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1.0 SUMMARY

Thé Hybrid-Upwind finite volume discretization schemes adopted in
numerical combustor codes for routine use is plagued with excessive numerical
diffusion errors, which generally preclude accurate quantitative
calculations. In addition, the overall solution algorithm as well as the
resulting discrete algebraic equations require excessive computational
resources for a solution on grids of practical significance, either due to the
- inadequacy of the coupling approximations introduced or the unacceptably slow
convergence characteristics of the solvers used. The.National.Aeronautics and
Space Administration, under the HOt Section Techno]ogy program, sponsored
efforts to identify and evaluate quantitatively potentially attractive schemes
‘that promise improved discretization accuracy, while yielding stable and
physically meaningful solutions. Also considered in this program were various
means of enhancing convergence thus reducing the computational costs ,
associated with a solution, especially for three-dimensional applicatioh§q
This report describes the details of one such study. a .

The desirable attributes of optimum discretization schemes and converg-
ence enhancement techniques adopted in this study for initial qualitative
assessment, concern issues of accuracy, stability (robustness), efficiency,
storage requirements and ease of implementation in a. three-dimensional code
structured in TEACH methodology. The initial evaluation of more than ten
poténtia] techniques considered was primarily basedvpn_exémination_of‘accuracy
and linear stability of the resulting difference equations via evaluation. of
',the;properties of the coefficient matrix, Taylor series.analysis and existing
heuristic stability analyses for 1terati§e solvers commonly used in segregated
solution procedures, as well as criteria for implementational details. This _
effort was aided by information available in the literature, prior experience,
qualitative/quantitative assessment derived from a deep appreciation of both
the schemes and requirements of practical engineering computations. In addi-
tion a Technical Advisory Committee with a broad base of in depth experience
contributed significantly.



Upon completion of this initial evaluation, four of the most promising
techniques were incorporated in a variant of 2D-TEACH code for further quanti-
tative evaluation. The particular schemes selected address issues of both
discretization accuracy and convergence enhancement and include:

i) Second order upwind differencing scheme
i) "Variants of skewed upstream diffefencing'scheﬁes
©iii) variants of compact implicit method N
iv) Strongly implicit procedure accelerated by:
a) Conjugate gradient algorithm
b) B8lock correction technique
¢) Additive correction multigrid algorithm

Several two dimensional test problems, for which analytical or "exact"
numerical solutions exist or can be generated with relative ease, were"adopted
to quantitatively evaluate the performance of the selected techniques regard-
ing issues of accuracy, stability and nature of solutions, and the associated
computational cost. The test problems included general scalar transport and
various flow problems (both laminar and turbulent) and were specifically
designed to evaluate the sensitivity of the above techniques in response to
convection, diffusion and source terms of a general conservation equation, as
well as the nature of the coupling approximations introduced in the particular
incompressible flow solver. Such two-dimensional exercises identified the
variants of skewed upstream differehcing schemes, coupled with the strongly
implicit procedure accelerated by the additive correction multigrid algorithm
as deserving further evaluation in three dimensions. The selection criteria
were based on the practical concerns of best accuracy on coarse grids, robust-
‘ness and stability and efficiency. Subsequently, these schemes were incor-
porated in a variant of 3D-TEACH code and were further evaluated regarding
issues of accuracy and convergence enhancement characteristics in modelling of
a jet in cross flow. ‘ '

This study has clearly demonstrated that appropriate solution techniques
for incompressible, turbulent, viscous, recirculating flows in current use
benefit substantially from the introduction of the convergence enhancement
“techniques adopted here (up to 40 percent). Furthermore, the various 1mbroved
discretization schemes considered, specifically variants of skewed upstream
differencing schemes with physical advection correction, usually provide a



significant improvement in accuracy relative to Hybrid differencing. The CPU
times to obtain a solution using these improved schemes are larger than Hybrid
for a given grid but, compared on the basis of equal accuracy, CPU improve-
ments ranging from-a factor of 2 to a factor greater than 50 can be realized
via their use. However, as the results of this study are based on a limited
and carefully selected set of problems, the performance of such schemes should
be examined on a wider range of problems and as such this study has presented
only a phase of progress- in the complex, buf steadily evolving subject con-
cerned with the development of improved discretization techniques and effec-
tive solution algorithms. A-number of questions have been generated as a
result of this study and it is expected that answers to these questions will
lead to further improvements in accuracy and computational efficiency.

Finally, it is noted that the enhanced solution and discretization
schemes considered represent but a portion of new technology that would be
optimally utilized if freed of the constraints improved by TEACH, which is’
structured to suit different methods with different priorities



2.0 INTRODUCTION

2.1 BACKGROUND

The trend in aircraft gas turbines continues to maintain or increase
~engine lifé while improving performance by going to hjgher-operatingutempera—
tures and'pressufes. This imposes increasingly stringent requirements on. com-
bustor designs. Heat release per unit volume becomes highér,.the'uniformity
of combustor exit temperature becomes more critical and the liner environment
is more hostile. ; v »

Hot section components such as the combustor liner and turbine airfoils
account for a major portion of engine maintenance costs. A predominant fail-
ure mode for current combustor designs is creep/low cycle fatigue interaction
which jeads to cracking. Critical liner loads are caused by cyclically
imposed thermal gradients. These gradients are generated by the local radia-.
tive and convective heat fluxes within the combustor.

The uniformity of the combustor exit temperature profile is verylimport-
ant to cycle and turbine design. The structural design of a turbine is a very
complex process. Stress limits are a function of overall engine operating
conditions, material characteristics, geometry and local temperatures. There-
fore, spatial variations in the temperature profile entering the turbine will
produce local regions of high temperature which usually determines this limit-
ing design condition. The turbine generally will be designed to withstand
this local high temperature at all locations, if the profile is known (either
through ana]ysis or previous déve]opment testing). Since the rest of the tur-
bine is exposed to lower temperatures, thé engine will be forced to operate at
an avérage'temperature which is lower than it would withstand if the profile
were more uniform. In effect, the material is stressed to the limit of its
capabilities only in the region of local high temperaturé. The reduction in
average cycle temperature leads to a corresponding reduction in overall engine
performance. In addition, local high temperature regions can lead to prema-
ture failure when they have not been identified during development. For these
reasons a comprehensive combustor model, which can accurately predict perform-
ance and flow field characteristics, is particularly valuable to engine

designers.



Gas turbine combustion involves extrehe]y complex physio-chemical pro-
cesses, including three-dimensional two-phase flow dynamics;*tu?ﬁulent mixing,
fuel evaporation, radiative and convective heat transfer, and chemical kinet-
ics. Conceptually, distinct zones can be identified within a convectional
combustor. These characteristic regions are dominated by one or more of these
processes. In the primary zone, evaporation and mixing rates are compafa—
tively high, and flame stabilization is achieved by recircuTation'of partially
~ burned products. In the secondary and dilution zones, partially converted
products are allowed to react further, and additional air is added to reduce
the final gas temperature to a level and pattern acceptable to the turbine.

An effective combustor aerothermal model has to treat each of the indi-
vidual processes, as well as their nonlinear interdependencies, in a cost
effective manner. The end goal is to develop a design and analysis tool which
is significantly less expensive to employ than actual testing of alternative |
- hardware designs. It must be capable of determining the effects of geometry,
fuel flow, and inlet airflow conditions on the following global design pérame¥
ters: _ ' o

5); Combustion efficiency
ii) Total pressure loss
jii) Exit temperature distribution
iv) Ignition, stability, and relight
v) Pollutant levels '

"~ vi) -Thermal loading at the walls

vii) Characteristic times : )

Currently available, three-dimensional, fully elliptic combustor models
. frequently employ numerical algorithms and discretization procedures derived '
from the original work perforﬁed at Imperial.College as embodied in the TEACH
 family of codes.(]) Specifically, these solution methodologies, coupled

; with abpropriate physical models to describe the various physical and chemical .
‘processes; generally employ a segregated method and a staggered computational

~ grid to solve the algebraic transport equations, derived from the parent dif-

ferential equationé using a finite volume method. The usual formulation is

_ intended for fully incompressible or subsonic flows. Segregated methods solve
' the'algebraic equations for each variable separately. ’



According to the finite volume procedure, fluxes by convection and
diffusion are required at control volume faces. The.d1ffusiveﬂfluxe$.are
obtained by assuming a linear variation of variable between nodes. In the
original discretization scheme, now commonly used for routine engineering com-
putations notwithstanding its inherent low accuracy, the value of a convected
variable was approximated by a Hybrid scheme that combines Central and Upwind
" differencing. .

TEACH/dérivative methods have proven to be robust, and the results
obtained for a given mesh are generally user independent if convergence is-
achieved. The number of iterations to reach convergehce is small for coarse
meshes but escalates quickly as the mesh is refined. The solutions of momen-
tum equations in each cycle are inexpensive compared to the solution of a
Poisson-1ike equation for pressure; improving solution economy, therefore,
requires reduction in the cost of the pressure equation. o

The Hybrid approximation of convected quantities that results in a
robust method, introduces significant nﬁmerical error into the solution. One
of the manifestations of the error is that sharply varying features of the
flow are smeared in the solution. '

The need to alleviate the abéve shortcomings related specifically to
computational and algorithm dependent aspects of comprehensive. numerical com-
bustor models in current use, were clearly identified (re-iterated) along with
improvements required in physical models for various phenomena during Phase I
of the Aerothermal Modelling Program sponsored by NASA(2’3’4). The three
‘participants performed independent assessments of the state of the art regard-
ing numerical simulations for combustor berformance and concluded that current
models can only qualitatively predict the complex aerodynamic flow field in
combustors. Quantitative characterization of combustor flow fields was shown
to require a significant reduction in the numerical diffusion levels intro-
duced by the current convective differencing practices incorporated in such
models. Furthermore, especially for three-dimensional applications, the com-
putational cost associated with obtaining converged solutions was found to be
prohibitive, thus a clear need to perform economical computations using im-
proved solution methodologies was identified. Improvements in the physical
modelling areas related to the description of; fuel spray distribution,
details 6f multi-phase flow, chemical kinetics, radiation, heat transfer, etc.



were structured to foiiow the development of an»accurate. cost effective,

aerodynamic model.

Another problem identified during Phase I was a deficiency in test data
from well defined and documented benchmark experiments which couid bevconven-
1ent1y used to verify the overall code and its constituent modeis _

The smearing of sharply varying features of flow (fronts) associated
with the numerical diffusion of low order convective differencing schemes_can,
in princ1pie, be overcome by the use of severai alternate practices .The sim-
plest to 1mp1ement amongst such potential techniques concerns the use of mesh
refinement. However, for three-dimensional applications espec1a1]y, the
greatly increased number of grid pOints and therefore iterations required to
reach an accurate converged solution, make the cost of this approach prohibi-
tive. NASA has therefore, evaluated other practices using aiternative differ-
encing schemes, less susceptible to numericai diffusion, under a separate
program (3) The evaluation included Quadratic Upstream Interpolation for
Convective Kinematics (QUICK) and variants of accurate Skewed Upwind Differ-
encing Schemes (SUDS) appropriately blended with less accurate but stable
Upwind differenc1ng. These approaches improve accuracy at the expense of a
significant increase in the number of iterations required for a converged
soiution Therefore, two alternative solution algorithms primariiy designed _
to enhance convergence SIMPLER and the Pressure Implicit Split Operator A
(PISO),( ) were also evaluated. The general conclusion of this study was
that no single scheme emerged dispiaying superior performance for ali flow

situations.

2.2 OBJECTIVES_AND APPROACH

~ The overall objective of the present study is to investigate methods of -
improving the accuracy and efficiency of -numerical techniques used to predict
incompressible, turbulent, viscous, recirculating fluid flows. However, accu-
racy issues related to improved modelling of turbulence are not explicitly
considered; emphasis is solely on reducing the discretization error and
solution cost via improved solution algorithms and differencing schemes.
Furthermore, in this effort accuracy is emphasized over cost when the _
requirements to reduce numerical diffusion and soiution_cost are incompatibie.



The'abproach adopted here to accomplish the above stated objectives was
a structured effort to identify from the literature and/or other sources over
ten potentially pfomisiﬁg techniqﬁes to be subsequently assessed for discreti-
zation accuracy, solution stability and overall algorithm cost effectiveness.
Included in the se]ectibn were convefﬁence enhancement technique; tq 1mpfove
the cost effectiveness of the éolution algorithm, as well as those including
more accurate discretization schemes. The initial assessment was primarily
based on examination of the accuracy and linear stability of the résu]ting_
difference equations via evaluation of the properties of the coefficignt '
matrix, Taylor series analyses and existing heuristic stability analyses for'
jterative solvers of segregated SOlutiqn'algorithms adoptedvhefe. Cost effec-
tiveness was judged on the combined outcome.of the foregoing assessment.

This quantitative/qualitative initial evaluation yielded the four most -
promising techniques compatible with the objectives, which were subsequently
incorporated in a variant of 2D-TEACH code for further quantitative evalua-
tion. The stability, accuracy and cost effectiveness of theie'techniques were
then examined by computing a number of scalar transport as well as various
laminar and turbulent flow test cases. These test cases, for which analytical
or “exact" numerical solutions exist or can be generated with relative case,
display predominant features encountered in gas turbine combustors, i.e., the
delicate local balance between the influences of convection, diffusion and
sources of a general transport equation. j 4 '

Such two-dimensional exercises identified the appropriate téchniques to
improve solution accuracy and overall cost effectiveness in three-dimensional
applications via convergence enhancement and accurate discretization. These
techniques were then 1ncorporatéd in a variant of 3D-TEACH code and subse-
quently their performances weré assessed in a test case of mode111ng a row of
jets in a cross flow by comparison with experimental daia and prior

computations.

2.3 ORGANIZATION

In Section 3 a brief discussion is provided to examine the computational

~ details of the solution a]goriihms in current use for the class of flow prob-

‘lems considered in this study. Sections 4 and 5 present a detailed account of
the schemes. In addition, details of thé particular assessment procedure




adopted,lregarding jssues of solution cost effectiveness by consideration pri-
marily of accuracy and stability (discretization as well as iterative sd]vers)
aspects, prior to quantitatively eva1uating the schemes in a variant of
'2D-TEACH code, is examined. Section 6 provides detailed derivations of the
selected schemes, while Section 7 describes the results of the corresponding
computations obtained for two-dimensional test cases. A similar discussion is
presented in Section 8 for three-dimensional applications. Finally, in
Section 9 concluding remarks are given and recommendations for future work are
outlined. ‘ ‘ o



3.0 OVERVIEW OF THE COMPUTATIONAL DETAILS OF THE: SOLUTION
, ALGORITHMS FOR FLOW PROBLEMS .

3.1 INTRODUCTION

The majority of heat transfer and fluid flow problems of engineering
~ interest are analytically intractable. Approximate solutions of varying
. degrees of sophistication are currently obtained via numerical metheds: Com-
bustion research, in particular, is presently benefitting from the enormous
potential, versatility and reliability of fered by these numerical procedures.
As combustor developments move into the wide]y varying, chailenging, dynamic
field of innovative and conventional power generation including gas turbine
engines,vthe designer's task can be greatly aided by prior prediction via a
mathematical model. Furthermore, the current interest in fuel efficient, Tow
maintenance. clean engines has brought forward the neccessary to gain refined
insight into the innumerous problems. The cut-and-try design methods of the
past which cannot answer the above questions in a satisfactory detailed manner
are being guided, if not replaced, by the superior predicting capabilities of
the present approaches.

A common approach adopted by the above numerical predictive techniques
fok analysis of viscous recirculating flows, such as those arising in gas tur-
bines, involves the formation and solution of discrete algebraic eduations
that represent the conservation of mass momentum and other relevant vari-
ables. Various techniques ranging from simple Taylor series expansion to
finite volume and finite element methods are currently used to affect such a
transformafion that.systematically reduces the governing partial differential
equations to an algebraic set. In the finite volume technique; adopted as the
primafy scheme in this study, the algebraic set is generated by 1ntegratien of
the governing partial differential equation over spatial dimensions spanned by
discrete (finite) control volumes.

For each control volume of the relevant variable there exists an alge-
braic equation to be solved. Assembly of such nodal equations with due
account for nonlinearity and intervariable coupling yields the equation set

-10-



that is soived iteratively upon speCification of necessary 1n1t1a1 and boun—
'dary conditions. As the algebraic nodal ‘equations consistent]y approximate
the partial differential equations (valid for contro] volumes of infiniteSimal
51ze) over finite spatia] dimen51ons, increased numerical accuracy in the fin-
ite volume solution is usually achieved through mesh refinement ' However, for
a given problem domain, decreasing the control volume sizes increases the num-
ber of control volumes, thus increasing the size of the discrete equation set
to be solved and hence presenting a greater computational task. The practical
limitations of mesh refinement are severe; prohibitive demands may be placed
on computing resources before a grid independent solution is attained. This
problem is'particularly acute for many three-dimensional fluid flow and heat
transfer problems. o . | . :

The need for greater computing economy in predictive techniques has
opened up two basic avenues of research. The first involves the deve]opment
of more efficient solution methods designed to reduce the computational
. resources required to affect the solution of the algebraic equations resulting
from the finite volume method or otherwise. The second involves the develop-
‘ ment of more accurate discretization schemes, aimed at reducing the number of
control volumes (nodes) needed to achieve a given accuracy in the finite vol-
‘ume solution. Closely tied with this issue are cdnsiderations regarding false
diffusion or spurious spatial conditions. Effectively dealing with the above
problems of solution accuracy and efficiency forms the main themes of this
-study and such efforts should contribute to reducing both computing time and
étorage requirements for engineering predictions. ‘The latter is_essentia] if
the scope of tractable three-dimensional problems is to be expanded.

In the following sections are presented the basic building blocks appro-
priate for the development of such techniques

3.2 THE MATHEMATICAL PROBLEM

The conservation laws governing heat transfer, fluid flow and other re-
lated processes are generally expressed in terms of integro/differential equa-
tions derived via continuum or microscopic considerations. The identification
of all the relevant phenomena that can be described by a representative equa-
tion of a common form is the first step toward constructing a general solution

-11-



procedure. Specification of two additional algebraic relations completely
defines the mathematical brob]em. The first of these describes’ﬁﬁé thefmbqy—
namic and transport properties of the fluid, e.g., the eqhatibn‘qf stéte:.
relating local values of density, pressure and temperature. In fhe!ldttér
category are the boundary conditions that uniquely specify the'problém. These
' usually take the form of either specifjcation'of the value of the dependent
variable at the boundary, or the value of the associated flux or q.cdmbfﬁation
of the two. o - - '

3.2.1 General Conservation Equations

The differential transport‘equatidns listed below apply equally to both
laminar and turbulent flows (the latter referring to instantaneous description
of the flow). In Cartesian tensor notation, the equations for mass, momentum,

energy and species conservation are:

Conservation of Mass

3p . 3 (pu)) _ - | o
at axj i = 0 . (3.1)

_Conservation of Momentum

%{ (Puj)+ %_ (puiuj -ri'j) - S -<+.§2 = 0 . : (3.2)
B xj

Conservation of Enérgx

3 (ph) , 3 (puh -3 ) o _ '

at axj J h'J Sh = Q (3°3)
Conservation of Chemical Species

3 a_(pum -3 ) o _,

3t (PMy) + ax; v omg ~Smi =0 . (3.4)

In the above the x are the three Cartesian coordinates, the u, are the
three components of the velocity vector; p is the pressure; p is density.

Su , Sh and Smi are volumetric rates of body forces, energy generation

-12-



a

and chemical species generation respectively. h denotes the specific stagna-
tion enthalpy defined by: - - L

' ‘)_ 2 : [ . .
h = CP,j mJT + oy » (3.5)
where cP»j is constant pressure specific heat capacity, mi is mass frac-
tion of chemical species 1, T is temperature. In equation (3.2) 7 j is
the stress tensor with components defined in a general form by: o '
C au au au, :
- - . | 3 _ 2 _k
T Tl Y, T 3 44,5 (3.6)
J i k
61 j = Kronecker delta

u is laminar viscosity. In the energy and species equations the Jh and

Jm . terms refer to diffusion fluxes and can be written as, if epressed by

J .
Foarier's and Fick's law of diffusion:

_ u 3h ' .
‘Jh.j’ - o X : 2o 3.0)

where % and % are respectively the Prandtl and Schmidt numbers.

1 .
3.2.2 Modelled Form of the Conservation Equations

For the description of turbulent flows the above instantaneous conserva-
tion equations are transformed into ensemble-averaged equations by an averag-
ing operator that assumes rapid and random fluctuations about an ensemble-
averaged value. The ensemble-averaged equations are similar to those for the
instantaneous equations except for the appearance of the additional terms con-
taining correlations of fluctuating components, Reynolds stresses, turbulent '
diffusion fluxes; etc.- In order that these equations form a closed set, these
additional terms must be related to known or easily calculated quantities.

-13-



following the generally adopted’practice of Launder and-Spa]djng,57)

the additional terms are modelled as diffusion processes in order-to make the.
ensemble-averaged equations compatible with those for laminar flow, i.e., the
additional terms are expressed in terms of gradients of average quantities as:

T all au
_ T _ _i _ . ) .
Puiuj = l‘t( j ) 1'3 (3-9)
0 Ht a—
- push = £ 8 (3.10)
W o, ¥
o ‘lt ami ‘
- pugmy = = oo (3.11)
Ji °m1,t'axj :

where k is the turbulent kinetic energy ( = U;U}/Z); My is a turbulent
viscosity; the superscript ' stands for fluctuating quantities; u, h and

" m represent ensemble-averaged values of velocity, stagnation enthalpy and
mass fract1on of the chemical species respectively; °h t and %, t are
turbulent Prandt) and Schmidt numbers respectively and are usua11y ass1gned
constant values determined by experiments.

' Finally, the modelled forms of the ensemble-averaged conservation equa-

~tions are given as, dropping the bars over time-averaged quantities:

2 () + - axy (sug) =5 = 0 @z
, o . au, | N

o5 (puy) + 5;; (p ujuy - (u + ut) 3;;) - §u1 =0 S (3.13)
.a pt ah

[
o

S (ph) + —j (push ~ (2= + =) ) - S - (3.14)

at h oh,t axJ = h
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C v, : s K
- (cu o : ) ax; ) - Sm1 =0 .(3']5)

a_ 3
=7 (M) + = (p u;m
at 1 axj i m, m1,t

where S_, Su., Sh and S ' comprise terms arising from sources of non-

uniform1t1es in fluid properties o _
To close the solution of the above equation set, spaffal and temporal,

'evolut1on of My has to be described. This is general]y achieved by deve]op—

ing two transport equations for the turbulent kinetic energy, K, and its dis-

——-——-

s1pat1on rate ¢, = (w/p) au /93X, ) , an approach moderate in comp]exity,
but sufficient for most engineer1ng flows (8). The ensemble- -averaged equation

for k and ¢ are given by:

Turbulent Kinetic Enerqy Equation

"t ek L o |
(pk) + 5; (pu k T3 ax ) - Sk -vG.+.p ¢ = 0 ' (3.16)
i k h o : -
Dissipation Rate Equation
3 Yt ae . - N x o
3t (pe) + ——; (puJe - ;:' 3;5) f S‘ f (O]G—Cch)‘c/R =0 ) (3.17)
where C],‘Cz, % and d are empherical constants (8) and Sk and

S are additional source terms.
From dimensional: analysis, the relation between- My and these two
variables is given as: ‘ '

My =P Cuk /e . - (3.18)

C‘J is_genera]]y a constant.

3. 3 ALGEBRAIC REPRESENTATION OF CONSERVATION EQUATIONS

Rev1ew ‘of the above differential transport equations (3.12) to (3.17)
reveals that they are similar in structure and-all the dependent variables are
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conserved, intensive properties. If a typical representative variable is
denoted by #, the general differential equation ‘ '

:—t (p8) + g;j (puy8 - T, a—"j) -5, =0 (3.19)

where the expressions for rﬂ and S can be deduced frOm fhe oarent equa-

_t1ons, forms the central theme of d1scret1zat10n studies " The four terms in
the above equation describe success1ve1y unsteady, convect1on diffusion and
'generation/d1ss1pation effects. (In fact all terms not exp11c1t1y accounted

: for in the first three terms are included in the "catch-all source” term.)

3.3.1 Domain Discretization

In the following sections the finite volume technique is adopted’as the
primary means of transforming the differehtial transport equation into a con-
sistent algebraic set. Furthermore, the discussion w111 be restricted to two-
dimensional, steady, incompressible form of the equations, where the density
Tapproaches a constant value. Thus, the temporal derivative of density in mass
conservation vanishes with corresponding modifications in the remaining equa-
tions. _ : ’

Generation of the nodal algebraic relations proceeds by discretizing the
calculation domain in some fashion. To prevent the occurences of decoupled
pressure. solutions and spatial oscillations of the velocity solution that can '
arise in the incompressible limit, (M the staggered grid, figure (3.1) first
used by Harlow and Welch, (9) is utilized. Recently there have been o
approaches that use co-located storage for variables and overcome the pressure
decoupling problem in alternate ways;(]o) however, their use so far has been
limited.  The calculatioh domain is divided uniformly into non-overlapping and
contiguous control volumes over which mass, energy and species conservation
are to apply. Locating the pressure, temperature and other scalar variables
in the center of these control volumes, the'staggered velocity nodes are
located at the faces of the scalar (e.g. continuity) control volume. The con-
trol volumes for momentum conservation are arranged so that pressure nodes lie

on the faces of their respective momentum conservation volumes.
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The notation used to denote relative control volume locations is illu-
strated in figure (3.2). The subscripts E, W, N and S denote quantities
associated with control volumes to the right, left, above and below of an
arbitrary location in the domain denoted by a subscript P. The P nodes of x
and y components of velocity are associated with the pfessure nodes directly
to the left and below P. ‘

3.3.2 Discretization of Differential Equations

The differential equation is formally integrated over individual finite
volumes, and the resulting volume integrals are transformed to their surface
counterparts where possible. The remaining integrals are subsequenily_approx-
jmated by algebraic expressions. In this process, the surface integrals are
initially subdivided into piecewise ségments. associated with specific grid
points, in a symmetrical fashion. The resulting integrals are then approxi-
mated with the aid of the mean value theroem. Finally, the approximated
piecewise surface integréls are transformed into algebraic expressions con-
necting the given grid point values. This transformation may be done in vari-
ous ways, e.g. profile assumptions, finite differencing or local analytic
solutions etc. It should be stressed here that in all cases particular atten-
tion must be paid to satisfying certain constraints discussed in _ |
Section (3.3.3). Finally, the discretised equation is assembled as the
approximated integral equation. '

To clarify the above approach and to develop adequate appreciation for
~ the subtleties of the advanced discretization schemes discussed in Section 5,
the following examble illustrates the abplication of the technique for two-
dimensional transport of a scalar. This model equation plays a central role
in the developmént and evaluation of 1mpr9ved discretization schemes.

Equation (3.19) for a general scalar in Cartesian coordinates is

expressed as:

a_ a . _d . 2 3 238
ax (PU9) + 5y (PVB) = 5 Ty ax) *ay (Tg ay) * 54

where u and v are time averaged components pf the velocity in the x and y

directions, r, is the appropriate diffusive exchange coefficient and Sa
is the corresponding source term. Integrating the above equation over the

control volume of dimensions Ax and Ay, figure (3.2).
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J o [l g o
- AX Ay : ax -ty '
4 ' AR (3.20)

the‘following form is obtained upon application of the Gauss' theorem:

/ {[pUﬂie —"[puo]w} dy + / {[pVﬂ]n-[PVG]S }dx,

ay AX

,» . . ) a—o- " 2 ) -
= f {[I‘o ax]e [r, ax]w} dy + f {[ro ayln ~ [Ty ay]+s }AxAy

Ay ax
(3.21)

where S is assumed to be constant over the control volume and the subscripts
e, W, N and s represent evaluations along the corresponding contro] volume .
faces. _ ‘

To derive a]gebraic representations of the balance given by '_
equat1on (3. 21), evaluations of the convective and diffusive f]uxes, ex-;
pressed in terms of the nodal values of @8, are required along each of .the
four control volume faces in the manner described below.

Diffusive Fluxes

The diffusive flux across the e face, e.q. Jz, is evaluated as
follows: '

B - 9
f[”x]edwr——“—, e

Implicit in the above exbression are the fol]owing'assumptions regarding vari-
able pr6f11e§ along the e face:
i) rb is constant
ii)Aao/ax varies at most linearly along the face
ii1) as/ax can be represented by (8-8,)/8x
‘, Similar relations can be derived for the diffusive fluxes across each of
the other faces.
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Convective Fluxes

For the convective fluxes an approach similar to that adop;éd for the
diffusive fluxes can be used. In géneral, this épproéch will Tead to'ahy num-
ber of discretization schemes including the five point-operator discretization
schemes, such as Central-differencing and Hybrid differencing(ll) or thé
nine point discretization schemes such as the Skewed Upwind differencing
scheme of Raithby.(jz) In general, these schemes result in discretizations
which suffer from false diffusion or spurious spatial oscillations. In both
jnstances, these errors can be shown to arise from an inadequate evaluation of

convective fluxes across the control volume faces.

3.3.3 Discussion on the Discretizatjon and Solution Schemes

" As there exist a myriad of arbitrary ways to reducevthe:differential
transport equations to their corresponding algebraic sets, some guidelines
have to be followed to arrive at rational.choices. First, a consistent dis-
cretization scheme should reproduce the exact differential solution in the
limit of an infinite number of grid points. Section (4.2) discusses the pro- -
perties likely to be displayed'by exact solutions. A practical appreciation
of the above leads to the notion of the behavior of solution accuracy with
modest grid refinement achievable, especially for three-dimensional problems.
A closely related issue regarding order of accuracy is to avoid the false dif
fusion of first order accurate schemes or the 1nstab111ty of conventional
second order accurate differencing for convection.

Thus, some descriptive attributes of an "ideal" discretization scheme

might be stated as follows:

i) Generality and ease of application.

A discretization scheme should be capable of treating many simultaneous
and strongly couplied phenomena in practical configurations of engineering
geometry, i.e., a wide range of flow régimes in the presence of turbulence,
heat and mass transfer, chemical reactions in arbitrary geometries. Further-
more, ease of app]icationAis also an important ;onsideration. General1¥
speaking, the more complex the scheme, the more troublesome the imposition of

boundary conditions.
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ii) Accuracy and Economy

Minimization of solution error and computational cost are increasingly
assuming significance as the primary motivation for- the- development’ and
assessment of improved discretization and solution’schemes. Taylor Series
Expansion error analysis favored heavily in the past in the delineation of °
~ order of accuracy, has important restrictions on its validity in ceértain cir-

‘cumstances. However, one of the advantages still offered by such analyses fis
an indication regarding the nature of the error, i.e. dispersive’ (unbounded)
or diffusive (dissipative). It also indicates the 1ikely rate of reduction. of
approximation error with mesh spacing as the latter, in principle, becomes
vénishing]y small. T _

Currently other techniques including comparison.wjth ahalytical sé]u—' ‘
tions of idealized model problems are being used to guide the construction of
discretization schemes. This is notwithstanding the fact that such model
problems cannot embody all the pertinent characterist%cs of practical flow
problems for which these schemes are being developed.

. Economy of solution for schemes specifically refers to the relative cost
of obtaining solutions of specified accuracy to a g1§en problem by different
schemes. This is generally influenced by: the accuracy of the schemes; the
number of arithmetic operations required in coefficient assembly; and the type
of solution algorithms which the discretized equations admit.

ii1)  Transparency and Reliability

As the discretized algebraic equations are the finite volume (or other-
wise) analogs of the parent differential transport equations, the solution
behavior displayed by them should reflect the fundamental transport physics .
~embodied in the latter, régardless of the solution variables. This is dis-
cussed further in Section (4.2). Furthermore, appreciation of the simplifying
assumptions and approximations embodied by-discretization schemes should help:
" to understand and monitor their behavior.

3.4 GENERAL SOLUTION METHOOOLOGIES FOR INCOMPRESSIBLE FLOW PROBLEMS

The conservation equations of mass, momentum, energy and species pre-
sented in Section (3.2.2), equations (3.12) to (3.15), are both nonlinear and
coupled. After suitably discretizing them to generate the correéponding alge-
braic set, it is convenient to linearize them to fully utilize the advantages
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offered by the well developed techniques for the solution of linear algebraic
equations. Iteration is then required to account for the nonlinearities.

Generally, there are two classes of methods used to solve the linearized
algebraic equations for pressure and velocity for incompressible flows; direct
methods(ls) and 1térat1ve methods.(]4) Direct methods are usually not .
used because of the excessive computational resources that are needed. How-
ever, because of the implicit nature of pressure and the pressure ~ velocity
coupling the development of iterative methods can be difficult.

3.4.1 Linearization of Mass and Momentum Conservation

For two-dimensional incompressible flows where the dens1ty is a con-
stant, the conservation of x and y momentum yield finite volume equations of
the following form for up and vp respectively, figure (3.1).

u ; . . . N

apUp = Z NPuNP+ b ‘“"ps pP) oo (3.23)
NP o

v v v 2

apYy = Z aNPYNP+bP-Ax.(pN-pP) .('3.24)_
NP

In equations (3.23) énd (3.24) the summations may imply a five point or
nine point computational molecule depending on the discretization scheme.
from these discrete momentum equations it is seen'that'pressure differences
appear as separate source terms. These pressure differences arise from the
integration of the pressure gradient volumetric source strengths in the par-
tial differential .momentum equations. They are distinguished from the remain-
ing source termS'b: and b; in order to make explicit the coupling between
pressure and velocity. The b: and b; terms may contain transient and body
force effects.

The conservation of mass for the Pp control volume is expressed by:

pAy(uP - uw) + pr(vP— v.) =0 (3.25)

s

where a constant fluid density p has been assumed.
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A pr1m1t1ve variable so]ution procedure must arrive at u,v and p f1e1ds
' ‘wh1ch sat1sfy equations (3.23), (3.24) and (3. 25) for every uP, vP and S
p, control volume (respect1ve1y) in the solution domain.
"~ From Sect1on (6.1) it is easy to appreciate that the x-momentum coeffi—

P

cients (aP and a P) and the y momentum coeff1c1ents (a and ) _
' NP) must depend strongly on the mass fluxes at the faces of the respec—"
tive velocity control volumes. To 111ustrate how these mass fluxes are

est1mated cons1der the mass flux through the west face of the uP control

vo]ume in figure (3.2).

