Pelce and Pomeau [1], who

used elementary variable transformations to show that the integral

/ dz' / dy' 2G,,(x,x')
—oo —oo _

is independent of x = (z,y,z) if both x and x' represent points on the same
paraboloidal interface ¢, i.e. x = (z,y,{(z,y)) and X' = (2',¢',{(z',y')). Their
result was used to demonstrate that the Ivantsov paraboloid is a solution of the

pure diffusion equation and it can also be used to show that the integral

i [ d2G.(xx)
y ss(X,x)

is independent of x when x and x' represent points on two dif_ferent\ confocal
paraboloids, such as those represented by Eq. (2.7) for two different Péclet num-
bers. Using Pelce and Pomeau’s result, one can produce a class of temperature
fields compatible with a paraboloidal interface shape. Since the left hand side of
Eq. (2.6) is independent of the position vector xr, one must show that the right-
hand-side can also be independent of xr under certain assumptions about the nature
of the temperature and flow fields. The first integral in the right-hand-side of Eq.
(2.6) represents the contribution of diffusion and has already been shown by Pelce
and Pomeau to be independent of thé interface pdsition vector‘ Xr as long as xr
represents the same paraboloid as xp. The second integral in Eq. (2.6), which
comes from the convective term of the governing équation, must be shown to be

independent of the position vector Xr as Xr traverses the paraboloidal interface (.
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Let

e 2/ dm'/ dy'/ d2' 2Gs(xr, X') v(x') - VT(x')
~eo Jooo  Jetany

be the convective contribution to the integral expression (2.6). Since paraboloidal
shapes are under study it is convenient to introduce a paraboloidal coordinate sys-

tem (diagrammed in Fig. 5):

(

24+ /22 + y? + 22 )
p

<s=_z+ x2+y2+22
p

—
.

y

= arctan =

L @ = arctan = p
In this new coordinate system, the interface defined by Eq. (2.7) is represented by
the surface w = 1; z — oo is equivalent to w — oco. Conversely, the surface w = a

represents a paraboloid confocal to w = 1 with a dimensionless tip radius p' = ap.

The integral I, becomes

2n oo
I = / dy' / ds' / w' P +“’ Gos(xr,x) v(x')- VT(x').  (2.8)
0 0 w’

If

38 +w

P v(x') -‘ VT(x') = A(s', @', w') (2.9)

were independent of s’ and ¢, (this will be shown to be true for a certain class of

flows later) then Eq. (2.8) could be rewritten as

(>3] 27
IC=/ dw——A )/ dgo/ ds'p ,3(xr,x) (2.10)

Once this is done, the integrals with respect to s’ and ¢’ can be rewritten in terms

of ' and y' using the following coordinate system transformation

27 o0 2 1 [ee) [o e »
/ d‘P'/ dslp w f(s',cp',w' - wl) - / dzI/ dyl g(ml,yl,zl — C(z',y'))
i} 0 2 —oo —oo ’
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where w' = ' denotes that f(s',¢',w') is calculated along a paraboloidal surface
of constant w', and g(s',¢',w') is the equi{}alent of f(z',y',() in the paraboloidal

coordinate system. Eq. (2.10) becomes
Ic=/ dw'A(w')/ d:c'/ dy' Gss(xr,x'), (2.11)
w'=1 —0o -0

where

and

For every value of w' ,x"and x represen£ two confocal paraboloids with a ratio of tip
radii equal to w'. The extended result of Pelce and Pomeau therefore applies directly
to the integrals over z' and y' in Eq. (2.11), i.e., for a given paraboloidal surface
w' the integral does nof depend on the position vector xr as it moves along that
surface. A final integration with respect to w' shows that the the convective integral
in Eq. (2.6) is independent of the in"cerface position vector xr (which represents
the pax:aboloidal surface () as long as the quantity A(s’,¢’,w') is a function of w’
alone.

To identify a situation where A(s',¢',w') is independent of s’ and ¢', consider-
the uniform propagation of a paraboloidal freezing front in the presence of a flow
field with a far-field uniform velocity —Ucoi, in the direction of the axis of the
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paraboloid, Fig. 5. The fluid velocity v satisfies the no-slip condition on the solid-
liquid interface (note that in the moving reference frame, v does not include the
uniform velocity —Vi, which is simply an artifact of the coordinate transformation.)

Uniform flow past paraboloids of revolution (or parabolas, in two dimensions)
has been studied by a number of authors and Davis and Werle [2] showed that the
solution to the Oseen equation |

2)\ Ov
- =_VP+V? : .
Pr 9, + Vv (2.12)

is a uniformly valid approximation* to solutions of the Navier-Stokes equations for
small Reynolds numbers, Re = pUs/v=2pA/Pr, where v is the kinematic viscosity
and Pr = v/a is the Prandtl number. Wilkinson 3] derived an analytical expression
for the Oseen flow velocity v = (vy,vs,v,) past a paraboloid in a uniform stream

parallel to its axis. In paraboloidal coordinates the velocity is

1 e~ .- e AY E (Aw) — E;(A) -
s s lavenm VYT Ba) ) @8
_ Vs Ei(Aw) - Ei(A) |
Vs = \/-’UT-*-_S El(A) 3 (2.13b)
v, =0, (2.13¢)

where E; is the exponential integral of first order and A = Ap/Pr. On the surface
w=1 (z=C),vw=vs=0,whereasf9rw—+oo(z—voo), vy = —1 and v, = 0.
The introduction of paraboloidal coordinates yields

o1 or
Y ouw? ts Os?

' oT or
+ (14 pw — Apy/w(w + s)vw)gl—v- + (1 —ps—Apyvs(w+ 5)'0,)-6: =0, (2.14)

* This is true only for three-dimensional flows. In two dimensions the Oseen
solution for flow past a parabola is not a uniformly valid approximation for

low Reynolds numbers{12].
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= —p,. (2.15)

T‘ A, (2.16)

w=1

for axisymmetric tempera.ture fields. Equation (2.14) can be rewritten as

oT oT _ p)
pw)s—+ (1 —ps) 5= T A(w, ), (2.17)

where

- — . T | - oT | [w+s) o7 |
A.- 2/ (w' + s') (\/Z;_vw £ + Vs'v, EX + Torer Ve a5 )" (2.18)

For a paraboloidal solidification front A(w,s) and T(w, s) must be independent of
s. It is readily shown that T = T(w) will sa';isfy Egs. (2.15-2.17) with the velocity
field represented by Egs. (2.13), so here A = A(w).

Now Eq. (2.17) can be integrated analytically to give the derivative of the

temperature with respect to the normal coordinate w, i.e.,

| re~h
66—2 = —pexp{p(l - @)(1 +A) + [—1 + I;I(A) ] Inw
Pr

where E; and E, are the exponential integrals of first and second order, respectively.
One more integration gives the surface temperature of the crystal, viz. A and the

Péclet number p:

© T [ Pre?

Recall that A = Ap/Pr.
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At this point a relation has been derived between the supercooling and Péclet

number for a paraboloidal crystal formed by freezing of a supercooled melt in the

¢ presence of convection, viz.
A = A(p, A, Pr). (2.21)

PY Two new parameters are involved: a Prandtl number, v/a, and the ratio of the
velocity of the flow to the freezing velocity, A. The relation is more complicated
than that derived by Ivantsov for pure diffusion in that the convective velocity and

@ the viscosity of the melt are involved. Furthermore, the parameter A depends on
the supercooling through V.

o
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2.2. Discussion of results

The introduction of convective heat transfer into the equations governing den-
dritic growth has been shown to leave fhe paraboloidal shape intact when the flow
structure has a certain form. This form derives from a solution to the viscous
flow equations describing the interaction of a single axisymmetric dendrite with a
uniform flow when the flow is slow i.e., in the Oseen approximation. This sort of
convection leads to a new family of needle-crystals whose growth velocity is appro-
priately modified.

To illustrate the degree to which convection alters the relation between Péclet
number and supercooling, some representative calculations using the properties of
succinonitrile are presented in Fig. 6. As the figure indicates, forced convection
increases the solidification rate substantially when the characteristic flow velocity

is large compared to the solidification velocity. For example, at a dimensionless

supercooling of 0.002, the Péclet number with a velocity ratio of 50 is almost twice .

“the Ivantsov value. To emphésize that this is a very weak flow by ordinary standards
we cite some results from experiments at low supercoolings.

At a dimensionless supercooling of 0.002, Glicksman and Huang [4] found the
growth velocity to be roughly 0.8 microns per second Aa,nd a velocity fifty times this is
only 40 microns per second which, as the following scaie analysis shows, can easily

_arise from buoyancy. The actual structure of the dendritic mass that generated
flow in the experiments is not known but, as noted by Glicksman and Huang [4],
it is larger than the radius of an individual tip. Accordingly, each dendritic arm

is immersed in a flow field configured by the entire dendritic mass. If we assume
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that the characteristic length scale for the crystal mass is I, then a representative

velocity in a weak flow generated by natural convection is
Us = C, Gr % : (2.22)
Here C) is a constant and v is the kinematic viscosity. The Grashof number is
Gr=21C22 (2.23)

where ¢ is the gravitational acceleration, 8 is the thermal expansivity of the melt,
and A L/cp is the supercooling. The velocity Uy, is then proportional to the char-

acteristic temperature difference and the square of the characteristic length:

Uy = ﬂfiAP, (2.24)
I/Cp

where the uncertainty of the constant C; has been absorbed by the “effective”
convection length I. As a result, the absolute strength of the flow field decreases

with decreasing supercooling. Using the properties of succinonitrile, we find
Uso = T40AI? cm/s

with ! measured in céntimeters. Accordingly a dendritic mass with a characteristic
length of a little over half a millimeter would generate a 40 micron per sécond flow
at an undercooling of 0.002. Neverthelesé, the obvious differences between free and
forced convection are enough to deter us from delving further into the experimental
resﬁlts unti] the detailed structure of free convection for this situation has been
worked out.

25



It should be noted that our methodology differs from that of Glicksman and
Huang [4], who used an alternative expression for the velocity Uy, derived from a

mass-transfer boundary-layer analysis:

U = \/Gr-lli.

Here the velocity is proportional to the square root of the Grashof number and can
be written in terms of the length scale I:

gBLl®

Cp

U &

At

This expression predicts unreasonably large velocities in the casg of the the succi-
nonitrile experiments (of the order of cm/s) and is clearly inappropriate for very
low Grashof number flows.

The theory advanced here makes no allowance for the effects of surface tension
which is known to have a profound effect on the details of dendritic growth. How-

ever, this theory provides the necessary starting point for the adaptation of more

detailed theories to include convective effects which, according to the experimental

_results on succinonitrile, are quite important. The new “convective” steady-state

solution represents the asymptotic form of the corresponding time-dependent so-
lution at large distances from the tip.I Furthermore, capillary eﬁ'ecfs are localized
around the tip and thus the asymptoti‘c solution is also valid for the general case of
non-zero surface tension. As will be described in Chapter 3, the asymptotic solution
facilitates the computation of the boundary integrals since the integrands reduce to
their known asymptotic form far from the tip. In the next chapter, we present a
non-linear scheme which tracks the evolution of the dendritic interface by solving

the transient counterpart of Eq. (2.6) numerically.
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CHAPTER 3: INTERFACE TRACKING

A non-linear interface tracking algorithm, based on the boundary in-
tegral equation derived in Appendix A, is used to study the temporal and
spatial evolution of the dendritic interface. The important role of cap-
illarity and convection on the interface dynamics is established and the
response of the interface to finite amplitude disturbances is examined for
the first time. '

3.1. FORMULATION AND NUMERICAL IMPLEMENTATION

3.1.a. Theoretical formulation

In this chapter we study the temporal and spatial departure of the freezing
interface from the steady-state solutions described in the previous chapter. It ié thus
advantageous to solve the c_onvective-diffusion equation in a reference frame moving
with the velocity Vi, that corresponds to the underlying steady-state. With this
coordinate transformation, steadily propagating fronts are replaced by stationary
interfaces and the transient interface motion is studied separately.

We consider the evolution of a solid-liquid interface I' solely controlled by the
héat (solute) transport in the solid and liquid phases. The temperature (solute
concentration) field T obeys the trans'ient convective-diffusion equation, written in
a coordinate system that moves with a constant velocity Vi, parallel to the z—axis:

oT

g:

Qz+v.vx:f’—av§:i‘— 1%

= 0, (3.1)

where the X vector is represented by the triad (Z, §, 2)=(F, 2) in/cé;rtesia,n coordinates
and (7,¢, £) in polar cylindrical coordinates, a(X,?) is the local thermal diffusivity
of the medium, and V(%, ) is the local velocity in the liquid phase.
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According to the two-sided “symmetric” model, proposed by Langer [1], ther-
mophysical properties of the two phases, such as the thermal diffusivity and the
density, are equal (i.e., a = as and pr = ps) and independent of temperature.
Although this is not necessarily true for most materials, succinonitrile, a “plastic”
organic crystal used extensively for dendritic growth experiments [2], possesses al-
most identical thermophysical constants in both liquid and solid phases. We adopt
the two-sided model assumption throughout this chapter but have also derived a
similar formulation for the one-sided model*. The motion of the interface is related
to the rate at which the latent heat of solidification is removed away from the inter-
face through the heat conservation condition at the interface. The latter relates the
“jump” of the local temperature gradient to the normal component of the interface

freezing velocity:

. - . . L
n - VyTgiquid) — B+ VT(solia) = s
: 4

ol .
V+ 6t.}n-lz, (3.2)

where the first term in the right-hand-side arises from the motion of the coordinate
system and the second, time-varying, term represents the freezing velocity of the
interface 7 = (t,?) with respect to the moving frame of referenge. Here L is the
latent heat of fusion per unit volume and c, is the specific heat (the symmetric
model hypothesis implies that the specific heats of the two phases are identical).
The interface temperature is det;ermined thermodynamically by the Gibbs-

Thomson relation (see Appendix E)

o = o [1- 2ot - eal6r 60K {50} (5.)

* The one-sided model, briefly discussed in Appendix A, assumes no heat flow
in the solid (the “convective” steady-state solution, derived in Chapter 2, is
compatible with both models since the solid is isothermal in the zero-surface- .
tension limit).
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where Ty is the melting point, do=+Tarc,/L? is the capillary length (proportional |
to the solid-liquid surface tension «), € represents a measure of the anisotropy of
the surface fcension [3,4], g(61, 62) is an order unity function of the crystal geometry,
0; is the angle between the interface normal fi and the crystal axis 7, and K is the
local curvature of the interface, considered positive when the solid bulges into the
liquid. The Gibbs-Thomson relation is derived under the assumption of local equi-
librium (see Appendix E), but it serves as a good approximation under conditions
encountered in dendritic grqwth. |

Finally, the temperature field asymptotes to constant values as Z — too:

im T(x,t) = Tico. (3.4)

z—%o0

We now scale the lengfhs with 2a/V and times with 4a/V?. Egs. (3.1-3.4) then

become
%Jrz,\v-vx:r—viz’—z%%: , (3.5)
i - VyThiquia) = B - VaT(sotiay = —[2 + {(r, )] - i, (3.6)
Tr = A - uK{¢(r, 1)}, (3.7)
lim T'(x,t) = 0 and zlllr_no° T(x,t) = constant, | (3.8)

#—o0
where the temperature is now T’ = (T—Too)ep/L end the velocity is v = V/Uy, A=
Ux/V is the rafio of fhe characteristic flow velocity scale Uy, to the velocity V' of
the coordinate system, v = dg[l —€g(81,62)] V/2a is the (anisotropic) dimensionless
capillary length function, A = (Tm — Too)cp/L is the dimensionless supercooling,
z = ((r,t) represents the interface I', and (.(r, tn-i, = (0¢/0t)h -1, is the normal
component of the interface velocity relative to the moving reference frarpe.
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In the melt, the velocily v obeys the Navier-Stokes equations for viscous, in-
compressible flow and satisfies the no-slip condition on the solid-liquid interface*.
As mentioned in Chapter 2, the solidification of the interface alone does not gen-
erate fluid flow and in the absence of fluid flow the velocity v is identically zero
everywhere in the domain independently of the coordinate system choice. In di-
mensionless form we have (the characteristic length, time, and velocity are 2a/V,

4a/V?, and U = AV, respectively)

1 Ov 2A

x - Vx 2 I .
o TRV VgV = P+ Viv (3.9)

V«;here Pr is the Prand_tl number and v = 0 on the interface I'. For certain materials,
including succinonitrile, the Prandtl number is sufficiently large and the temporal
term in Eq. (3.9) can be neglected, implying that the velocity field responds instan-
taneously to changes in the interface shape. ﬁowever, this is not true for metals,
where the Prandt] number is quite small. |
The coefficient of the second term in the left-hand-side of Eq. (3.9), which

represents a measure of the inertial characteristics of the flow field, is also small,
since the flow velocities that-occur in dendritic solidification are generally small.
Nevertheless, the inertial term becomes irhportant at large distances away from the
interface and must be included in order to obtain a uniformly valid representation
of the flow field. As an alternative to solving the full non-linear Navier-Stokes
equations, we use the linear approximation first suggested by Oseen [6]. In the

Oseen approximation, the non-linear term v - Vv is replaced by the linear term

* The assumption of equal densities implies that there is no flow through the
interface due to volume change.
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(_—iz - VxVv) utiliéing the far-field velocityl'(-—iz). This linearized equation is a uni-
formly valid approximation of the Navier-Stokes equation in which the viscous and
pressure forces. are balanced with a small contribution of inertia. In Appendix D
we present a boundary integral method for the calculation of the flow velocity v,
based on the methodology first applied by Youngren and -Acrivos [7]. However, the
complexity of the interface shape makes this problem computationally more difficult
than the unidirectional streaming flows past smooth objects studied by Youngren
and Acrivos. .

The interface shape z = ((r,t) appears only in the boundary conditions for
tﬁe partial differential equations (3.5) and (3.9). As Eq. (3.6) suggests, it is not
necessary to know the temperature at arbitrary poéitions around th‘e solidifying
front since only the femperature gradient normal to the interface is.vrequired to

calculate the growth velocity. Consequently, if Eq. (3.5) and the corresponding
boundary conditions could be transformed to give equations for the temperature
gradient at the interface, then the solution of these equations would give all the
information necessary from the point of view of solidification. Now it turns out that
such equations can indeed be derived using Green’s function techn.iques. In general, -
a non-local* integral eqﬁation is obtained which relates the normal derivative of
the temperature field at the interface to the temperature field in the interior of the
domain.

Before transforming the transient convective-diffusion Eq. (3.5) into an integral

equation, it may be useful to explain the physical background of such equations. The

" * A “non-local” equation for a particular -point in space contains not only the
local value of the field variable (or its derivatives) but also the value of the
field variable (or its derivatives) in other points in the domain.
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surface of discontinuity (in our case, the crystal-melt interface) acts as a distribution
of “point sources” and “point dipoles.” In the quasistatic case, and in the absence
of sources or sinks in the domain, it can be shown that the surface source density
equals the “jump” between the inner and outer normal gradient of the field (i.e.,
the temperature field) and the surface dipole density equals the “jump” between
the outer and inner field value. In solidification, the temperature is continuous
upon crossing the crystal-melt interface implying that no diéoles are needed and
the interface can be represented solely in terms of point heat sources with a surface
density determined by Eq. (3.6). Finally, it is possible to incorporate the time
dependence of the heat diffusion equation into the integral equation. In this case,
temporal integration introduces the effects of the interface history in addition to
the non-local effects due to the spatial integration.

The transformation of a partial differential equation into an integral equation
requires the use of the corresponding Green’s function. This function represents
the response of the field variable (i.e., the temperature) to an instantaneous point
source*. The usefulness of the Green’s function lies in the fact that it is a particular
solution of the adjoint of the differential equation, and thus it already contains some
of the characteristics of the desired solution.* A shortcoming of this approach
is that there are no Green’s function.s, at least in a useful form, for differential
equations with variable coefficients. A prime example is the convective-diffusion
equation (3.5), where, due to the presence of the convective term v - V,T, no

Green'’s function is known for cases where the velocity varies with position.

* An instantaneous point source is represented by §(x — x')é(t — t').

** Note that Eq. (A2), which is the adjoint of the heat diffusion equation, is
defined in the inverse time space, represented by the time variable #'.
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We now introduce the Green’s function G(x,x';t — ¢') that represents the so-
lution to the adjoint of the heat diffusion equdtion in a moving coordinate system

and in an unbounded domain (see Appendix A), viz.,

[T

H(t-1t) ox _|r-—r’|2-+-[‘z—z’-f-2(t——t’)]2
G(x,x;t-t") = —[47r(t—t’)] p{v . =) }, (3.10)

where H(t — t') is the HeavisideAfunction. and G(x,x';t —t') =0 for t < t'. The
fundamental solution G(x,x’';t —t') represents the transient spatial response of the
temperature field to a point source at t = t' aﬁd x = x' in the moving coordinate
system. It is singular at (x = x', t = t’), but continuous elsewhere.

The integral equation corresponding to Eq. (3.5), the transient convective-

diffusion equation, is

t_
T(x,t) = / dt'/dr' [2 + ((r',t')] G(x,xr(t');t —t')
t_ 0 :
—2/\/ dt'/dr'/ dz'G(x,x";t —t') v(x',t') - Ve T(X',t'), (3.11)
—o0 ¢(r' 1)

according to the derivation given in Appendix A. The interface xr is at z = ((r, ?)
and [dr = f0°° rdr foz’r dyp. It is worth noting that the first term in the right-hand--
side of Eq. (3.11) represents a point source distribution along the interface with
density equal to the discontinuous “jump” of the ter-npera,ture gradiént normal to
the interface, which in turn is directly related to the interface velocity through the
heat conservation éondition Eq. (3.6). The second integral term, which acts as an
effective volume distribution of sources, represents the effects of convection. Finally,
the time integration stems from the transient nature of Eq. (3.5) and represents
the history of the temperature field.
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We now apply Eq. (3.11) to points on the interface x = xr= (r,z = {(r, 1)) to

yield
T(xr,t) = A — vK{{(r,t)} = /;- dt'/ dr' [2 + ﬁ(r',t')] G(xr(t),xr(t');t—1")

—2,\/t- dt’/ dr'/oo dz'G(xr(t),x';t —t') v(x',t') -V T(x',t), (3.12)
—o0 ¢(r',t")
where Eq. (3.7) has been substituted for the interface temperature T(xr, ).
Equation (3.12) represents an integral evolution equation for the interface shape
¢(r,t), given the temperature field. Without flow (A = 0), the “convective” integral
in the right-hand-side vanishes and Eq. (3.12) can be solved to determine the only
unknown, (. In the presence of flow, however, the convective integral represénts the
effect of a disiribution of point sources in the fluid domain with (unknown) volume
density v(x,t) -VxT(x,t). Thus we need to evaluate the temperature gradient and

the flow veIocify in the interior of the fluid domain (since v = 0 in the solid.) Taking

the gradient of Eq. (3.11) for x # xr gives
‘- _ '
VxT(x,t) = / dt’/dr' [2 + C(r’,t')] VxG(x,xr(t');t —t')

t. (o]
—2,\/ dt'/ dr'/ dz'V,G(x,x";t — ¢') v(x',t') -V T(x', ¢'). (3.13)
—o0 ¢(x',t") .
Eq. (8.13) can be directly used to evaluate interior values of the temperature

gradient for a given interface shape ((r,t). The evaluation of the velocity field is

discussed in the next section.

3.1.b. Numerical implementation
Now we apply the integral equation (3.12) and the auxilliary field equations

(3.13) and (3.9) to study the temporal and spatial evolution of a crystal interface*.

* Qur methodology actually applies to any advancing front that obeys similar
equations.
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As mentioned in the introduétion, most investigations of dendritic growth involve
numerical computations of the shapes of steadily advancing fronts and linear stabil-
ity. Important “steady-state” theories, such as the microscopic solvability hypothe-
sis, have not as yet been tested by a transient, non-linear, tracking scheme in which
the position of the interface is \ipdated continuously. In addition, the temporal
~derivative in Eq. (3.5) has been omitted from all previous work on the grounds
that its effect is small at small supercoolings A. While this is true, the recent
work on the microscopic solvability hypothesis has been carried out at moderate t'o
high supercbolings, wheré the temperature field does not respond instantaneously
to changes in the interface shape. The elimination of this “quasistatic” approxima-
tion changes the solution method signiﬁcantly, since now the fully-transient integral
equation is of the Volterra type in time.. While the Fredholm type integral equation*
that corresponds to the quasistatic casé has been studied extensively and is suit-
able for an eigenmode stability analysis, the Volterra type equation is not amenable
to such a stability analysis. Furthermore, the non-linearity of the integral kernel
precludes the use of Lapiace transforms that usually offer a useful but cumbersome
alternative to the normal mode analysis._ Finally, the incorporation of convection
in the integral evolution equation increases its dimensionality and requires an iter-
ative approach to be explained shortly. Convection has been neglected heretofore,
although iné.ny investigators»have noted that hydrodynamic effects are important
in solidification and experiments have indicated the dramatic effects of convection

in low supercoolings [2].

* An integral equation with fized integration limits.
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The next step is to develop a numerical procedure, based on Eq. (3.12), that
corresponds to the solution of the full transient convective-diffusion Eq. (3.5). With
this, shortcomings of other approgches are avoided and a reliable tool for the study
of the non-linear evolution of crystal dendrites is set forth.

From t' = —oo to t' = tg, the interface shape, the temperature field, and
the flow field represent steady-state behavior de;noted by the subscript (). That
implies that in the laboratory frame of reference the interface is a uniformly moving
solidification front with a constant freezing velocity equal to that of the moving
coordinate system and (.(r, t) is zero. By setting t = t; we can depict the steady-
state propagation of the crystal-melt interface and examine the effects of convection
on the existing steady-state theories. This aspect of our numerical work has been
presented in Chapter 2. On the other. hand, a pertﬁrbation in the interface velocity

introduced at t' = ¢y causes deviations from the steady-state; the time integrals in

Egs. (3.12-3.13) can then be split in two integral parts. The integrals from ¢’ = —oc0

to t' = to represent the dependence of the current interface shape on the underlying
steady-state, whereas the integrals from t' = {5 to the current time represent the

time history of the perturbed interface. Equations (3.12-3.13) now become

T(xr,t) = A — vk {((r,1)} = /_ " g / dr' 2 G(xp(t), xro(£); t — )
n /t “ar / dr' [2+<’(r',t')] G(xr(2),xp(t');t - t') (3.14)
o
— 2 /to dt'/dr'/::’) dz'G(xr(t),x';t — t') vo(x') -V To(x')
-2 [-dt’/dr’/; t,)dz’G(xr(t),x’;t‘— t') v(x',t') -Vx,T(x’,t'j,
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and

to
VxT(x,t) = / dt'/ dr' 2V G(x, xp,(t');t — ')
—oo ,
t o '
- / dt! / dr’ [2 + ((r',t')] VK G(x, xp(t'); t — 1) (3.15)
' to .
to . oo
- 2/\/ dt’/ dr’/ dz'VxG(x,x';t — 1) vo(x') -V Tp(x')
 J—oo So(r') :
t_ foo ’
- 2)\/ dt’/ dr'/ dz'V, G(x,x';t —t') v(x',t') -V T(x', 1),
to C(r')tl) : )
where xr, represents points on the steady;state interface shape z = (o(r). Note
that the interface velocity, ¢ (r, 1), relative to the velocity of the advancing steady-
state front is set to zero in the “steady-state” time interval (—oo,?). Also note

that the Oseen approximation to the Navier-Stokes equation (3.9) (see Appendix

D) is a “quasistatic” approximation and thus does not involve temporal integra-

tion. Nevertheless, it is implicitly time-dependent since the boundary shape changes

continuously with time and, as shown in Appendix D, the ﬂow velocity v(x,1t) is
recalculated at every tifne step. |

At this point it is instructive to compare Eqs. (3.14-3.15) and their quasistatic,
purely diffusive counterpartg used in previous work [3,4,8,9].

e In the quasistatic approximatioﬁ and in the absence of convection only the
second integral in the right-hand-side of Eq. (3.14) survives out of the eight
integfais appearing in Eqgs. (3.14-3.15)*.

o In the stéa.dy-stafe modelé, the time integfation 1is 'perf;)rmed analytically over
the entire time interval (—o0,t). In order to see why this is not possible in

our case, consider the second integral in the right-hand-side of Eq. (314)

* With ¢, replaced by oo. -
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In the steady-state case the interface shape xr(t') does not change with time
and is equal to the current interface shape xr(t). This simplifies the analysis
considerably, since the solution of a Volterra type equation is avoided. In the
transient case, however, the interface shape is a continuous function of time and
the Green’s function G becomes a non-linear function of the unknown interface
shape xr(t'). This precludes analytical integration and leads to a non-linear
Volterra type intggral equation and to the associated computational difficulties
mentioned earlier in this chapter.

e In the absence of convection, Eq. (3.15) becomes obsolete since no interior
values of the temperature field are required. This reduces the dimensionality
of the problem and Eq. (3.14) becomes an boundary integral equation. '

Having enumerated the differences between the steady-state and our “ffansient”
problem, it becomes appurent that the latter is clearly harder, primarily because of
three factors: non-linearity, transient nature, and convection. While the first two
factors combined preclude the use of traditional stability methods and necessitate
an interface tracking scheme, convection partially destroys the elegant features of
the boundary integral approach. The convective term in the diffusion equation (3.5)
is responsible for the domain integrals in Eqs. (3.14-3.15) that increase by one the
dimensionality of the integral equations. In the numerical scheme that we present
in this chapter we have coupled the essential features of the boundary integral
method with a domain discretization that requires a minimal amount of interior
points. We were thus able to avoid some of the problems with finite difference
or finite element methods such as the complicated boundary geor;letry and the

long computation times usually required for three-dimensional calculations. The
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“differential” approach has not been successful because of the prohibitively large
computer requirements for such a transient; three-dimensional convective-diffusion
problem with a moving interface, since each point in the interior domain carries
an equal weight. The success of our integrél approach is based on the fact that
“the “influence” of the convectivé temperature field on the interface shape decays
exponentialiy fast away from the interface and the corresponding domain integrals
can be accurate_ly calculated in the vicinity of the interface. Summarizing, our goal
is to calculate iterativelyi the interface shape at time ¢ using the evolution equation
A(3.14) that contains the time history and the non-local characteristics of the interface
and using Eqgs. (3.15) and (3.9) to update the temperature and velocity fields.
The temporal integration in the second and fourth integral terms in Eqs.. (3.14-
3.15) cannot be performed analytically since the interface shape, the temperature
- field, and the flow velocity v are all unknown functions of time. To calculate the
temporal integrals numerically, the :‘time domain [tg,t = ty) is split in N equal
.intervals.’ Over each such time interval, [t,_;,t,), field variables, such as the inter-
face shape, (, temperature, and velocity, are considered to be constant and equal
to their respective value at the “nodal” point # €[t,_;,t,)*. The actual location of
the nodal point within each 'tirn'e intervai depends on whether the integral belongs
to Eq. (3.14) or Eq. (3.15). In the discretization of Eq. (3.14), where the objective
is to use previously calculated values of all the field variables to calculate the new
interface shape at time ¢t = tn, we place the nodal points %, at the end of each tifne
interval. On the other hand, the calculation of the interior values of the temperature

gradient and velocity is done iteratively and it requires the simultaneous knowledge

* The error associated with this approximation can be estimated from the mea
value theorem. : :

40



of the interface shape. Here nodal points are placed at the beginning of each time
interval and the requisite information for the calculation of the temperature field
can be retrieved from prior time steps.

