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ABSTRACT

We investigated the influence of transport phenomena on the
morphology of crystalline materials. Two problems were studied:
one dealt with the effects of convection on the crystallization
of pure materials, the other with the crystallization of proteins
from solution. In the first study we were interested in how
convection alters the stability of the growth process and the
relation between undercooling and the growth speed. In the
second, we sought to find out why protein crystals grow as slowly
as they do and how crystal morphology depends on the growth rate
and crystal size. In both studies the research focussed on
developing fundamental data that is a prerequisite for any
microgravity experiments.

In the study of dendrite morphology, a computation scheme was
developed which simulates the evolution of a needle-shaped
crystal in an undercooled melt in the presence of convective heat
transfer. The algorithm provides a model of crystal growth which
includes the physical processes currently thought to govern
growth. The only approximations are those necessary to the
numerical solution of the equations, i.e., representation of the
solution at a finite number of "points" using a boundary integral
method for tracking the interface. We did not resort to
linearization nor did we assume quasi-static behavior of the
temperature field. Thus, the evolution of the interface can be
tracked in space and time to ascertain its form and stability.
The algorithm was used to study the influence of convection arid
interfacial energy (the Oibbs-Thompson effect) on growth
processes.

A new class?, of steady state? shapes was found for growth in the
presence of fluid motion. The relation between growth rate,
undercooling, flow strength, and the other parameters was
derived. The relation reduces to the well-known Ivantsov form
when convection is absent. The stability of these shapes, as
well as those found in the absence of convection, was
investigated by following the non-linear evolution of the
interface after it was perturbed. These interfaces were always
unstable; and the well-known tip-splitting instability appeared.
Adding the effect of interface curvature on temperature <the
Gibbs-Thompson effect) produced new interface configurations,
which were almost paraboloidal. These shapes were always stable.
These results are contrary to those found in connection with
either the theory of marginal stability or microscopic
solvability. The reasons for this are unknown. The algorithm is a
solution of the full non-linear problem so some discrepancies are
to be expected. However, the qualitative difference in behavior
deserves further study and the numerical algorithm should be
carefully checked. If the numerical algorithm is indeed error
free, then currently accepted theories will need revision. One
paper derived from this part of the study has been published in
Physical Review A, others are in preparation.
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The work on protein crystal growth was not carried as far as
that on clendrite morphology due to the need to develop
exper i mental apparatus. In the -first part of this study the
influence; of fluid motion and other transport processes was
investigated. Theoretical work disclosed that flow processes
appear to be too weak to slow crystal growth or cause it to
terminate. Criteria were developed to indicate when diffusion
rates would begin to influence crystal growth. According to the
criteria, none of the extant studies on growth kinetics could
have been limited by transport rates. In each case, observations
ceased before the crystals had grown large enough for diffusion
to play a significant role.

With the results of the theoretical study in hand, we
proceeded to develop apparatus to measure growth rates of single
protein crystals. Apparatus was constructed to grow single
crystals on a sting under carefully controlled conditions and
record the growth process with a digital imaging system. We
believe it is imperative to study growth processes quantitatively
in systems where crystals are allowed to grow to the size (larger
than O.lmm) where mass transfer effects could be important. These
studies should include measurements of structure designed to
ascertain whether or not there are changes associated with the
growth rate itself. At present, we are ready to proceed with the
experimental study and have arranged to collaborate with a
protein crystallographer in Princeton's Chemistry Department.



SUMMARY g<...CONCLUSIONS

DENDRITIC CRYSTAL. GROWTH IN THE PRESENCE OF CONVECTION

Backgr oitnd

Extant theories of crystallization deal primarily with
diffusion controlled growth. However, experimental work on the
crystallization of a model compoundII13 shows that natural
convection has a strong influence at low undercoolings. This is
particularly vexing since low undercoolings are of interest when
one seeks to establish a correspondence between theory and
experiment for dendritic growth. Low undercoolings promote slow
growth and crystals with large tips, which make photographic
studies easier. Accordingly, it has been suggested that
experiments in a microgravity environment would enable one to
test theories under relatively quiescent conditions. Current
theories omit convective transport, however, and it is clear that
a general understanding of the role of convection is necessary.
Indeed, natural convection is always present in the terrestrial
environment arid it might be advantageous to add forced convection
to alter the growth process. The presence of convective
transport makes the theory much more complicated, especially when
the flow is generated by buoyancy driven motions due to the
i n e v i t a b 1 e c o u. p 1. i n g h e t w e e n t. h e e q u a t i o n o f rn o t ion a n d t. h e
temperature (or concentration) field. Nevertheless, a rigorous
theory which includes convective transport would be extremely
useful. A theory describing the effects of forced convection is
a logical step towards developing a comprehensive understanding.

Summary Of Completed Hork

We studied situations where forced convection is aligned with
the crystal axis. The detailed results of that study are
contained in a PhD thesis by P. J. Beaghton. A paper on our
steady state model was published in Physical Review A ( copies of
the thesis and the paper are appended to this report) and papers
dealing with the steady state model and our tracking scheme were
given at meetings of the American Physical Society Division of
Fluid Dynamics and The American Institute of Chemical Engineers.
Other papers are in preparation.

Ivantsov's theory deals with the growth of needle-shaped
crystals in a pure, subcooled melt but no allowance is made for
the effects of interfacial energy on the melting point <the
Bibbs—Thompson effect) or convective heat transfer.
Nevertheless, this theory depicts many features of the growth
process correctly, so it is the logical vantage point from which
to consider other factors. Recently, the influence of
interfacial energy ("surface tension") and anisotropy have been
studied and a theory known as "microscopic solvability" developed
[2-6:.



To investigate the influence o-f convection, we -first looked
into the steady state growth of an axisymmetric crystal. Using
the integral equation describing growth of an isothermal crystal
in the presence of forced convection aligned with the crystal
axis, we uncovered a new set of steady, self-similar solutions
analogous to those? of Ivantsov, VIE., paraboloids of revolution.
Here the flow is represented by an exact solution to the
Navier—Stokes equations in the Qseen approximation; the
convective terms in the energy equation are taken into account
rigorously. A relation between the growth rate, undercooling,
and strength of the imposed flow was derived. It reduces to the
Ivantsov result in the absence of convection. We calculated the
effects of the flow strength on the Peclet number-undercooling
relation and, as expected, there is.a strong effect. To
establish the relation between growth rate, tip radius,
undercooling, and flow strength, however, another expression is
needed, just as was the case with the Ivantsov theory.

To develop the second relation needed to set the tip speed we
could have reworked the microscopic solvability theory (assuming
it is the correct approach) in a form which includes convection.
We did not do this. First, it is not yet proven that microscopic
solvability will explain the selection of tip speeds and si;-:es
observed experimentally; more experimental results are needed
with materials having different degrees of anisotropy. In
addition, it is not obvious that flow alters events on the
submicroscopic scale of the capillary length in a significant
fashion. It may be that microscopic solvability is unaffected.
T'nis is certainly an important issfte but some understanding of
the global character of the problem should be obtained first.
Thus, our efforts are directed towards developing a numerical
scheme in which convective transport and non-linear effects are
taken into account so as to enable us to track large scale
interface motion.

A rather general numerical algorithm was developed to compute
the motion of an axisymmetric crystal. (The algorithm is
described in Beaqhton's PhD thesis.) For example, with the
algorithm we can start a needle shaped crystal in the steady
state configuration determined by diffusion and convection, add
surface tension and track the system as it moves to its new
steady state shape. This solution gives the shape of the
interface and the relation between the various parameters in the
presence of flow and capillary effects. Then the interface can
be perturbed and the stability of the new state ascertained.
Perturbations can also be added arbitrarily during the evolution.

Our numerical algorithm mitigates, to a substantial degree,
the prohibitively large cost and storage? requirements of other
PDE solvers when applied to this sort of problem. The technique
is based on the transformation of the transient
convective-diffusion equation and the equations of motion for the
fluid and the interface into a boundary integral problem.
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Accordinqiy? th™ major part of the computational effort is the
evaluation of integrals. Traditional PDE integration schemes
such as finite differences or finite elements would require
discretization of an infinitely large domain and the subsequent
calculation of internal values of the temperature that are
increasingly less relevant as one moves away from the solid-melt
boundary. Our method is superior to the aforementioned
techniques since the internal points can be distributed in an
optimal fashion and efficient schemes are available to evaluate
integrals. We recalculate the perturbed flow and temperature
fields as the system evolves. Interface shape is calculated
explicitly at each time step and regridding avoided.

Thus far we have:

Established that the computation method is "stable" and
"converges" as the size of the time step is reduced and the
number of points on the interface increased. In several tests
we set the system on steady state solutions derived from either
the Ivantsov theory or our convertive theory. The system was
then allowed to evolve (in time) without adding any sort of
perturbation. The robustness of the algorithm was apparent
from fact that the system stayed on the original solution.

I n v e s t i g a t. e d t h e s t a b :i. 1 :i. t y o f t h e I v a n t. s o v s o 1 u t i o n < w h :i. c h
makes no allowance for interfacial energy or convection).
S i n c e this c o r i f i .9 u r a t i o n is k n o w r i to be u n stable to
infinitesimal perturbations it hardly comes as a suprise to
find it unstable to finite amplitude perturbations.

Investigated the stability of interface shapes present when
there is forced convection taut no surface tension. They were
unstable and small, finite amplitude perturbations grew without
bound in the situations studied. Figure? 1 illustrates the
results of calculations in the absence of surface tension.
Note the presence of "tip splitting".

Tracked the evolution from the Ivantsov solution to a state
where the Bibbs-Thompson (interfacial tension or energy) effect
was present. We also added anisotropy, in part. At present our
algorithm is restricted to axisymmetric shapes, which precludes
exact computation of anisotropic phenomena. Therefore we simply
added a term analogous to that used in 2-dimensional
calculations, i.e., the surface tension was made to depend on the
angle between the local normal to the interface and the crystal
axis. In the calculations done thus far the effect of this sort
of "anisotropy" was small.

Investigated the stability of steady state solutions
representing the effects of convection and surface tension. In
the cases studied thus far, the system was stable to finite
amplitude perturbations.
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FIGURE 1 - A diagram showing evolution of a tip splitting instability on an
axisymmetric crystal. Heat transfer is by diffusion and convection, surface
tension is absent. The diagram was produced by the numerical algorithm that
solves the time-dependent integral equation for the evolution of the
crystal interface.



-9-

The Current State-Qf-Affairs •

We have constructed a new steady state theory which accounts
for the effect of forced convection on dendritic growth. It
shows that heat transfer by forced convection has a strong
influence on quantitative aspects of dendritic growth but the
qualitative features remain unchanged, i.e. the shape remains a
paraboloid of revolution in the absence of the Gibbs-Thompsan
effect.

A new algorithm has been developed to track the non-linear
evolution of a dendritic interface. The scheme accounts for
effects of convection and surface .tension with axisymmetric
crystals. At present, we can study effects due to the strength
of the external flow, the? degree of supercooling, the amount of
surface tension, and, in a somewhat ad hoc fashion, crystal
anisotropy. However, only a relatively small number of
situations have been investigated to date and we have not yet
looked at regions very close? to the tip of the dendrite in any
detail. It should be possible to examine questions of
"solvability" in a dynamic sense by computing the interface shape
in more detail near the tip. Furthermore, the code can be
expanded to cover non-axisymmetric growth by allowing for
azimuthal variations in the shape of the interface and the
velocity and temperature fields,, This would allow us to account
for anisotropy in a rigorous fashion.

PROTEIN CRYSTALLIZATION

Background

The crystallization of proteins is a key step in determining
their molecular structure from x-ray crystallography, but the
precise conditions under which a newly isolated protein will
crystallise are unknown and must be found by trial and error over
a wide range of pH, ionic strength, and protein concentration.
Because proteins often form crystals which are too small or too
disordered to diffract, well, finding crystallisation conditions
is no guarantee that the resultant crystals will be suitable for
x-ray analysis. It has been suggested that growth of suitable
crystals is sometimes the limiting step in obtaining structural
informationC73. Thus, if the reasons for such contrary behavior
were known, it might be possible to optimize growth conditions to
produce higher quality crystals for structure determination.
Convection, in one form or another, has been observed to inhibit
growth but results are still fragmentary C81. If convection
turns out to inhibit growth in general or alter crystals in other
deleterious ways, then experiments in quiescent environments
could lead to improved crystals. A microgravity environment,
where convection and sedimentation are reduced compared to the
terrestrial milieu, might provide a suitable venue.

An intensive study was begun by scientists at NASA and at
several universities to see what advantages might accrue. The



overall effort is coordinated through Dr. Robert Snyder, Chief.
of the Biophysics Branch at MBFC* As the work unfolded,/ 'it-was
found that knowledge of the kinetics of protein crystallisation
i s m e a g e r c o m p a r e d t o t h a t for i n o r g a n i c c r y s t a 1 s. F o r e ;•; a m pie,
until recently there was no phase diagram for lysozyme, one of
the most widely studied proteins, or any other protein. Hence a
considerable part of the overall effort is devoted to very basic
studies. Our study belongs to this class.

The work at Princeton was done by Mr. Marshall Grant, a PhD
candidate. Because the field is moving rapidly, we kept in close
contact with others working on the problem. An extensive
presentation was made to NASA scientists and their collaborators
on protein crystallisation in March of 1987. The purpose of the
meeting was to set out our; plans to insure that we had a viable
approach and would not duplicate work already in progress. The
meeting was chaired by Dr. Snyder. Others in attendance were Dr.
R. Naumann, Chief Scientist at the Space Science Laboratory, Dr.
Charles Bugg, Director of the Center for Macromolecular
Crystallography at the University of Al abama (Bi rmingharn) , Dr.
Franz Rosenberger, Director of the Materials Research Center at
the University of Alabama(Huntsvi1le) and members of their
research groups. Our plans were given strong endorsement. More
recently (August of 1987), Dr. Marc Pusey of MSFC visited our
laboratory to inspect the experimental set-up; Dr. Ray Salemme, a
protein crystal 1 ographer at E. I. Du.Pont visited us in September
to present a seminar and discuss our work.

The study of protein crystallization is difficult because
protein molecules ar€-: extremely complex 'and there are strong
intramolecular interactions in addition to interactions with
solvent molecules and other proteins. It is often difficult to
determine the state of a protein system because the
physicochernical data (phase diagrams, activity coefficients,
diffusion coefficients, state of aggregation, etc.) have either
not been determined or have not been published. There? are?
conflicts between data reported by different workers. For

example, at pH 4, 2OUC, and 50 mg/ml NaCl, the reported values
for lysozyme solubility range from 1.7 mg/ml C93 to 4.3 mg/ml
CIO,113. Pusey and Gernert C12II recently found that the
solubilities of the prthorhombic,and tetragonal forms are quite
different, although differences between the molecular structures
in the two forms are minorC133. This lack of data makes it
almost impossible to draw general conclusions regarding growth
behavior and its relation to the quality of the resultant
crystals. In the absence of verifiable relationships between
system conditions and crystal properties, the protein
crystallographer is forced to rely on intuition and repetition to
obtain suitable crystals. Some proteins, moreover, have not
yielded satisfactory crystals despite these efforts.

The small size and inherent disorder of protein crystals are
two major concerns. A third, related, point is the question of
conformation changes upon.crystal 1ization and their effect on
protein crystal growth.
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In the remaining part of this section we summarize results of
an extensive survey made to clarify issues connected with the
role of transport processes. Then we describe the apparatus
constructed for our work.

Summary of Completed Mork

Our initial effort focused on understanding why protein
crystals grow slowly and terminate growth at relatively small
sizes. Theoretical investigations were made of: (i) effects of
fluid shear on protein binding; (ii) association of protein
monomer in the bulk; (iii) sa.lt gradients; (iv) contaminants; and
(v) interface kinetics and mass transfer. The gist of our
findings is described next; the full report is reproduced in the
appendix.

Based on the experimental observation that crystals grown from
stirred solutions tend to be smaller than those grown from
quiescent solutions, crystallographers have recently sought to
explain the small size of protein crystals in terms of various
forms of convection. In particular, buoyancy-driven flows have
attracted attention as a disruptive mechanism in protein crystal
growth. We examined several scenarios wherein convective flows
might interfere with the normal binding of protein molecules to
t h e c r y s t a 1 s u. r f a c: e a n d f o u n d t h a t the fluid velocities w h i c h
arise from density differences are too small to produce the
proposed effects. Specifically, under "normal conditions" shear
from natural convection appears insufficient: (i) to denature
individual protein molecules or strip protein molecules from the
crystal surface (the bond strength is too large to be affected by
the relatively weak drag force); or (ii) to impose a preferred
orientation on protein molecules at the surface (rotational
diffusion quickly eliminates any bias due to shear).

Association of monomer may reduce concentrations significantly
in the bulk and this would reduce growth rates but extant
experimental techniques are not able to resolve the issue
unambiguously. Salt gradients due to salt rejection at the
crystal-f1uid interface appear too weak to influence diffusion
rates significantly. Contaminants which adsorb protein may
reduce the protein concentration in the bulk significantly but
experimental studies of contaminant effects are lacking.

As crystals grown in more—or-less quiescent environments get
larger, the protein flux due to natural convection becomes much
greater than the diffusive flux. At this point convective mass
transfer effects may affect crystal growth. According to our
calculations, previous work on protein crystal growth kinetics
was done on crystals which were top small for convective effects
to be significant insofar as mass transfer rates are concerned.
Simply stated, it was. shown that with the small crystals used in
the quantitative studies, diffusion was so rapid that the
interface concentration remained unchanged at the initial bulk

ORIGINAL PAGE IS
OF POOR QUAUTY
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value throughout the growth period. Thus, the extant kinetic
data do not indicate whether natural convection plays a role,,

Nevertheless, experimental work tay PuseytOH shows an
unambiguous effect of fore:EH.:! convection on the rate of growth of
lysozyme crystals. We believe it is imperative to study growth
processes quantitatively in systems where crystals are allowed to
grow to the size (larger than O.1mm) where mass transfer effects
could be manifest. These? studies should include measurements of
structure designed to ascertain whether or not there are changes
associated with the growth rate itself.

At this point we turned to the design and construction of
apparatus to study the reel at ion between growth rate, size and
structure?. The apparatus for this was purchased and assembled
using funds from a Shell Foundation Institutional Grant to
Princeton University.

Our intention is to examine the effect of crystal size? on the
growth and quality of a single crystal. Published experiments on
the kinetics of protein crystal growth have been confined to
crystals which are too small to exhibit significant size effects.
The experimental procedure used to date (which involves
introducing supersaturated protein solution into a sample cell,
nucleating crystals on the sides of the container, and
ph otog rap h i ng t he g rowi ng c ry st a1s) has severe limita t ions.
First, only those crystals which are properly oriented with
respect to the camera can be measured. Second, the crystals are
often crowded so that the effects of neighboring crystals are
significant and only average growth rates can be obtained.
Finally, the surface of the sample cell probably alters the
growth rate so that the behavior of an isolated crystal suspended
:i. n so 1 u.t i on i s st i 13. un k n own .,

We designed our experimental apparatus (Figures 2. and 3) to
avoid the limitations listed above. Individual crystals are
nucleated on a glass fiber "sting", which is then mounted on a
microtranslator to provide "xyz" motion for positioning the
crystal in the eel 1 5 a\ single rotator orients the crystal about
the vertical axis. The sample cell i-s approximately 2 cm on a
side to reduce wall effects. Once the crystal is in position,
digitized images of the crystal can be captured at specific
intervals using a video camera. This provides electronic, time
sequenced images of the growing crystal. The capture time is
1/3O s and as many as six separate frames can be stored in the
computer RAM and a video frame buffer. Writing each frame to
disk can take about 10 seconds, but this does not present a
serious limitation because most of our work will be in the size
range where the time between images will be considerably longer
than the disk access time. (This results from the combination of
slow growth rates and relatively low magnification required to
examine crystals larger than 100 microns in diameter.)

The Mitutoyo FS50 microscope and objectives are capable of
magnifications between 2X and 100X with a minimum working
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A) Side View
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FIGURE 2 - Experimental apparatus for the protein crystal growth experiments.
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Growth Measurement Assembly

General Layout

FIGURE 3 - Photographs of the experimental equipment for protein
crystal growth.
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di stance o-f 20.5mm. Thus, growth measurements o-f a crystal
suspended in the chamber can be made without di f-f i cu.l ty over the
entire size range o-f interest. The microscope is mounted on a
rack and pinion track to allow coarse -focusing of the crystal
image, while the microscope's -focus adjustment will be used -for
•fine focusing of the crystal image. A Hitachi KP-232 MOS camera
sends the image to the video digitizing board (Matrox PIP-640)
where it can be analyzed using an IBM PC-AT. An image of a 0.2mm
lysozyme crystal which was digitized through a 5X objective is
shown in Figure 4. Mounting the microscope track on a rotary
table gives us the option of slowly rotating the microscope about
the crystal so that measurements of different.faces can be made
in sequence. This feature is an improvement over the techniques
of previous workers in that the growth of different faces of the
same crystal can now be measured. The current design allows
rot£*tion through a minimum of 200 degrees of arc.

Temperature control utilizes a Lauda RMS-6 refrigerated
circulator, which can control fluid temperature to within 0.01
degree K. The circulator pumps water through the sample cell as
part of a cooling loop. <See Figure 5 for a schematic of the
apparatus.) Reservoirs of protein/buffer solution and
precipitant <sal t.) /buf f er solution are immersed in the
circulator's reservoir to maintain the temperature of the feed
solutions. A peristaltic: cassette pump supplies fresh solution
to the growth cell in a once; through arrangement. Different
concentrations of precipitant, can be supplied by mixing salt
solutions of different concentrations, while the total flow rate
can be adjusted by changing the number of channels used to pump
the solutions and by a flow control valve upstream of the growth
cell.

The pH and ionic strength of the solution are monitored
continuously using a computer interfaced to an Orion system which
performs the actual measurement. At this time, there are no
plans for active control of pH and ionic strength during the
experiment.

The Current- State-Of-Affairs

A careful study of the field shows that the protein crystals
studied by previous experimenters were not large enough to
exhibit mass transfer limitations, should they exist. Apparatus
has been assembled which will allow us to study growth in a
controlled environment and record and analyze crystal size using
a video imaging system, With this apparatus single crystal
growth rates can be measured over a range of crystal sizes.

ORIGINAL PAGE IS
OF POOR QUALFry
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FIGURE 4 - A digitized image of a lysozyme crystal on the sting mounted in the
apparatus shown in Figure 3.
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RECOMMENDATIONS

CRYSTAL GROWTH IN THE PRESENCE OF CONVECTION

Recommendations -for this portion of the work revolve around
testing (and improving) the interface tracking algorithm. The
work would provide a theoretical framework for evaluating
experimental results on.crystals grown in terrestrial or
microgravity environments. This would lead to a computational
algorithm which includes all the physics currently believed to
influence crystal growth.

Specific topics for investigation are:

1. Exploration of the capabilities of the current algorithm.

To date we have not covered a wide range of undercoolings,
convective flow strengths, surface tension parameters, or
other fluid properties. Thus, a general study of the
program's capabilities is in order. In the process we would
investigate the effect of flow on crystal shape and stability
in some detail.

2. Expand the program so as to allow for fine scale

r eso 1 ut i on of the r eq i on near- the d e n d r i t e tip.

This is mainly a question of increased computer storage and
execution time. First one should establish how much can be
accomplished on the IBM 3081 mainframe and assess the
advantages in moving to a supercomputer. The use of other
systems would also be explored. Once this has been done we
will be in a position to investigate "microscopic
solvability" in the presence of convection.

3. Expand the algorithm to account for non-axisymmetric

crystal shapes.

Here again the limitation appears to be one of storage and
execution time. We already do azimuthal integrations as part
of the boundary integral technique so the extension should be
relatively straightforward. 'This will allow us to include
effects of crystal anisotropy on the surface tension.

PROTEIN CRYSTAL GROWTH

Here we present recommendations on how to determine relations
between the quality of protein crystals, crystallization
conditions, and protein properties. The experimental work would
utilize apparatus described earlier. The program would establish
certain fundamental aspects of protein crystal growth and forms
an essential part of a broader effort aimed at assessing the
advantages and disadvantages of growing protein crystals in a



-19-

microgravity environment.

Three related topics should be investigated. These are:

1. The Effect of Convective Mass Transfer on Protein Crystal

Growth

Crystal growth rates should be measured as a function of
crystal size (which is equivalent to time) in order to
determine if convection has an inhibitory effect on crystal
growth. In some experiments the growth environment should be
quiescent, in others forced convection will be present.

2. Studies on Crystal Disorder

Crystals of different sizes should be examined using x-ray
analysis to determine if there is a relation between crystal
disorder and size. In particular, the evolution of crystal
disorder should be studied to see if it can be related to
growth conditions. Theoretical studies of crystal packing
would indicate the effect of packing defects on salvation
stabilization of the protein crystal.

3. R o1e af Con f ormat i on Chan q e on Prote i n Cry st a1 Growth

The crystallization of a polypeptide, which is known to
undergo large conformation changes upon crystallization,
should be studied. The degree of similarity between the
polypeptide's crystal growth behavior and that of a
globular protein, which is not believed to undergo drastic
conformation changes, would serve as an indication of the
relative importance of molecular properties in determining
crystal growth mechanisms.
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ABSTRACT

The motion of the freezing front between a dendritic crystal and a supercooled

liquid is studied using an interface evolution equation derived from a boundary

integral transformation of the transient convective-diffusion equation.

A new steady-state theory is introduced that incorporates the effects of con-

vection in dendritic growth. It is shown that in the absence of capillary effects

the shape of the crystal-melt interface is a paraboloid of revolution, similar to that

found in situations where diffusion is the sole heat transfer mechanism. A relation

between the supercooling, the product of the tip velocity and tip radius, and the

strength of the flow is derived which reduces to the well-known Ivantsov theory in

the absence of convection.

A non-linear interface-tracking algorithm is developed and used to study the

temporal and spatial evolution of the dendritic interface. The important role of

capillarity and convection on the interface dynamics is established and the response

of the interface to finite amplitude dis'turbances is examined for the first time. Tip

splitting is identified as the dominant destabilization mechanism in the limit of zero

surface tension. Finite surface tension leads to interface stabilization, irrespective

of the magnitude and structure of the external perturbations. Finally, convection

significantly decreases the magnitude of the freezing velocity.
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CHAPTER 1: INTRODUCTION

The interrelation between non-equilibrium systems and complex growth forms

was recognized long ago [1]. Over the past decade there has been renewed interest in

the study of such systems and, in particular, processes of pattern formation in phys-

ical, chemical, and biological systems. Unfortunately, understanding phenomena as

common as solidification or dendritic growth is hampered by the mathematical

complexity of the problem and the subtle effects of microscopic mechanisms such

as capillarity and interface attachment kinetics. Dendritic* growth, the formation

of branched, tree-like structures, frequently appears in systems where an interface

advances into a rhetastable phase such as a supercooled melt or a supersaturated

solution. Often a needle-shaped tip propagates at a constant speed while sidearms

appear continuously along the sides. The mathematical problem resembles the clas-

sical Stefan problem, where the diffusion equation for the temperature (or the solute

concentration) must be solved with boundary conditions specified on the moving

interface, the propagation velocity of which is determined by the heat (or solute)

flux. On the other hand, important differences exist:

• The complex interface shape leads to mathematical problem that defies ana-

lytical solution.

• Natural convection due to thermal (or solutal) gradients destroys the mathe-

matical simplicity of the diffusion equation necessitating a considerable increase

in computational effort.

* from the Greek word SevSpov (tree).
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• The curved interface is not isothermal. Local deviations from the melting

temperature of the crystal arise from the interaction between the interfacial

energy and the local curvature of the solid-liquid interface (the Gibbs-Thomson

relation). The capillary term leads to a singular perturbation problem which

has only recently been identified [2-5].

Ivantsov's theory [6] is a cornerstone of our understanding of dendritic growth

but deals only with situations where fluid motion and surface tension are absent. His

theory describes a family of uniformly propagating "needle-crystals" in the form of

isothermal paraboloids of revolution (or parabolas in two dimensions), characterized

by the single relation between the dimensionless supercooling A = (TM — Tl
00)cp/L

and the Peclet number p = pV/la. Here the tip radius is p, the tip velocity is

V and a is the heat diffusivity of the melt. The difference between the melting

temperature TM and the bulk temperature TOO is scaled with the ratio of the latent

heat of fusion, L, to the heat capacity, cp.

The Ivantsov family of solutions is degenerate: for a given supercooling there

exist an infinite number of paraboloidal solutions since only the product of the

tip velocity and tip radius can be determined. In addition, linear stability analysis

shows that the Ivantsov paraboloids are unstable to infinitesimal perturbations. The

dominant destabilization mechanism is tip splitting, whereby the initially smooth

tip splits into an increasing number of unstable fingers. This indeterminacy can

be removed by introducing the effects of surface tension. According to the Gibbs-

Thompson thermodynamic equation (derived in Appendix E), the (dimensionless)

temperature of the solid-melt interface is given by Tr=A — (do/p)IC, where tC is the

dimensionless local curvature and do = 7 Tf^Cp/L2 is a capillary length proportional

2



to the solid-liquid surface tension (see Appendix E). The first analysis of the effects

of surface tension'used the Ivantsov solution as a basic state and treated the capil-
i

lary term in the Gibbs-Thompson boundary condition using a regular perturbation

around the zero surface tension state [7]. For values of a = do/(pp) greater than

a critical value, a*, a continuous family of stable, modified Ivantsov dendrites 'was

found.

The marginal stability hypothesis, developed by Langer and Muller-Krumbhaar

[7], employs the linearized stability result along with speculations about the role

of the non-linear effects. Every needle-shaped crystal displays sidebranches, i.e.

dendritic growth, which is thought to be a result of non-linear processes. Tip

splitting is supposed to be a phenomenon described by the linear theory whereas

sidebranching is non-linear and therefore outside extant stability theories based on

* small amplitude (i.e. linearized) analyses. Accordingly, if we imagine a paraboloidal
1 V

crystal growing into a supercooled melt, the operating point of the system (the tip

radius and the tip speed that correspond to a given supercooling) would be set as

follows. Suppose a > CT*, because either the tip is slender or the velocity small.

Non-linear effects leading to sidebrances broaden the tip and a decreases. If a goes

below a*, tip splitting occurs and forms more slender tips. This suggests that the

natural operating point for the dendrite is determined by the marginally stable

solution, a = a*, which furnishes a second relation between p and V. Langer [8]

acknowledges that the hypothesis is theoretically incomplete and a fully non-linear

analysis is needed to test it.