. u, +u - ' :
) P ' ;
= pay(———2) o (3.26)

" Similarly, the mass flux through the south face_of the vP control volume in

‘figure (3.2) is approximated by:

. V. + vV
m o= (5 (3.27)

S

Mesh uniformity has been assumed in equations (3.26) and (3.27) in that the
velocities at these faces are estimated as the ar1thmetic mean of the nodal
velocities on either side of the faces. The mass flux through the north face
of the uP contro] volume 1s comprised of two velocities, each occupying half
of .the face:

o Ax Ax
m, =P 5 Vp +p > Vg }(3.28)
_ Simi]ar]y for the east face of the vP control volume:
v A A
m, = —% up.+ P‘% Uy (3.29)

From these examples'it is clear how the mass flux at any face of a
velocity control volume may be calculated.
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~ Since the momentum coefficients in (3.23) and (3.24) depend on mass
fiuxes, such as (3.26) through (3.29), which themse]ves depend on the, unknown
velocity field, it is evident that equations (3.23) through (3. 25) constitute
a non]inear.equation set. The iinearization of equations (3. 23) and (3 24). is
accompliished by simply basing the momentum coefficients on mass fluxes that
are calculated from best avai]ab]e velocity fields. Once velocity and pres—
sure fields are obtained which comply with equations (3'23§,4(3 24) and
(3.25), they become the best available field for the next coefficient itera-
tion. The coefficient iteration is terminated when the velocity and pressure
fields converge

3.4.2 Solution of the Unreduced System of Equations

Linearized equations (3.23) through (3.25) can be'expressed‘in the cor-
responding matrix form as:

(A" {u + [c:j {p} = {b“} | o (3.30)

<
o ——
<
+
~—
(]
U<
[e—
——
o
S
[}
i
o
<
S’

(A]

}
. } L .
MY {u} e MY {v} i} 4{0.} (3.a2)
}

(3731)

or equivalently,

v {xp =4 | '_  (3.33)
where _
u Y
A 0 Cp
X v v
A = 0 A Cp
oo o
u
X = "
p
u
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~ The solution of equation (3.33) can be obtained directly by inversion of
[Ax], by Gaussian elimination or their variants. However, the computational
effort and :storage requirements of these methods often are proh1bit1ve The
computational effort requirements are further increased by having to solve
(3.33) for each coefficient jteration. ‘

To reduce the computational resources needed to solve equatlon (3. 33)
iterative solution methods are often considered. However, examination of
_[Ax] reveals that there are entries along the principal diagonal which are :
zero. These zero entries, which arise because pressure does not appear in the
equation represent1ng mass conservation, makes the development. of iterative .
methods particularly difficult., Iterative methods must ensure that the 1mp11-
cit influence of pressure on velocity through momentum conservation is
accounted for appropriately. -Iterative methods based. on equivalent set of
reduced equations overcome this difficulty. | '

3.4.3 Solution via a Generalized Seqregated Approach

Using the Direct Simultaneous Variable Solutibn(]s) a‘sound.ba;is.caﬁHA.
be established for the development of a genera]ized segregated approach. The
velocities appearing 1n equatlons (3.30) through (3.32). can be expressed 1n ‘
terms of the pressure by multiplying equations (3.30) and (3.31)-by, [A ]

Aand [A ] respectively.

- [Au]-l

[ =
!

o' - (041 b | o (3.34),

JON B M IR (3.35)

<
0

where
Uy aug-10u
[Dp] = [A'] [Cp]
oy _ paVqyloav
[Dp] = [A7] [Cp]

~and where [DV] and [D;] represent the influence of all'pressures in the
calculation domain on the u and v velocities respectively. Substituting

for the velocities from equatiohs (3.34) and (3.35) into (3.32) there results:
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A1 {p) ’="{bp} - S (3.36)
where S ‘ A o & s

Py ewle rnly _ teVy oY
1= - o - ) o)

)

Such an approach still requires excessive storage and effort (in gen-
eral, less. than those for the unreduced system discussed in the previous
section) to invert and store: [Ap], [D 1, [D ] etc. Van Doormaa](] )

through a detailed study regarding the nature of [Dp] matrix established -
how the mechanisms of convection and diffusion can spread the influence of

pressure throughout the complication domain and analyzed the implications of
_adopting localized approximations (a feature that is prevalent in most segre-
gated approachs) for it. Denoting by [D ] and [D ] the approx1mate

evaluations of [D ] and [Dp], a genera11zed segregated approach that
employs iteration for these approximations is now formulated. Taking the

value of pressure at the k'th segrated iteration to be {p*} the estimate of
pressure the corresponding {u*} and {v*} velocities which satisfy
equations (3.30) and (3.30) are given by: ' ' ' B

{u*} = ™! {b“}.—.[‘o:] {p*} - (3.37)
{v*} = [AV]"{bV} - [0y] {p*},  (3.38)

- Because {p*} is not correct, then {u*} and {v*} are not correct. To
obtain improved estimates of velocity given by {U} and {V}, it is necessary to
subtract out the effect of {p*} on {u*} and {v?} and add in the effect of an
improved pressure estimate given by {B} This can be accomplished in an
approximate way by subtracting [D )| {p*} from and adding - [Dp] v}

_to equation (3.37), and subtract1ng - [D ] {p*} from and adding
- [D 1 {p} to equation (3 38). As a result

{G}={/"\}' '[6:]{5'}‘ | o (3.39)
{V}={/"\}' [0;] {E} | - (3.40)

- ot o) - ) IAY]"'{LV}[':”



where

©

fo}- (% 3 )
(- @ )

7}

-

, p
Requiring'that the velocities {E} and'{ satisfy mass conservation

"] {E}+ M) { {o} R | (3.41)°
and substituting for velocities from equations (3.30) and (3.40) the following
equation for pressure results,

[A)] {E}= {Eg} . (3.42)
where | . | -

(A1 = - M1 (0] - (') (D]

(5°) = - w1 {0} 1 {o}

The success of the generaliied segregated approach described by

equations (3.37) to (3.42) depends on how accurately [D ] and [D ]
are approximated and how readily [D ] and [D ] are eva]uated and the
solution for pressure is determined. To ensure that the solution for pressure

is easily found it is convenient to relate each of the velocities in terms of
nodal values of pressure and velocity (cf. equations 3.23 and 3.24).

— A _ u — -_
up - up d (pE P) (3.43)
- _ AN _3v,T = -
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where

’u\p. - u: + Eu(p; - py)
/v\p'= v;+t—iv(p;-p;) ,
anq where for SIMPLE.(]) e.g.
a“ = Ay/a:
i’ = Ax/a;

Substituting for the velocities from equations (3.43) and (3.44) into
(3.25) the equation for pressure is given by, figure (3.2):

‘abp, = E (aPp)yp +_bp (3.45)
NP
Qhé_re »
P _ N p
% = Z anp
NP
P_ . U
ag = ply dP
-u
aa = pAy dw
p _ -y
ay = pAX dP
brd
ag =  plX dS
. bP = - Phyﬁ} + phyah - pAfc} +prVg
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4.0 ASSESSMENT. OF IMPROVED DISCRETIZATION SCHEHES AND SOLUTION ALGORITHMS
FOR GENERAL (INCOMPRESSIBLE) -FLOW PROBLEHS -

4.1 INTRODUCTION E ‘

‘Recently substantial progress has been made in the development numericail
procedures for the solution of differential equat1ons governing fluid f]ow.' ‘
heat and mass transfer for engineering app]ications However. there rema1n,
in practice, certain. deficiencies in these methods that need ‘to be resolved
before they can be used reliably and efficiently. ‘ ’

Pred1ct1on of complex turbulent flow structures including seperated
-zones using "conventional" discretization and solution schemes runs into seri-
ous accuracy issues, as such schemes display appreciab]e'deter1oration‘1n
accuracy due to misalignment of the flow and computational mesh. Most prac- -
tical schemes in current use artificially dissipate steep gradients due'to' |
Timited spat1a] resolution capab111ties ‘The resulting effect, in some cases,
may completely overshadow real effects such as physica] diffusion due to
turbulence. o ' ' ‘

Alternative schemes specifically designed to alleviate such dissipative
errors succeed only partial]y; as the solution is usually plagued with impro-
perly bounded, non-physical oscillations. Assbciated with such behavior are
problems of numerical instability due to unfavorable conditioning of the
coefficient matrix. . ‘ .

The discretization errors of diffusive schemes can in principle, be
alleviated through mesh refinement. However, such an approach is not always
feasible nor effective, as the solution cost and resources can become prohib- -
itive especially fon three-dimensional problem. What is required is a stable
scheme that yields bounded solutions while minimizing the influence of dif-
fusive errors. Rational construction of such schemes through careful analysis
of the properties of exact solutions for the d1fferent1a1 transport equations
is one concern of this Section.

~ The numerical solution of incompressible flow problems is further com-
plicated due to nonlinearities and couplings inherent in the corresponding
differential transport equations, thus considerable compoting resources are



required to obtain solutions to the algebraic equation set derived from an
appropriate discretization scheme. If a segregated (SIMPLE-]ike)(IS)
approach is adopted to solve these algebraic equations, then, in many in-
stances. a major portion of the computational cost is associated with the
solution of the equation for pressure (or its correction). Minimization of
the computational costs associated with solving the linear pressure equation,
as well as a descriptive structure analysis of general segregated methods are
also discussed in this Section.

4.2 CHARACTERISTICS OF ACCURATE DISCRETIZATION SCHEMES

Some guidelines regarding the attributes of an "ideal" discretization
scheme can be formulated on the‘requ1rement of consistency between the differ-
ential and discretized equations. - However, before such a task is undertaken,
the pertfnent characteristics likely to be displayed by the exact solutions of
the differential equation are reviewed. E

Properties of Exact So]ution(]s)
i) COnservat1on ‘
For any reglon D with surface S the volume integral of the d1fferent1a1

equation (3.19) is expressed using vector notation as:

'f)pﬁo- jgrad o'i?;ds -/ s, D=0  (4.1)

S D

where 3'15 the unit normal surface vector (positive outward)
~ 11) Boundedness
It is straightforward to appreciate the.significance of the Maximum -
principle for the simple case oftsodrce free conservation equations. These
solutions cannot display posjtive;maximum or negative minimum inside the
region D., i.e., the solution must be bounded in D by its extreme values on S

min (8g) < 8 < max (B) . (4.2)

Similar bounds can be derived for more general cases of different boundary
conditions and/or finite source effects.
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iii) Levelness , _
If the d1fferent1a1 equation contains only derivatives of the depen-
dent variable @8, then the funct1ons g and 8 + C (C is an arbitrary constant) V
both satisfy the differential equation.
iv) Transportive .
In the regions of flow where convection dominates, the solution is

strong]ybinfluenced by upstream conditions. The directional behavior of flow
is generally associated with'the existence of domain of'dependence notion with
each mesh point. | '

Guidelines for the Construction of Discretization Schemes

The nodal algebraic equation is an integral approximat1on'to the dif-
ferential equation and hence should preserve all the important properties of -
the latter as described above. Such constraints generally furnish specific . .
-requirements to be satisfied in the construction of discretization schemes.

By adopting a “suitable" appkoximation scheme for the convection terms:
of equation (3.21), the resulting nodal algebraic equation is symbolically
represented by: '

1
B =
P ap

}E: aypfyp t bP ‘ "‘ - :(4,3)-

NP

'In the above (using the conventional nntation) the subscript NP refers
to the neighbours of P. The quantity ap’is,the coefficient for oP and
aNP is the coefficient for GNP (i.e., aE for ”E' aw for ow
etc.). Term bP denotes the source term for the control volume P that may
contain physical source or sink and/or a transient storage term for unsteady
prbblems{ The quantities aNP/aP are generally referred to as influence ‘
coefficients and should ideally all be non-negative to satisfy the boundedness

17)

. coefficients anywhere in the finite yolume equations is commonly neferred to

requirement of exact so]utinns. The existence of negative influence

- as the negative coefficient'prob1em The appearance of negative coeff1c1ents'
in sufficient numbers and magnitudes in the finite volume equation set may
-violate the smoothness of solutions by generating non—phys1ca1 overshoots
:and/dr undershoots and also lead to difficulties in 1terét1ve1y so]ving'the
algebraic set. Closely associated with the latter issue is the mathematical
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notion of diagonal dominance. The matrix of 1nfluence.pqeff1cients_is
diagonally dominant if, for every node P:

D

NP

<1 | (4.4)

with strict inequality holding for at least one node. Clearly negative in-
fluence coefficients violate this rule. For a constant set of coefficients,
matrix theory gharantées convergence to a ¢ solution provided the matrix of
influence coefficients is diagonally dominant. It is important, however to
make two pbints regarding: diagonal dominance. First diagonal dominance -is not
a necessary condition for convergence. Second, the matrix of influence coef-
ficients often is not constant in practice since the coefficients change as
other coupled solution variables change ib the progress of the iterative
solution; the linearization process, whecéby the influence coefficient matrix
is updated, is another potential source of instability in the overall solution
scheme. ' '

An additional property of significance for equation (4.3) is that of
- adidivity expressed by: ' '

8% - Z 3p * ebxly .. (4.5)
NP at

e e
_unsteady term

This condition is assured provided the convecting mass f]uxes'used td.
establish equation (4.3) obey continuity for control volume P. This property.
is important, since it permits a linear function of @ also to obey the finite
volume equations, levelness propeEty of exact solutions.

Regarding the conservation property of exact solutions, the algebraic
equation set shoq]d satisfy the integral conservation:relation (4.1) both
locally and globally. To meet the additional global conservation, flux con-
tinuity in the discretized equation at cell boundaries must be assured. Only
under such circumstances will interface fluxes at adjoining volume cancel in
pairs, leaving the exterior .surface integral to be balanced by interval
sources/sinks.
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The transportive property of exact solutions requires, in the limit of
" strong convection, the solution of the algebraic nodal equation to display the
pertinent "directional" sensitivity, i.e., nodal values lying outside the §
domain of dependence/influence of a particular node should not feature in the
discretization. Failure to comply with this requirement can give rise to the
negative coefficient problem described above and hence, .from the boundedness
principle, unrealistic solutions may result. S

A practical primary qualifier of a discretization scheme is"its
accuracy. For problems of interest in this study, a pragmatic interpretation
of accuracy refers to obtaining solutions uncorrupted by numerical diffusion’
using practical grid sizes and covering a range of solution variables, notably
arbitrary inclination of flow to grid and arbitrary values of Peclet number.
The issues of conservation and boundedness are closely tied to the overall
question of the accuracy of a given discretization scheme, for which however
it is much more difficult to derive, in general, a priori criteria or mea-
sures. As discussed in Section (3.3.3) earlier analyses of accuracy compris—
ing mainly Taylor Series Expansions have recently been shown(18) -
serjous limitations and shortcomings. A practical measure of accuracy freely
adoptedlin this study relates to the rate of convergence of a discretization’
scheme. Such a criterion displays quantitively the sensitivity of the num-

to have

erical solution to grid . ref1nement in asymptot1ca11y approach1ng the
. ana]yt1ca1 solution for mode] problems. (_9) '

‘ Analysis of additional characteristics 1nc1udiug generality and ease of
“éppli;ation as well as economy and efficient are:aTso important considerations
~in the development and assessment of discretization schemes. A concise sum-
mary outlining the attributes of desired discretization schemes is provided in
Section (4.4). ' ' B

4.3 COMPUTATIONAL DETAILS OF THE IMPROVED SOLUTION SCHEMES FOR
‘ - INCOMPRESSIBLE FLOWS :

Majority of the incompressible flow solution algorithms in current use
"adopt a particular form of the Generalized Segregated Approach,

"Section (3.4.3), to deal with the pressure ~ velocity coupling problem, .
a]though recently there have appeared algorithms designed to solve the rele-.
vant equat1on set directly. (20,24) The fo]]owing discussion-will thus focus
on the structure of segregated approaches 1nc1uding implementation and opera-
tional details. ' ‘ ' |
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‘The [D ] matrix in Section (3.4.3) was shown to: represent the

influence of pressures on velocities and was later approximated by [Dp]

- to affect an easy solution for the pressure. However, this simple form

[ﬁu] where each velocity is linearly related to the local pressure dif-
ference, 1ntroduced primarily to minimize computational requirements, has two.
major shortcomings. A .

For high Reynolds number f]ows of concern in this study, using minimal
or no under-relaxation for the solution that implies large- effective time
steps for a time marching scheme,(zz) pressure differences far upstream of a
velocity can significantly influence the velocity, thus a relation between the
velocity and only the local pressure difference is not likely to be appro-
priate.. The implication is that the use of any segregated method which sim-
plifies the evaluation of [3:] by relating each velocity to only the
local pressure difference for solving convection dominated steady flows,

" necessarily implies considerable under-relaxation for the variables.

The second shortcoming of this simple form of fb:] is that, without
taking special care, the convergence of the segregated method could degrade
significantly with grid refinement. To illustrate this, consider using a
segregated method that adopts the simple form of fﬁ:] for a high Reynolds
number problem using two grids, one with relatively few control volumes,
another with a large number of control volumes. Suppose that on the coarse
grid a value for E, defined as a multiple of the maximum of explicit time
step,(]s) is chosen such that the simple form of [Bu] was appropriate.
(Discussion here refers to time integration of equations to reach steady
state, although relaxation and time integration approaches can be related by a
simple relationship that exists between E and the more conventional under-
relaxation parameter used in study). Then on the fine grid choose E so that
the effective time step is the same as that for the coarse grid. Now, because
the effective time steps are the same for both grids, the spatial distribution
of the normalized influence of pressure differences for both grids will also
be similar. Therefore, on the coarse grid where the E was chosen to that the
simple form [3:] would be appropriate, the majority of pressure differ-
ence influence would arise in the distance given by the coarse grid spatial
step size. However, on the fine grid, the same distance is covered by a num-
ber of fine grid spatial steps. As a result, on the fine grid the velocity
may be influenced by more than one fine grid pressure difference and the '
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simple form of [D ] will not be appropriate. Only by reducing the value

of E (or the under relaxation parameter) will the simple form of [D ] be ..
appropriate for the fine grid. But in the process of reducing the value of E
(or the effective time step) the number of coefficient iterations (orwtfhe
steps) requirednto achieue convergence (or steady state) is increased and,
subsequently, the rate of convergence is reduced. . To increase the 1mp11cit-
ness of the pressure ~ velocity coupling of segregated approaches, improved
pressure algorithms notably SIMPLER, (M PISO, (6) SIMPLEC(15) —
others( 4 have been proposed and will be used freely throughout this study

To provide a background for appreciation of some of the techniques con-
sidered in this study, it is also appropriate to d1scuss the solution of the
pressure equatlon of the SIMPLE a]gor1thm,( ) equatlon (3.45).

The solution of the pressure equation is a_major component of»the seg- '
regated approach and can represent a significant portion of the total cost of
solving a flow problem. It is therefore a high priority to solve for pressure
in an efficient manner. As discussed previously, the use of direct solution
methods tends to be unattractive due to 1arge storage requirements and
computer effort. Extremely fast Poisson solvers are ava11ab1e(20) but these
are not applicable to the pressure equation. Furthermore, the coefficients of
the pressure equation change each coefficient iteration so that sparse matrix
solvers that are applicable requ%re a new decomposition at each iteration.
Iterative methods such as Successive Over-relaxation and line by line methods
using the Tri-Diagonal Matrix A]gorithm,(zs) Stone's Strongly Implicit
Procedure(26) and the Modified Strongly Implicit Methods of Schneider and
Zedan(27) are better suited to this application. Finally, because for in-
compreesible flows, the pressure is determined by solving a symmetric positive
definite matrix equation, equation (3.42), the Chebyshev and Conjugate '
Gradient techniqu‘es(25
the methods listed above.

With the use of iterative solution methods for the solution of the
pressure equation, termination of the iterative procedure becomes an important

may be used to accelerate the convergence of many of -

consideration. If iteration of the pressure equation is terminated before
sufficient convergence is achieved, mass conservation is poorly satisfied by
the corrected velocities. Since it is usual for only one iteration of the
segregated method to be performed, these corrected velocities are then used to
calculate new coefficients of the linearized algebraic equations. Propagating
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the error in this fashion can result in divergence or slow convergence of thé
coefficient iteration. On the other hand, it is uneconomical and wasteful to
solve the pressure equation to a tight convergence at each segregated
iteration. '

Let urPu] represent a measure of the residual of the pressure'
equation after each 1 iterations of the iterative method used to solve the
pressure equation. One measure of the residuals is given by the Euclidean

norm where:
1 ' 21172
p -1y p=-1_\ p =1 _.p : : .
r = E ;(aP Pp E (@ plyp - 07) (4.6)
AV NP ' :
and where:E;:is the summation of all interior volumes. An alternative mea-

sure is provided by the sum of the absolute values of the control volume
residuals.

. ] - " .
T _ ¥ P~ _ p—1. _ P ,
NP '

AV

A convenient method of terminating the pressure iteration is given by:

(4.8)

where the 0 superécript on Hrpu is used to denote the initial measure of

the residual for 1 = 0. Equation (4.8) guarantees that iteration has reduced
the residual of the pressure equation to at least the fraction Yp and can be
used for most problems with optimal values of the residual reduction factor
yp typically ranging from 0.25 to 0.05. This avoids costly trials to deter-
mine a suitable value of the convergence criterion.. Additionally, the number
of iterations on the pressure equation for each coefficient iteration is

(19)

roughly the same.
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4.4 SELECTION OF THE ASSESSMENT CRITERIA AND METHODdLO@Y-”

The desired characteristics of a discretization scheme in terms of pre-
serving the basic properties of the exact solutions (i.e. conservation,. ‘
boundedness, levelness and transportive) as related to issues of accuracy and
stability of solutions have been discussed in detail in Sections (3.3.3) and
(4.2). This Section will expound on those ideas and introduce additiona]-
auxilliary criteria such that a comprehensive 1ist of .attributes is developed
to critically evaluate the schemes considered in this study. )

It was established in Séction (3.3.3) that a priori, assessment of
accurécy of a scheme in a complex turbulent flow environment of the kind. con-
sidered in this study was extremely difficult. This was shown to be primarily
due to the inadequacy of the error analysis provided Taylor Series Expansion
for the relatively coarse grids used (especially for three dimensions) as well
as the limited guide offered by comparison with model solutions. However,:
such methods could be effectively used to economically identify schemes of .-
maximum potential. Also when evaluating the performances of selected schemes
in accurately predicting the engineering details of turbulent flow, means have
to be'provided to delineate the uncertaintie§ and error introduced by the
‘turbulence model. _‘ . .

Stability of the iterative solvers, used primarily to minimize computa-
tional costs associated with a solution, were also shown to be strongly
influenced by the condition of the matrix of influence coefficients. The
impact of such restrictive requirements can, in principle, be alleviated or
flessened by solvers that are more transparent to the details of the discret- .
jzation scheme (stable). However, development and:aﬁsessment of such solvers
to cover a wide range of condition numbers, as variables continually change in-
~ the course of the iterative solution, is a very demanding undertaking.

- The specific definition of economy or a]ternative]y cost effectiveness
of solutions, as adqp@ed in this study, pertains to the relative costs of ob-
taining.ﬁolutions of specified accuracy to a given problem by different
schemes{ ‘The cost will generally be a complex function of the accuracy of the
schemes, the nature and the number of computer operations required in coeffi-
cient géheration and assembly, the type of solution algorithms which the '
discretizéd_equations admit, and the details of the computer architecture used
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for solutions. Economic considerations generally yield quantitative criteriaj
to identify and dispense with discretization schemes that are only marginally
more accurate but require substantially larger computational resources for a
solution. . h ' ' '

Closely associated with the above notion of computational economy are
considerations related to variable storage requirements. Although significant
advances have recehtly been made in extending the storage capability of cur- |
rent machines and the trend is likely to continue in the future, providing
adequate storage to solve practical engineering problems, especialiy in three
dimensions, still remains a major problem‘even for nbn-reacting flows. Con-
sidering the enormous additional complexity introduced by reaction, to obtain
sufficiently resolved solutions for the two-phase, turbulent, reacting, radi-
ating flow in arbitrary combustor configurations places prohibitive demands on
the storage available. Thus, in spite of the extended finite difference com-
putational molecule (hence storage) implied by more accurate discretization
schemes, their use might still be preferred over schemes of lower accuracy as
the grids requiked may be relatively coarse. | ‘ ’

‘Finally, some additional requirements of a more practical nature are
adopted by the present study to arrive at rational choices for thétschéﬁes
considered. These pertain to implementation and application details and
specifically refer to compatibility with the present codes and the inherent
complexity. As the present study was structured to develop improved discret-
jzation schemes and solution algorithms for uée with TEACH-type methodologies,
it is important that the use of proposed schemes be compatible with the con-
straints implied therein. In addition, generally speaking, the more complex
the scheme, the more difficult is the implementation and application and hence
possibility of errors, especially in imposing boundary conditions in a finite
duration program. '

The following list, based on the above discussion, summarizes the
desired attributes that potentially viable techniques should possess to mérit
further consideration:.

i) Accuraty
i) Stability
i) Expected efficiency
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iv) Variable storage requirements . B TaTu

v) Expected computing times . . co

vi) Ease with which .the techniques can.be incorporated-into existing
'3-D codes for computing turbulent, recirculating flows..

It is clear from the above list that strict satisfaction of all the
items considered is exceedingly difficult, if not impossible. Thus, -invari-
ably jud1c1ous compromises have to be introduced. It can be argued that the
- most s1gn1f1cant requwrements regard1ng d1scretization schemes cons1dered are
that, they are conservative and bounded as these characteristlcs genera]]y '
enhance accuracy. Also a bounded scheme yie]ds a well cond1t1oned coeff1c1ent'
- matrix which ijs diagonally dom)nant irrespective of the magn1tude of the
Pec]et number and the angle of inclination between the f]ow and the mesh ,
Such desirable attr1butes are strictly realized for certa1n s1mp1e f1ve-po1nt
schemes like Hybrid or Upwind differencing schemes ut111zing a finite yo]ume _
formulation. However, for the majority of the schemes with extended combuta—
tional stencils considered in this study, issues of conservation and bounded-
ness cannot be established a priori and qualitative/quantitative guidelines
~have to be established to examine their expected behavior. In the present
effort, for this purpose a judicious combination of quantitative/qualitative
assessment practices have been employed. These include accuracy and linear
stability of the resulting difference equations via evaluation of the
properties of the coefficient matrix, Taylor series analyses and existing
heuristic stability analyses for iterative solvers commonly used in segregated
solution procedures like TEACH. These analyses, performed primarily for mode)
problems with known analytical or "exact" numerical solutions, yield further
qualitative information regarding solution cost effectiveness, complexity and
variab]evstorage requirements. In addition assessment can be made of the
inherent accuracy and stability characteristics of the schemes considered.
Naturally, if a consistent finite volume discretization framework is employed
in the above test problems, conservation is strictly ensured locally, as well
as g]obelly and the specification of boundary conditions arises naturally.

The above model problems incorporate highly idealized flows in the
- presence of a dominant influence (convection, diffusion, source). However,
for practical performance evaluations such problems have to be replaced by '
more realistic flow cases to examine the interdependency and delicate balance
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displayed by coupled, nonlinear flow equations. Invariably, identification
and. effective treatment of accuracy issues in practical engineering computa-
tions is a much more difficult but deserving undertaking and should utilize
effectively the results obta1ned from individual model problems. k

4.5 CLOSURE

This Section has rev1ewed in some detail the relevant characteristics of
‘accurate d1scret1zat1on schemes as well as the computational deta1ls of im-
proved solution a]gorithms for incompressible flows. Practical criteria to
guide the identification and assessment of select techniques were estab-
lished. These will be used readily in the next Section to provide a unified:
qualitative/quantitative basis to discuss the pertinent details of the schemes
considered and hence exahine their suitability for further.quantitative_'

evaluation.
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5.0 DESCRIPTION AND PRELIMINARY ASSESSMENT OF CANDIDATE SCHEMES |

5.1 1IMPROVED DISCRETIZATION AND RELATED- TECHNIQUES

The following potential schemes were identified and qua]itat1ve1y a
assessed to provide improved (more accurate) pred1ctions of 1sotherma1, 1ncom—
press1b1e, turbulent, recirculating flowfields: ' ’ o

i) . - Second Order Upwind Differencing Scheme
ii) Advanced Skewed Upstream Differencing Schemes A
ii1) Higher Order Schemes inclﬂding Various Compact Implicit Differencing
Schemes ‘ ' \ o o '
iv)  Explicit Dissipation Schemes
v) - Improved Flux Blending Schemes
vi) Variational Discretization Schemes 1nc1ud1ng Finite E]ements o

vii) 'Spectral Methods
viii) Lagrangian Methods
ix)  Adaptive Gridding and Modified Equation Analysis
"The fo]]owing sections briefly describe these teChniqués with references

to original works and comment on their relevancy, strengths éndfshortcom{ngs
relative to the application of interest. The assessment criteria deVeldped in
the previous Section will be referred to frequént]y to 1dent1fy botehtial ‘
techniques for subsequent quantitative evaluation in a two-dimensional code.

‘ Aithough the structure, application and other attributes of the consid-
ered schemes vary widely, a careful scrutiny of the relevant literature
reveals considerable success in meeting the primary concern of accuracy for
most schemes in prob]ems of interest. Hence, this preliminary assessment will
emphasize issues of accuracy and stab11ity leaving the 1ess,signif1;aﬁt cri-
teria of economy, compqtab111ty,‘etc. as pracfica] constraints in the
selection of the final four schemes. |

5.1.1 Second Order Upwind Differencing Scheme (SOU)

This scheme is going to be discussed in detail'in Section (6.2), how-
ever,. some of its relevant characteristics will be outlined below for com-
pleteness. ' ' ' )
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Second order upwind Differencing Scheme (SOU) combines, in general, the
desirable monotonic character of upwind schemes with second order accuracy for
certain grid distributions. The scheme was first introduced by
Atias, et 31(28) in model problems including the square cavity problem and
the impinging jet flow. - The convergence and stability characteristics of the
scheme were subsequently studied by Gupta and Manohar(zg) for the 11nearized
'one-dimensiohal vorticity transport problem. During Phase I Aerothermal
Modelling effort sponsored by the Nasa Lewis Research Center, it was further
studied by GeneraT Electric(z) in a variety of model problems.

The stability analysis, of the scheme, via a one-dimensional scalar
transport problem, reveals that the characteristic difference equation exhib-
its a monotonic behavibr with no spatial instability for uniform sign of con-
vecting velocity. However, the case of the velocity changing sign across. a
finite volume cell, characteristics of recirculation boundaries, warrants
further investigation. |

The scheme can be shown to be second order accurate only on a smoothly
varying grid using an error analysis provided a Taylor Series Exbansion,
Section (6.2). However, owing to the introduction of an extraneous boundary
condition in the solution of the model difference equation (three solutions Vs
two required by the diffefentia] form) care needs to be exercised in the prox-
~imity of the boundaries for uniform application throughout the domain. In
fact, it is claimed‘by Gupté and Manohar(gg) that the ovéra]l accuracy of
the scheme is severely affected by the inconsistencies introduced in boundary

condition specification.

5.1.2 Advanced Skewed -Upstream Differencing Schemes

These are going to be discussed in detail in Section (6.3), however a
brief description is provided here for introduction.

The original Skewed Upstream Differencing (SUDS) of Raithby,
although non—diffusive{ was for some applications, plagued by problems 6f”
unbounded solutions. Furthermore, potential iterative solution difficulties
were evident, as the resulting coefficient matrix was not diagonally dominant
owing to the possibility of main model coefficients becoming negative, e.g.
aw in equation (3.23). A practical means of overcoming the boundedness and
related issues was later introduced by Syed, et al(s) who, blending "SUDS
with a less accurate but bounded scheme (e.g. Hybrid differencing) in varying

(12)
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ratios, was able to obtain improved so]utions However the part1cu1ar form

of the adopted blending strategy is not strictly path 1ndependent thus .

poss1b111ty of non-unique solutions exist. _ . A
Recent works by Huget(so) and Raw(]o) using similar implementations .

of the Physical Advection Correction (PAC) concept within the framework of

SuUDS, have overcome most of the original objections to>the scheme as‘well_as

providing a sound formulation to replace/augment the blending sfrategy. Two. .

variants of advanced SUDS are considered: “ ' _ , |

i) Linear Profile Skewed Upstream Differencing Scheme (LP-SUDS):.admifs .
minor oscillations in the solution, but consequent]y yields most accu-:
rate results (uniformerly second order) of any SUDS scheme for a variety
of problems.

ii) Mass Weighted Skewed Upstream Differencing Scheme (Mw SUDS) a positive
definite skew scheme that produces stable, bounded solutions which are
significahtly more accurate than those Hybrid differencing. .

As with SO0U, these schemes can be formulated conveniently, in a manner

to sat1sfy most of the assessment criteria.

5., 3 Higher Order Schemes Including Various Compact Imolicit D1fferenc1ng_
Schemes : _
These w111~beldiscussed in detail in Section (6.4), however the follow- -
ing serves as a brief introduction.

_ Use of higher .order schemes (fourth and up) in atmospheric and oceano-
graphic applications has been advocated primarily by Kreiss.(a]) Order in
this context strictly refers to classical error analysis provided by a Taylor
Series Expansion, Section (3.3.3).. ’ : S ‘

. The,advantages of fourth order schemes over second order schemes are
most aptly demonstrated for the test problem of the one-dimensional wave
(hyperbolic) equation. Using centered second order differencing and. a widely
available fourth order approximation to the advection term, Orszqg(32)
examined the structure of local errors in the difference scheme and concluded
that the fourth order scheme requires roughly a factor 2 less resolution to
achieve a 5 percent maximum error, than does the second order scheme.
Furthermore, the fourth order scheme also localizes the error near -the singu-
larity better. The second ?gg)fourth order schemes used in this and other

studies are due to Arakawa. They possess extremely desirable properties
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in identically consérving vorticity, enstrophy (half the vorticity squared)
and kinetic energy' Due to these characteristics, they are especially well
suited to study hydrodynamic stability problems. Since they conserve
enstrophy they are not subject to the nonlinear 1nstab111ty of Phillips
which arises from aliasing errors. (18)

Among the obJections raised towards the use of higher order differenc1ng
schemes in complex flow field simulations, one notes, in general, issues re—'
lated to cell Reynolds number restrictions (boundedness and transportive
character1st1cs). cost and the nature of the solution algorithms. For
example, the conventional fourth order differencing for the first order advec-
tion term involves five points in the formulation. This practice general]y
suffers from the usual problems associated with the degradation of.numerical
accuracy at the boundaries (an excessive number of image points have to be
used for a uniformly valid application of the technique). Furthermore, the
solution of the algebraic differencing equations is accomplished by more
involved steps than the application of the simple Tri-Diagonal Matrix
Algorithm, Section (6.4.4). -

There is a certain class of higher order schemes which have been shown
to resolve some of the deficiencies associated with the conventional schemes.
These are generally referred to as Operator Compact Implicit (OCI) schemes.
Related techniques including Hermitian differencing, Pade' approximations,

. spline collection techniques of Rubin and‘Khos1a(35) can essentially be .
developed in the same spirit as OCI schemes. However, experience with these
is relatively limited. Thus the following discussion will concentrate on OCI

(34)

schemes.