This temporal discretization of Eqs. (3.14-3.15) now allows us to integrate
analytically.over each time interval. In Appendix B we present the result of the
time integration of each of the integrals in Eqgs. (3.14-3.15), denoted by Iy and Hj,
k =1,2,3,4, respectively. The calcufa.tion of each integral requires several steps

but the final result can be expressed in the following concise manner:
A — VK:{C(I‘, t)} = Il + IQ <+ I3 + I4, (316)
VXT(X, t) = Hl + H2 + H3 + H4, (317)

with the integrals (I; — I4) and (H; — H,) shown in Egs. (B5-B12.)

Each of the expressions I (or, Hy) involves a two- or three-dimensional spatial
integral (or, a N term sum thereof,) representing the non-local characteristics of
the problem at the given time interval. Variables in each integral are denoted by elz
subscript which indicates the time at which the field variables are calculated. This

is exemplified by the integral

[ e o+ tuey] 22 G}

87\' |XN - anl

o !
X {exp XN — x| (erf [ Xy — Xn | + V(N —n)At

2{/(N — n)At

—erf

|xn = Xa'|
2/(N —nt 150 \/(N—n+1)At])

|xn — Xn'|
+exp{—|xy — x,'|} | erf -
p{-—Ixn l}(r[QA(N—n)At

[Xn — Xn|
—erf[z\/ ETESIIY, —\/(N—n+1)Atj|)}
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that belongs to the N term sum in Eq. (B6). Variables with the subscript ()

‘represent quantities previously calculated at time ¢t = t,, and are treated as constaﬁts

during the spatial integration. Variables with the subscript () correspond to the
unknown values at the pres?:nt time, t = tn, but are .otherwisg treated in exactly
thé same way.

Our analysis to this point can be applied to any solidification front that obeys
the evolution equation (3.14) and the auxiliary equations (3.15) and (3.9). However, -
in order to derive an optimal spatial discretization, we need to define the basic state
under investigation. From previous steady-state models, including fhe convective
model presented in Chapter 2, it is well-established that there exist solutions to Eq.
(3.14) that represent uniformly translating needle-crystals with a near-paraboloidal
shape [3,4,8-10]. Although most of these solutions are unstable [11] or possess cusps

at the tip of the necdle [3,4], they do represent the only known shépes that satisfy

‘the steady-state equivalent of Eq. (3.14). Since one of our objectives is to investigate

the non-linear spatial and temporal evolution of such crystal forms, it follows that
the asy'fmptotic (spatial) characteristics of this system are determined by the far-field
behavior of the temperature and flow fields that correspond to these steady-state
needle crystals. The capillary term in Eq. (3.14) modifies the morphology of the
interface in the vicinity of the needle tip, but otherwise the long-range behavior of
the temperature field is determined solely by the heat transport mechanisms, i.e.
heat diffusion and convection.

We will use the generalization of the Ivantsov family of steady-state needlé
crystals, derived in Chapter 2, to extract the asymptotic behavior of the integrands
since, at large distances from the interface, the temperature and flow fields are
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essentiallly unaffected by the interface perturbation. This generalized steady-state
paraboloidal solution, denoted by the subscript (o), will also be used to define a new
set of spatial variables that map the infinite integration domain onto a unit cube.
The calculation of the spatial integrals involves integration over the entire r, ¢
plane. In addition, the three dimensional “convective” integrals I3, I;, H;, and
H, require an extra z integration over the semi-infinite interval [{,(r),o0). The
immediate goal is to express these integrals in terms of selected values of the field
variables in time and space. First, the two-dimensional integrals (I3, I;, H,, and
H,) are examined by looking again at the representative example borrowed from

Eq. (B6):

/:” de' /0°° r'dr'! [2 + Q:n(r')] exp {—(n(r) 4 (a(r')}

87 |xN — x|

X {exp 'XN —xn" <erf l:Q\I;(CN_L! + v/ (N —n)A

Xy — Xn'|
—erf [2\/ +\/(N—n+1)At])

: (N —n+1)At
' IXN —xn,!
+exp{—|xnv - x|} (erf [2 TR — V(N —n)At

XN — Xn'| '
— erf [2\7—(-N—n+ AT -V(N=n+ 1)At]>},

where

XNy — x,'| = \ﬁ'? + (r)? — 2rr' cos @' + [Cn(r) = Ca(r))P.

For axisymmetric interface perturbations, the ¢' dependence comes solely from

_ the cosine term in the expression for |xn — X,'|. It is obvious that the integrand

becomes singular when r = r’ and ¢’ = 0, since the distance |xy — x,,'| between the

‘points xn and x,’ (which appears in the denominator) becomes zero. Nevertheless,
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the integrals exist since this weak singularity (1/|xn — x»'|, as [xy — x5'| — 0) is

integrable. To demonstrate this we introduce the new variable

n=I|xy—X,|= \/a(r, r') = y(r,r") cos ¢,
where _
a(r,r') = r? 4+ (r')2 '+ (CN(r) - C,,(r'))2
'and
y(r,r') = 2rr'.

The above integral, which can be written as

27
' TT,SO)
€= / d"o/ ar XN = X5'|’

where h is a non-singular function, becomes

C=/ dr,/_ . - dp 4 h(r,r',n) _
0 va=7 VVaFr-n)(n—va=-7) vVt 7+n)(n+/a—7)

The reader should note the similarity between the integral C' and inverse elliptic
functions. In fact, in the special case of a stationary coérdinate system, C reduces
to a non-singular inverse Jacobian elliptic function [13]. In the general case, the
integrand in C' is bounded by the integrand of the stationary case in the entire inte-
gration interval and thus its existence is guaranteed. To evaluate the integrals with
respect to 7, the orthogonal polynomial Gaussian quadrature (based on Chebyshev

polynomials of the first kind) is applied [13], e.g.,

N,
P dyh(y) xS

—_ & h
. To—a=y & W, W

- (b-fz-a) s (b;_‘_‘)cos (2k—17r>'
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For the n part of integral C' we obtain

IV“’ o0 /
C= 4_7_2/ dr' Alr,r',mx) . (3.18)
Neimlo  VVetv+n)m+va—7)

where

_ \/a'+7+\/a—7+\/67+7—\/0-7cos 2k-1m
k= 9 2 N"P 2/

The two-dimensional integrals can now be written as sums of N, one-dimensional
integrals in 7’ |

The interface shapes at time ty (i.e., {(n) and at time t, (i.e., {n), both
asymptote to the paraboloidal (unperturbed) interface shape (o=(p/2)(1 — r?/p?)

as r — 0o. As a result, |xny — X,'| becomes

r')2
l. 7 — ! frod g__.
r’gnoo ,XA n , 2p

and the asymptotic behavior (with respect to r') of the above integrand is deter-

mined by the exponentially decaying term

exp{Ca(r')} = exp {— (;I; } .

"2
o)

maps the semi-infinite interval [0, c0) onto the finite interval (0,1], with r — oo

The new variable

corresponding to ¢ — 1.

At this point we are faced with the choice of an optimal discretization for the
g interval, so that the computation of the integrals is both accurate and flezible.
The satisfaction of both criteria is not a easy task. Most higher acéuracy Gaus-

sian quadrature formulae require a large number of “weights” and abscissas that
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vary with the number of desired points, wherea.s equidistant, equal-weight formulae
such as Simpson’s rule suffer from poor accuracy. A quadrature formula Sased on
Chebyshev polynomials of the first kind and of odd order was selected. It not only
offers a high accuracy, but the weights and abscissas are simple functions of the

number of points N,, expressed in analytical form:

/ f(y)dy=2w2 VYA =) gy, (3.19)

2N, +1

where

o f 211w
Yi = cos (2_Nr+1§>.
The ifnplementa.tion of Egs. (3.18-3.19) transforms the two-dimensional integral to
a finite double sum in terms of the values of the integrands at Selegted points 2, k
in the g,n unit square (which is equivalent to the semi-infinite r, ¢ domai'n.)
The three-dimensional “convective” integrals I, I, Hj3, and H, involve an
additional integration in the 2’ direction. Again we examine a representative integral

such as

/dr' /oo dz , exp{—(n(r)+2'} Va(x') ;Vx'Tn(x’)
¢n(r’)

47 |xy — X'|

. ' |xy — x|
X {exp{lxN -x'|} (erf [2 GBS + V(N —n)At

2y/(N —n +1)At

+exp {—|xy — x'|} (erf [Eﬁuj—— — V(N —n)At

(N —n)At

—erf [ Xy x| _ VN -n+ 1)AtD},

2{/(N —n + 1)At

'-erf'[- Ixy — x| +_\/(N_n+1)AtD

found in Eq. (B8). The discretization of the [dr' integral is identical to that of

the two-dimensional integrals. For the z' integration the asymptotic behavior of
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the integrand as z' — oc is used to define a new variable transformation that maps
the semi-infinite interval [(,,, 00) onto the interval (0,1]. It is easy to show that the
integrand, excluding the dot product vp(x') -V Ty(x'), decays as 1/2z' for 2’ — oo.
As it was stated earlier, the behavior of the temperature and the velocity fields
at large distances from the int-erface is determined by the corresponding “unper-
turbed” fields Ty and vo. Although the flow velocity reaches a constant value, the
temperature field decays exponentially as z' — oo (see Chapter 2.) The integrand
thus decays exponentially as exp{—2(1 + A)z'} for 2’ — oo, where ) represents the

relative strength of the flow field. Define the variable
€= exp{=2(1+ ) [' = C ()]}

which is equal to unity on the interface z' = (,(r') and approaches zero as 2’ — oo.
Next use the quadrature scheme defined by Eq. (3.19) to discretize the transformed

integral from £ = 0 to £ = 1 at the points (i, m =1,2,..., N,, where

» o f2m—1m
=cos’ { 0———= .
mE 2N, +12) "
At this point we have a set of variable transformations and quadrature rules that

transform the spatial integrals into weighted finite sums. Each term in the sums

corresponds to a point (gi, nik, £im)*, OF

r; =4/pln (}->,
gi

. n?
(Pik = arccos (a'—ﬁﬂ!-’f-) ,

1
Zim = ((ri) — mln(ﬁm),

* The double indices indicate the dependence of n;x and &;,, on g;.
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~ where a(r;) and ﬁ(ﬂ) were defined in Eq. (3.18). The discretized equivalent of each
spatial integral is presented in Appendix C.

The integral equations (3.14) and (3.15) have now been transformed to a set
of non-linear algebraic equations in terms of the interface shape Cn(ri) an‘d the
temperature gradient V, T (r,, zm) at selected times ¢, and locations (r;, zm) The
non- hneanty can be traced back to the evaluation of the Green’s function along the
interface. In contrast to the classical one-dimensional Stefan problem, the (gener-
ally unknown) curved shape of the interface cannot be represented by a éonstant
coordinate surface. This, in turn, results in the explicit appearance. of ¢ (or, xr) as
the argument of the Green’s function in Egs. (3.14-3.15). The discretized equations

(3.14-3.15) ¢an be written in the following concise manner*:

N Nr N“’

A= vK{((rjtm)} = DD 3 TP v {Crinta))

n=1 i=1 k=1
N N,- 1‘¢ N )

+ZZZ Z ntkm,J,N{C(rhtn) V('I‘,,Zm,tn 1) v T(ruzm, n—l)}, (320)

n=1 i=1 k=1 m=1
and the auxiliary equation

n—1 N, N,

V(ris Zmy ta—1) - VaT(ri, 2m, tho1)} = EZZH ,p,n,i,n—l{c(r#’ta)}

o=0 u=1 k=1
n—1 N, Nv N,

+ Z z Z Z o,u,K, I;i,n—l{C(""ln t6)7 V(T‘u, 2l ta) . VxT(T”, Zl,to)}, (321)

o=0 pu=1 k=1 =1

where the interface is axisymmetric (¢ independent of k), 7 and H are the non-linear
algebraic operators in Egs. (C1-C8), and X is the curvature operator
¢ + (¢’ +¢

L (3.22)
rli+ ]

K{¢(r,8)} = -

* The superscripts (P) and (¢) denote contributions from the “diffusive” and
the “convective” integrals, respectively.
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The velocity v,,_l(r,-., zm) at time t,_; is calculated from Egs. (2.13), (D2),
and (D12-D13). It represents the contribution of two terms: the “unperturbed”
Oseen velocity, derived in Chapter 2, and a Stokes flow correction, calculated in
Appendix D and representing the effect of the interface perturbation. Since the
flow field is a solution of the quasistatic Oseen approximation to the Navier-Stokes
equations, it satisfies the no-slip condition on the perturbed interface exactly and
_asymptotes to a constant velocity at infinity. The velocity is updated using the
cur-rent interface position and is then used in Eqgs. (3.20-3.21) to calculate the next
interface position. It is worthy of note that in the case of pure diffusion, v = 0. This
simplifies Eq. (3.20) considerably since the spatial integration is eliminated, while
Eq. (3.21) becomes obsolete since no interior values of the temperature gradient
are required.

Eq. (3.20) represents the interface temperature at r = r; aﬂd at time t = ty.
By varying the index j from 1 to N,, which corresponds to different radial distances
~from the z- axis, we can obtain N, such equations for a given time ¢ = ty. If we
assume that the all the variables at the times t,, n = 1,2,...,N — 1, are known,

then the set of N, non-linear algebraic equations

N, N;,
A= vK{L(ritn)} = D > IR {C(ristn))
=1 k=1
N, No N,
- Z Z Z Iﬁ,i,k,m;j,N{C(ri’tN)’ V(T,‘, zm,tN—l) : VxT(ri, Zm;tN—l)}
1=1 k=1 m=1
N-1 N, Nplk : N-1 N, N, N,
= z EZI}‘)" k,J,N{C(rH ")} + Z EZ Z n,:,k,J,N{C(rh n),

n=1 =1 k=1 1=1 k=1 m=1 .

V(risZmytn-1) - VT (Tiy2m,tn1)}, 7=1,2,...,N, (3.23)
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can be solved to give the N, unknowns, i.e. the interface shape at the points
Tiy J = 1,2,..., N, (Note that the left-hand-side is expressed solely in terms of
the unknown interface shape, whereas the right-hand-side contains only previously
calculated quantities.) - | |

Finally, by varying the value of N, we obtain a set of equations (3.23) repre-
senting the history of the interfacé position up to the corresponding time tn. The
sequential solution of these equations gives the interface position at ¢t = ty as a
function of previously calculated values at t=1t,,n=1,2,...,N - 1.

In the next sectioﬁ we will discuss the numerical characteristics of this method-

ology and present representative results.
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3.2. DISCUSSION OF RESULTS

The non-linear set of Egs. (3.23), the auxiliary Eq. (3.21) for the temperature
gradient and Eqs. (2.13, D2, D12-D13) for the velocity represent the numerical
approximation of the integral evolution equation for the interface shape. We’will
use these equations to examine the growth dynamics of the solid-liquid interface.
The importance of quantities like surface tension and convective flow strength has
already been establibshed in the study of steady-state models. In this section we
will first show that the interface tracking algorithm based on the above equations is
numerically stable, convergent, and robust. We will then discuss our results which
clearly demonstrate the significant role of surface tension aﬁd convection in the
transient evolution of the dendritic interface.

The prirhary objective of this work was to develop an exact (i.e. without
ad hoc approximations) mathematical scheme to represént the combined effects of
interfacial tension and conv‘ective heat transport. This was achieved by transforming
the governing set of equations into a tractable numerical scheme. In this section we
present our current results and discuss several additions and generalizations that will
extend the utility of our computational scheme. It will be shown that our algorithm
is an effective tool for the study of sp.a.tial and temporal pattern formation.

The important input parameters are of two kinds. Numerical parameters, such
as time step size and the number of quadrature points, determine the numerical
characteristics of the algorithm. Their effect on the solutions is discussed in Sec.
3.2.a. The physical parameters (Péclet number, surface tension, flow strength, etc.)

specify the characteristics of the physical system. The results from our calculations
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at selected poinis of the parameter space are presented in Sec. 3.2.b. Finally, some

concluding remarks and suggestions for future work are presented in Sec. 3.2.c.

3.2.a. Numerical Characteristics

This section deséribes the tests that were carried out to examine the robust-
ness and accuracy of thé numerical scheme. Represéntative results demonstrate
i;he abilify of the scheme to track known solutions such as ‘Ivantsov’s solution and
the new “convective” steady-state solution. The convergence characteristics. of the
algorithm with respect to varying grid sizes and time steps were also studied. Fast
convergence was achieved with a relatively small number of spatial and t.emporal
discretization points.

The underlying basic state fof the interface shape is determined by the Péclet
‘number and the strength of the flow field. In the limiting case of no flow (A = 0),
the basic state is the Ivantsov steady-state paraboloid of r_ev‘blutidn. As shOWn
in Chapter 2, the paraboloidal shape of the interface is breserved for A # 0 if
the flow field satisfies certain conditions. Thus, the new “convective” steady-state
-solution, derived in Chapter 2, is used as the underlying basic state in the numerical
calculations (since this solution reduces to Ivantsov’s solution for A = 0, there is no
need to distinguish between the two). The test cases that were examined cover the
range of @odérate to high Péclet numbers (i.e., p > 0.1). Since the characteristic
‘length is 2a/ v E-p/ D, smaller Péclet numbers decrease the resolution of the system -
and require a large number of spatidl discretization points. A discussion of future
improvements in the spatial discretization follows in Sec. 3.2.c.

The discretization of the integro-differential .equations (3.14-15) combines the
" numerical approximation of derivatives and integrals by finite differences and finite
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sums, respectively. The time derivative of the interface shape, g:, in Egs. (3.1.4-15)
represents the perturbation on the interface velocity and can be approximated by a
finite difference formula. An equivalent approach is to eliminate the time derivative
altogether by integrating the corresponding fime integrals in Eqs. (3-14-15) by
parts. The first alternative was chosen since it provides one with the flexibility
to staft with either an initial perturbation on the interface shape or an initial
perturbation on the interface velocity (the interface velocity is directly proportional

to the gradient of the temperature field and is thus a good measure of thermal

. fluctuations in the temperature field around the crystal.)

The spatial integrals in the integral equation (3.14) are discretized using the
coordinate transformations and the quadrature formulae presented in Section 3.1.b.
The domain is mapped onto a unit cube and the number of the quadrature points
in each of th= three directions determines the si:)atial resolution of the system. As
it was mentioned in the previous chapter, the interface shape, the temperature
field, and the velocity field that correspond to a perturbed interface asymptote -
to the respective unperturbed quant.ities at large distances from the tip region. In
the absence of flow, the Ivantsov paraboloid and the corresponding exponentially

decaying temperature field represent the interface shape and the temperature field

- - at infinite distances from the tip region. When flow is present, the Ivantsov solution

is replaced by the “convective” steady-state solution presented in Chapter 2. The
known asymptotic behavior can be incorporated into the in_tegral formulation by
replacing A in Eq. (3.14) with the steady-state integral expression Eq. (2.6). At
large distances from the tip the integrands in the right-hand-side of Eq. (3.14)

reduce to those of Eq. (2.6), since the interface shape approaches its unperturbed
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state. As a result, the two sides of Eq. (3.14) cancel each other far _from‘the
tip and the integration need only be performed up to the point where there is 1o
appreciable difference bet.\\f;een the calculated interface shape and the corresponding
unperturbed state. The minimum number of points required to adequately represent
the interface shape is identified by examining the point furthest from the tip: if
the calculated deviation from the unperturbed shape is small (O(107%)), then for
r > ry, the interface shape. can be assﬁmed to be that of the unperturbed steady-
state parab.olroid and no more points are required.

The first important test of the numerical scheme concerns numerical noise: in

‘the absence of an externally imposed perturbation, the numerical solution should

remain fixed 6ntc_> the underlying basic state as time evolves. A wide range of flow-

strengths was studied (0 < A < 10) and, in the absence of an ezternally imposed
perturbation on the interface shape or velocity, no departure f;om the basic state
was observed.* The calculations were carried out to arbitrarily large times, thus
indicating that the accumulation of round-off error does not generate misleading
numerical instabilities. This is an important result in itself since the correspond-
.ing basic states are often unstable to infinitesimal external perturbations, including
random noise. The elimination of numeriéally driveﬁ instabilities enables us to con-
centrate on destabilizing mechanisms such as thermal fluctuations or interface shape
perturbationg. In addition, the amplification of random‘noise has been probosed as

the triggering mechanism for sidebranch growth. Thus, the ability to distinguish

* Note that A = 1 corresponds to a flow velocity that is equal to the freezing
velocity of the crystal. For moderate to high supercoolings (or Péclet numbers),
the freezing velocity of succinonitrile dendrites is of O(cm/s), while comparable
flow velocities were not observed [2].
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between thermal and numerical noise (the latter being virtually uncontrolled) be-
comes important in the study of non-linear interaction of noise and sidebrénching.
| Several tests were carried out to examine the behavior of the solution as the
number of points used to represent the interface shape and the field variables were
changed. When a zero-surface-tension solution was used as an initial condition,
the computed sclution would stay on the initial condition as long as ¥ = 0 and no
external perturbation was imposed. However, once v is changed, the system evolved
to a new state to account for the effects of capillarity. The following procedure was-
used to test the convergence of the algorithm: The system was started with the
zero-surface-tension solution in place, i.e. v = 0. Then v was changed to a non-zero
value and the system was allowed to evolve to a new state. Figures 7 and 8 show
the behavior of the tip velocity for different numbers of discretization points in the
r— and -directions and for p = 1. Th-e pert‘urbation velocity at other points on
the interface has a similar behavior. The results shown correspond to A = 0 and
v = 0.001. Similar results were obtained for A = 0.1 and A = 1.0, indicating that
the convergence behavior of the algorithm is essentially independent of the strength
of the convective flow in this range.

The point r = 0 is not a nodal point and thus one needs to extrapolate from
the neighboring nodal points using a local Taylor series expansion for the interface
shape. The 7 r—point result is fairly accurate and the 12 point result is almost
indistinguishable from the 30 point case. (The maximum deviation from the 30
point result is 34% for the 7 point result and only 4% for the 12 point result.) The
convergence is faster in the (-direction and here less than 10 quadrature points give

very accurate results: 23% and 2% maximum deviation from the 12 point result for
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the 4 point and the 7 point case, respectively (see Fig. 8). The above results indicate
that a small number of quadrature pbints 1s suﬁicient to accurately represent the
growth velocity thh' in short and long times and over a variation of several orders
of magnitude in the velocit&.

While the number of quadrafure points (]\’r?N‘P,Nz) determines the spatial
resolution of the model, the time step size.determiﬁes the temporal resolution.
The use of the time-dependent Greeﬁ’s function and the resulting time integration
allows the choice of rather large time steps. As an alternative, one can use a time-
differencing scheme, whereby the temporal derivative in the transient convective-
diffusion equation (3.5) is approximated by a finite difference formula. However,
the partial gain from the elimination of the time integration cannot compensate
for the substantially smaller time steps required by time-differencing [14]. Figure
9 shows the tip velocity for different time steps and for A = 0.0. Here again the
zero surface tension solution was used as the initial condition and the system was
allowed to evolve to a finite surface tension (v = 0.001) state. The results show
that the algorithm is rather insensitive to variations of the time step size and,
thus, large time steps give fairly accurate results. The timg step At = 0.1 is quite
large considering the fact that the system reaches a steady-state at times of order
unity; however, the maximum deviat?onbf the corresponding tip velocity from the
At = 0.002 result is oniy 34%. (_Similar results were obtained for A = 0.1 and
A = 1.0). The larger time steps obviously cannot describe the evolution of the
interface at very small times. Nevertheless, it is important to note that the final
steady-state is predicted quite_: accurately by ca.lculétions with time steps varying
over several orders of magnitude. This allows us to interchange large and small
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time steps within a single run, thus accelerating the approach to the final state or
increasing the resolution over a particular time interval.

At this point we reiterate that the global approach to a more-or-less iden-
tical steady-state, irrespective of time step size or number of quadrature points,

implies that our solution scheme is both unusually robust and numerically stable.

'Considering the complexity of the mathematical problem and the transient, three-

dimensional structure of the temperature field, this is a gratifying result.

3.2.b. Représentative Results

The test cases that will be presented in this section demonstrate the effects of
convection and ca‘pilla«rity on the evolution of the solid-liquid interface. The gov-
erning equations constitute an initial/boundary value problem in which the initial
perturbation on the underlying basic state determines the short-time behsvior of
the system. The numerical approximation does not involve a linearization around
the basic stateva,nd thus there is no limitation on the magnitude of the initial per-
turbation. At this point the algorithm is restricted to interface shapes z = ((r, t)
that are single-valued functions of 'the radial coordinate r. (In simple tefms, we
are currently “counting” the surface élements that are located at the same radial
coordinate r only once.) The-formulation can be generalized by im;;lementing a
more general transformation of the surface integral in Eq. (All) to account for
multiple-valued functions of the radial coordinate. This loss of generality does not
affect our results as long as the initial perturbations are sufficiently smooth func-

tions of the radial coordinate. In testing the algorithm and in examining the effects
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of surfa‘cv.e tension and convection on the temporal and spatial evolu.tion of the in-
terface, we have chosen to use the zero-surface tension steady-state solutions as our
initial conditions. These paraboloidal solutions (Ivantsov or “convecti(ze”-), derived
in Chapter 2, represent single-valued, long-wavelength perturbations on the under-

lying basic states with finite surface tension and can be used effectively in studying

the role of surface tension.

The role of surface tension in the dynamics of the interface evolution is very
important. In the zero surface tension limit and in the absence of flow, any pertur-
bation, however weak, destabilizes the interface and in very short times tip ;splitting
occurs with the tip region splitting into an increasing number of growing fingers.
Tip spiitting is characterized by the superposition of interface perturbations with
an infinite spectrum of wavelengths. While the short énd of the wavelength spec-
trum can only be represented by multiple-valued fﬁnctions of the radial position,
the long end of the spectrum is characterized by smoother, essentially single-valued,
functions of the radial position. The quantitative validity of the calculations is cur-
rently restricted to single-valued interface shape functions and thus the growth of
very short wavelength perturbations must be excluded. However, long-wavelength
perturbations satisfy the single-valuedness requirement up to sufficiently long times
and can be used effectively to study 'the dynamics of the interface. Isolated sur-
face protrusions, smooth perturbations, and random noise were used to show that
destabilization via tip splitting occurs invariably in the zero-surface-tension limit.