Recent studies have focused on the subtle effects of surface tension on the math-

ematical structure of the problem. The curvature operator in the Gibbs-Thompson

3



equation contains higher order derivatives of the interface shape, multiplied by the

very small coefficient (do/p}. This leads to a singular perturbation problem with

respect to the dimensionless capillary length (or the surface tension) and the in-

terface shape cannot be represented as a regular perturbation about the Ivantsov

steady-state. Since the capillary length d0 is several orders of magnitude smaller

than the tip radius p, the steady-state correction to the Ivantsov solution in the

presence of surface tension is negligibly small. As a result, the marginal stability

theory assumes that the smoothness of the Ivantsov solution is not affected by the

inclusion of the capillary terms. However, a different approach is needed because

the singular nature of the problem dictates the interface dynamics and the singular

behavior is omitted from marginal stability. The recently developed microscopic

solvability theory is implemented through numerical solution of the equations with

the surface tension term taken into account rigorously near the tip.* The solution

is joined onto the Ivantsov solution far from the tip, i.e., the surface tension correc-

tion to the shape is assumed to vanish as the crystal thickens (exponentially small

corrections to the interface shape far from the tip are neglected). The microscopic

solvability theory proposes the following:

a) For finite surface tension the steady-state correction to the Ivantsov solution

is not smooth at the tip [2-5]. The numerical solution of an integral evolution

equation shows that the resulting interface shapes have a sharp tip. However,

cusp-like tips are not permitted by the diffusional kinetics that govern dendritic

growth. In accordance to the microscopic solvability hypothesis, all admissible

interface shapes should satisfy a mathematical solvability condition that requires a

* In contrast to the marginal stability analysis, the interface shape is not repre-
sented as a regular perturbation about the Ivantsov steady-state solution.



zero slope at the tip. The slope at, the tip decays exponentially fast as surface tension

approaches zero and the zero-slope-condition is only satisfied by the zero-surface-

" tension Ivantsov solution. This explains the failure of the regular perturbation

analysis; the capillarity-induced correction is exponentially small and thus cannot

be represented in terms of algebraic powers of the surface tension.
»

b) The microscopic solvability analysis also indicates that some finite degree

of crystalline anisotropy produces dendrites with smooth tips [4,5]. The Gibbs-

I Thompson relation is modified to include the effects of surface tension anisotropy:

Tr = A-(d 0 /p)[ l - / (0i ,0 2 ) ] /C,

where 0, represents the angle between the outward-pointing normal and the crys-

tallographic axis i. The function /(#), which in general depends on the geometric

£ parameters of the crystal-melt interface, represents a measure of the surface tension
r

anisotropy (/ = 0 corresponds to isotropic surface tension). For sufficiently large

amounts of anisotropy, there is always a discrete set of finite-surface-tension solu-

) tions that satisfy the microscopic solvability condition and thus have smooth tips

. [4,5].

c) Linear stability analysis shows that only the fastest growing dendrite is stable

[9]. All the other members of the discrete set of allowed steady-states are unstable.

As a consequence, the fastest growing mode represents the operating point of the

dendrite.
>

The success of the microscopic solvability theory stems from its ability to deter-

mine a unique operating point for the dendrite. Nevertheless, a number of important

i. fundamental issues are still unresolved:



• The sidebranch emission seems to be the result of the non-linear evolution of

finite amplitude noise which cannot be incorporated in a linear stability analy-

sis. Kessler and Levine argue that the tip instability in isotropic systems must

be thought of as a non-linear instability [9]. They also state that sidebranching

must be understood via a non-linear analysis of the amplification of finite noise

as the disturbance moves away from the tip.

• In most of the theoretical work to date, the temperature (or solute concen-

tration) field has been assumed to respond instantaneously to changes in the

interface shape, which in turn implies that the diffusion equation can be solved

in the "quasistatic" limit. This cannot be true for large supercoolings A where

the diffusion length is comparable to the tip radius or the distance between

sidebranches.
T

\

• There is as yet no evidence that the critical amount of anisotropic surface

tension required to produce a unique, linearly stable, steady-state can be forced

to remain constant as the interface evolves in time.

• Experiments in the low supercooling regime show that the sidebranch growth is

orientation dependent and measured-growth parameters such as the tip radius

and the freezing velocity deviate from their pure diffusion predictions [10]. Ex-

isting dendritic growth models clearly cannot be used to study these important

convective effects.

One of the reasons for the lack of a transient, convective-diffusion model of den-

dritic growth, aside from the computational difficulties to be described later, is the

remarkable success of the quasistatic Ivanstsov theory. This simple theory remains,

6



despite its limitations, a valuable starting point since it accurately predicts the re-
/

lationship between supercooling and Peclet number for a wide range of moderate to

* large supercoolings. Furthermore, the shape of a real dendritic tip region is unmis-

takably paraboloidal as in the Ivantsov theory. Sidebranches are encountered only

after one moves five or ten tip radii away from the nose of the dendrite.
»

On the other hand, even under carefully controlled experimental conditions,

thermal gradients in the melt generate buoyancy-driven flows which disturb the

^ diffusion-dominated temperature profiles. Experiments by Glicksman and Huang

[10] show how convection alters the morphology of the crystal and imposes an

orientation dependence on the growth parameters. Figures 1 and 2 depict the tip

^ velocity and the tip radius they measured with pure succinonitrile dendrites. The

deviation from the pure diffusion predictions is clear at low supercoolings. Figure 3

{ shows the effect of convection on the morphology of the dendrite. The temperature
r-

field is severely distorted and an orientation-dependent elimination of sidebranches

occurs. Although the purely diffusive Ivantsov theory can be applied to predict

the experimentally measured Peclet number for supercoolings higher than 1°C (or,

in dimensionless form, A > 0.05), there is a strong deviation from the Ivantsov

solution for smaller undercoolings (Fig. 4). Given these striking experimental

> results, it is worth considering how convection alters the theory. Convection has

not been treated in theoretical work to date for several reasons*. The basic reason

is the computational difficulty. The boundary integral formulation of the problem,

* McFadden and Cornell [11] recently extended the Ivantsov solution to include
the effect of a flow field due to a density difference between the two phases.
Their analysis, however, does not apply to motion driven by other forces and
will not account for the orientation dependence of the experimentally grown
crystals or explain the low supercooling deviation from the pure diffusion the-
ory.



used almost exclusively in recent years, loses much of its simplicity when fluid flow

is added since domain integrals are required to describe the effects of convection

in the melt. In addition, the shape of the tip region remains paraboloidal, even

for very small supercoolings, and this may have prompted investigators to neglect

any heat transport mechanism that might destroy the paraboloidal symmetry of

the pure diffusion case.

The primary objective of this work was to incorporate convection in a tran-

sient, three-dimensional dendritic growth model based on the convective heat dif-

fusion equation without any ad hoc approximations. A new steady-state theory

was developed that shows convection is compatible with the paraboloidal shape of

the interface. This "convective" steady-state solution was then used as a starting

point for a non-linear interface tracking algorithm. The numerical scheme solves

an integral evolution equation for the interface shape and the Oseen hydrodynamic

equation for the flow velocity simultaneously. Representative results indicate that

capillarity and convection play important roles in the dynamics of dendritic growth.

This thesis is structurally divided in two major parts: a steady-state analysis

of the convective effects is presented in Chapter 2 and a non-linear scheme tracking

the interface evolution is presented in Chapter 3. The details of the mathematical

derivations can be found in Appendices A-E.

In Chapter 2, a complement to Ivantsov's theory is presented to provide a basis

for more detailed investigations where convection is present. In natural convection

the temperature field is coupled to the equation of motion through the buoyancy

term, which makes the problem all but intractable for most interface shapes unless

one resorts to numerical methods to solve the partial differential equations. Thus,

8



a simpler flow, such as forced convection past a paraboloid of revolution, is used to

express the salient effects of convection on the solidification front.

The velocity field used here is that for flow directed parallel to the axis of a

paraboloidal crystal. An exact solution to the equations of motion in the Oseen

approximation is used to represent the flow so that viscous and pressure forces' are

balanced with a small contribution from inertia. In Sec. 2.1 the integral equation

that represents the interface shape is analyzed. Capillary effects are ignored, so

the interface is isothermal. It is shown that uniformly-translating paraboloidal

solidification fronts are admissible solutions. Then, an expression is given relating

the supercooling to the Peclet number and the strength of the flow. The application

of the steady-state analysis to the experimental system used by Glicksman and

Huang [10] is discussed in Sec. 2.2.

In Chapter 3, a non-linear interface tracking scheme based on a boundary

integral transformation of the transient convective-diffusion equation is introduced.

With this algorithm all the unresolved issues can be addressed and the validity of

"steady-state" results, such as the macroscopic solvability hypothesis, can be tested

with a fully transient, non-linear calculation.

Boundary integral equations have received increased usage over the last few

years*. These equations are very useful when evolution of a boundary is to be

calculated, because, in contrast to treatments using partial differential equations,

the solid-liquid interface discontinuity is embedded in the singular kernel of the

integral equation and there is no need to divide the domain in two or more regions.

* Because of the range of problems, reports in the.scientific literature are widely
scattered. However, a useful treatise on boundary integral methods and their
applicability to the solution of transport problems has been compiled by Breb-
bia et al [12].



Recent steady-state models of dendritic growth make use of the integral equivalent

of the diffusion equation to obtain the crystal-melt interface shape.- The formulation

presented here, although based on similar principles, actually represents a scheme

for tracking the interface shape as it evolves in time and space. The presence of the

convective term, which represents the effects of fluid flow in the melt, increases the

dimensionality of the integral equation and requires special treatment. The problem

must be solved numerically, and since the integral kernel is a non-linear function of

the interface shape, Newton's iteration method is used to obtain the position of the

interface at each time step.

The results presented in this thesis cover the moderate and high supercooling

regimes and apply only to interface shapes that are single-valued functions of the

radial coordinate. A summary of conclusions follows:

(i) The tip is unstable to finite amplitude perturbations if surface tension is ab-

sent, irrespective of flow strength. Given the results from the linearized theory

without flow, this is not surprising. But it is important to know that the desta-

bilization mechanism appears to be tip splitting. Noisy interface perturbations

seem to invariably focus themselves on the tip region and incipient sidebranches

are not seen.

(ii) Surface tension, however small, appears to stabilize the crystal interface for

any flow strength. A steady-state is always reached, irrespective of the struc-

ture or the magnitude of the initial perturbation on the interface shape. The I

growth velocity of the dendrite decreases with increasing surface tension but

the difference from the zero surface tension case is small. Convection is found

10



to significantly decrease the magnitude of the growth velocity but has no qual-

itative effect on the stability of the interface.

(iii) Anisotropy does not appear to have an important effect, qualitatively or quan-

titatively, on the dynamics of the interface. However, fully-three-dimensional

(i.e., non-axisymmetric) perturbations will need to be tested before a complete

understanding of the role of anisotropy can be gained.

(iv) The operating point of the dendrite is not established from the non-linear

t analysis presented here. However, the results of the analysis call into question

all those obtained with the linearized theories now extant. Consider, first, the

marginal stability hypothesis. Given the robust stability of shapes investigated !
» - !

here, it appears that the marginal stability hypothesis is wrong. The surface- '

tension adjusted shapes are found to be stable to finite amplitude perturbations.

•; Thus, the central feature of marginal stability, a critical value of cr, simply doe?
K.

not exist when surface tension is considered in the context of finite amplitude

effects. Second, microscopic solvability appears incomplete, at best. All the

I shapes investigated in this work are stable when finite amplitude effects were

considered. Yet one feature of microscopic solvability is that only the fastest

growing, smooth tip is stable. If this conclusion holds when finer resolution

is considered at the tip, then the operating point selection mechanism is even

more subtle than the microscopic solvability would suggest.

The outline of Chapter 3 is as follows. The formulation of the boundary in-

tegral equation for the interface shape is presented in Sec. 3.1.a. This evolution

equation can be used to model growth under the most general conditions and is

I directly extendable to solute-transfer governed dendritic growth. An optimal set
v.

11



of numerical discretization points, based on Gaussian quadrature formulae, is in-

troduced in Sec. 3.1.b. and the boundary integral equation is transformed into a

set of non-linear algebraic equations. The Oseen equation is also transformed in

a boundary integral equation which is solved numerically for the velocity around

the perturbed dendrite (the geometric complexity of the dendritic interface posed

a challenging computational problem that was successfully handled by the integral

formulation of the hydrodynamic equation). Sec. 3.2.a covers the numerical tests

that show the excellent convergence characteristics of the numerical scheme. Rep-

resentative results showing the profound effects of capillarity and convection are

presented in Sec. 3.2.b. The role of anisotropy in the growth dynamics is discussed

in Sec. 3.2.c. In addition, some ideas for future development are presented, includ-

ing three-dimensional calculations to test the transient validity of the microscopic

solvability hypothesis and a finer length scale for the tip region at low supercoolings.

The core of the mathematical derivations is presented in Appendices A through

D. The appendices represent an integral part of this thesis and are grouped at the

end of the manuscript for easy access. Appendix A contains the derivation of the

integral evolution equation for the interface. The next two appendices highlight the

difficulties associated with the numerical solution of integral equations. A series

of variable transformations is employed and the integrals are finally transformed

into finite sums. The temporal discretization of the boundary integrals is presented

in Appendix B, while Appendix C describes their spatial discretization. The fluid

velocity around the perturbed interface is calculated in Appendix D. The hydrody-

namic equation is transformed to an integral equation which is solved numerically

12



using the boundary element method. The Gibbs-Thompson thermodynamic equa-

tion is derived in Appendix E. Figures and a listing of the FORTRAN code are

presented in Appendices F and G. respectively.

f

*
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CHAPTER 2: STEADY-STATE THEORY

A new steady-state theory is introduced that incorporates the effects
of convection in dendritic growth. It is shown that in the absence of
capillary effects the shape of the crystal-melt interface is a paraboloid
of revolution, similar to that found in situations where diffusion is the
sole heat transfer mechanism. A relation between the supercooling, the
product of the tip velocity and tip radius, and the strength of the flow is
derived which reduces to the well-known Ivantsov theory in the absence of
convection.

2.1. Development of the theory

Consider the steady uniform propagation of an isothermal solid-liquid interface

with a constant freezing velocity Viz, as illustrated in Fig. 5. Densities of solid and

liquid are assumed to be identical. In a frame of reference traveling with the front

velocity V, the steady temperature field in the supercooled melt is governed by the

convective-diffusion equation:*

~
- = v -VT, (2.1)

uz

where v is a steady flow field that satisfies the incompressible Navier-Stokes equa-

tions and the no-slip and mass conservation conditions on the solid-liquid interface.

Since interface motion does not generate convection unless there is a density dif-

ference between the solid and liquid phase, v = 0 in the absence of an externally

imposed flow.

Capillary effects are neglected and the entire solid is assumed to be at its

melting temperature TM, while the bulk liquid phase is supercooled at T^. The

* The convective term V|y arises from the motion of the coordinate system.
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heat conservation condition at the interface z = ((x, y) reduces to

n, (2.2)
cp

where n is the outward unit normal with n^ as its z-component (in the zero-surface-

tension limit, and in the absence of interior heat sources or sinks, the entire solid is

isothermal) .

Next, introduce a dimensionless temperature T = (T — T^Cp/L and a di-

mensionless velocity v = v/t/oo, and scale the lengths with 2a/V. In terms of

dimensionless variables the equations are:

dT
V2T + 2— = 2 A v - V T , (2.3)

VT • n ., , = -2n2 , (2.4)
*=C(*,j/) ' . . v . '

T ' , = A , • : (2.5)
z=C(*i!/) ' v '

i*.t i>

where A = Uoo/V; Uoo represents the characteristic flow velocity. The interface

z = £(x,y) and the solid are now at the temperature A = (TM — T00)cp/L (the

dimensionless supercooling), whereas the dimensionless temperature goes to zero as

z — + oo.

The problem stated above can be cast in terms of integral equations. However,

since the analysis is length}', it is presented in its entirety in Appendix A. Equation

(A13) is a reformulation of the problem in terms of the integral evolution equation

for the interface shape £(;r, y):

' f
J —

A= dx'
— oo —oo

/

OO fOO fOO

dx1 \ dy1 / dz' 2GM(xr, x'') v(x') - VT(x') , (2.6)
-oo J-oo J<:(i',y')
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where x = (x, y,z) and xp = (z,y,((z,y)) . Gaa(x, x') denotes the Green's function

corresponding to steady heat diffusion due to a point source at x in the reference

frame moving with velocity V. In the pure diffusion problem A = 0, so the temper-

ature field is represented by an integral superposition of point heat sources along

the solid-liquid interface (. The boundary temperature A can then be expressed

in terms of two-dimensional integrals despite the three-dimensional structure of the

temperature field. This reduction of the dimensionality of the problem makes the

integral formulation very convenient when investigating interface motion if convec-

tion is absent.

The integral representation of the convective-diffusion equation involves inte-

gration over the entire fluid domain. (In the limit of pure diffusion, the second term

on the right-hand-side of Eq. (2.6) vanishes). This increase in the dimensionality of

the integral equation is due to the lack of appropriate Green's functions for partial

differential equations with variable coefficients. Nevertheless, a scheme based on

the integral formulation has many computational advantages over other methods

even when there is flow in the melt.

The integral expression is now used to search for uniformly translating inter-

face shapes in the presence of fluid flow. Experiments in the "convective" regime

(low supercoolings) suggest that the tip region remains paraboloidal even when the

characteristic flow velocity is much larger than the freezing velocity. Thus one needs

to look for a class of temperature fields (and the corresponding flow fields) that sat-

isfies the integral equation in cases where the interface is a paraboloid of revolution,

viz.,

V
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Here the Peclet number, p. can be viewed as the dimensionless radius of curvature

at the tip of the paraboloid.

The search for interface shapes is patterned after Pelce and Pomeau [1], who

used elementary variable transformations to show that the integral

r°° r<>
I dz'IJ— oo J — c

is independent of x = (z,y,z) if both x and x' represent points on the same

paraboloidal interface C, i-e. x = (x,y,£(x,y)) and x' = (x',y',((x',y')). Their

result was used to demonstrate that the Ivantsov paraboloid is a solution of the

pure diffusion equation and it can also be used to show that the integral

/

OO fOO

dx' I <fy'2Gss(x,x')
-00 J —OO

is independent of x when x and x' represent points on two different confocal

paraboloids, such as those represented by Eq. (2.7) for two different Peclet num-

bers. Using Pelce and Pomeau's result, one can produce a class of. temperature

fields compatible with a paraboloidal interface shape. Since the left hand side of

Eq. (2.6) is independent of the position vector Xr, one must show that the right-

hand-side can also be independent of Xp under certain assumptions about the nature

of the temperature and flow fields. The first integral in the right-hand-side of Eq.

(2.6) represents the contribution of diffusion and has already been shown by Pelce

and Pomeau to be independent of the interface position vector Xr as long as Xr

represents the same paraboloid as x^. The second integral in Eq. (2.6), which

comes from the convective term of the governing equation, must be shown to be

independent of the position vector Xr as Xr traverses the paraboloidal interface £•
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Let

Ic= I dx' f dy' f°° cfz'2GS5(xr,x')v(x')-VT(x')
7-oo 7-oo J<;(x',y')

be the convective contribution to the integral expression (2.6). Since paraboloidal

shapes are under study it is convenient to introduce a paraboloidal coordinate sys-

tem (diagrammed in Fig. 5):

w =
z -I- i2 + y2 +

s =

yf = arctan —
x

In this new coordinate system, the interface defined by Eq. (2.7) is represented by

the surface w = 1; z — > oo is equivalent to w — > oo. Conversely, the surface w = a

represents a paraboloid confocal to w = 1 with a dimensionless tip radius p' = ap.

The integral Ic becomes

= rV
JO JO

If

v(x'}

(2.8)

(2.9)

were independent of 5' and </?', (this will be shown to be true for a certain class of

flows later) then Eq. (2.8) could be rewritten as

Ic= f dwl-^-1A(w') f d<p' t ds'^-Gas(xr,x'). (2.10)
Jw' = l P^W JQ JQ Z

Once this is done, the integrals with respect to s1 and (f>' can be rewritten in terms

of x' and y1 using the following coordinate system transformation

rv r>ds '^f(s i,v',w'=w>)= r dx' r
JO Jo * J-oo J-oo
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where w1 = w' denotes that f(s',p',w') is calculated along a paraboloidal surface

of constant u;', and g(s'^'^w') is the equivalent of f(x', J/,C) in *ne paraboloidal

coordinate system. Eq. (2.10) becomes

/

OO fOO fOO

dw'A(w') dx' <VGas(x r,x'), (2.11)
_>'=! J— OO J—OO

where

and

For every value of tu', x' and x represent two confocal paraboloids with a ratio of tip

radii equal to w' . The extended result of Pelce and Pomeau therefore applies directly

to the integrals over x' and y' in Eq. (2.11), i.e., for a given paraboloidal surface

w' the integral does not depend on the position vector xr as it moves along that

surface. A final integration with respect to w1 shows that the the convective integral

in Eq. (2.6) is independent of the interface position vector xr (which represents

the paraboloidal surface £) as long as the quantity A(s' ,<f>' ,w') is a function of w'

alone.

To identify a situation where A(s',(f>',w') is independent of s' and y?', consider

the uniform propagation of a paraboloidal freezing front in the presence of a flow

field with a far-field uniform velocity — Uoo^z in the direction of the axis of the
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paraboloid. Fig. 5. The fluid velocity v satisfies the no-slip condition on the solid-

liquid interface (note that in the moving reference frame, v does not include the

uniform velocity —V\ z which is simply an artifact of the coordinate transformation.)

Uniform flow past paraboloids of revolution (or parabolas, in two dimensions)

has been studied by a number of authors and Davis and Werle [2] showed that the

solution to the Oseen equation

is a uniformly valid approximation* to solutions of the Navier-Stokes equations for

small Reynolds numbers, Re = /?[70o/i/=2pA/Pr, where i/ is the kinematic viscosity

and Pr = v /a is the Prandtl number. Wilkinson [3] derived an analytical expression

for the Oseen flow velocity v = (vw ,v s ,vv) past a paraboloid in a uniform stream

parallel to its axis. In paraboloidal coordinates the velocity is

/- /o
— _ ... + Vw _ ,,, . (2.13a)

[ AV^Ei(A) Ei(h) J v '

(2'136)

tV = 0, (2.13c)

where EI is the exponential integral of first order and A = \p/Pr. On the surface

w = 1 (z = £), vw = vs = 0, whereas for w — » oo (z — f oo), vw — —1 and v3 = 0.

The introduction of paraboloidal coordinates yields

-f (1 + pw - Xp^/w(w + s)vw)-z- + (I-ps- Xp^/s(w -f 3)w.)-5- = 0, (2.14)
OW OS

* This is true only for three-dimensional flows. In two dimensions the Oseen
solution for flow past a parabola is not a uniformly valid approximation for
low Reynolds numbers[12].
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^ (2.15)
dw »=i

w=l
= A, (2.16)

for axisymmetric temperature fields. Equation (2.14) can be rewritten as

where

+ + . . (2.18)
' ' ' '

For a paraboloidal solidification front A(w,s) and T(w,s) must be independent of

s. It is readily shown that T = T(u>) will satisfy Eqs. (2.15-2.17) with the velocity

field represented by Eqs. (2.13), so here A = A(w].

Now Eq. (2.17) can be integrated analytically to give the derivative of the

temperature with respect to the normal coordinate u;, i.e.,

dT \ Pre~A l
»)(! + A) +-l + -

Pr
HE?i(A) + £i(Au;) + J52(A) - E2(Au,)] (2.19)

where ^i and E? are the exponential integrals of first and second order, respectively.

One more integration gives the surface temperature of the crystal, viz. A and the

Peclet number p:

f°° dT F°° { \ Pre~Al
A = - / dwj-= dwpexp{p(l-w)(l + A)+ -1 + — — Into

Jw=i ow Jw=l [ £i(A) J

Recall that A = Xp/Pr.
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At this point a relation has been derived between the supercooling and Peclet

number for a paraboloidal crystal formed by freezing of a supercooled melt in the

presence of convection, viz.

A = A(p,A,Pr). (2.21)

Two new parameters are involved: a Prandtl number, f/Q> and the ratio of the

velocity of the flow to the freezing velocity, A. The relation is more complicated

than that derived by Ivantsov for pure diffusion in that the convective velocity and

the viscosity of the melt are involved. Furthermore, the parameter A depends on

the supercooling through V.
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2.2. Discussion of results

The introduction of convective heat transfer into the equations governing den-

dritic growth has been shown to leave the paraboloidal shape intact when the flow

structure has a certain form. This form derives from a solution to the viscous

flow equations describing the interaction of a single axisymmetric dendrite with a

uniform flow when the flow is slow i.e., in the Oseen approximation. This sort of

convection leads to a new family of needle-crystals whose growth velocity is appro-

priately modified.

To illustrate the degree to which convection alters the relation between Peclet

number and supercooling, some representative calculations using the properties of

succinonitrile are presented in Fig. 6. As the figure indicates, forced convection

increases the solidification rate substantially when the characteristic flow velocity !

is large compared to the solidification velocity. For example, at a dimensionless

supercooling of 0.002, the Peclet number with a velocity ratio of 50 is almost twice

the Ivantsov value. To emphasize that this is a very weak flow by ordinary standards

we cite some results from experiments at low supercoolings.

At a dimensionless supercooling of 0.002, Glicksman and Huang [4] found the

growth velocity to be roughly 0.8 microns per second and a velocity fifty times this is

only 40 microns per second which, as the following scale analysis shows, can easily

arise from buoyancy. The actual structure of the dendritic mass that generated

flow in the experiments is not known but, as noted by Glicksman and Huang [4],

it is larger than the radius of an individual tip. Accordingly, each dendritic arm

is immersed in a flow field configured by the entire dendritic mass. If we assume
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that the characteristic length scale for the crystal mass is /, then a representative

velocity in a weak flow generated by natural convection is

. (2.22)

Here C\ is a constant and v is the kinematic viscosity. The Grashof number is

g(3&Ll3

Gr = -̂ 7-, (2-23)

where g is the gravitational acceleration, fi is the thermal expansivity of the melt,

and A L/cp is the supercooling. The velocity U<x, is then proportional to the char-

acteristic temperature difference and the square of the characteristic length:

/2, (2.24)
v f

where the uncertainty of the constant C\ has been absorbed by the "effective"

convection length /. As a result, the absolute strength of the flow field decreases

with decreasing supercooling. Using the properties of succinonitrile, we find

C/oo = 740 A/2 cm/5

.
with / measured in centimeters. Accordingly a dendritic mass with a characteristic

length of a little over half a millimeter would generate a 40 micron per second flow

at an undercooling of 0.002. Nevertheless, the obvious differences between free and

forced convection are enough to deter us from delving further into the experimental

results until the detailed structure of free convection for this situation has been

worked out.
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It should be noted that our methodology differs from that of Glicksman and

Huang [4], who used an alternative expression for the velocity U^, derived from a

mass-transfer boundary- layer analysis:

Here the velocity is proportional to the square root of the Grashof number and can

be written in terms of the length scale /:

CP
This expression predicts unreasonably large velocities in the case of the the succi-

nonitrile experiments (of the order of cm/s) and is clearly inappropriate for very

low Grashof number flows.

The theory advanced here makes no allowance for the effects of surface tension

* which is known to have a profound effect on the details of dendritic growth. How-

ever, this theory provides the necessary starting point for the adaptation of more

detailed theories to include convective effects which, according to the experimental

results on succinonitrile, are quite important. The new "convective" steady-state

solution represents the asymptotic form of the corresponding time-dependent so-

lution at large distances from the tip. Furthermore, capillary effects are localized

around the tip and thus the asymptotic solution is also valid for the general case of

non-zero surface tension. As will be described in Chapter 3, the asymptotic solution

facilitates the computation of the boundary integrals since the integrands reduce to

their known asymptotic form far from the tip. In the next chapter, we present a

non-linear scheme which tracks the evolution of the dendritic interface by solving

the transient counterpart of Eq. (2.6) numerically.

\
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CHAPTER 3: INTERFACE TRACKING

A non-linear interface tracking algorithm, based on the boundary in-
tegral equation derived in Appendix A, is used to study the temporal and
spatial evolution of the dendritic interface. The important role of cap-
illarity and convection on the interface dynamics is established and the
response of the interface to finite amplitude disturbances is examined for
the first time.

3.1. FORMULATION AND NUMERICAL IMPLEMENTATION

3.1. a. Theoretical formulation

In this chapter we study the temporal and spatial departure of the freezing

interface from the steady-state solutions described in the previous chapter. It is thus

advantageous to solve the convective-diffusion equation in a reference frame moving

. . . .with the velocity Viz that corresponds to the underlying steady-state. With this

coordinate transformation, steadily propagating fronts are replaced by stationary

interfaces and the transient interface motion is studied separately.

We consider the evolution of a solid-liquid interface F solely controlled by the

heat (solute) transport in the solid and liquid phases. The temperature (solute

concentration) field T obeys the transient convective-diffusion equation, written in

a coordinate system that moves with a constant velocity V\z parallel to the 2— axis:

o, (3.1)

/

where the x vector is represented by the triad (x, y, -?)=(? , z) in cartesian coordinates

and (f, </?, z) in polar cylindrical coordinates, a(x, t) is the local thermal diffusivity

of the medium, and v(x, f) is the local velocity in the liquid phase.
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According to the two-sided "symmetric" model, proposed by Langer [1], ther-

mophysical properties of the two phases, such as the thermal diffusivity and the

density, are equal (i.e., <XL = Q's and pi = ps) and independent of temperature.

Although this is not necessarily true lor most materials, succinonitrile, a "plastic"

organic crystal used extensively for dendritic growth experiments [2], possesses al-

most identical thermophysical constants in both liquid and solid phases. We adopt

the two-sided model assumption throughout this chapter but have also derived a

similar formulation for the one-sided model*. The motion of the interface is related

to the rate at which the latent heat of solidification is removed away from the inter-

face through the heat conservation condition at the interface. The latter relates the

"jump" of the local temperature gradient to the normal component of the interface

freezing velocity:

L
n • VxT(iiquid) - n • VxT(soiid) = (3.2)

where the. first term in the right-hand-side arises from the motion of the coordinate

system and the second, time-varying, term represents the freezing velocity of the

interface z = £(f, i) with respect to the moving frame of reference. Here L is the

latent heat of fusion per unit volume and cp is the specific heat (the symmetric

model hypothesis implies that the specific heats of the two phases are identical).

The interface temperature is determined thermodynamically by the Gibbs-

Thomson relation (see Appendix E)

cp
(3.3)

* The one-sided model, briefly discussed in Appendix A, assumes no heat flow
in the solid (the "convective" steady-state solution, derived in Chapter 2, is
compatible with both models since the solid is isothermal in the zero-surface-
tension limit).
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where T^/ is the melting point. do=jTi\.fCp/L^ is the capillary length (proportional

to the solid-liquid surface tension 7), e represents a measure of the anisotropy of

the surface tension [3.4], #($i, 82) is an order unity function of the crystal geometry,

#, is the angle between the interface normal n and the crystal axis z, and K, is the

local curvature of the interface, considered positive when the solid bulges into the

liquid. The Gibbs-Thomson relation is derived under the assumption of local equi-

librium (see Appendix E), but it serves as a good approximation under conditions

encountered in dendritic growth.