Classical OCI schemes are designed to produce a relationship between the
unknown solution # and the entire differential operator L(#) on three adjacent
points using a general finite difference approach. If the resulting scheme is
formally fourth order accurate, then the method is known as OCI. Note that
the formal fourth order accuracy is the highest that can be obtained by such
derived methods, unlike the spline collection schemes of Rubin and
Khos]a.(35)

Experience with such schemes using model and practical problems, has
revealed serious issues of stability and boundedness as well as degradation in
accuracy with grid non-uniformity and implementation of non-physical boundary
conditions, Ciment.(36) To overcome such undersirable attributes .
Berger, et a1(37) recently derived a further class of OCI schemes. These
consider the OCI coefficients obtained from the Taylor series approach as
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asymptotic series in. the mesh size. The resulting scheme contains nine free
parameters. : Using six of these parameters it is possible to obtain formally a
fourth order method with no cell Reynolds number limitation. *Moreoyer, the
tri-diagonal system of equations is diagonally dominant.- The fourth order
accuracy is normally achieved by incorporating an appropriate exponential,
character into the coeff%cients However, the cost issues involved in the.

- iterative computation of such exponentlals need to be examined cr1t1cal]y.
Section (6 4.3). ' S

5.1.4 Explicit Dissipation Schemes

The idea of artificial dissipation is credited to Von Neumann and
Richtmeyer(sa)
cept is very commonly used with time marching, compressible, Lax-Wendroff
and/or other implicit schemes to attenuate high frequency oscillations associ-
ated with shocked flows. The essence of the method lies in introducing an
‘artificial dissipation term into the difference equations (not the differen- .

tial equation) such that the added term is of order higher than the truncat1on

in connection with shock capturing calculations. This con-

error of the difference scheme provided by a Taylor Series Expans1on 'The
d1ss1pat1on so introduced, however, does not represent any loss of energy or
other conserved quahtities; the kinetic energy that is removed from high fre-
Quency oscillations is left in the system as internal energy of the fluid.
Most explicit dissipation schemes utilize pressure as the relevant sen-
'sor to activate the dissipatidnAterm (appropriate for shocked flows), "
MacCormack. (39) For uniform pressure (or slowly vary1ng pressure, charac-
teristics of the flows considered here) other variables have to be considered
~to serve the same purpose. Advantages of explicit d1ss1pation schemes are the
strict local control of the boundedness and stability of so]utionsebroVided by
an inherently dispersive but accurate scheme (Central d1fferenc1ng), as well
as ‘the simplicity of the corresponding formulation. Moreover, such schemes '
have seen an extended development and apblieation period in the prediction of
mostTy compressible external flows using time maEching techniques by
jameson,(40) Beam and wakming,(41) MacCormack,(42)
- somewhat non-unique nature of the'implementation for various problems, as well
"as the influence of the added terms on the solution, in conjunction with the
~implicit dissipation provided higher order upwind schemes are only now

etc. However, the -

(43)

beginning to be analyzed for time dependent implicit schemes, Pulliam.
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(41)

~The time dependent~Beam'ahd Warming algorithm "which requires a
fourth order damping term when spatial Central differencing is used, was - : -
recently adopted by Kwak, et'al(44)-td*obta1n numerical solutions for incom-
pressible Navier Stokes equations in a generalized system. . These authors used
the artificial compressibility technique of Chorin(45) to perform a time
integration of the equations in primitive form.” The formulation of the arti-
ficial dissipation term was based on a fourth derivative of the form -

(x-direction):

_ 4 , _

. 4, 28 . _ . e - i} .

Sj = - a/8 (AXx) (ax4)j = f/e (”j+2 4”j+] + 6¢j 4¢j—1 + gjfZ)
‘ S (5.1)

where o is an adjusted constant, # is a conserved variable, j is the particu-
lar grid node. A similar exbression is used in the y-direction.

An important poinf Eegarding time dependent methods must be further
elaborated. Convergence to steady state can be characterized (based‘on‘the
theory qficharacter1Stics) as é physical process of acoustic and entropy waves
clearing from the computational domain. A spatial smoothing procedure can.
then be viewed to cause dual effects; dissipation of transient acoustic/
entropy waves and dissipation of high frequency oscillations introduced by the
differencing schemes (oscillations are real solutions of difference .
equations).(]e) Artificial dissipation introduced into difference equations
as a term of higher order than the truncation error of the scheme is unlikely
to influence the true solution of the differential equation (either transient
or steady §tate). This means that enhancement of damping transient acoustic/ -
entropy waves would require a dissipation term which is either of the same or
lower order than the truncation error. The converged solution, however, could
be in serious error in such cases. Based on this argument it is readily seen
that the dissipation term must be designed to achieve stability of the dif-
ference scheme (e.g. Central) by filtering growth of the high frequency oscil-
lations. . '
It is relevant at this point to discuss the general nature of a dissipa-
tion term.that could be\used in relaxation algorithms (steady state dis- '
cretization of equations) for mode]ling‘of incompressib]e, turbulent, recir-

culating flows.
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A steady state matrix equation of the form (cf. equatior'(3.3§Y)E
A(8) = b . o “_':J :f' (5.2)
is replaced by an equation of the form:
M) - 0(0) - s
where A denotes the. spat1a1 discretization operafor for the var1able o,
defined by a Central or an equivalent scheme, b the source and D the d1ss1pa-

tive operator. D is assumed to be fourth order accurate with a form given for
two d1mens1ons as:

D, (8) + D (8) | | o (5.4)

. D(8) =
where
| 0,(8) = ds1s2,57 %i-1/2,3
0 (8) = dy 572~ %4,5-172
and
Yinre, 377 ez tiase,y®

In the above i and j denote grid indices. and K1 /2, 3 is genera11y a
constant for model problems derived from a stability ana]ysis of the 11near
difference equations. For complex flows however,'no rigorous stability
analys1s exists and the spatial variation of K due to non- homogeneous.
non-linear f]ow processes has to be specified iteratively. A1+1/2 is a‘
suitable difference. operator that renders the smoothing term fourth order
accurate, i.e. '

2 = (8 - 39 -3, , -8 )  (5.5)

1+1/2 j i+2,j i1, i,J i-1,J
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The formulation outlined above is by no means unique, however it intro-
duces dissipation for the conserved variable in a consistent manner and has
been implemented successfully by Jameson.(40) Kwak(44)
warming(4]) for damping spurious oscillations in rapidly varying regions.
Care has to be exercised in treating the continuity equation to maintain

proper accuracy using such techniques.

and Beam and

5.1.5 Improved Flux Blending Schemes

The objections associated with the semi-heuristic formulation and appli-
cation of explicit smooihing terms in the difference equations can, in prin-
ciple, be alleviated by schemes that add and subtract dissipation baséd on the
local behavior of the solution. A scheme with some of these characteristics
was first proposed by Boris and Book(46) and later genera]iiéd by
Za]esak(47) for a more general class of problems. The basic idea incorpo-
rated in such schemes is to construct the net flux at a point as a weighted
average of the flux computed by a Tow and high order scheme. The weighting is
introduced in a manner that ensures maximuh use of the higher order scheme
while producing tolerable or no oscillations. The resulting procedure is com-
monly referred to as a flux correction scheme.

The nature and elimination of dispersive post-shock oscillations in a
shock capturing scheme have been the subject of intensive research effort
since the early attempts by Von Neumann and Richtmeyer.(ss) There have been
numerous formulations with various levels of success to implicitly or expli-
citly filter out the oscillations encountered, e.q., upwinding, artificial
damping, flux correction and more recently flux vector spl1tting.(48) Under
NASA sponsorship some of these cohcepts have been evaluated for flow problems
similar to the ones considered here, by Syed, et a].(s) These authors
effectively used a weighted mean flux b]ending scheme 1ncorpofating'f1r§t
order Upwind and SUDS schemes, to obtain bounded solutions of comparable
accuracy to those yielded by SUDS alone. The nature of the shortcomings
- associated with the use of such blending procedures is discussed in
Section (5.3). _

Notwithstanding some of the unresolved problems and implementational
difficulties, a similar flux blending strategy could be developed to exploit
the high accuracy provided by an appropriate fourth order differencing scheme,

e.g. OCI. Using such an approach it is also conceivable that some of the
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obvious shortcomings of the particular blending formulation (source influence,
path dependency, etc) could be alleviated. In addition, flux blending pro-
vides a further basis for rationally constraining the artificial dissipation
coefficient of the previous section to obtain bounded, stable solutions to

equation (5.2).

5.1.6 Vvariational Discretization Schemes Including Finite Elements .,

- .The cell Reynolds number problem of the classical finite difference
methods leading to boundedness and stability problems could, in principle, be
relaxed by Galerkin based methods, or more generally speaking, by methods -
founded on a variational principle that minimizes some error norms. Tech-
niques employing Galerkin or other related procedures preserve certain
important integral constraints, e.g. total kinetic energy. A conserved quad-
ratic integra] of energy is necessary for stable integration of the eqhations“
of motion by prohibiting unbounded nonlinear instabilities which often arise
‘with finite differences. v o

In the literature, variational techniques, including finite elements,
are presented as an alternative approach: for reducing the relevant differen-
tial equations to an algebraic set (finite volume, finite differencing, etc),
and hence do not strict1y constitute distinct discretization methods. How-
ever, they are reviewed here briefly for completeness. - Furthermdre; recently
their use in becoming more frequent in similar problems of interest in this - .
study and they encompass a semi-mature field rich in concepts and applications
"and hence can be exploited, Raw.(lo) < _ '

variational methods, in particular finite element method, seek an
approximate solution to the differential equation over finite subregions or .-
“elements" in terms of a piecewise-continuous local interpolation formula
(trial or shape functions), by controlling the error in some average sense
:through a variational principle or Galerkin procedures of weighting. The -
shape function is defined over an element, with elements joined together to
cover the entire domain. For flow problems Galerkin procedures are generally
used. | ) _ .. | ,

The finite elements may be of orbitrary shape, although commonly tri-
angular or quadrilateral elements are based. The solution ¢ is approximated.
over each element by: ‘
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where 5 denotes'summétion over all the grid points within thg element qf ‘
interest and the N, are the shape functions, defined piecewise element by
element. They are usually polynominals of low degree. The polynominal
coefficients are determined by the requirement of continuity of ¢, but not
necessarily of its'dekivatives, between the elements. Thus if the differen-

tial equation descfibing the problem is represented by:
L(g) = O A (5.7)

then using the weighted residual method in which the weighting function is
equal to the shape function, the Galerkin representation for the problem is

given by:

fNL(ZN ) dR = (5.8)

where R is the domain. By choosing a succession of wéighting functibns; a
systém of algebraic discretized equations can be obtained. ‘

It can be shown that the conventional Galerkin finite element method for
convection-diffusion problems experiences similar difficulties as the disper-
sive finite volume/difference techniques, Gresho and Lee.(4g)
have to be. introduced to bdund.the solution using practices similar to the
techniques considered here. To overcome such problems, several upwind type
finite element methods including the Streamline Upwind Scheme( 50) (similar
in concept to SUDS) have been proposed. The difficulties associated with such
formulations, either in terms of unbounded solutions or excessive diffusion,
are similar in nature to finite volume/difference methods. However, recehtly
Raw(]o) developed a co-located control volume based finite element pro-
cedure. The approach taken by the author. introduces a rational basis for
approximating‘the convected»variab1e at the control volume face and provides
the basic concepts involved in the development of advanced SUDS, '
Section (5.1.2). Raw relates the interface variables to the nodal variables

Thus,” means
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via an algebraic approximation of their respective differential.equation
applied at‘the'control'volume surface. This causes, for flow problems, the :-
appearance of pressure in the continuity equation in a form that removes the
need for "reduced order pressure interpolation", typical of most finite ele~
ment methods. In addition, a discrete convection operator is developed that
does. not produce non-physical spatial oscillations and does not. suffer: from
false diffusion. : - et
There is a further very desirable attribute of finite elements for flow
problems in the flexibility and generality provided by various-element .
shapes. _Such elements might also be moved appropriately to track .interfaces

and fronts for improved reso]utioﬁ.

- 5.1.7 Spectral Methods

Spectral methods are based on representing;the solutionvto a"prob]em as
a truncated series of smooth functions'of the 1ndependent vériab]es Whereas;
finite element methods, discussed above, are based on expansions 1n 1oca1
 basis functions, spectral methods base expansions in global functlons Spec-
tral methods are the extension of the standard technique of separationhof
variables to the solution of arbitrarily complicated problems. ‘ |

Spectral methods involve the approximation of the flow using appropriate
combinations of Fourier series, Chebyshev po]ynomial series, Legendre polynom-
inal series,'etc (51) While these methods do guarantee infinite order rates ’
of convergence to smooth f]ows, they appear at first to be excess1ve1y com-
plicated compared to more conventional low order difference methods. However,
with the introduction of transform methods and spectral iterative methods,
they can be applied and used effectively to adequately resolve complicated
flow physics in arbitrary geometries. Spectral methods offer the significant.
advantage over other (lower-order) methods in that they automat1ca]1y ach1eve
h1gh order accuracy at rigid no slip boundaries. )
' The underlying concept behind the transform methods, introduced to deal
with the nonlinearities present in the equations, Gottlieb and Orszag(51)
and Gott]ieb Hussaint and Orszag(sz) uses spectral representations only to
obtain accurate evaluat1ons of derivatives and to impose the boundary condi-
tions accurately. A1l the complicated nonlinear physics is evaluated locally
in physical space,ﬂso that flow physics of any desired degree of complexity

may be accommodated.

-51-



The extension of spectral methods to complicated geometries was investi-
| gated using two key ideas by Orszag(ss) and Gottlieb, et al: (1) the spec-
tral jteration technique and spectral element patching. These will be
described briefly. o

Spectral approximations to general boundary value problems lead to full
NxN matrix equations for the N expansion coefficient a It would seem that
the solution of these equations requires 0 (N ) arithmetic operations, while
storage of the matrix requires 0 (Nz) memory locations. Since typical prob-
lems involve N ~ 106, the direct solution (or even the direct formulation)
of such problems is clearly unworkable presently. The spectral jteration
technique circumvents this problem by allowing the solution of the full matrix
problems using just the storage anh computational work required by low order
finite difference methods. The underlying idea is to approximate the spectral
operators that must be inverted by suitable sparse matrix operators and devise
an iteration scheme (in a deferred corrector sense) that leads to machine
accurate solutions in only a few iterations. '

Consider the solution of a general linear differential equation.LQ = b.
Let an N term spectral approximation to this problem be given by:

L8 = b (59

where bN is a suitable N term approximation to b. Equation (5.9) is gen-
erally a full NxN matrix. '
- Ssuppose it is possible to construct an approximation Lap‘to;the spec—'
tral operator L sp that has the following properties.
i) L has a sparse matrix representation.so that it can be repre—
sented using oniy O(N) storage locations.
“§1) Lap is efficiently invertible in the sense that the equation

L 8, = b 1 (5.10)

is soluble as efficiently as a first order finite difference approximation to

the prob]em

1ii) Lap approximates LSp in the sense that,
, 4 .
0<m< ”Lap Lspn <M< = (5.11)
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for suitable constants m, M as N >, . Roughly speaking eqdétidn.(s.ll) re-
quires that the eigenvalues of L;] Ls, be bounded from above and below
as N »= . Examples regarding the necessary bounds and other convergence con-
" siderations for some model problems is provided by Orszag.(ss)'

In this manner the solution of (5.9) can be accomplished using order N
storage locations with the number of arithmetic operations of the order of
N log N and the number of operations required to solve the above equation by a
first order finite difference method. The important conclusion is that spec- -
tral methods for general problems, in arbitrary geometries, can be implemented
efficiently with operational costs and storage not much farger than that of
_the simplest finite difference approximation (e.g. first order Upwind) to the '
- problem with the same number of degrees of freedom. Since spectral methods
require many fewer degrees of freedom to achieve a given accuracy than re-
quired by finite difference approximations, important computational effiéien-
cies can result. Nearly equivalently, spectral methods achieve much higheh'
accdracy for a given number of degrees of freedom. ' ' ‘
_ The second key concept involved in application of spectral methods  in
complex geometries refers to patching together complicated domains out of sim-
pler ones by using moderate sized "global spectral elements". Because of the
nice boundary properties of‘spectral methods, 1ittle accuracy is lost by
patching together these spectral elements. However, the patching scheme does
give essentially complete geometric flexibility, especially where the ‘global
elements are isoparametrically mapped curved elements. . The resulting spectral-
patching/spectral element methods combine the efficiency and flexibility of
~ finite difference/finite element methods with the accuracy of spectral methods.

Application of spectral techniques in problems involving non-smooth-
solutions using certain eigenfunction expansions, may result in undesirable
Gibbs' oscillations in the vicinity of the discont1nu1tyr Howevér. such prob-
‘lems are Conveﬁiently treated by either patching the §o]ution at discontjnd- '
ties or pre and post.filtering the solution. ‘

5.1.8 Lagrangian Methods

Although pure Lagrangian methods are not strictly viewed as distinct
discretization techniques, they possess a very appealing feature in that the
numerical formulation does not include the ;onvectivé‘derivative,:the major
source of difficulty in Eulerian calculations. Thus, Lagrahgiah calculations
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are able to treat high Reynolds number flows for long times relative to their -
Eulerian counterparts and can effectively treat interfaces, free surfaces and.
moving boundaries. However, the methods do suffer from severe drawbacks 1in
practical calculations. The foremost problem occurs in multi-dimensional cal-
culations when the convection of the grid'with the flow leads to large grid
deformations and a corresponding decrease in numerical accuracy. Regridding.
and remapping techniques introduce severe numerical diffusion into the problem
just as if.a simpler Eulerian calculation were performed initially. Schemes..
~incorporating Lagrangian'and Eulerian features into a composite calculation
algorithm, e.g. ALE(S4) suffer degradation as any relocation of the grid
necessarily re-introduces numerical diffusion through the smoothing provided
by interpolation.

A second problem arises because a high order of accuracy, parficular]y.
of spatial derivative terms, is difficult-to achieve in Lagrangian calcula-
‘tions. When the computational grid moves, uniform spacing is not generally
possible. To construct high order derivatives in a time varying non-uniform
mesh is difficult and.first order algorithms are hard to avoid. One problem
of maintaining monotonicity, is replaced by another; the. introduction of first

order aspects into the calculation.
Lagrangian calculations in multi dimensions are very comp]icated and can

be much more expensive per grid point than Eulerian computations Another -
problem is that 1nexpensive direct solution algorithms of elliptic equations
cannot be applied. Finally, adaptive gridding( >) is just as important .in
‘Lagrangian simulations for front resolution as it is in Eulerian calculations,
and is more difficult to implement. .

5.1.9 Adaptive Gridding and Modified Equation Analysis

Techniques considered in this Section contribute only indirectly in
obtaining improved resolution and other desirable aspects of soiut1ons._

In general calculation procedures a priori spatial 1nformatjon con-
cerning significant gradients of dependent variables is usually not available,
thus the practical grids used reveal wasteful practices and the inability to
satisfactorily resolve regions of interest. |

Adaptive gridding provides a means of overcoming the above problems via
grids generated dynamically as the solution develops. The basic concepts have
been successfully used in boundary layer computations for years, to capture the
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spatial and temporaT\details in a sound and economical way. ' For flame propa-

. . . . (56)
gation in a solid, Dwyer and Sanders
manner to generate adequately resolved, economical solutions. Recently a -
sound mathematical basis was formulated for general application by -
Brackbill, et a1(57) incorporating grid smoothness and skewness,; together
with resulting cell volumes in a functional to be minimized.

used the scheme in a very ‘effective

The adaptive gridding technique coupled with an accurate numerical-tech-
nique offers an indirect means of resolving the cell Reynolds number (bounded-
ness) problem of'currgnt prediction techniques.  The solution_éontinuai]yl
updates the grid either explicitly or implicitly clustering mesh points 15
high gradient regions to satisfy the critical Reynolds number criterion. A
potentially viable way of achieving sufficient grid resolution is through the
use of nonlinear modified equation ana]ysis.(se) Apart from establishing a
sound basis for generating adaptive grids, the modified equation approach also
yields insight into the local behavior of the numerical scheme by providing
the relative magnitude of the truncation errors to the original terms of the
differential system. :

The modified equation is derived by expanding in a Taylor series the
difference equations of a particular numerical scheme. While the modified-
equation contains an infinite number of terms with increasing powers of spat- "
jal mesh intervals, it does represent the system of original differential
" equations solved by the differencing schéme. It is not possible however, to -
investigate the complete modified equation. For dissipative differencing, ‘
most of the information regarding nonlinear truncation errors is contained in
.the leading few terms. Therefore it is sufficient to investigate the trun-
cated modified equation. The important point is that the modified equatibn
giVes the exact nonlinear truncation errors for the complete system of dif-
ferential equations being solved numerically. '

Since the higher order terms in the modified equationvdo‘not appear in
the original differential equations, contributions from these term lead to
inaccuracies when compared to-an analytic solution of the original differen-
tial equation. The removal or cancellation of these terms results in aAhighek
order integration scheme. In fact, an essentially third order scheme results
by removing only the dominant second order terms. The improved accuracy is
achieved with no change to the differencing scheme and with very 1ittle extra
computational work.
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_ Devising an automatic mesh clustering scheme is accomplished via the -
local truncation error levels provided by the modified equation analysis and
“the choice of a suitable smoothing filter.  Here special care has to be exer-

cised in resolving the stiffness introduced into the governing equation
through the grid refinement procedure. However, the impressive grid reduction
achievable, especially in three dimensions (one or two orders of magnitudg),
for adequate resolution, lends support for developing such schemes.

5.2 IMPROVED SOLUTION ALGORITHMS FOR ENHANCING CONVERGENCE AND EFFICIENCY OF
METHODS FOR INCOMPRESSIBLE FLOWS

Currently most incompressible flow solution algorithms adopt a particu-
lar form of a geheral segregated solution procedure discussed in detail in
Section (3.4.3), SIMPLE, SIMPLER, PISO, SIMPLEC, SIMPLEX, etc. Central to all.
the above approaches is the generation of one or more Poisson-type pressure/
correction équations that constrain the flow to satisfy the vanishing of the
mass divergence. As remarked in Section (4.3), the algebraic. solution of such
equations accounts for a significant portion of the total cost of solving the
flow problem, hence efficient and economical solvers have to be devised.

‘These are presented briefly in the following discussion, prior to their
detailed development in Section (6.5).

Considerations regarding the structure of the discretized pressure/
correction equation (3.45) (symmetric, with properties similar to those for a
diffusion process) permits the grouping of various solvers as base solvers and
acceleration techniques. These are: | '

i) Approximate Factorization Techniques as base solvers.

These include, but are not limited to, Incomplete Choleski Algorithm and

Stone's StrOng1y Implicit Procedure ’
ii) Conjugate Gradient Acceleration
iii) Block Correction Acceleration
iv) Multilevel Multigrid Acceleration Schemes

Finally, coupled numerical schemes are considered briefly for complete-
‘ness. These are much different in philosophy, structure and implementational
details than a general segregated solution procedure.
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5.2.1 - Approximate Factorization Techniques

A commonly adopted technique for solving linearized algebraic equation
sets such as (3.45) in multi dimensions is repeated application of an Alter-
“nating Direction Line Gayss-Seidel solver. However, uncertain convergence
rates associated with the use of such solvers in certain problems with
strongly anisotropic coefficients, mixed boundary conditions, etc necessitate °
development and application of more implicit solvers. "A-particular class of
such methods are conveniently based on approximate factorization techniques:
For instance, Incomplete Choleski (IC) is a suitable approximation to the con-
ventional Choleski Decomposition.(sg) In IC, the Choleski Decomposition
matrices are approximated by some simple sparse diagonal matrices whose
coefficients are determined from constraints imposed by the product of the
approximate décompositioh matrices. In fact, the constraints are such that
the product of the approximate decomposition matrices must be identical to the
product of the Choleski Decomposition matrices for every non-zero entry of tie
latter product. Naturally, the product of the approximate- decompos1t10n also
‘contains non-zero entries where none should appear.

Stone's Strongly Implicit Procedure (SIP) is an alternative approximate
factorization technique. However, in SIP an attempt is made to partially can-
cel the effect of the spurious non-zera entries of the product of the approxi-
mate decompositions. A parameter, «, is introduced to control the degree of
- partial cancellation. In fact, when the Value of « is set to zero, i.e. no
cancellation, it can be shown that SIP and IC become algebraically
equivalent. (59) .

Although as base solvers both IC and SIP have often been shown to bé
attractive relative to other iterative solvers, their rate of convergence is
still unacceptably slow in many cases. To enhance their rate of converg-
ence a number of acce]eration techniques are available.

5.2.2 Conjugate Gradient Acceleration

Due to the symmetry of the linear set of equations for pressure, the
generalized Conjugate Gradient Method (CG) of Concus and Golub(so)
used effectively for their solution. Employing this acceleration technique in
conjunction with IC (or equivalently, SIP with no partial cancellation), the

_ resu]tiné method bécomes a finite (direct) method, with each iteration deter-

mining an additional orthogonal basis vector of the solution such that a pre-

could be
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defined norm of the error is reduced. Unfortunately, due to the asymmetries
introduced, the Concus and Golub variant of CG acceleration is not appropr1ate
for accelerating SIP with partial cancellation.

5.2.3 Block Correction Acceleration

The Block Correction acceleration (BC) is applicable to both IC and SIP .
methods. Based on the procedure of Settari and Aziz(64) and as discussed in
some detail by Hutchinson and Raithby,(sz) BC technique adjusts the solution
in blocks, normally along rows or columns of the computational domain, by an
additive constant such that the residuals in each block sum to zero. A par-
ticular mode of application of BC could apply it independently along both rows
and columns with one IC or SIP iteration employed between each row and column
BC. Specifically such a sequence is given by: ' '

i) the application of BC to ensure that the residuals in each col-
umn sum to zero,
i1) an application of one IC or SIP iteration,
iii) the application of BC to ensure that the residuals in each row
sum to zero, and
jv) the application of one IC or SIP iteration.

In steps i) and iii) given above, the Tri-Diagonal Matrix Algorithm can

be used to solve the BC equations.

5.2.4 Multilevel Multigrid Acceleration

In algorithms incorporating "explicit" schemes like the line Gauss
Seidel or Successive Line Over-relaxation for the solution of the algebraic
equations, the high frequency error modes are reduced very effectively. How-
ever, the attenuation of the low frequency components is very poor. The‘
Multilevel Multigrid technique attempts to resolve this d11emma by employing a
sequence of grids ranging from fine to very coarse to eliminate the different
error modes. As such, it can be viewed as a routine for reducing or §moothing
out the error modes in a particular frequency band on a given grid structure.

For relaxation type solutions, the error vector at any phase of the
iteration cycle is expressable as a discrete Fourier transform. If a small
number of iterations are subsequently carried out using a fine grid, the high
frequency modes of the error are much reduced, although the low frequency end
of the spectrum remains largely unaffected. If recourse is then made to a
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‘coarser grid, say with half thé number of grid points, due’to the resolution

capabilities of the grid, the solution will only reduce error modes of corre-
spondingly lower frequencies. This cascade-1ike process is continued down to
the coarsest grid until the complete error spectrum has been covered. There

exist various applied versions of the above ideas collectively referred to as
classical multigrid methods, by Brandt.(es)
emphasize the details of an alternative multigrid strategy based on BC ideas
(62) the Additive Correction

The following discussion will

| and successfully used by Hutchinson and Raithby,
Multigrid (ACM). ‘ A

In the ACM, coarser grids (contiguous blocks) are formed from 2x2 con-
f1gurat1ons of fine.grid nodes, (two-dimensional), hence the solution of the
coarse mesh equations and subsequent correction for the fine mesh solution’
yields a residual field that sums to zero over each block. In addition to
prescribing the method used to evaluate coefficients on the coarser meshes,
the ACM method also prescribes the manner in which residuals are transferred
to the coarser grids, how coarse grid corrections are applied to the fine grid
solution as well as how boundary conditions are treated. If is also worthy to
note that ACM is equally applicable to symmetric'and non- symmetric systems of
linear equations and is not restricted to fine grids with 2 x2 po1nts in
the two coordinate diréctions.

A particular application of the above methodology reproduces the c13551-
cal "flexible cycle" multigrid algorithm of Bt‘andt(6 ) with one difference.
Instead of iterating on the fine grid until convergence becomes slow, only one
fine grid iteration is performed before initiating the solution on the coarser
mesh. Employing IC/SIP on each of the meshes'(rangihg from the finest to the
coarsest, a 2x2 mesh in two dimensions),i the single iteration residual reduc-
tion rate for each of the meshes except the finest and coarsest‘may
conveniently be chosen to be 0.5. Regarding the specific details of terminat-
ing the smoothing procedure, iteration on all but the finest and toafsest mesh
is considered sufficiently converged when the 12-norm of the'residuals is
less Fhan 25 percent of the lz-norm of the residuals when they are last
obtained from the next finer mesh. Finally, iteration on the 2x2 mesh is
taken to be converged when the 12—norm of ;he residuals is reduced to
0.01 percent. '
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5.2.5 Coupled Numerical Schemes

Conceptually, the elliptic influence and interequation coupling in 5'
computational domain can be properly accounted for by discretizing all the
governing equations at every grid point and then simultaneously solving them
using coupled iterative solvers. 20)
especially, such solution procedures require computational resources that are
beyond the capabilities of current machines. Another approach deserving study
is to use parabolic solutions with "best possible" elliptic corrections (with
appropriate treatment of the continuity equation). SIMPLE/derivatiQe
algorithms belong to this class of solutions. These methods, however, require
the use of variable under-relaxation parameters to obtain a converged solu- .
tion. As methods progress in cbmplexity to account for elliptic influence,

. the need for a lower under-relaxation parameter decreases. SIMPLER thus
(64) Another |

For three-dimensional applications

requires a lower under-relaxation parameter than SIMPLE.
example of such an approach is reported by Caretto et a]’(65) where. the
authors adopted the SIVA (Simultaneous Variable Adjustment) procedure. This
is basically a point iteration method which properly couples the continuity
and momentum equations (to satisfy mass conservation better) and obtains all
dependent variables simultaneously. The resultant scheme, although more
expensive due to the adopted point iteration procedure, did not require any
under-relaxation, while fdr the same problem SIMPLE was unstable requiring
under-relaxation. ‘

An analogous observation was reported by Srivastava et a1(66)
study of viscous shock layer equations. Viscous shock layer equations are
parabolic in nature with ellipticity introduced through the unknown shock

in their

shape.(67) In their study i1t was found that any attempt to solve the
equations'using parabolic procedures (with corrections on the shock shape
analogous to pressure corrections) required prdblem dependent under-
relaxation. To alleviate the need for practices using ad-hoc specification of
under-relaxation parameter, a solution scheme was devised that couples the two
relevant first order equations ;nd solves them simultaneously using either a
box or a staggered scheme. A A

A1l the above observations for the model problem are relevant in con-
sideration of the structure of SIMPLE/derivative algorithms. Therefore, a
procedure that treats fully elliptic difference equations by approximate para-
bolic methods merits further consideration in the present study.
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. The concept of coupling, and simultaneous solution for the two first
order partial differential equations of continuity and radial moméntum, of
relevance in the study of viscous shock layer structure, is demonstrated next
by considering the inviscid perturbation equations of compressible flow, i.e.,

| At y " 0 v.~‘ ; (5;1?)
u _av _ ,
ay “ax -0 (5.13)

where A = (1—M2) and M denotes the Mach number. Solution method depends on
~the sign of A; the equatibns,are hyperbolic for M>1, while for M<1 or M=0, the
equations are elliptic. '

Considéring elliptic equations, the above equations can be coupled using
(68) extended by applying the difference equation in two
sweeps; X and y directions. Using Central differencing scheme, equations
(5.12) and(5 13) app11ed at (j-1/2,k+1/2) and (j-1/2,k-1/2), where j.and k
denote grid locations in the x and y directions respectively, will contain
variables at (j,k), (j'k+1), (j,k-1), (j-1,k) and (j-1,k+1). However, these
equat1ons can be read1ly manipulated to obtain tr1-d1agona1 forms for the X.

Keller's box scheme

and y sweeps in the following manner: .
Applying the box scheme at (j-1/2, k-1/2) for equations (5.12) and at
(5.13)
A

i-1/2.k-1/2 ,.  _ ) |
G (uj,k Y51,k Y4, k-17Y5-1,k-1) (5.14)
2Ay (Vi ¥ Y5-1,6Y. k1Y k) = 0
S ( -V +v -v )- (u - -i =0
2ax Y3,k T V3,0 T Vg1V 1 kA 2Ay 3ok ¥ U597,k k=Y k1) S

(5;15)

where Ax and Ay denote grid dimensions in x and y, equations (5.14) and (5.15)
can be combined to yield: ' '

A1uj,k + B]“j—],k + clvj,k = D] (5.16)

where D] contains variables at (k-1).
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Similarly equations written at (j+1/2,k-1/2) yield:

Ausar e Y Bk TGVt D o Gan

where 02 again contains variables_at (k-1). Equations (5.16) and (5.17) can
now be manipulated to obtain a tri-diagonal form to readily yield x-direction
solutions for uJ'k and vj K for a given k-line. y-direction sweepskto
determine uJ and vj K for a given j-line are accomplished in a similar
manner. »

The above inviscid approach, although formulated using the box scheme,
can be extended to incorporate any discretization procedure by a suttab]e
elimination scheme. The key lies in realizing that an elliptic formulation
can be alternatively viewed as two parabolic formulations in two coordinate
d1rect1ons, cf. SIMPLE/SIMPLER algorithms. '

Treatment of the diffusion terms, present in general flow equations
cou]d be handled in a manner suggested by Keller for a box scheme, or in any
heuristic manner for any discretization scheme as long as the coupled nature
of solutions for continuity and momentum are preserved. Furthermore, incorpo-
ration of viscous terms tends to stabilize the solution procedure and does not

contribute s1gn1f1cant1y to solution d1ff1cu1ties

5.3 PRELIMINARY EVALUATION OF CANDIDATE TECHNIQUES

Due to the wideTy ranging nature of the techniqués discussed above,
regarding issues of ahp]itabi]tty, implementation and required computational
resources, a vigorous quantitétive evaluation procedure is difficult to
device. In this regard the expertise associated with a Technical Advisory
Committee specifically established for this program, as well as a critical
assessmeht of information available in the literature was utilized fully to
arrive at rational choices. The Technical Advisory Committee included
individuals active in the field of computational fluid dynamics with the

members:
- Dr. S. A. Orszag
- Dr. S. G. Rubin
- Dr. R. T. Davis
- Dr. C. J. Knight
- Dr. B. N.

Srivastava
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A close scrutiny of the candidate schemes considered, reveals a wide -
-disparity in relevant critical merits and shortcomings. Such 'issues pertain
to in/applicability (within the framework of TEACH methodology), extensive
further development and implementation, only marginal development over the
current algorithm capabilities, resources allocated to the present study.