Figure 10 demonstrates the effect of an interface perturbation on the stability of

- the interface. The initially smooth perturbation, centered at the tip, destabilized

the interface into an increasing number of growing fingers. The qualitative features
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of the interface destabilization were found to be independent of the amplitude or
the structure of the externally imposed perturbation. Tip splitting was identified
under a wide range of Péclet numbers (from 107° to 10) and flow strengths (from
A=0toA=1).

The fast convergence of the algorithm was demonstrated in the previous sec-
tion. While the interface shape is generally independent of the number of interface
discretization points for non-zero values of v, it becomes strongly dependent at
the limit of zero surface tension. This peculiar behavior stems from the special
characteristics of the tip splitting mechanism and is backed by Langer’s theoreti-
cal analysis of Ivantsov’s solution [15]. Short wavelength perturbations grow faster
and eventually dominate the interface shape. As a result, the Qavelength of the
fastest-growing mode is constrained by the spacing between adjacent points on the
discretized interfaée. In the theoretical limit of the continuous interface, the fastest
growing component of the spectrum corresponds to wavelength zero and the result-
ing interface shape resembles a growing “band”. Although the calculated interface
shapes are strongiy dependent on the spatia} discretization, is important to note
that for a given grid spacing the resulting growth velocities are independent of the
sfructuré and magnitude of the initial perturbation.

The most striking result of the c.omputations thus far has been the fact that
small amounts of isotropic surface tension stabilize the interface. The forced per-
turbation on the interface shape at t = 0 does not lead to interface destabilization
as in the zero-surface-tension case. As Figs. 11-12» indicate, finite surface tension
stabilizes the perturbed interface when no flow is present. The perturbation growth
velocity é(r,t), plotted vs the radial interface position for different times, finally
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reaches a time-independent, spatially-uniform value, thus indicating that a steady-
state has been reached. The newsteady-state is characterized by a constant interface
velocity 2 + ¢ that is smaller thaﬁ that of the corresponding zero-surface-tension
state.* |

In the initial stage of the interface evolution (i.e., ajﬁproximately t < 0.3), the

perturbation velocity { increases with time and reaches a maximum value that varies

~-along the interface. The stabilizing effect of capillarity is evident in Figs. 11-12.

For v = 0.020, the perturbation velocity reaches a maximum value of about 20% of
the corresponding zero-surfaée-tension value of 2 (see Egs. (3.2) and (3.6) for the
scaling of the freezing velocity). The growth of the perturbation is much slower in
thé case of a smaller surface-tension-parameter, i.e. v = 0.001. Figure 12 shows that
the maximum value of the perturbation velocity ¢ is about 40 times smaller than
that of the previou‘s case. The magnitude of the capillary term in the evolution
equation dictates the degree of interface rearrangement toward the new sfeady-
state shape. As surface tenSidn increases, the difference between the initial zero-
surface-tension and the new ﬁnite—sﬁrfaceftens_ion states also increases and “faster”
transition is required. This explains the strong dependence of the growth velocity
on the surface-tension parameter v during the early stage of evolution.

The zero-surface-tension case is'characterized by interface instability via tip
splitting. Irrespective of structure or magnitude, perturbations seem _to. focus on
the tip and unstable fingers replace the paraboloidal tip. In the case of finite

surface tension, however, tip splitting is absent and the maximum perturbation

* The underlying basic state for ¢ < 0 is the zero-surface-tension steady-state
solution, derived in Chapter 2. Att = 0, the surface tension becomes finite; this
corresponds to imposing an interface perturbation, since the interface shape
must conform to the new value of the surface-tension parameter.
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velocity occurs at about one tip radius away from the tip (see Fig. 11). Given
that interface instabilities concentrate on the tip, this result indicates that surface
tension stabilizes the interface by “dissipating” the disturbance away from the tip.
As time elapses and the perturbation decays away from the tip, a slower phase
of evolution sets in. The interface velocity becomes increasingly uniform and the
velocity maximum moves close to the tip (see Figs. 11-12). At about ¢ = 1 the
perturbation growth velocity changes sign and finally approaches a constant nega-
tive value. The growth velocity 2+ ¢ is thus smaller than that of the corresponding
zero-surface-tension value of 2. The dependence of the total steady-state velocity
on surface tension is rather weak (see Figs. 11-12), but the role of capillarity in the
stabilization of the interface is important. There are two distict effects of surface
tension on the growth velocity in Figs. 11-12:
(i) The initial perturbation is a function of surface tension and thus the acitial
stages of evolution must depend on surface tension. This dependence is evident

for ¢t < 0.3.

(ii) The stabilizing action of capillarity dictates the transition to the new steady-

state and determines the value of the correction to the zero-surface-tension
velocity of 2 as t — oo (since v « 1 for most materials, the new steady-
state interface shape and velocity are almost indistinguishable from those of
the zero-surface-tension case).
Figure 15 shows that the dimensionless time required for the interface to reach its
new steady state is about 5, thus indicating that the choice of the characteristic
time 4a/V? in the scavl‘ing of the governing equations is appropriate (the final time
recorded in each of the Figs. 11-14 represents a relative difference from the new
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steady-state growth Veloéity' of less than 1073). It is worthy of note that a,lthodgh
the steady-state velocity differs only slightly from that of the zero-surfa.ce-tensi011
case, the transition toward this nev& steady-state is rather complex and cannot be
captured by a linearized evolution equation.

Only axisymmetric perturbations have been examined thus far. As a result,
surface-tension anisotropy depends only on the ang1¢ 6 between the interface normal
and the z-axis. We can assume that the anisotropic correction to the surface tension,
defined in Eq. (3.7), is equal to evcos(46), where e represents a measure of the
anistropy of the material and the factor 4 in the argument of the cosine corresponds
to the fourfold ;ymmet1'y of succinonitrile. Figure 15 indicates that in such a case,
the anisotfopic term in the interface evo]utién equation has a negligible effect on the
interface dynamics for € as lafge as unity. However, anisotropy has, by definition,
a three-dimensional nature and the resultingiA interface shapes should, iﬁ general,
be non-axisymmetric. A further discussion of anisotropy and three-dimensional
calculations follows in the next section.

The combined effecfs of convection and capillarity on the interface velocity are
shown in Figs. 13-14. For given supercooling A and flow strength A, the zero-'
surface-tension solution, derived in Chapter 2, defines the underlying basic state for
t < 0. At t = 0, v changes value and thus a surface-tension dependent perturbation
_ is imposed on the interface. The transient response of the interface varies with A,
but the interface invariably reaches a new steady-state. Figures 13 and 14 show the
interface velocity as a function of the radial position at different times for A = 0.1
and A = 1.0, respectively. In comparing Figs. 13-14 with the corresponding Fig.
12 for A = 0.0 (v = 0.001 and Pe = 1), it i; important to note that eaéh figure
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corresponds to a different sﬁpercooling A, given by Eq. (2.20). Since the level of
supercooling, and not the Péclet number, is controlled by the experimentalist, Fig.
6 can be used to obtain the correct A for given Pe and A\. However, for A <1
the differences are small and a constant Péclet number can be used. Furthermore,
the flow strength A = U,,/V depends on the scale factor for the freezing velocity,
V. Since the actual velocity-tip radius relation is still unknown, V' must be kept
constant if one is to compare interface speeds corresponding to different levels of
convection.

As in the A = 0 case, the interface is quickly reshaped to conform to the
new value of surface tension. The qualitative characteristics of interface evolution
remain the same, but the coupling of capillarity and convection produces a more
complex transition toward the new steady-state. Figures 13 (i.e. A = 0.1) and 14
(i.e. A = 1.0) show a perturbation-velocity maximum of about 1.6% and 13.0% of
the corresponding zero-surface-tension value of 2, respectively (the A = 0.0 value is
0.5%). In addition, a comparison of Figs. 12-14 suggests that the “‘dissipation” of
the disturbance away from the tip becomes slqwer as ) increases (note the increasing
number of local velocity maxima in the ¢t = 0.2 curves). This non-linear interaction
of the flow field and the interface disturbance seems to be linked to the orientational
dependence of the interface morphology shown in Fig. 3 (the rigorous analysis of this
phenomenon requires a ¢-dependent flow field and is discussed in a later section).

After the initial reshaping, the interface slowly approaches its new steady-state,
characterized by a negative correction to the zero-surface-tension interface velocity
of 2. Figure 15 shows the decay of the perturbation velocity at the tip toward its
steady-state value. For A = 1.0, ¢(0,¢t = 0.3) and ¢(0,t — o) are equal to 5.5%
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and (7.5%) of the zero-surface-tension steady-state value of 2. For A = 0.1, these
values are about one order of magnitude smaller. As in the case of A = 0.0, the
time required for the interface to reach its new steady-state is approximately 5.

In conclusion, the total steady-state interface velocity decreases monotonically

“with respect to both increasing surface tension and flow strength. However, the cal-

culations for ¥ = 0 suggest that convection does not contribute to the stabilization
of the interface. In the following section some conclusions are drawn and several

ideas for future development are presented.

3.2.c. Conclusions and future work

1. Conclusions
The primary results of this chapter are the following:

(i) A non-linear tracking algorithm, based on the integral transformation of the
transient convective-diffusion equation, has been developed for the study of
complex growth formé. The ability to treat finite amplitude disturbances and
the applicability to arbitrary geometries make this numerical scheme a valuable
tool in the understanding of pattern formation. Analogous formulationé have
been used in the past for the study of dendritic growth and viscous fingering
in Hele-Shaw flow cells [3,4]. The most important differences between this
analysis and the ones preceeding it are:

1. The temporal derivative in the convective-diffusion equation has been ne-
g-lected in previous quasistatic models. Howevr, scaling arguments show
that at large supercoolings thi-s term becomes imprortant and cannot be
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ignored, at the expense of time integrals that are quite cumbersome to

calculate.

o

The study of the convective effects on the interface evolution requires the
calculation of spatial integrals over the entire liquid region, absent from
similar work on diffusion-controlled growth. The algorithm employs a se-
ries of variable transforma'tions and an optimal set of Gaussian quadrature
points that evolves in time so that the temperature field is calculated at
the minimum number of interior points.
3. The interface shape appears in the non-linear kernel of the integral equa- .
tion. Previous efforts to linearize the evolution equation and carry out a
linear stability analysis do not capture the non-linear features of dendritic
growth. Sidebranching and tip splitting can be thought of as results of the
non-lilnea‘r interaction of interface perturbations and capillary forces. The
algorithm presented here applies the Newton’s iteration method to sol\;e
the non-linear evolution equation as a function of time and space. It can
thus be used to address important issues such as the amplification of finite
amplitude noise and the origination of sidebranches.

(ii) The numerical characteristics of the algorithm were tested as a function of the
spatial and the temporal discretization of the interface. Fast convergence was
achieved with a small number of quadrature points. In addition, the solutions
are rather insensitive to the time step used for the discretization of the terﬁ-

_ poral integrals. Finally, in the absence of an externally imposed perturbation,
the algorithm tracks the underlying basic state and numerical noise does not

introduce artificial instabilities.



(iv)

(v)

(vi)

(vii)

The tip was found unstable to finite amplitude perturbations if the effects of
capillarity are ignored. The dominant ‘destabilization mechanism is tip split-
ting. The tip region degenerates into a increasing number of unstable fingers
and interface perturbations of arbitrary amplitude seem to invariably focus
themselves on the tip region. This result, which is indépendent of the flow
strength, represents the first évidence that tip splitting is not restricted to

infinitesimal perturbations.

{

Surface tension, however small, appears to stabilize the crystal interface for any /

flow strength by “dissipating” the disturbance away from the tip. A steady-
state is a;lwaﬁ reached, irrespective of the structure or the magnitude of the
initial perturbation on the interface shape. The growth velocity of the den-
drite decreases with increasing surface tension but the difference from the zero-
surface-tension case is small.

Anisotropy does not appear to have an important effect, qualitatively or quan-

titatively, on the dynamics of the interface. However, fully-three-dimensional

‘(i.e., non-axisymmetric) perturbations will need to be tested before a complete

understanding of the role of anisotropy can be gained.

Convection reduces the total growth velocity of the new steady-state, but does

not seem to contribute to the stabilization of the interface. In the zero-surface-

" tension case, convection does not affect the qualitative features of tip splitting.

(viii)

However, the role of convection in the low supercooling regime needs further
ihvestiga.tion and is discussed later in this section.

The operating i)oint of the dendrite is not estab_liéhed from the non-linear
analysis presented here. However, the results of the analysis call into question
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all those obtained with the linearized theories now extant. Consider, first, the
marginal stability hypothesis. Given the robust stability of shapes investigated
here, it appears that the marginal stability hypothesis is wroﬁg. The surface-
tension adjustéd shapes are found to be stable to finite amplitude perturbations.
Thus, the central feature of marginal stability, a critical value of o, simply does
not exist when surface tenéién is considered in the context of finite amplitude
effects. Second, microscopic solvability appears incomplete, at best. All the
shapes investigated in this work are stable when finite amplitude effects were
considered. Yet one feature of microscopic solvability is that only the fastest
growing, smooth tip is stable. If this conclusion holds when finer resolution
is considered at the tip, then the operating point selection mechanism is even

more subtle than the microscopic solvability would suggest.

2. Future Work

The first extension of this work should be toward the study of three-dimensional

(i.e. non-axisymmetric) interface perturbations. Since the formulation is applicable
to fully three-dimensional systems and since the modification to anisotropic surface
tension is straightforward, this numerical scheme can be used to test the microscopic
solvability theory under the most general conditions of transient interface growth.
The validity of the microscopic solvability theory at ﬁnité times can also be tested
in a difi‘erent way. Instead of prescribing the amount of surface tension and the.
corresponding anisotropy and then examining the slope at the tip, one can do the

opposite: fix the tip slope to be zero and then calculate the time dependencé of
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the capillary parameters. The algorithm requires the solution of a set of non-
linear equations with an équal number of unknowns. A logical choice fér the set of
unknown variables would be the interface shape function ¢ calculated at the various
quadrature points. However, there is no mathematical restricfion :«.Lpplyirng to the
replacement of one or more of these unknowns with an equivalent number of the
physical paraméters of the system. Thereforé, by fixing the slope at the tip, one of
the unk'nowns is effectively ellirnina.ted and a new degree of freedom is introduced in
the physical parameter space. By allowing the amount of surface tension anisotropy
(or, the amount of surface tension itself) to vary, one will be able to monitor the
microscopic solvability condition through time and thus test its validity in transient
dendritic growth.

The accurate calculation éf the slope requires a fine discretization of the tip
area. At the present time a high density of points close to the tip cannot be pre-
scribed without introducing an unnecessarily large nﬁmber of discretization points
in the radial direction. This stems from the nature of the Gaussian quadrature
formulae and the associated fixed distribution of points within a given interval. Fu-
ture refinements of the algorithm should include a éhoice of “specialized” quadrature
schemes in addition to the all-purpose' Gaussian quadrature scheme presented here.
Such flexibility would also speed up computations and reduce storage requirements
in the case of an initial perturbation with a narrow range of wavelengths. Calcu-
lations for long wavelength perturbations require a “larger” domain but make no

use of the increased resolution of the tip region, with the opposite being true for

short-wavelength perturbations localized at the tip.
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Experimental evidence indicates that the effects of convection become impor-
tant at very low supercoolings (A < 0.05) [2]. All the computations, however, were
done at Péclet numbers greater than 0.1 which belong to the “diffusive” regime
(see Chapter 2). The study of convection at lower Péclet npmbers (or supercooling
levels) requires a higher spatial resolution around the tip. In Sec. 3.1.a the length
scale is defined as 2a/V. Using the definition of Péclet number (p = Vp/2a, where
p is the tip radius of curvature), the above scale becomes p/p. For small Péclet
numbers, it is obvious that this length scale is much larger than the tip radius
and the spatial resolution in the tip region is severely decreased. Therefore, at low
Péclet numbers, where convection is expected to play a stronger role, the tip radius
p should be used as the more appropriate length scale near the tip. Also, values of
A greater than unity are poss_ible in the low supercooling regime where the freezihg
velocities are quite small. It thus remains to be seen whether the use of a finer scale
will show that convection qualitatively affects the stability of the freezing interface
at low supercoolings.

Finally, the convective steady-state solution, derived in Chapter 2, applies only
to axisymmetric flow fields, oriented along the z—axis. The_ study of the orientation-
dependent elimination of sidebranches, shown in Fig. 3, requires the use of more
general (i.e non-axisymmetric) flow fields. The integral formulation is not restricted
té axisymmetric flow fields and can thus be used to examine growth subject to an
arbitrary flow field (at the expense of an increaée in the dimensionality of the

equation and in the computation time).
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APPENDIX A:

Derivation of the integral equation

In this appendix we derive the integro-differential equation that describes the
evolution of the dendritic interface. The transient convective-diffusion equation is

first written in differential form:
=0, (Ala)

where X = (£,9,%) = (¥, %) = (¥, , £), a is the thermal diffusivity and V1, is the
constant velocity of the moving coordinate system. The hydrodynamic velocity field
v satisfies the no-slip condition on the interface and is zero in the solid. Under the
assumptions of the ';\\*o-sided model proposed by Langer [1], the thermal diffusivities
and the densities of the two phases are considered coustant. We scale lengths with

2a/V and times with 4a/V?:

oT aT
oL VT -V2T -22 =, Alb
ot T2AY x 0z 0 (410)

where A = Uoo/V is the ratio of the characteristic fluid velocity scale to the velocity
of the coordinate system and T = (T — Teo)cp/L. The temperature field vanishes

as z — oo and is also constant as z — —o0:

lim T(x,t) — constant. (Alc)

Z—3 00

The temperature also satisfies the thermodynamic boundary condition

Tr=A- VIC{((r, 1)} (Ald)
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with A = (Ta — Too)ep/L and v = doV/2a; K is the dimensionless curvature.

Finally, heat conservation at the interface reqﬁires that
it - VaTiquia) — i - VaT(sotiay = — [2 + ((r, )] A - 1.0 (Ale)

We now introduce the fundamental solution G(x,x';t — t') of the transient

diffusion equation in an unbounded domain; in the moving coordinate system, it is

defined by

oG oG ' '
—aT—V G — QF——é(x—x)é(t—t). (A2)

and G(x,x';t—t') =0 for t < t'. The fundamental solution (or Green’s function )

1s

. n_ H@=t) f r=rP 4= +20t-t)]
G(X,X,t—t)—mehp{— 4(t—t') }, (A3)

where H(t —1t') is Heaviside’s step function (1]. By taking the Fourier transform of

Eq. (A2), Langer [1] derived the following integral representation of G(x, x';t —t'):

dk etw(t t")4ik-(x—x")
G(x,x'st ~ ') = / S (A4)

Following the notation of Caroli et al. [2], we define: t— = limc—o+ (t — ¢). Then
G(x,x';t—t_) = é(x — x'). (A5)

Let k = q + k.i,. Eq. (A4) then becomes [2]
G(x,x;t—-t') = /:: %ei“’("") _ | (A6)

dq . iQ'(r—r')

(2,”)2 @) —1] exp(—{z = 2'+ |z = 2'|[m(q,w) — 1]}) , |

73



where

m(g,w) =1+ (1 +iw+ ) (A7)

with Re(1 +iw + ¢%)¥ > 0.
We now multiply Eqs. (Alb) and (A2) with G(x,x';t — t') and T(x',t'), re-

spectively, add and integrate in time and space:

t. oo LY tog ¢
/ dt'/dr'/ dZ’{G(x,xl;t—t,)?'z%?,t_)'*'T(x',tl)aG(x’;t;t t)}+

- oo
/ dt'/dr'/ dz' {~G(x,x';t —t"\VLT(xX',t') + T(x',t) V2 G(x,x";t — t')} +
' togp _
/ dt’/dr/ dz{ —2G(x,x';t - )aTgx,t) 2T (x’,t’)aG(x’;z’,t t)}+

/ dt’/ dr’/ dz"2) G(x,x";t —t")yv(x',t") - Vo T(x',t') =0, (A8)
—oo C(r'at') ’

where the lower limit for the 2’ integration in the last term is ((r',#') since the
velocity v is zero for z' < ((r',t').
By grouping similar derivatives together and applying Green’s 2nd theorem to

the second term in the left-hand-side of Eq. (A8) we get

t_ oo a
/ dt'/dr'/ dz'a,—[G(x,x';t— tT(x',t")] +

-
/ dt'/dI"ﬁ' . [G(x,xr'(r',t');t -t )\VuT(X,t)

—oo .

—T(x, )V G(x, xr' (1, '); t — t')] -

Copto (=] 0
/ dt'/dr'/ dz'2— [G(x,x';t — ') T(x',t')] +

—c0 oo 0z

- oo

/ dt'/ dr'/ dz'2) G(x,x";t =) v(x',t') - Vo T(x',¢') =0. (A9)

~00 ¢(r' )
The second term represeﬁts integration over a surface enclosing the interface and

placed at an infitesimal distance from it.
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Next the 2’ integration in the third term of Eq. (A9) is performed so that the

term becomes

t_
—2/ dt'/ dr'[ lim G(x;r',z;;t — )T (x', 2,1)
—co 73 —00

- lim G(x;r', zl,t—t)T(r zl,t)]

Z}—=—00

From Eq. (Alc) we know that the temperature as z — oo is zero and thus the first
term in the above expression vanishes. The temperature reaches a constant value

at z — —oco and can be taken out of the integral sign so the remaining integral is

t-
/ dt' [ dr' lim G(x;r',z;;t—1t').

27 —00

Using Eq. (A7) and the fact that lim.—o+ G(x,x';—c) = 0, the integral can be

written as
11 dt dr' d"" aw(t -1') dq eié;-(r—r')_(,_zl)[2—rn(q,w)] _
11_1{100 : (271')2 2[m(q,w) — 1] -

Thus, the third term in Eq. (A9) does not survive even if the the temperature at
negative infinity is non-zero.

We can now perform the time integration in the first term of Eq. (A9):

/dr’/ dz' [G(x, x'it—t )T (x',t-) — . lim {G(x,x';t—t)T(x',t')}].

With the help of Eq. (A5) and of the fact that limy_,_o, G(x,x';t = t') = 0, this
integral becomes

| / dx'6(x — X)T(x',t_) = T(x,8), (A10)
where ¢_ has been replaced by t since the temperature is a continuous function of
time.
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Returning to Eq. (A9), we find

T(x,t) =
t_
/ dt'/ dr'i’ - [G(x,xr’(r’,t');t—t')Vx:T(x',t')
- T(x', ')V G(x,xp'(r',t'); t — t’)] +

1 e}
/ dt'/ dr'/ d2"2A G(x,x";t — t')v(x', t') - Vo T(x', t'). (A11)
—oo ¢(r',t")

Since the domain € is infinite, we assume that it is bounded by a surface that has
been removed to infinity. Langer [1] has shown that in the absence of external fluxes,
the contribution of this outer surface to the second term of Eq. (A11) is zero. We
thus restrict our attention to the crystal-melt interfa‘ce I'. The surface integral in Eq.
(A11) contains the boundary values of the temperature and its normal derivative
and the continuity of the temperature implies that the term proportional to the
gradient of the Green’s function cancels out. We can now evaluate the remaining

term, proportional to the normal component of the temperature gradient, using Eq.

(Ale):

T(x,t) = /_t—dt'/dr’ [2+<'(r',t')] G(x,xr'('); t — ')

t (=]
- 2/\/ dt' dr’/ d2'G(x,x';t = t') v(x', t') - Vo T(X', t'), (A12)
o ¢(e,t")

since for single-valued z = ((r, t) it is true that
in-i,dl' =dr =rdrde.

Equation (A12) is the integral equivalent of the transient convective-diffusion
equation in the moving coordinate system. In the case of a steadily propagating

76



interface, i.e. with a uniform velocity equal to that of the coordinate system, Eq.
(A12) reduces to the steady-state equation
| : )

T(x) = 2/dr'G”(x,xr') - 2/\/dr' /c(r') dz'Ges(%,X') v(X') - Ve T(x'). (A13)
Here G,,(x,x’) represents the Green’s function that corresponds to steady diffusion
in the moving coordinate system and is given by

. | L | |
G,s(x,x') = / dt' G(x,x',t — t'). - (A14)
—oo ,

The integral equation that corresponds to the oné-sided model is identical to

Eq. (A12) at the limit of zero-surface-tensic;n since there ig no flux through the
isothermal solid. In the presence of surface tension, the convective effects are rep-
resented by a terrﬁ identical to that of Eq. (A13). On the other hand, the diffusive
- cohtribution_gg with the one sided model is different since heat cannot flow through
the solid (as = 0). The derivation of the corresponding “diffusion” term has been

presented by Caroli et al. [2].
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APPENDIX B: Temporal discretization

In this appendix the time discretization of the integral evolution equations

(3.14-3.15) is described.

Tr = A — vK{¢(r, 1)} = /_ :dt’ / dr’ [2 + c'(r',t')] G(xr(t), xr (')t — t')

[ o0
-—2)\/ dt'/dr'/ dz'G(xr(t),x";t = t') v(x',t') - VLT (x',t"), (B1)
—oo. ¢(r',t')

o
V,T(x,) = / dt' / dr' [2+<(r',t')] V.G(x,xc (#); ¢ = t')
: t. (=<}
—2/\/ dt'/ dr'/ dz'V,G(x,x';t = t') v(x',t') -V, T(x',t'). (B2)
. —oo C(l",t’)
From ¢t = —oo to t = ty, the interface shape, the temperature field, and the flow
fieic! are represented by steady-state solutions denoted by the sul:script (0)- At time
t =t a perturbation on either the interface shape, or the temperature field, or other
boﬁndary»conditions causes deviation from the steady-state; the time integrals in
Egs. (B1-B2) can then be split in two parts:
to ) .
To= & - vk(S(r,0) = [ ¥ [ ' 2 Gxn(e),xelo (¢t~ ¥)
t- »
+/ dt'/dr’ [2+C(r',t')] G(xr(t), xf' (t'); ¢ — t')
to . .
to oo
-2 dt’/ dr'/ dz'G(xr(t),x";t — t') vo(x') - VLT (x')
~o0 ¢o(r’)

to oo
—2/\/ dt'/ dr'/ d2'G(xp(t),x";t - t') v(x',t') -VLT(x',t'), (B3)
to C(rlyt,)

to
V,T(x,t):/ dt’/dr'zv,G(x,xr'o(t');t—t')
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+ / dt'/ 2+((r t)] V.G(x,xr (t');t —t')
—2X / dt'/dr/ szG(xxt—t)v(’) V'To(x)
Co(r’) .
—2,\/ dt'/dr'/ d2'V.G(x,x';t - t') v(x', ') -V, T(x',t'). (B4)
to ¢(r',t") .
Let r =ty —t' and
xr(r,tn)=x(r,((r,tn)) = xn(r), . n=0,1,...,N.