Finally, the temperature field asymptotes to constant values as z — > ±00:

z
lim t(x,*) = T±00. (3.4)

We now scale the lengths with 2a/V and times with 4a/^2. Eqs. (3.1-3.4) then

I become

|^ + 2Av.V x r -V xT-2^ = 0, (3.5)

n • VxT(liquid) - n • VxT(solid) = -[2 + C(r,t)]n • i2, (3.6)

Tr = A-i/K{C(r,*)}, (3.7)

lim T(x, <) = 0 and lim T(x, t) = constant, (3.8)
Z— -+OO Z^ — OO

where the temperature is now T = (T — T^Cp/L and the velocity is v = v/t/oo, A =

Uoo/V is the ratio of the characteristic flow velocity scale Uoo to the velocity V of

the coordinate system, v = do[l — e<7(#i,#2)] V/2a is the (anisotropic) dimensionless

capillary length function, A = (TM — Too)cp/L is the dimensionless supercooling,

z = C(r, t) represents the interface F, and C(r, <)n • iz = (d£/dt)n • iz is the normal

= ' component of the interface velocity relative to the moving reference frame.
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In the melt, the velocity v obeys the Navier-Stokes equations for viscous, in-

compressible flow and satisfies the no-slip condition on the solid-liquid interface*.

As mentioned in Chapter 2, the solidification of the interface alone does not gen-

erate fluid flow and in the absence of fluid flow the velocity v is identically zero

everywhere in the domain independently of the coordinate system choice. In di-

mensionless form we have (the characteristic length, time, and velocity are 2a/V,

4a/V2, and Uoo = AV, respectively)

-v*v = -v*p+v'v' (3-9)

where Pr is the Prandtl number and v = 0 on the interface F. For certain materials,

including succinonitrile, the Prandtl number is sufficiently large and the temporal

term in Eq. (3.9) can be neglected, implying that the velocity field responds instan-
•

taneously to changes in the interface shape. However, this is not true for metals,

where the Prandtl number is quite small.

The coefficient of the second term in the left-hand-side of Eq. (3.9), which

represents a measure of the inertial characteristics of the flow field, is also small,

since the flow velocities that occur in dendritic solidification are generally small.

Nevertheless, the inertial term becomes important at large distances away from the

interface and must be included in order to obtain a uniformly valid representation

of the flow field. As an alternative to solving the full non-linear Navier-Stokes

equations, we use the linear approximation first suggested by Oseen [6]. In the

Oseen approximation, the non-linear term v • Vxv is replaced by the linear term

* The assumption of equal densities implies that there is no flow through the
interface due to volume change.
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(—i c • Vxv) utilizing the far-field velocity (— \ z) . This linearized equation is a uni-

formly valid approximation of the Navier-Stokes equation in which the viscous and

pressure forces are balanced with a small contribution of inertia. In Appendix D

we present a boundary integral method for the calculation of the flow velocity v,

based on the methodology first applied by Youngren and Acrivos [7]. However, the

complexity of the interface shape makes this problem computationally more difficult

than the unidirectional streaming flows past smooth objects studied by Youngren

and Acrivos.

The interface shape z = C( r)^) appears only in the boundary conditions for

the partial differential equations (3.5) and (3.9). As Eq. (3.6) suggests, it is not

necessary to know the temperature at arbitrary positions around the solidifying

front since only the temperature gradient normal to the interface is required to

calculate the growth velocity. Consequently, if Eq. (3.5) and the corresponding

boundary conditions could be transformed to give equations for the temperature

gradient at the interface, then the solution of these equations would give all the

information necessary from the point of view of solidification. Now it turns out that

such equations can indeed be derived using Green's function techniques. In general,

a non-local* integral equation is obtained which relates the normal derivative of

the temperature field at the interface to the temperature field in the interior of the

domain.

Before transforming the transient convective-diffusion Eq. (3.5) into an integral

equation, it may be useful to explain the physical background of such equations. The

* A "non-local" equation for a particular point in space contains not only the
local value of the field variable (or its derivatives) but also the value of the
field variable (or its derivatives) in other points in the domain.

32



surface of discontinuity (in our case, the crystal-melt interface) acts as a distribution

of "point sources" and "point dipoles." In the quasistatic case, and in the absence

of sources or sinks in the domain, it can be shown that the surface source density

equals the "jump" between the inner and outer normal gradient of the field (i.e.,

the temperature field) and the surface dipole density equals the "jump" between

the outer and inner field value. In solidification, the temperature is continuous

upon crossing the crystal-melt interface implying that no dipoles are needed and

the interface can be represented solely in terms of point heat sources with a surface

density determined by Eq. (3.6). Finally, it is possible to incorporate the time

dependence of the heat diffusion equation into the integral equation. In this case,

temporal integration introduces the effects of the interface history in addition to

the non-local effects due to the spatial integration.

The transformation of a partial differential equation into an integral equation

requires the use of the corresponding Green's function. This function represents

the response of .the field variable (i.e., the temperature) to an instantaneous point

source*. The usefulness of the Green's function lies in the fact that it is a particular

solution of the adjoint of the differential equation, and thus it already contains some

of the characteristics of the desired solution.** A shortcoming of this approach

is that there are no Green's functions, at least in a useful form, for differential

equations with variable coefficients. A prime example is the convective-diffusion

equation (3.5), where, due to the presence of the convective term v • VXT, no

Green's function is known for cases where the velocity varies with position.

* An instantaneous point source is represented by 6(x — x')6(i — <').
** Note that Eq. (A2), which is the adjoint of the heat diffusion equation, is

defined in the inverse time space, represented by the time variable t'.
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We now introduce the Green's function G(x, x';t — t'} that represents the so-

lution to the adjoint of the heat diffusion equation in a moving coordinate system

and in an unbounded domain (see Appendix A), viz.,

.

M<-(')]f I 4 (<-<)

where H(t — t'} is the Heaviside function and G(x, x';< — t'} = 0 for t < t'. The

fundamental solution G(x, x'; t — t') represents the transient spatial response of the

temperature field to a point source at t = t1 and x = x' in the moving coordinate

system. It is singular at (x = x', t = t'), but continuous elsewhere.

The integral equation corresponding to Eq. (3.5), the transient convective-

diffusion equation, is

T(x, *) = f ' d t ' f dr' [2 + C(r', t')} G(x, xr(«'); * - 0
J — 00 J *•

ft. [• ,00

-2A / dt' dr' dz'G(x,x';t-t ') v(x',*') • Vx.T(x',*'), (3.11)
7-oo 7 J((r',t')

according to the derivation given in Appendix A. The interface xp is at z = £(r, 0

and J dr = J0°° r dr f0 * dtp. It is worth noting that the first term in the right-hand-

side of Eq. (3.11) represents a point source distribution along the interface with

density equal to the discontinuous "jump" of the temperature gradient normal to

the interface, which in turn is directly related to the interface velocity through the

heat conservation condition Eq. (3.6). The second integral term, which acts as an

effective volume distribution of sources, represents the effects of convection. Finally,

the time integration stems from the transient nature of Eq. (3.5) and represents

the history of the temperature field.
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We now apply Eq. (3.11) to points on the interface x = Xr = (r.z = £(r. <)) to

yield

T(xr,*) = A - i//C{C(r, <)} = /'" eft1 / dr' \2 + C(r', t')| G(xr(«), *r(O; * - O
J—00 J

-2A / dt1 f dr 'I d2'G(x r(*),x';t-Ov(x',O-Vx-T(x ;,O, (3-12)
7-00 y -AXr'.f)

where Eq. (3.7) has been substituted for the interface temperature T(xp,<)-

Equation (3.12) represents an integral evolution equation for the interface shape

£(r, <), given the temperature field. Without flow (A = 0), the "convective" integral

in the right-hand-side vanishes and Eq. (3.12) can be solved to determine the only

unknown, £. In the presence of flow, however, the convective integral represents the

effect of a distribution of point sources in the fluid domain with (unknown) volume

density v(x, t) -VxT(x, t). Thus we need to evaluate the temperature gradient and

the flow velocity in the interior of the fluid domain (since v = 0 in the solid.) Taking

the gradient of Eq. (3,11) for x ^ Xr gives

VxT(x, t) = (~ dt' I dr1 [2 + C(r', t')} VxG(x, xr(0; * - *')
J — 00 -'

-2A / " dt' f dr' ̂  d2'VxG(x,x';<-Ov(x',0-Vx 'T(x',<'). (3-13)
J-oo J J((r',t')

Eq. (3.13) can be directly used to evaluate interior values of the temperature

gradient for a given interface shape C( r>0- ^^e evaluation of the velocity field is

discussed in the next section.

3.1.b. Numerical implementation

Now we apply the integral equation (3.12) and the auxilliary field equations

(3.13) and (3.9) to study the temporal and spatial evolution of a crystal interface*.

* Our methodology actually applies to any advancing front that obeys similar
equations.
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As mentioned in the introduction, most investigations of dendritic growth involve

numerical computations of the shapes of steadily advancing fronts and linear stabil-

ity. Important "steady-state" theories, such as the microscopic solvability hypothe-

sis, have not as yet been tested by a transient, non-linear, tracking scheme in which

the position of the interface is updated continuously. In addition, the temporal

derivative in Eq. (3.5) has been omitted from all previous work on the grounds

that its effect is small at small supercoolings A. While this is true, the recent

work on the microscopic solvability hypothesis has been carried out at moderate to

high supercoolings, where the temperature field does not respond instantaneously

to changes in the interface shape. The elimination of this "quasistatic" approxima-

tion changes the solution method significantly, since now the fully-transient integral

equation is of the Volterra type in time. While the Fredholm type integral equation*

that corresponds to the quasistatic case has been studied extensively and is suit-

able for an eigenmode stability analysis, the Volterra type equation is not amenable

to such a stability analysis. Furthermore, the non-linearity of the integral kernel

precludes the use of Laplace transforms that usually offer a useful but cumbersome

alternative to the normal mode analysis. Finally, the incorporation of convection

in the integral evolution equation increases its dimensionality and requires an iter-

ative approach to be explained shortly. Convection has been neglected heretofore,

although many investigators have noted that hydrodynamic effects are important

in solidification and experiments have indicated the dramatic effects of convection

in low supercoolings [2].

, * An integral equation with fixed integration limits.
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The next step is to develop a numerical procedure, based on Eq. (3.12). that

corresponds to the solution of the full transient convective-diffusion Eq. (3.5). With

this, shortcomings of other approaches are avoided and a reliable tool for the study

of the non-linear evolution of crystal dendrites is set forth.

From t' = -co to t' = to, the interface shape, the temperature field, and

the flow field represent steady-state behavior denoted by the subscript (o). That

implies that in the laboratory frame of reference the interface is a uniformly moving

solidification front with a constant freezing velocity equal to that of the moving

coordinate system and £(r, t) is zero. By setting t = to we can depict the steady-

state propagation of the crystal-melt interface and examine the effects of convection

on the existing steady-state theories. This aspect of our numerical work has been

presented in Chapter 2. On the other hand, a perturbation in the interface velocity

introduced at t1 — to causes deviations from the steady-state; the time integrals in

Eqs. (3.12-3.13) can then be split in two integral parts. The integrals from t' = — oo

to t' = to represent the dependence of the current interface shape on the underlying

steady-state, whereas the integrals from t' = to to the current time represent the

time history of the perturbed interface. Equations (3.12-3.13) now become

T(xr,*) = A - f£(C(r,<)} = P dt1 f dr' 2G(xr(t)^r0(t');t- t')
J — 00 J

+ Pdt' fdr' [2 + C(r',0] G(xr(i),xr(0;<-0 (3-14)
J to *

t1 fdr1 t dz'G(xr(t},x'\t-t') v0(x') -Vx.T0(x')
J ^Co(r')

- 2A / " dt1 f dr' f°° dz'G(xr(t), x'; t - t'} v(x', t1) • Vx.T(x', t'),
Jt0 J ^C(r'.t')
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and

VxT(x,<)=

t0

°-2A f ° dt' f dr1 f dz'VxG(x,x';*-<') v0(x')-Vx,To(x')
J-oo ./ •'Co(r')

-2A d t ' d r ' dz'VxG(x,x';*-<')v(x',*')-Vx.T(x',0,
./to ^ -/C(r',t')

where Xr0 represents points on the steady-state interface shape z = Co(r)- Note

that the interface velocity, £(r, i), relative to the velocity of the advancing steady-

state front is set to zero in the "steady-state" time interval (— oo,<o)- Also note

that the Oseen approximation to the Navier-Stokes equation (3.9) (see Appendix

D) is a "quasistatic" approximation and thus does not involve temporal integra-

tion. Nevertheless, it is implicitly time-dependent since the boundary shape changes

continuously with time and, as shown in Appendix D, the flow velocity v(x, t) is

recalculated at every time step.

At this point it is instructive to compare Eqs. (3.14-3.15) and their quasistatic,

purely diffusive counterparts used in previous work [3,4,8,9].

• In the quasistatic approximation and in the absence of convection only the

second integral in the right-hand-side of Eq. (3.14) survives out of the eight

integrals appearing in Eqs. (3.14-3.15)*.

• In the steady-state models, the time integration is performed analytically over

the entire time interval (— oo,<). In order to see why this is not possible in

our case, consider the second integral in the right-hand-side of Eq. (3.14).

* With <o replaced by oo.
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In the steady-state case the interface shape Xr(i') does not change with time

and is equal to the current interface shape Xr(t). This simplifies the analysis

considerably, since the solution of a Volterra type equation is avoided. In the

transient case, however, the interface shape is a continuous function of time and

the Green's function G becomes a non-linear function of the unknown interface

shape xr(O- This precludes analytical integration and leads to a non-linear

Volterra type integral equation and to the associated computational difficulties

mentioned earlier in this chapter.

• In the absence of convection, Eq. (3.15) becomes obsolete since no interior

values of the temperature field are required. This reduces the dimensionality

of the problem and Eq. (3.14) becomes an boundary integral equation.

Having enumerated the differences between the steady-state and our "transient"

problem, it becomes apparent that the latter is clearly harder, primarily because of

three factors: non-linearity, transient nature, and convection. While the first two

factors combined preclude the use of traditional stability methods and necessitate

an interface tracking scheme, convection partially destroys the elegant features of

the boundary integral approach. The convective term in the diffusion equation (3.5)

is responsible for the domain integrals in Eqs. (3.14-3.15) that increase by one the

dimensionality of the integral equations. In the numerical scheme that we present

in this chapter we have coupled the essential features of the boundary integral

method with a domain discretization that requires a minimal amount of interior

points. We were thus able to avoid some of the problems with finite difference

or finite element methods such as the complicated boundary geometry and the

long computation times usually required for three-dimensional calculations. The
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"differential" approach has not been successful because of the prohibitively large

computer requirements for such a transient, three-dimensional convective-diffusion

problem with a moving interface, since each point in the interior domain carries

an equal weight. The success of our integral approach is based on the fact that

the "influence" of the convective temperature field on the interface shape decays

exponentially fast away from the interface and the corresponding domain integrals

can be accurately calculated in the vicinity of the interface. Summarizing, our goal

is to calculate iteratively the interface shape at time t using the evolution equation

(3.14) that contains the time history and the non-local characteristics of the interface

and using Eqs. (3.15) and (3.9) to update the temperature and velocity fields.

The temporal integration in the second and fourth integral terms in Eqs. (3.14-

3.15) cannot be performed analytically since the interface shape, the temperature

field, and the flow velocity v are all unknown functions of time. To calculate the

temporal integrals numerically, the time domain [<o,* = ^N) is split in N equal

intervals. Over each such time interval, [in_i,tn), field variables, such as the inter-

face shape, £, temperature, and velocity, are considered to be constant and equal

to their respective value at the "nodal" point t E[tn-i,tn)*. The actual location of

the nodal point within each time interval depends on whether the integral belongs

to Eq. (3.14) or Eq. (3.15). In the discretization of Eq. (3.14), where the objective

is to use previously calculated values of all the field variables to calculate the new

interface shape at time t = tpi, we place the nodal points tn at the end of each time

interval. On the other hand, the calculation of the interior values of the temperature

gradient and velocity is done iteratively and it requires the simultaneous knowledge

* The error associated with this approximation can be estimated from the mean
value theorem.
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of the interface shape. Here nodal points are placed at the beginning of each time

interval and the requisite information for the calculation of the temperature field

can be retrieved from prior time steps.

This temporal discretization of Eqs. (3.14-3.15) now allows us to integrate

analytically over each time interval. In Appendix B we present the result of the

time integration of each of the integrals in Eqs. (3.14-3.15), denoted by Ik and Hk,

k = 1,2,3,4, respectively. The calculation of each integral requires several steps

but the final result can be expressed in the following concise manner:

A - i/£{C(r, <)} = /i + /2 + /s + /4,

VxT(x,t) = H, + H2 + H3 +

(3.16)

(3.17)

with the integrals (I\ — I4) and (H-^ — H±} shown in Eqs. (B5-B12.)

Each of the expressions Ik (or, H^) involves a two- or three-dimensional spatial

integral (or, a N term sum thereof,) representing the non-local characteristics of

the problem at the given time interval. Variables in each integral are denoted by a

subscript which indicates the time at which the field variables are calculated. This

is exemplified by the integral

-x

x < exp|x;v -xn'| erf

-erf

exp{-|xN-xn'|} erf B ,

'- n)A<

-erf
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that belongs to the Ar term sum in Eq. (B6). Variables with the subscript (n)

represent quantities previously calculated at time t = tn and are treated as constants

during the spatial integration. Variables with the subscript (^) correspond to the

unknown values at the present time, t = <#, but are otherwise treated in exactly

the same way.

Our analysis to this point can be applied to any solidification front that obeys

the evolution equation (3.14) and the auxiliary equations (3.15) and (3.9). However, -

in order to derive an optimal spatial discretization, we need to define the basic state

under investigation. From previous steady-state models, including the convective

model presented in Chapter 2, it is well-established that there exist solutions to Eq.

(3.14) that represent uniformly translating needle-crystals with a near-paraboloidal

shape [3,4,8-10]. Although most of these solutions are unstable [11] or possess cusps

\ at the tip of the needle [3,4], they do represent the only known shapes that satisfy

the steady-state equivalent of Eq. (3.14). Since one of our objectives is to investigate

the non-linear spatial and temporal evolution of such crystal forms, it follows that

the asymptotic (spatial) characteristics of this system are determined by the far-field

behavior of the temperature and flow fields that correspond to these steady-state

needle crystals. The capillary term in Eq. (3.14) modifies the morphology of the

interface in the vicinity of the needle tip, but otherwise the long-range behavior of

the temperature field is determined solely by the heat transport mechanisms, i.e.

heat diffusion and convection.

We will use the generalization of the Ivantsov family of steady-state needle

crystals, derived in Chapter 2, to extract the asymptotic behavior of the integrands

.- since, at large distances from the interface, the temperature and flow fields are
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essentiallly unaffected by the interface perturbation. This generalized steady-state

paraboloidal solution, denoted by the subscript (Q), will also be used to define a new

set of spatial variables that map the infinite integration domain onto a unit cube.

The calculation of the spatial integrals involves integration over the entire r, (f>

plane. In addition, the three dimensional "convective" integrals /$, /4, H$, and

H± require an extra z integration over the semi-infinite interval [£n(r),oo). The

immediate goal is to express these integrals in terms of selected values of the field

variables in time and space. First, the two-dimensional integrals (7l5 /2, HI, and

H?) are examined by looking again at the representative example borrowed from

Eq. (B6):

fJo
r'dr

x <exp|xAr -xn'| I erf

exp{-|x;v ~xn ' |) erf

where

- xn = -f- (r')2 - 2rr'cosv>'

For axisymmetric interface perturbations, the </?' dependence comes solely from

the cosine term in the expression for (XTV — xn'|. It is obvious that the integrand

becomes singular when r = r' and (p1 = 0, since the distance |x# — xn'| between the

points x;v and xn' (which appears in the denominator) becomes zero. Nevertheless,
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the integrals exist since this weak singularity (I/ |x;v — xn'|, as |xjv — xn'| —> 0) is

integrable. To demonstrate this we introduce the new variable

77 = |xjv -xn'| = x/a(r,r') - 7(r,r') cos <£>',

where

and

7(r,r') =

The above integral, which can be written as

c =

where h is a non-singular function, becomes

C= I dr'
Jo

The reader should note the similarity between the integral C and inverse elliptic

functions. In fact, in the special case of a stationary coordinate system, C reduces

to a non-singular inverse Jacobian elliptic function [13]. In the general case, the

integrand in C is bounded by the integrand of the stationary case in the entire inte-

gration interval and thus its existence is guaranteed. To evaluate the integrals with

respect to rj, the orthogonal polynomial Gaussian quadrature (based on Chebyshev

polynomials of the first kind) is applied [13], e.g.,

6 dyh(y] ^ -n

(6 + a) (b -a) f l k - l i r
- - - + - - - cos --

2 ^ 2 N 2
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For the rj pa.rt of integral C we obtain

A N* fOO ./ , X
C _ ^_^ I ./ h(r , r , r}k)

where

T ] k ~ 2 2 COS\~~N^~2

The two-dimensional integrals can now be written as sums of Nv one-dimensional

integrals in r'.

The interface shapes at time tw (i.e., £AT) and at time tn (i-e., Cn)5 both

asymptote to the paraboloidal (unperturbed) interface shape £o=(p/2)(l — r2/p2)

as r —+ oo. As a result, |XAT — xn'| becomes

lim |XA7-xn ' | = ^-
r'— KX>

and the asymptotic behavior (with respect to r1) of the above integrand is deter-

mined by the exponentially decaying term

The new variable

maps the semi-infinite interval [0, oo) onto the finite interval (0,1], with r —* oo

corresponding to q —» 1.

At this point we are faced with the choice of an optimal discretization for the

q interval, so that the computation of the integrals is both accurate and flexible.

The satisfaction of both criteria is not a easy task. Most higher accuracy Gaus-

sian quadrature formulae require a large number of "weights" and abscissas that

45



vary with the number of desired points, whereas equidistant, equal-weight formulae

such as Simpson's rule suffer from poor accuracy. A quadrature formula based on

Chebyshev polynomials of the first kind and of odd order was selected. It not only

offers a high accuracy, but the weights and abscissas are simple functions of the

number of points Ar
r, expressed in analytical form:

(3.19)

where

y, = cos
i - 1 TT

The implementation of Eqs. (3.18-3.19) transforms the two-dimensional integral to

a finite double sum in terms of the values of the integrands at selected points z, fc

in the 9,77 unit square (which is equivalent to the semi-infinite r, <p domain.)

The three-dimensional "convective" integrals J3, J4, H3, and H4 involve an

additional integration in the z' direction. Again we examine a representative integral

such as

fd r 'T dz' exP <-^r) + *'> Vn(x') .Vx,Tn(x')
J -/Cn(r') 47T|X;v — X'l

x <exp{|xN-x'|} erf

-erf

exp{-|xAf -x'|) I erf

-erf

found in Eq. (B8). The discretization of the / dr' integral is identical to that of

the two-dimensional integrals. For the z' integration the asymptotic behavior of
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the integrand as z' —» oo is used to define a new variable transformation that maps

the semi-infinite interval [£n, oo) onto the interval (0,1]. It is easy to show that the

integrand, excluding the dot product vn(x') -VX'Tn(x'), decays as 1/z' for z' —> oo.

As it was stated earlier, the behavior of the temperature and the velocity fields

at large distances from the interface is determined by the corresponding "unper-

turbed" fields TO and VQ. Although the flow velocity reaches a constant value, the

temperature field decays exponentially as z' —» oo (see Chapter 2.) The integrand

thus decays exponentially as exp{—2(1 + A).?'} for z1 —> oo, where A represents the

relative strength of the flow field. Define the variable

which is equal to unity on the interface z1 = Cn( r /) and approaches zero as z' —* oo.

Next use the quadrature scheme defined by Eq. (3.19) to discretize the transformed

integral from £ = 0 to £ = 1 at the points £m, m = 1,2,..., JVZ, where

2 / 2m — 1 TT '
£m = cos I —= -

At this point we have a set of variable transformations and quadrature rules that

transform the spatial integrals into weighted finite sums. Each term in the sums

corresponds to a point (? t ,^,t ,^ tTn)*, or

= arccos

* The double indices indicate the dependence of rjik and £,-m on 9,-.
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where a(ri) and /3(ri) were defined in Eq. (3.18). The discretized equivalent of each

spatial integral is presented in Appendix C.

The integral equations (3.14) and (3.15) have now been transformed to a set

of non-linear algebraic equations in terms of the interface shape Cn(n) and the

temperature gradient VxTn(r,-, zm) at selected times tn and locations (r,-,zm). The

non-linearity can be traced back to the evaluation of the Green's function along the

interface. In contrast to the classical one-dimensional Stefan problem, the (gener-

ally unknown) curved shape of the interface cannot be represented by a constant

coordinate surface. This, in turn, results in the explicit appearance of £ (or, xr) as

the argument of the Green's function in Eqs. (3.14-3.15). The discretized equations

(3.14-3.15) can be written in the following concise manner*:

n=l t=l fc=l

N Nr i"v N,

+ ZZZZ IS«,fc,m;>,N{C(n,in),v(r,-,2m,<n_1)-VxT(n,2m, *„_!)}, (3.20)
n=l t=l fc=l m=l

and the auxiliary equation

n-l Nr Nv

(7=0 H=1 K = l

n-l NT Nv Nz

+ E E E E W?,n,«,f;.-,n-i {C(rM, *»), v(r,., zi, tv) • VxT(rM, zi,tv)}t (3.21)
<T=0 /1=1 K=l /=!

where the interface is axisymmetric (£ independent of fc), J and "H are the non-linear

algebraic operators in Eqs. (C1-C8), and 1C is the curvature operator

r 1 + (C')2]2

* The superscripts (D) and (c) denote contributions from the "diffusive" and
the "convective" integrals, respectively.
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The velocity v n_](r , - ,zm) at time tn-i is calculated from Eqs. (2.13). (D2).

and (D12-D13). It represents the contribution of two terms: the "unperturbed"

Oseen velocity, derived in Chapter 2, and a Stokes flow correction, calculated in

Appendix D and representing the effect of the interface perturbation. Since the

flow field is a solution of the quasistatic Oseen approximation to the Navier-Stokes

equations, it satisfies the no-slip condition on the perturbed interface exactly and

asymptotes to a constant velocity at infinity. The velocity is updated using the

current interface position and is then used in Eqs. (3.20-3.21) to calculate the next

interface position. It is worthy of note that in the case of pure diffusion, v = 0. This

simplifies Eq. (3.20) considerably since the spatial integration is eliminated, while

Eq. (3.21) becomes obsolete since no interior values of the temperature gradient

are required.

Eq. (3.20) represents the interface temperature at r = TJ and at time t = tpj-

By varying the index j from 1 to Nr, which corresponds to different radial distances

from the z- axis, we can obtain Nr such equations for a given time t = tpj. If we

assume that the all the variables at the times 2n, n = 1,2,..., N — 1, are known,

then the set of Nr non-linear algebraic equations

Nr Nv

A - i/JCKfo,**)} - EEZ$,i,kij,N{t(ri,tN)}
i=i fc=i

TV, Nv Nz

~ EE E 2g,,-,fc1m;j,N{C(ri,*N), v(ri,2m,*JV-l) ' VxT(r,-,2m, <„_!)}
t=l Jfc=l m=l

N-l Nr Nv N-l Nr Nv N,

= E EE2&,*;AAr{C(r,-,*n)} + E EE E ^,*{C(r,-,*»),
n=l t=l Jt=l n=l t=l k=l m=l -

v(r I- ,2m , tn_i)-VxT(r<,2m , *„_,)}, ; = 1,2,..., JVr (3.23)
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can be solved to give the Nr unknowns, i.e. the interface shape at the points

TJ, j = 1, 2 , . . . , Nr (Note that the left-hand-side is expressed .solely in terms of

the unknown interface shape, whereas the right-hand-side contains only previously

calculated quantities.)

Finally, by varying the value of TV, we obtain a set of equations (3.23) repre-

senting the history of the interface position up to the corresponding time t^- The

sequential solution of these equations gives the interface position at t = t^ as a

function of previously calculated values at t — tn, n = 1,2,..., JV — 1.

In the next section we will discuss the numerical characteristics of this method-

ology and present representative results.
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3.2. DISCUSSION OF RESULTS

The non-linear set of Eqs. (3.23). the auxiliary Eq. (3.21) for the temperature

gradient and Eqs. (2.13, D2. D12-D13) for the velocity represent the numerical

approximation of the integral evolution equation for the interface shape. We will

use these equations to examine the growth dynamics of the solid-liquid interface.

The importance of quantities like surface tension and convective flow strength has

already been established in the study of steady-state models. In this section we

will first show that the interface tracking algorithm based on the above equations is

numerically stable, convergent, and robust. We will then discuss our results which

clearly demonstrate the significant role of surface tension and convection in the

transient evolution of the dendritic interface.

The primary objective of this work was to develop an exact (i.e. without

ad hoc approximations) mathematical scheme to represent the combined effects of

interfacial tension and convective heat transport. This was achieved by transforming

the governing set of equations into a tractable numerical scheme. In this section we

present our current results and discuss several additions and generalizations that will

extend the utility of our computational scheme. It will be shown that our algorithm

is an effective tool for the study of spatial and temporal pattern formation.

The important input parameters are of two kinds. Numerical parameters, such

as time step size and the number of quadrature points, determine the numerical

characteristics of the algorithm. Their effect on the solutions is discussed in Sec.

3.2.a. The physical parameters (Peclet number, surface tension, flow strength, etc.)

specify the characteristics of the physical system. The results from our calculations
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at selected points of the parameter space are presented in Sec. 3.2.b. Finally, some

concluding remarks and suggestions for future work are presented in Sec. 3.2.c.

3.2.a. Numerical Characteristics

This section describes the tests that were carried out to examine the robust-

ness and accuracy of the numerical scheme. Representative results demonstrate

the ability of the scheme to track known solutions such as Ivantsov's solution and

the new "convective" steady-state solution. The convergence characteristics of the

algorithm with respect to varying grid sizes and time steps were also studied. Fast

convergence was achieved with a relatively small number of spatial and temporal

discretization points.

The underlying basic state for the interface shape is determined by the Peclet

number and the strength of the flow field. In the limiting case of no flow (A = 0),

the basic state is the Ivantsov steady-state paraboloid of revolution. As shown

in Chapter 2, the paraboloidal shape of the interface is preserved for A ^ 0 if

the flow field satisfies certain conditions. Thus, the new "convective" steady-state

solution, derived in Chapter 2, is used as the underlying basic state in the numerical

calculations (since this solution reduces to Ivantsov's solution for A = 0, there is no

need to distinguish between the two). The test cases that were examined cover the

range of moderate to high Peclet numbers (i.e., p > 0.1). Since the characteristic

length is 2a/V = p/p, smaller Peclet numbers decrease the resolution of the system

and require a large number of spatial discretization points. A discussion of future

improvements in the spatial discretization follows in Sec. 3.2.C.

The discretization of the integro-differential equations (3.14-15) combines the

numerical approximation of derivatives and integrals by finite differences and finite
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sums, respectively. The time derivative of the interface shape, (,", in Eqs. (3.14-15)

represents the perturbation on the interface velocity and can be approximated by a
i

finite difference formula. An equivalent approach is to eliminate the time derivative

altogether by integrating the corresponding time integrals in Eqs. (3-14-15) by

parts. The first alternative was chosen since it provides one with the flexibility

to start with either an initial perturbation on the interface shape or an initial

perturbation on the interface velocity (the interface velocity is directly proportional

to the gradient of the temperature field and is thus a good measure of thermal

fluctuations in the temperature field around the crystal.)