Even though such issues were given only minor consideration in the foregoing
discussion that emphasized primarily accuracy, stability and .convergence .
“enhancement, the impact they have on a finite effort has to be criticale
assessed. The following discussion will thus:provide mostly a qualitative
justification for the choices adbpfed in the study. :

Use ofvexplicitly damped schemes that incorporate a fourth order dis-
sipation term in the transport equation and achieving higher order accuracy
via deferred correction techniques employing lower and higher order
(unbounded) difference operators, can be mathematically shown to proceed on
jdentical paths, i.e., second order accuracy can be recovered using first
order Upwind differencing for the convective derivative, if a correction term
evaluated at a previous iteration is included in the discretized equations to -
give at convergence a Centred approximation. However, the artificial viscos-
ity introduced in explicitly damped schemes has to be fine tuned to be
selectively effective in regions where it is required. Such a practice
strictly introduces issues of non-uniqueness and/or need for a priori know-
ledge of the solution. Furthermore, a rational basis for appreciating the
physical nature of the incorporated terms, in a manner similar to the Physical -
Advection Correction (PAC) of the Skewed Upwind Differencing Schemes, (SUDS)
is lacking. Even though for simple model problems the impact of damping terms
can be clearly identified, for the complex viscous, recirculating flows of
interest here, the determination pf the “bptimum“ dissipation coefficient and
the related issues of convergence and stability is usually determined in an
ad-hoc manner. ‘

Flux blending schemes, that attempt to optimally combine the bounded,
but albeit smeared, solutions of a lower order scheme with that of an '
unbounded, but more accurate higher order scheme suffer from similar prob-
lems. There have been utilized in the past, various formulations opefating on
different solution variables in a tailor-made manner. Recently, two formula-
tions blending first order Upwinding with SUDS have been assessed'by
Syed, et al(s) who concluded that the final solution might not be path’

-63-



independent. :In fact, it has been suggested that different initial va]Ues of
the adopted blending factor may produce different convefged solutions, where
convergence is measured by the level of residual source error. Even though
various arbitrary practices can be utilized to reduce or eliminate‘the result-
ing solution uniqueness, a scheme that incorporates the correct physical’
influence in the the determination of blending factors is preferable and
should alleviate the reported solution difficulties. o
Introduction of variational discretization techniques in complex, react-
ing flow field predictions (in the same vein as the established finite element
analysis of structural mechanics) is fairly recent and has not enjoyed compar-
able development and analysis as the corresponding finite volume/difference
methods. Even though the two formulations (finite volume/difference vs finite
element) can, in principle, be shown to be identical, and finite element tech-
niques afford greater flexibility in the treatment of complex geometries,
| practical issues of implementation, familiarity, maturity, etc. rule out.their
being considered as serious candidates. In addition, there exist comparable
problems of convective differencing and the reduced pressure interpolation to
“circumvent the checker-board effect of incompressible flows in most formula-
tions. e
Spectral methods enjoy enormous pobularity in transition/stability pre--
dictions and their use is becoming widespread in a variety of applications.
However, for practical combustor computations dominated by high Reynolds num--
ber effects and various coupled physical processes,. their routine use requires
extensive further development and computational resources. Lagrangian methods
were already found unsuitable for the problems of interest here, due to '
unresolved issues of rezoning and consequent numerical diffusion, implementa-
tion in three dimensions, etc. o ‘ '
Finally, adaptive gridding (and the related modified equation ana]ysis);
in spite of the intense current activity and interest therein, has not
achieved adequate maturity to consider its use in reacting three-dimensional
flow situations and thus remain a research topic. Furthermore, for coupled,
nonlinear equations, e.g., full Navier Stokes, modified equation ana]yéis»
becomes extremely unwieldy and cumbersome. '
Concerning the use of coupled numerical scheme/solution algorithms to -
substantially enhance convergence, a critical assessment as well as
discussions with S.V. Vanka of Argonne Labs revealed serious potential draw-
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backs associated with their use in the light of the criteria of

Section (4.4). In essence, these approaches are very much different in
philosophy, structure and implementational details than a general segregated
solution procedure, and thus require substantial departures from the methodolﬁ
ogy incorporated in TEACH. Furthermore, potential problems are anticipated in
. three-dimensional applications due to required computationa1 resources. .- These
and other related considerations (time and resource commitments for their
deveiopment being outside the scope of the present study) heiped exciude them
from further consideration. ‘

5.4 SELECTION OF FOUR SCHEMES FOR FURTHER QUANTITATIVE EVALUATION

Based on the above qualitative assessment as wel] as considerations
regarding relevant additional information available in the literature and ‘
prior experience, the following four most promising techniques were 1dent1fied

as deserVing further quantitative evaluation:
| 1) Second order upwind differencing scheme
"ii) Variants of skewed upstream differenCing scheme
iii) ~ variants of compact 1mp11c1t method
iv)  Strongly 1mp11cit procedure acce]erated by:
~a) Conjugate gradient aigorithm
' b) Block correction technique
c) Additive correction multigrid algorithm
It will be seen that the particular schemes selected address issues of
 both discretization accuracy and. convergence enhancement in a well-balanced '
manner. Detailed formulation emphaSizing issues of accuracy, stability and :
convergence together with implementational details, including computational'
requirements for the above schemes are provided in the next section. The
results of the two-dimensional evaluation exercises is presented in Section 7.
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6.0 DERIVATION OF THE SELECTED SCHEMES FOR TWO-DIMENSIONAL EVALUATION

6.1 FINITE VOLUME DISCRETIZATION AND SOLUTION 0F THE CONSERVATION EQUATIONS ‘
FOR A SCALAR, MOMENTUM AND MASS
A general steady transport equation governing the cqnservat1on of a
typical scalar, momentum and mass can be expressed for both laminar and (time-
averaged) turbulent flows as, equation (3.19):

2 1o 8. _ 2 12 . 6828 .
oX (pus) + r6 or (r-pve) (rﬂ ax) + l"6 ar (rﬂ ﬂ) + S (6.1)

where §=0 for two-dimensional (p]anar) flow and &=1 for axisymmetric flow.

The variable ¢ represent§ any one of the dependent variables (e.g., tﬁe veloc-

ity components u, v, w, species i, turbulent kinetic energy and dissipita-

tion). The exchange coefficient, rn, represents the sum of both laminar

and turbulent contributions and is interpreted as effective viscosity for u,

v, w, the effective diffusivity for species, etc. So denotes a generalized

source term. .Table (6.1) presents the particular forms of Sn adopted for
various variables.

Using the techniques and practices developed in Séctions (3.3.1) to
(3.3.3), eduation (6.1) is integrated over a finite control volume appropriate
for each variable 8, figures (3.1) and (3.2), to yield the following conserva-
tion expression: B

yn xe
(g = Ig¢ + dgp = 3p) - / f S, dxdy (6.2)
7 yS xN
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TABLE 6.1 TYPICAL SORUCE TERMS FOR RELEVANT VARIABLES

Variable o S ‘Source Term‘S;
o 9 au 1 a8 v, 9
u ax (e ax) tr aF (M ax) ™ ax

v : 9_ au 1l a v a_ e__ _ 9’
v - ax (Me ay),+ roar (r"e ar) * 2ug V o¢ (r) " ar
2 3.
rw “r ar (ve™)
k** Mo G - pe
€ K (C] Mo G Czpc)
f(mixture 0
fraction)

T akk ‘ )
mfu Either Sfu f Sfu,] = —Fp mfu ox\’ exp (- E/RT)
(mass frac-jor S = I S¢u,15fu, 2] |
tion of un-| where Sfu,2 CRmfupc/k_
burned fuel)
h 0 (except when radiation is present)

* pe'denotes effective viscosity
** G is given by:

(2}
]

2 2 : : - o “

au au au )

z Z (ax1 + ax?) ax1 +2 (%) +[r E;(r)] s 2 -g)]A -
i=] J='| h) 1 j -’

*okk It is supposed that the rate of combustion of fuel per 11m1t volume 1s
governed by the Arrhenius-type relation mfu Sfu 1 where F is a =

pre-exponential factor and E is the activation energy. ﬂA,BB denotes
the minimum of absolute values of arguments.

-67-




Adoption of Cartesian geometry for ease of highlighting the significant
aspects of the formulation is implied in equation (6.2) and throughout most of
this Section. In equation (6.2) each J1f denotes the total local transport
of 8 across the i boundary of the finite volume by convection ‘and diffusion,
while the last term signifies transport due to source generation/d1ssipat10n

By taking the east boundary as an example, J__ is expressed as:

ef

Jef = Cef + Def | (6.3)

where
n .
=f (pus), dy and f (r, 2 (6.4)
y .

To approximate equation (6.2) for each finite volume by an algebraic
equation requires specific assumptions about the variations of @ in the inte-
grals of equation (6.4) between the selected grid points in space. Making use
of the mean value theorem, that implies either constant or linearly varying
fluxes along each cell boundary, allows the integrals to be replaced by:

Cef = ceﬂe ’ ce = A.\/J(Pu)e
' (6.5)

d = f- Ay, /8x

0 i’ e ge i

ef

- de(ao/ax)e &x

where subscript e denotes the values of the associated quantities at the cell
interface. The subsequent step of expressing d and aa/ax) in terms of
nodal values is crucial in that it influences boundedness. stab111ty and other
characteristics of resulting solutions and will be taken up in most of this
Section. '

Introducing suitable approximations for o and ao/ax) as well as
the last term in equation (6.2), and subsequent 11nearizat10n of momentum
equations yie]d the final a]gebraic representation of mass and momentum con-
servat1on as:
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- ‘. v v o S oL
me Up Fmou, Fmovy tmoovg = 0 : ) | '(6.6)_

u u u, u . e
3pup = Z ap Uyp = C (g~ Pp) + b (6.7)
. NP » . N .

v :2‘: v v v ,,.! : '_ A
anp = ap Ynp C (pN - pP) +b . : + (6.8)

NP T

where g; denotes influences of neighboring nodes. The various vat1ab1es in
equations (6.6) to (6.8) have their usual definitions given in Section 3. The
absence of the dependent variable ﬁressure in the mass conservation equation
requires that special numerical techniques be used to solve equations (6.6) to
(6.8), and many of these techniques -are devised such that an equation for
pres- sure results. To minimize the computational requirements associated
with the formation and solution of the pressure equation, a segregated
approach is often adopted, Section (3.4.3). In the segregated approachA(e,g,
SIMPLE) an attempt to minimize computational requirements is made by "
introducing apprdxi- mations to the momentum equations so that each;hodal
velocity is expressed in terms of a local pressure difference;

—_ N 7\ Eu - oo
up = uP - (pE - pp) : | - (6'9)
s _ ‘

Substituting for the velocities in the algebraic representation of mass
conservation, equation (6.6), a pressure equation of the following form
results: ’ ’ '

P p P -
ap Pp = 230 Pyp t b o i (6.11)

NP

With equation (6.11) providing an equation for each nodal pressure, the re-
sulting set of linear algebraic equations for the conservation of mass,
momentum and relevant scalars can be conveniently solved.
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'6.1.1 Calculation ggg‘Discussion of the Interface Fluxes

To provide a clear understanding of the significant aspects of dis-
cretization schemes in a unified approach, the fo]?owing-discussion will ini-
tially be deve]oped‘in the context of the oné-diménsion51 analog of equation
(6.1) and hence (6.2). Furthermore, where appropriate.-refergnce will be made
to the specific details of the particular schemes presented 1n Section 5‘to
establish a unified framework for assessment. A
| Equations (6.1) and (6.2) in one dimension become:

d v _d de .
dx (pug) = dx (Fﬂ dx) + Sﬂ : (6.12)
- _p 42, _ - dey .
Jog - A —‘/” Sgdx = (eus - T, D, - (eus -1, §h, - s,V (6.13)
X . ]
w

whefe AV is the volume of the control volume. In equatioﬁ (6.13) the inter- '
face derivative of ¢ is conveniently approximated by employing the usual cen-
tred finite difference approximation characteristic of diffusion processes.
The representation of interface values of‘n,ihowever, is not aS'straight—: ‘
vforward and the approach used distinguishes one discretization scheme from

- another. '

_ 'The,discussion of various discretization schemes adopted in this study
begins by considering the Upwind Differencing Scheme (UDS) for u>0 (a quanti-
tive baseline), where the east face value of # is taken‘as_the upwind nodal
value of @, i.e.,

B =% . L (6.14)

‘ Thc advantage of this appfcach is the simp11c1ty and robustness of the
resulting scheme. Also in the absence of any significant diffusive or source
effects, the accuracy of this approach for one-dimensional flows is quite
acceptable. However, in the presence of diffusion or source effects, UDS is
only first order accurate and hence significant errors can arise. 'Thecefore
it is necessary to improve the accuracy of equation-(6.14). Recognizing. that
equation (6.14) is the first term of a Téylor Series representation of ee.i
the accuracy of equation (6.14) can be improved by including additional terms
of the series. For instance, _
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8% .
Bo = 8p + 5 (dx)e : (6.15)

where 6xi is the distance between nodes E and P. Now if an adequate evalu-"
ation of (da/dx) can be found, the evaluation of o “would be’ second i
order. An obvious choice is the centred finite difference representqtipn‘

about e given by:

dg E__P S (6.16)

Combining equations (6.15) and (6.16) and ‘substituting for @ as well

as ow into equation (6.13), it can be shown that the resulting discretiza-
tion scheme is Central Difference Scheme (CDS). With this perspective CDS can
be viewed as UDS with the upwind representation of @ corrected by a centred -
difference representation of the spatial derivative. The disadvantage dFéCDS
is the non-physical negative dependence of op on the node downwind of»ap,
which is referred to as negative influence and which can result in non-
physicaliosci]]atory solutions. l )

Natura]]y, there are alternatives to equation (6.16). One is to evalu-

ate the derivative using an upwind finite difference representation,

(4xle = Tox, (6.i7)

Combining equations (6.15) and (6.17) and substituting 1ntd equation
(6.13) the result is the Second Order Upwind (SOU) scheme. The advantage of
SOU is that, unlike CDS, negative downwind influences do not arise. Equations
(6.16) and (6.17) do not provide the only means of evaluat1ng the derivative
in equatlon (6.15). In fact, a complete family of schemes result from tak1ng
the following linear combination of upw1nd, centred and downward f1n1te d1f—

. ference representations for (dn/dx)
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e %
&

a( P W ) +b (=P E P

)+ ¢ (—o—
f’sxi_] T ey

) (6.18)
i1 '

where a+b+c=1. The fam1]y of schemes descr1bed by equation (6.18) . 1nc1udes
CDS and SOU as well as the QUICK Scheme of Leonard. (69) - The advantage of
equation (6.18) is that by appropriate choices of a,b and ¢, it is possible to
control the distribution of influence. Unfortunately, there appears. to be no
combination of values of a,b and c which ensures that the resufting'numerical
solutions do not exhibit spurious overshoots and undershoots.(70) Therefore
an alternative approach of evaluating-(dn/dx)e'is considered. |

v The evaluation of (dc/dx)e given by equation (6.18) is equivalent to
assuming the variation or profile of # between the nodal values of 8 surround-
ing the east face of the’;ontrol‘VOIUme. As a result, these schemes are
referred to as profile schemes. An alternative approach is based on physical
arguments. As mentioned previously, for one-dimensional flows the upwind
evaluation of oe given by equation.(6.14){is apprdpriate in the absence of
diffusion or sources. Therefore, the correction applied in equation (6.15)
‘can be interpreted as the correction necessary.to'account for the influences
of diffusion and sources. This physical interpretation can be arrived at by
first considering the non-conservative form of equation (6.12),

de

PU 4y = S A o , (6.19a)

dx Ty dx) * Sg
or rearranging;

ds _ 1

dx = pu [dx (Ty dx) +5,] | (6.19b)

Subst1tut1ng for do/dx in equation (6. 15)

B, = B, + —d Ei (r¢ 48 + s g ~ :‘V(s.zo)

VC]early in equation (6.20) “e is given by oP and any chaﬁges in @
that arise between the P node point and the east face due to diffusion and
source term influences. Consequently, the resulting scheme is referred to as

UDS with correction for diffusion and source term influences.
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To complete the description of the physical correction, the evaluation
of diffusion and source term influences must be provided. There are a number
of possible methods available. A convenient choice is to base the evaluation
of the corrections on the evaluations already made in the control volume,
equation (6.13). For instance, based on upwind control vo]umes;'the correc-
tion terms of equation (6.20) are given by: N

X, 8X.

—‘[ (f~ )+S] 5

2pu 8 dx 5o | (T (F, dx +.S .8V | (6.21)

)e
] dx y

The correction terms can also be based on downwind oohtrol volume val-
ues, as well as a linear combination of upwind and downwind controi volumes.

The physically based correction of the upwind estimate described above .
uses an explicit evaluation of the correction terms. That is, the correct1ons
are expressed only in terms of the nodal values of #. A more 1mp]1c1t
approach is taken in Operator Compact Implicit Methods (OCI), Section (6 4),
where the corrections are expressed implicitly in terms of operators and nodal
values of # which are both determined as part of the solution, The result is
an exponential scheme which accounts for convective and diffosive effects and
an implicit correction to account for source term 1nf1uences A '

In summary, for ‘one-dimensional f]ows, the SOU scheme, UDS w1th diffu-
sion and source term influences, and the OCI Scheme can all be expressed as an
Upwind difference scheme with correction to account for the variation in ¢.
The SOU scheme bases the correctton~on profile assumptions, while the OCI and
uDS with diffusion and source term influences employ corrections reflecting
- the effects of diffusion and sources. | , |

_ The 1mp11catlons of the above one-dimensional analysis can be eas11y
extended to cover two-dimensional formulations. Approximations of interface
values can again be accomplished by Upwind differencing. However, for multi-
dimensional flows use of UDS is accompanied with severe false diffusion, i.e.,
solutions display excessive amounts of smearing.

To eliminate false diffusion, a correction to the upwind estimate, as in
~equation (6.15), is required. The correction can be determined from profile
assumptions,Aas provided by equation (6.18), or a physical correction wh,ich-,~
for two-dimensional flows, must account for the effects of diffusion and
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source terms as well ‘as a component of convection. in one of the two coordinate
directions. For instance, the correction at the east face of a control volume

is given by:

-1 1 - ( ) + (F

(;)e = [;; -pV>ay ax gay)+s ]f{ _(5.22)

7 For multi-dimensional flows OCI also requires correction, through the
appropriate definition of operators, for the effects of the additional compon-

ents of convection and diffusion.
The advantage of the profile or physical corrections as described above

for two dimensions is that they are relatively straightforward to implement.
However, such implémehtationﬁ may also be subject to relatively large over-
shoots and undershoots, especially when flows are at a large angle to the '
gr1d. The primary reason these overshoots undershoots arise is’ because the
corrections for the additional component of convection, based on e1ther pro-
file assumptions or physical arguments, tntroduce non-physical negative ih—
fluence coeff1c1ents

An a]ternatlve is to use Skewed Upstream D1fferenc1ng Schemes(12)
(SUbS). In SUDS the two convective terms of equation (6 1) are replaced by a

single streamline derivative term:

& (pup) + 5 (pvo) - 2 . (6.23)

where V = V u2+v2 and s is the streamline coordinate. Upwinding along the
Streamline, the convective terms at the east face of a cont(ol volume are then

given by:

a v | |
oV 22 p (s, . (6.24)

where nu‘is the skewed upwind value of @ and L is the distance between the
locations where oe and ou are defined, figure (6.1). The correction of

SUDS can then be expressed as:
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‘B
R

L _
g, tt (gf . (6.25)

where (ao/as)e represents the correction required to account for diffusion
and source terms and is given by: '

@ 1 )a
(as)e = ( pV X

@ 3

Ty ax) * oy Ty ay

) + s ]e '(§.26)

_ Note that the correction to SUDS given in equat1on (6. 26) does not in-
clude a correction for any component of convection. A1l components of convec-
tion are included in the Skewed Upstream differencing.

In summary, for multi-dimensional flows, SOU, SUDS and OCI schemes all .
adopt an upwind representation of convection. Conventional 1mp1ementat1ons of ~
0CI and SOU employ upwinding along coordinate d1rect1ons while SUDS upw1nd
along streamlines. Furthermore, each of the schemes require correction of
Upwind differencing. In SOU corrections are detefminéd from profile assump-
" tions.. In both SUDS and OCI corrections are more physically based with cor-

rections in SUDS inc]udingsdiffusion énd source effects, and corrections.in
-0CI iné]uding effects for diffusion, sources and components of convection.
With this backgrdund it is appropriate to consider the details of the

schemes.

6.2 SECOND ORDER UPWIND DIFFERENCING SCHEMES®

6.2.1 Derivation and Characteristics of Finite Difference Equations

As discussed above, SOU schemes attempt to improve the convect1ve
accuracy of UDS by the inclusion of additional terms in the Taylor Series
Expansion for the interface value. The scheme will be developedm1n1t1a11y{in
one dimension to study its accuracy, stability and convergence characteris-
tics. Assuming a profile for oe in the form given by (uniform convective
velocity and grid), figure (6.1),

(6.?7)
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Figure 6.1 Control Volume Details for SUDS (Pps1t1ve§Ve10c1ty at East Face)
' and SOU ’
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“and similarly for ”w’ the net convective flux balance is expressed as: ,

de u 3 5 1
Ugx = ax (2% ~ 28+ 5 8g) v>0 :
(6.28)
u 3 1 A
sx (7 2% * 2 "5 fg) U 0

_ Substituting for the convective derivative in equation (6.19a) with no
 sources and incorporating the usual approximation for the diffusive fluxes

yields_é difference equation for op. The stabi]ity and monotonicity aspects
of the difference equation are conveniently analyzed as follows (u>o): The

discretized form of equation (6.19a) is:
2 - 28, + 0

j+1 i i-1
2
i

N

1 1 21 -
h (29 ~ 2857 %*29%.) 5 ) =0  (6.29)

h
=2,...N

_ -In the above i denotes the particular node and P signifies the ratio-
u/rﬁ. In addition to (6.29), the analysis requires the usual boundary con-
ditions,

=1 p =0 (6.30)

and the'fifst oFder upwind formula to be applied at i=1 to yield q], 1.e;,

7~ % ] N
- (8, - 28, +08,) =0
el 02 1+ 9%

Denoting P&x by Pe, the grid Peclet number, and ”i"i—l by a5 then
equation (6.29) becomes:

Pe (301. - a1_1) -2 (a._H_.I.- a,.) =0 ;-‘1=2, n .(6.31)“
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The boundary condition on a, is-given by (6.30) as:

a, = (1 + Pe)a, - (5.;2)
Rearranging equation (6.31) yields
2&.]-(2+?Pe)ai+Peai_]=0

1+

a three term, linear recurrence relation with constant coefficients. Thus

there exist constants A,B, 11, xz.such that

o, = mY o+t w=1, ....n+l

1 2

where A, and \_ satisfy

1 2
222 - (2 +3Pe) A+ Pe=0 (6.33)
j.e.,
3, . 2
k] 5 = /2 {1 + 2 Pe + 1 + Pe + 9Pe"/4 (6.34)

Notice that Pe>0 implies x] 2>0. A similar analysis yields identical
results for Pe < 0. g ‘

Use can now be made of equation (6.32) to obtain

2

Al1

2 \
+ Bkz = (1 + Pe) (Ax] + sz)

or,

2 2
A [x1 - (1fPe)k1] = -B [kz - ('I+Pe)).2]
Now equation (6.33) implies
) R
Aj - (1 + Pe)ry = Pe (—1—5——) j=1,2
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and from equation (6.34) o
Pe n-1)>0 and 2 (a-1) <o
2 ' _ 2 2

Thus, neglecting the degenerate case of -A=0 and B=0, AB>0,-and hence a is
of a uniform sign (bounded). . : : ¥ '

Regarding the stability of iterative techniques used to solve equation
(6.29) it can be shown that such solvers, are well conditioned and converge
rapidly with a maximum eigenvalue of the iteration matrix assuming a value of
2/3. Furthermore, a formal Taylor Series Expansion yields the accuracy of the
scheme as second order on smoothly varying or uniform grids.

There have been proposed alternative formulations of equation (6.29) due
to the extehded nature of the molecule implied therein.(71).
is:

One such form

dg 3 u_ lu o '
Udx =2 ax P57 %) T2 ax (B T i) u>0
~ (6.35)
3 u 1u y
2 ax (%t 0a) o s (8137 - b1,) U <0

The advanfage provided by such a rearrangement allows the second terms
in these expressions to be treated explicitly as a deferred source term, thus
enabling the strict tri—diagona] nature of the discretized equations to be
retained in implementation. ) ' '

It will be seen from the above discussion that SOU solutions in one
dimension are bounded, stable and second order accurate. Extension to multi
dimensions is straightforward and is based on 1nd1v1dua1 one-dimensional so]u—'
tions, characteristic of profile schemes, Section (6.1). However, in multi
dimensions due to possibility pf generating negative coefficients, albeit
minor, see equation (6.28), the solutions will not'necessarily be bounded.
Furthermore,ithe above one-dimensiénal analysis carried out for uniform sign
of the convecting velocity does not strictly ensure stabi]1ty for velocity
changing sign across a cell, characteristic of recirculation zones. Use of
Second Order Upwind diffefencing by.Coak]ey(72)
the vicinity of a shock where the Q eigenvalue changes sign across a P-shock.

encountered oscillations in
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Finally, characteristic of profile schemes, some smearing of profiles is’
expected, as the scheme does not explicitly account for the misalignment

between the grid and the streamline.

6.2.2 Solution Details

The matrix equation generatéd by the finite d1ffe(ence molecule implied
by (6.28) and its two-dimensional analog is not generally amenable to solution-
by direct application of the Tr1—Diagona1 Matrix Algorithm (TDMA) or its:
Alternating Direction Line Gauss-Sidel (ADI) equivalent; variants of Penta-
Diagonal Matrix Solvers formulated in ADI fashion(so) have to be used with
‘attendant computational costs. Alternatively, discretization relations pro-
vided by equation (6.35) that retain the strict tri-diagonal nature of the
formulation could be used (adopted in this study). vHowever; iterative stabil-
ity of such solutions incorporating.a deferred correction strategy is not
| assured.a priori in multi dimensions and solution costs might be relatively
high. ,

A further point in obtaining solutions using the SOU scheme concerns thé
application of boundary conditions. ODue to the extended nature of the mole-
cule, near the boundaries the scheme must be modified using conventional prac-
tices, including the use of Central or lower order Upwind differences. Shyy
et a1(73) examined in detail the influence on the solution of adopting
implicit or explicit treatment of boundary conditions at the outlet boundary.
It i1s also claimed by Gupta and Manohar(zg) that the overall accuracy of the
scheme is severely affected by the inconsistencies introduced in boundary con-
dition specification. 1In this study Hybrid differences were used near "“flow

boundaries" on the grounds‘of robustness.A

6.3 ADVANCED SKEWED UPSTREAM DfFFERENCING SCHEMES (SUDS)

6.3.1 Influence Point Equations

The two SUDS variants considered injthis study are primarily designed to
reduce the error associated with the evaluation of convective fluxes at the
interfaces, cef in equation (6.5). In both schemes this is accomplished by
i) breaking each control volume face into.two parts thereby effective]y in-
creasing resolution and, ii) improving thé evaluation of the influence of
nodal values of & for control volume evaluations.
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Td increase the resolution of the convective flux evaluationr.each con-
trol volume face is broken up into two parts. For‘examplé; the e control vol-
ume face is broken up into the parts shown in figure (6.2). As a result, the
convective flux evaluation at the e face is giveh by: -

< _r . c
Je = f (PuB)odY = Joge * Jene .
’ Ay . :
where B . ' - - (6.36)
€ - (pug) dy ; ¢ = (pup) d
ese _/ pUB) LAY ene f PUB) 0¥
by ‘ &y

Considering, now the evaluation of Jese and 1nfroducing the previously used
approximations; i.e., » _ i
' i)-(pu)e is constant along the ese portion of the e face,
i1) 8 varies at most Jinearly along the ese face,
then '

1 = (pu) 8 " (cf. equation (6.5))  (6.37)

where éese is the value of midway along the ese face.

It is therefore necessary to evaluate oese in terms of the surrounding
P,E,S and SE nodal values of #. The approach adopted here is to ensure that
the evaluation of # is based on the physical influence of the nodal val-
ues of @ on ”ese' Stubley.(74)v
an influence point value of #. _ ,

The next step in the discretization is to define how the influence point
value of 8 is related to nodal point values. However, before proceeding with
this, it is necessary to introduce some additional terminology. First, bor-
rowing from the finite element approach, Section (5.1.6), the four nodes sur-
rounding the influence point can, in fact, be seen to define the four corners
of a rectangular element, and the e]ement,'so defined, is made up from quad-
rants of four different control volumes. Also, by introducing two influence
points along each control volume face in domain, each element contains four

For this reason, °ese is referred to as

influence points. The configuration for the element containing Dese is
shown in figure (6.3). '
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It now remains that ”e ~ must be expressed in terms ofinodal values of

se
¢ and that the influence of the nodal values of & on @ must reflect the
correct physical influence. As suggested by Raw(Io) one way of accomplish-

ing this is by way of an approximate algebraic repfesentation of the relevant
differential equation. This is discussed next to derive the influence point .
equations for the linearvprofile variant of SUDS, (LP-SUDS).

The LP-SUDS influence point equation for face values of @ can be arrived
at by considering equation (6.1) at each influence point. For instance, at
the ese influence point, equation (6.1) can be_wkitten as:

'-Cese B Dese’ * Sesev o ‘ (6'38)
where C represents the convective terms, D, the diffusive terms and S the
source term. To derive an influence point equation, an approximate represen-
tation of each of the terms is required for each influence point.

Consider the convection terms, C, written in non-conservative Cartesian

form,

where V = \/uz + v2 and ds = u/V dx + v/V dy
To approximate the above equation algebraically, original skewed upwind-
ing ideas are upwinding employed such that

) "}
: : 39 ese u
c = pV (5 = oV (—) (6.39)
ese 3s ese L

where ou is an upwind value of # and L is the distance between the upwinded
point and the influence point.

To illustrate, consider the case shown in figure (6.4) where the stream-
line through ﬂese is such that it intersects the s control volume face to
thev1eft pf oese' In this case the value of L is as indicated and the
upwind value of 8 is linearly interpolated between ”sse and ns
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a a A '
B, = p 8o * (1.7 4) O | . (6.40)

where o 1s in turn 1nearly interpolated between the nodal values of ﬂp
and os. The genera] rule for the ca]culation of t and the length scale L
js to take the local streamline, passing through oese' upwind until‘it '
intersects an edge of a control volume quadrant. Then a linear interpolation
js used along that edge between appropriate nodal values or influence point
values. Therefore, if the upwind portion‘of the streamline intersects a con-
trol volume quadrant edge between two influence points, the value of ou is .
determined by linearly interpolating the two influence points. Similarly, if
the upwinded streamline intersects the line joining two nodes, the linear
interpolation of b between the two nodes is used. Implementations us1ng vari—
ants of such practices are discussed later in Section (6.3.3).

As d1scussed above the value of o along quadrant edges is determined
by linearly interpolating between noda] or influence point values of #.
Equivalently, uu is determined by assuming a linear profile of # between
nodal or influence points. Hence, the resulting scheme is referred to as 1in-
ear profiie SUDS. In a later section a different evaluation of nu adopted
in Mass Weighted SUDS is described. A

Considering next the eva]uat1on of diffusion terms in equation (6.1),

_a 28, a8
D=x (T ax) * (ro ay’

means have to be provided to ensure that no non-physical influence results due
to their incorporation in the influence point equations. Thus D is usually
split into two parts, the component normal to the control volume in question,

Dn, and the tangential component, Dt. for oese’ these are:

n_a_ a8
0" = ox (T ax)
t_a a8
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 An approximate representation of 0" is given by:

_ : 5. - 9 s -8.)
" = f r, { E ese _ _ese P}

+ -
2"t

(6.41)
(Ax+.+,Ax—)/2 e

where the distances Ax+ and Ax are indicated.in.figure (6.5) and f is a

correction factor. The correction factor f, is ?equired_for two reasons. -
First, if upwinding is used to represent the convection terms at the inf]uence'
point and Central differencing is used for Dn.,then after combining C and

an, the most accurate evaluations of ”esé require that f range from 0 to 2

depending on the grid Peclet number. Secondly, the correction factor is re-
quired to ensure that negative downstream coefficients, which are non-physica]
and can result in spurious spatial oscillations, do not arise in the control
volume equations. It can be shown that for thié condition to be met it is
sufficient to assign f the value of 0.5. In the interest of simp]icity_fhis_
assignment is adbpted in the present study. ‘ ' '

For the tangential coMponent of D, the following form is adopted:

T (B -0 8 ~F }
ot = r e ese ~ _ese SE } ‘

9 ayt72 ey + aytr2 .
(6.42)

eyt ey )22

'whergfae and ”ese and distances Ay+‘and Ay— are as shown in figure

(6.5). To evaluate oevand oSE:in terms of nodal values linear interpola-
~tion can be used. However, to ensure that no significant negative downstream
coefficients arise,'the values of 2. and ‘8

are determined from the
relations: ’

St

¢e = (1 - A) oP + AuE (6.43)

oSE = (1 - A)AﬂS + AoSE (6.44)
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where
= (1 - ey -8

' +. - -
Pe = Ploce (ax "+ ax )/rb

= ax /(ax" + ax")

which can be derived by assuming that transport of s is locally one-
d1mens1ona1 along the x- coordinate direction.

To arrive at the final form of the influence point equation con51dera—
tion has to be given to approximating the source term, Sese. If no source
term 1nf1uence is desired, then S se=°'- However, to include this source
term influence (STI), then, the evaluation of S ese is based on the known -
values of S in each of the surrounding control volumes. In the present study
if the x component of velocity at oése is positive, then S__  is taken to
be the value of S in the P control volume. Otherwise, Sese assumes the
value of S in the E control volume. '

6.3.2 Assembly of Influences and Discussion of the Finite Difference
Equations ,

Comb1n1ng together the above approx1mate representations of each term of
: the 1nf1uence point equation, i.e., '

= nX y - .
Cese - Des Dese Sese (6.45)

prov1des a re]at1onsh1p between ] ese’ the four noda1 values of # as we]l as
the three other influence point values of ¢ conta1ned in the element, figure
(6.3). 1t is important to re-iterate, that, as discussed by'Raw,(lo)
essential that equation (6.45) adequately accounts for the appropriate

it is

physical influences.
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Having described the manner in which the influence point equation for
°ese is derived, it is a simple matter of repeating the procedure for each
influence point contained in the element. The result is a set of four linear
algebraic equations at each influence pdint involving four nodal values of @
and four influence point values of . #. It is then a simple matter of inverting
a 4x4 matrix to be able to express each of the influence point values of @ in
terms of the four nodal values of ¢, Section (6.3.4). Moving from element to
element, then the same procedure can be repeated so that each influence-point
value of g in the computation domain can be related to surrounding nodal val-
ues. Finally, substituting these relations for influence points into the
evaluations of convective.fluxes i.e., equation (6.5), the .control volume bal-

ance between convective fluxes, diffusion flux and source terms given by:

c ., _ € ¢ ¢ c .. _.c D D _ D D
Jese * Jene T Jwsw T dunw * dnne T Innw T sse T dssw e Tl T dn T st Sy

can be expressed in terms of nodal values as:

%% 7 %% T W T OO T %% T e T e T Ose®se T swise + b,
- (6.46)

Along with the representation of boundary conditions, the result is a set of
linear algebraic equations for which a solution for nodal values of 8 can be

found.
As will be seen from an examination of (6.46) nine nodal values of @ are
involved. The coefficients of equation (6.46), qps Ap. .o ag, are such

that

aP > aE + aw + a, + aS +';aNE + aSE + an + a:s‘W
Also, by the specific choice of algebraic relations used to represent the
influence point convection and diffusion terms, the coefficients on the nodal

values downstream of #_ are not negative, thereby reducing the occurrence of

P
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non-physical oscillations in the solution. 'However, a rigorous stability,
accuracy and convergence analysis of the kind_Qescribed in Section (6.2.1) for
the SOU scheme is exceedingly difficult to accomplish for equation (6.46)

a priori, and hence such characteristics will have to be established by compu-
tational éxperiments.‘Section (7.3.2).