The first integral in Eq. (B3) becomes

/ /dr'QG(xN,xo'ﬁ)
tn—to '
1 —|xN — x0'|?
[ arfa ey _lm_xgl__,._@,m},
—to 4(n7)? 4T

where
xN—xn'|2=lr—r'|2+(CN—C,'1)2, n=0,1,...,N,
and
(r'stn) = (1,
Let «
W= |XN_—XOI and wy = ___IXN—XO I
2V7T 2v/N At
Then
. ! wN _ I2
I =/drlexP{ CN(r +Co(r)}/ dw exp w? — |xn ;(0 |
7% |xn — Xo'| 4w
- [ sl o),
47 |XN — Xo|

Wiy

XN — Xo' XN — Xo'|
X [exp |xn — Xo'| erf (w + |l2;__0_|) + exp {— |xNn — Xo'|} erf (w - lT)]

0
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Finally
ex n(r) + Go(r' : -
PY L = /d r 2P {47rC|x1(\: )_ Xo?l( )} —2sinh |[xN — Xo'| + exp |xn — X0o| (B3)
x erf I XN — X0 1 JRVA to] +exp{— XN — Xo I} erf IXN/ = I tN —to] .
2Vin — 1o 2VtN —
ot The second integral in Eq. (B3) becomes:
tny~to .
I = / dr/dr' {2+c'(r',t')] G(xn,Xn'5 7)
0 : ‘ ,
o [ Srfod
in—1g 2+<(r,t1\7—7)] _ __vfz ; ! ,t _ 2
e v [P o) - ety = r) 2
0o . (477)? ' 4T
o We now discretize the time domain [0,tn — to] in N intervals [(N —n)At, (N —n+
1)At], n=1,2,...,N. The value n = 0 corresponds to 7 = NAt = ty, or, t' = ¢,
, (initial time), whereas n=N corresponds to 7 = 0, or, t' = t5 (final time.) Quan-
® tities, such as the interface location ((r,t), the temperature T(x,t), and the flow
velocity v(x,t), are considered constant over each interval and equal to the values
corresponding to the end of the time interval. The integral now becomes a sum of -
®

N integrals and the time integration can be performed analytically:

N (N—n41)At | 2 + (n(r ) { lr _ l’"2 + [CN(I') _ Cn(r,) + 27’]2 }
, I = dr [ ar 2t _
® | . n; /(N—n>At T/ ' (477)? or 4r

N
= Z: /dr' [2 + (j,,(r’)] exp {—(n(r) + (a(r")} x

(N—-n+1)At _ 112 ! 2
< dfsexp{_"‘N xu'[* + (Cv = ¢2) _T}_
(

® N-n)At (477)? 4t
Again, let
. W= IxN — Xn | and WN _ IxN — xn'l
® BN " 2 /(N —n)At
\.
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Then

S / i 24 Ca(e)] TR H GO

) o |xN — Xn'|

WN-n41 x _ 12
X / dwexp { —w® — I—N—%{ﬂl— .
WN —n 4w
The integration in w finally yields '

I, = /dr 2 + Ca(r ] exp {—(n(r) + ¢a(r')}

87 |XN — Xn'|

X {exp lxﬁ - Xn'| (erf [ XN — Xa | + V(N - n)At]

. n=1

2v/(N — n)At

. lXN—Xn'l ]
ferf[2\/(N_n+1)At+¢(N—n+1)4t-> (B6)
_erf[ X — X )}

[ 2/(N —n+1)At

We now follow the same procedure for the evaluation of the domain integrals

, N -xe] ]
+exp {— |xn — xn'|} <erf [QM - V(N - n)AtJ

— V(N —n+1)At

in Eq. (B3)

I =- 2/\/ dr/dr'/‘ dz'G(xp(t),x';t — t') vo(x') - V. To(x')
tn—to Co(r’)

o0 oo ' Y '
=—/\/ dr/dr'/ dz 3_exp{—lﬁﬁz——x—l———r—(N+z'}v0(x')-V;To(x').
' tN—to - Jo(r) 4(7T)? T »

Let

_ Xy = X
Y " 2YNAt

Then

coafa [7 ayeRiin@ ) T
L= A/d /Co(rl) vo(x') - V. Ty (x')

7'r2 IXN_— X‘l

“n xN — x'|?
X dwexp{—wz—ll——l—}.

2
0 4%
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The integration in w gives

I; = -—/\/dr"/ ( )dzlexp{_CN(r) + 2 } vo(x') 'V;TQ(X’)
Co(r’

® 47 |xn — X'|
—2sinh [xn — X’ —x[yert [PNZX]
X { sinh |xn — x| + exp {|xn — x'|} er [2m+ N —to
. + exp {— |xn — x'|} erf [zlx\;;—x._-___% —Vin —to]}. (B7)

The second domain integral in Eq. (B3) becomes with 7 =ty — ¢

I=—2A/ /dr/c(rtl)de(xr()xt—t) v(x',t") -V, T(x',t)

o ty—to - 2 )
= —-,\/ dT/dr/ expd PN =XV b ) VLT, £,
¢(r, 1) 4(71’7' At

We now apply the time discretization (see Eq. (B6)) and we re-introduce the

P variable transformation
IxN_xlandwN _ |xn — x'|
2T "7 2/([N —n)At
._*" Then
o :

.
- - oo Iexp{ CN(P)-E-Z'} n .o '
I = A;_:/d /nmd Va(x') -V To (')

7% |xn — X'|

- . 12
WN-n+41 d 2 |xN Y |
. X Wwexp § —w" — -4—2 .
. WN~-n w

The integration in w gives:

N 0o .
' ' exP{ CN(r) l zl} ' ' '
— — n V' T,
I, = A;l/dr /"(,,)dz I 0 Va(x') -V To(x')

L '
. : x{exp {|xn — x'|} (erf [2 XN — i)lAt + V(N - n)At]

(N -

|xn — x'|

° ~e [2\/(1\7 Tn+ DAt

+ exp {— |xn — X'} (erf [2 xn — x| - V(N - n)At]

+ V(N —n+1)At

) o
V(N —n)At
° | —erf[ xn — X —ﬁN-n+1)At]>}.'

2/(N —n+1)At
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The discretized (in time) equivalent of Eq. (B3) is now
Tr=A-vK{{(r,t)} =L+ L+ 1+ 14 (B9)

where the integrals (I; — I) are shown in Egs. (B5-B8). The calculation of the
interface shape at time ¢ = ¢y, as represented by ( ~n(r) (or, xn,) requires the prior
knowledge of the temperature gradlent field in the mterlor of the domain, V,T'(x, t).
We shall use Eq. (B4) to evaluate the temperature gradient; our methodology will
be similar to that applied to Eq. (B3). |

We again ciiscretize the time domain in N intervals and the interface location

¢(r,t), the temperature T(x,t), and the flow velocity v(x,t) are considered con-

- stant over each interval. However, now these are considered equal to the values

corresponding to the beginning of the time interval. This allows us to calculate
the temperature gradient at time ¢ty (LHS) from quantities already calculated in
previous tiine steps (RHS).

The first integral in Eq. (B4) becomes, after the transformation 7 = ty — t':

H1=/ /dr2V G(x,xq'; )
tn—to

— — ' 2 .
=/ d‘r/dr' ! =V, |exp ML—T—Z-}-COI}
tn—to 4(mT)?2 ar

Instead of performing the differentiation in the spatial variables first and then inte-

grating in time, we use the result of the time integration in I; (see Eq. (B5)) and
then differentiate (we first have to replace xn with x since the (H) integrals refer

to interior points):

H = /dr'{ ~A+(B-4) (Ix_z——%.:li)} i+

(B — A) (—’—cf-"i>l} (B10)
|x — xo'[?
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where
exp{—z + (o (r')} : |x — xo’|
A= p|x — f Vin —
yEy——T exp |x — Xo'| er 5 ,___N_to—{- N—to
_ !
+exp {— |x — xo'|} erf [M —Vin — to] — 2sinh|x — xo'|}
2Vin — 1o

and

= 4%‘: €exXp {_Z + Col(r')} [_2 cosh lx _ xOI[ .

+exp|x'—-xo'|erf QIT/U\—YX_?—L'*'VtN-to]—eXP{ |x — xo|}

|x — xo| ] 2 |x — xo'|®
xXerf | ———=— Viny — | + ——=—=ex —_— i+t .
2Vin — to N 0 W(tN—tg) P 4(tN_t0) N 0 '

The second integral in Eq. (B4) is

dv—to - .
H2 = / dT/ dI', [2 + C(rl,t’)] VIG(X’ xn'; T)
0

=/t" todr/dr 2+ et =)

47r7')%

V. [exp { —fe— 2+ [z — ¢(v', tn — 1) + 27] }] |

4T

We now discretize in time and use Eq. (B6); again, we change xn to x since x € §2.
The cruciél difference from I, is that here the quantities in the RHS are all known

from previous steps:

-

HQ_Z/dr [2+ ams ()] {[ n-1t

(Dms = Cocr) [ 282 |4 (Do = G} T2 ) i} (1)
|x — Xp-1| X = Xn-1']”
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7

o

where

o ep{ztln)
n-l 87 |x — Xp—1'|

X {exp |x — xp-1'| (erf 5

|X— Xn_lll

(N —n)At

—orf X = Xn-1'| —
[2\/]\7 +1)At+\,/(N +1)At])

+ V(N —n)At

' ' |x— xn—lll
-+ exp{—|x—xn-1'|} (erf [2\/(—N_—T)_A—t - V(N - n)At]
— (;r [~ Xn-1] - -n
f[z\/(N'—nH V(N +1)AtD}

and
Day = —exp | )
n—1— 87 exp _Z+Cn—l(r X
! [X Xn— 1’
X €exp|x —Xn-1'| | erl +\/
' (N —-n)A
|X Xn- 1
—erf : + -n+1)At
[2\/ —n+1 ViN=n )
Ix — Xp-1'| :
—exp{—|x —xnp_1' { — (N = n)At
p{= I~ xn-al) ( [2 e V)
|x — Xp—1'|
- N - 1)At
AN —nT At - V- )

2 o liext
¥ (N —n)At p{ 4(N —n)At (N n)At}
2 . lx_xn— 1|2
- \/”(N—Tl'i'1)Z?exp{—4(N—n+11)At —(N—n+1)At}}.

The same procedure is followed for the domain integrals in Eq. (B4). The first

domain integral becomes for 7 =ty — t':

oo o0 .
H; = —2)\/ dr/ dr'/ dz'V.G(x,x';t = t') vo(x') -V, To(x')
~to Co(r')
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[\J12]

= —/\/ dT/drI/ dZ' ! Vo(xl) 'V;To()(')
tn—to Go(r')  4(7T)

[x — x'|” '
exp —-T——-T—-z-}—z .

We now use the result of the time integration in I3 (see Eq. (B7)), after we replace

x V.,

xn with x, since x € Q:

Hy = -2 / dr’ /C  4lx) VD) (B12)
o(r’

{ _E+(F-E) (%)] i.+(F~E) ("—_"'ﬂs-}'i) 1}
|x — x| |x - x'|* /.

where
exp {2z +2'} { ' Ix — x|
FE = - f| ——=+ VIn -t
47 |x — x| exp [x — x'[er 2Vtn — 1o Vi =t
- [
+exp {—|x - x|} erf [25{—51_% - Vin — to} — 2sinh|x - x/,}
and

F = 4—1—exp {-z+2"} [—2cosh Ix — x'
T

+explx =l rf | ;B EL 4 VT - exp (- Ix - %)

: [x — x'| ] 2 [x — x'|
xerf | ——=—=—-Vin—to| + ——=——=——=exp{—————~-tin+to¢|.
[2\/t~ ~t N T T fam—to) T\ n—tg) T
The second domain integral in Eq. (B3) becomes for 7 =ty — ¢t

tn—to [e <]
Hy= —-2)/ dT/ dr’/ dz'V.G(x,x';t —t') v(x',t') -V.T(x', t')
¢(e',t)

'N—to dzl
=—,\/ /dr/ 9, t) VLT, ¢
0 ¢ty mF |x — X!|

2
x V, [exp{—-li%—r—z+z'}]
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We now discretize in time and use Eq. (B8) (after we change xn to x, since x € §2).
Once again, the basic difference from I, is that here the quantities in the RHS are

all known from previous steps:
N, e _
H,= —)\Z/dr'/ dz' Vo1 (x') -V Tpoy (x) { [—Qn_1+
n=1 gn-l(r’)

+ (Rn=1 — Qn-1) (ﬁ)} i; 4+ (Rnci — Qno1) (LI;Z%IS;D) 1} (B13)

where

exp{—z+2'}
4 |x ~ x'|

* {exp IX — x| (erf [2 L’;V__X;I)At + V(N - n)At] '

Qn-—l =

and

R, = 4—ﬂ_exp{—z+z’} X

X {éxp{lx— x'|} (erf [ Ix — x| + V(N - n)At}

2V/(N —n)At

Ix = x| '
—erf [2\/(N—n+l)At +\/(N—n+l)At]>

| | : x — x|
—exp{—|x—x'|} (erf [m - V(N - n)At}

__x-xl __ woa
_erf[z\/('N-nﬁ)At Vi fl)AtD
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2 Ix — x'|?
+ exp{ ———————— — (N —n)At
m(N —n)At P { 4(N = n)At ( n) }

x - x|’
VTN —nt DAL T {_4(1\’ -n+1)At (W ~n+ I)At} }

Q)

So the discretized equivalent of Eq. (B4) is now:

V.T(x,t) = H + Hy+ H; + H, (B14)

with the integrals (H, — Hy4) shown in Eqs. (B9-B12.)
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APPENDIX C:

SPATIAL DISCRETIZATION

This appendix contains the discretized equivalent of the spatial integrals de-
rived in Appendix B. The coordinate transformations and the quadrature formulae

‘that were employed can be found in Sec. 3.1.b.

N e 21—1m
; ; 2N, N ( 2N, 5)
o exp{—(n(r;) + Co(ri)}
\/(\/m-F Yir,N) (Vain = Bi + Yir,N)

{ —2sinh(¥ik,n) + exp{¢ix,n } erf [ ://I'Jt_ri— * ]

+exp{—¢,-k,N}erf[2‘¢’/’%- NA}]}, (c1)

where

ain =r1] 417+ [(n(r) = G(r)] and Bi = 2rir,

b = Vs (V- Vo (2

’ N Nr' N, pr . % — 17
h=Y 03 g, 2+ G (5%3)
exp{— CN(rJ) + Cn("t)}

\[\/a. N—n+ Bi + Yix N—n) V@i N-n ﬂ. + 1/»‘:1: N-n
X {eXAP{'ll’ik,N_n} [erf (2\/1/)‘;\;‘# )At)
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o\

Vit N—n
~ erf : + V(N -—n+1)At
er (2\/ = \/( n ) )

(N=-n+1)At
}, (€2)

Yik,N=n - .
+ exp{tix. N—n} |erf : — N —n) At
p{tik.n }[ (2 TS ( ) )

—erf( Yik N —\/ -—n+1At>

2/(N —n+1) At

where

@i N-n =1+ 72+ [Cn(r;) = Ca(r))?  and B; = 2ryrj,

Yik,N-n = VainN — Bi + [\/ai,N—n +Bi = Vi N-n 'B‘] cos ( ;]\7 ;) '

’\i%i pr? tan 2i—1m tan(2m—11
P 4(1 + A)N.N, N, 2N, 2 2N, 2

i=1 k=1 m=1
§ exp{—(N(Tj) + Co(ri) — 11)!(‘1-1-":\)}
V (Vaimn + B + YimieN) (Vim N = B + Yimi N)
{—2 sinh(®imk, N) ’+ exp{tim,n erf ;\'/';#V_ t ] ()

+ exp{— 1/),mk ~ yerf [2% NAt]} X

o= o= a0 - gy )| [om (v = a0 - 555

where

Aném)

Qim N = T? + 7'? + [CN(rJ) <0( ) t 5o 2(1 + ,\)

Bi = 2rirj,

2k—-1m
. R .. ; — 3: . ; . .. r — f3: 2 - .
¢1mk,1\ Qim,N ,Bl + [\/atm,l\ + .B: \/atm,l\ ,Bl] cos ( 2N¢ 2)
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*EA:ZEL\Y prt tan(zi—1£>tan(2m_1”
n=1 1=1 k=1 m=1 4 1+ A AT J\T N 2]\77‘ 2 2Nz 2

exp{—Cn(rj) + a(rs) — em))
\/(\/a'im,N—n + Bi + ¢imk,]\"—n) (\/a'im,}\’-n - Bi + 1»["imk:,l\"—n)

X {exp{-z/;;mk,N_n} lierf’( Vimk,N-—n + V(N —n) At )

X

(N-n)A

: 'wimk,N—n
'—erf(Z\/(N-n—l-l)At+\/(N—n+l)At)}
+ exp{z/),-mk,N_,,} [erf < Yimk,N—n — V(N =n) At) (C4)

2y/(N —n) At

‘ Yimk,N—n _ —
(57 )| -

: : N -—n+1)At
[v,, ( =it = Galr) — 5 (l(im;))] . [v;:r,, (r' = i = Calri) QEﬁ(imj))] |

where

2
Qim,N—n = 7‘? + 7'? + [CN(rj) ~Gnlre) + 21(11(-6:/3)}

Bi = 2rir,

¢imk,N—-n = \/aim,N—n - ﬂi +

- - ~ — 9 (2k -1 .l
[\/azm,N-—n + Bz \/atm,N—n ﬁz] CO% ( 2N‘p 9 .

The vector integrals (H; — Hy), that correspond to the gradient of the temper-
ature field in the interior of the domain, are dotted into the flow velocity v(x',t')

to give the following discretized equivalents:

ﬁ‘i% pT__, 2;1—1£>
1 oN, N, "\ 2N, 2

u=1rv=l
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exp{~Cn(ri) + Colr) + Jed)

\/(V Yu,N + B+ Oy, N) ( Yu,N = Bu + 6y, N
. B

- ‘i . ln('fm)
—A+ Boo (CN(H) —Go(ru) = m)}

B — /i (7;1,1\’ - 942;1/,1\’)
+ v, e TP — o , (Cb)
where
2 2 In({m) 2
YuN=T,+1ri + (n(ri) — Colry) — m )

BP = 27’,{",‘,

; | 2v—-1m
ol-lu,N = \/')’,u,N - ﬂp + [\/’)/p,N + B# - ﬁ’#,N - ﬂ”] COS2 ( —_ ).
. 2]\“p 2

The quantities A, A, and B are given by

A= {exp{eﬂu,w} erf [2\/"—]\—— + \/_—]

0 v,N / .
+ e_xp {—9#,,,]\7} erf [2\/#—]?_5 - VN At} — 2sinh (e;w,N)},

A= 2 {exp{e,w,N}erf[ L/ +\/N ]

euu,N 2VN A
. 0, N .
+exp {—6,, n} e [ﬁ - \/NAt} — 2sinh (0,“,,1\;)},

and

B= [—2 cosh (uv,N) + exp{6,u,n} erf [2\;‘& +VNA ] — exp {~6,u,n}

_ e;w,N

Ouv.N ——-—2 ex ———2 -
xerf[2 AT NAtJ+ '_—_w(NAt) P{ (N 67 NAt}].

The velocity components v, and v. are evaluated at r = r; and z = (N (r;) — %’('—;i—":\-))-
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Zisz '(gN 2)[2“" (r)]

o=1 u=1rv=1

exp{—(n(ri) + Co-1(ry) + ;?ii'l)}
\/(\/7;1 N—o+1 T ﬂu + 0;11/ N-— ¢7+1) (\/7;4,N—0+1 /3;1 + euu N—a+1)

X {vz [—C‘a_l + Doy —C,_ ((N(r,) _Ca_l(r )= In(ém) )]

apu N—a+l 2(1 + ’\)
ba—l - éa—-l (’Yu,N—a+1 - 9;2;./ N—a+1) ’ |
+ Vr Ty — ? [} 06
9uu,N—¢7+l [ - 2r; ( )
where
9 2 ln(Em) 2
Yu,N—ot1 =Ty + 17 + [{n(ri) = Co—1(ry) — R

,3,, = 27‘,,1‘,',

egu,h’;o+l = \/’7’;1,N—a+l - ,Bp +

A — v—-1n7x
[\/7#,N—0+1 + ﬂy - \/7’#,N-a+1 - ,3,,] cos? ( 2N4p 5) N

The quantities C’a_l, C’a_], and D,_; are given by

o 0 v,N—o+1 : :
Coq1 = xp{6,, N—o { LY + V(N — o)At
1 {ekp{; ,NA +1}<er [2 (N-—a)At ( f’) ]

9uN—é+1' S
—erf b /(N — 1At
. [2\/(N—a+1)At+\/( o+1)

)
)

1 ’ 6 v, N—o+1
= — 6, N— erf | —mzedl /(N — o)At
1 epu,N—o-i-l {exp{ N 0+1}( g [2 (N - O’)At ( U)

(N - o)At

0uu,N—ot .
+ exp {—g;w,N—a+1} (erf l:‘) s,V %l — v (N - U)At

—erf[ OurN-ot1 —\/(N—cr+1)At

2\/ —a+1

g}

9uN—a+l ; -
— erf st + V(N - 1)At
. [2\/(N—a+1)At VI o+

)
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+ exp {—euu,]\’—a-*-l} (erf |:r) G#U’N_a+l - \/(]V — o’)At

(N — o)At

' 6 v,N—o+1 -
—erf = - V(N =0 + 1At
[2\/(N-—U+I)At 4 )

))

~ and

Da;-l = {exp{euu,IN_o-}-l} (el'f [2 opu,N—a+l + v (N - U)At}

(N — o)At

| 0uN—a+1
— erf = N —o + DAt
. [2\/1\’—a+1)A 4 )

— exp{—0u, N-o+1} (erf [2 bupN-otr V(N = 0)At

(N — o)At

euuN'—a-H
’ —~ V(N — o+ 1)At
TN Vet

— erf

2 042“' N—-o+1
(p{ ~ALN=THL (N o)A
TN = o)at e”’{ N —oyar N o)

2 0121V,N—a+1
B \/”(N—0+1)AtexP{_4(N—-a+1)At —(N-o+1DAts .

The velocity components v, and v, are evaluated at r = r; and z = {n(r;) — ;’('fin:\))

N. N, N,

| 2u—1m 20-17
_)\ZZE4I+A)]\T]\T Jv n<2]\r Q)tan(2Nz 5)

p=1v=1 =1

exp{—(n(r:) + CO(ru) + h;(]m.;.)\) }

f\/ Yut,N + Bu + 60, N) (\/ Yut,N — Bu + but, N)
x {v, [—E+ P (CN(TJ Golra) - 12((’;‘—1@'7))]

91-‘“'.
| F—E ’7,1,1\’_921,,7
+ vr [1‘:‘—(# a A)J}, (C7)

oplu,N 27",'
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where

' 2
U

By = 2r,ri,

2v—-1m
eulu,N = \ﬁhtl,N - ,3;1 [\/’7’#1 N+ ﬂ,; \/7,,1 N — ﬁ”] COs ( —) .
2N, 2

The quantities E, F, and F are given by

E= {exp{eﬂll,,,N} erf[ svN_ LN ]

SN A
0 lv,N INT A .
. 16 w,N |
E = 6,1, nYerf | 22— + VN At]
i 0 ) o [
| bu fo—— .
+ exp {—6 1, N} erf [;MN_]Lt —-VN At] -2 smh(ﬂ,d.,,N)},

and

. 0,10 N
F = {—2 cosh(0,1, N) + exp{6.1, N }erf [5—\;}\7—% + VN At] —exp{—0u, N}

2 A
f |k —\/—] —————exp{ — A2 _NAty].
e [2\/ /(N Ay Pl TYNAY
In(€m)

The velocity components v, and v, are evaluated at r = r; and z = (n(r;) — TEESYE

5 /\N N, N, N (2#-1£)t 21—17r)
4= - ZZZZ4(1+A N.N,N, 2N, 2 an<'2Nz 2

o=1 pu=1v=1 l= ]

exp{ CN(T:) + Ca l(r;z) + lnz(],,;’\) }
\/-(\/7;11 N-—o+41 + ﬂu + eplu N—a+]) (\/7;11 N—o+1 — ,Bu + Ophl N—a+1)

Qoos (1 v oy _ lEm/8)
{ [Q“*.m(@(’") b 2(1+A3)]

. R 2
Qy_1— Ro_s |:"'i _ (7ul,N-a+1 - O“IV,N—6+1)] }’ (©8)

0ulu,N—a+1 2r;

+ v,
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f"'\

where

2 ] m 2
ot = b 7 Gl = Comalr) = il ol

ﬁ# = 27'#7‘,',

aulv,N—a+1 =

2v-1nm
\/7ul,N—a+l - ﬂu + [\/7#1,N—a+1 + B, — \/’)’pl,N—a+1 - ﬂ“] cos? ( 2N 5) .
' ¥

The quantities Q~,,._1, Q,_l, and R,_, are given by

Qo1 = {eXp{aﬂlu,N—a+l} (erf [2\/"%%_ U)At}
—erf [2\/6“”\7 b +\/(N,—a+1)At})

))

, ! Bty N=o41
Qo1 = g—— {exP{G#IV,N—OH} (erf[ 2 -;lt + V(N - U)At]
o

. _ —o+ 1)At
+ exp {—9”“,,1\1_0_{__1} (el‘f [2 eulu N—a;lA /(N —U_)A :|

_erf[ N

6[LIV,N—6+1 2\/(.N -
aluN—o-H
— erf =2 + — o+ 1)At
/(N o+ DAt VIV -0 )
Ouiv,N—c+1
+ exp{—6.v.N—o f £ — V(N —-0)At
- exp {80 +1}<er [2 et V=)

0,1y, N=-o+1 B —
_erf[2\/(N—a+1)At V(N +1)At])},

and

. _ 0u1v,N—o+1
R, = {exp{&,,,,,,N_,.H (erf [2m - a)AtJ
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| 6;1‘11/ N—o
R )

—a+1A

‘ uiv,N—0o -
— exp{—0u,N-0+1} (erf [9 “(’A’TN_ (:At — V(N — o)At

—erf

Oty N~o41
2 = +v(N - 1)At
SN —osa VoD D

2 | a—
+ pld — BTV (N — o)At
TV — o)Al e*p,{ N —oar Vo)

2 oZIuN—a-H
- - ' —(N—og+1)At}}.
\/w(N—a+1)Atexp{ i —ornar NTotD

The velocity components v, and v, are eva_lua,ted atr =r;and z = (n(ri) — ITnFT":\T

The expressions C; through Cs can now be combined to represent the dis-

cretized equivalent of the integral evolution equations.
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APPENDIX D

Boundary integral formulation for the fluid velocity

In this appendix we present the boundary integral formulation used to evaluate
the velocity field v at each time step. The flow past the unperturbed paraboloid is .
represented in the entire fluid domain by the Oseen approximation to the Navier-
Stokes equation. When the crystal-melt interface is perturbed from its paraboloidal
shape, c;ne has to correct the flow field so that the no-slip condition on the perturbed
surface is satisfied. The flow velocity v can then be expressed as a sum of two
contributions:

a) the Oseen velocity, v,, for the unperturbed paraboloid, which is known in ana-
lyfical form but does not satisfy the no-slip condition on the perturbed surface, -
and

b) a “correction” that vanishes at infinity but is equal to the negative of the Oseen
‘velocity on the surface.

The total flow Velocity then becomes

V=vV,+u (D1)

with
u=—v,, on the interface (D2)

and
u-—0, as X — oo. (D3)

The velocity u is only a local correction to the Oseen flow field in the vicinity of

the surface; the asymptotic behavior of the total flow field at large distances from
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the solid is determined solely by the Oseen solution. Thus, for the case of very low
Reynolds numbers present in dendritic growth, the flow field u is inertialess and

can be described by the Stokes equation
—VP +Viu=0. (D4)

(As was discussed in Chapter 3, the temporal term of the transient Stokes equa,tiion
can be neglected because, at very low Reynolds numbers, the velocity field responds
instantaneously to changes in the interface shape).

We solve the Stokes equation using the boundary integral formulation first
applied by Youngren and Acrivos [1]. The differeptial equation is tra,nsformed into
a boundéry integral equétion that relates the local surface stresses f to the velocity

u:

c(x) u(x) = ?S? F (x = y)[(x~ y_)ssc —¥) : i)
| :

1 [f(y)+(x—y)[(x—y)-f(y)] dr, yeT, (bs)

ter el a@,

where 11 is the unit normal on the interface pointing toward the fluid domain 2,

d;y = |x—yl|, and

The calculation of the interior velocity takes place in two steps. First, the surface
stresses, f are calculated from Eq. (D5) with x € T' (the surface velocities u(xr) -
are known from the boundary conditions, i.e. the Oseen flow velocity). Then, Eq.
(D5) is used to evaluate the interior velocities for selected points x € 8 — T'.
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For axisymmetric flows, the vector equation Eq. (D3) reduces to two scalar
equations. In a polar cylindrical coordinate system, where x = (r;,p;,2,) and

Y = (7y, ¥y, 2y), Eq. (D3) can be decomposed to

3 [ * dryry d¢,
o(x)up(x) — Z;/o dG/O z (rg —rycosf) [z, —(y — E:;(r, cosf —ry)

X [ur(y)(rzcos € —ry) + (22 — (y)u:(y)]

1 [P °° / d¢, [ f(y)cos8 1, —rycosf
= 8—ﬂ£ d9£ dry Ty 1 + (dT‘y> dzy + diy

X [fr(¥)rzcos0 —ry) + (22 — Cy)fz(Y)]}, (D6)

and

) 2m © dr. d
e(x) u (x) — 23;/0 dG/o :l;:yy(zz - (y) [zx —(y — -d—fi(r, cosf — ry)]

X [urb )(’ z cos 6 7 y) + (zz (y)uz(yn
—_ 1 ) / ‘ dCy 12(3 ) 2z — Cy
= / d9/ dry Ty l 4+ ( ) { +

X [fr(¥)(rzcosb —ry) + (2: — ((y)) fz(y)]}, (D7)

where z, = (, = ((r,) represents the interface I', 6 = ¢, — ¢y, and

dzy = 4/T2 4+ r§ —2rzrycosb + (20 — Cy)2°

We now discretize the interface I' in N, ring-type elements. Each element T is
associated with a “node” at r = r;. Over each such element the surface velocities
and the surface stresses are considered constant and are represented by their values
at the corresponding node. The surface integrals in Eqs. (D6-D7) can now be

. written as the sums of the integrals over each surface element I';. For x € T', Egs.
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(D6-D7) become

2n o0 -
wlr) = 5= [ 40 [ G = rcos8) G = G(r) = () (ricos8 = 1)

x [ur(r)(ricos8 —r) + (G = ((r)) us(r)]

—Zfr(m) [Tae ] \/1+(c'(r>) eost+ 22l (D8)

' 27 rr
+jz=;fz(7‘_,)/ d@/ 4dd3 C(")) ( '—TCOSG) (C:—C("')) _

and

uz(’”: - _/ ” drr —<(r)) [C:—C(T) ¢'(r)(ricos 6 —r)]
X [ur(r)(n cosf — ) + (G = ¢(r) uz(r)]

— r | 2w y drr ] /> > , o,
= Jz:;fr(rj)/o r; 47rdiy + (C (7‘)) (‘r, cost —r ((' C(T)) ( )

where r; = Tz, Ty =7, 2z = ((ri) = (i, ¢ (7') dr’ and

dzy = \/ +r2 — 2rrcos€+( —C('r‘)) .