The spatial integrals in the integral equation (3.14) are discretized using the

coordinate transformations and the quadrature formulae presented in Section 3.1.b.

The domain is mapped onto a unit cube and the number of the quadrature points

in each of the three directions determines the spatial resolution of the system. Asi \

it was mentioned in the previous chapter, the interface shape, the temperature

field, and the velocity field that correspond to a perturbed interface asymptote

to the respective unperturbed quantities at large distances from the tip region. In

the absence of flow, the Ivantsov paraboloid and the corresponding exponentially

decaying temperature field represent the interface shape and the temperature field

at infinite distances from the tip region. When flow is present, the Ivantsov solution

is replaced by the "convective" steady-state solution presented in Chapter 2. The

known asymptotic behavior can be incorporated into the integral formulation by

replacing A in Eq. (3.14) with the steady-state integral expression Eq. (2.6). At

large distances from the tip the integrands in the right-hand-side of Eq. (3.14)

reduce to those of Eq. (2.6), since the interface shape approaches its unperturbed
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sta.te. As a result, the two sides of Eq. (3.14) cancel each other far from the

tip and the integration need only be performed up to the point where there is no

appreciable difference between the calculated interface shape and the corresponding

unperturbed state. The minimum number of points required to adequately represent

the interface shape is identified by examining the point furthest from the tip: if

the calculated deviation from the unperturbed shape is small (O(10~3)), then for

r > r;vr the interface shape can be assumed to be that of the unperturbed steady-

state paraboloid and no more points are required.

The first important test of the numerical scheme concerns numerical noise: in

the absence of an externally imposed perturbation, the numerical solution should

remain fixed onto the underlying basic state as time evolves. A wide range of flow

strengths was studied (0 < A < 10) and, in the absence of an externally imposed

perturbation on the interface shape or velocity, no departure from the basic state

was observed.* The calculations were carried out to arbitrarily large times, thus

indicating that the accumulation of round-off error does not generate misleading

numerical instabilities. This is an important result in itself since the correspond-

ing basic states are often unstable to infinitesimal external perturbations, including

random noise. The elimination of numerically driven instabilities enables us to con-

centrate on destabilizing mechanisms such as thermal fluctuations or interface shape

perturbations. In addition, the amplification of random noise has been proposed as

the triggering mechanism for sidebranch growth. Thus, the ability to distinguish

* Note that A = 1 corresponds to a flow velocity that is equal to the freezing
velocity of the crystal. For moderate to high supercoolings (or Peclet numbers),
the freezing velocity of succinonitrile dendrites is of O(cm/s), while comparable
flow velocities were not observed [2].
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between thermal and numerical noise (the latter being virtually uncontrolled) be-

comes important in the study of non-linear interaction of noise and sidebranching.

Several tests were carried out to examine the behavior of the solution as the

number of points used to represent the interface shape and the field variables were

changed. When a zero-surface-tension solution was used as an initial condition,

the computed solution would stay on the initial condition as long as v = 0 and no

external perturbation was imposed. However, once i/ is changed, the system evolved

to a new state to account for the effects of capillarity. The following procedure was

used to test the convergence of the algorithm: The system was started with the

zero-surface-tension solution in place, i.e. v = 0. Then v was changed to a non-zero

value and the system was allowed to evolve to a new state. Figures 7 and 8 show

the behavior of the tip velocity for different numbers of discretization points in the

r— and indirections and for p = 1. The perturbation velocity at other points oh

the interface has a similar behavior. The results shown correspond to A = 0 and

v = 0.001. Similar results were obtained for A = 0.1 and A = 1.0, indicating that

the convergence behavior of the algorithm is essentially independent of the strength

of the convective flow in this range.

The point r = 0 is not a nodal point and thus one needs to extrapolate from

the neighboring nodal points using a local Taylor series expansion for the interface

shape. The 7 r—point result is fairly accurate and the 12 point result is almost

indistinguishable from the 30 point case. (The maximum deviation from the 30

point result is 34% for the 7 point result and only 4% for the 12 point result.) The

convergence is faster in the (^-direction and here less than 10 quadrature points give

very accurate results: 23% and 2% maximum deviation from the 12 point result.for
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the 4 point and the 7 point case, respectively (see Fig. 8). The above results indicate

that a small number of quadrature points is sufficient to accurately represent the

growth velocity both in short and long times and over a variation of several orders

of magnitude in the velocity.

While the number of quadrature points (N r,Nv,Nz) determines the spatial

resolution of the model, the time step size determines the temporal resolution.

The use of the time-dependent Green's function and the resulting time integration

allows the choice of rather large time steps. As an alternative, one can use a time-

differencing scheme, whereby the temporal derivative in the transient convective-

diffusion equation (3.5) is approximated by a finite difference formula. However,

the partial gain from the elimination of the time integration cannot compensate

for the substantially smaller time steps required by time-differencing [14]. Figure

9 shows the tip velocity for different time steps and for A = 0.0. Here again the
'-"£- •

zero surface tension solution was used as the initial condition and the system was

allowed to evolve to a finite surface tension (v = 0.001) state. The results show

that the algorithm is rather insensitive to variations of the time step size and,

thus, large time steps give fairly accurate results. The time step At = 0.1 is quite

large considering the fact that the system reaches a steady-state at times of order

unity; however, the maximum deviation of the corresponding tip velocity from the

A< = 0.002 result is only 34%. (Similar results were obtained for A = 0.1 and

A = 1.0). The larger time steps obviously cannot describe the evolution of the

interface at very small times. Nevertheless, it is important to note that the final

steady-state is predicted quite accurately by calculations with time steps varying

over several orders of magnitude. This allows us to interchange large and small
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time steps within a single run. thus accelerating the approach to the final state or

increasing the resolution over a particular time interval.

At this point we reiterate that the global approach to a more-or-less iden-

tical steady-state, irrespective of time step size or number of quadrature points,

implies that our solution scheme is both unusually robust and numerically stable.

Considering the complexity of the mathematical problem and the transient, three-

dimensional structure of the temperature field, this is a gratifying result.

3.2.b. Representative Results

The test cases that will be presented in this section demonstrate the effects of

convection and capillarity on the evolution of the solid-liquid interface. The gov-

erning equations constitute an initial/boundary value problem in which the initial

perturbation on the underlying basic state determines the short-time beLarior of

the system. The numerical approximation does not involve a linearization around

the basic state and thus there is no limitation on the magnitude of the initial per-

turbation. At this point the algorithm is restricted to interface shapes z — C(ri*)

that are single-valued functions of the radial coordinate r. (In simple terms, we

are currently "counting" the surface elements that are located at the same radial

coordinate r only once.) The formulation can be generalized by implementing a

more general transformation of the surface integral in Eq. (All) to account for

multiple-valued functions of the radial coordinate. This loss of generality does not

affect our results as long as the initial perturbations are sufficiently smooth func-

tions of the radial coordinate. In testing the algorithm and in examining the effects
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of surface tension and convection on the temporal and spatial evolution of the in-

terface, we have chosen to use the zero-surface tension steady-state solutions as our

initial conditions. These paraboloidal solutions (Ivantsov or "convective"), derived

in Chapter 2, represent single-valued, long-wavelength perturbations on the under-

lying basic states with finite surface tension and can be used effectively in studying

the role of surface tension.

The role of surface tension in the dynamics of the interface evolution is very

important. In the zero surface tension limit and in the absence of flow, any pertur-

bation, however weak, destabilizes the interface and in very short times tip splitting

occurs with the tip region splitting into an increasing number of growing fingers.

Tip splitting is characterized by the superposition of interface perturbations with

an infinite spectrum of wavelengths. While the short end of the wavelength spec-

« trum can only be represented by multiple-valued functions of the radial position,

the long end of the spectrum is characterized by smoother, essentially single-valued,

functions of the radial position. The quantitative validity of the calculations is cur-

rently restricted to single-valued interface shape functions and thus the growth of

very short wavelength perturbations must be excluded. However, long-wavelength

perturbations satisfy the single-valuedness requirement up to sufficiently long times

and can be used effectively to study the dynamics of the interface. Isolated sur-

face protrusions, smooth perturbations, and random noise were used to show that

destabilization via tip splitting occurs invariably in the zero-surface-tension limit.

Figure 10 demonstrates the effect of an interface perturbation on the stability of

the interface. The initially smooth perturbation, centered at the tip, destabilized

the interface into an increasing number of growing fingers. The qualitative features
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of the interface destabilization were found to be independent of the amplitude or

the structure of the externally imposed perturbation. Tip splitting was identified

under a wide range of Peclet numbers (from 10~5 to 10) and flow strengths (from

A = 0 to A = 1).

The fast convergence of the algorithm was demonstrated in the previous sec-

tion. While the interface shape is generally independent of the number of interface

discretization points for non-zero values of i/, it becomes strongly dependent at

the limit of zero surface tension. This peculiar behavior stems from the special

characteristics of the tip splitting mechanism and is backed by Langer's theoreti-

cal analysis of Ivantsov's solution [15]. Short wavelength perturbations grow faster

and eventually dominate the interface shape. As a result, the wavelength of the

fastest-growing mode is constrained by the spacing between adjacent points on the

discretized interface. In the theoretical limit of the continuous interface, the fastest

growing component of the spectrum corresponds to wavelength zero and the result-

ing interface shape resembles a growing "band". Although the calculated interface

shapes are strongly dependent on the spatial discretization, is important to note

that for a given grid spacing the resulting growth velocities are independent of the

structure and magnitude of the initial perturbation.

The most striking result of the computations thus far has been the fact that

small amounts of isotropic surface tension stabilize the interface. The forced per-

turbation on the interface shape at t = 0 does not lead to interface destabilization

as in the zero-surface-tension case. As Figs. 11-12 indicate, finite surface tension

stabilizes the perturbed interface when no flow is present. The perturbation growth

velocity C(r, i), plotted vs the radial interface position for different times, finally
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reaches a time-independent, spatially-uniform value, thus indicating that a steady-

state has been reached. The new steady-state is characterized by a constant interface

velocity 2 + £ that is smaller than that of the corresponding zero-surface-tension

state.*

In the initial stage of the interface evolution (i.e., approximately t < 0.3), the

perturbation velocity £ increases with time and reaches a maximum value that varies

along the interface. The stabilizing effect of capillarity is evident in Figs. 11-12.

For v = 0.020, the perturbation velocity reaches a maximum value of about 20% of

the corresponding zero-surface-tension value of 2 (see Eqs. (3.2) and (3.6) for the

scaling of the freezing velocity); The growth of the perturbation is much slower in

the case of a smaller surface-tension-parameter, i.e. v = 0.001. Figure 12 shows that

the maximum value of the perturbation velocity ( is about 40 times smaller than

that of the previous case. The magnitude of the capillary term in the evolution

equation dictates the degree of interface rearrangement toward the new steady-

state shape. As surface tension increases, the difference between the initial zero-

surface-tension and the new finite-surface-tension states also increases and "faster"

transition is required. This explains the strong dependence of the growth velocity

on the surface-tension parameter v during the early stage of evolution.

The zero-surface-tension case is characterized by interface instability via tip

splitting. Irrespective of structure or magnitude, perturbations seem to focus on

the tip and unstable fingers replace the paraboloidal tip. In the case of finite

surface tension, however, tip splitting is absent and the maximum perturbation

* The underlying basic state for t < 0 is the zero-surface-tension steady-state
solution, derived in Chapter 2. At t = 0, the surface tension becomes finite; this
corresponds to imposing an interface perturbation, since the interface shape
must conform to the new value of the surface-tension parameter.
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velocity occurs at about one tip radius away from the tip (see Fig. 11). Given

that interface instabilities concentrate on the tip, this result indicates that surface

tension stabilizes the interface by "dissipating" the disturbance away from the tip.

As time elapses and the perturbation decays away from the tip, a slower phase

of evolution sets in. The interface velocity becomes increasingly uniform and the

velocity maximum moves close to the tip (see Figs. 11-12). At about t = 1 the

perturbation growth velocity changes sign and finally approaches a constant nega-

tive value. The growth velocity 2 + £ is thus smaller than that of the corresponding

zero-surface-tension value of 2. The dependence of the total steady-state velocity

on surface tension is rather weak (see Figs. 11-12), but the role of capillarity in the

stabilization of the interface is important. There are two distict effects of surface

tension on the growth velocity in Figs. 11-12:

(i) The initial perturbation is a function of surface tension and thus the initial

stages of evolution must depend on surface tension. This dependence is evident

for t < 0.3.

(ii) The stabilizing action of capillarity dictates the transition to the new steady-

state and determines the value of the correction to the zero-surface-tension

velocity of 2 as t —> oo (since y <C 1 for most materials, the new steady-

state interface shape and velocity are almost indistinguishable from those of

the zero-surface-tension case).

Figure 15 shows that the dimensionless time required for the interface to reach its

new steady state is about 5, thus indicating that the choice of the characteristic

time 4a/V2 in the scaling of the governing equations is appropriate (the final time

recorded in each of the Figs. 11-14 represents a relative difference from the new
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steady-state growth velocity of less than 10 3). It is worthy of note that although

the steady-state velocity differs only slightly from that of the zero-surface-tension

case, the transition toward this new steady-state is rather complex and cannot be

captured by a linearized evolution equation.

Only axisymmetric perturbations have been examined thus far. As a result,

surface-tension anisotropy depends only on the angle 9 between the interface normal

and the 2-axis. We can assume that the anisotropic correction to the surface tension,

defined in Eq. (3.7), is equal to ei/cos(4$), where e represents a measure of the

anistropy of the material and the factor 4 in the argument of the cosine corresponds

to the fourfold symmetry of succinonitrile. Figure 15 indicates that in such a case,

the anisotropic term in the interface evolution equation has a negligible effect on the

interface dynamics for e as large as unity. However, anisotropy has, by definition,

a three-dimensional nature and the resulting interface shapes should, in general,

be non-axisymmetric. A further discussion of anisotropy and three-dimensional

calculations follows in the next section.

The combined effects of convection and capillarity on the interface velocity are

shown in Figs. 13-14. For given supercooling A and flow strength A, the zero-

surface-tension solution, derived in Chapter 2, defines the underlying basic state for

t < 0. At t — 0, v changes value and thus a surface-tension dependent perturbation

is imposed on the interface. The transient response of the interface varies with A,

but the interface invariably reaches a new steady-state. Figures 13 and 14 show the

interface velocity as a function of the radial position at different times for A = 0.1

and A = 1.0, respectively. In comparing Figs. 13-14 with the corresponding Fig.

12 for A = 0.0 \v = 0.001 and Pe = 1), it is important to note that each figure
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corresponds to a different supercooling A. given by Eq. (2.20). Since the level of

supercooling, and not the Peclet number, is controlled by the experimentalist, Fig.

6 can be used to obtain the correct A for given Pe and A. However, for A < 1

the differences are small and a constant Peclet number can be used. Furthermore,

the flow strength A = Uoo/V depends on the scale factor for the freezing velocity,

V. Since the actual velocity-tip radius relation is still unknown, V must be kept

constant if one is to compare interface speeds corresponding to different levels of

convection.

As in the A = 0 case, the interface is quickly reshaped to conform to the

new value of surface tension. The qualitative characteristics of interface evolution

remain the same, but the coupling of capillarity and convection produces a more

complex transition toward the new steady-state. Figures 13 (i.e. A = 0.1) and 14

(i.e. A = 1.0) show a perturbation-velocity maximum of about 1.6% and 13.0% of

the corresponding zero-surface-tension value of 2, respectively (the A = 0.0 value is

0.5%). In addition, a comparison of Figs. 12-14 suggests that the "dissipation" of

the disturbance away from the tip becomes slower as A increases (note the increasing

number of local velocity maxima in the t = 0.2 curves). This non-linear interaction

of the flow field and the interface disturbance seems to be linked to the orientational

dependence of the interface morphology shown in Fig. 3 (the rigorous analysis of this

phenomenon requires a ^-dependent flow field and is discussed in a later section).

After the initial reshaping, the interface slowly approaches its new steady-state,

characterized by a negative correction to the zero-surface-tension interface velocity

of 2. Figure 15 shows the decay of the perturbation velocity at "the tip toward its

steady-state value. For A = 1.0, ((0,< = 0.3) and C(0,i -» oo) are equal to 5.5%
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and (7.5%) of the zero-surface-tension steady-state value of 2. For A = 0.1, these

values are about one order of magnitude smaller. As in the case of A = 0.0, the

time required for the interface to reach its new steady-state is approximately 5.

In conclusion, the total steady-state interface velocity decreases monotonically

with respect to both increasing surface tension and flow strength. However, the cal-

culations for v = 0 suggest that convection does not contribute to the stabilization

of the interface. In the following section some conclusions are drawn and several

ideas for future development are presented.

3.2.c. Conclusions and future work

1. Conclusions

The primary results of this chapter are the following:

(i) A non-linear tracking algorithm, based on the integral transformation of the

transient convective-diffusion equation, has been developed for the study of

complex growth forms. The ability to treat finite amplitude disturbances and

the applicability to arbitrary geometries make this numerical scheme a valuable

tool in the understanding of pattern formation. Analogous formulations have

been used in the past for the study of dendritic growth and viscous fingering

in Hele-Shaw flow cells [3,4]. The most important differences between this

analysis and the ones preceeding it are:

1. The temporal derivative in the convective-diffusion equation has been ne-

glected in previous quasistatic models. Howevr, scaling arguments show

iv that at large supercoolings this term becomes imprortant and cannot be
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ignored, at the expense of time integrals that are quite cumbersome to

calculate.

2. The study of the convective effects on the interface evolution requires the

calculation of spatial integrals over the entire liquid region, absent from

similar work on diffusion-controlled growth. The algorithm employs a se-

ries of variable transformations and an optimal set of Gaussian quadrature

points that evolves in time so that the temperature field is calculated at

the minimum number of interior points.

3. The interface shape appears in the non-linear kernel of the integral equa-

tion. Previous efforts to linearize the evolution equation and carry out a

linear stability analysis do not capture the non-linear features of dendritic

growth. Sidebranching and tip splitting ca.n be thought of as results of the

non-linear interaction of interface perturbations and capillary forces. The

algorithm presented here applies the Newton's iteration method to solve

the non-linear evolution equation as a. function of time and space. It can

thus be used to address important issues such as the amplification of finite

amplitude noise and the origination of sidebranches.

(ii) The numerical characteristics of the algorithm were tested as a function of the

spatial and the temporal discretization of the interface. Fast convergence was

achieved with a small number of quadrature points. In addition, the solutions

are rather insensitive to the time step used for the discretization of the tem-

poral integrals. Finally, in the absence of an externally imposed perturbation,

the algorithm tracks the underlying basic state and numerical noise does not

introduce artificial instabilities.
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(iv) The tip \vas found unstable to finite amplitude perturbations if the effects of

capillarity are ignored. The dominant 'destabilization mechanism is tip split-

ting. The tip region degenerates into a increasing number of unstable fingers

and interface perturbations of arbitrary amplitude seem to invariably focus

themselves on the tip region. This result, which is independent of the flow

strength, represents the first evidence that tip splitting is not restricted to

infinitesimal perturbations.

(v) Surface tension, however small, appears to stabilize the crystal interface for any

flow strength by "dissipating" the disturbance away from the tip. A steady-

state is always reached, irrespective of the structure or the magnitude of the

initial perturbation on the interface shape. The growth velocity of the den-

drite decreases with increasing surface tension but the difference from the zero-

surface-tension case is small.

(vi) Anisotropy does not appear to have an important effect, qualitatively or quan-

titatively, on the dynamics of the interface. However, fully-three-dimensional

(i.e., non-axisymmetric) perturbations will need to be tested before a complete

understanding of the role of anisotropy can be gained.

(vii) Convection reduces the total growth velocity of the new steady-state, but does

not seem to contribute to the stabilization of the interface. In the zero-surface-

tension case, convection does not affect the qualitative features of tip splitting.

However, the role of convection in the low supercooling regime needs further

investigation and is discussed later in this section.

(viii) The operating point of the dendrite is not established from the non-linear

analysis presented here. However, the results of the analysis call into question
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all those obtained with the linearized theories now extant. Consider, first, the

marginal stability hypothesis. Given the robust stability of shapes investigated

here, it appears that the marginal stability hypothesis is wrong. The surface-

tension adjusted shapes are found to be stable to finite amplitude perturbations.

Thus, the central feature of marginal stability, a critical value of a, simply does

not exist when surface tension is considered in the context of finite amplitude

effects. Second, microscopic solvability appears incomplete, at best. All the

shapes investigated in this work are stable when finite amplitude effects were

considered. Yet one feature of microscopic solvability is that only the fastest

growing, smooth tip is stable. If this conclusion holds when finer resolution

is considered at the tip, then the operating point selection mechanism is even

more .subtle than the microscopic solvability would suggest.

2. Future Work

The first extension of this work should be toward the stud}7 of three-dimensional

(i.e. non-axisymmetric) interface perturbations. Since the formulation is applicable

to fully three-dimensional systems and since the modification to anisotropic surface

tension is straightforward, this numerical scheme can be used to test the microscopic

solvability theory under the most general conditions of transient interface growth.

The validity of the microscopic solvability theory at finite times can also be tested

in a different way. Instead of prescribing the amount of surface tension and the

corresponding anisotropy and then examining the slope at the tip, one can do the

opposite: fix the tip slope to be zero and then calculate the time dependence of
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the capillary parameters. The algorithm requires the solution of a set of non-

linear equations with an equal number of unknowns. A logical choice for the set of

unknown variables would be the interface shape function £ calculated at the various

quadrature points. However, there is no mathematical restriction applying to the

replacement of one or more of these unknowns with an equivalent number of the

physical parameters of the system. Therefore, by fixing the slope at the tip, one of

the unknowns is effectively eliminated and a new degree of freedom is introduced in

the physical parameter space. By allowing the amount of surface tension anisotropy

(or, the amount of surface tension itself) to vary, one will be able to monitor the

microscopic solvability condition through time and thus test its validity in transient

dendritic growth.

The accurate calculation of the slope requires a fine discretization of the tip

area. At the present time a high density of points close to the tip cannot be pre-

scribed without introducing an unnecessarily large number of discretization points

in the radial direction. This stems from the nature of the Gaussian quadrature

formulae and the associated fixed distribution of points within a given interval. Fu-

ture refinements of the algorithm should include a choice of "specialized" quadrature

schemes in addition to the all-purpose Gaussian quadrature scheme presented here.

Such flexibility would also speed up computations and reduce storage requirements

in the case of an initial perturbation with a narrow range of wavelengths. Calcu-

lations for long wavelength perturbations require a "larger" domain but make no

use of the increased resolution of the tip region, with the opposite being true for

short-wavelength perturbations localized at the tip.
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Experimental evidence indicates that the effects of convection become impor-

tant at very low supercoolings (A < 0.05) [2]. All the computations, however, were

done at Peclet numbers greater than 0.1 which belong to the "diffusive" regime

(see Chapter 2). The study of convection at lower Peclet numbers (or supercooling

levels) requires a higher spatial resolution around the tip. In Sec. 3.1.a the length

scale is defined as 2a/V. Using the definition of Peclet number (p = Vp/2a, where

p is the tip radius of curvature), the above scale becomes p/p. For small Peclet

numbers, it is obvious that this length scale is much larger than the tip radius

and the spatial resolution in the tip region is severely decreased. Therefore, at low

Peclet numbers, where convection is expected to play a stronger role, the tip radius

p should be used as the more appropriate length scale near the tip. Also, values of

A greater than unity are possible in the low supercooling regime where the freezing

velocities are quite small. It thus remains to be seen whether the use of a finer scale

will show that convection qualitatively affects the stability of the freezing interface

at low supercoolings.

Finally, the convective steady-state solution, derived in Chapter 2, applies only

to axisymmetric flow fields, oriented along the z—axis. The study of the orientation-

dependent elimination of sidebranches, shown in Fig. 3, requires the use of more

general (i.e non-axisymmetric) flow fields. The integral formulation is not restricted

to axisymmetric flow fields and can thus be used to examine growth subject to an

arbitrary flow field (at the expense of an increase in the dimensionality of the

equation and in the computation time).
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APPENDIX A:

Derivation of the integral equation

In this appendix we derive the integro-differential equation that describes the

evolution of the dendritic interface. The transient convective-diffusion equation is

first written in differential form:

+ v - Vscf - aV|f - V~ = 0, (Ala)

where x = (£,y, z) = (f, z) = (f, y>, z), a is the thermal diffusivity and Viz is the

constant velocity of the moving coordinate system. The hydrodynamic velocity field

v satisfies the no-slip condition on the interface and is zero in the solid. Under the

assumptions of the two-sided model proposed by Langer [1], the thermal diffusivities

and the densities of the two phases are considered constant. We scale lengths with

2a/V and times with 4a/V2:

F¥T
~ + 2A v - VXT - V2T - 2£- = 0, (Alt)
of oz

where A = Uoo/V is the ratio of the characteristic fluid velocity scale to the velocity

of the coordinate system and T = (f — T^Cp/L. The temperature field vanishes

as z —* oo and is also constant as z —» —oo:

lim T(x, t )—* constant. (Ale)

The temperature also satisfies the thermodynamic boundary condition

Tr = A-i/£{C(r,<)} (Aid)
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with A = (TM — TOO)CP/L and v = doV/2a; K, is the dimensionless curvature.

Finally, heat conservation at the interface requires that

n • VxT(liquid) - n • VxT(solid) = - [2 + C(r, <)] A >*• (Ale)

We now introduce the fundamental solution G(x, x';i — t') of the transient

diffusion equation in an unbounded domain; in the moving coordinate system, it is

defined by

0. (A2)

and G(x, x'; i — t1) = 0 for t < t' . The fundamental solution (or Green's function )

s

C( v', *'\G(x,x ; < - * ) =

\

where H(t — t'} is Heaviside's step function [1]. By taking the Fourier transform of

Eq. (A2), Langer [1] derived the following integral representation of G(x, x'; t — t'}:

„, , M f°° d"
G(x,x' ; t-O= / —V ;

(27T)J t W + F -

Following the notation of Caroli et al. [2], we define: £_ = limc_>o+ (* — c). Then

GYx x'-1 — t~) = 6(x — x'). (A5)

Let k = q + kziz. Eq. (A4) then becomes [2]

G(x,x';<-0= /"£cM'-° (A6)

. ^>vn f - ^ - t ? " — ?"-J - \ 7 —^^.\-f i i * i^ I* ^^
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where

withRe(l+iu; + g2)* > 0.

We now multiply Eqs. (Alb) and (A2) with G(x,x';< - t'} and T(x',f), re-

spectively, add and integrate in time and space:

fiftf-x -x'-t — t']i ./\c'<-rVx;x i1 l J

^

f ' d t ' f d r ' [°° dz' -

T *•/ '*• jT ^ { -2G(x, x'; . -

/ dt' f dr' f°° <fe'2AG(x,x';<-<')v(x',0-VX 'T(x',0 =0, (A8)
7-oo 7 J((r',t')

where the lower limit for the z' integration in the last term is £(r',<;) since the

velocity v is zero for z1 < £(r',t').

By grouping similar derivatives together and applying Green's 2nd theorem to

the second term in the left-hand-side of Eq. (A8) we get

f'~ dt' j dr'J°° dz' A [G(x, x'; * - *')r(x', <')] +

/'" dt' fdT'n' • fG(x, xr'(rf , f); < - <')Vx<T(x', <')
J —00 J

-T(x',t')Vx-G(x,xr'(r',t');t-t')]-

, x; * -
—00 J — 00 "Z

I dt1 f dr1 f d2'2AG(x,x';<-Ov(x',<').Vx.T(x',<') =0. (A9)
7-cx) y J<(r',t')

The second term represents integration over a surface enclosing the interface and

placed at an infitesimal distance from it.
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Next .the z1 integration in the third term of Eq. (A9) is performed so that the

term becomes

-2 / dt' f dr' \ lim G(x; r', za ; t - t')T(r' , z^t1}
J-oo J l̂ -roo

- lim
> — 00

From Eq. (Ale) we know that the temperature as z — * oo is zero and thus the first

term in the above expression vanishes. The temperature reaches a constant value

at z — >• — oo and can be taken out of the integral sign so the remaining integral is

/ dt' f dr' lim G(x;r',«!; *-*').
y_TO J *i-oo

Using Eq. (A7) and the fact that limc_o+ G(x, x'; — c) = 0, the integral can be

written as

v r°° r r°° du • / _ i) f dq e
l*^r~r '^~^2~Zl^2"

^—ooj J y_0 027r e y (27r)2 2[m(q,u)-

f
,00 f , t°° du iu l ( t_ t>) f

—e ^

Thus, the third term in Eq. (A9) does not survive even if the the temperature at

negative infinity is non-zero.

We can now perform the time integration in the first term of Eq. (A9):

Idr' Iy y-
With the help of Eq. (A5) and of the fact that limt/^_oo G(x, x'; t - f) = 0, this

integral becomes

x'6(x - x')T(x', *_) = T(x, t), (AID)

where <_ has been replaced by t since the temperature is a continuous function of

time.
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Returning to Eq. (A9), we find

l~ dt' I dT'n ' • [G(x, xr'(r', i' ); t - <')Vx-T(x', *')
J—oo J

/ dt1 I dr1 ! <fz'2AG(x,x';<-Ov(x',0-Vx-T(x',0- (All)
J-oo J J(.(r',t')

Since the domain £1 is infinite, we assume that it is bounded by a surface that has

been removed to infinity. Langer [1] has shown that in the absence of external fluxes,

the contribution of this outer surface to the second term of Eq. (All) is zero. We

thus restrict our attention to the crystal-melt interface F. The surface integral in Eq.

(All) contains the boundary values of the temperature and its normal derivative

and the continuity of the temperature implies that the term proportional to the

gradient of the Green's function cancels out. We can now evaluate the remaining

term, proportional to the normal component of the temperature gradient, using Eq.

(Ale):

T(x, t) = /"' dt' I dr' [2 + C(r (, *')] G(x, xr'(0; * - 0
J — oo J

- 2A / " dt1 [ dr1 f°° dz'G(x, x'; t - t1) v(x', t1) • Vx.T(x', *'), (A12)
J-oo J J<;(r',t')

since for single-valued z = £(r, t) it is true that

n - \ z d T = dr = rdr d(f>.

Equation (A 12) is the integral equivalent of the transient convective-diffusion

equation in the moving coordinate system. In the case of a steadily propagating
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interface, i.e. with a uniform velocity equal to that of the coordinate system, Eq.

(A12) reduces to the steady-state equation

T(x) = 2 /dr'(?M(x,xr')-2A f dr' f°° <fe'G,.(x,x') v(x') • Vx,T(x'). (413)
J J J((r')

Here Gss(x, x') represents the Green's function that corresponds to steady diffusion

in the moving coordinate system and is given by

,(X, X J — I at Cr^X, X , I I J.
J — oo

The integral equation that corresponds to the one-sided model is identical to

Eq. (A12) at the limit of zero-surface-tension since there is no flux through the

isothermal solid. In the presence of surface tension, the convective effects are rep-

resented by a term identical to that of Eq. (A13). On the other hand, the diffusive

contribution is with the one sided model is different since heat cannot flow through

the solid (QS = 0). The derivation of the corresponding "diffusion" term has been

presented by Caroli et al. [2].
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APPENDIX B: Temporal discretization

In this appendix the time discretization of the integral evolution equations

(3.14-3.15) is described.