A close study of equation (6.46) further reveals that, because a linear
profile assumption is made to express ﬂu in the influence point equations in
terms of the surrounding values of 8, the coefficients of nodal values that
are not directly downstream of ”P may be negative. To i]]ustrate. Eonsider
uniform flow angled to the grid ax = 0.1, Ay =0.1 such that u = 0.5, v = 1.0
and Ty = 10—6. For this case the a coefficients normalized by a, are: -

0.0 0.0 0.0

A 2N 3NE
a, a3 = |-0.1153 1.0 - -0.1154
0.5769  0.6923 -0.385

Asw 3s 3se

As a result there exists the possibility of spurious oscillations in the solu-
tion of 8. Although these negative a coefficients do not produce any large
osc111at1ons as will be demonstrated in Section (7.3.2), there are some app11-
cat1ons such as the k equation of |k - ¢ turbulence model, where 1t is
essential that the solution be bounded. In this instance the Mass Weighted
SUDS which is described next, can be used.

6.3.3 Mass Weighted Skewed Upstream Differencing Scheme (MW-SUDS) for

Positive Definite Variables

As discussed by Raw,(75)
essary to prevent any node external to the control volume from having a net

to prevent negative a coefficients it is nec-

effect of transporting a convected variable out of the control volume. To
accomplish this an alternative evaluation of n in equation (6.40) is re-
guired where now, ﬂu is determined by 1og1ca11y deducing where the mass
crossing the ese face originated. Consider the case shown in figure (6.6)
where, mese' the mass flux through the ese face,is positive and known. The
first step is to assume that there are two possible contributions to mese
i) from msse, the mass flux through the sse face and ii) mP, the mass flux
through the surfaces formed by joining the locations ’s' ’P' and ae.
The seconq ;tep is to determine mP from mass conservation, i.e.,
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mo=m _ -m__ (6.47)

Now, if m > LI then all the mass crossing the ese face originated
from the sse face. Therefore, o

6 =98 - © (6.48)
By similar arguments, if m_ >m then,
p ese .
8 =8 , : © (6.49)

Finally, if m >m and m >m_, then bothm and m_ con-
ese sse ese P sse P

tribute to mese in the proportions

m Mo
=232 and —— , respectively.
ese ese
Therefore,
Msse “p .
, o Msse, ] (6.50)
U Mgge SS€ Mese P

Combining all three cases together, the evaluation of au in equation (6.49f
is replaced by:

.ﬂu f a ﬂsse + (1-a) BP ’ ‘(6.51)

where a = MAX (MIN (msse ese’ 1.0), 0.0). Considering the evaluation of
a given above the resulting discretization is appropriately referred to as
Mass Weighted SUDS (MW-SUDS).

Adopting MW-SUDS, the a coefficients normalized by a for the same

P
uniform angled flow case described previously becomes
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It is ev1dent that mass weightlng has. removed the occurrence of negative a
coeff1c1ents but, a]though it 1s not obvious from the coeff1c1ents, some false
d1ffus1on has been introduced. However, the resulting errors are considerably
smaller than those that arise when the Hybrid 5 point discretization schemes
are employed. . I1lustrations of this point are made in Section (7.3.2).

6.3.4 Further Considerations in the Implementation of Advanced SUDS Schemes

The LP-SUDS and MW-SUDS schemes considered above, involve evaluations of
- the coefficients of influence point equations that require the inversion of a
4x4 matrix in each flux element. These costly inversions are required because
each influence point is implicity related to adjacent influence points. In
this section an alternate explicit evaluation of the coeff1c1ents of the in-
f1uence point equations is described which does not requ1re the 1nvers1on of a
4x4 matrix. o ‘

_ Considering equations (6.38) and (6.39), an eiplicitzformolation‘for
LP-SUDS is accomplished by computing ou and length scale L in equation
(6.39) in a manner compatible with upwinding the local streamline passing
through uese until it intersects an edge of the flux element, figure (6;4).
Then, a linear interpolation is used along the flux element edge between
appropriate nodal values. Upwinding to flux e]ement edges instead of to con-
trol volume quadrant edges as in the 1mp11c1t approach is necessary to ensure

an explicit influence point equation.
| | To evaluate the diffusive term of equation (6.38) at the ese tnf1uence
point,-Dese is determined from a bilinear.interpolation of the_approximatei
values of D available in each of the surrounding control volumes. Note that
in the interest of simplicity best estimates of_the-nodal values of the vari- -
ables are used to evaluate the control volume D's. Naturally, this deferred
correction approach requires iteration which is readily incorporated into the
jteration procedures used to solve flow problems. |
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The evaluation 6f the sourée term Sese for the explicit influence
point equation is determined in a manner similar to Dese.‘from a bilinear
interpolation of the surrounding nodal values for S.

"~ The explicit influence point equation for MW-SUDS is very similar .to the
jmplicit approach. As in the implicit approach, the upwind value of @ is
based on a mass weighted aVerage of surrounding nodal and influence point val-
ues of 8. In the explicit approach developed by Huget.(?o) ouiis given By
a similar but not identical relation to equation (6.51), i.e.,

. = . ' _ ’
By = *Pgse ¥ (1-a) oP : (6.52)

] ' 3 .
where osse is not equal to Gsse' Instead, osse is given by:

} i

oo = Bosese + (I-B)os (6.58)

where B = MAX (MIN (~msese/msse._1.0),'0.0) and m___ is the mass flow
crossing the quadrant face directly south of the ese face. To ensure that no

‘negative a coefficients arise,

(6.54)

For the explicit MW-SUDS the diffusion and source terms of the influence
point equation are as described for the explicit LP-SUDS.

Finally, the evaluation of » ese 25 determined above is appropriate for
hwgh grid Peclet numbers. However, for low grid Peclet numbers a bilinear
interpolation is more appropriate and for intermediate grid Peclet numbers a
combination of the two evaluations can be used, exploiting the flux blending
strategy discussed in Section (5.15). Specifically, the Skewed Upstream dif-
ferencing representation and bilinear representation of # ese’ rgspective]y

b .
denoted by ”ese and- 6ese' can be combined in the following manner:
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Boge = ¥ gy + (1-9) B0, o (6.55)
where
5+Pe2

The given evaluation of v is chosen so that the introduction of a bilinear

1nterpo1ation for o ese ~does not introduce any negative a coefficients. Note
. s
that the above equat;on forbnese ensures that for’ IPe|>>1 ese = ”ese’

and for [Pe| <, B e = 0 €SE

6.3.5 Boundary Conditions

Consistent treatment of the boundary conditions compatible with formula-
tion of LP-SUDS and MW-SUDS described in the pkevious sections, has been

0
implemented by Raw(]o) and Huget(3 )

tions. However, in this section a specific treatment of boundary conditions
- appropriate for use in the Pratt and Whitney 2-D TEACH code will be cons1dered.
The default layout of the numerical grid adopted in most production
codes based on TEACH structure is such that, for a scalar, the boundary is
straddled by nodes. However, the Pratt and Whitney 2-D TEACH code (Appendix A
describes a similarly structured 3-D TEACH codé) overrides this default by
moving all fictitious nodes that are outside the computational domain so that
they are coincident with the boundary. In the flux element structure of
LP-SUDS and MW-SUDS this shift of fictitious nodes is readily implemented and
results in flux element boundaries, quadrant boundaries and the boundary of |
the domain being coincident, figure (6.7). Note that no adjustment of the
flux element is required for u and v velocity nodes which, by virtue of the
staggered grid, naturally fall on the boundary. This includes u velocity
nodes'along east and west boundaries of the domain and v velocity nodes along
north and south boundaries of the domain. ‘

- In addition to the adjustment of the grid layout in the vicinity of
boundaries, the Pratt and Whitney 2-D TEACH code also assumes that for control
volumes adjacent to the boundaries, a&E, an aSE and aSw are zero.

Since this assumption permeates the entire code, any change regarding this
| rassumption would kequire a complete restructuring of the code. Instead, the

for scalar as well as flow equa-
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assumption is retained and only MW-SUDS is used in flux elements that are
adjacent to boundaries. It can be shown that the use of MW-SUDS will generate
coefficients which satisfy this assumption. T

Finally, for axisymmetric problems, all length, areas and volumes of a
flux element are calculated accordingly, and any additional terms that arise
~in the differential equations representing momentum conservation are included
in the integration point source term.

6.4 COMPACT IMPLICIT DISCRETIZATION SCHEMES

Most of the discussion pertaining to Compact Implicit discretization
schemes will be developed in a one-dimensional context for clarity.
Extensions to multi-dimensions are given in Section (6.4.1).

6.4.1 Derivative Compact Implicit Scheme (DCI)

Consider the Cartesian, linear convection-diffusion equation of (6.1)

with p=1,
Lx = S(x) (6.56)
where
2
X d ¢ do
L = I == + uz>
adxz dx

is the spatial differential operator with spatially constant diffusion coeffi-
ciént 2 and convective coefficient u and the source term S is a function of
the independent variable x.

"The DCI approach is most readily described by first considering the dis-
cretization of equation (6.56) using standard second order centered difference
representations of the derivatives, (uniform grid of spacing h):

' ~ 9
i i-1
de Al + 0 (h?) (6.57)
2. o, .-28, + 8
d ? o ¥ 21 i-1 + 0 (h2) (6.58)
dx h
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where ﬂi is a discrete approximate value of # at x=xi and h is the spacing
between discrete points. Using equations (6.57) and (6.58) in (6.56), an
explicit relationship can be derived that governs the evolution of 8 in the

form:

N

(O +28 0, -20,+00 -0, = ﬂ; S, (6.59)
: 4

where Pe is the grid Peclet number. _ ‘
o The DCI procedures depart from the usual exglitit form of discretization -
described above by seeking relations between the derivatives in equation
(6.56) and s that implicitly involve eva]u&tions of the derivatives at neigh-
bouring discrete points, Section (6.1.1). DCI schemes were discussed by
COllatz,(76) Krause et al m
integration, Adams(78) under the name of Hermetian finite differences and by
Kreiss as reported in (31), who coined the Compact Implicit terminology. The
standard DCI apprqximations to the derivatives of equation (6.56), given by:

who referred to their use as ‘Mehrstellen

] ] ) .
B, + 48, + 0 6. . -8, -
1 ; 141 —11135——1—1 + 0(nY (6.60)

By 1 108y + 8y, B34 ~ 285 t 8,
2 = 2

+ o(hh (6.61)

where g' and g" are representations of d&/dx and dzb/dx2 respectively,

at discrete locations, can be derived by simple Taylor series analysis.
Because of the implicit nature of equations (6.60) and (6.61), the sim-

ultaneous solution of the following equations is required:

it ] .

t - .

g% t U8y = S, (6.62a)
1-1 -

8 1-1) (6.62b)

] ! 3
YA+ 850 = h (i
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f.]Oﬂ{ + ot .-261 + ﬂi—l) (6.62¢)

_o' i+

%1 2 (2,

h j+1

for the values of g, ', and ¢". Equations (6.62) are easily solved by the .
application of a block 3x3 Tri-Diagonal Matrix Algor1thm (19) ’
‘ Incorporation of boundary conditions in (6.62) is accomplished via

either,fburth order one-sided representation of the various derivatives using
Taylor series or Pade' approximations. Rubin and Giaves(ao) derived the

following fourth order representation of o'.

) ' " " ' -4 . .
By, -~ Byt hai 2 (2»1+1 + ”1) =0+0(h) , (6.63)
Alternat1ve1y. a fifth order Pade' approx1mat1on relating the first and second
der1vat1ves is given by: '

h2 "

n ' 1 h_ u- _ 5
g. - 9 +5 (:a_i + ”ifl) T (01 v qi+1) =0 +_0 (h ) (6.64)

i i+

-'Tﬁe DCI method discussed above is formally fourth order and cén be cast
intb a block tri-diagonal form. -The majdr shortcomings of DCI are:
: i)  the inherent grid Peclet number limitation, restricting Pe to be
 of order 2 _
i) the need for closure equations on the derivatives at the boun-- .
' daries ’
iji) the need to solve sets of block tri-diagonal equations with par-
- ticularly large blocks (7x7 for a scalar in three dimensions).
There are several ways to overcome these drawbacks. One approach is
given by the subclass of Compact Implicit methods called Operator Compact
Implicit (OCI) methods. Several OCI schemes are considered in the following
section.

6.4.2 :Generalized 0CI Schemes .
' (81)

assumes the existence of tri-diagonal relationship between

The classical OCI'method, first postulated by Swartz and later by

(36)

Ciment et al,
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g and the discrete representations of Lx denoted by l:x. guided by the
forms of equations (6.57) and (6.58), i.e.,

W p e _ X .. Px. e
Pl rry=af o rag rag

i-1 .(6.§§?

i+1 -
or

R {8} =of£’}

R and Q are tri-diagonal matrix operators. The coefficient of R and Q ean be
determined in a number of ways including the Taylor series analysis provided
in Appendix B. - ‘ A

COCI adopts the following tri-diagonal operators R and Q to discretize
equation (6.56) in the form given by (6.56):

p 2
q 60 + 16 (Ujq ~ Y5902 — Uy, vy 42

e
q =6+ (Sui —«2u1_])z

=6 - (5u; - 2u,. ) (6.66)
a = I PR D .
e__a W, P e -

ro= oh? [Q7(2-2u; ) + a7 (2¢zuy) + a7 (2463205 ) ]

w_3a W, P, e

ro= on? [a7(2-3zuy ) + 9 (2-zuy) + q (2+zuy,,)]

P = (re+rw), z =

Fb

An alternative derivation, valid for variable grid spacing is presented

by Ciment, et al. (36)
It will be seen from the above discussion (equations (6.65) and (6.66))
that for one-dimensional problems, COCI solutions can be obtained using a

single scalar tri-diagonal decomposition when-cx is known from

4:x <L = S(x) equation  (6.56)
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Further, COCI does nothrequire boundary‘c1osures'for higher order derEva-
tives. Instead, evaluations of Lx at boundaries is required, but these are
readily determined from equation (6.56) and the supplied conditions of @. ‘
Therefore, by adopting the OCI approach two of the three drawbacks of DCI have
been overcome. However,. there still remains the problem of a restrictive grid
Peclet number limitation. For the COCI scheme derived in Appendix B
analysis(ez) has shown that solutions remain bounded for Pe < \ﬁ??'= 4.208.
HoweVer, the behavior of the numerical solution can be very non-physical at a
considerably lower value of Pe, Section (7.3.3). In fact, non-physical
behavior results when Pe>2. In attempting to remove the restrictive Peclet
number criteria, Berger, et a1(37) were led to the development of a General-
ized OCI (GOCI) family of schemes which suffer from no such restrictions.
These will be discussed next. ' »

Berger, et al began by mathematically summarizing the properties of the
tri-diagonal matrix operators R and Q of equation (6.65) that are required to
ensure a physical (i.e., bounded) solution to

2
Lx = I g—% + U
: dx

IQ.
1.3

= $S (x)

a

X

8 (0) =‘a0 s a(l) = a, rbzo ; w0 (i.e. advection from x=1 to -
x=0) and S(x) >0. A ,
These properties are postulated to‘be: A
i) rwzo (downwind influence of ¢ cannot be negative)
ii) - re>0 (upwind influence of ¢ must be positive)
iii). —rpz (re+rw) (diagonal dominance)
iv) qezO, qwg 0,qu 0 (operator influence must be pos1t1ve)
v) re>rw (upwind influence on # must be as large as downwind

influence on @)

. e
vi) qpuiz q u;

1

it q?_] (to ensure invertability of Q)

A review of the coefficients of R and Q of COCI, equations (6.66) re-
vea]s that the above requirements cannot be satisfied for all grid Peclet num-
bers, thus it is necessary to re-examine the structure of truncation error

expression given in Appendix C.
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The truncation error, v, associated with equation (6.65), i.e., .
. x . . N B
7 =R (¢i) -Q (Li)' . . (6.67)

where 2, and Lf are defined as the exact values of & and L respec-
tively, at the i'th discrete location, can be expanded in a Taylor series,

2.2 3.3

%, + T'e) + T2 + T3+ TRl w0 (6.68)

T= T+ T+ T

where Qn = dné/dxn, see Appendix C for definition of the T terms.

Unlike the COCI method that strictly assumes T3 = T4=0, a family of
possible fourth order OCI schemes results by relaxing the constraints on
T3 and T4 such that, T3 = 0 and T4 = 0(h4), Unfortunately, as shown
by Bergeriet at (37), there is still no unique evaluation of the ‘
coefficients of R and Q which satisfies the above requirements. However, by
further relaxing the constraints such that

T3 = 0(h4) ; T4 = 0(h4) (6.69)

then, a family of fourth order OCI schemes results that satisfy the above
requirements. '

By recognizing from equations (6.66) the R can be exﬁressed in terms of
Q, the family of OCI schemes resulting from equatioh (6.69) can equivalently
be viewed as a family of coefficients for the Q matrix operator. Furthermore,
it is postulated that the coefficients of ‘Q can be expressed as the following
polynominal functions of z (c¢f. equation (6.66)):

w o w0 w1 w,22 w33 W, v v ' (6.70a)
q =g +q Z+q Z +q Z +....+q z
e e,0 e,] e,2 2 e,33 e,v v (6.70b)
q =94 + q z+q 7 +4 z + .... +q F4
qp - qp.0 N qp,lz ' qp.2;2 . qp.323 . qp'”z° (§.70c)

where the coefficients of the polynominals are functions of u and are indepen-
dent of[‘ﬂ. (Note that the Q of COCI belongs to this set).
" From equations (6.69), the evaluations of T given in equations (C.4) in

Appendix C and a substitution of the polynominal functions for Q gives:
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3 _ Foh [t3’0 + t3’]z + t3'222 + 0(23)] - 0(h4) _ (6:.71a)
2 : . | .
T - r, (e % 42 + 0271 = ot | R (6.71b)
where
_t3,0 qw,O e,0 (hdy, 0 _ qp,O -5 (qe.O + qw,O) - o(hz)_

3,7 w1 e 1, e,0 w,0  p,0 2
t = 4 - (2 Ujyq * 2q Uj_y - 4 u1) = O(h,)
4.1 p,1 .1 e,] e,0 w,0 _
t| =q - i (@' +q | ) = (3 uygm @y ) = 0
| | L | '
3,2 _ w,2 _ e2 1 | oW, _ Pl N .
ot =q q 6 (2q Ui +'2q Uy 4- 4 "i) = Q(hi

Further analysis of equations (6. 70) with respect to the requirements
(1) to.(vi) reveals that the following conditions on the highest order (v-m)
polynominal coefficient must be satisfied:

e,m

"™ >0, ¢""

,m e,m
=0 qP uy =q

(6.72)
‘and that »=3 in equation (6.70) is the lowest order of the po]ynominais

Based on the results of equation (6. 72),0the coefficients of equations
(6.70) can be selected. Begin by choosing qp’ =60 consistent with COCI

results. Setting tsfo = t4’0¥ 0 it then follows from equation (6.71) that

e,0 w,0

g’ =q'" = 6 : (6.73)
‘Making use of the fact that,
Ujeq = Uy + O
ui_] = u1 f 0(h)
| 1/2 (U1+] + ui_]) = u1 + 0(h)

combined with the t evaiuations of equations (6.71) it can be shown that,
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™ - T - 3, + 0(h?) - (6.74a)

0® = &g+ 3uy + 0(n%) ' “46.74b)
w,2 u

€2=9" 4 T% P eomny (6.74c)

Finally, from eduation (6.72), it is concluded that,

qw’3 =0 : (6.75a)

3 = q (6.75b)

The .remaining unknown coefficients in equations (6.70) are qp'] P.2

b q T,
qw'ziand.qe's. Substituting equations (6.73), (6.74) and (6.75) into

equations (6.70) and simplifying gives:

=6+ (p, - 3)Pe + szez_ ' (6.76a)
e 2 3 '

g =6 + (p] + 3)Pe + (p] + p2)Pe + p4Pe , (6.76b)
_ A - u p

qp = 60 +'10p]Pe + p3Pe2 + —iﬁl——iPe3 (6.76c¢)

1

where the vet unknown constants are:

w,2, 2 _p.2,2 e,3

)1 3
Py = q" M0uy 5 Pp=0q " /Uy, Py =0 /Uy ;p,=0q""/u

i

The choice of any one of p] to p4 is arbitrary with the remaining
p's to be evaluated from requirements (1) to (vi). One choice is to set
p,=3. For uniform u (ui=u

]
that,

1+1=u1_]) and p]=3 it can then be shown
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p, =0 - | (6.77a)

2
py = 9 - © (6.77b)
Py=1.5 - - (6.77c¢)

. Substitution of equations (6.77) into eqhationé (6.76) leads to a spe-
cific GOCI scheme valid for generating bounded solutions for“all values of Pe
with u constant, which numerical results have tended to suggest is optimal.

q" =6 | o .  (6.78a)
q® = 6 + 6Pe + 3pe” + 1.5Pe° (6.78b)
& = 60 + 30pe + 9pe? + 1.5pe> - (6.78¢c)
and ffom equations (6.66) o o ' |
' LML, |  (6.78d)
r® = 72 + 72Pe + 36Pe’ + 12pe> + 3pet _ (6.78e)
r_p_= _(rw + re) (6.78f)

It is important to note that the r coefficients given in equations
(6.78) are such that re/rw = epe + 0(h4) and it is this -exponential
character which is, in part, responsible for ensuring that the resulting 501u-
t1on is bounded.

Error analysis by Berger, et a1(37) demonstrates that GOCI schemes
such ‘as the one given in equations (6.78) are formally fourth order (i.e, in
the low Pe 1imit) but automatically change their order of grid convergence as
‘the grid Peclet number increases. In fact, in the high Peclet number limit,
GOCI method is only second order accurate and at intermediate values of Pe the -
order may drop to zero. ' '

In Summary GOCI scheme is, for one-dimensional prob]éms, bounded for all
values of Pe. In addition, GOCI does not require additional boundary equa-
tions for the operator, and solutions to the algebraic equations are readily
obtained using TDMA for a single scalar. Variations on the above GOCI
approach which sacrifice formal fourth order convergence for uniform second
order convergence exist. One such approach will be used as the basis for a
new control volume based OCI scheme presented next.
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6.4.3 Control Volume Based Operator Compact Implicit Method of Exponential
Type (CVOCI)

In this Section is developed a particular scheme for the family of ex-
ponential OCI schemes that ensures conservation ¢ over discrete control vol-
umes. Most, if not all, existing Compact Implicit schemes reported in the
literature are of a "point finite difference" nature and hence do not strictly
satisfy some of the desired attr1butes of a discretization scheme discussed in

Section (4.2).
Considering equation (6.56) with spatially varying diffusion and con-

vection coefficients, i.e.,

d
= 4 (Fﬂ dx) + d (u¢9 = S(x) equation  (6.56)

a finite volume integration can be performed over the length of control vol-
ume ,h, to yield

f L dx = _[[dx(ro dx — (u<!>)] dx = J wf fS(x)dx

equation (6.13)

where Jef and wa denote the interface fluxes of @ given by

oo, =05 G * W0l ¢ 3 = (T g + v,

To obtain a discrete algebraic representation of equation (6.12) in
terms of ¢ and .Cx. the discrete approximations of & and Lx are required
within the control volumes; it is assumed that both Lx and $(x) vary at most
linearly over the control volume, thus,

h .
“/.Lx dx = h.£§ (6.79a)
0 |
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‘/. S(x) dx = hS1 (6.79b)
0 .
" Also
X .
L . '
i Si ‘ (6.79¢)

In equatiens (6.79) 13: and S1 are approximations of Lx and S(x) at

the midpoint of the control volume. The approximate representation of the
flux expressions in equation (6 13) is not so simple and requires evaluations
of d®/dx and & in terms of @ and L£* at both control volume boundaries.

In the present exponential scheme, these evaluations are determined from the

analytic solution of equation (6.56), i.e.,

2
de dx

where 0<x<h ¢(x=0)= o 0 ®(x=h)= a] and rn and u are assumed to be ,
constant over the range of x and L® is an arbitrary function of x. The

solution of the above equation, with no further approximation is given by:

el [éz—1 |
P(x) = 85+ (8)-8) | 5| + (F(x) - F(W)| *5= ) (6.80)
% 0 l:ep_]] eP—J .
where ‘
X . X
F(x) = ¢ [f X dx - ef fe'z L¥dx]
0 0
uh X  ux
P = - P o — —; Z = = Pe = e
e 1‘0 h I“a

The gradient of # is easily shown to be:

dé L ueZ
S0 = - (81-8y) —HE— + (6(x) + F(h) —55—)  (6.81)
Tge 1) Te(e -1)
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where

Z X
6(x) = er_f e L Xdx
)

Equations (6.80) and (6.81) require the integrals of Lx in the evaluation of
F and G. Unfortunately Lx is not known. Therefore, profiles of Lx have
to be assumed. A particular choice that sets L to zero yields the well-
known Exponential Differencing Scheme, (EDS).(83) With this in minq, for
any non-zero Lx profile assumpfion. equations (6.80) and (6.81) can be seen
to provide the corrections to EDS necessary to account for the influence of
Lx = S(x) on the solution for @#. Since in this OCI approach the operator is
1mp11cit; alternative profiles of Lx can be considered.

Assuming that Lx varies linearly with x; equations (6.80) and (6.81)
become: | | |

i i z
e -1 14 e -1
1 + == (x-h [5—])
P_] | u eP-l

d(x) = g0 + (ﬂ]'ﬂo)[
e

X X -
-C]-Lo 2 r X h2 F.h eZ 1

G et Ll (6.82a)
X
d$ ue Lo T e
=X (8,-8,) + - (—+h= )
x0T Py Te v Py
,
Ly-Ly Tyx T 2 Tho 2
fLZ0 e 8, N0 8, e (6.82b)
hTy v u2 2 "7 (P 1)

Substituting equations (6.82) into the flux expression of equation (6.13), the
e face flux becomes
—e W

X . —e pX '
By + T 9, +q£0+q .C] (6.83a)

¢

Jof =
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where .

™ —% Pe_ (6.83b)
e -1
r .
- ‘g P :
FEE S . (6.83c)
h eP_] )
W X x2 | 1 1 )] 1
Y R v e (6.83d)
2h’ P P 2(e -1) P(e -1)
~e x2 1 1 1
C=ns-Le - (6.83e)
2h® P 2(e -1) P(e -1)
Noting that 8.=9. @.=8, LX= L% and £X= L%.., equation (6.83a)
0 "1, "1 i’ 0 ~i 1 A PSH :

can equivalently be written as:
W —e WopX . T@ X . .
Jef =retrg ., +tq £1 +q £1+4 (6.83f)
Similarly, the flux through the w face is given by:

W .. W pX —e pX
Juf = 785 .+ re.+q ‘Ci—l +q £1 (6.84)

Combining equations (6.79), (6.83) and (6.84), equation (6.13), the control
volume flux balance equation is represented by: '

W p. e _ WaX P aX e pX
re;+re,+re =0l +aly+a Lin (6.85)
where
W —W
r=-r
e e
r =T
P = —(rw+re)
W ~W
q =4q
e —e
Q¢ =-7
e w
e® = h-q¢°-q
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Finally using (6.79c) to evaluate L the resulting profiles for 8 can
- be determined from the solution of equation (6.85). . :

At this point it is useful to review some of the characteristics of this
discretization scheme. The scheme is an OCI variant of exponential type and
is conservative. Further examination of the coefficients of equation (6.85)
also reveals that conditions (i), (i1), (iii), (v) and (vi), Section (6.4.2),
required to ensure bounded one-dimensional solutions are satisfied. However,
it can be.shown that condition (iv) is not always satisfied. Consider,

for example, the limiting case P = » where qel=:cie =‘—x2/(2h) <0

which is in vio]ation‘of condition (iv). Physically, a negative value of qe
implies that if the value of L ?+1 which equals the value Si+1, is
increased, the value of oi decreases when in fact the value of @, should

increase. The result is a one-dimensional solution for 8 which }s,not neces-
sarily bounded. To remedy this situation, the evaluation of,'ie must be mod-
ified so that it remains negative. Fortunately, positive Ee values arise
only for large P values. One way to obtain/ae, a ;orrected Ee value, is

from

/ae = q° - MAX (g%, 0.0) (6.86a)

Then to ensure that condition (vi) remains satisfied, it is necessary to also

modify q".

o~ (6.86b)

Q" = q"- MAX(q%, 0.0)

By similar arguments, it can be shown that when P is large in magnitude
but negative, Ew can also become negative. 1In this 1nstance/ae and/aw
are given by:

= Q¥ - MIN (T, 0.0) (6.872)

‘2 = q° - MIN (3", 0.0) (6.87b)
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Finally, in terms of’aN and/ae, the q evaluations of equation (6.85)
which satisfy all conditions for a bounded one-dimensional solution are given

by:
W AW
q =4q
e e
oo e W
A\
qp =h-4q-q

Adopting the correction strategy outlined above, it is observed that
corrections to g are required only when the downstream value of q value
becomes negative. The effect of applying the correction, when required, is to
make the downstream of q value equal to zero and increase the upstream q val-
ue. The resulting q values are then equivalent to those which would have
arisen from assuming a constant value of L(x) in equations (6.80) and (6.81)
with the upstream value of L(x) prevailing over the range 0 < x < h.

6.4.5 Multi-Dimensional Extension of OCI Schemes

Various OCI schemes discussed above have been developed in a one-
dimensional context. In this Section will be considered extensions of the
most promising variants of OCI schemes, namely GOCI and CVOCI to two dimen-
sions. Also issues related to boundary condition implementation and appropri-
ate solution strategies will be examined in detai], as these now assume great
practical significance. GOCI will be discussed first.

i) Two—Dimgnsional Extension of GOCI

- The particular extension of GOCI adopted in this study is straight-
forward and is largely based on the work of Lecointe and Piquet.(84)
sidering the two dimensional form of the transport equation (6.56), i.e.,

Con-

2

7 3¢ ad . ad
ﬁ'(axz yz,)»fuax»fvay-s ~ (6.88)

where the exchange coefficient r;. and the components of velocity, u and v
are presumed constant over the domain of interest for simplicity of
derivation, an OCI scheme can be developed that uses the spatial operators
L(x) and L(y) defined as: '
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xle.
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mn

fﬂ:

Q)
If°~'

(6.89a)

22 ¢
yy

v'a'g | . v(6.89b)

Q

Equation (6.88) can then be expressed as:

Lx + Ly =S

Using GOCI as developed in Section (6.4.2), the d1screte representat1ons
of L* and Ly g1ven by .C and .Cy, can be related to the discrete
representations ofq> g1ven by 8, as follows, equation (6.65):

W p,X e WX P.X pX
LT A R LTI MR AL i +q £1+‘|j
' (6.91a)
or equivalently, ) _ ; P .
R% 3 ,,i = Qxigxf : - (6.91b)
and .
S' P,y - Spy ‘b y y .
O Ty TR g L gt “fmﬂ
: . . (6.92a)
or, equivalently
RVH = oy'i,,cy( . (6.92b)
The discrete representation of equation (6.90) is then given by: o
.Cx + .,Cy 541 (6.93)
orbequivalently :
; L § gl.’yi s (6.94a)
 where
Q g i = z s (6.94b)
Oyg-;cyf = 3 f ' © (6.94c)

It is important here to note several aspects of equations (6;94)f
First, the solution of equations (6.94) requires boundary conditions on @, as

well as boundary equations for l:x and .ﬂy. Unfortunately, for multi-
dimensional problems it is not always possible to determine the boundary
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equations for £ and fiad directly from equation (6.88) and the boundary
conditions on # as was the case in one-dimensional problems. In these
instances, some appropriately high order representation of Lx and Ly along
the boundaries should be provided.

Secondly, equations (6.94) along with appropriate boundary equations
form a coupled set of equations for @, Lx and .Cy. (Compare this to the
one-dimensional case where._Cx could be determined explicitly). Therefore,
it would appear that a coupled 3x3 block solution procedure would be required
to solve these equations. One possible alternative is to eliminate.ﬂx and
lfy from equation (6.93). This can be accomplished by first multiplying
both sides of equation (6.94b) by [Ox]-] and equation (6.94c) by

[Oy]_] so that ,
| {.Cx} - 1017 & {o}_ . (6.95a)
{£y}= [()yi;'v1 RY {o} o . (e.g»sb)

Thus, substituting for {ﬁx} and {Ly} from equations (6.95) into equation
(6.94a) yields the following equation for 8. '

e R e R o} = {s} ~(6.96)

or simply, \ {g} } {S} | o (6.96b)

Note that‘[Q]-] is, in general, a full NxN matrix where there are N
discrete unknown values of 8. This leads to a relatively sparse A matrix
which, unfortunately, has a full band width. Also, the inversions of Qx.

Qy and A are expensive. As a result, the solution of equation (6.94) by

such a procedure reduires an excessivevamount of computational resources.
Nevertheless, the procedure is useful in that the convectivity of 01’ to

its neighbours can be found in the coefficients of the A matrix. This is dis-
" cussed next. -

To determine the connectivity of a node or computational molecule of the
GOCI scheme, it is necessary to consider only the coefficients of matrix A in
the row corresponding to the node in question. Examples of the connectivity

-111- -



of b4'4 node in a domain with 7x7 nodes for: Pe = uhx/r'o = vh"/r'o = :
0,1,2,10,100 and » are shown in figures (6.8). -The most striking feature of
GOCI is that the connectivity, in general, spans from boundary to boundary in
both coordinate directions. In the low Peclet number 1imit, figure (6.6a),
‘the coefficients alternate in sign, are symmetric and diminish rapidly in
magnitude with distance form 64’47 In the high Peclet number 1limit, the
downstream connectivity is zero, and the upstream connectivity is alternating
in sign but constant in magnitude except at the boundaries. ‘At the
intermediate Peclet numbers, figures (6.8b) and (6.8c), the connectivity is
seen to become progressively asymmetric, weighing more heavily on the upstream
coefficients and rapidly diminishing on the downstream coefficients as Peclet .
number increases. Finally, it is noted that for each Peclet number.‘it can be
shown that the central coefficient of 04’4 is equal to the sum of the
neighbouring coefficients, although the Scarborough criterion is far from
being satisfied for any Peclet number, j.e., diagonal dominance is violated.