To calculate the left-hand-side of Egs. (D8-D9) one needs to obtain the boundary

condition for the velocity u. From Eq. (D2)
u(xr) = —Vo(xr).

But v, is by definition equal to the Oseen velocity that satisfies Eq. (2.13) and
is presented in analytical form in Eq. (2.14). This velocity is non-zero on the

perturbed interface z = ((r), since it satisfies the no-slip condition on the surface
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AR

of the unperturbed paraboloid z = (o(r). Equations (2.14) and (D2) are thus used
to calculate ihe boundary values of u as explicit functions of the interface shape
z=((r). (The Oseen velocity in Eq. (2.14) is expressed in paraboloidal coordinates
and a simple transformation to the cylindrical coordinate system is required). The
expressions in the left-hand-side of Eqs. (D8-D9) are then calculated using a simple
Gauss-Legendre quadrature. -

The components of the local surface stress vector, f, and f,, are considered

constant over each element I'; and are represented by the nodal vectors

te = [fr(r1), fr(r2), .. o5 fr(rn,))s
t, = [f:(rl)afZ_(r2)" .- ’fz(rNr)]‘

The choice of the nodal points (r;) in this problem is dictated by the discretization
of the boundary integrals in the integral evolution equation for the interface shape.
Equations (D8-D9) form a (2N, x 2N;) system of linear algebraic equations for the

local surface stresses (written in compact notation)

(k2)()- () o1
where the matrix element [A; ;;], & = 1,2,3,4, represents the integral over the
element I'; with r, = r;.

The integrals Ag ;j can be easily calculated for i # j using a simple Gauss-
Legendre quadrature. For i = j, the integrals Aj j; are singular because the inte-
gration interval includes the field point r; and thus d;, in the denominator becomes
zero as 7 — r;. Nevertheless, the improper integrals Ay j; do exist as long as fhe
surface I' satisfies the Lyapunov condition at each node r = r;. It can be easily
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shown that the integrands in cach of the singular integrals behave as 1/d,, in the
vicinity of the singular point (r = r;). This weak singularity is integrable and the

integration is carried out using the coordinate transformation -

n = Va(r,r) — y(r,r;) cos 6),
Where
a(r,ri)=r?+ri+ (G- C(”))2

and

¥(r,ri) = 2r;r.

The integral

27
I=/ ag [ arPn9)
0 T; dzy

where h is a non-singular function, becomes

I=/‘/°‘_+—'7 dr 4h(r n)
vimr et a-m - vVa- Vet atnn+t a9

We can now apply following Gaussian quadrature formula (based on the orthogonal

Chebyshev polynomials of the first kind) [2]

QY IR SV
\/ - a) b y) m=1 M
v = (b-;—a) + (b ;.a) cos (2mNI— 1 g)
to the integral I ﬁo get
h(r, Nm)

: D
Z VTt 7+ 1) (1 + /& = ) (o1
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where

_Vatr+Vo—xy Jaty-—Jo-xy 2m—1n

We now calculate all the integrals Ay ;; and then invert the matrix Eq. (D10) to
obtain the local surface stresses at each node.
In order to calculate the velocity at a point x = (ry,2;), in the interior of the

domain, we use Egs. (D6-D7) forx€ Q —T':

ur(ri,z1) =

2w
— dG/ dr r —rcosf) [z —((r) = ¢'(r)(ricos § — 1)]

X [upr(r)(ricos@ —r) + (21 — C(r)) u.(r)]

oo [, i [

N, 27
A / d8 / drr L ()2 = rcos) (1= () (D12)

=1

and

u:(ri,21) =
27 rr ’
3 4 / d C(r) [z = () = C'(r)(ricos € = )]
X [ur(r)(ricos@ —r) + (21 = ¢(r)) u.(r)]

2n r
+Zfrr;)/ a0 [ 14 () (ricos8 =) (51~ ¢()

N, 2w rr —C(r 2 .
+3 1003 / s / T Vi e |14 B0l ”] (D13)
where

Cl’;,;y — \/;:-’ +7r2 —2r;rcosf + (21 - C(T))z
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Equations (D12-13) do not contain any singular integrals (x € {1 — I' whereas
'y €T') and the Stokes correction velocities can be easily calculated using a Gauss-
Legendre quadrature. The total velocity v, which appears in the interface evolution
~equations in Chapters 2 and 3, is then calculated by adding the unperturbed Oseen
velocity v,, given by Eq. (2.14), to the Stokes correction u for the perturbed inter-
Aface. The new velocity v satisfies the no-slip condition on the pérturbed interface

and reduces to the unperturbed Oseen velocity away from the interface.
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APPENDIX E:

Derivation of the Gibbs-Thompson relation

This appendix describes the derivation of the Gibbs-Thompson thermodynamic
equation, which determines the effect of capillarity on the temperature of a crystal-
melt interface. The derivation presented here is similar to that of Delves [1].

Consider a very small section of the interface, over which the curvature is
constant, and with small adjacent regions of the solid and liquid phases which
are uniform in temperature and composition. The total éxtensive thermodynamic
variables (E, S, V, F = Helmholtz free energy) can be divided between solid, liquid,
and interface. Assuming that the volume and number of particles allocatéd to the

interface are both zero, the surface free energy is defined by
F(total) = Fs + Fp + 7 - Area, | (E1)

where v is the solid-liqﬁid interfacial tension. The equilibrium conditions at the in-
terface are obtained by minimizing the free energy with respect to changes of energy
and of particles between the two phases. . This leads to the equality of temperature
and chemical potentials of each component (usi, pLi, ¢t labels component), which
are defined per a-.btom of component. A further minimization with respect to an
infinitesimal change of volume of one phase, the total volume being constant, leads

to the condition

d f 1 1
Ps— P, =~ surda;e area _ Y (__ 4 _) . (E2)
S
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Ps and Pj are the pressures at the curved interface; r; and r, are the principal
radii of curvature and are positive if the interface is concave towards the solid. If

the pressures Ps and Py, are nearly the'same as the pressures at a flat interface,
APg = Pg — Ps(ﬂat); IAPsl < Ps, (E3)

one may use an approximate formula (approxirriate because A Pg is a small but finite

change) from the Gibbs-Duhem relations, which are thermodynamic identities for

each phase, | :
ZAﬂSi Ns; = Vs APs — 5sAT,
(E4)
> Apri Npi= Vi APy - SLAT.
At a flat interface Ps(flat) = P (flat), so from Eq. (E2)
(11 '
APs — APy, =’7(—+ —) (E5)
T1 T2

and Aps; = Appi because the phases are always in equilibrium, and Apug; is the
change in chemical potential if the interface changes from flat to curved.

‘If the system has one component only (i.e. solidification from a pure melt),
only one variable, APp vfor examplé, needs to be specified to find the other three
variables AT, Apy and APs. Assuming that the liquid is under a constant pressure
and that variations in Py, at the interface due to hydrostatic effects and convection
are negligible compared to APy, then it is reasonable to set AP, = 0 and all the
pr&ssﬁfe difference is taken up by the solid phase. The elimination of Ay from Egs. -

(E3-E4) gives

St Ss _ Vs (1 1
_AT(NL - Ns) ~ Ng (Tl + 7‘2>' (E6)

107



Tpm(SL/Np — Ss/Ng) is the latent heat of solidification per atom, so if L is defined
as the latent heat per unit volume of solid and AT is the temperature at a curved

interface minus the value at a flat interface,

Tr = Tw + AT =Ty (1- 1K), (ET)

2

where 7T is the temperature at the interface T' and K = (1/r; + 1/r2) is the local
interface curvature. By defining T = (T — Two)cp/L, A = (Trs — Too)cp/L, and K
= K/p, Eq. (E7) becomes

Tr = A —(do/p)K, (E8)

where dg = v Twmcp/L? is a capillary length and p is the tip radius of the crystal
dendrite. Equation (ES) represents the Gibbs-Thompson relation in the case of a
pure melt and is used in Chapter 3 as the interface boundary condition for the

temperature field.
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APPENDIX F: LIST OF FIGURES

. Measured tip velocity vs supercooling for succinonitrile. Note the deviation

from the pure diffusion steady-state theories at low supercoolings (reprinted

- from Glicksman and Huang, Acta Metall. 29 (1981) 701).

. Measured tip radius vs supercooling for succinonitrile. Note the deviation from

the pure diffusion steady-state theories at low supercoolings (reprinted from

Glicksman and Huang, Acta Metall. 29 (1981) 701).

. Effect of convection on the morphology of the interface. The distortion of

the temperature field causes partial elimination of the sidebranches (reprinted
from Glicksman and Huang, Proc. 3rd European Symp. on Material Sciences

in Space, Grenoble, April 1979).

. Ratio of measured Péclet number :o Péclet number predicted by the Ivantsov

theory. Convective effects cause a sharp transition to occur at A = 0.05
(reprinted from Glicksman and Huang, Proc. 3rd European Symp. on Ma-

terial Sciences in Space, Grenoble, April 1979).

. Diagram of the coordinate system showing the orientation of the paraboloidal

crystal and the flow.

. The Péclet number as a function of supercooling for selected values of the ve-

locity ratio. For these calculations the Prandtl number is 23.2 (succinonitrile).

The Ivantsov solution corresponds to A = 0.

. The perturbation tip velocity ¢ (0, 1) is plotted wvs time for different numbers N,

of discretization points in the radial direction (v = 0.001, X = 0.0, Pe = 1.0,

N, =7, At = 0.002).
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Fig.

Fig.

Fig.

Fig.

Fig.
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10.

11.

12.

13.

14.

15.

The perturbation tip velocity C(O,t) is plotted ws time for different numbers
N, of discretization points in the ¢-direction (v = 0.001, A = 0.0, Pe = 1.0,
N, =12, At = 0.002).

The perturbation tip velocity C (0,t) is plotted wvs time for different time steps
At (v =0.001, A=0.0, Pe=1.0, N, =12, N, =T).

Interface destabilization via tip splitting. The interface shape is plotted vs the
radial coordinate r for different times (v = A =0, Pe =1, N, =12, N, = T,
At = 0.002).

The perturbation growth velo-city ((r,t) is plotted vs the radial coordinate for
different times and for A = 0.0, » = 0.020, and Pe =1.

The perturbation growth velocity {(r,1) is plotted ;z)s the radial coordinéte for
different times and for A = 0.0, » = 0.001, and Pe = 1.

The perturbation growth velocity ¢(r,t) is plotted vs the radial ~sordinate for
different times and for A = 0.1, v = 0.001, and Pe = 1.

The perturbation growth velocity ¢ (r,t) is plotted vws the radial coordinate for
different times and for A = 1.0, v = 0.001, and Pe = 1.

The perturbation velocity at the tip, ¢(0,t), is plotted ws time for different

~ values of the surface tension parameter v (A = 0.0, Pe = 1.0). The inset, which

16.

is a blow-up of the v = 0.001 curve, shows that anisotropy has a negligible effect
on the growth velocity.

The perturbation velocity at the tip, (.(0, t), is plotted vs time for different flow
strengths A. Its absolute value increases with A, causing a decrease in the total

growth velocity, [2 + (] (v = 0.001, Pe = 1.0).
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Fig 3. Effect of convection on the morphology of the interface. The distortion of the
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CCCCCCCCCeecceecceeeeaaeeeeceeecececececececececececeececeeeeeecceeecceececcececccececccecce

APPENDIX G: LISTING OF THE FORTRAN CODE

THIS PROGRAM CALCULATES THE EVOLUTION OF THE DENDRITIC -
INTERFACE IN TIME AND SPACE UNDER THE INFLUENCE OF
FLUID FLOW AND SURFACE- TENSION.

[oEoNoNeNeNeNe]

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 WK(1700),UGT(30,30,1000),UGT0(30,30),2(1000,30),

.2D(1000,30),X(30),20(30),R(30),CSI1(30),CS82(30),FI(30), ZDINIT(30)

- ,ORD(30),C(30,3),VECRHO(3),ZETA(3),
.BPAR(4),STRES(60),FLOW(60,60) ,QUAD(30) ,WKAREA(60) ,LAM,NU
COMMON /A/UGT,UGTO,Z,2D,ZDINIT,CSI,CS2,FI1,Z0,LAM,PT,

.DT ,NU,ANIS ,NF,NZ,N,INDEX, IVAN

./B/C,R,O0RD,BPAR

./D/SMALL,P

./C/QUAD,RJ,ZJ,R2 .MM ,NR,UPFLOW

EQUIVALENCE (WK,FLOW)

INTEGER NPL(1000),NPERT(1000)

LOGICAL IVAN,UPFLOW

EXTERNAL DCADRE ,FCN,FA,FB,FC,FD,RIGHT1,RIGHT2,EXPIN

CALL \UFLOW(O)

WRITE(6,*) 'NR,NF,NZ ,MM,NTOTAL, DT PECLET,LAMBDA,NU'

READ (5,*) NR,NF,NZ,MM, NTOTAL DT P,LAM,NU

READ (15,*) UPFLOW,PR,ANIS,(ZDINIT(I),I=1,NR)

WRITE(6,%) 'THE TYPE OF FLOW (UPFLOW?), THE PRANDTL NUMBER,
.THE DIM/LESS SURFACE TENSION, AND THE ANISOTROPY ARE:
WRITE(6 v) L e B T R r e

WRITE(6,%) UPFLO\ PR NU ANIS

WRITE (6 ) Votededtene .':-.':-n ST Y e s e e e e e e e

WRITE(6,*) 'IF YOU WANT TO CHANGE SOMETHING, HALT EXECUTION

. AND GO TO FILE 15 AS DEFINED IN YOUR EXEC FILE
(SOME DATA USEFUL TO THE COMPUTATION ARE STORED IN FILE 14)'
READ (14,*) SMALL,ZEROPL,RMAX,NSIG,ITMAX,
. (BPAR(N) ,N=1,4), (NPL(N),N=1,NTOTAL)

READ (17,%*) PRT, (NPERT(N),N=1 NTOTAL)

IF (LAM.EQ.0.) IVAN=.TRUE.
cceceeeeeececceccceccceecccececceececcececececcccccccccceccecececceeccceee
c CALCULATION OF DELTA(IVANTSOV)
CCCCCCCCCCCCeeeeeeeceeceeeeeceeceeeceeeeeceeeeeccecececceceececececeececeececece

DELIVA=P*DEXP(P)*EXPIN(P)

P1=3.14159265358979323

RE=P*LAM/PR

R2=RE/2.
CCcceeeeceeeecececeeccecceecceccecececreeeceeeeeeeecececeeceeeeeececcecececceeeecccececee
c GENERATION OF ARRAYS FOR VELOCITY, QUADRATURES, ETC

CCCCCcCLceeeecececececececeeeececececeeceeeeeeceecececececeececcececeecceeccccececccceccce
DO 810 M=1,MM
810 QUAD(M)=DCOS(DFLOAT(2*M-1)*PI/2./DFLOAT(MM))
DO 5 I=1,NR
R(I)=DSQRT(-2.*P*DLOG
. (DCOS (DFLOAT (2*1-1)/DFLOAT(2*NR)*P1/2.)))
20(I)=P/2.%(1.-R(1)%*%2/P**2)

127 .

ccceececececeeccceecececceccecceeeeccceecceeccecceccececceeccececceeccceeccecee

C
C
C
C
C
C
C



DO 5 M=1,NZ
CSI(M)=DCOS (DFLOAT(2:M-1)/DFLOAT (2%NZ)*PI1/2. )2
€S2 (M)=DTAN(DFLOAT(2*M-1) /DFLOAT(2%N2)*PI/2.)
IF (IVAN) GO TO 5
° ZIM=20(1)-DLOG (CSI (%)) /2. /(1. +LAM)
W=(ZIM+DSQRT (ZIM=#24R(1)%%2)) /P
S=(-ZIM+DSQRT (ZIM**2+R(I)**2))/P
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

C FLOW DOWN
CCCCCCLeeeeeeeecececeeeceeeeeeecereececceceeecceeeceeceeeceeeeccecccececececcccceeccec
® IF (UPFLOW) GO TO 51

UGTO(I ,M)=-2./ (S+W)*
. ((DEXP(-R2)-DEXP(-R2*W))/R2/EXPIN(R2)+
.W#(EXPIN(R2*W)/EXPIN(R2)-1.))
%W (=1 . +PR¥DEXP(-R2) /EXPIN(R2))
*DEXP (P (1.+LAM)*(1.-W)+
° 4 .PR/EXPIN(R2)* (-EXPIN(R2)+EXPIN2 (R2)+
.EXPIN(R2%W)-EXPIN2 (R2*W)))
GO TO 5
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
C FLOW UP
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
¢ 51 UGTO(I,M)=2./(S+W)*
. ((DEXP (-R2)-DEXP(-R2*W))/R2/EXPIN(R2)+
W (EXPIN(R2%W)/EXPIN(R2)-1.))
¥ (=1, ~-PR¥DEXP(-R2) /EXPIN(R2))
SDEXP(P* (1. -LAM)*(1.-W)-

- .PR/EXPIN(R2)* (-EXPIN(R2)+EXPIN2 (R2)+
° .EXPIN(R2*W)-EXPIN2(R2%K)))
: 5  CONTINUE
R(NR+1)=R(NR)+(RMAX-R(NR)) /8.
ORD (NR+1)=

.P/2.%(1-R(NR+1)#%2/P¥2)
R(NR+2)=R(NR)+(RMAX-R(NR))/3.
ORD (NR+2)=

® \P/2.%(1-R(NR+2)#%2/P¥2)
R(NR+3)=R(NR)+(RMAX-R(NR))/2.
ORD (NR+3)=

.P/2.%(1-R(NR+3)#%2 /P¥ic2)
WRITE (6,*) (R(I),I=1,NR+3)
IF (RMAX.LE.R(NR)) WRITE (6,*) 'ERROR IN SELECTION OF RMAX'
@ IF (RMAX.LE.R(NR)) GO TO 300
DO 6 K=1,NF
6 FI(K)=
.DCOS (DFLOAT (2+K-1) /DFLOAT (2*NF)*P1/2.)*%*2
CCCCCCCCCCCCCCCCCCCCcCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCcceeeeecee

C TIME LOOP
® CCCCCCcceeeeeececeeceeeeeeeecceececeeeceecceecceeccececcecccccecccceccececccececce
WRITE ( 16 . o ) ! e e s e e T e e e

WRITE(16,') 'NR,NF,NZ ,NTOTAL,DT,P,LAM,NU,ANIS'
WRITE (16,*) NR,NF,NZ /NTOTAL,DT,P,LAM,NU,ANIS
WRITE (16,%) B e T Sededededledek !
: WRITE(76,*) 'NR, NF NZ, MN DT P, LAM NU ANIS
@ WRITE (76.*) NR,NF,NZ,MM,DT,P,LAM,NU,ANIS
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WRITE(66,*) 'NR,NF,NZ,DT,P,LAM,NU,ANIS'
WRITE (66,*) NR,NF,NZ,DT,P,LAM,NU,ANIS
WRITE(56,*) 'NR,NF,NZ,DT,P,LAM,NU,ANIS'
WRITE (56,*) NR,NF,NZ,DT,P,LAM,NU,ANIS
WRITE(36,*) 'NR,NF,NZ,DT,P,LAM,NU,ANIS'
WRITE (36,*) NR,NF,NZ,DT,P,LAM,NU,ANIS

\"’RITE (76 ) '.'.,'..'..‘.." """""""""""""" N R E et
WRITE (76,*) 'PERT ON (1) TIME INT/FACE VEL AT R1, AT 0, SLOPE AT
. 0'

WRITE (76,%) s "**¢nkk**"kkmk**k**k*ik*************'

DO 100 N=1,NTOTAL

INDEX=0

IF (N.GT.1) WRITE (6,*) 'WMAX',WMAX
IF (N.GT.1) WRITE (16,*) 'WMAX',6WMAX
IF (N.GT.1) WRITE (36,*) 'WMAX',WMAX
DO 120 I=1,NR
IF (N.EQ.1) X(I)=ZO0(I)+ZDINIT(I)*DT
IF (N.EQ.1) GO TO 120
X(1)=2(N-1,I1)+ZD(N-1,1)*DT

120 CONTINUE
CALL ZSPOW(FCN NSIG,NR, ITMAX,PAR,X,FNORM,WK, IER)
WRITE (16,%) 'ALAAA"'\. """"""""" f"
WRITE(16,*) 'TIME' N*DT
WRITE. (16 t.) LR oslodtosteatlosfosttontostantuatatostostantaste st ntostonte ot
WRITE (6 ) ey Seveds
WRITE (6,%) TIME N DT

WRITE (6,%) tredeiedest SeevedeveTevededdee e S e !

WRITE (6,%) FNORM .FNORM, "INDEX', INDEX

WRITE (6,%)' Z0(1) - X(I)'
WRITE (16,%) 'FNORM',FNORM, 'INDEX',INDEX

WRITE (16,*)"' 20(1) X(I)'
WRITE (66,%) e e e e e e e T e e v e e e S e e deskeese !
WRITE(66,*) 'TIME', N* DT PERT NPERT(N)

WRITE (66".'.) Voo e dedede et de e T e e S e e e e e

DO 26 I=1,NR

Z(N,D)=X(1)

IF (N.GT.1)
.ZD(N,1)=(X(I)-2(N-1,1))/DT

IF (N.EQ.1). 2ZD(N,I)=2DINIT(I)
WRITE (66,*) R(I),ZD(N,I)

WRITE (16,%) 20(I1),X(I),X(I)-20(I)
WRITE (6,%) Z0(I),N(I),N(I1)-20(I)

" 26  CONTINUE

IF (NPERT(N).EQ.1) ZD(N,1)= ZD(N 1)4PRT
DO 364 I=1,NR
WRITE (6,*) R(I),ZD(N,I)
364 ORD(I)=X(I)
WRITE (6,%) e e e i e e e e
ZTIPO=ZTIPN
CALL ICSICU (R,ORD,NR+3,BPAR,C,30,IER)
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+2**SMALL
CALL -ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,1IER)
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DZiDRi=(ZETA(2)-ZETA(1))/SMALL
DZ2DR2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL**2
ZTIPN=ORD(1)-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2
ZDO=(ZTIPN-ZTIPO) /DT
IF (IER.GT.128) WRITE(76,*) 'ERROR',IER,'AT TIME' N“DT .
WRITE (76,760) NPERT(N),N*DT,ZD(N,1),2D0,DZ1DR1-R(1)*DZ2DR2
760 FORMAT (I13,1X,F6.4,1X,3(D16.8,2X))
WRITE (36,*) 'TIME' ,N*DT
WRITE (56,%) 'TIME',N*DT
ZERO=0.
DO 465 I=1,NR+3
IF (1.GT.3)
.WRITE (56,*) -R(NR+4-1) ,ORD(NR+4-1)-Z0(NR+4-1)
465 WRITE (36,*) -R(NR+4-1),0RD(NR+4-1)
WRITE (36,*) ZERO,ORD(1)-R(1)*DZ1DR1+R(1)*%2/2.%DZ2DR2
WRITE (56,%) ZERO,ORD(1)-R(1)*DZ1DR1+R(1)**2/2.%DZ2DR2-P/2.
WRITE (6,*) ZERO,ORD(1)-R(1)*DZ1DR1+R(1)*%2/2.%DZ2DR2
.,ORD(1)-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2-P/2.
DO 466 I=1,NR+3

466 WRITE (36,*) R(I),0RD(I)
DO 467 I1=1,NR
WRITE (56,*) R(I).ORD(I)-Z0(I)

467 WRITE (6,%) R(1).0RD(I),ORD(I)-20(I)
CCCCCCCCCCeeCeeeccCeCeCCeCeceeeeeeceececececececeececeecececeeceeccececececceccccececee
o INTERPOLATION IN CARTESIAN COORDINATES
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee

332 IF (N.EQ.NTOTAL) GO TO 300
CCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCarCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
C. CALCULATION OF U.GRAD(T) AT TIME N.DT AND AT
C RHO=R(J), 2=Z(N,J)-DLOG(CSI(M))/2./(1.+LAM)
CCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeecee

IF (IVAN) GO TO 100
CCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee

C CALCULATE -(OSEEN VELOCITY) ON INTERFACE
C (THE EXPRESSIONS FOR UR AND UZ HAVE A MINUS SIGN
C TO SHOW THAT THEY ARE THE OPPOSITE OF THE OSEEN VEL.)

CCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCeee
DO 820 J=1,NR+2
RI=R(J)
ZJ=ORD(J)
W=(2ZJ+DSQRT(ZJ**2+RJ*%*2)) /P
S=(-ZJ+DSQRT (2J*%2+RJ**2)) /P
IF (S.LE.0) $=0.