,xr'(0; * - 0
—00

-2X f ~ dt' [ dr' [°° dz'G(xr(<),x';<-*')v(x',0-VxT(x',0,
7-00 7 •'C("",t')

+ C(r',0 VxG(x,xr'(0;< ^ 0

-IX t~ dt' I dr' I <fe' VxG(x, x'; < - <;) v(x;, «') • V'xT(x', <')•
J-oo y 7c(r',t')

From < = —oo to < = <o, the interface shape, the temperature field, and the flow

field are represented by steady-state solutions denoted by the sul script (o). At time

t = to a perturbation on either the interface shape, or the temperature field, or other

boundary conditions causes deviation from the steady-state; the time integrals in

Eqs. (B1-B2) can then be split in two parts:

dt' dr'2G(xr(i),xr'o(0;< - 0
— oo

r~dt' fdr' [2 + C(r',Ol
Jt0 J l -

2A / ° dt' fdr1 r <fz'G(x r(<),x';<-0 V0(x') -VxT0(jf.')
J-oo J ./Co(r')

2A ~ dt' I dr' l^ dz'G(xr(t),^]t-t') v(x',<') •V'.TCx',*'), (-B3)
-/C(r',t')

/

to
dt' I dr' 2 VTG(x, xr'0(0; * - 0

-oo
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\

+ / dt' I dr' [2 + C(r', O] VrG(x, xr'(*'); < - 0
«/ <0 "^

- 2A / ° dt' f dr1 f dz'VxG(x, x'; t - t'} v0(x') • V'rT0(x')
J— oo J 1'Co(r')

-2A dt1 dr ',t l). (54)

Let T = tpj — t1 and

,*n) = x(r,C(r,<n)) = xn(r), n = 0,1, . . . , N.

The first integral in Eq. (B3) becomes

oo

<^-to

oof°° f 1
= / d r / <fr'

JiN-to J 47r4(7rr)
exp

-|XN -XQ'|
4r - r - (N + C'o

where

|XN - xn'|
2 = |r - r'|2 + (Cw - Cnf, n = 0,1, . . . , JV,

and

Let

|XN -xp'l

Then

7rt|xN-xo'|

47T

x exp|xN - x0'|erf ( a;+

and
|xN - XQ'
2\//VA?

-x0'
4w2

,
+ exp {- |XN - x0'|) erf I w
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Finally

J, = dr' -2 •"h I*N - xo'l + exp |XN - xol (Bo)

" Xo

xeit + ,/57= +exp {_ |XN _ Xo-|)erf

The second integral in Eq. (B3) becomes:

I2 = j " °dTJdr' [2 + C'(r'>0] G(xN,xn';r)

P

We now discretize the time domain [0, iff — to] in N intervals [(N — n) At, (N — n +

1)A<], n = 1,2, . . . ,A r. The value n = 0 corresponds to r = WA< = <#, or, <' = t0

(initial time), whereas n=N corresponds to r = 0, or, t' = t^ (final time.) Quan-

tities, such as the interface location C(r?0' ^e temperature T(x, <), and the flow

velocity v(x, t), are considered constant over each interval and equal to the values

corresponding to the end of the time interval. The integral now becomes a sum of

N integrals and the time integration can be performed analytically:

N

J *=iJ / . . d-/drl2-^J

n=l

(47TT):

Cn(r')]exp{-CN(r) + Cn(r')}x

(47TT)* " t 4T

Again, let

|XN-X n ' | ,andy— UJ..1VI. WV/V « -. I .

2>/r 2v/(]V - n)Ai
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Then

f

•/ UJj

J 2 |XN -aw exp < — u
I

The integration in u> finally yields

N

•' 2 Cn(r')]

x < exp |XN - x.'| | erf

87r|xN -xn'|

[
— erf

exp{-|xN-xn'|} I erf

-erf

|XN -xn'|
y/(N-n (56)

We now follow the same procedure for the evaluation of the domain integrals

in Eq. (B3):

f fOO

•v'-i i'\ •vn(ic'\ -\7' Tn(Tf'\, X , t — t ) VQ(X ) -VxJ.Q(y. )l*'Lf
= -A/°° dr tdr 'T

JtN-t0 J •'Co(r')

tN-to

oo

Let

Then

a? =

4(7TT)'

|XN-X'|

exp < -( 2 \

-|XN
4"r

XT - r -C N + z'\ vo(x') • V;TO(X').

and UN =
|XN-X'|

Is = -A
7rf |xN-x'

/̂0
du exp < —u> —2 ,XN -
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The integration in u; gives

/

*OO

dr' / dz'
-/Co(r') 4?r

x -2sinh |XN - x'l + exp {|XN - x'|} erf

+ exp {- |XN - x'|} erf " *
-to

- t0
J

=d }. (B7)
J J

The second domain integral in Eq. (B3) becomes with T = t^ — t':

°
/cfr'T dz'
./ ./C(rV')

f<N~*0 /• f°°

/ d r / d r ' / -
./o 7 A(r',t') 4(:

exp _
a —f I 4r

We now apply the time discretization (see Eq. (B6)) and we re-introduce the

variable transformation

|XN-X' |
and

|XN-X'|

Then
N f r°

= -\Y\ I dr' I
^ J •'C-

dz'
(r')

•vn(x').V'xTB(x')

/

I-u2 -
_ x

•*•
/ 2

The integration in u gives:

dz'
C-(r') |XN -

.vn(x').v'rrn(x')

x^exp{|xN-x'|) erf

-erf

+ exp {- |XN - x'|} erf

(B8)

-erf
XN -
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The discretized (in time) equivalent of Eq. (B3) is now

Tr = A - z/£{C(r, t)} = /i + /2 + /3 + /4 (59)

where the integrals (/j — J4) are shown in Eqs. (B5-B8). The calculation of the

interface shape at time t = <w, as represented by Gv(r) (°r> XN,) requires the prior

knowledge of the temperature gradient field in the interior of the domain, VxT(x, t).

We shall use Eq. (B4) to evaluate the temperature gradient; our methodology will

be similar to that applied to Eq. (B3).

We again discretize the time domain in N intervals and the interface location

£(r, <), the temperature T(x, <), and the flow velocity v(x, t) are considered con-

stant over each interval. However, now these are considered equal to the values

corresponding to the beginning of the time interval. This allows us to calculate

the temperature gradient at time tx (LHS) from quantities already calculated in

previous time steps (RHS). -

The first integral in Eq. (B4) becomes, after the transformation r = t^ — t':

H! = f dr /dr'2VIG(x,x0 ';r)
JtN-t0 J

t°° f 1
= / dr dr'

JtN-to J 4(7r4(7rr)'
exp

4r
- r - z + Co'

Instead of performing the differentiation in the spatial variables first and then inte-

grating in time, we use the result of the time integration in I\ (see Eq. (B5)) and

then differentiate (we first have to replace XN with x since the (H) integrals refer

to interior points):

*-«*,-/*•{ -A+(B-A)
|x-xo'|

X-Xo'
i r > . (BIO)
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where

exp{- |x - x0'|}erf Iv v 'X — Xp
—^o — 2 sinh |x

J

-xo'l}

and

x
= — exp {-z + Co (r

4?r
—2 cosh x — Xo'

•f exp |x — Xo'| erf
|X-XQ-

Xo

-<o | - exp {-|x-x0'|}

2 | |x -x0'
exp < -

- to)
— tfj +

The second integral in Eq. (B4) is:

r' [2 + C(r',Ol V*G(x,xn ';r)
L J

= /N "dr/efr ' - l ^—-
^o . 7 Uirrt*(47TT

xV r 4r

We now discretize in time and use Eq. (B6); again, we change XN to x since x G fi.

The crucial difference from Ii is that here the quantities in the RHS are all known

from previous steps:

N /• rH* = E fdr> [2 + c«-i(o] { -c«-
n=l ^ *• *•

p.., -c.-,)
-X n_i n_i
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where

_
<-Ti — 1 — o

STT x-xn_i '
„
X

x < exp|x-xn_x ' | erf |X-Xn-l

-erf | v
 »,X — Xn_

- n
- n + 1)A*

exp{- |x-xn_i'|) ( erf - n)A<

-erf
X-Xn_l '

and

n-i = exp {-2 + Cn-i(r')}

x < exp |x — xn_i'| I erf
|X-Xn-i'

- n)A<

- exp{-|x-xn_!'|} erf

-erf

I -v -*r 'X — Xn_i

X-X n _ i '

-erf

— v ,

-v -vX — Xn_ - n

(JV - n)A* ""x" 4(A^ - n)A<

2

- n
exp< -

-Xn_i' II
The same procedure is followed for the domain integrals in Eq. (B4). The first

domain integral becomes for T = t^ —t1 :

tN-to
- t1) v0(x') -V'zT0(x')
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d r f d r ' T dz'—L_Vo(x')-V'ITo(x')
-t0 J ^Co(r') 4(7rr)2

x-x" ,
exp ^ -l-— l- -T- z + z1

4r

We now use the result of the time integration in Is (see Eq. (B7)), after we replace

with x, since x e fh

= -A dz'v0(x').V'xTo(x') (B12)

z - z'

x-x'

where

4?r |x — x'|

-f exp {— jx — x'j) erf

-x'

- t0
-2sinh|x-x ' | l

and

F=_i_exp{-, -2cosh|x-x'|

~ to - exp - x -

x-x'
e x p - -tN

,11to f

The second domain integral in Eq. (B3) becomes for r = t^ — t1:

dr dr' dz'V«G(x, x'; t - t') v(x', t') • V'rT(x', t')
((r',t')

H4 = -2A / N °dr / dr'
JO J

/

*N-t0 f roo Jzi
dr dr' / a, v(x',o •v;r(x',*')

J J((r',t') K* |x-x'|

exp<- -
x-I.A. ' 2

- T - Z + z'
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We now discretize in time and use Eq. (B8) (after we change XN to x, since x 6 fi).

Once again, the basic difference from /4 is that here the quantities in the RHS are

all known from previous steps:

N

-f

where

-Z'

-v-LX. — x-x'
U. (B13)

47r|x-x'

exp|x — x'| I erf
x-x'

exp{-|x-x'|} erf

-erf

x- x'

-n)A<

-erf
x-x '

and

x < exp{|x — x'|} I erf

-exp{-|x-x'|) erf

x

x-x'

-erf

-erf
x-x'
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Ix-xf

Ix-xf

4(A r -n + 1)A<

So the discretized equivalent of Eq. (B4) is now:

V TY-, i\ TJ i 17 i 17 i 17 / D1 A\
z l (X , t ) = HI + til + HZ + /14 l-t>14j

with the integrals (#! - H4) shown in Eqs. (B9-B12.)



APPENDIX C:

SPATIAL DISCRETIZATION

This appendix contains the discretized equivalent of the spatial integrals de-

rived in Appendix B. The coordinate transformations and the quadrature formulae

that were employed can be found in Sec. 3.1.b.

NT

where

tan
2i - 1 TT
2Nr 2

= r? + r] + [Cjv(r>) -

Pi ~

*i,w + fa + V'ifc.jv) (\/ai,N - Pi H-

', (Cl)

and fa - 2r,Tj,

~ cos

x

,
erf

/TTT
+ V (•'V —v v
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erf

-erf ', (C2)

where

r? + r2 + and ft = 2r;

~ ft + %/<*:•, N-n + ft ~ -n ~ ftj COS2 ( -^y - 9" ) '

4(1 +

K-- . <o(r, _

where

+

• tan — 1 tan
2AV 2; — V 2JV, 2

- TT

ft

j>imk,N

= „, . Co(r>) _

J) - Co(r,-)
2(1 + A) J '

1/>imk,N =

ft = 2r,Tj,

,,A' ~ ft + |x/a~7Tft - y/aim.N - ft] cos2 (%^-f ) •
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A',

tan

Ocim,N—n + Pi 4- ̂ imfc.N-n.) (\A*im,A'-n ~

erf

-erf

-erf n | 1) V

where

j) - Cn(r,-)
2(1 + A) J '

(C4)

-n + Pi ~ -n ~ COS
2fc - 1 7T

The vector integrals (Hi — #4), that correspond to the gradient of the temper-

ature field in the interior of the domain, are dotted into the flow velocity v(x',t')

to give the following discretized equivalents:

TT
1 =

— 7T
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V (\A>v,A' + / -f

2r,
(C5)

where

- Co(rM) -

cos

The quantities A, A, and B are given by

— < ex

exp {-^,,N} erf - 2 sinh

A

exp{-

=^{' N

erf

VNAt
I

-VNAtl -2sinh

and

B = -2cosh(^A') + ex + VN At - exp {-

x erf
2^/^A

+

The velocity components vr and vz are evaluated at r = r, and z = CA'(ri) ~ 2U+A) 1
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N AV AV
D7T / ii — 1

tan
r 2

V (^/7fii,N-

X < U, n u2(1 + A)

r-1
ri — •, (C6)

where

2(1 + A) J '

I \/7n,N-
2t/ - 1 7T

The quantities Ca-\, Ca-\-, and J^^-i are given by

erf (Ar _

-erf

erf

-erf
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-I- erf

-erf

and

erf

-erf

erf v A 4

— erf

exp < - - (A- -

exp< -

The velocity components vr and vz are evaluated at r = r^ and z = Ov(rj) — 20+A)'

4(1
- l 7 T \ /^2/-

AT2 ' tan
: / - I T T \
2A^Z 2j

x

Ti -
2r,
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.1

where

7/1/,.v = r? + r? - Co (

The quantities E, F, and F are given by

r
E = s expl^ji^/v} erf

\
v,N I

erf

exp - erf

and

2(1 +A) .

~ 2 si

[-^===-hN/]VA?l-

VI/.TV A, A.'
The velocity components vr and t>. are evaluated at r = r^ and z = C/v(ri) — 2?i+A) •

TV 7Vr AV TV,
ttan î|)

* X

L,< U Z

I
V

-i —
9»lv,N-<r+l

i/)
.v I

+ A) /

S (C-8)
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where

2(1 + A) J

COS
I ^ -

The quantities Qa-\, Qcr-i, and .R^-i are given by

f:

erf

-erf

erf

-erf

•f

erf
2V(Ar - ^)A<

-erf

erf

-erf 1)A< ,

and

erf
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— erf

erf

-erf

e2.,
exp< -

- a

The velocity components yr and vz are evaluated at r = r,- and z = £pj(ri)

The expressions d through Cg can now be combined to represent the dis-

cretized equivalent of the integral evolution equations.
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APPEN7DIX D

Boundary integral formulation for the fluid velocity

In this appendix we present the boundary integral formulation used to evaluate

the velocity field v at each time step. The flow past the unperturbed paraboloid is

represented in the entire fluid domain by the Oseen approximation to the Navier-

Stokes equation. When the crystal-melt interface is perturbed from its paraboloidal

shape, one has to correct the flow field so that the no-slip condition on the perturbed

surface is satisfied. The flow velocity v can then be expressed as a sum of two

contributions:

a) the Oseen velocity, v0, for the unperturbed paraboloid, which is known in ana-

lytical form but does not satisfy the no-slip condition on the perturbed surface,

and

b) a "correction" that vanishes at infinity but is equal to the negative of the Oseen

velocity on the surface.

The total flow velocity then becomes

v = v0 + u (Dl)

with

u = — v0, on the interface (D2)

and

u — > 0, as x — » oo.

The velocity u is only a local correction to the Oseen flow field in the vicinity of

the surface; the asymptotic behavior of the total flow field at large distances from
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the solid is determined solely by the Oseen solution. Thus, for the case of very low

Reynolds numbers present in dendritic growth, the flow field u is inertialess and

can be described by the Stokes equation

-VP + V2u = 0. (Z>4)

(As was discussed in Chapter 3, the temporal term of the transient Stokes equation

can be neglected because, at very low Reynolds numbers, the velocity field responds

instantaneously to changes in the interface shape).

We solve the Stokes equation using the boundary integral formulation first

applied by Youngren and Acrivos [1]. The differential equation is transformed into

a boundary integral equation that relates the local surface stresses f to the velocity

u:

u(x) = A jf (x

J_ /
STT Jrr iy

dT, y <E F, (D5)

where n is the unit normal on the interface pointing toward the fluid domain fi,

dxy = |x- y|, and

, i f x € n - r .

The calculation of the interior velocity takes place in two steps. First, the surface

stresses, f are calculated from Eq. (D5) with x € F (the surface velocities u(xr)

are known from the boundary conditions, i.e. the Oseen flow velocity). Then, Eq.

(D5) is used to evaluate the interior velocities for selected points x € fi — F.
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For axisymmetric flows, the vector equation Eq. (D5) reduces to two scalar

equations. In a polar cylindrical coordinate system, where x = ( r x ,< f> x , z x ) and

y = ( r y , ( f> y , z y ) , Eq. (D5) can be decomposed to

3 /-2TT roo fo r r js "I

c(x) ur(x) / d9 I —rjr—-(rx — rv cos 8} \zx — Cv r̂ -(rT cos 9 — rv)47r70 Jo d*y ^
 y '[ ^y dr/ y'\

x [ur(y)(rr cos 0 - ry) + (zx - (y)uz(y)}

rx-rycos8

and

2K ̂  f" dryr9 ( _ f . dCy. a J
/i i "0 / ~J5—(2i - Cy) PI - Cy - 1—(r.rcose'-ryj
4?r 7n Jo 4j» L dry J

x [ur(y)(rIcoŝ  - ry) + (zt - C,y

xy

cos -

where 2j, = ^y = C( ry) represents the interface F, 9 = y>x — (fy, and

+ rj -2rrr tf

We now discretize the interface F in Ar
r ring-type elements. Each element Tj is

associated with a "node" at r = r^. Over each such element the surface velocities

and the surface stresses are considered constant and are represented by their values

at the corresponding node. The surface integrals in Eqs. (D6-D7) can now be

written as the sums of the integrals over each surface element Tj. For x E F, Eqs.
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(D6-D7) become

Ur(r t ] ~
2ir

I ~ T cos e) [Ct' " c(r) ~ c'(r)(r'' cos 9 ~

J=l

( c / ( r ) ) ( r ' ~ rco8') (Ci ~ c(r))

and

2?r

,' cos 0 - r) (C« - C(r))

+ (C'( +

where r; = rx, ry = r, zx = C(r.) = (i, C'(r) = S' and

To calculate the left-hand-side of Eqs. (D8-D9) one needs to obtain the boundary

condition for the velocity u. From Eq. (D2)

u(xr) = -Vo(xr).

But v0 is by definition equal to the Oseen velocity that satisfies Eq. (2.13) and

is presented in analytical form in Eq. (2.14). This velocity is non-zero on the

perturbed interface z = C(rX since it satisfies the no-slip condition on the surface
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of the unperturbed paraboloid z = £o(r). Equations (2.14) and (D2) are thus used

to calculate the boundary values of u as explicit functions of the interface shape

z = ((r). (The Oseen velocity in Eq. (2.14) is expressed in paraboloidal coordinates

and a simple transformation to the cylindrical coordinate system is required). The

expressions in the left-hand-side of Eqs. (D8-D9) are then calculated using a simple

Gauss-Legendre quadrature.

The components of the local surface stress vector, fr and /z, are considered

constant over each element Tj and are represented by the nodal vectors

t r=[/r(ri),/r(r2),. . . , /r(nO],

The choice of the nodal points (r,-) in this problem is dictated by the discretization

of che boundary integrals in the integral evolution equation for the interface shape.

Equations (D8-D9) form a (2Ar
r x 2Nr) system of linear algebraic equations for the

local surface stresses (written in compact notation)

where the matrix element [A^j-j], k = 1,2,3,4, represents the integral over the

element Tj with rr = r,-.

The integrals Ak t i j can be easily calculated for i ^ j using a simple Gauss-

Legendre quadrature. For i = j, the integrals Ak,jj are singular because the inte-

gration interval includes the field point r,- and thus dxy in the denominator becomes

zero as r — * TJ. Nevertheless, the improper integrals Ak,jj do exist as long as the

surface F satisfies the Lyapunov condition at each node r = TJ. It can be easily
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shown that the integrands in each of the singular integrals behave as l/dxy in the

vicinity of the singular point (r = TJ). This weak singularity is integrable and the

integration is carried out using the coordinate transformation ~

r? = \/a(r, r,) - 7(7-, r,-) cos 6),

where

and

7(r,r,-) = 27-,-r.

The integral

where h is a non-singular function, becomes

t . *

dr 4/i(r, 77)

/

v«+7 r
dT) \ -77=7_/Z=z Jri\/(\/a 7 -

We can now apply following Gaussian quadrature formula (based on the orthogonal

Chebyshev polynomials of the first kind) [2]

(»+.) ,(»-«)„(*»-
2 2 \ M

to the integral I to .get

4?r M ./ x
/= TT
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where

7 4- v^Q' — 7 7 ~ cos 2m —

We now calculate all the integrals Ak,ij and then invert the matrix Eq. (DID) to

obtain the local surface stresses at each node.

In order to calculate the velocity at a point x = (r,-,2/), in the interior of the

domain, we use Eqs. (D6-D7) for x G fl — F:

- d6 - r cos

and

(0 - C'(r)(r,- cos B - r)]

x [ur(r)(r,- cos ̂  - r) + (zt - C(r)) uz(r)]

^icos*+ r ' - :c o s*

3 ^

4^

Nr

dr r

. o

where

x [«r(r)(r,- cos ̂  - r) + (zt - C(r)) u,(r)]

cos 0 - r) (z( - C(r))

(H13)
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Equations (D12-13) do not contain any singular integrals (x G fl — F whereas

y 6 F) and the Stokes correction velocities can be easily calculated using a Gauss-

Legendre quadrature: The total velocity v, which appears in the interface evolution

equations in Chapters 2 and 3, is then calculated by adding the unperturbed Oseen

velocity v0, given by Eq. (2.14), to the Stokes correction u for the perturbed inter-

face. The new velocity v satisfies the no-slip condition on the perturbed interface

and reduces to the unperturbed Oseen velocity away from the interface.
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APPENDIX E:

Derivation of the Gibbs-Thompson relation

This appendix describes the derivation of the Gibbs-Thompson thermodynamic

equation, which determines the effect of capillarity on the temperature of a crystal-

melt interface. The derivation presented here is similar to that of Delves [1].

Consider a very small section of the interface, over which the curvature is

constant, and with small adjacent regions of the solid and liquid phases which

are uniform in temperature and composition. The total extensive thermodynamic

variables (E, 5, V, F = Helmholtz free energy) can be divided between solid, liquid,

and interface. Assuming that the volume and number of particles allocated to the

interface are both zero, the surface free energy is defined by

F(total) = Fs + FL + 7 • Area, (El)

where 7 is the solid-liquid interfacial tension. The equilibrium conditions at the in-

terface are obtained by minimizing the free energy with respect to changes of energy

and of particles between the two phases. This leads to the equality of temperature

and chemical potentials of each component (^s«, /*Li> i labels component), which

are defined per atom of component. A further minimization with respect to an

infinitesimal change of volume of one phase, the total volume being constant, leads

to the condition

_ _ d surface area _

^ ='
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PS and PI are the pressures at the curved interface; r\ and r^ are the principal

radii of curvature and are positive if the interface is concave towards the solid. If

the pressures PS and PL are nearly the same as the pressures at a flat interface,

APS = PS - Ps(flat); |APS| «C PS, (£3)

one may use an approximate formula (approximate because APs is a small but finite

change) from the Gibbs-Duhem relations, which are thermodynamic identities for

each phase,

i Ars, = Vs APS -
(£4)

]T A/zLi NLi = VL APL -

At a flat interface PS (flat) = PL(flat), so from Eq. (E2)

(JE75)

and A//si = A/JL; because the phases are always in equilibrium, and A^zsi is the

change in chemical potential if the interface changes from flat to curved.

If the system has one component only (i.e. solidification from a pure melt),

only one variable, APi, for example, needs to be specified to find the other three

variables AT, A//L and APs. Assuming that the liquid is under a constant pressure

and that variations in PL at the interface due to hydrostatic effects and convection

are negligible compared to AP^, then it is reasonable to set AP/, = 0 and all the

pressure difference is taken up by the solid phase. The elimination of A// from Eqs.

(E3-E4) gives

L 5s\
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) is the latent heat of solidification per atom, so if L is defined

as the latent heat per unit volume of solid and AT is the temperature at a curved

interface minus the value at a flat interface.

Tr = TM + AT = TM (l - l£) , (F7)

where Tr is the temperature at the interface F and K. — (1/ri + 1/^2) is the local

interface curvature. By denning T = (f - T^Cp/L, A = (TM - T^Cp/L, and K.

- K./p, Eq. (E7) becomes

Tr = A - (

where c?o = 7 T^Cp/L2 is a capillary length and p is the tip radius of the crystal

dendrite. Equation (E8) represents the Gibbs-Thompson relation in the case of a

pure melt and is used in Chapter 3 as the interface boundary condition for the

temperature field.
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APPENDIX F: LIST OF FIGURES

Fig. 1. Measured tip velocity vs supercooling for succinonitrile. Note the deviation

from the pure diffusion steady-state theories at low supercoolings (reprinted

from Glicksman and Huang, Acta Metall. 29 (1981) 701).

Fig. 2. Measured tip radius vs supercooling for succinonitrile. Note the deviation from

the pure diffusion steady-state theories at low supercoolings (reprinted from

Glicksman and Huang, Acta Metall. 29 (1981) 701).

Fig. 3. Effect of convection on the morphology of the interface. The distortion of

the temperature field causes partial elimination of the sidebranches (reprinted

from Glicksman and Huang, Proc. 3rd European Symp. on Material Sciences

in Space, Grenoble, April 1979).

f"\ Fig. 4. Ratio of measured Peclet number lo Peclet number predicted by the Ivantsov

theory. Convective effects cause a sharp transition to occur at A = 0.05

(reprinted from Glicksman and Huang, Proc. 3rd European Symp. on Ma-

terial Sciences in Space, Grenoble, April 1979).

Fig. 5. Diagram of the coordinate system showing the orientation of the paraboloidal

crystal and the flow.

Fig. 6. The Peclet number as a function of supercooling for selected values of the ve-

locity ratio. For these calculations the Prandtl number is 23.2 (succinonitrile).

The Ivantsov solution corresponds to A = 0.

Fig. 7. The perturbation tip velocity £(0, t) is plotted vs time for different numbers Nr

of discretization points in the radial direction (y = 0.001, A = 0.0, Pe = 1.0,

• Nv = 7, A* = 0.002). . :
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Fig. 8. The perturbation tip velocity £(0, t) is plotted vs time for different numbers

A7^ of discretization points in the v?-direction (y — 0.001, A = 0.0, Pe = 1.0,

Nr = 12, Ai = 0.002).

Fig. 9. The perturbation tip velocity £(0, t) is plotted vs time for different time steps

A< (i/ = 0.001, A = 0.0, Pe = 1.0, Nr = 12, Nv = 7).

Fig. 10. Interface destabilization via tip splitting. The interface shape is plotted vs the

radial coordinate r for different times (i/ = A = 0, Pe = 1, Nr = 12, Nv = 7,

A* = 0.002).

Fig. 11. The perturbation growth velocity C(r, <) is plotted vs the radial coordinate for

different times and for A = 0.0, v = 0.020, and Pe = 1.

Fig. 12. The perturbation growth velocity C(r, <) IS plotted vs the radial coordinate for

different times and for A = 0.0, v = 0.001, and Pe = 1.

Fig. 13. The perturbation growth velocity C(r, <) is plotted vs the radial 'oordinate for

different times and for A = 0.1, v — 0.001, and Pe = 1.

Fig. 14. The perturbation growth velocity C( r>*) is plotted vs the radial coordinate for

different times and for A = 1.0, v = 0.001, and Pe = 1.

Fig. 15. The perturbation velocity at the tip, C(0, i), is plotted vs time for different

values of the surface tension parameter v (A = 0.0, Pe = 1.0). The inset, which

is a blow-up of the v = 0.001 curve, shows that anisotropy has a negligible effect

on the growth velocity.