During the course of this study, several iterative methods of solution
were developed that treat the coupling between ‘Cx and ‘ﬁy with various
degrees of implicitness. Generally, solvers which incorporate minimum
implicitness in their formulation performed poorly or even diverged for high
Peclet number problems, even when heavy under-relaxation was introduced. Thus
the following solver, developed specifically for equation (6.94), was found to
display "optimum" characteristics concerning stability and implicitness (hence
computational cost). _

Ififx is eliminated from equation (6.91a) using equation (6.93), there
results a 2x2 block penta-diagonal equation for ¢ and .Ey of the form:

w w e e} 0 0 :
r .q ] + r q ) + ]
O Hehva |0 O [p¥hing| e %5
0 0 i, P P } 0 ( e ~ (6.97)
rn _qn £y i,j+] rpvy' qp’y £y 1’j | 0 1’j ‘
: W, P,.X e
where di,'__ q Si—],j +q Si,j +q Si+1,j
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Figure 6.8 Coefficients Connecting 94,4 with all its Neighbours,
- Resuiting From GOCI Scheme Applied to Convected Step Problem
with vV at an Angle 8 = 45° to the Horizontal
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Equation (6.97) can be easily solved by a block 2x2 Alternating Direc-
tion Line Gauss-Seidel procedure using a block 2x2 TOMA along lines of con-
stant i and constant j. Solution in this manner yields éxtreme]y rapid
convergence. In fact for a uniform problem convergence is achieved in one
iteration as Pe » ». In the diffusion 1imit, the number of iterations
required increases but the rate of convergence is usually quite acceptable.

ii) Two Diménsiona] Extension of CVOCI

Two-Dimensional extension of CVOCI is readily obtained by integrating
equation (6.90) over the control volume of dimension h by L, in the follow-

ing manner: : I

B R

// L*dydx +f / WYdydx = f / Sdydx (6.98)
0 7o 0o 7o Y% Y0

Assuming that over the control volume Lx,:Ly and S can be approximated by
‘Ex 3 J:y 3 and S1 3 the ‘integrals in equation (6.98) can be approximated
by éuéh that ’ ) '

ho %
/ / L*dydx = e L] i (6.99a)
0 0 | :
h * o |
/ / Ydydx = h2£¥ j (6.99b)
_ 0 O ' '
i )
// Sdydx = hz%‘nﬂ : (6.99c)
: 0 Y0
such that
¢ <
=Y,
¥ 1., 1.3 - equation (6.93)

Using equation (6.89a), the integral of equation (6.99a) can also be writteh
as the difference of fluxes between the e and w faces,‘as in the one- '
dimensional formulation.
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L h g

h . .
/ fL dydx = //[ax (Fo gf) + g—x (ud)] dxdy = Jef - wa
o o0

00

(6.100)
where '
3 .
Jeot =/ []l"o 5—;‘9 + ud ]e dy - (6.101a)
L ' ' ,
3 =/ o, 22 ueg, dy © (6.101b)

(cf. equation 6.13)

Introducing the approximation that 3&/ax and & along the e face and
w face are constants, the fluxes are approximated by:

ad
dos = ”Po ax tuel, _ (6.102a)
a | |
J f 2"”‘» ax tud ]w (6.102b)

Using the one-dimensional analytic solution with an appropriate L profile,
Section (6.4.3), expressions can be obtained for 3&/ax and & in terms of @

and £, thus enabling Jef and wa to be approximated by:
' ' Aw Ae
Jog = 2Irigy + 7 %8, + ,,co L3 1o (6.103a)
W —e w Ae |
I = 2lrisg+re +74 ,co .,C]] , (6.103b)

where the evaluations or r and e are provided in equations (6.83), (6.86) and
(6.87). Combining equations (6.99a), (6.100b) and (6.103), the following

relation between ¢ and .ﬂx results:
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w P,X e _ W X P,X
%5 T % T gtes g Sl Ly i g

(6.104)
where

r1,j = _E'F:

5,574

r?:; =2 (Few - Fwe)

:'.5 “?:

e’j =1/a:

Q®7% =1 (n #7373

~In a similar fashion, the integral in equation (6.99b) can be related to
a difference of fluxes through the n face and s face of the control volume.
Then using the solution of (6.89b) to obtain expressions for 3&/3y, & and,
subsequently, the fluxes in terms of @ and ;L , equation (6. 99b) can be
approximated by an equation of the following form:

s - p, n _ s Y} P,y Yy noy
r5,i%,517 T,3 %, T T, L0 T %4, L3t 94,3585, Y 94,589, 34

(6.105)

where r and q are determined from equations similar to those for r and q in
equation (6.104).

Now equations (6.93), (6.104) and (6.105) represent a set of coupled
algebraic equations which can be solved in the manner described previously for
GocI. It is important to note, however. that for two~dimensional problems,
due primarily to the use of one-dimensional semi-analytic solutions without
any explicit regard for streémlihe orientation to the grid, (1like SUDS,
Section (6.3)) the solution for @ is not necessarily bounded. Nevertheless,
the conservgtivé nature of the discretization may reduce the occurrence and
size of the overshoots and undershoots.
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6.5 IMPROVED SOLVERS FOR A GENERAL SEGREGATED SOLUTION ALGORITHM

Various iterati?e solvers considered in the following sections are pri-
marily for use with equation (6.11). Equation (6.11) is symmetric, positive
definite with-only five diagonals, and has coefficients similar to those that
.would arise from an algebraic representation of a typical Poisson equation.
This is in contrast to momentum equations involving both convection and dif-
- fusion, i.e., differential transport equations containing both first and sec--
~ond derivative terms, where the coefficient matrix arising from the usual five
point finite differencing is generally neither symmetric nor positive
definite. Discussion will initially consider base solvers with |
‘acceleration techniques to follow.

6.5.1 Implicit Base Solvers for Pressure/Correction Equation of SIMPLE
Derivative Algorithms

Equation'(6.11) can be ekpressed as a matrix equation
CAp =D (6.106)

where A is the sparse symmetric matrix of coefficients. The direct solution
of equat1on (6.106) is accomp11shed via the exp]icit Choleski Decomposit1on
method. j.e., the transformation,

'ETLE (6.107)

. where L is the lower triangular matrix and T denotes franspose. The solution
~ vector is then obtained from:

= H My |  (6.108)

However, solving equation (6.107) by simple recursive relations to determine
columns of L introduces entries in L that were zero in the original matrix A,
~thus the sparse nature of the equations is lost.

In general, the various iterative means of solving equation (6.106) can
be expressed as:

Men+] = Apn -b= -rn . ‘ (6.109)
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where n is the iteration counter, r is the residue and en+] pn;]‘- Py
the relative error vector. A is a positive definite matrix. The matrix M
depends on the choice of the relaxation procedure. .The basic requirement on M
is that its inverse be easily obtainable and can be related to the matrix A. .
The various iterative solution procedures for equation (6.106) utilizing
approximate factorization techniques are derived by constructing M in a manner
such that: . | |
i) its diagonal entries are those of A (point Jacobi method),
ii) the elements of M correspond to the element of A along a line
(line re]axation), etc. _ , ‘
The jterative solution procedures for eqpation (6.106), as opposed to.
the direct solution schemes where M=A, suffer as the inherent implicitness
expressed by equation (6.106) for the variable field is degraded severély.
However, Stone(26) in a widely qudted paper devised the iterative Strongly
Implicit Procedure (SIP) which partial]y»ovekcomes such deficiencies associ-
ated with classical iterative methods. In his method, the finite difference
coefficient A is decomposed to comprise the product of an upper and Tower
triangular matrix (cf. equation (6.107)). The product of these two array;Ais'
not exactly the same as the origina] coefficient arkay, but means are intro-
duced to part1a]1y cancel the effect of spurious non zero entries resu1t1ng
from the direct decomposition. A parameter, a, is introduced to control the
degree of partial cancellation. The set of equations generated by the tri-
angular arrays are easily solved and Stone has shown that the method gives
rapid convergence for two-dimensional heat conduction problems 1nvolving large
anisotropy. _ !_ i
Incomplete Choleski (IC) decomposition algorithmxproceeds essentially ih
a similar manner; in fact, it can be shown that when the value of a is set to
zero, i.e. no cancellation, SIP and IC become algebraically equivalent. The

coefficient matrix is expressed as:
: T . T '
A= M=1LDL + E (equivalent to LL +E) (6.110)

where D dénotés a diagonal matrix and L is forced to have the same sparsity
pattern as A. In equation (6.110) E is a small error matrix Criteria
assoc1ated with the stability of the decomposition is provided by Meijerink

and Van Der Vorst. (85)
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Since MT} can easily be evaluated, equation (6.109) can be written as:

R A :
M Ap, - M b=e, : . (6.111)

In this form equation (6.111) can be viewed as the solution of:

S u=1 -1 :
(M A)pn = Cpn =M b | v C(6.112)

. with‘en+] as the residue vector. The accelerators described in the follow-
ing sections can now be applied to the solution of equation (6.112). Base
solvers considered in this study can also be heuristically viewed as providing
the preconditioning necessary for efficient solution as for instance, the con-
jugate gradient method considered next, would converge in one iteration if

M—]A=I, where I denotes the identity matrix.

6.5.2 Conjugate Gradient Acceleration (CG)

Conjugate Gradient methods ére, in essence, based on variational prin-
ciples with each iterative step designed to minimize, subject to certain
restraints, a certain non negative quadratic. function of the unknowns e.qg.,
(the Euclidean error norm éTe in equation (6.111)) that vanishes at the
solution. The particular form of the quadratic function to be minimized dis-
tinguishes whether a symmetric or a non-symmetric variant of the algorithm is
to be employed. Even though in this study both variants have been considered,
and there exists in the literature recent attempts to develop the algorithm in
a manner appropriate for the general non-symmetric equation, notably that of
Dongarra et al,(aﬁ) the following discussion will emphasize symmetric
equations.
 The quadratic form for equation (6.106) is defined as'®?)

T .1 T
Q(p) = -bp+5pAp , (6.113)

The minimization problem is given by:

=0 (6.114a)

a_
2 1 (P + at) a=0

or, equ1valehtly

bt + 2 [tTAp + p'At] (6.114b)
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where tn denotes a specific search direction for the solution, bbrfdwfng
terminology from the closely associated descent methods and o is a numerical
parameter. Invoking the symmetry of A and the fact that

bt = t'b

equation (6.114b) is simplified to:
T R .
t [-b+ Ap]l =0 (6.115)

or Ap=b provided t is not a null vector.
This‘minimization>procedure suggests a solution update of the form

Piyp = Py * oty "~ (6.116)

where the search direction tiAis said to be A orthogonal if,

tI Aty=0  afifdy (6.117)

~ In equation (6.117) the mutually conjugate vectors ti are obtained from a

set of arbitrary linearly independent vectors rs by a Gram-Schmidt process.
If, '

t o= | . (6.118a)
then, _
o i |
tig = Tig * me’jtj (6.118b)
j=1

Utilizing the orthogonal property given by equation (6.117), definition of

pl.+1 is given by:
iy =T B Y (6.119a)
where
(ri.. At,) -
b Rk £ P L (6.119b)



or

(r1+1 Aty) |
B =b R L] P 1 ~ (6.1190)

i, T
- (ry, Aty)

6ij above denotes the Kronecker delta.
The vectors ri are evaluated using (6.116)

Tin =.—Ap1+] f b = ri_— aAti ~(6.120a)
where, utilizing the orthogonal property leads to:
(t], ry)
a= —g (6.120b)
(7 At
Ih the ébove. expressions like (tT; Ati) denote the usual inner

T .
product of vectors t' and At,. B and bi+1,j are scalars, t, and ry

‘represent respectively, the current conjugate vector and the residual vector.

| Equations (6.116); (6.119) and (6.120) constitute the working equations
of CG methods for symmetric positive definite equafions which after N steps
provide the miniﬁum of Q@ (p). Alspecific applitation of the above algorithm
for use with eduation'(s.llz) without requiring explicit evaluation of the
matrix C is given in the following algorithm form: )

Piyp = Py*atye
i1 = &5 8y
tin = &a * By
Bis1 = C84yy BBy

where o and B are given by either

(t!, e,y (el .o By
IS MRS _ i+, "i7.
. (ti' Bi) ' (ti' Bi)
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or

(BT, e.) (BT4Ce )
i i i i+1
a = -—T-‘—— and B ‘E?“———
and :
i+ Pin p1 ’ Bi‘_ Ati

with suitable startlng values for p , t and eo.
In the above algorithm the precond1t1on1ng of A with M in

equation (6.112) has many desirable features. In particular, the eigenvalues

are distributed favorably for the application of the CG method. It is this

preconditioning that is responsible for the significant increase in the rate

of convergence.
For non-symmetric systems including momentum equat1ons, a quadratic form

based on the Eucledian norm can be minimized resulting in a similar algorithm

structure.

6.5.3 Block (Additive) Correction Acceleration (BC)

Block correction and the associated Additive Correction Multigrid dis-
cussed in the next section are somewhat different in philosophy and structure
from the previous CG methods and operate on the premise, as shown by
Hutchinson and Raithby,(SZ) that the solver convergence is enhanced con-
siderably if the correct global solution level is maintained.

Rewriting equation (6.11) in the following equivalent form:

P

L= af w + aN e +
44,3 Pi,3 T3, Pien,g Y 34,5 Pia,g T 2,3 PaLaar TRy, Ps L0

by

the equation for the change 6 in level of p along the line i, figure (6.9),
to ensure that p (radially averaged value of " p ) is correct relative to
| its neighbours p1 and p, p1 1 is developed fo1low1ng the procedure of
Settari and Aziz. l1) It is assumed that the calculation domain is rectang-
ular with m and n nodes in the x and y directions respectively.
The first step is to select blocks containing an integral number of con-

tiguous control volumes, and to sum the above equation for each control volume
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within the block. Choosing the block to consist of all control volumes in the

i-column results in:

P N s SNLE Rl Rek
S RN REL RS SURURE PR INIRE Zbij
o i . 3 . j v

A
(6.121)
The boundaky conditions are assumed to be absorbed into the interior
equations, so that a? 1 ° a? n = 0. Introducing D = ag
- aN j41 - af j41, the left hand side of equation (6 121) reduces
" to § iP5 If p j is the current best estimate of the ‘
so]ut1dn,'the improved 0a1ue of p_i after the level shift 1s p j
B} j+61' Substitution of this 1nto equation (6.121) yields:
- P - W _— | -
a8y =y 8y, tay 8, + by - (6.122a)
where ' '
- P - E - W W '
2, -Zom. a; = E a5 4 Zam ~ (6.122b)
J J i :
b, =::£: b, . + at .p. + T
i Vi.d i,37i41,3 1:] Pia1,j ~ 1,j i3 (6.122¢)
J ) .

The addition of the equation over the i column block is equivalent to
enforcing the integral equation for p conservation over the column. Solution
of equation (6.122a) for 61 using TDMA, and the subsequent adjustment of
F, to obtain p , results in exact satisfaction of the integral bal-
ance It is noteworthy that bi' the source term which "drives" the 61
correction, is the sum of the residuals F} of the p1 equation over the
column. After the level correction, the 1ntegral balance is satisfied exactly
(i.e., the sum of the residuals along the line has been forced to zero) and
the task of a point or Tine iterative solver is to ensure local conservation.

A similar equation can be derived for the correction of the level of
along rows through §, additive correctjons.

It is worth remarking here that BC formulation as presented above,
assumes no restrictive structure of the parent differential or finite volume

equation and is thus applicable equally to symmetric and non-symmetric form of

P,
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the equations. Equations (6.122), derived for two-dimensional applications,
is referred to as-1D Additive Corrections (1DAC) by Hutchinson and
Raithby.(az) For completeness and ease of reference, Section (6.5.4).
particular extension of the above formulation will be considered next for
three-dimensional applications. o -

- The three-dimensional algebraic equation for the control volume centered

at ijk is of the form:

P E W ' N ‘ s
84,3,P1, 0.k T 2, 3,P1, 0,k T 2,5, kPE-, 4,k 2,k 5k 29, 5,6P L 51k

b (6.i23)

U )
a4 5. kP, k0 3,561, 5,61 Y P90k

Boundary conditions are again assumed to be absorbed into the interior
equations. Block correction is implemented by forming blocks of contiguous
control volumes and by summing the equations for the control volumes within
each block. The b]ocks may be selected in any of a number of ways.

1DAC: One-dimensional additive correction (IDAC) for the level 1 grid in
figure (6.10a) results when blocks are fofmed from all the control volumes in
the x-z planes (for example). With

0 P N W Y D
130k T 4,0,k T 40,0,k T a5k T Y5 T 3Lk

equations like (6.123) are summed over the plane for a j to obtain:

sz: Div,j.kpi.j,k - Z ; a?,j,kp1,j+i,k ¥ sz: a?.j,kpi,j—],k +Zg’1,j,lv
i : - i

i
(6.124)

The additive correction is similarly introduced into equation (6.124) in the
manner pi,j,k=6}.j,k+6j’ where D i, is the current best estimate of

the solution that is to be improved by adding &§,. A tri-diagonal equation
for 6j results for the Level 2 grid in figure (6.10a).

2DAC: A two-dimensional additive correction (2ADC) results when blocks are

formed from all the contrb] volumes in columns that span the calculation
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. . i < 3 = P U
domain in the z direction. In this case Di,J,k = ai,j,k'ai,j,k-l

? 3.k+1 is introduced into the summation of equations 1ike (6.123),

and the additive correction equation p1 5.k B}'j K + 61 j is
substituted. After rearrangement, the equation for 61 j is

-p 8 3 EE 5 N -N + aS
4,5%,3 T %4,5%0,3 7 13113 .jijn 131.51

'J ZD jk'a,j’zi.Jk... (6.125b)
E ~ W -
i,] Zb i,j,k Z i,j.k pi+1 L.k Z 1,3, kp'i -1,3,k Za_‘“] kp §,941.k

(6.125¢)

+ a> P - E D P

1.vjvk i’j-]’k 1’jvk 1:'Jvk
k k

1.j (6.125a)

where

This equation for 61,j is valid for the 1eve1u2 grids in figures (6.10b) and
6.10b. ‘

Equation (6.125a) is a two-dimensional equation that can be solved by
iteration. But Hutchinson and Raithby(ﬁz) showed that additive corrections
can significantly enhance convergence for two-dimensional problems. Thus, if
blocks are again chosen to reduce the dimehsiqna]ity of the additive correc-
tions, solutions are performed on the Level 3A grids to obtain 61 and this
correction js added to 61’j.\'This could be followed by a simi]gr‘so1ution
on the Level 3B grid to obtain a &, correction. The use of the three grid

levels in this manner is referréd to -as 1D2DAC.

6.5.4 Additive Correction Multigrid (ACM)

The block (additive) corrections employed in the previous séﬁtionuhave
much in common with the classical multigrid methods of Brandt(sa) and
others.(ee) Both methods are designed to accelerate convergence by solving
a sequence of problems on increasingly coarser grids. Brandt forms the coarse
grid equations by discretizing the governing equations on each grid and inter-
polating the fine grid residuals to the coarser grid equations, while the BC
procedure forms the coarse grid equations by asserting integral conservation
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over blocks of control volumes. B8randt interpolates coarse grid corrections-
to the fine grid, while BC simply adds the correction in order to preserve the
integral balances. Brandt recommends formation of the coarser grid to include
2x2 nodes of the finer grid (in 2D), while the BC procedure forms the coarse
grid in such a way that the dimensionality of the problem is reduced by at
least one on each higher level (coarser) grid.

The development of the ACM method is now considered in detail, using the
previously established additive correction ideas. It should be noted here
that once the ACM method is adopted, there are no further decisions to be made
regarding the treatment of boundary conditions, the transfer of residuals, or
the interpolation of thé dependent variable. The requirement that the sum of
the equations for all fine grid control volumes, that l1ie within the same
block of a coarser grid, be correct constrains these choices. As previously
discussed, this is equivalent to demanding integral conservation over each
coarse grid control volume. ' '

A Cartesian 7x5 grid is shown in figure (6.11). Rather than form BC
blocks that span the entire domain in one direction, let the blocks be formed
from a number of contiguous control volumes, such as denoted in figure (6.11)
by the heavy lines. To form the BC equation for the k,1 block, equations like
(6.121), one for each control volume in the block, are summed. To facilitate
this equation (6.121) is rewritten as: o ’

p *E i N x

5,3P1,3 7 4,3P10,5 7 34,5P,5 T 34,5400 T 4,5R, 40
o ; . _ A (6.126)
= aE | + W + aN + S +b
1,3%00,3 T 0,5P0-1,0 T P ga T 5Pt P
3 *E .
where a; ; = a; j«\f ; and'é\ 3.3 = 0 1F Py g is in the k,1 block and’s j=0
if p . is not in the k,1 block - Summing the N equations for the N control

+1,J
vo]umes within the block yields:

| - E A AN S
Di,j"i.j ‘Z (ﬁ?.jpmd tA P, 5P g B, 5P gt P
N - N '
o ‘ (6.127a)

where .
p *E *W *N *S

%978 T M T g T g0 T Y g (6-1215)
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Figure 6.11 The Assembly of Control Volumes on the Fine Grid into-Blocks
(denoted by heavy lines) that Define the Coarse Grid for ACM
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if pi is the best estimate of p . on.the fine grid, the correction
obta1ned on the coarser gr1d "is added to p1 to obtain an improved

k,l
value of pi,j' Inserting pi,J = pi'j k.8 into equation (6.127a)
yields: . ,
-p = W N =S

A 18,07 34,180 15107 31 14t 3,0 .11 by

PN, £ | ’
DI IO FEE Z  (6-1280)
N'.

N

(6.128a)

- \ E /\N -~
B 01,5 8y B,y 8 Py g ¢ -

51

(6.128¢c)

1,in

N

The solution of equation (6.128a) yields the value of_ék.] that is added to"
each p ) value that lies within the k,1.block to obtain the improved

estimate, p1 3 , - |

The b1ocks may be found in any convenient way. If the grid contains

2P control volumes in the x and y directions, where P is an integer, it is
convenient to form all blocks from the 2x2 sets of control volumes (2D) shown
in figure (6.11). For other grids it is necessary to use unequal block sizes
as also-shoWn_in figure (6.11). If, on the other hand, the blocks are formed
from the control volumes along columns or rows that span the domain, the 1DAC -
described previously is recovered.

- The general BC equation, equation (6.128a), can be solved by iteration,
but convergence can again be enhanced by using BC on a still coarser grid
employing exactly the same method used in the formulation of
equation (6.128). The use of a sequence of coarser grids is identical to the
procedure recommended in conventional multigrid methods. Equations on 2x2
grids or sha]]er are solved by a direct method.

In the present study the "flexible cycle" algorithm of Brandt
adopted. The flowchart is shown in figure (6.12).

(63) is
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Any iterative base solver can be used with the above acceleration tech-
nique, however use of implicit methods including the various approximate fac-

torization techniques considered previously is common.

6.6 ASSESSMENT OF IMPROVED SOLVER CHARACTERISTICS

There are several aspects to be considered when evaluating the perform-
ance of the above solvers. These include stability, computational storage re-
quirements and computational efficiency. Computational efficiency will be
discussed in detail in Section 7, while the former two items are considered

next.

i) Stability

0f the methods considered, only the IC technique with and without CG
acceleration have been rigorously proven to be stable for the solution of the
symmetric, positive definite pressure/correction equation. For the remaining
methods, SIP with some partial cancellation or any method employing BC or ACI:
acceleration, no mathematical proof of stébility has yet been provided.
-Nevertheless, the experience gained from testing and using these methods ,
A indicates that they are in general, stable for the solution of the positive
definite, symmetric set of linear equatiohs for pressure/correction.

iji) Storage Requirements

The computer storage requirements of each of the methods is somewhat de-
pendent on the manner in which the methods are implemented. For the implemen-
tations adopted in the présent study, the Storage Unit (SU) requirements for. -
each of the methods are listed in the table below. A storage unit is defined
as the storage required to store only the dependent variable. The storage
unit requirements listed in the table below indicate the storage required to
store the pressure, as well as the coefficients of the pressure equation.

TABLE 6.1 STORAGE UNIT REQUIREMENTS FOR VARIOUS SOLVERS

Storage Unit Requirements
Base Solver IC SIP
Acceleration
' 10 14
(o¢] ' n N/A
BC 12 , 16
ACM 20° 28
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The various entries in the above table comprise the following SU's:

a) 1 SU for dependent variable ‘

b) 6 SU for pressure/correction equation coefficients

¢) 3 SU for IC

d) 7 SU for SIP

e) 1 SU for CG

f) 2 SuU for BC _

g) SU for ACM 2 {(a) + (b) + [(c) or (d)1}
Storage allocations in the above table do not 1nc1ude constants and vectors '
(as opposed to arrays).

6.7 CLOSURE

This Section has presented detailed deviations of the previously
selected techniques for further quantitative evaluation, emphasizing issues of
accuracy, stability and convergence, together with implementational details
including required computational resources. Various relevant attributes of .
distretization techniques were discussed in a unified framework along with the
. associated questions of boundary conditions, solver suitability for the
particular computational molecules generéted by these sohemes. Wherever
abpropriate,.referencés from the literature were provided to assess a priori
the specific issues of interest. Such information will be readily used in the
next Section to provide a comparative basis to quantitatively eva]uate these
schemes in complet1ng selected test cases.
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7.0 DISCUSSION OF ONE AND TWO-DIMENSIONAL TEST CASES

7.1 EVALUATION OF IMPROVED SOLVER PERFORMANCE FOR A GENERAL SCALAR

(PRESSURE) EQUATION

To evaluate the relative computational efficiencies of each of the
solvers presented in Section 6, it would be most desirable to be able to
determine in some formal mathematical fashion estimates of the asymptotic rate
of convergence of each method. Unfortunately, this is, af présent. not feas-
ible. Instead, the relative computational efficiencies of the methods can
only be determined through extensive testing and experimentation.

Assessment of individual solver performance in the absence of nonlin-
earity and variable coupling that generally dominates the behavior of general
flow equations is valuable, as it provides quantitative understanding of the |
solver structure. Also, such exercises establish useful guidelines for the
anticipated convergence behavior in the solution of complex coupled equatioh
sets. Thus, the following sections will critically examine the solver per-
formance in isolation for a variety of linear, scalar (pressure) equations,
while issues related to coupling and nonlinerity are discussed in in

Section (7.2).

7.1.1 Test Problems and Details of Imp]ementatidn

The following flow problems were adopted to evaluate the solver perform-
ance associated with the corresponding pressure/correction solution, Section
(6.1).

i)  Shear driven flow in a square cavity, Reh=1000, uniform'grid
with 48x48 control volumes, figure (7.1).
it) Flow over a rearward facing step with uniform inlet velocity -
profile and fully developed outlet conditions, Reh=250. uni-
form grid with 48 x 48 control volumes, figure (7.2).
iii) Angled axisymmetric flow through a cannister, Rer=450, uniform
grid with 78x42 control volumes, figure (7.3).

The first test problem was chosen because it is generally accepted as a

benchmark, the second because it has a relatively high geometric aspect ratio
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for the control volume, typical of those often encountered in practice, and
the third problem was chosen because of its geometric similarity to combustion
configurations. . '

To evaluate the sdlver performance in isolation, the linear pressure
equations appropriate for the above flow cases were generated and solved in

the following manner:

i)  For each test problem, a converged solution was obtained on a
staggered grid using the upstream weighted discretization scheme
(8)

of Raithby and Torrance in a finite volume framework.

_ Relaxation was introduced via the time step multiple, E.
i1) Using the converged solution of the test problem and E=5.0

(corresponding to usual under-relaxation factor of 0.83), the

(15)

coefficients of the equation for pressure estimation of
SIMPLER(]) were determined.

iid) Starting from a zero solution field for each of the methods con-

4 sidered and for each test problem, the solution convergence his-

tory (computing effort vs. residual) was monitored and recorded.

In the case of SIP, numerical exper1ments were performed using values of
a, the partial cancellation parameter, which ranged from 0.0 to 0.9 in incre-
ments of 0.1. Results for IC were obtained using SIP with «=0.0.

For the shear driven square cavity flow, the closed set of algebraic
pressure equations thus generated requires that a pressure be specified at
some point in the field. However, for most iterative methods, the iterative
behavior is enhanced if the pressure is not(specified.(ls) A prescribed
pressure can then be obtained by adjusting the entire pressure field by an
additive constant. This approach was adopted for all methods tested on the
pressure equation of the cavity problem, except for the methods employing BC
acceleration. Because the BC equations cannot be solved. if pressure is un-
specified, the pressure was set equal to zero in the upper right corner of

the domain.

7.1.2 ’Rgsults of Numerical Exgeriments

The convergence history (1 -norm of pressure equation res1duals vs CPU
effort) of each method cons1dered for each of the three test prob]ems is shown
in figures (7.4) to (7.6). In each figure, the norm of the residuals is
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normalized by “Ro"' the initial norm of the residuals and CPU effort is
normalized by tSIP' the time required to perform one SIP iteration with no
acceleration. In cases using SIP with partial cancellation, only the con-
vergence'histories for the optimal values of o« (to within + 0.05) are
presented. . . _

.Considering first the results for the shear driven square cavity flow
problem, shown in figure (7.4), it is observed that the initial rate of con-
vergence of IC is particularly good. However, after reducing the residual by
an order of magnitude the rate of convergence of IC slows dramatically. Com-
~bining IC with CG acceleration significantly improves the asymptotic rate of
convergence but the overall performance of the combination is compromised
somewhat by the non-monotonic reduction in residual. The BC acceleration also
improves the convergence of IC but not to the same extent as CG. However, the
best acceleration of IC is provided by the ACM acceleration where the rela— 
tively fast initial rate of convergence is maintained throughout.

_ "The results in figure (7.4) also indicate that the introduction of an
appropriate amount of partial cancellation to IC, resulting in the SIP method,
can also increase the rate of convergence, but only to a limited degree. How-
ever when SIP and BC are combined, the resulting rate of convergence exceeds
that of IC with ACM, but does not exceed the rate of convergence experienced
by the combination of SIP with ACM. ‘

The results for the rearward facing step, shown in figure (7.5), are .
only modgrate1y different (qualitatively) from the results for the square cav-
ity problem. The differences lie mainly in the relatively poorer behavior of
IC with CG acceleration, which suffers even more from a non-monotonic decrease
in residuals, and SIP with BC acceleration is superior to all other methods
considered.

. For the flow through a cannister the results, shown in figure (7.6),
again indicate only minor qualitative differences from the results of the
square cavity problem. The most notable difference which arises is again'the
poor performance of IC with CG acceleration which experiences poor convergence
for a considerable portion of its history. |

7.1,3 Discussion of Results

From the results shown in figures (7.4) to (7.6) 1t.1s observed that the
initial rate of convergence of all methods is good. This favorable behavior
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| js 1ikely due to the manner in wh1ch IC .and SIP remove the h1gh frequency com-
ponent of the error. (23) However, once this h1gh frequency component of the
error is removed, the convergence, without’ some form of acceleration. s]ows
dramatically. This decrease in the rate of convergence is theri ‘due to the o
poor manner in which lower frequency components of the error are removed. h
Although, it seems that the introduction of ‘an optimal amount of partia] can-
cellation is effective in removing more of the error, the introduction of o
acceleration techniques appears to have a more dramatic effect. o
The effectiveness of BC acceleration is particularly evident for the
rearward facing step problem, where the solution for pressiure has a sing]e,
dominant one-dimensional low frequency mode for which BC is ideally suited.
Similarly, ACM acceleration which is designed to address alil frequency compon-
ents of the solution error, improves the convergence rate of both IC and SIP
for all test problems. It is also worth noting that for the relatively fine
grids used, the optimal degree of partial cancellation is obtained by using
a=0.9, except with ACM acceleration on the flow through a cannister problem.
In this instance it is postulated that the value of a=0.9, used on all of the
grids, is not appropriate for the coarse grids (for coarse grids, there is
evidence to suggest that the value of a should be decreased). ‘ A f
Fina]ly; the convergence behavior of ‘CG is disappointing. While CcG
acceleration has been designed to provide a monotonic decrease in error and to
provide a solution after all the orthogonal base vectors of the éo]ution have
been obtained, there is no guarantee that the intermediate residuals will de-
crease monotonically and that the rate of convergence at any point will be
fast. ~In fact; the present results suggest that the rate of convergence of CG
acceleration is high only‘after a number of iterations aré:performed which set
up most of the principal (or dominant) orthogonal base vectors. o
Based on the above discussion, the following tentative conclusions
emerge regarding isolated solver performance for single linear equation sets:
i) Provided the computer storage is available, Section (6.6), ACM
acceleration with SIP employing an optimal amount of relaxation
is generally the most efficient method, but only moderately more
efficient than IC with ACM. ,
ii) If it is known, a prjori, that the so]Ution for pressure varies
primarily in a §ing1eid1rection, then BC acce]eratton_should be

most effective.
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iii) If the computer storage requirements of ACM are excessive for
the particular problem, BC acceleration of SIP with an optimal .
partial cancellation appears to be an appropriate choice.

iv) Because the CG acceleration exhibits at times poor convergence
behavior, the method should be used with some caution.

These conclusions are now used in understandihg how the choice 6f the
method used to solve the pressure equation would influence the performance of
a particular segregated method for incompressible flows. Such information
might then also prove useful in comparing the segregated approach to a]terna-
tive methods, including the coupled approach for incompressible flow problems.

7. 2 EVALUATION OF IMPROVED PRESSURE ~ VELOCITY COUPLING ALGORITHMS AND SOLVER
PERFORMANCE IN THE TEACH CODE
.-The following sections adopt a baseline code to quantitative]y study the
implications of emp]oying various convergence enhancement practices for com-
“puting isothermal, turbulent, recirculating flows. The code selected was a
variant of the Pratt and Whitney 2- D TEACH Code,( ) supplied as part of this
contract, incorporating: .
1)  Hybrid differencing _
ii) An alternating direction 1ine Gauss-Seidel to solve equations
: for pressure, components of velocity and other scalars with a
two-dimensional five=point operator
iii) The PISO var1ant(6) of SIMPLER(]) algorithm to dea] with the
coupling between pressure and components of velocity
iv) k-e¢ turbulence model.
Whereas the previous sections examined the solver performance in isola-
‘ tion for single linear pressure equations, the relevant details of the overall
segregated solution algorithm for incompressible flows is considered
next.

7.2.1 Details of Implementation

The convergence and efficiency of a typical segregated incompressible
solver is primarily dictated by, Sections (3.4.3) and (4.3):
i) The nature of the approximations introduced to deal with the
~ crucial pressure ~ velocity coupling.
1) Effective solution of the resulting pressure/correction equation.

-139-



These issues will be discussed in detail with reference to the particu-
lar means of incorporating the associated convergence enhancement algorithms
in the TEACH code.