‘CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c FLOW DOWN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
IF (UPFLOW) GO TO 811
Z=-(-1.+EXPIN(R2*W)/EXPIN(R2)+

.(DEXP(-RZ)-DEXP(-R2?W))/EXPIN(RZ)/RZ/(w+S))

UR=-((1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/(S+W)))

GO TO 812
CCCCCCeeeeecceeceeececceececeeeececcecceeeececeeeceececececcecceeecccecececcecececceccc
C FLOW UP
CCceeceeeeceeeeeeceeecceececececcececceceeeececeecceeecececcececeeceeeccececececcecececeoecceec
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811 UZ=-(1.-EXPIN(R2*VW)/EXPIN(R2)-
. (DEXP(-R2)-DENP(-R2%W))/EXPIN(R2)/R2/ (W+S))
UR=- (- (1.-EXPIN(R2%W)/EXPIN(R2))*DSQRT(S/ (S+¥)))
812 STRES(J)=-UR

.-DCADRE (RIGHT1, ZEROPL ,R(NR+3)-SMALL,0.,1.D-7 .,ERROR, IER)
STRES (J+NR+2)=-1%

. -DCADRE (RIGHT2 , ZEROPL, R(NR+3) -SMALL, 0. ,1.D-7,,ERROR, IER)
DO 820 I=1,NR+2

IF (I.GT.1) RD=(R(I)+R(I-1))%*.5

IF (I.EQ.1) RD=ZEROPL

IF (I.LT.NR+2) RU=(R(I)+R(I+1))*.5

IF (I.EQ.NR+2) RU=R(NR+3)-SMALL

FLOW(J,I)=

.DCADRE (FA,RD,RU,0.,1.D-7,ERROR, IER)
" FLOW (J, I+NR+2)=

.DCADRE (FB,RD,RU,0.,1.D-7,ERROR, IER)

FLOW (J+NR+2,1)=

.DCADRE (FC,RD,RU,0. ,1.D-7 ,ERROR, IER)

FLOW (J+NR+2 . T+NR42)=

.DCADRE (FD,RD,RU,0.,1.D-7,ERROR, IER)

820 CONTINUE
CALL LEQTIF (FLOW,1,2*NR+4,60,STRES,5, WKAREA IER)
CCCCCCCCCOCCCCCCCECCECCECCCCOCCCECCCCCECCCCCCCCCCOCCCCCCCCCCCCCCCCEaes

C CALCULATION OF INTERIOR CORRECTION TO OSEEN SOLUTION
C (WE ADD THIS SOLUTION TO THE OSEEN SOLUTION)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
WMAX=0.
DO 7 J=1,NR
DO 7 L=1,NZ
RJ=R(J)
ZJL=2(N,J)-DLOG (CST(L))/2./(1.+LAM)
2J=2JL

W=(ZJL+DSQRT (ZJL**24RJ**2)) /P -
WMAX=DMAX1 (W.WMAX)
S=(-ZJL+DSQRT (ZJL*#24RJ**2)) /P
IF (S.LE.0) S=0.
UR=.5%
.DCADRE (RIGHT1, ZEROPL R (NR+3) -SMALL, 0. ,1.D-7 ,ERROR, IER)
Uz=.5% :
.DCADRE (RIGHT2 , ZEROPL,R (NR+3)-SMALL,0.,1.D-7,ERROR, IER)
DO 8§30 I=1,NR+2
IF (1.GT.1) RD=(R(I)+R(I-1))*.5
IF (I.EQ.1) RD=ZEROPL
IF (I.LT.NR+2) RU=(R(I)+R(I+1))*.5
IF (I.EQ.NR+2) RU=R(NR+3)-SMALL
UR=UR+.5*STRES (I)*
.DCADRE (FA,RD,RU,0.,1.D-7,ERROR, IER)
.+.5%STRES (I+NR+2)*
.DCADRE (FB,RD,RU,0.,1.D-7,ERROR, IER)
UZ=UZ+.5*STRES (1)
.DCADRE (FC,RD.RU,0.,1.D-7,ERROR, IER)
.+.5*STRES (1+NR+2)%*
.DCADRE (FD,RD,RU,0.,1.D-7 ,ERROR, IER)

830 CONTINUE
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cceeeccecccceeeceeceeceeeceeeeeeeececececceceececccecccecececeececececececcee
c FLOW DOWN
cceeececccceeeeecccecececcccceecccecececceceeccececcceeccececccceccecccecceceee
IF (UPFLOW) GO TO 511
WRITE (18.*) 'N=',N,'2=',ZJL,'R=',RJ
WRITE (18,*) 'CORRECTION',UR,UZ
UZ=UZ-1.+EXPIN(R2*W)/EXPIN(R2)+
. (DEXP(-R2)-DEXP(-R2%*W))/EXPIN(R2)/R2/ (W+S)
UR=UR+(1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/ (S+W))
WRITE (18,*) 'TOTAL',UR,UZ
GO TO 512
cceeceececceececcceececcececececceceecceceecceececcececcececececeecccccecececcececcccee
C FLOW UP
cceeeececcceceeccceceeceecececeeeccceccececcececeeececeeccceceeececcccceccececcecee
511 WRITE (18,*) 'N=',N,'z=',2JL,'R=',RJ
WRITE (18,*) 'CORRECTION',UR,UZ
Uz=UZ+1.-EXPIN(R2*W)/EXPIN(R2)-
. (DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/ (W+S)
UR=UR-(1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/ (S+¥))
WRITE (18,*) 'TOTAL',UR,UZ
512 DO 20 I=1.NR .
cceececeeceecceeccceceececccececcececeeceecececeeccecececcececceecccecceceecceccecceeeee
c CONTRIBUTION FROM H1 & H3
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccceeeee
TO=P*PI/DFLOAT (2**NR*NF )*DTAN (DFLOAT (2%1-1)/DFLOAT (2*NR)*PI1/2.)
T1=TO
LFDEXP(-Z(N,J)+20(1)+DLOG(CSI(L))/2./ (1+LAM))
E0NOT1=DSQRT( (R(I)+R(J))**2+(Z(N,J)-Z0(I)-DLOG(CSI(L))
/2.7 (1+LAM))*%2)
ROOT2=DSQRT( (R(I)-R(J))**2+(Z(N,J)-Z0(I)-DLOG(CSI(L))
/2.7 (1+LAM) )#%2)
DO 30 K=1,NF
Y=ROOT2+(ROOT1-ROOT2)*FI (K)
Al=
. =2*DSINH(Y)+DEXP(Y)*DERF (Y/2./DSQRT(DFLOAT (N)*DT)
_.+DSQRT (DFLOAT (N)*DT) )+
.DEXP(-Y)*DERF(Y/2./DSQRT (DFLOAT (N)*DT) -
.DSQRT(DFLOAT(N)*DT))
A2=A1/Y
B2=
. =2*DCOSH(Y)+DEXP(Y)*DERF(Y/2./DSQRT (DFLOAT (N)*DT)
.+DSQRT (DFLOAT(N)*DT)) -
.DEXP(-Y)*DERF (Y/2./DSQRT (DFLOAT (N)*DT) -
.DSQRT (DFLOAT (N)*DT))
.+2. /DSQRT (DFLOAT (N)*DT*PI )*
.DEXP(-Y#**2/4. /DFLOAT(N)/DT-N*DT)
UGT(J,L,N)=UGT(J.L,N)+T1/DSQRT( (ROOT14Y)* (ROOT2+Y))*
. (UZ*(~A1+(B2-A2)%
.(Z(N,J)-Z0(1)-DLOG(CSI(L))/2./(1+LAM))/Y)
.+UR* (B2-A2)*(R(J)-(0.5%(ROOT1**2+RO0T2**2)-Y**2) /2. /R(J))/Y)
DO 40 M=1,NZ
ROOT3=DSQRT ((R(I)+R(J))**2+(Z(N,J)-Z0(I)
.=DLOG(CSI(L)/CSI(M))/2./(1+LAM))*¥*2)
ROOT4=DSQRT ((R(I)-R(J))**2+(Z(N,J)-20(I)
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.=DLOG(CSI(L)/CSI(M))/2./ (1+LAM))*¥2)
ONEGA=ROOT4+(ROOT3-RO0T4)*F1 (K)
El= .
. =2*DSINH (OMEGA )+DEXP (OMEGA)*DERF (OMEGA/ 2 . /DSQRT (DFLOAT (N)*DT)
.+DSQRT (DFLOAT (N)*DT) )+
".DEXP( -OMEGA )*DERF (OMEGA, 2 . /DSQRT (DFLOAT (N)*DT) -
.DSQRT (DFLOAT (N)*DT))
E2=E1/0MEGA
F2=
. -2*DCOSH (OMEGA )+DEXP (OMEGA)* “DERF (OMEGA/2 . /DSQRT (DFLOAT (N)*DT)
.+DSQRT (DFLOAT (N)*DT) ) -
.DEXP (-OMEGA)*DERF (OMEGA/2 . /DSQRT (DFLOAT (N)*DT) -
.DSQRT (DFLOAT (N)*DT))
.+2./DSQRT (DFLOAT (N)*DT#PI )*
.DEXP (-OMEGA**2 /4 . /DFLOAT (N) /DT-N*DT)
UGT(J.L.N)=UGT(J.L,N)-TO
.*DEXP(-Z (N, J)+20(1)+DLOG(CSI(L)/CSI(M))/2. / (1+LAM))
.*PI*LAM/ (1+LAM) /DFLOAT (2%NZ)
.#CS2 (M)
. /DSQRT ( (ROOT3+0OMEGA )* (ROOT4+0OMEGA ) )*
. (UZ* (-E14(F2-E2)*
.(Z(N,J)-20(1)-DLOG(CSI(L)/CSI(M))/2./(1+LAM))/OMEGA)
.4+UR* (F2-E2)* (R(J)- (0. 5% (ROOT3**24+RO0T4%+#2 ) -
.OMEGA*#*2)/2./R(J))/OMEGA)
FUGTO (I M)
40 CONTINUE
30 CONTINUE
| CCCCCCCCCCCCCCCCCCOCCEOCCECOCCCCCCCCCCCCCCCCCCCCCCOCCCCCECCCCCCCECCEe
C CONTRIBUTION FROM H2 & Hé
CCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOe
DO 50 NN=1,N
IF (NN.GT.1) ZN=Z(NN-1,1)
IF (NN.EQ.1) 2ZN=20(I)
ROOTS—DSQRT((R(I)+R(J))**2+(Z(N,J)-ZN-DLOG(CSI(L))
./2./(14LAM) )¥*= :
ROOT6-DSQRT((R(I) R(J))**2+(Z(N,J)-ZN-DLOG(CST (L))
./2./ (1+LAY) )=
IF (NN.EQ.1) DZDT—ZDINIT(I)
IF (NN.GT.1) DZDT=ZD(NN-1,1)
T2=T0/2.*DEXP(-Z (N, J)+ZN+DLOG (CSI(L))/2./(1+LAM))
DO 60 K=1,NF
Y=ROOT6+ (ROOT5-ROOT6 )*F1 (K)
IF (NN.EQ.N) GO TO 68
Cl=
.DEXP(Y)* (DERF(Y/2. /DSQRT(DFLOAT(A NN)*DT)
.+DSQRT (DFLOAT (N~-NN)*DT)) -
.DERF(Y/2./DSQRT(DFLOAT (N-NN+1)*DT)
. +DSQRT (DFLOAT (N-NN+1)*DT) ) )+
.DEXP(-Y)*(DERF(Y/2./DSQRT(DFLOAT (N-NN)*DT)
. ~DSQRT (DFLOAT (N~NN)*DT) ) -
.DERF(Y/2./DSQRT (DFLOAT (N-NN+1)*DT)
. -DSQRT (DFLOAT (N~NN+1)*DT)))
C2=C1/Y
D2=
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68

69

.DENP(Y)*(DERF(Y/2./DSQRT (DFLOAT (N-NN)*DT)
.+DSQRT (DFLOAT(N-NN)*DT))-

.DERF(Y/2, /DSQRT(DFLOAT(N-NN+1)*DT)

.+DSQRT (DFLOAT(N-NN+1)#DT))) -

.DENP(-Y)* (DERF(Y/2./DSQRT (DFLOAT (N-NN)*DT)

. -DSQRT (DFLOAT(N-NX)*DT)) -
.DERF(Y/2./DSQRT(DFLOAT (N-NN+1)+DT)
.-DSQRT(DFLOAT(N-NN+1)*DT)) )+

.2./DSQRT (PI*DFLOAT (N-NN)*DT)

%DEXP (-Y*%2/4. /DFLOAT (N-NN)/DT- (N-NN)*DT) -
.2./DSQRT(PI*DFLOAT (N-NN+1)*DT) _
*DEXP (-Y*%2/4 . /DFLOAT (N-NN+1) /DT- (N-NN+1)*DT)

UGT(J,L,N)=UGT(J,L,N)+T2*(2.+DZDT)/

.DSQRT ( (ROOT5+Y )* (ROOT6+Y ) )*

. (UZ%(-C1+(D2-C2)*

.(Z(N,J)-ZN-DLOG(CSI(L))/2./(1+LAM))/Y)
A4UR*(D2-C2)*(R(J) - (0. 5% (ROOT5**2+RO0T6**2 ) -Y**2) /2. /R(J))/Y)

GO TO 69
Cl=

.DEXP(Y)* A
.DERFC(Y/2./DSQRT(DT)
.+DSQRT(DT) )+
.DEXP(-Y)*
.DERFC(Y/2./DSQRT(DT)
.-DSQRT(DT))

C2=C1/Y
D2=

.DEXP(Y)*
.DERFC(Y/2./DSQRT(DT)
+DSQRT(DT))-
.DEXP(-Y)*
.DERFC(Y/2./DSQRT(DT)
.-DSQRT(DT)) -
.2./DSQRT(PI*DT)
“DEXP (-Y#*%2/4 . /DT-DT)

UGT(J,L.N)=UGT(J,L,N)+T2%(2.+DZDT)/

.DSQRT ( (ROOT5+Y )# (ROOT6+Y ) )*
. (UZ* (~C1+(D2-C2)%
(Z(N,J)-ZN-DLOG(CSI(L))/2./ (1+LAM))/Y)

DO 70 M=1,NZ

IF (NN.EQ.1) UGTOLD=UGTO(I.M)

IF (NN.GT.1) UGTOLD=UGT(I,M,NN-1)
ROOT7=DSQRT ((R(1)+R(J))**2+(Z(N,J)-2N

.+DLOG(CSI(M)/CSI(L))/2./(14LAM))**2)

ROOT8=DSQRT ((R(I)=-R(J))**2+(Z(N,J)-2ZN

.+DLOG(CSI(M)/CSI(L))/2./(1+LAM))**2)

OMEGA=ROO0TS&+ (ROOT7 -ROOT8 )*FI (K)
IF (NN.EQ.N) GO TO 71
Q1=

.DEXP(OMEGA)* (DERF (OMEGA/2. /DSQRT (DFLOAT (N-NN)*DT)
.+DSQRT(DFLOAT(N-NN)*DT)) -
.DERF(OMEGA/2./DSQRT (DFLOAT (N-NN+1)*DT)
.+DSQRT(DFLOAT(N-NN+1)*DT)) )+
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.DEXP(-OMEGA)* (DERF(OMEGA/2. /DSQRT(DFLOAT (N-NN)*DT)
.-DSQRT(DFLOAT (N-NN)*DT) ) -
.DERF(OMEGA/2./DSQRT(DFLOAT(N-NN+1)*DT)

. =DSQRT (DFLOAT (N-NN+1)*DT)))

Q2=Q1/0MEGA .

S2= . .

.DEXP(OMEGA)* (DERF(OMEGA/2. /DSQRT (DFLOAT (N-NN)*DT)
.+DSQRT(DFLOAT(N-NN)*DT)) -

.DERF(OMEGA/2. /DSQRT(DFLOAT (N-NN+1)*DT)

.+DSQRT (DFLOAT(N-NN+1)*DT))) -~

.DEXP(-OMEGA)* (DERF(OMEGA/2. /DSQRT (DFLOAT (N-NN)*DT)
. -DSQRT(DFLOAT (N-NN)*DT)) -

.DERF (OMEGA/2. /DSQRT (DFLOAT (N-NN+1)*DT)

. ~DSQRT (DFLOAT (N-NN+1)*DT)) )+
.2./DSQRT(PI*DFLOAT(N-NN)*DT)
.*DEXP(-OMEGA**2/4 . /DFLOAT(N-NN)/DT-(N-NN)*DT)-
.2./DSQRT(PI*DFLOAT(N-NN+1)*DT)
.*DEXP(-OMEGA®™*2/%. /DFLOAT (N-NN+1)/DT- (N-NN+1)*DT)
UGT(J,L,N)=UGT(J,L,N)

. =T2*PI*LAM/ (1+LAM) /DFLOAT(NZ)*CSI (M)*¥*(-.5/(1.+LAM))
.*CS2(M) ‘

. /DSQRT ((ROOT7+0MEGA)* (ROOT8+0MEGA ) )*

- (UZ*(-Q1+(S2-Q2)* :

. (Z(N,J)-ZN-DLOG(CSI(L)/CSI(M))/2./(1+LAM))/OMEGA)
.+UR*(82-Q2)=

. (R(J)-(0.5%(ROOT7**24+R0O0T8**2)-OMEGA**2) /2. /R(J))/OMEGA)
.*UGTOLD

GO TO 70

Q1= .

.DEXP (OMEGA)*

.DERFC(OMEGA/2. /DSQRT(DT)

.+DSQRT(DT) )+ :

.DEXP(-OMEGA)*

.DERFC(OMEGA/2./DSQRT(DT)

.=DSQRT(DT))

Q2=Q1/0MEGA

S2=

.DEXP(OMEGA)**

.DERFC(OMEGA/2. /DSQRT (DT)

.+DSQRT(DT)) -

.DEXP(-OMEGA)*

.DERFC(OMEGA/2 . /DSQRT(DT)

. -DSQRT(DT)) -

.2./DSQRT(PI*DT)

.*DEXP(-OMEGA**2/4./DT-DT)

UGT(J,L,N)=UGT(J,L,N) .

. =T2%PI*LAM/ (1+LAM) /DFLOAT(NZ)*CSI(M)**(-.5/(1.+LAM))
.*CS2(M)

. /DSQRT ((ROOT7+0MEGA ) (ROOT8+0MEGA ) )*

. (UZ*(-Q1+(82-Q2)* '
.(Z(N,J)-ZN-DLOG(CSI(L)/CSI(M))/2./(1+LAM))/OMEGA)
4UR*(S2-Q2)% ’

. (R(J)-(0.5%(ROOT7**2+RO0T8**2) -OMEGA**2)/2./R(J))/OMEGA)
.*UGTOLD :
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70 CONTINUE
60 CONTINUE ORIGINAT PZcE 13
50 CONTINUE OF POOR QUALITY,
20 CONTINUE
7 CONTINUE
100 CONTINUE
300 STOP
END
SUBROUTINE FCN(X.F,NR.PAR)
IMPLICIT REAL“§ (A-H.0-2)
REAL#8 X(NR).F(NR).PAR(1),
.UGT(30.30,1000 ),UGT0(30,30),2(1000 ,30),
.ZD(1000 ,30),20(30).R(30),CSI(30),C52(30),FI(30),ZDINIT(30),
.ORD(30),VECRHO(3),ZETA(3) ,RPAR(4),C(30,3),LAM,NU
LOGICAL IVAN
COMMON /A/UGT.,UGTO.Z,ZD.ZDINIT,CSI,CS2,FI,z0,LAM,PI,
.DT.NU,ANIS ,NF,NZ ,NT, INDEX, IVAN
./B/C,R.ORD,BPAR
./D/SMALL,P
F(NR)=X(NR)-Z0 (NR)
INDEN=INDEX+1
IF (NU.EQ.0.) GO TO 999
CCCCCCCCCCCCCCCCOCCCECCCCCCCECCCCECCCCCCCCCCCCCCCCCCCCCCCCCOCCCCaee
c CONTRIBUTION FROM CURVATURE
CCCCCCCCCCCCCCCECCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCoeeee
ORD(NR+1)=
P/2 .5 (1-R(NR+1 )50/ piese2)
ORD(NR+2)=
LP/2.% (1-R(NR+2)%%2 /pirse2)
ORD (NR+3)= ,
P/2.%(1-R(NR+3)%%2 /Prese2)
DO & I=1.NR
4 ORD(I)=X(1)
CALL.ICSICU (R.ORD,NR+3.BPAR,C,30,IER)
DO 992 J=1.NR-1
RJ=R(J)
IF (J.GT.1) GO TO 998
VECRHO(1)=RJ
VECRHO (2)=RJ+SMALL
VECRHO(3)=RJ+SMALL*2
CALL ICSEVU(R.ORD ,NR+3.C.30,VECRHO. ZETA 3., IER)
DZ1DR1=(ZETA(2)~ZETA(1))/SMALL
DZ2DR2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL#**2
GO TO 997
998 VECRHO(1)=RJ-SMALL
VECRHO(2)=RJ
VECRHO(3)=RJ+SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3, IER)
DZ1DR1=(ZETA(3)~-2ETA(1))/2./SMALL
DZ2DR2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL**2
997 F(J)—-\U*(RJ'DZ“DR°+DZIDR1**3+D21DR1)/RJ
./ (14DZ1DR1%%2)%
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c ANISOTROPY
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.

992
999

'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

*(1-ANIS=8% DZlDRl <2/

.(1+DZlDR1 """ $2)%%2)

CONTINUE

DO 2 J=1,NR-1

IF (NU.EQ.0.) F(J)=0.
DO 20 I=1,NR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

CONTRIBUTION FROM -DEL

CCCceeceeeceeeeeeceeececeeeecececeeeeeeeececeeceecceeeccecececceeecceeccec

10

RPLUS=DSQRT(

S(R(I)+RIY**2+(Z0(J)~20(1))*+*2)

RMIN=DSQRT(

L(R(I)=RI)**2+(Z0(J)-20(1))**2)

DO 5 K=1,NF

- Y=RMIN+(RPLUS-RMIN)*FI(K)

F(J)=F (J)-P*PI1/DFLOAT(NR*NF)*DTAN

. (DFLOAT(2*1-1)/DFLOAT(2*NR)*P1/2.)
.*DEXP(Z0(1)-20(J)-Y)/
.DSQRT ( (RMIN+Y)* (RPLUS+Y))

CONTINUE
DO 10 M=1,NZ
RES1=PI+#2%P/2 . /DFLOAT (NR¥*NF*NZ)*LAM/ (1.+LAM)*

.DTAN(DFLOAT(2%1-1)/DFLOAT(2*NR)*P1/2.)
LECS2 (M)

HFCSI(M)**(-1./2./(1.+LAM))
.*DENP(Z0(1)-20(J))

.*UGTO (I, M)

RPLUS=DSQRT ((R(I)+RJ)**2+(Z20(J)-20(1)

.+DLOG (CSI(M))/2./ (1+LAM))¥2)

RMIN=DSQRT((R(I)-RJ)**2+(Z20(J)-20(I)

+DLOG (CSI (M))/2./(1+LAM))%#2)

DO 10 K=1,NF
OMEGA=RMIN+(RPLUS-RMIN)*F1I (K)
F(J)=F(J)Y+RES1*“DEXP(-OMEGA)/

.DSQRT ( (RPLUS+OMEGA)* (RMIN+OMEGA))

CONTINUE

CCCCCCCCLLeeeeceeeeeeceeeeceeeeceeeceeeecceeecececceceecceecececeeecceccecceccec

C

CONTRIBUTION FROM 11 & I3

CCCCCCCCLLceeeeeeeeeereeeeeeeecccecceecceeeecececececcecrececccecceccececceccceccc

TO=P+*P1/DFLOAT (2**NR*NF )~ DTA\(DFLOAT(Z *1-1)/DFLOAT(2*NR)*P1/2.)
T1=TO

*DEXP(-X(J)+Z20(I1))

ROOT1=DSQRT ( (R (1)+RJ)#¥2+(X(J)-20(1))**2)
ROOT2=DSQRT ((R(1)=RJ)*+#2+(X(J)-20(I))*¥2)
DO 30 K=1,NF

=ROOT2+(ROOT1-ROOT2)*F1 (K)
F(J)=F(J)+T1/DSQRT ( (ROOT1+Y)* (ROOT2+Y))*

. (-2*DSINH(Y)+DEXP(Y)*DERF(Y/2./DSQRT(DFLOAT(NT)*DT)
.4DSQRT (DFLOAT(NT)*DT) )+
.DEXP(-Y)Y*DERF(Y/2./DSQRT(DFLOAT(NT)*DT) -

.DSQRT (DFLOAT(NT)*DT)))

IF (IVAN) GO TO 30
DO 40 M=1,NZ
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ROOT3=DSQRT ( (R (1)+RJ )2+ (X(J)-20(1)
.+DLOG(CSI(M))/2./(1+LAM))*¥2)
ROOT4=DSQRT ( (R(I)-RJIV¥*2+(X(J)-20(1)
.+DLOG(CSI(M))/2./(1+LAM))**2)
® OMEGA=ROOT4+ (ROOT3-ROOT4 )*FI (K)
F(J)=F(J)-T1*PI*LAM/ (1+LAM) /DFLOAT (2NZ)*CSI (M)**(-.5/(1.+LAM))
.#CS2 (M)
. /DSQRT ( (ROOT3+0MEGA )** (ROOT4+OMEGA ) )*
(- “DSINH(OMEGA)+DEYP(OMEGA)*DERF(OMEGA/Z /DSQRT (DFLOAT (NT)*DT)
.+DSQRT (DFLOAT (NT)*DT) )+
Y .DEXP (-OMEGA)*DERF (OMEGA/2 . /DSQRT (DFLOAT (NT)*DT) -
.DSQRT(DFLOAT (NT)*DT)))
.%UGTO(I,M)
40 CONTINUE
30 CONTINUE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee

o C CONTRIBUTION FROM 12 & I4
CCeeceeeeeeeeceeeeceeceeeeeceeeeeeeeececcecceeeeecccececeeeccceeceeccececceccece
DO 50 N=1,NT

IF (N.EQ.NT) 2ZN=X(I)
IF (N.LT.NT) ZN=2(N,I)
ROOTS5=DSQRT ( (R(I)+RJ)*¥*2+(X(J)-ZN)**2)
e ‘ " ROOT6=DSQRT ( (R(1)-RJ)*2+(X(J)-ZN)**2)
IF (N.EQ.NT.OR.NT.EQ.1) GO TO 57
DZDT=2ZD(N,I)
GO TO 56
57 IF (NT.EQ.1) DZDT=ZDINIT(I)
S IF (NT.GT.1) DZDT=(X(I)-Z(N-1,1))/DT
PNy 56 T2=T0/2."*DEXP(-X(J)+ZN)
DO 60 K=1,NF
Y=ROOT6+(ROOT5-R0O0T6)*FI (K)
IF (N.NE.NT)
.F(J)=F(J)+T2%(2.4DZDT)/
.DSQRT ( (ROOT5+Y )* (ROOT6+Y) )%
Py . (DENP(Y)* (DERF(Y/2./DSQRT (DFLOAT (NT-N)*DT)
' .+DSQRT(DFLOAT (NT-N)*DT)) -
.DERF(Y/2./DSQRT(DFLOAT (NT-N+1)*DT)
.+DSQRT (DFLOAT (NT-N+1)*DT)) )+
.DEXP(-Y)* (DERF(Y/2./DSQRT (DFLOAT (NT-N)*DT)
. -DSQRT (DFLOAT (NT-N)*DT)) -
® .DERF(Y/2./DSQRT (DFLOAT (NT-N+1)*DT)
. -DSQRT(DFLOAT(NT-N+1)*DT))))
IF (N.EQ.NT)
.F(J)=F(J)+T2%(2.+DZDT)/
.DSQRT ( (ROOT5+Y )* (ROOT6+Y) )=
\ . (DEXP(Y)*
° .DERFC(Y/2./DSQRT(DT)
.+DSQRT(DT) )+
.DEXP(-Y)*
.DERFC(Y/2./DSQRT(DT)
.-DSQRT(DT)))
IF (IVAN) GO TO 60
IF (N.EQ.1) ZOLD=20(1)
4 IF (N.GT.1) 2OLD=Z(N-1,I)
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70

78

75
60
50
20

IF (N.EQ.NT) GO TO 78

DO 70 M=1,NZ

IF (N.EQ.1) UGTOLD=UGTO(I.M)

IF (N.GT.1) UGTOLD=UGT(I,M,N-1)
ROOT7=DSQRT{ (R(I)+RI)**2+4(X(J)-ZOLD

.+DLOG(CSI(M))/2./(1+LAM))**2)

ROOTS?DSQRT((R(I)4RJ)**2+(X(j)-ZOLD

.+DLOG(CSI (M))/2./ (14+LAN) )#:2)

0MEGA=ROOT8+(ROOT7-ROOT8)*FItK)
F(I)=F(J)- )

.T0/° *DEXP(-X(J)+ZO0LD)

.*PI*LAM/ (1+LAM) /DFLOAT(NZ)* CSI(w) “(-.5/(1.+LAM))
L%CS2(M)

. /DSQRT ( (ROOT7+0OMEGA )* (ROOT8+0MEGA ) )*

. (DEXP (OMEGA )= (DERF (OMEGA/2 . /DSQRT (DFLOAT (NT-N)*DT)
.4+DSQRT(DFLOAT(NT-N)*DT))-

.DERF (OMEGA/2 . /DSQRT (DFLOAT(NT-N+1)*DT)

.+DSQRT (DFLOAT (NT-N+1)*DT) ) )+

.DEXP (-OMEGA)* (DERF (OMEGA/2. /DSQRT (DFLOAT (NT-N)*DT)
. -DSQRT (DFLOAT (NT-N)*DT)) -

.DERF (OMEGA/2 . /DSQRT(DFLOAT (NT-N+1)*DT)

. =-DSQRT (DFLOAT (NT-N+1)*DT))))

.*UGTOLD

CONTINUE

GO TO 60

DO 75 M=1.NZ

IF (N.EQ.1) UGTOLD=UGTO(T.M)

IF (N.GT.1) UGTOLD=UGT(I.M.N-1)
ROOT7=DSQRT ( (R (I)+RJ V%524 (X (J)-Z0OLD

.+DLOG(CSI(M))/2./(1+LAM))**2)

ROOT8=DSQRT((R(I)~- RJ)““7+(Y(3) ZOLD

-+DLOG(CSI(M))/7 /(1+LAM)) ......