Fig, 16. The perturbation velocity at the tip, £(0, <), is plotted vs time for different flow

strengths A. Its absolute value increases with A, causing a decrease in the total

growth velocity, [2 + C] (v = 0.001, Pe = 1.0).
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Fig 3. Effect of convection on the morphology of the interface. The distortion of the

temperature field causes partial elimination of the sidebranches. (Reprinted

from Glicksman and Huang, Proc. 3rd European Symp. on Material Sciences

in Space, Grenoble, April 1979).
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C APPENDIX G: LISTING OF THE FORTRAN CODE C
C C
C THIS PROGRAM CALCULATES THE EVOLUTION OF THE DENDRITIC C
C INTERFACE IN TIME AND SPACE UNDER THE INFLUENCE OF C
C FLUID FLOW AND SURFACE TENSION. C
C C
cccccccccccccccccceccccccccccccccccccccccccccccccccccccccccccccccccccccc

IMPLICIT REAL*8 (A-H.O-Z)
REAL-8 WK(1700),UGT(30,30,1000),UGTO(30,30),Z(1000,30),
.ZD(1000,30),X(30),ZO(30),R(30),CSI(30),CS2(30),FI(30),ZDINIT(30)
,,ORD(30),C(30,3),VECRHO(3),ZETA(3),
.BPAR(4),STRES(60),FLOW(60,60),QUAD(3G),WKAREA(60),LAM,NU
COMMON /A/UGT,UGTO,Z,ZD,ZDINIT,CSI,CS2,FI,ZO,LAM,PI,
.DT,NU,ANIS,NF,NZ,N,INDEX,IVAN
./B/C,R,ORD,BPAR
./D/SMALL,P
./C/QUAD,RJ,ZJ,R2,MM,NR,UPFLOW
EQUIVALENCE (WK.FLOW)
INTEGER NPL(1000),NPERT(1000)
LOGICAL IVAN,UPFLOV
EXTERNAL DCADRE,FCN,FA,FB,FC,FD,RIGHT1,RIGHT2,EXPIN
CALL XUFLOW(O)
WRITE(6, *) 'NR,NF,NZ.MM,NTOTAL,DT,PECLET,LAMBDA,NU'
READ (5,*) NR,NF,NZ,MM,NTOTAL,DT,P,LAM,NU
READ (15,*) UPFLOW,PR,ANIS,(ZDINIT(I),I=1,NR)
WRITE(6,*) 'THE TYPE OF FLOW (UPFLOW?), THE PRANDTL NUMBER,
.THE DIM/LESS SURFACE TENSION, AND THE ANISOTROPY ARE:'
VRITE (6, *) ' *******ft**#***̂ ***̂  '
WRITE(6,*) UPFLOW,PR,NU,ANIS
WRI TE (6, *) ' *************************************************'
WRITE(6'*) 'IF YOU WANT TO CHANGE SOMETHING, HALT EXECUTION
. AND GO TO FILE 15 AS DEFINED IN YOUR EXEC FILE
. (SOME DATA USEFUL TO THE COMPUTATION ARE STORED IN FILE 14)'
READ (14,*) SMALL,ZEROPL,RMAX,NSIG,ITMAX,
.(BPAR(N),N=1,4),(NPL(N),N=1,NTOTAL)
READ (17,••••-) PRT,(NPERT(N),N=1,NTOTAL)
IF (LAM.EQ.O.) IVAN=.TRUE.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CALCULATION OF DELTA(IVANTSOV)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DELIVA=P*DEXP(P)*EXPIN(P)
PI=3.14159265358979323
RE=P*LAM/PR
R2=RE/2.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C GENERATION OF ARRAYS FOR VELOCITY, QUADRATURES, ETC
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DO 810 M=1,MM
810 QUAD(M)=DCOS(DFLOAT(2*M-l)*PI/2./DFLOAT(MM))

DO 5 1=1,NR
R(I)=DSQRT(-2.*P*DLOG
.(DCOS(DFLOAT(2*I-l)/DFLOAT(2*NR)*PI/2.)))
ZO(I)=P/2.*(1.-R(I)**2/P**2)
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DO 5 M = 1 , N Z
CSI (M)=DCOS(DFLOAT(2*M-l)/DFLOAT(2*NZ)*PI/2. )**2
CS2(M)=DTAN(DFLOAT(2*N-l) /DFLOAT(2*NZ)*PI/2.)
IF ( IVAN) GO TO 5
Z I N = Z O ( I ) - D L O G ( C S I ( M ) ) / 2 . / ( l . + L A M )
W=(ZIM+DSQRT(ZIM**2+R(I)**2)) /P
S=(-ZIM+DSQRT(ZIM**2+R(I)**2))/P

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW DOWN
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF (UPFLOW) GO TO 51
UGTO(I,M)=-2./(S+W)*
.((DEXP(-R2)-DEXP(-R2*W))/R2/EXPIN(R2)+
.W*(EXPIN(R2*W)/EXPIN(R2)-!.))
. *W** (-1. +PR*DEXP(-R2) /EXPIN(R2) )
.*DEXP(P*(1.+LAM)*(1•-W)+
.PR/EXPIN(R2)*(-EXPIN(R2)+EXPIN2(R2)+
. EXPIN (R2»W)-EXPIN2(R2-»W)))
GO TO 5

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW UP
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

51 UGTO(I,M)=2./(S+W)--
.((DEXP(-R2)-DEXP(-R2--W))/R2/EXPIN(R2) +
. W-»( EXPIN (R2----W) /EXPIN (R2)-!.))
.*W**(-1.-PR*DEXP(-R2)/EXPIN(R2))
. *DEXP (P" (1 . - LAM )•-( 1. -W j -
.PR/EXPIN(R2 )••'•-( -EXPIN (R2)+EXPIN2(R2) +
.EXPIN(R2»W)-EXPIN2(R2-W)))

5 CONTINUE
R(NR+l)=R(NR)+(RMAX-R(NR))/8.
ORD(NR+1)=
. P/2 . »(1-R(NR+1 )-'-•.-2/P-'.--:.-2)
R(NR+2)=R(NR)+(RMAX-R(NR))/3.
ORD(NR+2)=
. P/2 . •• (1 -R(NR+2)**2/P**2)
R(NR+3)=R(NR)+(RMAX-R(NR))/2.
ORD(NR+3)=
.P/2.*(l-R(NR+3)**2/P**2)
WRITE (6,--'0 (R(I),I=l,NR+3)
IF (RMAX.LE.R(NR)) WRITE (6,») 'ERROR IN SELECTION OF RMAX1

IF (RMAX.LE.R(NR)) GO TO 300
DO 6 K=1,NF

6 FI(K)=
.DCOS(DFLOAT(2"K-l)/DFLOAT(2--NF)''--PI/2. )*--2

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C TIME LOOP
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

WRITE (16,*) ' **̂ **'Wr̂ *****fr*iHHĤ  '

WRITE(16,-) 'NR,NF,NZ,NTOTAL,DT,P,LAM,NU,ANIS'
WRITE (16,*) NR,NF,NZ,NTOTAL,DT,P,LAM,NU,ANIS
WR I TE ( 1 6 , * ) ' Vr̂ VrVrVrVr%VA*VrVrVr̂ **'!ViV'iV'!VV.",V-.VVr-VVr';'r':VfriVVr-V-V-V'!V*A'!V̂ ViV '

WRITE(76,*) 'NR^NZ.MM.DT.P.LAM.NU.ANIS'
WRITE (76,*) NR,NF,NZ,MM,DT,P,LAN,NU,ANIS
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WRITE ( 66 , •-••- ) ' NR , NF , NZ , DT , P , LAM , NU , ANI S '
WRITE (66,*) NR, NF,NZ,DT,P, LAM, NU, AMIS
WRITE (56 ,*) ' NR ,NF ,NZ ,DT, P , LAM ,NU , ANIS '
WRITE (56,*) NR, NF,NZ,DT,P, LAM, NU, ANIS
WRITE (36,*) ' NR, NF,NZ,DT,P, LAM, NU, ANIS'
WRITE (36,*) NR, NF,NZ,DT,P, LAM, NU, ANIS
WR I TE (76,*) ' ************************************************ '
WRITE (76!*) 'PERT ON (1) ,TIME, INT/FACE VEL. AT Rl, AT 0, SLOPE AT
.0'
WR I TE (76,*) ' ************************************************ '

DO 100 N=1,NTOTAL
INDEX=0
IF (N.GT.l) WRITE (6,*) 'WMAX1 ,WMAX
IF (N.GT.l) WRITE (16,*) ' WMAX1, WMAX
IF (N.GT.l) WRITE (36,*) 'WMAX1, WMAX
DO 120 1=1, NR
IF (N.EQ.l) X(I)=ZO(I)+ZDINIT(I)*DT
IF (N.EQ.l) GO TO 120
X(I)=Z(N-1,I)+ZD(N-1,I)*DT

120 CONTINUE
CALL ZSPOW(FCN,NSIG,NR,ITMAX, PAR, X, FNORM, WK.IER)
WR I TE (16, * ) ' ***************************** '
WRITE (16,*) 'TIME',N*DT
WRITE (16 *) ' ***************************** '
WR I TE ( 6 , * ) ' ***************************** '
WRITE(6,*) 'TIME',N*DT
WR I TE ( 6 , •••- ) ' ***************************** '
WRITE (6,*) 'FNORM' ,FNORM,' INDEX ', INDEX
WRITE (6,*)' ZO(I) "' X(I)'
WRITE (16, * ) ' FNORM ' , FNORM , ' INDEX ' , INDEX
WRITE (16,'*)' ZO(I) X(I)'
WR I TE (66,*) ' ***************************** '
WRITE(66,*) 'TIME' , N*DT , ' PERT ' ,NPERT(N)
WR I TE (66, * ) ' ***************************** '
DO 26 1=1, NR
Z(N,I)=X(I)
IF (N.GT.l)

IF (N.EQ.l). ZD(N,I)=ZDINIT(I)
WRITE (66,*) R(I),ZD(N,I)
WRITE (16,*) ZO(I),X(I),X(I)-ZO(I)
WRITE (6,*) ZO(I),X(I),X(I)-ZO(I)

26 CONTINUE
IF (NPERT(N).EQ.l) ZD(N, 1)=ZD(N, 1)+PRT
DO 364 1=1, NR
WRITE (6,*) R(I),ZD(N,I)

364 ORD(I)=X(I)
WRITE ( 6 , * ) ****************************** '
ZTIPO=ZTIPN
CALL ICSICU (R,ORD,NR+3,BPAR,C,30,IER)
VECRHO(1)=R(1)
VECRHO(2)=R(lj+SMALL
VECRHO(3)=R(1)+2*SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
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DZ1DR1=(ZETA(2)-ZETA(1))/SMALL
DZ2DR2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2
ZTIPN=ORD(])-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2
ZDO=(ZTIPN-ZTIPO)/DT
IF (IER.GT.128) WRITE(76,*) 'ERROR1,IER,'AT TIME1,N*DT •
WRITE (76,760) NPERT(N),N*DT,ZD(N,1),ZDO,DZ1DR1-R(1)*DZ2DR2

760 FORMAT (13,1X,F6.4,1X,3(D16.8,2X))
WRITE (36,*) 'TIME',N*DT
WRITE(56,*) 'TIME',N*DT
ZERO=0.
DO 465 I=l,NR+3
IF (I.GT.3)
.WRITE (56,*) -R(NR+4-I).ORD(NR+4-I)-ZO(NR+4-I)

465 WRITE (36,*) -R(NR+4-I),ORD(NR+4-I)
WRITE (36,*) ZERO,ORD(1)-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2
WRITE (56,*) ZERO,ORD(l)-R(l)*DZlDRl+R(l)**2/2.*DZ2DR2-P/2.
WRITE (6,*) ZERO,ORD(1)-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2
. ,ORD(1)-R(1)*DZ1DR1+R(1)**2/2.*DZ2DR2-P/2.
DO 466 I=l,NR+3

466 WRITE (36,*) R(I),ORD(I)
DO 467 1=1,NR
WRITE (56,*) R(I),ORD(I)-ZO(I)

467 WRITE (6,*) R(I),ORD(I),ORD(I)-ZO(I)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C INTERPOLATION IN CARTESIAN COORDINATES
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
332 IF (N.EQ.NTOTAL) GO TO 300

* ccccccccccccccccccccccccccccccccncccccccccccccccccccccccccccccccccccccc
x C . CALCULATION OF U.GRAD(T) AT TINE N.DT AND AT

C RHO=R(J), Z=Z(N,J)-DLOG(CSI(M))/2./(l.+LAM)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF (IVAN) GO TO 100
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CALCULATE -(OSEEN VELOCITY) ON INTERFACE
C (THE EXPRESSIONS FOR UR AND UZ HAVE A MINUS SIGN
C TO SHOW THAT THEY ARE THE OPPOSITE OF THE OSEEN VEL.)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DO 820 J=l,NR+2
RJ=R(J)
ZJ=ORD(J)
W=(ZJ+DSQRT(ZJ**2+RJ**2))/P
S=(-ZJ+DSQRT(ZJ**2+RJ**2))/P
IF (S.LE.O) S=0.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW DOWN
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

. IF (UPFLOW) GO TO 811
UZ=-(-l.+EXPIN(R2*W)/EXPIN(R2)+
.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S))
UR=-((1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/(S-HW)))
GO TO 812

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW UP

v ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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811 UZ=-(1.-EXPIN(R2"W)/EXPIN(R2)-
.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S))
UR=- (- (1. -EXPIN (R2*W) /EXPI.N(R2) )*DSQRT(S/ (S+W)))

812 STRES(J)=-UR
.-DCADRE(RIGHTl,ZEROPL,R(NR+3)-SMALL,0., 1.D-7.ERROR,IER)
STRES(J+NR+2) = -U:-:
.-DCADRE(RIGHT2,ZEROPL,R(NR+3)-SMALL,0.,1.D-7,ERROR,IER)
DO 820 I=l,NR+2
IF (I.GT.l) RD=(R(I)+R(I-1))».5
IF (I.EQ.l) RD=ZEROPL
IF (I.LT.NR+2) RU=(R(I)+R(I+1))*.5
IF (I.EQ.NR+2) RU=R(NR+3)-SMALL
FLOW(J,I)=
.DCADRE(FA,RD,RU,0. , 1 .D-:7 .ERROR, IER)
FLOW(J,I+NR+2)=
.DCADRE(FB,RD,RU,0., 1.D-7.ERROR,IER)
FLOW(J+NR+2,I)=
.DCADRE(FC,RD,RU,0.,1.D-7.ERROR,IER)
FLOW(J+NR+2,I+NR+2)=
.DCADRE(FD,RD,RU,0.,1.D-7.ERROR,IER)

820 CONTINUE
CALL LEQT1F (FLOW,1,2*NR+4,60,STRES,5,WKAREA,IER)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CALCULATION OF INTERIOR CORRECTION TO OSEEN SOLUTION
C (WE ADD THIS SOLUTION TO THE OSEEN SOLUTION)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

WMAX=0.
DO 7 J=1,NR
DO 7 L=1,NZ
RJ=R(J)
ZJL=Z(N,J)-DLOG(CSI(L))/2./(l.+LAM)
ZJ=ZJL
W=(ZJL+DSQRT(ZJL*»2+RJ**2)) /P
WMAX=DMAX1(W,WMAX)
S=(-ZJL+DSQRT(ZJL**2+RJ**2))/P
IF (S.LE.O) S=0.
UR=.5*
.DCADRE(RIGHTl,ZEROPL,R(NR+3)-SMALL,0.,1.D-7.ERROR,IER)
UZ=.5»
.DCADRE(RIGHT2,ZEROPL,R(NR+3)-SMALL,0.,1.D-7.ERROR,IER)
DO 830 I=l,NR+2
IF (I.GT.l) RD=(R(I)+R(I-l))-.5
IF (I.EQ.l) RD=ZEROPL
IF (I.LT.NR+2) RU=(R(I)+R(I+1))̂ .5
IF (I.EQ.NR+2) RU=R(NR+3)-SMALL
UR=UR+.5»STRES(I)---
.DCADRE(FA,RD,RU,0.,1.D-7.ERROR,IER)
. + .5»STRES(I+NR+2)--
.DCADRE(FB.RD.RU.O.,1.D-7.ERROR,IER)
UZ=UZ+. 5--STRES (I )»-
.DCADRE(FC.RD.RU.0.,1.D-7,ERROR,IER)
. + .5*STRES(I+NR+2)-;-
.DCADRE(FD.RD.RU.O.,1.D-7.ERROR,IER)

830 CONTINUE
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW DOWN
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF (UPFLOW) GO TO 511
WRITE (IS.-) 'N='.N,'Z=',ZJL,'R=',RJ
WRITE (18,*) 'CORRECTION'.UR.UZ
UZ=UZ-1.+EXPIN(R2*W)/EXPIN(R2)+

.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S)
UR=UR+(1. -EXPIN(R2*W)/EXPIN(R2) )*DSQRT(S/ (S+W))
WRITE (18,-) 'TOTAL1,UR,UZ
GO TO 512

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW UP
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
511 WRITE (18,*) IN=I,N,'Z=I,ZJL,'R=',RJ

WRITE (18,*) 'CORRECTION1,UR,UZ
UZ=UZ+1.-EXPIN(R2*W)/EXPIN(R2)-
.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S)
UR=UR- (1. -EXPIN(R2*W) /EXPIN(R2) )*DSQRT(S/ (S+W))
WRITE (16,*) 'TOTAL',UR,UZ

512 DO 20 1=1.NR
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CONTRIBUTION FROM HI & H3
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

TO=P*PI/DFLOAT(2*NR*NF)*DTAN(DFLOAT(2*I-1)/DFLOAT(2*NR)*PI/2.)
T1=TO
.*DEXP(-Z(N,J)+ZO(l)+DLOG(CSI(L))/2./(l+LAM))
F.OOT1=DSQRT((R(I)+R(J))**2+(Z(N,J)-ZO(I)-DLOG(CSI(L))
./2./(l+LAM))**2)
ROOT2=DSQRT((R(I)-R(J))**2+(Z(N,J)-ZO(I)-DLOG(CSI(L))
./2./(l+LAM))**2)
DO 30 K=1,NF
Y=ROOT2+(ROOT1-ROOT2)*FI(K)
Al =
.-2*DSINH(Y)+DEXP(Y)*DERF(Y/2./DSQRT(DFLOAT(N)*DT)
,.+DSQRT(DFLOAT(N)*DT))+
'.DEXP(-Y)*DERF(Y/2./DSQRT(DFLOAT(N)*DT)-
.DSQRT(DFLOAT(N)*DT))
A2=A1/Y
B2=
.-2*DCOSH(Y)+DEXP(Y)*DERF(Y/2./DSQRT(DFLOAT(N)*DT)
.+DSQRT(DFLOAT(N)*DT))-
.DEXP(-Y)*DERF(Y/2./DSQRT(DFLOAT(N)*DT)-
.DSQRT(DFLOAT(N)*DT))
.+2./DSQRT(DFLOAT(N)*DT*PI)*
.DEXP(-Y**2/4./DFLOAT(N)/DT-N*DT)
UGT(J,L,N)=UGT(J,L,N)+T1/DSQRT((ROOT1+Y)*(ROOT2+Y))*
.(UZ*(-A1+(B2-A2)*
.(Z(N,J)-ZO(I)-DLOG(CSI(L))/2./(l+LAM))/Y)
.+UR*(B2-A2)*(R(J)-(0.5*(ROOTl**2+ROOT2**2)-Y**2)/2./R(J))/Y)
DO 40 M=1,NZ
ROOT3=DSQRT((R(I)+R(J))**2+(Z(N,J)-ZO(I)
.-DLOG(CSI(L)/CSI(M))/2./(1+LAM))**2)
ROOT4=DSQRT((R(I)-R(J))**2-KZ(N,J)-ZO(I)
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. -DLOGCCSI (D/CS! (M))/2 . /(1+LAM))**2)
OMEGA=ROOT4+(ROOTS-ROOT4)*FI(K)
El=
.-2-'-l)SINH(OMEGA)+DEXP(OMEGA)*DERF(OMEGA/2./DSQRT(DFLOAT(N)*DT)
.+DSQRT(DFLOAT(N)--DT)) +
.DEXP(-OMEGA)-DERF(OMEGA/2./DSQRT(DFLOAT(N)-DT)-
.DSQRT(DFLOAT(N)*DT))
E2=E1/OMEGA
F2=
. -2»DCOSH(OMEGA)+DEXP(OMEGA)''-DERF(OMEGA/2./DSQRT(DFLOAT(N)-'-DT)
.+DSQRT(DFLOAT(N)*DT))-
.DEXP(-OMEGA)*DERF(OMEGA/2 . /DSQRT(DFLOAT(N)*DT) -
.DSQRT(DFLOAT(N)--DT))
. +2 . /DSQRT(DFLOATCN)*DT*PI )*
.DEXP(-OMEGA**2/4./DFLOAT(N)/DT-N*DT)
UGT(J,L,N)=UGT(J,L,N)-TO
.*DEXP(-Z(N,J)+ZO(I)+DLOG(CSI(L)/CSI(M))/2./(1+LAM))
.-PI-LAM/(1+LAM)/DFLOAT(2*NZ)
.»CS2(M)
./DSQRT((ROOT3+OMEGA)»(ROOT4+OMEGA))*
.(UZ*(-E1+(F2-E2)*
.(Z(N,J)-ZO(I)-DLOG(CSI(L)/CSI(M))/2./(l+LAM))/OMEGA)
. +UR*(F2-E2)" (R(J)- (0. 5*(ROOTS"-*2+ROOT4**2)-
.OMEGA-""-2) 12 . /R(J))/OMEGA)
.*UGTO(I,M)

40 CONTINUE
• 30 CONTINUE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

^ C CONTRIBUTION FROM H2 & H4
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DO 50 NN=1,N
IF (NN.GT.l) ZN=Z(NN-1,I)
IF (NN.EQ.l) ZN=ZO(I)
ROOT5=DSQRT((R(I)+R(J))--"';2+(Z(N,J)-ZN-DLOG(CSI(L))
. /2./( 1+LAM) )»-"2)
ROOT6=DSQRT((R(I)-R(J))»--2+(Z(N,J)-ZN-DLOG(CSI(L))
./ 2. /(1+LAM ))••-•• 2)
IF (NN.EQ.l) DZDT=ZDINIT(I)
IF (NN.GT.l) DZDT=ZD(NN-1,I)
T2=TO/2.-DEXP(-Z(N,J)+ZN+DLOG(CSI(L))/2./(1+LAM))
DO 60 K=1,NF
Y=ROOT6+(ROOTS-ROOT6)»FI(K)
IF (NN.EQ.N) GO TO 68
Cl=
.DEXP(Y)-(DERF(Y/2./DSQRT(DFLOAT(N-NN)*DT)
.+DSQRT(DFLOAT(N-NN)---DT))-
.DERF(Y/2./DSQRT(DFLOAT(N-NN+l)*DT)
•.+DSQRT(DFLOAT(N-NN+1)*DT)))+
.DEXP(-Y)*(DERF(Y/2./DSQRT(DFLOAT(N-NN)*DT)
.-DSQRT(DFLOAT(N-NN)*DT))-
.DERF(Y/2./DSQRT(DFLOAT(N-NN+l)''-DT)
. -DSQRT(DFLOAT(N-NN+1)---DT)))
C2=C1/Y
D2=
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. D E X P ( Y ) * ( D E R F ( Y / 2 . /DSQRT(DFLOAT(N-NN)--DT)

.+DSQRT(DFLOAT(N-NNV"DT)) -

.DERF(Y/2 . /DSQRT(DFLOAT(N-NN+l ) -DT)

.+DSQRT(DFLOAT(N-NN+l)- ' -DT))) -

. DE XP ( -Y )-•••-(DERF(Y/: . /DSQRT(DFLOAT(N-NN)----DT)

. -DSQRT(DFLOAT(N-NN)*DT.))-

.DERF(Y/2. /DSQRT(DFLOAT(N-N.N+l)*DT)

. -DSQRT(DFLOAT(N-NN+l)*DT)))+

.2./DSQRT(PI*DFLOAT(N-NN)*DT)

.••DEXP(-Y-----"2/4./DFLOAT(.N-NN)/DT-(N-NN)-'--DT)-

. 2. /DSQRT(PI*DFLOAT(N-NN+1)*DT)

.*DEXP(-Y-»2/4 . /DFLOAT(N-NN+l) /DT-(N-NN+l)*DT)
UGT(J ,L,N)=UGT(J ,L,N)+T2*(2 .+DZDT)/

.DSQRT((ROOT5+Y)*(ROOT6+Y))*

. (UZ* (-C1+CD2-C2)••••

. ( Z ( N , J ) - Z N - D L O G ( C S I ( L ) ) / 2 . / ( l + L A M ) ) / Y )

. + U R - H D 2 - C 2 ) - - ( R ( J ) - ( 0 . 5 - » (ROOTS-»2+ROOT6-'«'-2)-Y"---2)/2./R(J))/Y)
GO TO 69

68 Cl=
.DEXP(Y)-- -
.DERFC(Y/2./DSQRT(DT)
.+DSQRT(DT))+
. DEXP(-Y )•••-
.DERFC(Y/2./DSQRT(DT)
.-DSQRT(DT))
C2=C1/Y
D2=
.DEXP(Y)-
.DERFC(Y/2./DSQRT(DT)
.+DSQRT(DT))-
. DEXP(-Y )-•••-
.DERFC(Y/2 . /DSQRT(DT)
.-DSQRT(DT))-
.2 . /DSQRT(PI"DT)
.•••DEXP ( - Y » - 2 / 4 . /DT-DT)
U G T ( J , L , N ) = U G T ( J , L , N ) + T 2 - ( 2 . + D Z D T ) /

. DSQRT((ROOT5+Y)»(ROOT6+Y) )•••

. (UZ*(-C1+(D2-C2)*

. ( Z ( N , J ) - Z N - D L O G ( C S I ( L ) ) / 2 . / ( l + L A M ) ) / Y )

.+UR- (D2-C2)- (R( J ) - (0 . 5-"-(ROOT5--'"»-2+ROOT6"»2) -Y--2) /2 . /R(J)
69 DO 70 M = 1 , N Z

IF (NN.EQ.1) UGTOLD=UGTO(I.M)
IF (NN.GT.l) UGTOLD=UGT(I,M,NN-1)
ROOT7=DSQRT((R(I)+R(J))**2+(Z(N,J)-ZN
.+DLOG(CSI(M)/CSI(L))/2./(l-fLAM))**2)
ROOT8=DSQRT((R(I)-R(J))"-'-2+(Z(N,J)-ZN
.+DLOG(CSI (M)/CSI (L)) /2 . / (1+LAM) )--"2)
OMEGA=ROOT8+(ROOT7-ROOT8)--FI (K)
IF (NN.EQ.N) GO TO 71
Ql=
.DEXP(OMEGA)----(DERF(OMEGA/2. /DSQRT(DFLOAT(N-NN)*DT)
. +DSQRT (DFLOAT (N -NN) --DT)) -
.DERF(OMEGA/2./DSQRT(DFLOAT(N-NN'+l)*DT)
.+DSQRT(DFLOAT(N-NN+1)-DT)))+
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.DEXP( -OMEGA) -••-(DERF (OMEGA/2. /DSQRT(DFLOAT(N-NN)---DT)

. -DSQRT(DFLOAT(N-NN)*DT))-

.DERF(OMEGA/2 . /DSQRT(DFLOAT(N-NN+1)»DT)

. -DSQRT(DFLOAT(N-NN+1 )*DT) ) )
Q2=Q1/OMEGA
S2=
.DEXP (OMEGA) *(DERF(OMEGA/2./DSQRT(DFLOAT(N-NN)*DT)
.+DSQRT(DFLOAT(N-NN)*DT))-
.DERF(OMEGA/2./DSQRT(DFLOAT(N-NN+l)*DT)
.+DSQRT(DFLOAT(N-NN+1)*DT)))-
.DEXP( -OMEGA) »(DERF(OMEGA/2./DSQRT(DFLOAT(N-NN)"DT)
.-DSQRT(DFLOAT(N-NN)"DT))-
.DERF(OMEGA/2./DSQRT(DFLOAT(N-NN+l)-DT)
. -DSQRT(DFLOAT(N-NN+1)*DT)))+
. 2 . /DSQRT (PI*DFLOAT(N-NN)*DT)
.*DEXP(-OMEGA**2/4./DFLOAT(N-NN)/DT-(N-NN)*DT)-
. 2 . /DSQRT(PI*DFLOAT(N-NN+1)*DT)
. -DEXP ( -OMEGA**2/4 . /DFLOAT (N-NN+1 ) /DT- (N-NN+1 )*DT)
UGT(J,L,N)=UGT(J,L,N)
. -T2*PI*LAM/ ( 1+LAM) /DFLOAT(NZ) *CSI (M) - - ( - . 5/ ( 1 . +LAM) )
.*CS2(M)
. /DSQRT( (ROOT7+OMEGA)* (ROOT8+OMEGA) )-
.(UZ---(-Ql+(S2-Q2)"
. (Z(N,J)-ZN-DLOG(CSI(L)/CSI(M))/2./(l+LAH)) /OMEGA)

. (R ( J) - ( 0 . 5* (ROOT7**2+ROOT8**2 ) -OME6A**2 ) /2 . /R ( J) ) /OMEGA)

. ---UGTOLD
( GO TO 70
•'•- 71 Ql=

. DEXP (OMEGA ) *

.DERFC(OMEGA/2./DSQRT(DT)

.-fDSQRT(DT))-t-

. DEXP (-OMEGA )*

. DERFC (OMEGA/2 . /DSQRT(DT)

.-DSQRT(DT))
Q2=Q1 /OMEGA
S2=
. DEXP (OMEGA )•-•••
. DERFC (OMEGA/ 2 . /DSQRT (DT)
.-t-DSQRT(DT))-
.DEXP(-OMEGA)---
.DERFC (OMEGA/ 2 . /DSQRT (DT)
.-DSQRT(DT))-
.2./DSQRT(PI*DT)
. *DEXP ( -OMEGA**2/4 . /DT-DT)
UGT(J,L,N)=UGT(J,L,N)

. -T2-PI--LAM/ (1+LAM) /DFLOAT(NZ)*CSI (M)** (- . 5/ (1 .+LAM) )

.*CS2(M)

. /DSQRT( (ROOT7+OMEGA)- (ROOT8+OMEGA) )•'•

. (UZ*(-Q1+(S2-Q2)*

. (Z(N,J)-ZN-DLOG(CSI(L)/CSI(M))/2./( 1+LAM)) /OMEGA)

.+UR*(S2-Q2)*

. (R(J) - (0. 5*(ROOT7**2+ROOT8**2) -OMEGA**2)/2 . /R(J) ) /OMEGA)

.-UGTOLD
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70 CONTINUE
60 CONTINUE ORIQN^JJ P£Gg Jg
50 CONTINUE OF POOR QUALITY
20 CONTINUE '

9 1 CONTINUE
100 CONTINUE
300 STOP

END
SUBROUTINE F C N ( X , F , N R , P A R )
IMPLICIT REAL--8 ( A - H . O - Z )

| REAL*8 X ( N R ) , F ( N R ) , P A R ( 1 ) .
.UGT(30,30 ,1000 ) , U G T O ( 3 0 , 3 0 ) , Z ( 1 0 0 0 ,30) ,
.ZDUOOO ,30),ZO(30),R(30),CSI(30),CS2(30),FI(30),ZDINIT(30),
.ORD(30),VECRHO(3),ZETA(3),BPAR(4),C(30,3),LAM,NU
LOGICAL IVAN
COMMON /A/UGT,UGTO,Z,ZD,ZDINIT,CSI,CS2,FI,ZO,LAM,PI,

. .DT,NU,ANIS,NF,NZ,NT,INDEX,IVAN
./B/C,R,ORD,BPAR
./D/SMALL,P
F(NR)=X(NR)-ZO(NR)
INDEX=INDEX+1
IF (NU.EQ.O.) GO TO 999

9 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CONTRIBUTION FROM CURVATURE
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ORD(NR+1)=
. P / 2 . - - - ( I - R ( N R + 1 ) ** 21 P** 21

if ORD(NR+2)=
fcx .P /2 . » ( l - R ( N R + 2 ) - - " 2 / P " " 2 )

ORD(NR+3)=
. P/2 . •-••• (1 -R (NR+3)•••--••••-2/P**2)

DO 4 1=1,NR
4 O R D ( I ) = X ( I )

CALL.ICSICU (R,ORD,NR+3.BPAR,C,30,IER)
fc DO 992 J=1.NR-1
' RJ=R(J)

IF (J.GT.l) GO TO 998
VECRHO(1)=RJ
VECRHO(2)=RJ+SMALL
VECRHO (3) =R J+SMALL----2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)

' DZ1DR1=(ZETA(2)-ZETA(1))/SMALL
DZ2DR2=(ZETA(3)+ZETA(l)-2^ZETA(2))/SMALL-'"-2
GO TO 997

998 VECRHO(1)=RJ-SMALL
VECRHO(2)=RJ
VECRHO(3)=RJ+SMALL

^ CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL
DZ2DR2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SHALL**2

997 F(J)=-NU"(RJ-%'DZ2DR2+DZ1DR1""3+DZ1DR1)/RJ
./(l+DZlDRr-"'-2 )••-••-1.5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
> C ANISOTROPY
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
.*(1-ANIS*8*DZ1DR1**2/
. (1+DZ1DR1**2)**2)

992 CONTINUE
999 DO 2 J=1,NR-1

IF (NU.EQ.O.) F(J)=0.
DO 20 1=1, NR

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CONTRIBUTION FROM -DEL
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

RPLUS=DSQRT(
. (R ( I )+RJ) •• "2+(ZO ( J) -ZO ( I ) ) **2 )
RMIN=DSQRT(

DO 5 K=1,NF
Y=RMIN+(RPLUS-RMIN)*FI(K)
F ( J ) =F ( J ) - P* P I / DFLOAT ( NR*NF ) *DTAN
. ( DFLOAT (2»- 1 - 1 ) /DFLOAT(2*NR)*PI/2 . )
.*DEXP(ZO(I)-ZO(J)-Y)/
.DSQRT((RMIN+Y)»-(RPLUS+Y))