To improve the coupling between pressure and velocity components, the
SIMPLEC(]S) algorithm was employed. The SIMPLEC algorithm is a more con-
sistent implementatioﬁ of the original SIMPLE method resulting in considerably
improved convergence behavior. Along with the implementation of SIMPLEC, the
baseline code was modified so that mass conserving velocity components-are
always used when discretizing all transport equations. In the baseline code,
coefficients of the discretized v momentum equation were based on u* veloci-
ties, which, in general, do not satisfy mass conservation, Section (3.4.3).

The standard implementation of PISO and SIMPLEC, as reported in the
literature, are such that under-relaxation of momentum equations controlled by
a, the under-relaxation parameter, is required. The under-relaxation, in
turn, resuits in a relatively large numbér of coefficient updates (itera-
tions). To reduce the number of coefficient updates, the SIMPLEC cycle of u®,
v* and pressure calculation is applied repeatedly using the same sets of
coefficients of the momentum equations. The required under-relaxation of
SIMPLEC is accomplished by adding a:/°SIMPLEC (un-]—un) to the u momentum

n p

equation‘and a;/aSIMPLEC,(v""]—v ) to the v momentum equation where ap

and q; are the central coefficents of the corresponding momentum

equations, O IMPLEC is the SIMPLEC under—re]axation parameter and the

" superscript n is used to denote the current SIMPLEC iteration. Termination of
the SIMPLEC cycle is based on fhe reduction of the u* and v* mass conservation
residuals and is controlled by the value of the residual reduction factof;

O IMPLEC The result is that, after repeated applications of SIMPLEC,
pressures and velocities better satisfy mass and momentum conservation and
that the under-relaxation of the momentum equations controlled by «, can be
substantially reduced, thereby reducing the number of coefficient updates
required. This reduction in coefficient updates is particularly important for
the more expensive discretization schemes 1ike MW-SUDS and LP-SUDS, where the
cost associated with the updating of coefficient is relatively high.

Regarding the convergence enhancements associated with the solution of
the pressure/correction equation, SIP with CG, BC or ACM acceleration tech-
niques were implemented in the baseline code. Each of the options was tested,
however, guided by the conclusions of the previous section only SIP with BC or
_ACM accelerations were used in the demonstration problems.
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To further enhance convergence, the residual reduction convergence
criterion, controlled by the residual reduction parameter, Yp'
Section (4.3), was implemented in the code to establish an efficient termina-
tion procedure for the iterative solution of the pressure correction equa-
tion. In addition, the approximate factorization of the pressure correction
equation is stored, i.e., approximate factorization is performed dh]y when the
coefficients of the pressure correction equation are updated. This is partic-
ularly useful in PISO where solutions of similar pressure correction equations
with differing driving source-terms are required in the two stages. The only
exception to this artifice arises with SIP-CG where the initialization of CG
requires that the decomposition be performed in both stages of PISO.

Finally, as discussed in Section (6.5), SIP with BC or ACM acceleration
is equal]ybapp1icable to symmetric and non-symmetric equations. Therefore, it
is possible‘to use these methods for the solution of momentum equations as
well as scalar transport equations. HoweVer. as these equations are generally
dominated by convection and/or source terms, algebraic solutions are readily
obtainea without using any acceleration techniques. Therefoke, SIP with BC or

ACM was not imp]emented for these equations.

7.2.2 Test Problems and Procedure

-To study the impact, the above practices are likely to have on partial
computations of flow problems with associated nonlinearity and variable coup-
11ng.;solutiohs were obtained to the following demonstration problems:

i) Shear driven flow in a squére cavity, Reh=1000 using a uniform
grid with 10x10 control volumes, figure (7.1). -
ii) ° Flow over a rearward facing step, Reh=250 using the boundary
conditions as in Section (7.1.1) and a uniform grid with 10x6
control volumes, figure (7.2).

iii) Coannular, nonswirling, turbulent flow in a sudden expansion
geometry. The inlet conditions are presented in Table (7.1). A
non-uniform grid with 21x20 control volumes, similar to that
described in (5) was used.
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TABLE 7.1 INLET CONDITIONS FOR THE COANNULAR TURBULENT FLOW PROBLEM

'Variable ' Inner-F]ow Outer Flow
u (m/s) . | ' 0.596 : 14

v (m/s) 0.0 . 0.0

k (m2/s2) 1.776x10-3 -1.514x10-2
e (m2/s3) 1.52x1072 3.78x10"]

Computations were performed using the familiar Hybrid differenéing to
obtain the dicretized algebraic equations. Use of such coarse grids for the
above demonstration problems is intentional in that, on finer grids the
enhancement of convergence and accuracy provided by the above practices is
generally more dramatic. There are several reasons for this including:

i) On coarse grids, the increased computational effort required to
set up SIP with acceleration may not be offset by the reduction
in the number of jterations required to solve the pressure cor-
rection equation. '

ii) On coarse grids, the performance of SIMPLER/PISO can be better
than the performance of SIMPLEC.

iii) The cost of coefficient updates of the Hybrid discretization

' scheme is quite low. As a result, the effectiveness of repeated
applications of SIMPLEC for fixed momentum coefficients will be
diminished. _

The various solution parameters adopted for the test problems are sum-
marized in Table (7.2). In all the test problems studied solution was assumed
converged when the corresponding normalized maximum residual in the field was
reduced to 0.005. The CPU requirements quoted in Tables (7.3) through (7.6)
refer to a MASSCOMP Series 500 minicomputer.
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TABLE 7.2 PARAMETER SETTINGS FOR CONVERGENCE ENHANCEMENT TESTS.

SIP Partial Cancellation Parameter : : 0.5

Pressure Correction Residual Reduction Factor, yP 0.25

SIMPLEC Under-Relaxation of Momentum, agimpLgc 0.7

SIMPLEC Residual Reduction Factor, VgimpLeC 1 0.4

7.2.3 Results of Numerical Experiments

For the shear driven square cavity problem, the number of coefficient
updates and CPU requirements for the baseline code, the baseline code with

SIP-BC and the baseline code with repeated SIMPLEC and SIP-BC are presented in
Table (7 3).

TABLE 7 3 CONVERGENCE ENHANCEMENT TEST RESULTS FOR SHEAR DRIVEN
: CAVITY PROBLEM, GRID = 10 X 10

Solver. Under-Relaxation | Coefficient Total CPU
Parameter, o Updates Requirements
(Seconds)
Baseline 0.5 - 86 305
PISO/SIP-BC - 0.5 86 182
SIMPLEC/SIP-BC 0.92 20 101

The above results indicate a 40 percent reduction in overall CPU re-
~quirements with the introduction of SIP-BC. The introduction of repeated
SIMPLEC allows a much higher value of the under-relaxation factor « and
results in a 77 percent reduction in the number of coefficient updates, as
well as an additional 44 percent reduction in CPU requirements.
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For the rearward facing step problem, the number of coefficient updates
and CPU requirements for the baseline code, the baseline code with SIP-8C,
repeated SIMPLEC, and the baseline code with SIP-ACM and repeated SIMPLEC are

given in Table (7.4).

TABLE 7 4 CONVERGENCE ENHANCEMENT TEST RESULTS FOR REARWARD _
" FACING STEP PROBLEM, GRID = 10x6

Solver o Under-Relaxation | Coefficient Total CPU
Parameter, o Updates Requirements

(Seconds)
Baseline 0.5 , 26 37
PISO/SIP-BC 0.5 25 a6
SIMPLEC . 0.8 : 13 36
SIMPLEC/SIP-BC 0.8 : 12 34
SIMPLEC/SIP-ACM -0.8 13 38

As will be seen from the above table, for the coarse grid used for this
problem, there is 1ittle or no improvement in CPU requirements with the intro-
duction of SIP with acceleration or repeated SIMPLEC. 1In fact, the introduc-
tion of SIP with acceleration is a disadvantage for this coarse grid.
However, it is encouraging to note the 50 percent reduction in coefficient
updates that result from the introdqction of repeated SIMPLEC and a h1§her
value of a. Also note some reduction in CPU requirements with SIP-BC used in
~ conjunction with repeated SIMPLEC. ) ’

' For the turbulent coannular flow problem, the number of coefficient
updates and CPU requirements for the baseline code, the baseline code with
SIP-ACM the baseline code with repeated SIMPLEC and the baseline code with
SIP-ACM and repeated SIMPLEC are presented in Table (7.5).
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TABLE 7.5 CONVERGENCE ENHANCEMENT TEST RESULTS:FOR TURBULENT COANNULAR

FLOW PROBLEM, GRID

= 21x20, TRUE VALUE OF ypip = 0.117(5

Solver Under-Relaxation | Coefficient Total CPU
Parameter, o Updates Requirements
(Seconds)
Baseline 0.5 178 40
PISO/SIP-BC 0.5 Unstable -
SIMPLEC . 0.9 _ 110 37
SIMPLEC/SIP-ACM 0.9 . — 109 34

Considering, first, the impact of using SIP-ACM for the solution of the
pressure correction equation, it is observed that PISO becomes unstable with
the impkoved method'for solving the pressure correction'equatiqn. Similar
results were obtained using SIP-BC. The reason for this behavior is that for
the turbulent coannu]ar flow problem PISO becomes unstable on a 21x20 grid
using a=0.5. In the baseline code, use of the recommended 5 iterations of the
Alternating Direction Line Gauss-Seidel procedure for the pressure correction
equation, which is considerably slower than SIP-ACM, introduces sufficienf
relaxation to stabilize PISO. It can also be seen from the above table that
the use of repeated,SIMPLEC results in a 40 percent reduction in the number of
coefficient updates. However, with the increased costs of repeated SIMPLEC,
total CPU. requirements were reduced by only 9 percent. Repeated SIMPLEC
together with SIP-ACM results in a 15 percent reduction in CPU requirements.

As indicated previously, dramatic reductions in CPU requirements result-
'ing from the use of repeated SIMPLEC are expected, when CPU intensive schemes,
. 1ike Mw%SUDSVor LP-SUDS, are employed for discretization. To illustrate this
iésue, numerical solutions to the turbulent coannular flow problem employing
MW-SUDS on the 21x20 grid were obtained using the baseline code, the baseline
code with SIP-ACM, the baseline code with repeated SIMPLEC and repeated A
SIMPLEC with'SIP ACM. The number of coefficient updates and CPU requ1rements
for each so]ut1on are presented in Table (7.6).
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TABLE 7.6 CONVERGENCE ENHANCEMENT TEST RESULTS FOR TURBULENT
. COANNULAR FLOW PROBLEM USING MW-SUDS, GRID = 21x20 TRUE VALUE OF L, = 6.1

Solver Under-Relaxation | Coefficient Total CPU
‘ : Parameter, o Updates Requirements
: (Seconds)
Baseline 0.5 2172 160
PI1S0/SIP-BC 0.5 306 174
SIMPLEC 0.9 160 119
SIMPLEC/SIP-ACM 0.9 137 92

The results indicate that the introduction of repeated §IMPLEC to the
baseline code yields a 41 percent reduction in the number of coefficient
updates and a corresponding 26 percent reduction in total CPU requirements.
Combing SIP-ACM with repeated SIMPLEC results in an additional 14 percent
reduction in the number of coefficient updates and an additional 23 percent
reduction in total CPU requirements. Compared to the baseline code, SIMPLEC
with SIP-ACM results in a 43 percent reduction in total CPU requirements.
Finally, it is noted that the 1ntrbduction of SIP-ACM in PISO results in an
increase in both the number of coefficient updates and the total CPU
requirements. This behavior again highlights the unstable nature of PISO.

7.2.4 Summary and Conclusions

Convergence enhancement and efficiency for the nonlinear, coupled trans-
port equations of incompressible flow were examined above using an improved
pressure ~ velocity coupling algorithm together with a variety of appropriate
solvers for the pressure correction equation. Although more extensive testing
and use would be required to arrive at any general conclusions, the results
for the test problems considered clearly delineate the complex relationship
between the structure of a segregated solution algorithm and the efficient
solution of the pressure field to yield zero divergence for mass. The suit-’
ability of a pressure solver for use with a specific 1ncompressib1e flow
algorithm cannot be overemphasized, as PISO was shown to be unstable for some
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of the test problems examined. The above study also highlighted the effi-
ciency aspects of an improved solution algorithm when used with accurate but
more CPU intensive discretization schemes. However, the problem is generally
much more involved including issues of boundedness, stability and convergence
characteristics. ' _A . o |

Based on the results of the above test problems,.the following conclu-
sions are stated: _

i) . The introduction of an accelerated SIP to solve the pressure
correction equation can significantly reduce CPU requirements;
up to 40 percent reduction for laminar flows and 20 percent

_ reduction for turbulent flows. '
ii) The introduction of.repeated SIMPLEC significantly enhances con-
vergence, reducing both the number of coefficient updates and
CPU requirements. Because of the relatively high cost of coef- -
ficient updates for CPU intensive discretization schemes, like
MW-SUDS and LP-SUDS, the introduction of repeated SIMPLEC has,
genéra]ly, the largest impact on the CPU requirements of such

schemes.

7.3 EVALUATION OF IMPROVED DISCRETIZATION SCHEMES

The governing transport equations for fluid flow in arbitrary configura-
tions of engineering interest express a delicate balance between the varijous
influences of convection, diffusion and source terms, Section (6.1). Differ-
ent zones in the flow field emphasize the influence of one or more of these
transport mechanisms at the expense of others.

Due to fhe extreme nonlinearities involved in the above equations,
especially at high Reynolds numbers, very few exact (analytical) solutions can
be found in the literature. These usually relate to simple, idealized (very
often linear) problems, constructed in a manner to examine constituent effects
in more comprehensive equations like the Navier Stokes. The boundary énd ini-
tial conditions associated with the above solutions are generally specified as
analytical functions. For purposes of developing numerical solution tech-
_niques, these exact solutions provide an invaluable tool for evaluation pur-
poses, however, idealized the physical model problem might be.

Very often in the literature, numerical solutions embodying various con-
stituént physical models are compared with fairly complex experimental confﬁg—
urations. Description of the initial and boundary conditions is far from
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adequate for numerical model verification. The significant influence boundary
conditions exert on the solution behavior has been amply stressed by several
researchers.(2_4) Subsequently, the rather disappointing picture that

emerges a result o; comparing numerical solutions with experiments is further
aggravated, as it now becomes an extremely difficult task to identify and ~
jsolate the various sources of discrepancy. Among these are the numerical
solution techniques, physical modelling assumptions.

Thus, for purposes of evaluating the préviously discussed discretization
techniques, this study has adopted the strategy that assessment exercises are
confined predominantly to examining the performance of discretization schemes
in the 1ight of exact solutions. These also include thoroughly exercised
(documented) model numerical solutions. Where appropriate, the performance of
a scheme was further studied in more demanding flow problems including non-
linearity and variable coupling. A typical scheme's performance is also
examined with respect to the particulars of the alternative techniques consid-
ered. The assessment criteria, presented.in Section (4.4), for such compari-
son exercises were manipulated to comprise the following attributes with a
view towards three-dimensional applications: .

i) Best accuracy on coarse grids. Even with advanced computers,
many three-dimensional calculations will still be limited to
grids which are, at best coarse. ‘ _

ii) Robustness and stability. For many three-dimensional computa-
tions it is important to ensure that numerical solutions can be
obtained. Particular reference is made here to k and ¢
equations. .

iid) Efficiency. Improvements in accuracy must be attained without

excessive computational requirements. ,

The performance of the schemes will now be discussed in detail. Unless.
otherwise stated, due to the extended computational molecule, a nine point
Alternating Direction Line Gauss-Seidel procedure was used effectiéely, even
in the presence of mild negative coefficients introduced by SOU or LP-SUDS, to

solve the linear algebraic equations.

7.3.1 Second Order Upwind (SQOU) Differencing Scheme

To evaluate the SOU discretization scheme, SOU is applied to four scalar
transport model problems, as well as several flow problems. The scalar trans-
port problems are all described by equation (6.1) in Cartesian form, i.e.,
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3 3 _3_(r,2e, _3_ I, .
™ (pqo) + ay (gvn) ax ( oax) = % ( ”ay) + Sg(x.y) Equation (6.1)

and include 'the following specific cases:
i) The uniform, angled flow, convected step problem chosen to
examine the behaviour of the scheme with the flow at various
angles to the grid, figure (7.7).

i) _The uniform angled flow past a unit source chosen to evaluate
the performance of SOU in the presence of a source, figure (7.8).
iii) The problem of curved flow through a rectangular domain (the
(90)

so~-called Smith-Hutton
behavior of SOU in the presence of flow curvature, figure (7.9).

problem), adopted to examine the

jv)* Problem (ii) with a distributed source give by:

S(x,y) = pu(sx-sz)(3y2-2y3) + pV(3x2—2x3)(6y-6y2)

(7.1)
- L1200 (3y%-2y%) + (3x%-2x%) (6-12y)] |
with p=1, u=2, v=1..
The solution for '8 in this case is given by:
2.3.,.2.3 |
8 = (3x -2y )(3y -2y) (7.2)

For each problem, SOU was applied only to cases where the flow was at an angle
to the grid where the performance of SOU is expected to be the worst.

For the problém of scalar transport of a step, three cases were consid-
ered: Case I, PeL = 250, 8=45° on a uniform 5x5 grid; Case II, PeL=250}
©=30.9° on a uniform 5x5 grid; and Case III, PeL=250, 6=30.9° on a uniform
25x25 grid. -

For Case I, the results shown in figure (7.10a) indicate that for e=45°
the SOU results exhibit an excessive smearing of the step profile as compared
to the 'exact' solution obtained by Huget.(so) In fact, comparing the re-
sults to previously obtained.solutions, the smearing of SOU is comparable to -
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the smearing of the Upwind Differing Scheme (UDS). Also shown in figure
(7.10a) are the results of Mass Weighted Skewed Upstream Differencing
(MW-SUDS), which exhibit considerably less smearing of the step profile. Case
II provides a comparison of SOU and MW-SUDS for €=30.9 where MW-SUDS exhibits
more smearing than for €=45°. The results shown in Figure (7.10b) indicate
that for the coarse 5x5 grid SOU smears the step profile more than MW-SUDS.

To determine the behavior of SOU on moderate grids, a grid ofV25x25 was used
in Case III. The results shown in figure (7.10c) indicate that SOU does not
smear the step profile as much as MW-SUDS. However, the SOU result exhibits
one percent overshoot, while the results of the Linear Profile Skewed Upstream
Scheme (LP-SUDS) exhibited no overshoots, Section (7.3).

For the problem of scalar transport with a unit source, the only case
considered was that of ©=45°. The results shown in figure (7.11) indicate
that SQU smears or spreads on the influence of the unit source, as compared to
the "exact" solution obtained by Sfub]ey.(gl)

For the problem of scalar transport of a prescribed inlet profile in a
prescribed fiow with curvature the case Pe=106 was considered. The results
shown in figure (7.12) indicate that, at the outlet, SOU exhibits smearing of
the profile comparable to that of MW-SUDS as well as overshoots and under-
shoots as large as LP-SUDS. . ' ~

To evaluate the rate of convergence of SQU with grid refinement, fodr
uniform grids 4x4, 8x8, 16x16 and 32x32 were used to obtain SOU solutions for
the scalar transport problem with a distributed source term. The resuiting
RMS error and the rate of convergence are given in Table (7.7). The results
indicate that the rate of convergence of SOU approaches 2 only as the mesh

becomes very fine.

TABLE 7.7 RATE OF CONVERGENCE OF SOU

Grid (N) RMS Error Rate
4x4 3.194x10°¢
8x8 T 2276x10-2 1.39
16x16 - 3.665x1073 1.4
32x32 9.859x10~4 T .89
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In the above table, the convergence rate is defined as:

i

RMS Error coarse (7.3)

1o oo i
[RMSNError]fine
Rate = N

log ( fine )
Neoarse

In addition to the above scalar transport cases three laminar flow test
cases, namely the shear driven flow in a square cavity, flow over a rearward
facing step and angled flow into a suddenly expanding pipe were executed. The
incompressible flow algorithm used was the PISO variant of SIMPLER algorithm
and an Alternating Direction Line Gauss-Seidel scheme was used to solve equa-
tions for pressure(]g) and components of velocity.

For the shear driven cavity problems, figure (7.1), four global Reynolds
numbers, Reh, of 100, 400, 600‘and 1000 bgre investigated using a uniform
grid of 40x40 to examine the changing flow structure in the cavity due to
increasing influences of convection. In the case of Reh=100 both SOU and
hybrid differencing are in agreement with- the "exact" numerical solution of
Burgraff(gz) for the axial velocity profile at the vertical 6entre-p1ane, as
. displayed in figure (7.13). However, as the Reynolds number increases énd
convective influences begin to dominate, the additional accuracy afforded by a
higher order scheme like SOU, as tompared-to first order schemes, becomes
apparent. Nevertheless, there is still a considerable smearing of the centre-
lTine axial Qelocity profile as is apparent from figure (7.14) for Reh=600.
None of the above solutions suffered from the severe solution difficulties
reported by”Vanka(ga) for high Reynolds number cases, buf displayed minor
overshoots and undershoots (up to 4 percent) for Reh=1000, Section (6.2.1).

Application of SOU to predict the flow details over a rearward facing
step, figure (7.2), yielded the global recirculation zoné length to be 5.67
step height employing a non-uniform grid distribution of 62x§8 and a tophat
(constant) inlet velocity profile. The Reynolds number based on stgp height
was 250, for which the experimentally measured reattachment length is given by
Durst(94) as 6.3 step heights. Table (7.8) compares the reattachment length
=xR/h. for various alternative differencing schemes and grids.

L
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TABLE 7.8 COMPUTED REATTACHMENT LENGTH Lp FOR VARIOUS ALTERNATIVE
DIFFERENCING SCHEME FOR THE REARWARD FACING STEP (Rep=250)

Inlet Profile Grid Hybrid qQuos(69) -1 gsups2(5) | sou
Tophat 1 1036 2.5 5.32 2.2
Tophat 2 20x12 3.14 5.25 3.95
Tophat 3 40x24 4.52 5.35 5.78
Tophat 4 62x38 | 5.67
Tophat § 78x48 - 5.53 5.75 5.98 '

It will be seen from above table that the performance of SOU 1ndicates'§
-behaviour very similar to that of QUICK differencing of Leonard(sg) (better
bounded solutions, however) and far superior as compared to Hybrid d1fferenc-
ing. '
Concerning the problem of angled inflow into a sudden expansion type
geometry, the predicted flow field by SOU (non-uniform grid 78x44,*Reh=450.
~inlet angle=30°) displays qualitatively the expected correct behavior, i.e., ~
the multiplicity of recirculation zones and the complex interaction between
the various zones, figure (7.15). In this case, however, there is neither any
experimental data nor carefully performed "exact" numerical predictions

available for comparison.

~7.3.2 Variants of Skewed Upwind Differencing Schems (SUDS)

. To demonstrate the applicability of the Linear Profile and Mass we1ghted
SUDS (LP-SUDS, MW-SUDS) and examine their performance, a number of two-
dimensional scalar transport and flow problems have been considered. These
will be considered in detail now. B

Sca]ar.Transport Problems

Three scalar transport problems, similar to SOU, were chosen to eqéluate
the variants of SUDS schemes'incorporating an implicit determination of the
interface values of variables using a simple LU decomposition. These are:

i) The uniform, ahgled flow convected step problem
ii) The uniform angled flow past a unit source
jii) The problem of curved flow through a rectangular domain, the
Smith-Hutton problem. ‘
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': - Stubley.

For problem (i) the relevant problem parameters examined include
"PeL=250. four flow angles, €=0°, e=11.3° (tan (0 2)), 6=30.9 (tan -

(0.6)) and ©=45° and a variety of uniform grids including 5x5, 15x15 and 35x35
control volumes. A '

_ . Figure (7.16) displays the results at the domain centreline, x/L=0.5 "

~ obtained using LP-SUDS and MW-SUDS and compared to the "exact" results
obtained by Huget(so)

coarse grid Exponential D1fferenc1ng Scheme (EDS) and SUDS results obtained by
(30)

for problem (i). Also shown on the figure are the

Huget. ‘
| In general; the results indicate that, as the angle of the flow to the
grid is increased, MW-SUDS exhibits some false diffusion, but to a much lesser
degree than'EDS and LP-SUDS exhibits some spurious spatial oscillations, but
usually much less than those observed for SUDS.
For problem (i1) three flow angles were considered, ©=0°, 22.5° and
45°. Centre-line (y/L=0.5) profiles obtained using 19x19 uniform control vol-
umes are shown in figure (7.17). Also shown are the exact results obtained by‘
(1) In general the results indicate that:
a) Both LP-SUDS and MW-SUDS benefit from source term influence. In
' particular, accounting for the influence of the source term reduces
the overestimation of maximum @ and shifts the location of maximum [
"downstream and closer to the true location.
c b) Due to the false diffusion introduced by MW-SUDS the overestimation
v of maximum 8 by MW-SUDS is less than that of LP-SUDS. However, at
the- downstream boundary, the false diffusion of MW-SUDS results in
. overestimation of .
- 'i For problem (iii) illustrated in figure (7.9), the flow transports a
s1i§htly diffused step profile of 8 into the computation domain through the
1eft side of the bottom boundaryvand it leaves the domain through the right
side of the bottom boundary with the 8 profile determined by the Peclet num-
',:ber, Pe. - Using a 20x10 uniform mesh, numerical so]utions are obtained for

:five Peclet numbers, Pe=10, 100, 500, 1000 and 10 The profiles along the

L outlet portion of the bottom 0 < x < 1 are shown in figures (7.18). In gen-

eral, the results for this problem with flow curvature indicate that:
a) for low values of Pe, LP-SUDS and MW-SUDS results are in close
- agreement. ' ' '
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b) as Pe is increased, the false diffusive nature of Mw SuDsS becomes
evident. It is also worthy to note that for Pe = 10 and 1000,
MW-SUDS results do not d1ffer significantly from the results for

= 500. ,
| c)"as Pe is increased, LP- SUDS exhibits no fa]se diffusion but over— :
shoots become apparent for Pe > 103 with a maximum overshoot of '

6.25 percent occuring for Pe = 106

A11 the above scalar transport problems employed an 1mplicit formulation
for the determination of interface variable values. To illustrate the applic-
ability of explicit linear profile and mass’weighted SuDS, Section (6.3.4),
numerical solutions to the same problems were used to demonstrate the perform-
ance of explicit skeQ schemes. For the convected step, unit source an&
“smith-Hutton problems, the explicit skew results are almost identical to the
implicit skew results. However, the explicit skew results required less than
‘50 percent of the computational effort required by the implicit skew séhemes.'
Using the current impiementation, coefficient assembly costs for‘LP and
‘MW-SUDS are estimated to be four times the assembly cost for the baseline
Hybr1d differencing. . ' | ' '

For the problem of scalar transport with distributed sources in a uni-
form velocity flow (not d1scussed above), the exp]1c1t skew results are again
‘similar to the imp]icit skew results. The exception, however, is the perform-
"ance of the LP-SUDS with source term influence. As shown in Table (7.9), the
rate of convergence of LP-SUDS-STI, where suffix STI denotes source term
influence, is now 2. This second order rate of convergence is not a result of
"the explicit skew approach. Instead, it is a result of using a first order .
approximation to the source term influence in the vicinity of boundaries. 1In
the implicit skew implementations, a zero-order approximation to the source
term was used in the vicinity of the. boundaries. A

TABLE 7.9 RATE OF CONVERGENCE OF LP-SUDS-STI

Grid (N) RMS Error Rate
4 2.022 x 10¢
8 5,9779 x 10~3 1.99
16 T7.2657 x 10°3 2.00
32 3.0889 x 1074 2.03
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In summary, explicit LP-SUDS and M- SUDS“}edd1re‘1ess'COMbutatione1
effort and y1e1d numerical results that are almost 1dent1ca] to the corre-
sponding 1mp11c1t schemes. Also by ensuring that a f1rst order approx1mation
to the source term influence is used throughout the domain 1nc1ud1ng near
boundaries. LP-SUDS-STI has been shown to be a scheme with a second ‘order rate

of convergence.

~ Fluid Flow Problems

The previous laminar flow demonstration problems, i.e., sheqrrdriyenv*
flow in.a square cavity and f]ow'over a rearward facing step, as well .as a...
turbulent coannular flow were chosen to flow evaluate the variants of SUDS for
flow problems. The emphasis here is on the discretization of the momentum
conservation eqdations with and without accounting for the pressure gradient .
source term influence. The solutions discussed below were all obtained using
repeated. SIMPLEC with SIP-BC or SIP-ACM and an implicit/explicit formulation
for the interface value of the relevant variable. : :

For the driven cavity flow, Reh-1000 two grids were used to obtain
numerical solutions, a uniform 10x10 mesh and a uniform 20x20;mesh. From
these numerical results, obtained using an implicit interface value formula-
tion and SIP with BC, values of minimum normalized streem function. wmin
were determined and tabulated in Table (7.10). Also tabulated are the EDS and

SUDS results obta1ned by Huget. (30)

TABLE 7.10 VALUES OF ymin FOR DRIVEN CAVITY PROBLEM EXACT VALUE
OF Wmin ~ -0.117(95)

Grid v

10x10 20x20

Scheme '
EDS ~0.0494 ~0.0677
SUDS -0.0370  -0.0577
MW-SUDS 0.0457 20,0643
-LP-SUDS -0.0401 -0.0599
MW-SUDS-STI ~0.0610 ~0.0786
LP-SUDS-STI | -0.0551 . -0.733
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. From the results tabulated, it is seen that even the best solution ob-
talned by using MW-SUDS-STI differs considerably from the computations of Gh1a
et. (95). In noting similar discrepancies, Huget(ao) suggests that they '
are due to the poor treatment of shear in the. vicinity of the mov1ng lid.
There are at least two ways to overcome this difficulty; one is to 1ntroduce
higher order representations for boundary cond1t1ons,(30) and another is to
introduce "influence points to evaluate the mass fluxes in the representation
of mass conservation.. This latter approach has been demonstrated by~Raw(]0) .
to result in more accurate results for the driven cavity problem. In this aﬁd ,
other flow problems-in this section, the source term influence of bressure in
momentum conservation, when 1t was accounted for was implemented using a
deferred correction approach.

In sp1te of the errors, the trends shown in Table (7.10) dramatically
display the .influence of accounting for source term effects in evaluating. the
interface variable values on the accuracy of resulting solutions. The same:
problem was repeated using the explicit formulation for flux evaluation and
repeated SIMPLEC with SIP-BC or SIP-ACM to examine accuracy issues and CPU .
requirements'in comparison with the baseline code that 1ncorborates Hybrid
‘differencing. The results for‘mmin and CPU requirementsvare displayed in

Table .7.11.

TABLE 7.11 VALUES' OF ypin AND CPU REQUIREMENTS
FOR DRIVEN CAVITY PROBLEM

~Scheme ' I
\ | Hybrid MW-SUDS-STI |  LPU-SUDS-STI
Grid ) T ) cPU. | .y ~CPy
min _ © - min min
10x10 | -0.0496 | 101 | 0.0672 | 306 | 0.0734 | 285
20x20 | -0.0655 | 760 | 0.0879 | 1704 | 0.0954 | 1813

Ih the above and remaining tables to follow, CPU's are measured in seconds and
"~ refer to a MASSCOMP Series 500 minicomputer.
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Review of the above table again demonstrates clearly:.that LP-SUDS-STI
solutions are more accurate than MW-SUDS-STI results which are in turn, more: :
accurate than Hybrid results. Associated with the increased accuracy of
MW-SUDS-STI -or LP-SUDS-STI is a corresponding increase in total CPU require- _
ments. A significant portion of this increase, apart from the CPU:cost .
associated with coefficient generation, (50 to 100 percent) is most 1ikely due
to the use of the particular deferred correction procedure to account.for the
source term influence, primarily pressure for the momentum conservation -equa-
tions. Naturally, such CPU requirements could be reduced substantially,.if a-
more implicit treatment of source term influences were used. -However, such.an
implicit treatment of pressure source for interface flux evaluation may give .-
rise to practical solution difficulties within the framework of the segregated
solution approach adopted, i.e., decoupling of the pressure field, treatment
of boundary conditions for the additional terms in the cont1nuity/pressure
equation, etc. ( 0) using a similar approach formulated a co-located
solution procedure that overcomes most of the above problems. Use of the
deferred correction approach in the manner outlined above yielded converged
solutions without severe solution difficulties, a)beit increased CPU require-’
ments. . ) i )
The increased costs associated with the use of the above SUDS schemes
raises the issue of cost effectiveness of such schemes. One way to evaluate
cost effectiveness is to determine the relative costs of each scheme to |
achieve a prescribed accuracy. For instance, the Wmin value of -0.0734 is
obtained using LP-SUDS-STI on a 10x10 grid and requires approximately 300 CPU
seconds. On the same grid using a similar amount of .CPU, the MW-SUDS-STI
result is -0.0672. It is estimated that MW-SUDS-STI would require a 15x15
grid and 700 CPU seconds to obtain a solution of similar accuracy as
LP-SUDS-STI on a 10x10 grid. Similarly, it is estimated that the Hybrid
scheme weuld reqhire a 27x27 grid and 1800 seconds of CPU to obtain the
accuracy of the coarse grid LP-SUDS-STI result. With respect to the coarse
grid LP-SUDS-STI results, the storage and CPU requirements of the discretiza-
tion schemes to obtain similar accuracy as presented in Table (7.12).
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TABLE 7.12 STORAGE AND CPU RATIOS FOR EQUIVALENT ACCURACY
(DRIVEN CAVITY PROBLEM)

CPU Ratio
Scheme - Storage Ratio.
'Hybrid - 1.3 6.0
MW-SUDS-STI 2.3 2.3
LP-SUDS-STI 1.0 1.0

For the flow over a rearward facing step, Reh=250 as shown in fighre '_
(7.2), three uniform grids were used, 10x6, 20x12 and 40x24. From these num--
 erical results, values of the normalized recirculation zone length LR = xR/h
were determined to assess discretization accuracy. Table (7.13) displays the
LR values obtained using an implicit interface variabie determination with

and‘without»source term influences, and SIMPLEC with SIP-BC. Also tabulated

are the. Hybrid, QUDS and BSUDS2 reported by Syed, et al( ) and the experi-

mental results of Durst.

TABLE 7.13 VALUES OF LR FOR REARNARD FACING STEP PROBLEM
EXPERIMENTAL VALUE OF L = 6.3

. Grid .
: " 10x6 20x12 40x24

Scheme ' '
HYBRID 2.5 3.14 4.52
" QUDS 5.32 5.25 . 5.35
BSUDS?2 2.2 3.95 5.78
MW-SUDS 3.94 4.43 4.84
LP-SUDS 4.82 5.24 5.82
" LP-SUDS-STI 3.92 4.53 4.92
- LP-SUDS-STL 4.94 5.32 5.92

From the tabulated results it is noted that:
i) 1 MW-SUDS results are superior to Hybrid results.
ii) LP-SUDS results are always superior to BSUDS2 results and
A comparable or better than QUDS results on finer meshes7
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iii)

ness of each scheme.

In general,

accuracy of MW-SUDS and LP-SUDS.

As in the previous test problem, application of the explicit interface
variable formulation toéether with repeated SIMPLEC and SIP-ACM in the base-
line code, enables a comparative basis to be established for cost effective-

These are summarized in Table (7.14).