OMEGA=ROQT8+ (ROOT7-ROOTS )~ Fl(k)

"F(I)=F(I) -
.TO/2.*DEXP(-X(J)+Z0LD)
.*PI**LAM/(1.+LAM)/DFLOAT(NZ)**CSI(M)**(~.5/(1.+LAM))

*CS2 (M)

. /DSQRT ( (ROOT7+0MEGA )* (ROOT8+0MEGA ) )*
. (DEXP (OMEGA)*

.DERFC (OMEGA/2 . /DSQRT (DT)
.+DSQRT(DT))+

.DEXP (-OMEGA)*

.DERFC (OMEGA/2 . /DSQRT (DT)
.-DSQRT(DT)))

.*UGTOLD

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END

CCCCCCCeeeeceeeececeeeeeeeecceceeeeeecceeecececececececccceeecceeececceecccceeccecce

FUNCTION EXPIN(P)
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IMPLICIT REAL*8 (A-H,0-2Z)
IF (P.GT.14.) GO TO 30
EXPIN=-0.577215664902457071~-DLOG(P)
DOE=-1.
DO 20 1=1,1000000
DOE=-DOE*P/DFLOAT(I)
IF (DABS(DOE)/DFLOAT(I).LE.1.D-16)GO TO 40
20 EXNPIN=EXPIN+DOE/DFLOAT(1)
30 EXPIN=DENP(-P-DLOG(P))*(1-1./P+2/Pi¥2-6/P%3
424 /PEEL)
40 RETURN
END
CCCCCCCCCCLeeeeeeeeeceeeceeceercececececeeeeeceeceecececrcecececeeecceeccececeeeececececcecccece
FUNCTION EXPIN2(P)
IMPLICIT REAL*8 (A-H,0-2)
EXTERNAL EXPIN
EXPIN2=DEXP(-P)-P*EXPIN(P)
RETURN
END
CCCCCCeLeeeeeeceeeeeeeeeecececceceeeeceecececeecececeecececccceccceccecececc
FUNCTION FA(RHO) : ‘
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 QUAD(30).VECRHO(3),ZETA(3),C(30,3),R(30),0RD(30)
COMMON '
./B/C.R,ORD,BPAR
./D/SMALL.P
./C/QUAD.RJ.ZJ.R2 .MM NR
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL*2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-Z2ETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2 '
CCCCCCCCCLLeeeeeeeeeeeececececeeeeeeceeceeececececcecececeecceceecececcecececcececcecccecccecece -
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)}
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
CCCCCCCCCeceeeeeeeeceececerceeeeeeeececeeeeeeccececeeeecceceeceececeecceececcecececccec
ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2.**DER2
DZ1DR1=DER1+(RHO-R(1))*DER2 -
GO TO 997
998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO (3 )=RHO+SMALL
CALL ICSEVU(R,ORD,NR+3.C,30,VECRHO,2ETA,3,IER)
DZ1DR1=(ZETA(3)-ZETA(1))/2./SMALL
997 B=2*RHO*RJ
A=RHO*:24RJ* 24 (ZETA ( 2)- ZJ ) K
FA=0.
DO 10 M=1,MM
DIST=QUAD(M)* (DSQRT (A+B)-DSQRT(A-B))*.5
.+(DSQRT (A+B)+DSQRT (A-B))*. 5
THCOS=(A-DIST**2)/B
10 FA=FA+1./DFLOAT(MM)*RHO*DSQRT(1.4+DZ1DR1**2)
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. /DSQRT( (DSQRT (A-B)+DIST)* (DSQRT(B+A)+DIST))
.% (THCOS+(RJ-RHO*THCOS )* (RJ*THCOS -RHO) /DIST*%2)
RETURN | ,
END
FUNCTION FB(RHOY
IMPLICIT REAL®S (A-H,0-2)
REAL*8 QUAD(30),VECRHO(3).ZETA(3),C(30,3),R(30),0RD(30)
COMMON
./B/C.R,ORD,BPAR
./D/SMALL,P
./C/QUAD,RJ,2J ,R2 MM,NR
IF (RHO.GT. (R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL*2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA, 3, IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL**2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
c DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2 . *DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997
998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL _ A
CALL ICSEVU(R,OR:,NR+3,C,30,VECRHO,ZETA,3,IER)
DZ1DR1=(ZETA(3)-ZETA(1))/2./SMALL
997 B=2*RHO*RJ
A=RHO**2+RJ*¥ 2+ (ZETA(2) -2J)**2
FB=0.
DO 10 M=1 .MM
DIST=QUAD ()
.%(DSQRT (A+B)-DSQRT (A=B))*.5
.+(DSQRT (A+B)+DSQRT (A-B))*.5
THCOS=(A-DIST**2)/B .
10  FB=FB+1./DFLOAT (M:)*RHO*DSQRT(1.+DZ1DR1%*%2)
- . /DSQRT( (DSQRT(A-B)+DIST)* (DSQRT(B+A)+DIST))
.*(RJ-RHO*THCOS) /DIST*(2J-ZETA(2))/DIST
RETURN
END
FUNCTION FC(RHO)
IMPLICIT REAL*8 (A-H.0-2)
REAL*8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),0RD(30)
COMMON
./B/C,R,ORD,BPAR
./D/SMALL.P
./C/QUAD,RJ,2J ,R2,MM,NR
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R (1)+SMALL
VECRHO(3)=R(1)+SMALL*2
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CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,1IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2

CCCCCLeceeeecceecceeeceeceececceceecececececececeeeeeeeeeeceececcecccceececcecce

C
C

ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

998

997

10

ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2

GO TO 997

VECRHO(1)=RHO-SMALL

VECRHO(2)=RHO

VECRHO(3)=RHO+SMALL

CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZ1DR1=(ZETA(3)-ZETA(1))/2./SMALL

B=2*RHO*RJ

A=RHO**2+4RJ**2+(ZETA(2)-2J)**2

FC=0.

DO 10 M=1,MM

DIST=QUAD(M)

“*(DSQRT (A+B)-DSQRT(A-B))*.5

.+(DSQRT(A+B)+DSQRT(A-B))*.5

THCOS=(A-DIST**2)/B
FC=FC+1./DFLOAT(MM)*RHO**DSQRT (1.+DZ1DR1%*2)

./DSQRT((DSQRT (A-B)+DIST)* (DSQRT(B+A)+DIST))

*(RJ*THCOS-RHO)/DIST*(ZJ-2ETA(2))/DIST

RETURN

END

FUNCTION FI’’RHO)

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 QUAD(30), VECRHO(3) ZETA(3),C(30,3),R(30), 0RD(30)
COMMON

./B/C,R,ORD,BPAR
./D/SMALL,P
./C/QUAD.RJ,ZJ ,R2 MM ,NR

IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)

VECRHO(2)=R(1)+SMALL

VECRHO(3)=R(1)+SMALL"*2

CALL ICSEVU(R.ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+2ZETA(1)-2*ZETA(2))/SMALL**2

CCCCCCCCCeceLeeeeeeeeeeceeceeeeececececeeeeeecereceeccaceeececcececeeccecccecc

C
c

ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]

CCCCCceLceceeeecceecececeeeeeeeeeeeceececececeeeeccceeeecececeeeeccccececeecccecccecc

998

ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))#*¥*2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2

GO TO 997

VECRHO(1)=RHO-SMALL

VECRHO(2)=RHO

VECRHO(3)=RHO+SMALL

CALL ICSEVU(R,ORD,NR+3,C,30, VECRHO ZETA,3,1IER)
DZ1DR1=(ZETA(3)- ZETA(l))/Z /SMALL
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997 B=2%RHO*RJ
A=RHO**2+RJ*%2+ (ZETA(2)-2J)#%2
FD=0. ’
DO 10 M=1.MM
DIST=QUAD (M)
*(DSQRT(A+B)-DSQRT(A-B))*.5
.+(DSQRT(A+B)+DSQRT(A-B))*.5
THCOS=(A-DIST**2)/B
10  FD=FD+1./DFLOAT(MM)*RHO*DSQRT(1.+DZ1DR1%%*2)
. /DSQRT ( (DSQRT (A-B)+DIST)* (DSQRT (B+A)+DIST))
*(14+((ZETA(2)-2J)/DIST)**2)
RETURN
END
FUNCTION RIGHT1(RHO)
IMPLICIT REAL*8 (A-H,0-2)
REAL#*8 QUAD(30),VECRHO(3),2ETA(3),C(30,3),R(30),0RD(30)
LOGICAL UPFLOW
COMMON
./B/C,R,ORD,BPAR
./D/SMALL,P
./C/QUAD,RJ,ZJ,R2 ,MM,NR,UPFLOW
EXTERNAL EXPIN
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
 VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R (1)+SMALL*2
CALL ICSEVU(R,ORD.NR+3,C,30,VECRHO,ZETA.3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL*¥2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997
998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO (3 )=RHO+SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3, IER)
DZ1DR1=(ZETA(3)-ZETA(1))/2./SMALL
997 W=(ZETA(2)+DSQRT(ZETA(2)**2+RH0**2)) /P
S=(-ZETA(2)+DSQRT (ZETA (2 )**2+RHO**2)) /P
IF (S.LE.0) S=0.
CCCCOCC0CCCCCCCCCCCECCCCCCCCoCoeCCCCECCCCECCCCCCCCCCCCCCCCCCCCCCCCECEEe
C FLOW DOWN '
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
IF (UPFLOW) GO TO 811
UZ=-(-1.+EXPIN(R2*W)/EXPIN(R2)+
. (DEXP (-R2)-DEXP (-R2%*W) ) /EXPIN(R2)/R2/ (W+S))
R=- ((1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/(S+W)))
GO TO 812
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW

' -
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceeeeee
8§11 UZ=-(1.-EXPIN(R2%¥)/EXPIN(R2)-
. (DEXP(-R2)-DENP(-R2%W))/EXPIN(R2)/R2/ (W+S))
UR=- (- (1.-EXPIN(R2%\)/ENPIN(R2))*DSQRT(S/ (S+%)))
812 B=2*RHO*RJ
A=RHO*#24RJ*%2+(ZETA(2) -2J)**2
RIGHT1=0.
DO 10 M=1,MM
DIST=QUAD (M)*(DSQRT (A+B)-DSQRT (A-B))*.5
.+(DSQRT (A+B)+DSQRT(A-B))*.5
THCOS=(A-DIST**2)/B
10 RIGHT1=RIGHT1+6./DFLOAT (MM)*RHO
. /DSQRT( (DSQRT(A-B)+DIST)* (DSQRT (B+A)+DIST))
.*(RJ-RHO*THCOS ) /DIST
.%(2J-ZETA(2)-DZ1DR1* (RJ*THCOS -RHO) ) /DIST
.*(UR
. (RJ*THCOS-RHO)+(ZJ-ZETA(2))*UZ)
RETURN
END
FUNCTION RIGHT2(RHO)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 QUAD(30).VECRHO(3).2ETA(3),C(30,3),R(30),0RD(30)
LOGICAL UPFLOW
COMMON
./B/C.R.ORD,BPAR
./D/SMALL,P
./C/QUAD ,RJ.ZJ ,R2 .MM NR .UPFLOW
ENTERNAL EXPIN
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL*2
CALL ICSEVU(R,ORD.NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2%ZETA(2))/SMALL**2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLeee
C ZETA(2) WILL NOW REPRESENT ZETA IN.[ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))*%2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997
998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO (3)=RHO+SMALL .
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZ1DR1=(ZETA(3)-ZETA(1))/2./SMALL
997 W=(ZETA(2)+DSQRT(ZETA(2)**2+RHO**2)) /P
S=(-ZETA(2)+DSQRT(ZETA (2)**2+RHO**2)) /P
IF (S.LE.0) S=0.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECTee
C FLOW DOWN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
IF (UPFLOW) GO TO 811
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UZ=-(-1.+EXPIN(R2*W)/EXPIN(R2)+

.{DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+5))

UR=-((1.-EXPIN(R2%*W)/EXPIN(R2))*DSQRT(S/(8+W)))
GO TO 812

CCCCCeeeeeeeeeeceeceeeeceeeececcceeeececcececeecececeececceeeccecceeeee

C

FLOW UP

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

811

812

10

UZ=-(1.-EXPIN(R2*W)/EXPIN(R2)-

. (DEXP(-R2)-DEXP(-R2%*W))/EXPIN(R2)/R2/ (W+8))

UR=- (- (1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/(S+W)))
B=2*RHO*RJ

A=RHO**2+RJ** 24+ (ZETA (2) -2J )2

RIGHT2=0.

DO 10 M=1,MM

DIST=QUAD (M)* (DSQRT (A+B)-DSQRT(A-B))*.5

.+(DSQRT (A+B)+DSQRT(A-B))*.5

THCOS=(A-DIST**2)/B
RIGHT2=RIGHT2+6./DFLOAT (MM)*RHO

./DSQRT( (DSQRT(A-B)+DIST)*(DSQRT(B+A)+DIST))
.%(Z2J-ZETA(2))/DIST
.%(ZJ-ZETA(2)-DZ1DR1*(RJ*THCOS-RHO)) /DIST
.*(UR

.*(RJ*THCOS-RHO)+(ZJ-ZETA(2))*UZ)

RETURN
END
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Two Puzzling Aspects of Protein Crystal Growth

M. L. Grant and D. A. Saville
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544

Abstract

In order to determine a protein's tertiary stn;'lcture, large, well ordered single crystals are
required for x-ray analysis. Producing such crystals is often the rate-limitihg step because many
protein crystals grow slowly and they often reach a terminal size which is too small to be useful for
x-ray diffraction studies. In this paper, we present our study of several mechanisms which may
reduce crystal growth rates and/or terminate crystal growm entirély. On the basis of our analysis,
we find that salt gradients which change the local chemical potential of the protein are insufficient to
account for the slow crystal growth rates which have been reported. Contaminants which adsorb
protein from solution may reduce the effective protein concentration, but the impurity's
concentration and its affinity for protein are unknown. Association of proteir -aolecules in bulk
solution can reduce the monomer concentration significantly, but extant theory and experiment are
not sensitive enough to detcmﬁnc the actual concentration of aggregates in solution. For systems
of interest, shear-induced effects were found to be too weak to interfere with normal binding of
incoming protein molecules. Although we found that most crystal growth occurs in a regime where
both interfacial kinetics and diffusion influence crystal growth, the role of mass transfer rates on the
terminal size of crystals is unknown, primarily because no data exist which cover the size range of
interest (0.1lmm - 1mm in length).

Experimental studies of growth of large protein crystals are essential if mechanisms by which
crystals stop growing are to be clucidafed. Growth rate measurements for a wide range of crystal
sizes, coupled with measurements of system properti\es which vary with time, may reveal the
factofs responsible for this puzzling behavior. Several hypotheses have been advanced to explain

growth cessation, but none have been verified by experiment. For example, if termination of

S




growth occurs by accumulation of defects, x-ray studies of the crystals at different stages in their
growth should reveal some qualitative changes in the nature of the protein crystal which is related to

its growth behavior.

Introduction

Protein crystals are useful for determining the tertiary structure of biological molecules but the

- task of preparing crystals is difficult because many proteins do not form crystals readily or form

crystals which are unsuitable for x-ray analysis. Protein crystals differ from more familiar
inorganic crystals in several ways. In many systems, crystals tend to grow at a constant rate, up to
a point, and then stop growing. The molecules are held in the crystal lattice by weak hydrogen
bonds (AH = -3 kcal/mole to -6 kcal/mole in vacuo) which are nbt wéll characterized [Creighton
1983] and each molecule has relatively few contacts with its neighbors [McPherson 1982].
Additionally, the bonding structure and the physical nature of the crystal are not well understood.
Moreover, the cry-tallization process itself is complicated by small changes in temperature, pH, or
the precipitating agent concentration. Although it has been shown that the precipitant concentration
inside the crystal equilibrates with the external solvent [Wyckoff 1986}, the concentration of

precipitants in crystals has not been measured. Thus the mechanism by which precipitants act and

_ their role inside the crystal are unsolved mysteries.

Some of the difficulty of understanding protein crystallization arises from the complexity of a
system containing protein, precipitating agent, buffer, and solvent. Interactions between these
components makeé it nearly impossible to predict whether a given set of conditions is suitable for
protein crystal growth. Thus, guidelines for producing protein crystals are largely rules of thumb.
Results from groups working on the same mode! system under similar conditions can differ
significantly, as evidenced by disparities in the solubility of lysozyme reported at 20°C in
5%(w/v) NaCl at pH 4. Values range from 1.7 mg/ml [Pusey et al. 1986] to 4.3 mg/ml [Kam et
al. 1978, Feher and Kam 1985] with an intermediate value of 3.5 mg/ml [Fiddis ez ql. 1978]. -
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- When used to determine the concentration dependence of the crystal growth rate these solubilities
lead to different kinetic expressions which makes it difficult to decide on the controlling
mechanism(s).

As though studying crystal growth by diffusion of protein from the bulk were not complicated
enough; fluid flow may also influence matters. It is known that forced convection in the form of
stirring tends to produce large numbers of small crystals rather than the large single crystals
desired. Recently it was suggested that natural convection engendered by the protein concentration
gradient near the crystal surface disrupts the orderly deposition of protein molecules [Bugg et al.
1984]. This fluid motion might: (i) promote rapid transfer where incoming protein molecules are
| forced to bind at a random site rather than the specific sites that lead to well ordered crystals, or
(i) alter the state of the protein at or near the surface surface through fluid shear. In the first case
the convective mass transfer rate is envisioned as being faster than the attachment rate so defects
form due to improperly bound or misoriented molecules. Accordingly, growth ceases due to an
accumulation of zrors when the surface concentration of defects reaches the point where additional
rﬁolecules cannot find a suitable attachment site [Kam er al. 1978, Feher and Kam 1985] . This
implies that neighboring molecules on the surface are misaligned and the degree of local disorder is
extremely high or that binding requires the cooperation of a large number of properly oriented
molecules on the surface. Unless these defects arise suddenly, crystal disorder would increase
gradually moving towards the crystal surface (with a corresponding decrease in the x-ray |
resolution). According to the second meéhanism, shear stresses at the crystal surféce strip the
molecules from the crystal surface or align the protein molecules so that molecules near the surface
cannot assume the proper orientation for binding to the crystal. The shear stress on the protein
molecule would neca to be strong enough to denature the protein molecule by breaking its internal
hydrogen bonds and unfolding the molecule.

Finally, contaminants in the solution may accumulate at the surface of the crystal and either

poison the surface so that no further addition is possible, or induce some change in the protein near
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the crystal surface which prevents it from binding.

In this paper, two main questions are addressed: (i) Why do protein crystals grow 50 slowly?
and (ii)) Why do protein crystals reach a texminal size? To answer the ﬁrs_t question, we have
examined three mechanisms which might limit crystal growth ratés: salt rejection at the crystal-fluid |
interface, contamination by impurities which adsorb protein, and the aggregatibn of protein
monomer in the bulk (which. would lower the effective concentration of protein available for crystal
growth). Our analysis indicates that any salt gradients due to salt rejection are too small to produce
the effects needed to reduce the diffusion-limited crystal growth rates to measured levels. The
presence of dust or other contaminants may significantly reduce the effective protein concentration
if the protein adsorbs stron gly to the dust surface. Parameters which affect the importance of
surface adsorption, such as the protein's affinity for the dust and the dust concentration found in
typical protein solutions, are not currently known. Aggregation of protein may significantly reduce
the amount of protein monomer in solution, but both the méasurements and the cuﬁcm theory for
determining sizé distributions are inadequate to determine the actual state of aggicgation of the
protein in solutioﬁ. Furthe_r revisions of the theory and a more comprehensive set of experiments
may provide enough information to determine whether protein aggregation plays a role in limiting
crystal growth rates.

Several hypotheses concerning the effect of fluid flow on the terminal size of protein crystals
were investigated by examining several mechanisms in which fluid shear at the crystal interface
' interferes with normal addition of protein molecules to the surface and by performing a
quasi-steady ahalysis of the mass transfer to the crystal surface. The effects of shear due to fluid
flow were found to be several orders of magnitude too weak to disrupt proper protein attachment to
the crystal surface or to align the protein molecules in the vicinity 6f the surface. An analysis of
mass transfer indicates that crystal growth occurs in a regime where diffusion and the attachment
reaction both play roles in lirnitihg the crystal growth rate. |

Formulation of a a theory to explain the peculiarities of protein crystal growth is hindered by
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the lack of reliable data on growth rates of large crystals. Extant results were obtained with crystals
no larger than approximately 100 mm in length and size effects are not yet apparent in these
crystals, so vital information about the slowing growth rate is missing. A thorough study should
be performed wherein larger crystals are produced in order to relate growth rates to systém

properties which may change over the course of the crystal growth process.

Salt Rejection and Protein Crystal Growth

There are at least two possible ways in which the rejection of salt (precipitating agent) at the
interface may influence prdtcin crystal growth: (i) a "blowing" velocity away from the crystal
surface which would slow the transport of protein to the crystal; and (ii) the alteration of the local
protein solubility which would reduce the driving force for diffusion. In the first case, the blowing
would appear in the "crystallization" flow which arises from the diffusion of protein to the crystal

surface. This crystallization flow is related to the growth rate of the crystal, dR/dt, by

v=04R-p /) | (1)

where v, is the fluid velocity at the interface, n is the unit normal directed outward from the crystal
surface, p, is the crystal mass density and p; is the fluid density at the interface. The crystallization
flow is directed towards the crystal surface if p_ > p-f, and away from the crystal if p < p,. A rising
convective plume has been observed [Pusey 1986, personal conversation], indicating that the ﬁuid
at the interface is less dense than the bulk fluid. Because the crystal is denser than the bulk fluid,
P > Py and the rejection of salt is insﬁfﬁcicnt to induce a blowing away from the crystal surface.
Earlier calculations [Grant 1985] showed that the convective protein flux due to c;rystal]ization flow
is approximately 1% of the diffusive flux for a spherical protein crystal. The effect of salt rejection
is to reduce this small convective flux, and can be neglected without appreciable error. '

The effect of variations in the local protein solubility can be examinied by considering the

growth of a spherical protein crystal under diffusion control. At the crystal surface, salt is rejected
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and must diffﬁse to the bulk solution so that a salt concentration gradient exists along with the
resulting gradient in the local solubility of the protein. In the diffusion limit, protein in the liquid at
the crystal interface is at the solubility concentration and is in equilibrium with the protein in the
crystal. Since the crystal form is reported to be insensitive to the salt concentration, it may be
reasonable to assume the chemical potential of the crystalline protein is independent of the salt
concentration. In this case, the chemical potentials of the protein in solution and in the crystal are
equal wherever the protein concentration équals the local protein solubility because we could, in
principle, place a crystal in a saturated protein solution without producing a change in either the '
crystal size or the protein concentration of the solutién. The chemical potential of the protein
dcpends on the other species which are in solution, so the protein's chemical potential is no longer
directly proportional to its concentration. The salt concentration gradients due to rejection at the
crystal interface may alter the gradicnts in the protein's chemical potentiaﬂ with the result that the
flux of protein to the crystal surface is less than the flux one would expect from examining only the
protein concentration gradient.

To set this out in mathematical form, we first express the flux of protein (species 1) in terms of
its chemical potential [Cussler 1982] |

j=- % C,Vu 1 V)

where Y, is the chemical potential of the protein, D, = thermodynamic diffusion coefficient, and

C,= molar concentration of protein. The chemical potential of the protein is given by

- 110
K, =Ko +kTInxy, : €))

where p,° = standard state chemical potential, x,= mole fraction of protein, and y,=activity
coefficient of the protein. Since the chemical potential of the protein at the solubility concentration
is constant, it follows that pt,5° =pt,°+ kT In x,!y,%! = constant. The flux relation given by

Equation (2) is unchanged by adding the gradient of a constant, so the flux can also be expressed as
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D sol D X Yl
= _Q. —_—
kT C v (l.l u ) = C Vin xsol sol @

1 1

One form for the actvity coefficient is [Debenedetti 1984]
Y =Y7e : (5)

where ¥, is the activity coefficient of protein when in the limit of an infinitely dilute solution. If K
is a constant independent of salt concentration and v,” varies with salt concentration, then the

chemical potential of the dissolved protein can always be written in terms of the local ;>

-Kx
1
u‘l’+kT lnxlyl=p‘l’+lenL Y, ( Ca)e ] (6).

p-

_Xxso]
sol _sol _ sol 1
p‘l’+lenxl y; -—u‘l’+lenhx] YT(Csan)“' ]

Although this manner of adjusting'yl"“ to satisfy the solubility constraints is ad hoc, it makes the
mathematics somewhat simpler by absorbing the salt dependence into xls°1 so that substitution of
equations (5) and (6) into Equation (4) gives
x,  Kx, -x7) ,
j=-DC, Vin|Le ' ™
Xy

A quasi-steady mass balance around a growing spherical crystal is

drR X, K -x)
(R )c -rDC-f;lnme ®)
X

1

* where C,; is the molar concentration of protein in the crystal. If the following dimensionless

variables are introduced:
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A=R/R, |
z=R/r=RyA/r €)

1=t Do/ R;‘;
the mass balance becomes
x1 -l((x1 -x, )
X gl =5 e = -Pe(Cy/Cp) |
! (10)

where the relation C; = C;x, has been used and C;, will be taken as 55 molar. Transforming the

equation from an expression for the activity_into a differential equation for x, yields:

sol

sol . dx

a Pe(Cx/CT)+ Kx;—x, /%, ) d;
dz 1-Kx, . ' an

The salt concentration was calculated from the quasi-steady diffusion profile

Goan =Csah',° +ACqyy 2 (12)

where Csah_”# 50 mg/ml, and ACg=C,, ot - Coanr The solubility was assumed to obey the
expression [Feher and Kam 1985]

sol -BCsant
=0¢

X (13)
Combining equations (12) and (13) gives xls°1 as a function of position:
xso) = xSOI e-B ACsahz » (14)

1 1,00

Equation (14) was substituted into (11) to yield
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Pe (C. / AC C Ky s
dx _ e (Cx/Cp+PBAC,, x, —BAC_, Kx x| e

1
dz l-le

(15)

and the initial value problem could then be integrated numerically from the crystal surface (z=1,
x1=x1's‘°l) to infinity (z=0, x,=x, ). The resulting value of x, _ can in turn be used to calculate
the nominal growth rate which would be predicted from the diffusion limit in a uniform salt

concentration field, viz.

Pe =-gi<x| Xy (16)

énd the ratio of the actual and nominal growth rateg was determined as a function of system
properties.

For a dilute protein solution, Kx,;<<1 [Debenedetti 1984}, and can be neglected in the
denominator of Equation (15), while the Kx, term in the numerator will be neglected in order to
obtain an upper bound on the effect of salt rejection on e diffusion rate. In this case, Equation

(15) can be integrated analytically to yield

-BAC_, 2 -BaC_ (z-1) '
R [e - 1:' a7
' . B Acsa]t CT

The value of x, _, obtained from Equation (17) can be substituted into (16) to obtain

BAC,,
Pe=————FPe,, (18)
e salt __ 1

Although the form of the relation between the nominal Peclet number and the actual Peclet
number has been established, the apparent reduction in diffusion rate depends on AC_,,,, which has
not yet been determined. Recall that the quasi-steady salt concentration profile, Equation (12),

was used to obtain Equation (18), but the surface concentration was left unspecified. A mass
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balance on the salt rejected at the crystal surface yields:

dR P :
Y (I-s )Csall,sur f=DsalleIs.+aJl (19)
R .

where s = segregation coefficient of the salt (Csmmsm ! Catysurface)s 0 <8 < 1. In terms of the

dimensionless variables introduced in Equation (9), Equation (19) is

Pe (Dy /Dy ) (1 =9) C s = Coappsurt =€ (20)

salt, o0
so that

1
salt, salt, 1—Pe (DO / Dsah) (1 _ S) (21)

C

ACsa]t = Csall,surf -

For proteins, D,/ D, = 1071, and typical Peclet numbers for lysozyme crystals are less than 6
x 102, The maximum concentration difference occurs when s = 0 (total segrcgation of the salt), in
which case AC_,, <6 x 103 Ca - Atabulk concentration of 50 mg/ml NaCl, this gives
AC_,,<0.3 mg/ml. For the actual growth rate to equal one tenth the nominal growth rate, B should
be approximately 10, but reported values of lysozyme solubility put the value of B closer to 101
[Ataka and Tanaka 1986]. Thus, Pe =0.985Pe__, and salt rejection cannot reduce the diffusion
rate to the point where crystal growth is entirély diffusion controlled.

If the protein molecules are treated as large ions and the protein activity coefficient obeys the
Debye-Hiickel law, the chemical potential of the protein molecules decreases as the ionic strength
increases. This leads to a greater driving force for diffusion and a corresponding increase in
growth rate, a trend which would make diffusion less likely to limit the crystal growth process.
The solutions from which protein crystals are usually grown, however, are too concentrated in salt
for the limiting form of the Debye-Hiickel law to hold and it is unreasonable to expect the protein
molecules to behave like simple ions [Tanford 1961]. The actual form of the acti\'/ity' coéfﬁcient_,

then, may partially acount for the slow growth of protein crystals. Any mechanism which requires
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large gradients in salt concentration due to salt rejection cannot account for the slow growth rate

unless the protein is extremely sensitive to small changes in salt concentration.

Effect of Impurities on Protein Crystal Growth

The presence of dust or other impurities affects protein crystal growth in two different ways: 1)
the dust surface acts as a nucleation site for the protein; and 2) the protein molecules may adsorb to
the surface of the dust particle, thereby reducing the effective protein concentration in the solution.
The nature of the dust surface is too ill-defined to determine quantitafively how the nucleation rate is
affected, so we will address the effect of protein adsorption in this section.