5 CONTINUE
DO 10 M=1,NZ
RESl=PI**2'*P/2 . /DFLOAT (NR*NF*NZ)*LAM/ (1 .+LAM)*
. DTAN ( DFLOAT ( 2* I - 1 ) / DFLOAT ( 2* NR ) *P I / 2 . )
.*CS2(M)
.*CSI(M)**(-l./2./(l.+LAM))
.-•-DEXP(.ZO(I)-ZO(J))
,*UGTO(I,M)
RPLUS=DSQRT((R(I)+RJ)**2+(ZO(J)-ZO(I)
.+DLOG(CSI (M) )/2 . / (1+LAM) )--"2)
RMIN=DSQRT((R(I)-RJ)""2+(ZO(J)-ZO(I)
.+DLOG (CSI (M) ) /2 . / ( 1+LAM) ) **2)
DO 10 K=1.NF
OMEGA=RMIN+(RPLUS-RMIN)*FI(K)
F(J)=F(JHRESl-'-DEXP( -OMEGA)/
.DSQRT((RPLUS-t-OMEGA)-'-(RMIN+OMEGA))

10 CONTINUE
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CONTRIBUTION FROM II & 13
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

TO=P "P I / DFLOAT ( 2*NR*NF ) - DTAN ( DFLOAT ( 2 - 1 - 1 ) / DFLOAT ( 2 --NR ) *P I / 2 . )
T1=TO
.*DEXP(-X(J)+ZO(I))
ROOT1=DSQRT((R(I)+RJ)^V2+(X(J)-ZO(I))^2)
ROOT2=DSQRT((R(I)-RJ)**2+(X(J)-ZO(I))**2)
DO 30 K=1,NF
Y=ROOT2+(ROOT1-ROOT2)--FI (K)
F(J)=F(J)+T1/DSQRT((ROOT1+Y)»(ROOT2+Y))»
.(-2--'rDSINH(Y)+DEXP(Y)̂ DERF(Y/2./DSQRT(DFLOAT(NT)-''DT)
. +DSQRT( DFLOAT ( NT )-DT) )+
.DEXP(-Y)*DERF(Y/2./DSQRT(DFLOAT(NT)*DT)-
.DSQRT(DFLOAT(NT)-DT) ) )
IF (IVAN) GO TO 30
DO 40 M=1,NZ
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ROOT3=DSQRT((R(I)+RJ)**2+(X(J)-ZO(I)
.+DLOG(CSI(M))/2./(l+LAM))**2)
ROOT4=DSQRT((R(I)-RJ)**2+(X(J)-ZO(I)
.+DLOG(CSI(M))/2./(l+LAM))**2)
OMEGA=ROOT4+(ROOT3-ROOT4)*FI(K)
F( J)=F(J) -T1-»PI*LAM/(1+LAM)/DFLOAT(2*NZ)*CSI (M)»- (- . 5/ (1 .+LAM) )
.*CS2(M)
. /DSQRT( (ROOT3+OMEGA)-(ROOT4+OMEGA) )••
. (-2-'-DSINH(OMEGA)+DEXP(OMEGA)*DERF(OMEGA/2./DSQRT(DFLOAT(NT)*DT)
.+DSQRT(DFLOAT(NT)*DT))+
.DEXP(-OMEGA)*DERF(OMEGA/2./DSQRT(DFLOAT(NT)*DT)-
.DSQRT(DFLOAT(NT)*DT)))
.*UGTO(I,M)

40 CONTINUE
30 CONTINUE

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C CONTRIBUTION FROM 12 & 14
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DO 50 N=1,NT
IF (N.EQ.NT) ZN=X(I)
IF (N.LT.NT) ZN=Z(N,I)
ROOT5=DSQRT((R(I)+RJ)""2+(X(J)-ZN)-'"'-2)
ROOT6=DSQRT((R(I)-RJ)"»2+(X(J)-ZN)--»2)
IF (N.EQ.NT.OR.NT.EQ.l) GO TO 57
DZDT=ZD(K,I)
GO TO 56

57 IF (NT.EQ.l) DZDT=ZDINIT(I)
IF (NT.GT.l) DZDT=(X(I)-Z(N-1,I))/DT

56 T2=TO/2.--DEXP(-X(J)+ZN)
DO 60 K=1,NF
Y=ROOT6+(ROOTS-ROOT6)»FI(K)
IF (N.NE.NT)
.F(J)=F(J)+T2»(2.+DZDT)/
. DSQRT( (ROOT5+Y)-'-(ROOT6+Y) )*
.(DEXP(Y)-(DERF(Y/2./DSQRT(DFLOAT(NT-N)*DT)
.+DSQRT(DFLOAT(NT-N)-DT))-
.DERF(Y/2./DSQRT(DFLOAT(NT-N+l)--'-DT)
.+DSQRT(DFLOAT(NT-N+1)-'DT))) +
.DEXP(-Y)-"-(DERF(Y/2./DSQRT(DFLOAT(NT-N)"DT)
.-DSQRT(DFLOAT(NT-N)*DT))-
.DERF(Y/2./DSQRT(DFLOAT(NT-N+l)*DT)
.-DSQRT(DFLOAT(NT-N+1)*DT))))
IF (N.EQ.NT)
.F(J)=F(J)+T2--(2.+DZDT)/
.DSQRT( (ROOT5+Y)-1'(ROOT6+Y) )*
.(DEXP(Y)»
.DERFC(Y/2./DSQRT(DT)
.+DSQRT(DT))+
.DEXP(-Y)--
.DERFC(Y/2./DSQRT(DT)
.-DSQRT(DT)))
IF (IVAN) GO TO 60
IF (N.EQ.l) ZOLD=ZO(I)
IF (N.GT.l) ZOLD=Z(N-1,I)
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IF (N.EQ.NT) GO TO 78
DO 70 M=1,NZ
IF (N.EQ.l) UGTOLD=UGTO(I,M)
IF (N.GT.l) UGTOLD=UGT(I,M,N-1)
ROOT7=DSQRT((R(I)+RJ)----"-2+(X(JYrZOLD
.+DLOG(CSI(M))/2./(1+LAM))**2)
ROOT8=DSQRT((R(I)-RJ)-"-2+(X(J)-ZOLD
.+DLOG(CSI(M))/2./(1+LAM))**2)
OMEGA=ROOT8+(ROOT7-ROOT8)-"FI(K)
F(J)=F(J)-
.TO/2.--DEXP(-X(J)+ZOLD)
.*PI*LAM/( 1+LAM)/DFLOAT(NZ)-'-CSI(M)*"-(-.5/(l.+LAM))
."CS2(M)
. /DSQRT( (ROOT7+OMEGA)* (ROOT8+OMEGA) )•-
.(DEXP(OMEGA)-(DERF(OMEGA/2./DSQRT(DFLOAT(NT-N)"DT)
.+DSQRT(DFLOAT(NT-N)*DT) ) -
.DERF(OMEGA/2./DSQRT(DFLOAT(NT-N+l)»DT)
.+DSQRT(DFLOAT(NT-N+1)*DT)))+
.DEXP(-OMEGA)--(DERF(OMEGA/2./DSQRT(DFLOAT(NT-N)*DT)
.-DSQRT(DFLOAT(NT-N)*DT))-
.DERF(OMEGA/2./DSQRT(DFLOAT(NT-N+l)-'-DT)
. -DSQRT(DFLOAT(NT-N+1 )--DT)) ))
.••UGTOLD

70 CONTINUE
GO TO 60

78 DO 75 M=1,NZ
IF (N.EQ.l) UGTOLD=l'GTO(I.M)
IF (N.GT.l) UGTOLD=UGT(I,M,N-1)
ROOT7=DSQRT((R(I)+RJV"-"-2+(X(J)-ZOLD
.+DLOG(CSI (M) )/2. / (1+LAM))""-2)
ROOT8=DSQRT((R(I)-RJ)""2+(X(J)-ZOLD
.+DLOG(CSI (M) ) /2 . / (1+LAM) )-•'"••-2)
OMEGA=ROOT8+(ROOT/-ROOTS)-FI(K)
"F(J)=F(J)-
.TO/2."DEXP(-X(J)+ZOLD)
."PI-"LAM/(l.+LAM)/DFLOAT(NZ)"CSI(M)""(-.5/(l.+LAM))
.-CS2(M)
./DSQRT((ROOT7+OMEGA)"(ROOT8+OMEGA))"
. (DEXP(OMEGA)---
.DERFC(OMEGA/2./DSQRT(DT)
.+DSQRT(DT))+
.DEXP(-OMEGA)*
.DERFC(OMEGA/2./DSQRT(DT)
.-DSQRT(DT)))
.-•UGTOLD

75 CONTINUE
60 CONTINUE
50 CONTINUE
20 CONTINUE
2 CONTINUE

RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
FUNCTION EXPIN(P)
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IMPLICIT REAL-S ( A - H . O - Z )
IF ( P . G T . 1 4 . ) GO TO 30
EXPIN=-0 .57721566490245707l -DLOG(P)
DOE=-1.
DO 20 1=1,1000000
DOE=-DOE»P/DFLOAT(I)
IF (DABS(DOE)/DFLOAT(I).LE.1.D-16)GO TO 40

20 EXPIN=EXPIN+DOE/DFLOAT(1)
30 EXPIN=DEXP(-P-DLOG(P))*(l-l./P+2/P**2-6/P**3

.+24./P**4)
40 RETURN

END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

FUNCTION EXPIN2(P)
IMPLICIT REAL*8 (A-H.O-Z)
EXTERNAL EXPIN
EXPIN2=DEXP(-P)-P*EXPIN(P)
RETURN-
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
FUNCTION FA(RHO)
IMPLICIT REAL-8 (A-H,0-Z)
REAL-8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(30)
COMMON
./B/C,R,ORD,BPAR
./D/SMALL.P
./C/QUAD.RJ,ZJ,R2,MM.NR
IF (RHO.GT.(R(1)+SMALL)) GO TO 996
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL»2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL.R(l)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN (ZEROPL,R(1)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(l) + (RHO-R(l))*DERl+(RHO-R(l))-"--2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))-DER2 '
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL
CALL ICSEVU(R,ORD.NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL

997 B=2"RHO---RJ
A=RH0^2+R J- * 2+ (ZETA (2) - Z J ) **2
FA=0.
DO 10 M=1,MM
DIST=QUAD(M)*(DSQRT(A+B)-DSQRT(A-B))*.5
.+(DSQRT(A+B)+DSQRT(A-B))".5
THCOS=(A-DIST---"2)/B

10 FA=FA+1. /DFLOAT(MM)''-RHO-'-DSQRT(l .+DZ1DR1 — 2)
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./DSQRT((DSQRT(A-EHDIST)"(DSQRT(B+A)+DIST))

."(THCOS+(RJ-RHO"THCOS)"(RJ"THCOS-RHO)/DIST--'-"2)
RETURN .
END
FUNCTION FB(KHO)
IMPLICIT REALMS (A-H,0-Z)
REAL-8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(30)
COMMON
./B/C,R,ORD.BPAR
./D/SMALL,P
./C/QUAD,RJ.ZJ.R2,MM.NR
IF (RHO.GT.(R(1)+SNALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL*2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2-ZETA(2))/SMALL-"2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(l) + (RHO-R(l))*DERl+(RHO-R(l))-"'-2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))"DER2
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHG
VECRHO(3)=RHO+SMALL
CALL ICSEVU(R,OKL,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL

997 B=2---RHO-"-RJ
A=RHO"--" 2+R J**2+ (ZETA (2) - Z J )**2
FB=0.
DO 10 M=1.MM
DIST=QUAD(M)
.-"•(DSQRT(A+B)-DSQRT(A-B))•••-. 5
. + (DSQRT(A+B)+DSQRT(A-B))••-. 5
THCOS=(A-DIST-"---2)/B

10 FB=FB+1. /DFLOAT(MM)---RHO---DSQRT( 1 .+DZ1DR1------2)
./DSQRT((DSQRT(A-B)+DIST)---(DSQRT(B+A)+DIST))
.-"•(RJ-RHO-"THCOS)/D1ST"(ZJ-ZETA(2))/DIST
RETURN
END
FUNCTION FC(RHO)
IMPLICIT REAL---8 (A-H,0-Z)
REAL-8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(30)
COMMON
./B/C,R,ORD,BPAR
./D/SMALL,P
. /C/QUAD,RJ,ZJ,R2,MM,NR
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(1)+SMALL-2
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CALL ICSEVU (R , ORD, N'R+3 , C, 30, VECRHO, ZETA, 3, IER)
DER1=(ZETA(2) -ZETA(1) ) /SMALL
DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL.R(l)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(l)+(RHO-R(l)V"DERl + (RHO-R(l))--"2/2."DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL

997 B=2*RHO*RJ
A=RHO**2+RJ**2+ (ZETA (2) - Z J) * * 2
FC=0.
DO 10 M=1,MM
DIST=QUAD(M)
.*(DSQRT(A+B)-DSQRT(A-B))*.5
.+(DSQRT(A+B)+DSQRT(A-B))*.5
THCOS=(A-DIST**2)/B

10 FC=FC+1./DFLOAT(MM)*RHO*DSQRT(1.+DZ1DR1**2)
./DSQRT((DSQRT(A-B)+DIST)*(DSQRT(B+A)+DIST))
. * (R J*THCOS -RHO) / DIST* (Z J - ZETA (2)) / DIST
RETURN
END

lf FUNCTION FP'XHO)
IMPLICIT REAL----8 (A-H.O-Z)
REAL--8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(3d)
COMMON
./B/C,R,ORD,BPAR
./D/SMALL,P
./C/QUAD.RJ,ZJ,R2.MM,NR
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1")=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(l)+SMALL--2
CALL ICSEVU(R,ORD,NR43,C,30.VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL*-2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN (ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL
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997 B=2*RHO*RJ
A=RHO**2+RJ**2+(ZETA (2) -Z J) **2
FD=0.
DO 10 M=1,NM
DIST=QUAD(M) .
.*(DSQRT(A+B)-DSQRTCA-B))-•••-.5
. + (DSQRT(A+B)+DSQRT(A-B))--.5
THCOS= (A-DIST* *2) / B

10 FD=FD+1./DFLOAT(MM)*RHO*DSQRT(1.+DZ1DR1**2)
./DSQRTC(DSQRT(A-B)+DIST)*(DSQRT(B+A)+DIST))
.*(1+((ZETA(2)-ZJ)/DIST)**2)
RETURN
END
FUNCTION RIGHTl(RHO)
IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(30)
LOGICAL UPFLOW
COMMON
./B/C,R,ORD,BPAR
./D/SMALL,?
./C/QUAD,RJ,ZJ,R2,MM,NR,UPFLOW
EXTERNAL EXPIN
IF (RHO.GT.(R(1)+SMALL)) GO TO 998
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO(3)=R(l)+SMALL--2
CALL ICSEVU(R,ORD.NR+3,C,30,VECRHO,ZETA.3,IER)

f DER1=(ZETA(2)-ZETA(1))/SMALL

x DER2=(ZETA(3)+ZETA(1)-2*ZETA(2))/SMALL**2
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN [ZEROPL,R(1)]
C DZ1DR1 WILL NOW REPRESENT DERIV IN [ZEROPL,R(1)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(1)+(RHO-R(1))*DER1+(RHO-R(1))**2/2.*DER2
DZ1DR1=DER1-KRHO-R(1))"DER2
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL
CALL ICSEVUCR.ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL

997 W=(ZETA(2)+DSQRT(ZETA(2)**2+RHO--2))/P
S=(-ZETA(2)+DSQRT(ZETA(2)-'-»2+RHO-t--1--2))/P
IF (S.LE.O) S=0.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW DOWN
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF (UPFLOW) GO TO 811
UZ=-(-l.+EXPIN(R2*W)/EXPIN(R2)+
.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S))
UR=- ( (1. -EXPIN(R2--W) /EXPIN(R2) )''-DSQRT(S/ (S+W) ) )
GO TO 812

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW UP
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
81 i UZ=-(1.-EXP1N(R2---W)/EXPIN(R2)-

.(DEXP(-R2)-DEXP(-R2*W))/EXPIN(R2)/R2/(W+S))
UR=- (- (1. -EXPIN(R2*K)/EXPIN(R2))*DSQRT(S/ (S+W)) )

812 B=2*RHO*RJ
A=RHO**2+RJ**2+(ZETA(2) -ZJ Y-2
RIGHT1=0.
DO 10 M=1,MM
DiST=QUAD(M)"(DSQRT(A+B)-DSQRT(A-B))".5
. + (DSQRT(A+B)+DSQRT(A-B) )•". 5
THCOS=(A-DIST**2)/B

10 RIGHTl=RIGHTl+6./DFLOAT(MM)*RHO
./DSQRT((DSQRT(A-B)+DIST)--(DSQRT(B+A)+DIST))
.*(RJ-RHO*THCOS)/DIST
.*(ZJ-ZETA(2)-DZ1DR1*(RJ*THCOS-RHO))/DIST
.-••-(UR
.•'••(RJ-'-THCOS-RHO)+(ZJ-ZETA(2))*UZ)
RETURN
END
FUNCTION RIGHT2(RHO)
IMPLICIT REALMS (A-H,0-Z)
REALMS QUAD(30),VECRHO(3),ZETA(3),C(30,3),R(30),ORD(30)
LOGICAL UPFLOW
COMMON
./B/C,R,ORD,BPAR
./D/SMALL.P
./C/QUAD.RJ.ZJ,R2.MM,NR.UPFLOW
EXTERNAL EXPIN
IF (RHO.GT.(R(1)+SMALL)) GO TO 99R
VECRHO(1)=R(1)
VECRHO(2)=R(1)+SMALL
VECRHO (3 )=R (1 )+SMALL-'-2
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DER1=(ZETA(2)-ZETA(1))/SMALL
DER2= (ZETA(3HZETA(1) -2---ZETA (2)) /SMALL*-2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C ZETA(2) WILL NOW REPRESENT ZETA IN.[ZEROPL,R(1))
C DZ1DR1 WILL NOW REPRESENT DERIV IN (ZEROPL,R(1)]
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ZETA(2)=ZETA(l)+(RHO-Ra))"DERl+(RHO-R(l))*-»-2/2.*DER2
DZ1DR1=DER1+(RHO-R(1))*DER2
GO TO 997

998 VECRHO(1)=RHO-SMALL
VECRHO(2)=RHO
VECRHO(3)=RHO+SMALL
CALL ICSEVU(R,ORD,NR+3,C,30,VECRHO,ZETA,3,IER)
DZlDRl=(ZETA(3)-ZETA(l))/2./SMALL

997 W=(ZETA(2)+DSQRT(ZETA(2)-'""-2+RHO*-'-2))/P
S=(-ZETA(2)+DSQRT(ZETA(2)**2+RHO**2))/P
IF (S.LE.O) S=0.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW DOWN
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF (UPFLOW) GO TO 811
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UZ=- (-1. +EXPIN (R2----W) /EXPIN (R2)+
.(DEXP(-R2)-DEXP(-R2"W))/EXPIN(R2)/R2/(W+S))
UR=-((1.-EXPIN(R2*W)/EXPIN(R2))*DSQRT(S/(S+W)))
GO TO 812

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C FLOW UP
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
811 UZ=-(1.-EXPIN(R2--W)/EXPIN(R2)-

. (DEXP(-R2)-DEXP(-R2--W))/EXPIN(R2)/R2/(W+S))
UR=-(-(1.-EXPIN(R2-W)/EXPIN(R2))*DSQRT(S/(S+W)))

812 B=2*RHO*RJ
A=RHO**2+RJ--2+(ZETA(2)-ZJ)**2
RIGHT2=0.
DO 10 M=1,MM
DIST=QUAD(M)*(DSQRT(A-»-B)-DSQRT(A-B))*.5
.+(DSQRT(A+B)+DSQRT(A-B))».5
THCOS=(A-DIST**2)/B

10 RIGHT2=RIGHT2+6./DFLOAT(MM)-RHO
./DSQRT((DSQRT(A-B)+DIST)----(DSQRT(B+A)+DIST))
.*(ZJ-ZETA(2))/-DIST
."(ZJ-ZETA(2)-DZ1DR1"(RJ--THCOS-RHO))/DIST
.*(UR
.••(RJ»THCOS-RHO) + (ZJ-ZETA(2))»UZ)
RETURN
END
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Abstract

In order to determine a protein's tertiary structure, large, well ordered single crystals are

required for x-ray analysis. Producing such crystals is often the rate-limiting step because many

protein crystals grow slowly and they often reach a terminal size which is too small to be useful for

x-ray diffraction studies. In this paper, we present our study of several mechanisms which may

reduce crystal growth rates and/or terminate crystal growth entirely. On the basis of our analysis,

we find that salt gradients which change the local chemical potential of the protein are insufficient to

account for the slow crystal growth rates which have been reported. Contaminants which adsorb

protein from solution may reduce the effective protein concentration, but the impurity's

concentration and its affinity for protein are unknown. Association of protein 'jolecules in bulk

solution can reduce the monomer concentration significantly, but extant theory and experiment are

not sensitive enough to determine the actual concentration of aggregates in solution. For systems

of interest, shear-induced effects were found to be too weak to interfere with normal binding of

incoming protein molecules. Although we found that most crystal growth occurs in a regime where

both interfacial kinetics and diffusion influence crystal growth, the role of mass transfer rates on the

terminal size of crystals is unknown, primarily because no data exist which cover the size range of

interest (O.lmm - 1mm in length).

Experimental studies of growth of large protein crystals are essential if mechanisms by which

crystals stop growing are to be elucidated. Growth rate measurements for a wide range of crystal
\

sizes, coupled with measurements of system properties which vary with time, may reveal the

factors responsible for this puzzling behavior. Several hypotheses have been advanced to explain

growth cessation, but none have been verified by experiment. For example, if termination of
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growth occurs by accumulation of defects, x-ray studies of the crystals at different stages in their

growth should reveal some qualitative changes in the nature of the protein crystal which is related to

its growth behavior.

Introduction

Protein crystals are useful for determining the tertiary structure of biological molecules but the

task of preparing crystals is difficult because many proteins do not form crystals readily or form

crystals which are unsuitable for x-ray analysis. Protein crystals differ from more familiar

inorganic crystals in several ways. In many systems, crystals tend to grow at a constant rate, up to

a point, and then stop growing. The molecules are held in the crystal lattice by weak hydrogen

bonds (AH = -3 kcal/mole to -6 kcal/mole in vacua) which are not well characterized [Creighton

1983] and each molecule has relatively few contacts with its neighbors [McPherson 1982].

Additionally, the bonding structure and the physical nature of the crystal are not well understood.

Moreover, the cry~tallization process itself is complicated by small changes in temperature, pH, or

the precipitating agent concentration. Although it has been shown that the precipitant concentration

inside the crystal equilibrates with the external solvent [Wyckoff 1986], the concentration of

precipitants in crystals has not been measured. Thus the mechanism by which precipitants act and

their role inside the crystal are unsolved mysteries.

Some of the difficulty of understanding protein crystallization arises from the complexity of a

system containing protein, precipitating agent, buffer, and solvent Interactions between these

components makes it nearly impossible to predict whether a given set of conditions is suitable for

protein crystal growth. Thus, guidelines for producing protein crystals are largely rules of thumb.

Results from groups working on the same model system under similar conditions can differ

significantly, as evidenced by disparities in the solubility of lysozyme reported at 20*C in

5%(w/v) NaCl at pH 4. Values range from 1.7 mg/ml [Pusey et al. 1986] to 4.3 mg/ml [Kam el

al. 1978, Feher and Kam 1985] with an intermediate value of 3.5 mg/ml [Fiddis et al. 1978].
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When used to determine the concentration dependence of the crystal growth rate these solubilities

lead to different kinetic expressions which makes it difficult to decide on the controlling

mechanism(s).

As though studying crystal growth by diffusion of protein from the bulk were not complicated

enough, fluid flow may also influence matters. It is known that forced convection in the form of

stirring tends to produce large numbers of small crystals rather than the large single crystals

desired. Recently it was suggested that natural convection engendered by the protein concentration

gradient near the crystal surface disrupts the orderly deposition of protein molecules [Bugg etal.

1984]. This fluid motion might: (i) promote rapid transfer where incoming protein molecules are

forced to bind at a random site rather than the specific sites that lead to well ordered crystals, or

(ii) alter the state of the protein at or near the surface surface through fluid shear. In the first case

the convective mass transfer rate is envisioned as being faster than the attachment rate so defects

form due to improperly bound or misoriented molecules. Accordingly, growth ceases due to an

accumulation of «rors when the surface concentration of defects reaches the point where additional

molecules cannot find a suitable attachment site [Kam et al. 1978, Feher and Kam 1985]. This

implies that neighboring molecules on the surface are misaligned and the degree of local disorder is

extremely high or that binding requires the cooperation of a large number of properly oriented

molecules on the surface. Unless these defects arise suddenly, crystal disorder would increase

gradually moving towards the crystal surface (with a corresponding decrease in the x-ray

resolution). According to the second mechanism, shear stresses at the crystal surface strip the

molecules from the crystal surface or align the protein molecules so that molecules near the surface

cannot assume the proper orientation for binding to the crystal. The shear stress on the protein

molecule would need to be strong enough to denature the protein molecule by breaking its internal

hydrogen bonds and unfolding the molecule.

Finally, contaminants in the solution may accumulate at the surface of the crystal and either

poison the surface so that no further addition is possible, or induce some change in the protein near
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the crystal surface which prevents it from binding.

In this paper, two main questions are addressed: (i) Why do protein crystals grow so slowly?

and (ii) Why do protein crystals reach a terminal size? To answer the first question, we have

examined three mechanisms which might limit crystal growth rates: salt rejection at the crystal-fluid

interface, contamination by impurities which adsorb protein, and the aggregation of protein

monomer in the bulk (which would lower the effective concentration of protein available for crystal

growth). Our analysis indicates that any salt gradients due to salt rejection are too small to produce

the effects needed to reduce the diffusion-limited crystal growth rates to measured levels. The

presence of dust or other contaminants may significantly reduce the effective protein concentration

if the protein adsorbs strongly to the dust surface. Parameters which affect the importance of

surface adsorption, such as the protein's affinity for the dust and the dust concentration found in

typical protein solutions, are not currently known. Aggregation of protein may significantly reduce

the amount of protein monomer in solution, but both the measurements and the current theory for

determining size distributions are inadequate to determine the actual state of aggicgation of the

protein in solution. Further revisions of the theory and a more comprehensive set of experiments

may provide enough information to determine whether protein aggregation plays a role in limiting

crystal growth rates.

Several hypotheses concerning the effect of fluid flow on the terminal size of protein crystals

were investigated by examining several mechanisms in which fluid shear at the crystal interface

interferes with normal addition of protein molecules to the surface and by performing a

quasi-steady analysis of the mass transfer to the crystal surface. The effects of shear due to fluid

flow were found to be several orders of magnitude too weak to disrupt proper protein attachment to

the crystal surface or to align the protein molecules in the vicinity of the surface. An analysis of

mass transfer indicates that crystal growth occurs in a regime where diffusion and the attachment

reaction both play roles in limiting the crystal growth rate.

Formulation of a a theory to explain the peculiarities of protein crystal growth is hindered by
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the lack of reliable data on growth rates of large crystals. Extant results were obtained with crystals

no larger than approximately 100 mm in length and size effects are not yet apparent in these

crystals, so vital information about the slowing growth rate is missing. A thorough study should

be performed wherein larger crystals are produced in order to relate growth rates to system

properties which may change over the course of the crystal growth process.

Salt Rejection and Protein Crystal Growth

There are at least two possible ways in which the rejection of salt (precipitating agent) at the

interface may influence protein crystal growth: (i) a "blowing" velocity away from the crystal

surface which would slow the transport of protein to the crystal; and (ii) the alteration of the local

protein solubility which would reduce the driving force for diffusion. In the first case, the blowing

would appear in the "crystallization" flow which arises from the diffusion of protein to the crystal

surface. This crystallization flow is related to the growth rate of the crystal, dR/dt, by

(1)

where yf is the fluid velocity at the interface, n is the unit normal directed outward from the crystal

surface, pc is the crystal mass density and pf is the fluid density at the interface. The crystallization

flow is directed towards the crystal surface if pc > pf, and away from the crystal if pc< pf A rising

convective plume has been observed [Pusey 1986, personal conversation], indicating that the fluid

at the interface is less dense than the bulk fluid. Because the crystal is denser than the bulk fluid,

pc > pf and the rejection of salt is insufficient to induce a blowing away from the crystal surface.

Earlier calculations [Grant 1985] showed that the convective protein flux due to crystallization flow

is approximately 1 % of the diffusive flux for a spherical protein crystal. The effect of salt rejection

is to reduce this small convective flux, and can be neglected without appreciable error.

The effect of variations in the local protein solubility can be examinied by considering the

growth of a spherical protein crystal under diffusion control. At the crystal surface, salt is rejected
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and must diffuse to the bulk solution so that a salt concentration gradient exists along with the

resulting gradient in the local solubility of the protein. In the diffusion limit, protein in the liquid at

the crystal interface is at the solubility concentration and is in equilibrium with the protein in the

crystal. Since the crystal form is reported to be insensitive to the salt concentration, it may be

reasonable to assume the chemical potential of the crystalline protein is independent of the salt

concentration. In this case, the chemical potentials of the protein in solution and in the crystal are

equal wherever the protein concentration equals the local protein solubility because we could, in

principle, place a crystal in a saturated protein solution without producing a change in either the

crystal size or the protein concentration of the solution. The chemical potential of the protein

depends on the other species which are in solution, so the protein's chemical potential is no longer

directly proportional to its concentration. The salt concentration gradients due to rejection at the

crystal interface may alter the gradients in the protein's chemical potential with the result that the

flux of protein to the crystal surface is less than the flux one would expect from examining only the

protein concentration gradient.

To set this out in mathematical form, we first express the flux of protein (species 1) in terms of

its chemical potential [Cussler 1982]

where (ij is the chemical potential of the protein, D0 = thermodynamic diffusion coefficient, and

Cj= molar concentration of protein. The chemical potential of the protein is given by

(3)

where ^ij° = standard state chemical potential, Xj= mole fraction of protein, and Yj=activity

coefficient of the protein. Since the chemical potential of the protein at the solubility concentration

is constant, it follows that Hjso1 =H1°+ kT ln xis°1 Yiso1 = constant. The flux relation given by

Equation (2) is unchanged by adding the gradient of a constant, so the flux can also be expressed as
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sol sol
cl "^1

One form for the activity coefficient is [Debenedetti 1984]

-Kx,

(4)

(5)

where YI°° is the activity coefficient of protein when in the limit of an infinitely dilute solution. If K

is a constant independent of salt concentration and YJ"" varies with salt concentration, then the

chemical potential of the dissolved protein can always be written in terms of the local Yj00:

° + kT In xlYl = H°

1° + kT In Xj°'

•] (6)
sol

sol

Although this manner of adjusting YI°° to satisfy the solubility constraints is ad hoc, it makes the

mathematics somewhat simpler by absorbing the salt dependence into Xjso1 so that substitution of

equations (5) and (6) into Equation (4) gives

j = -D0C. Vln
-K(Xj - x

sol

sol
(7)

A quasi-steady mass balance around a growing spherical crystal is

sol

o (8)

where Cx is the molar concentration of protein in the crystal. If the following dimensionless

variables are introduced:
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= R/R

= RQ?i / r (9)

the mass balance becomes

-1 dz

sol

sol

(10)

_ i J& _ R dR
- A d T "DJjlT

where the relation Cj = CjXj has been used and Cy will be taken as 55 molar. Transforming the

equation from an expression for the activity into a differential equation for Xj yields:

sol

1 1 r\7dxj
~dz 1-Kx (11)

The salt concentration was calculated from the quasi-steady diffusion profile

Qalt = Csaltoo (12)

where Csa]too= 50 mg/ml, and ACS= Csaltsurf - Csa]Uoo. The solubility was assumed to obey the

expression [Feher and Kam 1985]

sol
=ae

Combining equations (12) and (13) gives Xjso1 as a function of position:

sol _ sol -P ACsaitz
Xl ~X1,~ C

Equation (14) was substituted into (11) to yield

(13)

(14)
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Pe (C / C) + (3AC X - EAC Kx xe
R \f^ Z

' '_ x T sah | - saU ,

dz 1 - K X j

and the initial value problem could then be integrated numerically from the crystal surface (z=l ,

Xj=Xj s
so1) to infinity (z=0, X j = X j oo). The resulting value of Xj ̂  can in turn be used to calculate

the nominal growth rate which would be predicted from the diffusion limit in a uniform salt

concentration field, viz.

sol .
J (16)

and the ratio of the actual and nominal growth rates was determined as a function of system

properties.