Suppose that there are a certain number of sites, np, on the dust surface to which protein
molecules will bind. Further, assume that the rate at which the protein adsorbs is proportional to
the product of the protein concentration and the concentration of available sites, and that the

desorption rate is proportional to the concentration of occupied sites:

%k
%—=—Cd[kmcpn*-kd(n,r-n*)] 22)

where Cp=molar concentration of protein, C;=molar concentration of dust, n*= number of
available binding sites/dust particle, k,;=adsorption rate constant, and kdé-desorption rate constant.

At equilibrium, dn*/dt=0, and we have

k - n* 0
K= T(E =L Cn b (23)
d n P (1-6 e"-I) CP eq
where 0 is the fractional coverage of the particle surface.
A mass balance on the protein in solution yields:
C,=Cpo- n;C,0 (24)

where Cp  is the original protein concentration in solution. Equation (23) can be substituted into
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(24) so that

KCp
CP,eq= CP 0 n C —-K—éq‘— (25)
which can be solved to yield:
, 2 o
Peq 2K

We can take a typical dust particle to be approximately 0.5 um in diameter, and if the particle is
~ assumed to be completely covered by a monolayer of protein molecules (taken to be cubes with a
length of twice the hydrodynamic radius of 20 A), approximately 5 x 10* protein molecules can be
adsorbed on each particle of dust. This indicates that a 5%(w/v) solution of lysozyme can be
completely depletc& by adsorption if Cg>6.9 x 108 mol/liter, provided that K>>1.

Contamination by dust, then, can serve to reduce the effective protein concentration by a large
amount. As the protein is depleted by the growing crystals, the molecules on the dust can desorb
and replenish the protein concemraﬁon in solution. This would maintain the protein level in the
sohition at a fairly constant level, which might explain the nearly constant rates of growth which

have been observed.

Aggregation of Protein
The state of aggregation of protein in solution affects the crystal growth rate by changing the

rate at which protein diffuses to the crystal surface and reduces the effective concentration of
protein available for growth. The diffusion coefficient of a particle isAinversely proportional to its
hydrodynamic radius, so that the aggregates have smaller diffusion coefficients than monomers and
will diffuse to the surface slower. Additionally, if crystal growth océurs by addition of aggregates

of specific sizes (e.g. monomers, dimers, or trimers), then the formation of non-participating
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aggregates acts as a protein sink,thereby reducing the growth rate. Kam er al. [1978] and Feher
and Kam [1985] have proposed a method for determining a particle size distribution based on
quasi-elastic light scattering measurements and a thermodynamic model of nucleation. The
discussion below is in two parts: (i) an analysis of the experimental measurements, and (ii) a
description of their model.

According to Kam ez al. [1978] and Feher and Kam [1985], a solution illuminated with

incident light of frequency v  will scatter light with a power spectrum given by:

2 Av,
S(V) oc J C. J 27
,z:‘ T -v) 4 (av,? @

where j = number of molecules in an aggregate, v, = frequency of scattered light, Avj =
(2qu2/21t), q = scattering vector, D, = diffusion coefficient of a j-mer, and Cj is proportional to the
number density of the j-mers. The power spectrum obtained experimentally is usually

approximated by a sin gle Lorentzian:

(v, -V )2 + (AV)? (28)

where A is a constant and Av is the effective linewidth of the power spectrum. The parameters A
and Av can be found from a non-linear least-squares fit of the spectrum to the form given by (28)

or by transforming the data into the form

=mx+b (29)

(v.-v. ) (Av)?
+

Y(v) =1/5(v) = yy Y

where m = A}, x = (v, - v )?, and b = (Av)%A. In these coordinates, Av = (b/m)}? and the
parameters b and m can be obtained from a linear least-squares fit of Y(v). The linewidthisa
rough measure of the state of aggregation of the protein because it has a maximum value when the

protein is entirely monomeric, and decreases as the fraction of aggregates in solution increases.
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The amplitude, A, also contains information on the concentration of aggregates: as the number of
aggregates increases, so does the amplitude of the power spectrum. Analysis of experimental data

"in this manner yields only an "average" dcgreé of aggregation rather than information on the actual
size distribution of the protein. Although some sort of average diffusion coefficient can be
determined directly from the linewidth, more detailed infbrr'nation on the particle size distribution
“cannot be obtained from the scattering spectrum alone. For this reason, Kam ez al. chose to
measure how the normalized linewidth, Av*=Av/Av,, éhanges with protein concentration and to fit
the parameters of their model so that the agreement between theory and experiment is maximized.
The resulting particle size distribution, which is consistent with both theory and experiment, may
not accurately represent the true size distribution in solution. As we will show later, the proposed
model is not sensitive enough to discern the ﬁue distribution unambiguously.

The model is based on the thermodynamics of aggregation of monomers to form nuclei of
different sizes. The change in free energy required to form a nucleus from monomers is usually
considered to consist of two contributions: a negative bulk contribution which acts to promote
agéregaﬁon and a positive surface component which arises from the need to support the additional
surface area of the aggrcgaté. The formation of small nuclei is thermodynamically unfavorable
because the free energy change is positive due to the large surface to volume ratio of the aggregates.
As the nucleus grows, the addition of monomers becomes less unfavorable until the nucleus
reaches a critical size beyond which further addition of monomers is favorable. Any nucleus which
exceeds the critical size will grow spontaneously until it reaches macroscopic size. The critical size
of the nucleus depends on how the surface area and volume of the nucieus varies with aggregate
size. For a spherical nucleus, the volume (bulk) is proportional to the number of molecules, j, in
the aggregate, while the surface area is proportional to j%3. The standard free energy change for

the formation of an aggregate from j monomers is

AG;’=0-1)GB+B(1'2”-1)GS (30)

where Gg = bulk free energy per molecule (assumed constant), Gg = surface free energy per .
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molecule (also constant), and § = geometrical factor which gives the surface area per molecule.
The standard state conditions are 1 %(w/v) protein, at the temperature, pH, and salt concentration

of the system. The actual change in Gibbs free energy is then
. .2/3 .
AG;=(-1Gg+BG" -1 Gg-(-DKTInCp (31)

where C; is the total protein concentration expressed in units of %(w/v). Differentiation of (31)

shows that AGj reaches a maximum at the critical size

3

2 ’ |
j*=[ 3 POST ] (32)
In C - Gg/kT -
The equilibrium constants for the aggregation reactions
A+A, == A, ; K= S
j 1 1 i~ C. Cl (33)
i

were obtained from the continuum approximation

o () )
nx < |28 -8S; | d|aG] (34)
i KT 3j| kT

Although this approximation is reasonable for large clusters, it becomes less accurate for small
aggregates such as those which may be present during the pre-nucleation stage. If the expression

for AGJ.° from Equation (30) is substituted into Equation (34), the result is

G G. .
= | 2B ;25 13
InK, = [kT+3kTJ ] _ (35)

Evaluating Equation (35) for j=1 and j—° shows that the equilibrium constants are related to the

free energy terms as follows:
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G
InK_ =--2

T
X G (36)
=253
In (K/K)) =% B 3
Substitution of (36) into (32) leads to
3 .
= In (K _/K,) ' 37
In (K.C))
and the free energy barrier for nucleation is
AGE 1 IN(KJK,) . (KK
kT 2 - K_C, (38)

In*(K.Cp)

Kam ez al. chose to use K, and K /K| as the adjustable parameters in their model.

When AG j*/kT >> 1, the formation of critical-sized nuclei is slow, and the syétem can reach a
state of "quasi-equilibrium"” in which parﬁcles smaller than j* are in equilibrium with each other and
the concentration of larger particles is negligible. The concentration of aggregates during thc.

pre-nucl'eatibn stage was calculated from the quasi-equilibrium approximation:

C=K, G, 6 ; j<*

C.=0 ik

i > 1=) (39)
chfc'r

=1

In order to calculate the quasi-equilibrium distribution, all that is required is to select different
values of K, and-K“,, calculate j* from Equation (37), and solve Equation (39) for the aggregate
concentrations. The distributions obtained from the reported values of K= 0.065 %(w/V)‘l and
K. /K= 35 are shown in Figure 1 for diffgrem protein concentrations.

Once the quasi-equilibrium distribution is known, the approximate power spectrum can be
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calculated by substiruting the Cj into Equation (27) and runcating the summation at j*. Kam et al.
then plotted the normalized linewidth, Av*, against the normalized protein concentration, K,C;, for
different values of K_/K, (solid curves in Figure 2). The normalized linewidths obtained from
experiment were plotted against protein concentration on the same semilogarithmic scale, and then
shifted until agreement between the experimental data and one of the theoretical curves was
attained. The value of K, can be calculated from the shift required to align the experimental and
theoretical curves, while the appropriate value of K_/K is that corresponding to the theoretical
curve. Unfortunately, impoﬁn g this model on the system can lead to erroneous interpretation of
the data. To illusirate the problem, we have created a sample particle size distribution in which the
aggregates cannot grow larger than j=4 and the equilibrium constants are Kl=‘1%(w/v)“,
K= 5%(w/v)1, and K= 3%(w/v)"!. The power spectrum was calculated as a function of
concentration according to Equation (27) and the linewidth was calculated from Equation (29). We
then obtained an approximate fit according to Kam's method described above (Figure 2) and found
that the best-fit parameters are K, = 1%(w/v)! and K_/K,;= 130. The disparity between the trial -
distribution and the best-fit distribution is shown by comparing the fraction of monomer at
1%(w/v) protein concentration: the trial distribution contains approximately 26% monomer while
the best-fit distribution contains essem:iaﬂy no monomer. This method of determining the size
distribution is simply not sensitive enough to differentiate among all the possible distributions

This insensitivity to the actual pai'ticle size distribution is not the only problem with Kam's
model; the quasi-equilibrium approximation breaks down at concentrations in the range of interest
to crystallographers. The quasi-equilibrium approximation is valid only when the free energy
barrier is large compared with kT. At higher concentrations, the free energy barrier is relatively
low (Figure 3) and critical nuclei form rapidly enough that their conccnuatioh cannot be neglected.
When the Quasi-equilibrium approximation is applied in these circumstances, the protein is forced
to distribute itself among an artificially small number of aggregate sizes with the result that the

model predicts large "jumps" in the mass fraction of monomer due to small changes in total protein
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concentration. At concentrations where small changes in prdlein concentration decrease j* by one,
the fraction of monomer increases discontinubusly (Figure 4a). The oscillnatidns seen in the
normalized linewidth (Figure 4b) are a consequence of these mohomer jumpé. The curves in
Figure 2 do not show this behavior because they were terminated at concentrations below those at
which Av¥* starts to increase. |

The thermodynamic model of aggregation presented here is based on two assumptions that can
have large effects on the predicted particel' size distribution. The first is that the protein solutions
behave as ideal solutions. Even though the solutions are dilute, théy'are highly supersaturated and
could deviate significantly from ideal solution behavior. The second assumption is that both the
bulk free energy and the surface free energy remain constant with crystal size. At least in the case
of the surface energy, it would be reasonable to expect some size dependence because it makes little
sense to speak of bulk and surface properties when the aggregates are as small as four or five
molecules. The most likely possibility is that the surface energy is small for small aggregates and
gradually increases until it reaches its macroscopic value. This would make the formation of small
aggregates more favorable and reduce the monomer concentration.

On the basis of the analysis of Kam's work, aggregation of protein cannot yet be eliminated as
a mechanism which slows protein crystal growth. There is enough ambiguity in the experimental
results that the amount of protein in aggcgaies cannot be determined with any confidence.
Definitive studies of particle size distributions or, at the least, average particle sizes under growth
conditions may show whether or not protein aggregation plays an impohant role in controlling

crystal growth. In addition, a refinement of the theory to include size dependent effects may show

~ that the effective concentration of monomer is much lower than curently believed.

Effects of Fluid Flow on Protein Crystal Growth _
Bugg er al. [1984] suggested that the terminal size of the crystals could result from the size
dependence of the natural convection on crystal size. If the force required to break the crystal
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bonds is comparable to that of the shear stress at the crystal surface due to natural convection, then
the flow field may be strong enough to strip protein molecules from the surface. Because the shear
stress at the surface increases with crystal size, this would act as a self-limiting process. We can
determine if this is a likely explanation for the phenomenon by performing an order of magnitude
estimate of the viscous stress based on the velocity profile for a vertical flat plate.

From the velocity profile presented by Schlichting [1979], the shear stress is given by

A /4 1/4
1 =ur~p[%ﬂ:|’ ['\%] C(40)

where: 1=shear stress, p=fluid viscosity, I'=shear rate, g=gravitational acceleration, Ap=density
difference, p_=bulk fluid density, v=kinematic viscosity, R=crystal radius. According to Equation
(1.1), a 1mm diameter spherical crystal in a 5%(w/v) lysozyme solution under unit gravity would
experience a shear rate on the order of 100 s1. This analysis ignores the effect of the Schmidt
number, Sc=v/D, on reducing the shear rate. At high values of Sc, such as Sc=10* for lysozyme,
I" would be much smaller than the value obtained above [Schlichting 1979]. Nevertheless, if we
use I'=100 s°!, any effect of fluid flow on protein crystal growth will not be prematurely ruled out.
The shear stress acting on the crystal surface in a solution where p = 1 x 10-3 Pa-s is approximately
0.1 Pa. If we take Fiddis' [1978] approximation of the lysozyme molecule being a cube 30.9 A on
a side, th_en the shear force acting on the molecule is approximately 1018 N

We can take Fiddis' [1978] value of the surface energy (7.5 kJ/mol) as representative of the
strength of the crystal bond, but the form of the potential is still unknown. For want of a better
estimate, we approximate the potential as a Lennard-Jones 6-12 potential with ele-ctrostatic'

interaction:
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where A and B are constants for the particular bond of interest, q, and q, are the partial charges on
the atoms in the bond, € is the permittivity of free space, and r is the separation between the atoms.
Haglcr et al. [1974] determined the values of A, B, q,and q, for the bonds in amide crystals and
found that the form of Equation (1.2) accounted adequately for the observed interactions. From the
values of A, B, and q reported by Hagler et al., the bond energies were calcula.ted from the valu_c of
U at the eqﬁilibrium separation (where F = -dU/dr = 0) and the maximum attractive force was
calculated by determining the force where dF/dr = -d2U/dr? = 0. The bond energies ranged from
-0.3 kJ/mole for the bond between the carbonyl carbon and the amino hydrogen, to -29.5 kJ/mole
for the bond between the carbonyl carbon and carbonyl oxygen. The bond with an energy closest
to the~ 7.5 kKJ/mole reported by Fiddis is that be‘t@ec:n hydrogen-and nitrogen, which has a strength
of 5.6 kJ/mole and requires a méximum force of 2.2 x 101! N per bond to break. If the
electrostatic ﬁotential is néglected, then the bond with the lowest breaking force is that between a
hon-carbonyl carbon and the amino hydrogen, which requires F=8.3 x 10-13 N/bond to break.

The force generated by free convection is approximately six orders of magnitude too small to strip
molecules from the crystal surface.

Even though the shear stess cannot remove molecules from the surface, it may impart some
preferred orientation to the molecules near the surface so that they are unable to find the proper
alignment for addition to the crystal. To test this hypothesis, we compare the characteristic rates of
the processes: if the velocity gradient at the surface tends to align the protein molecules in a

’ preferred orientation, it acts at a rate which is comparable to the shear rate, I'; the characteristic
rotational rate is givén by the rotational diffusion coefficient, D, , = kT/8nuR3, where R is the
hydrodynamic radius of the protein [Tanford 1961]. The hydrodynamic radius of lysozyme is
approximately 20 A [Tanford 1961], so ADm =2x 107 .S'l while the shear rate is certainlyA less than
100 s°1, so the ratio of rotational and shgar rates is 2 x 10°. This indicates that randomization of
the protein molecules occurs much faster than any orientation imposed by the shear flow. Once the

molecule has reached the surface and formed some sort of bond, however, the situation is different
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because the molecule is constrained at the binding site. If an improperly oriented protein molecule
bonded to the surface, it would be possible for other protein molecules to orient themselves
properly with respect to the first molecule. In this manner, the crystal would be made up of regions
with the same local orientation and the average ordering for the crystal as a whole would be
reduced. If the crystal does not consist of this ensemble of regions, it would indicate that some
ordering takes place, possibly due to the electrostatic interactions between charged groups.

The effects of electrostatic interactions on the interatomic potential were mentioned only briefly
above, but they exhibit a strohg influence on the nature of the bonds. The electrostatic contribution
is large compared with the other components of the hydrogen bond, so it is important té know the
length scale over which it acts. The natural length scale for electrostatics is the Debye shielding

“length, xl:

172

1o eg kT 12 (42)
2000N,Z ¢

where e=dielectric constant of water, k=Boltzmann's constant, T= absolute temperafure,
N,=Avogadro's number, Z=charge on ion, e=electron charge, and I=ionic strength. The Debye
length is approximately 3 A for 50 mg/ml NaCl, which indicates that the effects of the electrostatic
potential are substantially reduced when the atoms are separated by distances greater than the typical
bond lengths reported by Hagler e al. Any orientation due to electrostatic interactions, therefore,
would occur when the incoming protein molecule is practically bonded to the crystal surface.

The denaturation of proteins by the shear field was suggested by Marc Pusey in a conversation
with M. L. Grant. The following model, suggested by W. B. Russel of Princeton University, was
- used to investigate the possibility of shear-induced denaturation. If the protein molecule must be in
a ﬁanicular conformation in order to bind to the crystal surface, crystal growth may be hindered if
the shear stress due to fluid flow is sufficient to change the protein's conformation. For this

analysis, consider a molecule of protein to be spherical as shown in Figure 5. The molecule is
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maintained in this conformation by a single hydrogen bond placed at point A and is "hinged" at
point B. If the shear forces onl the molecule are sufficient to break the bond at A, the molecule wi]i '
open up in the yz plane and the moiccule will be unable to bond to the surface. The force on the
bond at A can be determined by calculating the torque about B due to creeping flow past the sphere
and determining the equivalent force to place at A.

Over any element area on the molecular surface, the magnitude of the torque is given by
but only the cbmponem in the Ix direction contributes to opening the hinge in the y-z plane, so the

appropriate expression for the x component of the torque is
dTy =r (1, R7sin 8 dO d¢) sin ot sin ¢ | 43)

From geometrical considerations, o = 6/2, and r = R{2( 1 - cos 6)} 1/ 2, while T4 = (3uv,/2R)sin6
[Bird, Stewart, and Lightfoot 1960]. If the integration of Equation (1.5) is carried out over half a

‘'sphere (0 < ¢ < x, 0 €0 < 7), then the x component of the torque is

: nn
2 . : 2
3 Tx= —L"“mf/; . ” sin’® (1= cos )17 sin & sin ¢ do d6 = SR .. (@a4)
- 00

and the corresponding force due to flow around half the sphere is 3nRuv, /4. The force, F, on the
hydrogen bond is twice the force due to flow around half the sphere,

F= 20 @5)

which must equal the breaking force of the hydrogen bond if the molecule is denatured.

From Hagler et al., the weakest amide crystal bond (in the absence of the clecﬁostaﬁc
contribution) has a breaking force of 8.3 x 1013 N, which would require v_ = 9 cmy/s to break the
bond. This velocity is approximately two orders of magnitude greater than the free convection

velocity one would estimate from the case of the vertical flat plate, and is certainly greater than the
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velocity attained in the systems of interest. Furthermore, this is a worst case scenario since ghe
weakest possible bond was chosen and only one hydrogen bond was permitted. In reality, the
electrostatic contribution would strengthen the bond and there are many internal hydrogen bonds.

The analyses above indicate that viscous stresses due to natural convection are insufficient to
disrupt crystal growth by stripping molecules from the surface, orienting molecules at the surface,
or denaturing the protein as it approaches the surface. It is difficult to construct another mechanism
by which the flow field can influence protein crystal growth except by altcrihg the mass transfer

rate to the crystal surface

Effect of Mass Transfer Rate on Protein Crystal Growth

- The growth rate of tetragonal lysozyme crystals from solutidn (pH 4, salt concentration of 50
mg/ml NaCl, 22° C) was measured by Pusey et al. [1986]. For small crystals (less than 70 pm in

length), the growth rate was found to obey the relation

Lol 2 .
dt C :

where R is the crystal radius, C; is the protein mass concentration at the interface, Cg=1.7 mg/ml is
the solubility mass concentration under these conditions, and k=1.46 x 10? cm/s. No explanation
of this unusual concentration dependence is given except that Schlichtkrull [1957] observed a |
similar behavior for insulin. The interfacial concentration calculated from their model of convective
mass transfer was essenﬁally the same as the bulk concentration. As we will show by means of a

_ qﬁasi-steady state analysis; the crystal sizes studied were too small for appreciable size effects to be
evident and no reliable measurements have been made on larger crystals. Any discussion of
growth rates of large crystals, then, is based on the extrapolation of small crystal measurements and
should be considered speculative at best.

The crystal growth rate given by Equation (2.1) must also equal the volume flux to the crystal

.23 -



surface:

'dR_D € -
dt Cy or| _. (47)
R -
where C,=725 mg/rrﬂ is the mass concentration of protein in the lysozyme crystal (corresponding
to 50% solvent by volume [Matthews 1968, Bﬁgg et al. 1984]). Note that the crystal shape has
been approximated as spherical. The concentration gradient at the crystal surface can be expressed

as

oC/or |, b

-aa% = -aa—(r:- . = = Shy (48)
el R, diffn  OCRr|p Lo R, diffn

where Shy, is the Sherwood number based on the crystal radius and is given by the Ranz-Marshall

correlation:

Sh. =1+0.3 scPGe!

R-.V
Sc==
D - (49)
Gr=SRE4p

When the crystal grows by diffusion in a quasi-steady manner, the concentration gradient at the
_ surface is given by
aC C.-Ci

or = TR (50)
R, diffn .

" Equating the two expressions for crystal growth given in equations (46) and (47) and making use
of equations (48) through (50) yields
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C
= == i (140386 (51)

where Da=kR/D. Equation (51) can be solved for the interfacial concentration C; as a function of
size in order to determine the dependence of growth rate on crystal size. When g = 0 (no buoyancy

driven flow), Equation (51) can be solved for C; explicity to yield

. -1+2Da (C,/Cy) + J 1+ 4 Da (C,/CYIC,- C5)/Cq)
‘ 2 Da (Cy/Cy)

(52)

The results of these calculations are given in Figure 6a, while the corfesponding growth rate
calculated according to Equation (46) is shown in Figure 6b. |

As shown in Figure 6a, the interfacial concentration is essentially equal to the bulk
concentration over the entire size range studied by Pusey er al. whether or not natural convection is
present. The surface concentration and growth rate for crystals larger than 70 pum are strictly
extrapolations. If the crystal continues to grow at a nearly constant rate (broken lines), it would
indicate that natural convection is sufficient to maintain the surface concentration at the bulk level so
that crystal growth is entirely kinetically controlled. If convection is suppressed, a decrease in the
growth rate from the small-size limit indicates that transport plays a role in controlling crystal
growth as the crystal grows larger (solid lines). By the time a crystal growing from a 5%(w/v)
solution of lysozyme has reached 1 mm in diameter, the growth rate has fallen to approximately
25% of its initial value. Similar results can be seen for growth from 1%(w/v) lysozyme solution.
A rough indication of the relative importance of diffusion and kinetics can be obtained from the
slope of the growth rate vs. crystal size curve (Figure 6b). The slope is zero when mass transfer is
infinitely faster than interface kinetics, and the slope approaches -1 as diffusion begins to control
the growth rate. From the curves in Figure 6b, it is clear that most crystal growth occurs in the

transition region when both processes are important.
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Quasi-steady models of this sort cannot predict the cessatibn of growth which has been -
reported [Kam er al. 1978, Feher and Kam 1985] because the:y do not include any mechanism
which would reduce the ability of protein molecules to attach to the surface. The current data on the
effect of mass transfer rate on crystal growth afe not sufficient to determine if mass trénsfer plays a
role in limiﬁng crystal size. If crystal defects occur because natural convcction.maimains the
interfacial concentration at excessive levels, the simplest remedy may be to grow crystals from less
concentrated solutions, in which case, the growth of high quality crystals may depend on the
trade-off between growing lairge crystals and growing them quickly.

Termination of Growtﬁ _

Growing sufficiently large crystals is often the limiting step in protein crystallography.
Genefally, protein crystals reach some terminal size beyond which they do not grow, even when
they are transferred to a fresh solution of protein [C. Schutt 1986, personal conversation]. Several
growth-ending mechanisms involving the effecté of fluid flow were examined in Section 1 of this
work, but they hasdly exhaust the list of possible explanations. For example, the solution
conditions may change during the .course of crystal growth so that a transformation of the dissolved
protein occurs. Cole et al. [1964] measured the pH of lysozyme solutions and found that during
~ the course of crystallization, the pH increases by approximately 0 - 0.4 pH units from original
values between pH 2.5 and pH 4.6. Ataka and Tanaka [1986], on the other hand, report a slight
decrease in pH from solutions of pH 5 or higher which they attributed to absorption of carbon
dioxide from air. Association of lysozyme molecules which might account for the lack of growth
in the original solution has Been observed in the range of pH 4.5 - 6.5 [Sophianopoulos and Van
Holde 1964, Bruzzesi er al. 1965]. This mechanism, however, cannot account for the lack of
growth when the crystals are placed in a fresh bath of protein unless the pH change also makes an
irreversible change in the state of the protein on the crystal surface.

The steady accumulation of errors suggested by Kam [Kam et al. 1978, Feher and Kam 1985]
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would explain why crystals stop growing, but the theory has not been verified. Experiments which
study the relation betweén crystal size and defect concentration are necessary to confirm the validity
of Kam's hypothesis: if diffraction resolution does not increase with crystal size as expected, or if
the resolution actually decreases, the accumulation of errors would be a suitable explanation.
Finding a relation between defect concentration and crystal size, however, is not enough to explain
how defects dccur. To do this, a aetailcd study of the growing crystal is required so that local
conditions such as interfacial concentrations of protein, precipitant, and hydrogen ion can be
followed over the course of crystal growth. Such measurements, along with crystallographic
studies of crystal ordering may provide some insight into the processes which terminate crystal
growth.

The mechanisms by which defects accumulate have not been studied because previous
researchers worked only with small crystals (less then 70 um in length) [Fiddis 1978, Pusey et al.
1986]. Crystals this small would not produce strong size-dependent effects on the protein flux (see
Ranz-Marshall correlation, Equation (2.4) ) and probably have a low concentration of surface
defects. It follows that the kinetic expressions for the growth rate obtained from these
measurements are incomplete because the role of defects has been neglected. Growth rate
measurements taken over the full range of crystal sizes would provide information on the
accumulation of defects and possibly on the evolution of any buoyancy-driven convection. The
results of these experiments could then be used to evaluate the effect of natural convection on

protein crystal growth and to explain why defects inhibit crystal growth.
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FIGURE 1 - Quasi-equilibrium size distributions
These distributions were calculated from the quasi-equilibrium approximation
given by Equation (39) when the critical size is calculated from Equ=tion (37)
with K, = 0.065/%(w/v) and K.. /K, = 35.
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FIGURE 2 - Best-fit of trial size distribution

Figure shows approximate best-fit of trial distribution
obtained in the manner of Kam et al. and Kam and
Feher. Solid curves were obtained from the quasi-
equilibrium distribution for the values of the parameters;
the linewidth was calculated from Equation (29). The
open diamonds were calculated for the trial distribution.
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FIGURE 3 - Free energy barrier to nucleation
The maximum free energy required to form nuclei of
critical size is calculated from Equation (38) for the
reported values of K, = 0.065/%(w/v) and K, /K; =35.
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FIGURE 4 - Effects of quasi-equilibrium approximation at high concentration

(a) At concentrations where small changes in total protein concentration
reduce j* by one, the amount of monomer in solution jumps
discontinuously. - ' :

(b) The abrupt changes in monomer concentration affect the linewidth by
making the system more monodisperse.

All calculations were based on j* calculated from Equation (37), quasi-

equilibrium concentrations calculated from Equation (39), and linewidths

calculated from Equation (29).
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FIGURE 5 - Denaturation of protein molecules by fluid shear.
(a) Protein molecule in spherical (normal) conformation
(b) Protein swinging open under influence of shear
(c) Definition sketch showing coordinate system for calculations
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FIGURE 6 - Surface concentration and growth rates of lysozyme crystals
(a) Quasi-steady surface concentration of lysozyme when growth
obeys the relation given by Equation (46).
(b) Quasi-steady growth rate when growth obeys relation given
by Equation (46). - _ '
Growth rate constant reported by Pusey et al. to be k = 1.46x 10-%cmys.