For a dilute protein solution, Kxj«l [Debenedetti 1984], and can be neglected in the

denominator of Equation (15), while the Kxj term in the numerator will be neglected in order to

obtain an upper bound on the effect of salt rejection on uie diffusion rate. In this case, Equation

(15) can be integrated analytically to yield

Xl=x '-e

The value of \l M obtained from Equation (17) can be substituted into (16) to obtain

BAG .
Pe = —I — S2l!_

Although the form of the relation between the nominal Peclet number and the actual Peclet

number has been established, the apparent reduction in diffusion rate depends on ACsa]t, which has

not yet been determined. Recall that the quasi-steady salt concentration profile, Equation (12),

was used to obtain Equation (18), but the surface concentration was left unspecified. A mass
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balance on the salt rejected at the crystal surface yields:

5*n- S )C -D11 o j ^-salt^ur f ~ ^sal t (19)

where s = segregation coefficient of the salt (Csalucrysta] / Csallsurface); 0 < s < 1. In terms of the

dimensionless variables introduced in Equation (9), Equation (19) is

salt.o (20)

so that

AP — C —C — C
salt ~ salusurf ^salt.oo Sail 1-Pe(D

1

0/Dsalt) (1 -s)
- 1 (21)

For proteins, D0 / Dsa]t« 10'1, and typical Peclet numbers for lysozyme crystals are less than 6

x 10 . The maximum concentration difference occurs when s = 0 (total segregation of the salt), in

which case ACsa]t < 6 x 10"3 Csa]l)00. At a bulk concentration of 50 mg/ml NaCl, this gives

ACsa]t< 0.3 mg/ml. For the actual growth rate to equal one tenth the nominal growth rate, P should

be approximately 10, but reported values of lysozyme solubility put the value of P closer to 10"1

[Ataka and Tanaka 1986]. Thus, Pe = 0.985 Penom, and salt rejection cannot reduce the diffusion

rate to the point where crystal growth is entirely diffusion controlled.

If the protein molecules are treated as large ions and the protein activity coefficient obeys the

Debye-Hiickel law, the chemical potential of the protein molecules decreases as the ionic strength

increases. This leads to a greater driving force for diffusion and a corresponding increase in

growth rate, a trend which would make diffusion less likely to limit the crystal growth process.

The solutions from which protein crystals are usually grown, however, are too concentrated in salt

for the limiting form of the Debye-Hiickel law to hold and it is unreasonable to expect the protein

molecules to behave like simple ions [Tanford 1961]. The actual form of the activity coefficient,

then, may partially acount for the slow growth of protein crystals. Any mechanism which requires
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large gradients in salt concentration due to salt rejection cannot account for the slow growth rate

unless the protein is extremely sensitive to small changes in salt concentration.

Effect of Impurities on Protein Crystal Growth

The presence of dust or other impurities affects protein crystal growth in two different ways: 1)

the dust surface acts as a nucleation site for the protein; and 2) the protein molecules may adsorb to

the surface of the dust particle, thereby reducing the effective protein concentration in the solution.

The nature of the dust surface is too ill-defined to determine quantitatively how the nucleation rate is

affected, so we will address the effect of protein adsorption in this section.

Suppose that there are a certain number of sites, nT, on the dust surface to which protein

molecules will bind. Further, assume that the rate at which the protein adsorbs is proportional to

the product of the protein concentration and the concentration of available sites, and that the

desorption rate is proportional to the concentration of occupied sites:

: - Cd [ k^ Cp n* - kd (Op - n*) ] (22)

where C =molar concentration of protein, Cd=molar concentration of dust, n*= number of

available binding sites/dust panicle, kad=adsorption rate constant, and kd=desorption rate constant.

At equilibrium, dn*/dt=0, and we have

k „ * a
v _ ad _ "r"" Oeq ,orvK - T T3TF 7.—^ v ̂ — (23)

where 6 is the fractional coverage of the particle surface.

A mass balance on the protein in solution yields:

(24)

where Cp 0 is the original protein concentration in solution. Equation (23) can be substituted into
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(24) so that

(25)
'P.eq

which can be solved to yield:

_ (26)

P.eq 2K

We can take a typical dust particle to be approximately 0.5 ^im in diameter, and if the particle is

assumed to be completely covered by a monolayer of protein molecules (taken to be cubes with a

length of twice the hydrodynamic radius of 20 A), approximately 5 x 104 protein molecules can be

adsorbed on each particle of dust. This indicates that a 5%(w/v) solution of lysozyme can be

completely depleted by adsorption if C<j>6.9 x 10~8 mol/liter, provided that K»l.

Contamination by dust, then, can serve to reduce the effective protein concentration by a large

amount. As the protein is depleted by the growing crystals, the molecules on the dust can desorb

and replenish the protein concentration in solution. This would maintain the protein level in the

solution at a fairly constant level, which might explain the nearly constant rates of growth which

have been observed.

Aggregation of Protein

The state of aggregation of protein in solution affects the crystal growth rate by changing the

rate at which protein diffuses to the crystal surface and reduces the effective concentration of

protein available for growth. The diffusion coefficient of a particle is inversely proportional to its

hydrodynamic radius, so that the aggregates have smaller diffusion coefficients than monomers and

will diffuse to the surface slower. Additionally, if crystal growth occurs by addition of aggregates

of specific sizes (e.g. monomers, dimers, or trimers), then the formation of non-participating
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aggregates acts as a protein sink.thereby reducing the growth rate. Kam el al. [1978] and Feher

and Kam [1985] have proposed a method for determining a particle size distribution based on

quasi-elastic light scattering measurements and a thermodynamic model of nucleation. The

discussion below is in two parts: (i) an analysis of the experimental measurements, and (ii) a

description of their model.

According to Kam el al. [1978] and Feher and Kam [1985], a solution illuminated with

incident light of frequency vo will scatter light with a power spectrum given by:

<"* 2 AV:

S(v)-2,j C T 7 (27)
j=i (v -v ) +(Av.)2
1 ^ s o' ^ y

where j = number of molecules in an aggregate, vs = frequency of scattered light, Av- =

(2D-q2/27i), q = scattering vector, D- = diffusion coefficient of a j-mer, and C is proportional to the

number density of the j-mers. The power spectrum obtained experimentally is usually

approximated by a single Lorentzian:

A
S(v) =

(v -v )2 + (Av)2 (28)
5 O

where A is a constant and Av is the effective linewidth of the power spectrum. The parameters A

and Av can be found from a non-linear least-squares fit of the spectrum to the form given by (28)

or by transforming the data into the form

(v _v \2 (Av}2

Y(v) = l/S(v) = ^ V + J£lL = mx + b (29)
A A

where m = A'1, x = (vs - vo)
2, and b = (Av)2/A. In these coordinates, Av = (b/m)1/2 and the

parameters b and m can be obtained from a linear least-squares fit of Y(v). The linewidth is a

rough measure of the state of aggregation of the protein because it has a maximum value when the

protein is entirely monomeric, and decreases as the fraction of aggregates in solution increases.
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The amplitude, A, also contains information on the concentration of aggregates: as the number of

aggregates increases, so does the amplitude of the power spectrum. Analysis of experimental data

in this manner yields only an "average" degree of aggregation rather than information on the actual

size distribution of the protein. Although some sort of average diffusion coefficient can be

determined directly from the linewidth, more detailed information on the particle size distribution

cannot be obtained from the scattering spectrum alone. For this reason, Kam et al. chose to

measure how the normalized linewidth, Av*=Av/AVj, changes with protein concentration and to fit

the parameters of their model so that the agreement between theory and experiment is maximized.

The resulting particle size distribution, which is consistent with both theory and experiment, may

not accurately represent the true size distribution in solution. As we will show later, the proposed

model is not sensitive enough to discern the true distribution unambiguously.

The model is based on the thermodynamics of aggregation of monomers to form nuclei of

different sizes. The change in free energy required to form a nucleus from monomers is usually

considered to consist of two contributions: a negative bulk contribution which acts to promote

aggregation and a positive surface component which arises from the need to support the additional

surface area of the aggregate. The formation of small nuclei is thermodynamically unfavorable

because the free energy change is positive due to the large surface to volume ratio of the aggregates.

As the nucleus grows, the addition of monomers becomes less unfavorable until the nucleus

reaches a critical size beyond which further addition of monomers is favorable. Any nucleus which

exceeds the critical size will grow spontaneously until it reaches macroscopic size. The critical size

of the nucleus depends on how the surface area and volume of the nucleus varies with aggregate

size. For a spherical nucleus, the volume (bulk) is proportional to the number of molecules, j, in

the aggregate, while the surface area is proportional to j2/3. The standard free energy change for

the formation of an aggregate from j monomers is

-nG (30)

where GB = bulk free energy per molecule (assumed constant), Gs = surface free energy per
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molecule (also constant), and (3 = geometrical factor which gives the surface area per molecule.

The standard state conditions are 1 %(w/v) protein, at the temperature, pH, and salt concentration

of the system. The actual change in Gibbs free energy is then

A G ^ a - l J G B + P a ^ - l J G s - O - l J k T l n C , . (31)

where Cj- is the total protein concentration expressed in units of %(w/v). Differentiation of (31)

shows that AGj reaches a maximum at the critical size

_3

j* = _lnCj,-GB/kT_
(32)

The equilibrium constants for the aggregation reactions

A.

were obtained from the continuum approximation

J C
(33)

In V
J

~AG 0 . -AG°~j+i j
kT

d

dj
"AGJ
kT

(34)

Although this approximation is reasonable for large clusters, it becomes less accurate for small

aggregates such as those which may be present during the pre-nucleation stage. If the expression

for AG:° from Equation (30) is substituted into Equation (34), the result is

In K. = -
kT 3 kT (35)

Evaluating Equation (35) for j=l and j—»«> shows that the equilibrium constants are related to the

free energy terms as follows:
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Substitution of (36) into (32) leads to

-, 3

_ln (K.C,.) _

and the free energy barrier for nucleation is

AGj 1
kT ~2 • -In

(Kee/K1)
3/2

(36)

(37)

(38)

Kam el al. chose to use Kj and Keo/K1 as the adjustable parameters in their model.

When AGj*/kT » 1, the formation of critical-sized nuclei is slow, and the system can reach a

state of "quasi-equilibrium" in which particles smaller than j* are in equilibrium with each other and

the concentration of larger particles is negligible. The concentration of aggregates during the

pre-nucleation stage was calculated from the quasi-equilibrium approximation:

cr°

£.c
(39)

In order to calculate the quasi-equilibrium distribution, all that is required is to select different

values of Kj and K,,,, calculate j* from Equation (37), and solve Equation (39) for the aggregate

concentrations. The distributions obtained from the reported values of Kj= 0.065 %(w/v)"1 and

^ 35 are shown in Figure 1 for different protein concentrations.

Once the quasi-equilibrium distribution is known, the approximate power spectrum can be
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calculated by substituting the C- into Equation (27) and truncating the summation at j*. Kam el al.

then plotted the normalized linewidth, Av*, against the normalized protein concentration, KjCp for

different values of Koo/K1 (solid curves in Figure 2). The normalized linewidths obtained from

experiment were plotted against protein concentration on the same semilogarithmic scale, and then

shifted until agreement between the experimental data and one of the theoretical curves was

attained. The value of Kj can be calculated from the shift required to align the experimental and

theoretical curves, while the appropriate value of KDe/K1 is that corresponding to the theoretical

curve. Unfortunately, imposing this model on the system can lead to erroneous interpretation of

the data. To illustrate the problem, we have created a sample particle size distribution in which the

aggregates cannot grow larger than j=4 and the equilibrium constants are Kj= ^(w/v)'1,

Y^= 5%(w/v)'1, and K3= 3%(w/v)'1. The power spectrum was calculated as a function of

concentration according to Equation (27) and the linewidth was calculated from Equation (29). We

then obtained an approximate fit according to Kam's method described above (Figure 2) and found

that the best-fit parameters are Kj= l%(wjv)'1 and Koo/K1= 130. The disparity between the trial

distribution and the best-fit distribution is shown by comparing the fraction of monomer at

l%(w/v) protein concentration: the trial distribution contains approximately 26% monomer while

the best-fit distribution contains essentially no monomer. This method of determining the size

distribution is simply not sensitive enough to differentiate among all the possible distributions

This insensitivity to the actual particle size distribution is not the only problem with Kam's

model; the quasi-equilibrium approximation breaks down at concentrations in the range of interest

to crystallographers. The quasi-equilibrium approximation is valid only when the free energy

barrier is large compared with kT. At higher concentrations, the free energy barrier is relatively

low (Figure 3) and critical nuclei form rapidly enough that their concentration cannot be neglected.

When the quasi-equilibrium approximation is applied in these circumstances, the protein is forced

to distribute itself among an artificially small number of aggregate sizes with the result that the

model predicts large "jumps" in the mass fraction of monomer due to small changes in total protein
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concentration. At concentrations where small changes in protein concentration decrease j* by one,

the fraction of monomer increases discontinuously (Figure 4a). The oscillations seen in the

normalized linewidth (Figure 4b) are a consequence of these monomer jumps. The curves in

Figure 2 do not show this behavior because they were terminated at concentrations below those at

which Av* starts to increase.

The thermodynamic model of aggregation presented here is based on two assumptions that can

have large effects on the predicted particel size distribution. The first is that the protein solutions

behave as ideal solutions. Even though the solutions are dilute, they are highly supersaturated and

could deviate significantly from ideal solution behavior. The second assumption is that both the

bulk free energy and the surface free energy remain constant with crystal size. At least in the case

of the surface energy, it would be reasonable to expect some size dependence because it makes little

sense to speak of bulk and surface properties when the aggregates are as small as four or five

molecules. The most likely possibility is that the surface energy is small for small aggregates and

gradually increases until it reaches its macroscopic value. This would make the formation of small

aggregates more favorable and reduce the monomer concentration.

On the basis of the analysis of Kam's work, aggregation of protein cannot yet be eliminated as

a mechanism which slows protein crystal growth. There is enough ambiguity in the experimental

results that the amount of protein in aggegates cannot be determined with any confidence.

Definitive studies of particle size distributions or, at the least, average particle sizes under growth

conditions may show whether or not protein aggregation plays an important role in controlling

crystal growth. In addition, a refinement of the theory to include size dependent effects may show

that the effective concentration of monomer is much lower than curently believed.

Effects of Fluid Flow on Protein Crystal Growth

Bugg et al. [ 1984] suggested that the terminal size of the crystals could result from the size

dependence of the natural convection on crystal size. If the force required to break the crystal
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bonds is comparable to that of the shear stress at the crystal surface due to natural convection, then

the flow field may be strong enough to strip protein molecules from the surface. Because the shear

stress at the surface increases with crystal size, this would act as a self-limiting process. We can

determine if this is a likely explanation for the phenomenon by performing an order of magnitude

estimate of the viscous stress based on the velocity profile for a vertical flat plate.

From the velocity profile presented by Schlichting [1979], the shear stress is given by

E "
t

.1/4

(40)

where: t=shear stress, n=fluid viscosity, F=shear rate, g=gravitational acceleration, Ap=density

difference, p^bulk fluid density, v=kinematic viscosity, R=crystal radius. According to Equation

(1.1), a 1mm diameter spherical crystal in a 5%(w/v) lysozyme solution under unit gravity would

experience a shear rate on the order of 100 s"1. This analysis ignores the effect of the Schmidt

number, Sc=v/D, on reducing the shear rate. At high values of Sc, such as Sc=104 for lysozyme,

F would be much smaller than the value obtained above [Schlichting 1979]. Nevertheless, if we

use F=100 s'1, any effect of fluid flow on protein crystal growth will not be prematurely ruled out.

The shear stress acting on the crystal surface in a solution where p. = 1 x 10'3 Pa-s is approximately

0.1 Pa. If we take Fiddis' [1978] approximation of the lysozyme molecule being a cube 30.9 A on

a side, then the shear force acting on the molecule is approximately 10'18 N.

We can take Fiddis' [1978] value of the surface energy (7.5 kJ/mol) as representative of the

strength of the crystal bond, but the form of the potential is still unknown. For want of a better

estimate, we approximate the potential as a Lennard-Jones 6-12 potential with electrostatic

interaction:

4ne0r
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where A and B are constants for the particular bond of interest, ql and q2 are the partial charges on

the atoms in the bond, e0 is the permittivity of free space, and r is the separation between the atoms.

Hagler et al. [1974] determined the values of A, B, qtand q2 for the bonds in amide crystals and

found that the form of Equation (1.2) accounted adequately for the observed interactions. From the

values of A, B, and q reported by Hagler et al., the bond energies were calculated from the value of

U at the equilibrium separation (where F = -dU/dr = 0) and the maximum attractive force was

calculated by determining the force where dF/dr = -d2U/dr2 = 0. The bond energies ranged from

-0.3 kJ/mole for the bond between the carbonyl carbon and the amino hydrogen, to -29.5 kJ/mole

for the bond between the carbonyl carbon and carbonyl oxygen. The bond with an energy closest

to the 7.5 kJ/mole reported by Fiddis is that between hydrogen and nitrogen, which has a strength

of 5.6 kJ/mole and requires a maximum force of 2.2 x 10"11 N per bond to break. If the

electrostatic potential is neglected, then the bond with the lowest breaking force is that between a

non-carbonyl carbon and the amino hydrogen, which requires F=8.3 x 10~13 N/bond to break.

The force generated by free convection is approximately six orders of magnitude too small to strip

molecules from the crystal surface.

Even though the shear stess cannot remove molecules from the surface, it may impart some

preferred orientation to the molecules near the surface so that they are unable to find the proper

alignment for addition to the crystal. To test this hypothesis, we compare the characteristic rates of

the processes: if the velocity gradient at the surface tends to align the protein molecules in a

preferred orientation, it acts at a rate which is comparable to the shear rate, F; the characteristic

rotational rate is given by the rotational diffusion coefficient, Drot = kT/87tnR3, where R is the

hydrodynamic radius of the protein [Tanford 1961]. The hydrodynamic radius of lysozyme is

approximately 20 A [Tanford 1961], so Drot = 2 x 107 s'1 while the shear rate is certainly less than

100 s'1, so the ratio of rotational and shear rates is 2 x 105. This indicates that randomization of

the protein molecules occurs much faster than any orientation imposed by the shear flow. Once the

molecule has reached the surface and formed some sort of bond, however, the situation is different
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because the molecule is constrained at the binding site. If an improperly oriented protein molecule

bonded to the surface, it would be possible for other protein molecules to orient themselves

properly with respect to the first molecule. In this manner, the crystal would be made up of regions

with the same local orientation and the average ordering for the crystal as a whole would be

reduced. If the crystal does not consist of this ensemble of regions, it would indicate that some

ordering takes place, possibly due to the electrostatic interactions between charged groups.

The effects of electrostatic interactions on the interatomic potential were mentioned only briefly

above, but they exhibit a strong influence on the nature of the bonds. The electrostatic contribution

is large compared with the other components of the hydrogen bond, so it is important to know the

length scale over which it acts. The natural length scale for electrostatics is the Debye shielding

length, K"1:

1/2

ri/2 (42)

2000 N? e

where e=dielectric constant of water, k=Boltzmann's constant, T= absolute temperature,

NA=Avogadro's number, Z=charge on ion, e=electron charge, and I=ionic strength. The Debye

length is approximately 3 A for 50 mg/ml NaCl, which indicates that the effects of the electrostatic

potential are substantially reduced when the atoms are separated by distances greater than the typical

bond lengths reported by Hagler et al. Any orientation due to electrostatic interactions, therefore,

would occur when the incoming protein molecule is practically bonded to the crystal surface.

The denaturation of proteins by the shear field was suggested by Marc Pusey in a conversation

with M. L. Grant. The following model, suggested by W. B. Russel of Princeton University, was

used to investigate the possibility of shear-induced denaturation. If the protein molecule must be in

a particular conformation in order to bind to the crystal surface, crystal growth may be hindered if

the shear stress due to fluid flow is sufficient to change the protein's conformation. For this

analysis, consider a molecule of protein to be spherical as shown in Figure 5. The molecule is
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maintained in this conformation by a single hydrogen bond placed at point A and is "hinged" at

point B. If the shear forces on the molecule are sufficient to break the bond at A, the molecule will

open up in the yz plane and the molecule will be unable to bond to the surface. The force on the

bond at A can be determined by calculating the torque about B due to creeping flow past the sphere

and determining the equivalent force to place at A.

Over any element area on the molecular surface, the magnitude of the torque is given by

but only the component in the ±x direction contributes to opening the hinge in the y-z plane, so the

appropriate expression for the x component of the torque is

dTx = r(T r eR 2s in6ded<{>)sin(Xsin<t> (43)

From geometrical considerations, a = 6/2, and r = R{2( 1 - cos 6)} ̂ , while i^ = (3\ivJ2R)sinQ

[Bird, Stewart, and Lightfoot I960]. If the integration of Equation (1.5) is carried out over half a

sphere (0 < <j> < Jt, 0 < 6 < TI), then the x component of the torque is

mi 2
lTx=3R^ JJ sin2e(l-cose)^sinf sin^de--22^ <44>

2 00

and the corresponding force due to flow around half the sphere is SitRjiv J4. The force, F, on the

hydrogen bond is twice the force due to flow around half the sphere,

F - 37tR^v~ (45)
2

which must equal the breaking force of the hydrogen bond if the molecule is denatured.

From Hagler et al., the weakest amide crystal bond (in the absence of the electrostatic

contribution) has a breaking force of 8.3 x 10"13 N, which would require v,,,,« 9 cm/s to break the

bond. This velocity is approximately two orders of magnitude greater than the free convection

velocity one would estimate from the case of the vertical flat plate, and is certainly greater than the
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velocity attained in the systems of interest. Furthermore, this is a worst case scenario since the

weakest possible bond was chosen and only one hydrogen bond was permitted. In reality, the

electrostatic contribution would strengthen the bond and there are many internal hydrogen bonds.

The analyses above indicate that viscous stresses due to natural convection are insufficient to

disrupt crystal growth by stripping molecules from the surface, orienting molecules at the surface,

or denaturing the protein as it approaches the surface. It is difficult to construct another mechanism

by which the flow field can influence protein crystal growth except by altering the mass transfer

rate to the crystal surface

Effect of Mass Transfer Rate on Protein Crystal Growth

The growth rate of tetragonal lysozyme crystals from solution (pH 4, salt concentration of 50

mg/ml NaCl, 22° C) was measured by Pusey el al. [1986]. For small crystals (less than 70

length), the growth rate was found to obey the relation

d R _
dt

= k

2

C -C (46)

where R is the crystal radius, Cj is the protein mass concentration at the interface, Cs=1.7 mg/ml is

the solubility mass concentration under these conditions, and k=1.46 x 10~9 cm/s. No explanation

of this unusual concentration dependence is given except that Schlichtkrull [1957] observed a

similar behavior for insulin. The interfacial concentration calculated from their model of convective

mass transfer was essentially the same as the bulk concentration. As we will show by means of a

quasi-steady state analysis, the crystal sizes studied were too small for appreciable size effects to be

evident and no reliable measurements have been made on larger crystals. Any discussion of

growth rates of large crystals, then, is based on the extrapolation of small crystal measurements and

should be considered speculative at best.

The crystal growth rate given by Equation (2.1) must also equal the volume flux to the crystal

-23 -



surface:

d R = _ D _ 30
dt CY dr (47)

where (^=725 mg/ml is the mass concentration of protein in the lysozyme crystal (corresponding

to 50% solvent by volume [Matthews 1968, Bugg el al. 1984]). Note that the crystal shape has

been approximated as spherical. The concentration gradient at the crystal surface can be expressed

as

R. diffn

ac/ar|
ac/ar|

ac
= -5T

R, diffn

Sht (48)
R, diffn

where ShR is the Sherwood number based on the crystal radius and is given by the Ranz-Marshall

correlation:

= l+0.3Sc1/3Gr1/4
.
v

D

G r _ 8 R g A p
(49)

When the crystal grows by diffusion in a quasi-steady manner, the concentration gradient at the

surface is given by

C -C •'-oo *~:ac
ar R1 R. diffn

(50)

Equating the two expressions for crystal growth given in equations (46) and (47) and making use

of equations (48) through (50) yields
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Da
cnB
cs

C -C.
C

-i [ 1+0.3 S c ' G r ]
i/3r 1/4, (51)

x

where Da=kR/D. Equation (51) can be solved for the interfacial concentration C^ as a function of

size in order to determine the dependence of growth rate on crystal size. When g = 0 (no buoyancy

driven flow), Equation (51) can be solved for Cj explicitly to yield

-1 + 2 Da ((yCs) + Jl + 4 Da (C^) [(C,- CS)/CS]
—

The results of these calculations are given in Figure 6a, while the corresponding growth rate

calculated according to Equation (46) is shown in Figure 6b.

As shown in Figure 6a, the interfacial concentration is essentially equal to the bulk

concentration over the entire size range studied by Pusey et al. whether or not natural convection is

present The surface concentration and growth rate for crystals larger than 70 ^ini are strictly

extrapolations. If the crystal continues to grow at a nearly constant rate (broken lines), it would

indicate that natural convection is sufficient to maintain the surface concentration at the bulk level so

that crystal growth is entirely kinetically controlled. If convection is suppressed, a decrease in the

growth rate from the small-size limit indicates that transport plays a role in controlling crystal

growth as the crystal grows larger (solid lines). By the time a crystal growing from a 5%(w/v)

solution of lysozyme has reached 1 mm in diameter, the growth rate has fallen to approximately

25% of its initial value. Similar results can be seen for growth from l%(w/v) lysozyme solution.

A rough indication of the relative importance of diffusion and kinetics can be obtained from the

slope of the growth rate vs. crystal size curve (Figure 6b). The slope is zero when mass transfer is

infinitely faster than interface kinetics, and the slope approaches -1 as diffusion begins to control

the growth rate. From the curves in Figure 6b, it is clear that most crystal growth occurs in the

transition region when both processes are important.
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Quasi-steady models of this sort cannot predict the cessation of growth which has been

reported [Kam et al. 1978, Feher and Kam 1985] because they do not include any mechanism

which would reduce the ability of protein molecules to attach to the surface. The current data on the

effect of mass transfer rate on crystal growth are not sufficient to determine if mass transfer plays a

role in limiting crystal size. If crystal defects occur because natural convection maintains the

interfacial concentration at excessive levels, the simplest remedy may be to grow crystals from less

concentrated solutions, in which case, the growth of nigh quality crystals may depend on the

trade-off between growing large crystals and growing them quickly.

Termination of Growth

Growing sufficiently large crystals is often the limiting step in protein crystallography.

Generally, protein crystals reach some terminal size beyond which they do not grow, even when

they are transferred to a fresh solution of protein [C. Schutt 1986, personal conversation]. Several

growth-ending mechanisms involving the effects of fluid flow were examined in Section 1 of this

work, but they hardly exhaust the list of possible explanations. For example, the solution

conditions may change during the course of crystal growth so that a transformation of the dissolved

protein occurs. Cole et al. [1964] measured the pH of lysozyme solutions and found that during

the course of crystallization, the pH increases by approximately 0 - 0.4 pH units from original

values between pH 2.5 and pH 4.6. Ataka and Tanaka [1986], on the other hand, report a slight

decrease in pH from solutions of pH 5 or higher which they attributed to absorption of carbon

dioxide from air. Association of lysozyme molecules which might account for the lack of growth

in the original solution has been observed in the range of pH 4.5 - 6.5 [Sophianopoulos and Van

Holde 1964, Bruzzesi et al. 1965]. This mechanism, however, cannot account for the lack of

growth when the crystals are placed in a fresh bath of protein unless the pH change also makes an

irreversible change in the state of the protein on the crystal surface.

The steady accumulation of errors suggested by Kam [Kam et al. 1978, Feher and Kam 1985]
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would explain why crystals stop growing, but the theory has not been verified. Experiments which

study the relation between crystal size and defect concentration are necessary to confirm the validity

of Kam's hypothesis: if diffraction resolution does not increase with crystal size as expected, or if

the resolution actually decreases, the accumulation of errors would be a suitable explanation.

Finding a relation between defect concentration and crystal size, however, is not enough to explain

how defects occur. To do this, a detailed study of the growing crystal is required so that local

conditions such as interfacial concentrations of protein, precipitant, and hydrogen ion can be

followed over the course of crystal growth. Such measurements, along with crystallographic

studies of crystal ordering may provide some insight into the processes which terminate crystal

growth.

The mechanisms by which defects accumulate have not been studied because previous

researchers worked only with small crystals (less then 70 |im in length) [Fiddis 1978, Pusey el al.

1986]. Crystals this small would not produce strong size-dependent effects on the protein flux (see

Ranz-Marshall correlation, Equation (2.4)) and probably have a low concentration of surface

defects. It follows that the kinetic expressions for the growth rate obtained from these

measurements are incomplete because the role of defects has been neglected. Growth rate

measurements taken over the full range of crystal sizes would provide information on the

accumulation of defects and possibly on the evolution of any buoyancy-driven convection. The

results of these experiments could then be used to evaluate the effect of natural convection on

protein crystal growth and to explain why defects inhibit crystal growth.
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FIGURE 1 - Quasi-equilibrium size distributions
These distributions were calculated from the quasi-equilibrium approximation
given by Equation (39) when the critical size is calculated from Equation (37)
with K! = 0.065/%(w/v) and K« /Kj = 35.
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the linewidth was calculated from Equation (29). The
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FIGURE 3 - Free energy barrier to nucleation
The maximum free energy required to form nuclei of
critical size is calculated from Equation (38) for the
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FIGURE 5 - Denaturation of protein molecules by fluid shear.
(a) Protein molecule in spherical (normal) conformation

(b) Protein swinging open under influence of shear
(c) Definition sketch showing coordinate system for calculations
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FIGURE 6 - Surface concentration and growth rates of lysozyme crystals
(a) Quasi-steady surface concentration of lysozyme when growth

obeys the relation given by Equation (46).
(b) Quasi-steady growth rate when growth obeys relation given

by Equation (46).
Growth rate constant reported by Pusey et al. to be k = 1.46x 10 cm/s.