TABLE 7.14 VALUES OF Lgp AND CPU REQUIREMENTS FOR REARWARD
FACING STEP PROBLEM

accounting for source term influence improves the

cheme Hybrid MW-SUDS-STT LP-SUDS-STI
Grid Ly cru | Lp cru | g ~cpu
Tox6 2.37 34 | 3.55 63 ' 6.20 69
20x12 2.95 19 ;.59 421 5.88 3§6 
40x24 3.68 1265 5.33 2573 5.93 2495

A comparison of storage'and CPU requirements for equivalent accuracy
based on the medium 20x12 grid LP-SUDS-STI results are also shown in Table

(7.15).

The tabulated ratios are based on estimates that Hybrid would require

at least a 160x96 grid and 8.3 hrs of CPU, and MW-SUDS-STI an 80x48 grid and
4.3 hrs of CPU to approach the accuracy of the medium grid LP—SUDS—STI result.

TABLE 7.15 STORAGE AND CPU RATIOS FOR EQUIVALENT ACCURACY REARWARD
FACING STEP PROBLEM) .

Scheme Storage Ratio CPU Ratio
Hybrid 64 75
MW-SUDS-STI 16 39
LP-SUDS-ST1 1.0 1.0
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“The final flow problem examined was that of turbulent coannular flow as
described in (5). For this case only the explicit interface variable formula-.
tion with repeated SIMPLEC and SIP-ACM was adopted to study accuracy issues
and cost effectiveness. ' -

Regarding -the application of SUDS schemes to predict the complex details
of a turbulent flow, the initial 1mp]ementation ‘of both MW-SUDS and LP-SUDS
included diffusion and source term influences in the equations for momentum,
turbulent kinetic energy, k, and turbulent kinetic energy‘dissipation, e, con-
servation. Although with appropriate treatment of k and ¢ source term 1ineér—
jzations converged numerical solutions could be obtained, these soiutions
- contained regions where k and/or ¢ were negative. Stability was maintained
only because negative k and ¢ values were reset to zero.“By the very naturef
ofiequations for k and ¢, negative values for k and ¢ can only arise through
the introduction of negative influences in the discretization schemes. After
a carefu1 analysis of the discretization schemes it can be shown that negativé
1nf1uences can arise in the following ways:

i) . As a result of the linear profile assumpt1on made to relate ﬁ
to adjacent nodal values of ¢, Section (6.3.1). Since this
assumption is inherent in LP-SUDS, this scheme is not appropri-
ate for the discretization of equations for k or . By design
M- SUDS does not suffer from this problem.

ii) "As a result of including the influence of d1ffusion 1n the inte-
grat1on point equations. At present, the only so]ut1on to this
problem is not to include the diffusion term influence in the -
1ntegrat1on point equation for k and ¢.. ' . . '

_ iji) As a result of including the influences of sources as current]y
implemented. An alternative approach to including source term
influences may overcome this difficulty.

 Guided by the results of the analysis given above, the baseline code was B
mod1f1ed_so that only MW-SUDS without diffusion and source term influences was
used for k and ¢ equations. Both LP-SUDS and MW-SUDS with diffusion and
source term influences were retained for the momentum equations. The modified
code was then used to obtain numerical solutions to the turbulent coannular
f1ow problem using Hybrid, MW-SUDS and LP-SUDS. '

A comparison of the calculated centre-line axial velocity distribut1on
is shown in fjgure (7.19) for the coarse 21x20 grid. As 1ndicated, the
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centre-line axial velocity distributions using MW-SUDS and LP-SUDS are 1denti+'i{-
cal. However, the Hybrid and SUDS results do not agree well in the initial - o
region. This discrepancy most likely arises because of the excessive smearing
of the Hybrid scheme. _ ‘
Figure (7.20) shows the comparison of centre-line axial velocity distri-
bution for the fine 38x38 grid. Again, there is no difference between MW-SUDS
-and LP-SUDS resuits, and the Hybrid results are in closer agreement with the
SUDS results. : o
For completeness, information about coefficient updates and CPU require-

ments are summarized in Table (7.16).

TABLE 7.16 COEFFICIENT UPDATE AND CPU REQUIREMENTS FOR TURBULENT
COANNULAR FLOW PROBLEM

: : Total CPU
Grid Scheme Coefficient Requirements
Updates (hours)
2120 Hybrid | 109 0.5
21x20 MW-SUDS-STI 137 1.5
~21x20 . LP-SUDS~STI 182 2.0
38x38 - | Hybrid 421 8.87
38x38 ~ MW-SUDS-STI 457 20.6
»38x38 LP-SUDSfSTI ' 457 20.7

7.3.3 Compact Implicit Discretization Schemes (CI)

The pekformance of several variants of CI schemes will be discussed
using the notation and terminology of Section (6.4), primarily in one or

two-dimensional scalar transport applications.

Derivative Compact Implicit Scheme (DCI)

DCI was applied to compute the following one-dimensional scalar trans-

port problem including convection and diffusion:
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ds ds . 0<x<lL
Fﬂb;;i rugx=o 8 (x=0) = 0.0
8 (x=L) = 1.0

u>20

with the solution given by:

C(1.8)

where Pe = uL/rﬂ = Peclet number _

Employing 31 uniformly spaced nodes and 5th order Pade' approximations
for ' and 8", DCI results for a range of grid Peclet numbers were obtained
and are displayed in figure (7.21). A close study reveals that for Pe = 1 the
solutions for # are bounded and physically correct. However, as the value of
Pe increases, the so1utjon of 8 is no }onger bounded with overshoots and
undershoots arising in the_vicinity of the large gradient at x/L=1. In fact,
Ciment et al (82) have shown that the DCI scheme will give stable and -
physically reasonable results for Pe < 4 / 15 = 2.1438. ‘

Classical Oberator Compact Implicit Scheme (COCI)

COCI scheme was also used to obtain solutions of the above one-
dimensional equation. The results‘éhow in figure (7.22) for va?ious values of
Pe indicate for Pe<2 the correct behavior is obtained. However, as Pe is
increased beyond a value of 2 (corresponding to‘a decrease in diffusion) the
solution for # behaves as though more diffusion were introduced. In fact for
Pe =\/T;; the solution is identical to that for pure diffusion Pe = 0.0.
Increasing the value of Pe further results in even larger deviations;from the
correct behavior. Finally, for Pe = 4.208, the COCI scheme generates an R
entirely non-physical but bounded result, namely that all |
the values of @ in the domain equals the value at the downstream boundary..

Generalized Operator Compact Implicit Schemes (GOCI)

Using the above one—dimenéiona] scalar transport equation GOCI results
were generated“for a range of Peclet numbers and are displayed in figure
(7.23). Review of figure (7.23) clearly demonstrates the boundedness of
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solutions for all Pe. Also, as expected from the inherent exponenttel
character of finite difference coefficients and the analyt1ca1 solut1on, GOCI  -
solution is in excellent agreement with the latter. Coe , :
Encouraged by the above results and notwithstanding the’ reservations
dtscussed in Section (6.4.5), GOCI Scheme was applied to predict the details' 
of two-dimensional angled transport of a boundery spectfied'step profile of'¢;

for various Pe's. The results shown in figures (7.24) to (7.26) for @ = 45‘,;f"‘

33.7° and 18.4° respectively, all examine Peclet numbers of 250 and » withstff_ :
grids of 7x7, 19x19 and 37x37 nodes. _Each figure displays the predjcted proff
file for o along the centreline x/L = 0.5. The analytical so]ution for _’
PeL= o is a step_change_in g from =0 to @=1 at‘y/L = 0.5. The épproxi—;‘ a;*?
mate ana]ytieal solution for PeL=250 case, valid for Pelzso, is not- V'_' -
plotted because it is graphically indistinguishable from the 37x37 node solu73,
tions for all flow angles considered. o
At e=45°, figure (7.24) the Pe = @ results for all grids are'exact,.f,,,.
resolving the profile at y/L=0.5 to within the resolution of the grid..
PeL-ZSO only the 7x7 grid prediction exhibits any distinguishable errors.
and even those are relatively small. T
At e=33.7°, figure (7.25), the situation is somewhat different. For .
Pe= o, the predictions on all three grids exhibit significant overshoots and ﬂ.
undershoots at the outflow .boundary where 0= 1 is enforced. The magnitude of
the maximum overshoot (~ 16 percent) does not reduce with grid refinement o
since the local gr1d Peclet Number remains infinite. The oscillatory behavior.'
tends to’ 10ca11ze as the grid is ref1ned. concentrat1ng the overshoots and
undersnoots close to the steep gradient. At PeL 250, the GOCI Scheme is -
very well-behaved with only a small (= 2 percent) overshoot arising on the x17
~ grid near the inflow boundary.__For the 19x19 and 37x37 grids, the predictions
are comparable. - o .

At e=1974°, figure (7.26), the results are similar to these destribeo. T

for ©=33.7°. The maximum overshoot on the downstream boundary for Pe=w ,
remains at approximately 16 percent with behavior similar to that of 8=33.7°,

" as the grid is refined. ‘ For PeL=250, the 7x7 grid prediction has a maximumv 
overshoot of 4 percent As the grid is refined to 19x19, the overshoots
vd1sappear and the pred1ct1on is very close to that obtained us1ng a 37x37 grid.
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control Volume Based Operator Compact Implicit Method of Exponent ial
Type CVOCI .

To demonstrate the applicability and determine the characteristics of;;
" the cvocl discussed in Section (6.4.3), the three scalar transport problems

chosen to assess the performance of SOU and SUDS schemes were adopted to pro- 'f”.

vide a uniform compar1son basis for all the schemes considered in this study.
~ For the uniform, angled flow convected step prob]em,'the resu]ts of
CVOCI at the domain centre-line, x/L=0.5 are shown in figures (7.27). In gen-
eral, the results indicate that: | -
i) for e=0°, CVOCI generates no significant overshoots, even on the_
‘ coarse 5x5 grid; .

'-ii) for ©=11.3° and 30.9°, CVOCI generates a 10 percent undershoot
on the coarse 5x5 grid with the magnitude of the undershoot - =
diminishing with grid refinement; o '

iii) for 8=45°, CvOCI generates on]y a mild 1 percent overshoot A

For the unlform angled f1ow past a unit source problem, the CVOCI pro-'_

files along the centre-line (y/L=0.5) and the exact results of Stub]ey(gl)
are snown jn figures (7.28). The results for the 19x19 grid indicate that:
i) -~ no overshoots or undershoots were observed with overall good

agreement between the CVOCI and exact results;

1) .for ®=0, the centre-line profile of 8 is overestimated by CVOCI;

jii) for e8=22.5°, the centre-line profile of ¢ is in excellent agreeQ.
' ment with the exact solution; o
jv) - for 8=45°, the centre-line profile of # is underestimated by
.. CvocI. ‘ .

For the Smith-HUtton(go) problem of curved flow of a diffused step’ |
profile through a rectangular domain, the CVOCI profiles along the outlet
boundary are shown in figure (7.29). The results for this problem indicate
that " )  v A
: j_ i) for Pe = 10 and 100, the coarse 20x10 grid CVOCI results are in

good agreement with the fine grid results presented by Smith and

Hutton;

ii)  for Pe = 500 and 1000, the CVOCI results display a 10 percent

'overshoot and a small 1 percent undershoot;

iji) for Pe= 10 the CVOCI resu]ts exhibit oscillatory behavior on
| both sides of the steep gradient with errors as large as

17 percent arising.
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7.4 CLOSURE AND SELECTION OF SCHEMES FOR THREE-DIMENSIONAL EVALUATION

This Section has presented the results of applying the previously ‘
selected techniques to test problems in order to evaluate their performance in
~enhancing convergence and efficiency as well as discretization accuracy. A
summary is now provided outlining the conclusions along with recommendations
for choices selected for three-dimensional evaluation. Convergenee andzeffi-
ciency enhancement aspects are discussed first. ' d' '

Efficient numerical techniques for'incompressible, viscous, recirculat-
ing flows should incorporate appropriate practices in the solution procedure
to deal with the following issues of concern:

i) techniques used to treat nonlinearities
ii) techn1ques used to treat coupling between variables, e.q.,
pressure and velocity, swirl, etc.

iid) techniques used to solve equations for single scalars, specif-
jcally, the equation for pressure correctien that arises in gen-
eral segregated solution procedures.

In the present study attention was directed primarily towards 1mproVed
techniques to effectively coupie pressure and velocity and to solve effi-
ciently the resulting pressure correction equation. Based on the results of
suitable numerical experiments designed to evaluate the performance of
repeated SIMPLEC together with SIP accelerated by CG, BC or ACM, the following
conclusions are reached: _ '

i) The introduction of repeated SIMPLEC significantly enhances con-’

: vergence, reducing both the number of coefficient updates and
CPU requirements. This is especial1y valuable for use with
coefficient updates of CPU intensive discretizatien schemes like
MW-SUDS and LP-SUDS. | -

ii) The introduction of an accelerated SIP to solve the pressure
correction equation can significantly reduce CPU requirements;

~ up to 40 percent for laminar flows and 20 percent for turbulent

flows. Concerning the choices for the acceleration technique
the following points are noted:

iii)  Provided the computer storage is available, ACM provides the
most effective acceleration of SIP.
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iv) If it is known, a priori, that the solution for pressure'varies o

principally in one coordinate direction, then BC accelerat1on is .f4
, effective. : '
v) Conjugate Gradient acceleration exhibits poor convergence
behavior on fine grids. ‘ S
Based on these conclusions it is recommended that to enhance the effi-
ciency of numer1ca1 solution of three-dimensional viscous, recirculating

f]ows.‘SIP with ACM be used A]so the improvement in efficiency prov1ded by _;f"

ACM in two-dimensional flows is expectedsto be even more dramatic in three-
dimensional flows, where even on coarse grids, the number of unknowns is
large. Finally, for three- dimensiona] applications, the incremental storage
pena1t1es assoc1ated ‘with ACM are considerably smaller than they are in two-
“dimensiona) app]ications '

' Further consideration of repeated SIMPLEC algorithm, despite 1ts S
impressive performance in two dimensions, is outside the scope of the currentf r

. effort. Thus, PISO was adopted as the improved pressure ~ ve]ocity coupl1ng

~algorithm in three dimensions. o

Concernlng 1mprovements in discretization accuracy. the fo]]owing

: points are noted ‘based on the results of numerica1 experiments presented above:

' i)~ Second Order Upwind differencing solutions are more accurate
than solutions yielded by UDS, but can exhibit overshoots and_t': »
undershoots as well as smearing of gradients on coarse grids, - : ?

. when the flow is at an angle to the grid. It is only on fine

meshes where the second order rate of convergence is approached
that the smearing and overshoots and undershoots diminish. .

i1)  variants of Compact Implicit Schemes, specif1ca11y Control

' -Volume based Operator Compact Implicit Schemes, produce solu4
tions that are substantially more accurate than UDS solutions,

but can exhibit relatively large overshoots and undershoots‘for o

multi-dimensional flows when the flow is at an angle to the
grid. A probab]e cause for such non-physical solution features
is identified as due to errors that arise from an inadequate
_ treatment of flow curvature in the present tmp]ementation.
ii1)  Linear profile Skewed Upstream Differencing solutions have been
~ demonstrated to. be more accurate than the above SOU or CVOCI ;."
solutions with smaller overshoots and undershoots. Also for
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jv)

v)

file assumption is inappropriate. Thus), Massiweighted skew =

laminar flow problems LP—SUDS has been shown to be‘at least 5
times more cost effective than UDS or its variants such as
Hybrid. ' '

Mass Weighted Skewed Upstream bifferenting'solutions have been
demonstrated to be free of overshoots and undershoots but not
free of*nunericaI diffusion. However, the‘numenicél diffusion

of MW-SUDS is considerably less ‘than that of UDS. Consequently,
MW-SUDS solutions afe, in general, more accurate than UDS soTﬂ— '

‘tions, and, for laminar flows, MW-SUDS ‘has been shown to be at

least 2 times more cost effective than UDS.

" The most accurate SUDS solutions are obtained ‘when the Skewed
‘Upstream differencing is modified to account for the effects of

diffusion and sources. However, for positive definite variables
like k and ¢, incorporating diffusion and source term influences
using the present implementation, together with the linear pro-

~

without diffusion and source term influencés is adopted for

‘these equations with a corresponding degradation in performance,

Section (7.3.2).

" Based on the above conclusions, the recommendations for ifproved
accuracy in three- d1men51ona1 app11cat1ons are now stated guided by the fol-

lowing criteria:

1)

i)

Best accuracy on coarse grids- even with advancéd'computers.
many three-dimensional computations will still be limited to
grids which are, at best, coarse. *

-Robustness and stability: for’ three-dimensional'abplications.it
" is ‘important to-ensure that numerical solutions are obtained.

Particular reference is made heré to k and ¢ equations.
Efficiency:” improvements in accuracy must be attained without
excessive additional computational requirements. '

Three-dimensional computations that use UDS or its variants such as
Hybrid shoold instead adopt LP/MW-SUDS for improved discretizaton accuracy.
The use of LP/MW-SUDS:- will: i) ensure robustness provided MW-SUDS is used
whenever the potential of minor overshoots and undershoots of -LP-SUDS cannot
be tolerated; ii) significantly reduce or eliminate numerical diffusion,
thereby providing a considerabie improvement in accuracy; and i1ii) provide
significant improvements in cost effectiveness. Naturally, modification of
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skewed upstream differencing to include effects of diffusion and source terms

should be included in LP/MW-SUDS whenever possible. Future efforts should be °

directed towards suitable incorporation of these effects in the k and ¢ equa-
tions. Finally, if only one scheme is to be considered for prediction of
threefdimensionaT flows, the use of MW-SUDS is recommended. '
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8.0 DISCUSSION OF THREE-DIMENSIONAL TEST CASE |

< - n : LT
IS i . Voo e T ?

In Section 7, various techniques for improving the computational effi-
'ciency of numerical methods for two-dimensional, viscous, recirculating flows
were tésted and evaluated to assess convergence and accuracy issues. Based on
these results it was recommended that, for three-dimensional applicétions the
Strongly Implicit Procedure (SiP) with Additive Correction Multigrid (ACM),
and Linear Profile or Mass Weighted Skewed Upstream Differencing (MW-SUDS and
LP-SUDS) with corrections for diffusion and source term influences, when
appropriate, be used. Upon implementing these recommendations and testing the
resulting software, it was determined that several alternatives regarding
solver performance and additional considerations in the implementation SUDS
schemes were worthy of further study. These will now be discussed in detail.

8.1 EVALUATION OF TECHNIQUES FOR IMPROVING COMPUTATIONAL EFFICIENCY

The a]ternatives concerning the previously recommended solver choices
1nc1uded the following:
i) wusing Incomplete. Choleski (IC) instead of SIP to save computer
storage
i) using 3x3x3 blocks for ACM 1nstead of 2x2x2 blocks, again, to save
storage, Section (6.5.4) , |
iii) using Block Correction (BC) in conjunction w1th ACM to further
improve computational efficiency. ‘
The merits and shortcomings of these alternatives are now assessed using
the following test problem in Cartesian coordinates

2 .
ve+S=0 0<x<3

0<y<10 ' (8.1)
0<z<8
where
EY)
ah = 0 at all boundaries and

S (x,y,i) = 0 except S (0,5,2) -1.0 and. S (32,5,z) = 1.0. In equation (8.1)
v2 is the usual Laplacian and h is normal to the boundary. This problem
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was chosen because the resulting discrete algebraic equations are similar to
the pressure correction equations of Section (6.1). '
Using a Central Differencing Scheme (CDS) on a 32x10x8 grid, solutions .
to the resulting algebraic equations were obtained using the various solution
techniques. Figures (8.1), (8.2) and (8.3) present the sum of the squares of
residuals versus computational effort for the various solution techniques.;‘A’
more detailed discussion of the results presented in each figure follows: '

8.1.1 SIP vs IC

The recommendation to use SIP in cohjunction with ACM is based on two-
dimensional results, where.the storage requirements of iterative solvers such
~as SIP are not a primary concern. However, in three-dimensional apb1icationsAll
~computational storage requ1rements can very ofteén exceed the resources avai]—;f7

able. One approach to reducing the storage requirements is to use SIP with no

partial cance]lat1on which is algebraically equivalent to IC. Storage re- .
: quirements for var1ous solution techn1ques are summarized in Table (8. 1)

- TABLE (8.1) STORAGE REQUIREMENTS OF ALTERNATIVE SOLUTION TECHNIQUES

Technique _ Storage Words/Node
- SIp 9.0
IC 3.0
SIP-ACM(2) 11.6
IC-ACM(2) 4.7
IC-ACM(3) 3.5
1C-BC-ACM(2) 4.1
IC-BC-ACM(31 - 3.5

‘ As i11ustrated in figure (8.1), it is clear that the rate of conyergencéhl
of SIP with a near optimal partial cahce]lation is superior to the rate of |

| cdnvergence‘of IC. . Even with the storage penalty it may be more advantageous
| to use SIP over IC. However, when ACM(2) (the (2) notation denotes blocks 6f

2i2x2 fine grid control volumes used) is used to accelerate SIP or IC there is o

little or no advantage: to using SIpP- ACM(Z), especially if the cost of deter-
m1n1ng the opt1ma1 partial cancellation is taken into account . Also, the '
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results in figure and Table (8.1) indicate that it is more cost'effettive; 15?'_
terms of both computationa] storage and effort to use IC- ACM(Z) 1nstead of ,;4;1;
SIP-ACM(2). ‘ S

©8.1.2 ACM(2) vs ACM(3)

Anether approacn to reduting the. storage requirements of the'seTOtion'i?f”V;?:
techniques is to apply the Additive Correction Strategy to blocks consisting = ..

of 3x3x3 fine grid control volumes,,denoted by ACM(3), instead ofeblocks_of‘i- -
2x2x2 fine grid control volumes. As listed in Table (8.1) the‘storage're;°”'
qu1rements -of ACM are reduced by 1.2 words/control volume by using blocks of -
3x3x3 instead of blocks of 2x2x2. The results show in figure (8.2) 1nd1cate

that the reduced storage requirements of ACM(3) are offset by a lower rate of. ,f{_7.’""

c onvergence Cons1der1ng the minimal reduction in storage requirements and
lower rete of convergence of ACM(3), it is recommended that ACM(3) be used
on]y if.the"reduction,invstorage is necessary. '

8.1.3 Block Correction (BC)

- The results shbwn'in figures (8.1)'and-(8;2) i]]ustrate the dramatic .
.'aceelerétionvof convergence that results from using ACM. However, based bn';ﬂf-
two—dimensiona1 resuits, an even more dramatic ‘acceleration was expected. B
This is especially true of .problems, like the test problem in rectangular f

domains and a solution having a significant (but not necessarily dominant)"
one-dimensional component (in this case the x-direction). A more appropriate

) atceleratibn technique for problems'with'a'dominant one-dimensional component e

s éC Section (6.5. 3)  As illustrated 1n'figure (8.3), BC provides an accelé"‘
"eration of IC which is comparab1e to that of ACM(2) 1nd1cat1ng that there is a
strong but not dom1nant one-d1mens1ona1 component to the so]ution of the test
problem (if the one-dimensiona] component were dominant, IC-BC would con-

verge conswderab]y faster than IC-ACM(2)).  As shown 1n figure (8 3), combin— .
. ing both ACM and BC to accelerate IC, denoted by IC-BC-ACM(2), results in
convergence acceleration which is superibr to either ACM or BC used alone.
Note also that there is no s1gn1f1cant storage penalty associated with the use -

" of BC, Table (8.1).

- These results indicate that for three-dimensional problems, the IC base.
solver does not always provide‘a,sufficient‘amcuntvof smoothing or relaxation
of the solution for ACM to be most effective. Combining BC with IC provides



the necessary smoothing, particularly if'there is a strong, byi not
necessarily dominant, one-dimensional component to the solution.

8.1.4 Conclusions
These results, as well as others, indicate that IC-BC- ACH(Z) 15 a solu-
tion procedure with a high rate of convergence over a wide range of problems
with a minimal storage penalty, and should significantly improve the computa-
tional efficiency of numerical methods used to predict three-dimensional" '

viscous, recirculating flows.

8.2 CONSIDERATIONS IN EXTENDING MW-SUDS AND LP-SUDS FORMULATION IN
THREE-DIMENSIONS
The variants of SUDS Schemes, MW-SUDS and LP-SUDS, are designed to pro—

vide an accurate representation of the convective component of a general
~ transport problem within the framework of a finite volume discretization
approach. Using extensions of the two-dimensional ideas discussed .in
Section (6.3), an approximation is required for the interface qonvectjve flux,
upon suitably intedkating the parent transport equation over the finite
volume, i.e., :

C = 'A/ p V8 dA Equation  (6.4)

where ¢ is .the dependent variable, p is the density, v is the component of

velocity normal to the control volume face and A is the area of the control
volume face. In three—dimensions the above integral is evaluated usiﬁg feer‘
1ntegrat10n points on each control volume force, figure (8 4) |

To express the variable values at the integration po1nt in terms of
ne1ghbour1ng nodal values, a discrete representation 1s required for the r
following non-conservative differential transport equation in stream11ne ’

coordinates,

PV =0 ' . Equation  (6.39)
where V is the magnitude of the velocity, s is the streamwise coordinate and Q
represents all diffusive and source term influences. The different approaches

to obtaining representations of equation (6.39), as discussed in Section (6.3),
distinguish LP-SUDS from MW-SUDS.
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To describe the manner in which the discrete represehtations of equation
(6.39) are arrived at in three dimensions, a systematic basis is required in
the following formulation, to describe the indexing associated with nodes,
integration points, flux elements, etc. This is introduced in figures (8.5)
and (8.6). It will be seen from figure (8.5) that the eight nodes surrounding
any integration pointldefine the eight corners of a flux element, and the ele-
ment so defined contain octants of eight different control volumes, figure
(8.6). Also each element contaihs twelve integration points with fohr inte-
gration points lying on each of the three planes that are coincident with con-
trol volume faces and intersect the flux element, figures (8.7), (8.8) and
(8.9). '

In the interest of clarity, the triplet of binary indices illustrated in
figure (8.5) will be uEed to refer to a node or quantities associated with a
node. When reference is made to integration points or quantities associated
with the integration point, the symbols X, Y and Z along with the correspond-
ing triplet of binary indices, shown in fiqures (8.6), (8.7), (8.8)
and (8.9) will be used. . o

8.2.1 Explicit LP-SUDS Inteqration Point Equation

To formulateAa discrete representation of equation (6.39) for the inte-
~ gration point 011 lying on the control volume faces coincident with the

X plane, figure (8.7), the stkéam]ine is upwinded from the integration point
until it intersects a flux element side. The convective component of equation
(6.39) is then discretized, in a similar ﬁanner to the two-dimensional case,

as:

PV %% = p % (®x011 %) (8.2)

where ou is the value of @ at the point of intersection and L is the dis-
tance from the integration point to the intersection. In LP-SUDS, as discus-
sed in Section (6.3), the value of nu.is determihed frém.a bilinear interpo-
lation of the node values of @ lying on the intersected flux element side.
The discrete representation of the right-hand side of equation (6.39). Physi-
cal Advection Correction (PAC), is obtained from a trilinear interpolation of

the discrete nodal values of Q.
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Rearranging, the discrete representation of equation (6.39) is expressed

as:

L ’
Pxo11 =% v @ : - (8.3)

Examining the last term of equation (8.3), it is evident that some difficul-
ties may arise when evaluating this term as V approaches zero. Fortunately,
as V approaches‘zero the grid Peclet numbef also becomes small (i.e., the Pec-
let number is much less than 2). Thus, the integration points representation
of # given in equation (8.3) can instead be evaluated using a trilinear inter-
polation of node values (cf. f{ux b1gnding approaches), '

8.4)
) D | (
X011 “4=f e Pnp |

where the N are the shape functions, borrowing from the finite element
approach, and the summation is made over the eight nodes of the flux element.
Since the Peclet number is low, the ‘resulting CDS-1ike scheme will not gener-
ate negative downstream a coefficients as would occur for high Peclet num-
bers. To ensure that equation (8.4) is used instead of equation (8.3) for Tow
Peclet number applications, the integration point value is determined from a
weighted average of equations (8.3) and (8.4)

= (1- ' L (8.5)
?x011= (]_B):;;:"NP~”NP_* B (s, +—v O

where B = PeZ/ (5 + Pez) and is derived using the approximate exponential
weighting scheme of Raithby and Torrance(ao) ensuring that no downwind nega-
tive a coefficients result. o |

It is seen from the above d1$cus§ion~thdt the explicit LP-SUDS formula-
tion in three-dimensions follows readily from two dimensions, once an

appropriate set of indices is introduced.

8.2.2 Explicit MW-SUDS Integggtion Point Equations

In therproéess of exténding the two-dimensional explicit HW-SUDS-inté-
gration point equations to three dimensions, it became evident that the
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extensions*to three dimensions was not uniquely determined by anaiogy with theni

two-dimensional algorithm. To overcome this, additional constraints had to be o

'imposed on the mass weighting logic. As a result, the following description
of explicit MW-SUDS is not a direct extension of the two-dimensional scheme.
However, in the two-dimensional 1imit the three-dimensional MW-SUDS presented'*':
below is. a]gebra1ca11y equivalent to two-dimensional MW-SUDS. | ‘ _
The pr1mary difference between LP-SUDS and MW-SUDS lies in the evalua- .
tion of ”u' In MW-SUDS the eva]uatlon of ou is chosen to ensure that the

resulting a coefficients are everywhere non-negative. To accomp11sh this the e —

evaluation of o is determ1ned by logically deducing where the mass flows -

‘crossing e contro] -volume face originated. For instance, consider the case .
where the mass flow crossing the X011 integration point control vo]ume‘face.is-f;
leaving the 011 octant. The possible contributions to this mass flow are from -
© the mass flows thnough the two integration point faces, Y001 and 2010, as we11}}

‘as the mass- flows through the three octant faces intersecting at node 011._.Tof'-
ensure positive a coefficients it is assumed that any integration or node massi'i
flows leaving the octant cannot ‘contribute to the X011 mass flow.. Taking'a.'fzf
positive mass flow weighted average, 8, is approximated by: ' R

~ Fyoo1 ®voor * Fzo10 %2010 * Four Pom
O = F +F +F
| voor * Fzo10 * Fons

.(e;é)?

where F represents the mass flow through the corresponding face of the octant
and the value of F 1s nonzero on]y if the mass flow is into the ‘octant, and

where ”%001 and 62010 are estimates of the correspond1ng integration | :
“points By similar positive mass weight1ng augments, the estimates of the in- o

tegrat1on po1nts are given by:

B . 1
- Fxoo1 2011 * Fz000 %2000 * Foo1 oo

(8.7)

N
Yoo Fxoo1 * Fzo00 * Foor
oo - x010 %11 * 000 ®voo0 * For0 o o
87010 v F (8.8)

Fxo10 * Fyooo 010
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where ”YOOO and uiooo are,-again, estimatgé»of 1ntegrationapqintuvalues,x
Also note that in equation :(8.7) the node value, 00]] is used to approxi-

mate the. value.of the integration point, ”x011 This- approximation is used

to ensure that an explicit -relation for @, %001 results and that:the resulting

a coefficients-are not negat1ve.(39) Similarly, ”b]i'is used to approxi-
mate the value of ox010;, Finally, positive mass weighting arguments-and -
approximations .are used to obtain:

'~ _ Fooo %000 * Froo0 %on1 * Tzoo0 Ty T gy
®Y000 Fooo * Fxooo * onoo - I
‘ Fooo %000 + xooo 011 * Fyooo ® 011 . 8.
%2000 = F o+ — (8.10)
| 000 xooo Fyooo ‘ -

Comb1n1ng equation (8.3) and equations (8 6) through (8. 10).; XO]T»can be
expressed in terms of the nodal values. 60]1 010, 000] and 0000

The eva]uatlon of the PAC term of equation (8.3) is identical to that
descr1bed for LP-SUDS except that the application of the PAC term may have to
be omitted if bounded solutions are to be guaranteed, Section (7.3.2). There-
fore, for the solution of turbulent kinetic energy and dissipation PAC is not
incorporated in the fOrmulation, ' . '

In the low Peclet number limit, Mw-SUDS scheme outlined above is com-
bined with a 1inear interpolation of nodes 011 and 111, with the same weight-

ing given in equation (8.5). For-instance, for DXOl] . : s ,

Bxo11 = (17B) [Ngyy 2gyy + Nyyy @ 1] +8 ‘“ + ;“ 0 (8:11)

Note that when PAC terms are omitted in MW-SUDS, the linear interpolation of
nodes in equation (8.11) is not required and B can be set to unity.

8.2.3- Flux E]eméht Assembly

Using either the LP-SUDS or MW-SUDS approach, expressions explicitly
relating integration points to node points can be obtained for each integra-
tion point -in the flux element.. The jhfluences”of each integration point are
then'assembled into the apprupriate'tohtrol volume flux balance equation by
substituting each integration point expression 1ntoAthe appropriate control
volume face convective evaluation. The result is a control volume flux |
balance equation which is expressed in terms of nodal points.
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8.3 THREE-DIMENSIONAL TEST CASE

To illustrate the potential quantitative impact of incorporating the
above techniques to enhance discretization accuracy and solution convergence -
in the baseline TEACH code, Section (7.2), a number of numerical.predictions -
were obtained. The test problem considered here refers to the flowfield char-
acteristics of a typical three-dimensional turbulent flow in which a row of
jets are injected normal to the incoming flow in a duct with a rectangular
cross section. The problem details adopted (configurations, inlet velocity -
and turbulence description, etc.) are similar to those examined in (5) with 'v'
the exception that the initial computations employed square cross-section jets -
rather than circular The case of circular jets along with comparison with .

(96)

experimental data, provided by Khan , are also presented for rigorous
quantitative evaluation. ‘ ' S

_To illustrate the 1mprovements in computatienal efficiency, the CPU
requirements of a Masscomp MSC Series 500 were measured to obtain predictions ;

using the baseline code and the modified code with ACM (2x2x2 blocks) in con-

junction with IC-BC for the pressure correction updates of PISO. To acnieve a ;1

convergence of 0.005 using Hybrid differencing, the baseline code on a 18x8x4
grid, required 80 iterations and 62 minutes of CPU. To achieve the same con- -
vergence with the same differencing and on the same.grid, the use of IC—BC-ACM
reduced the 1terat1ons required to 39 and the CPU requirements to 29 minutes.
The resu]ts of this exercise indicate that for the problem selected, the con-
_vergence of the baseline code is limited by the poor convergence character1s—-
tics of the TDMA used to solve the pressure correction equations and that the
IC-BC-ACM technique can dramatically improve overall convergence and computa- -
tional efficiency. ' -

To illustrate the impact of the improvements in accuracy, numerical pre-
'dictidns of the test brob]em were obtained using the baseline Hybrid differ-
“encing, MW-SUDS and LP—SUDS on 18x8x4 and 18x14x8 grids. _

A11 of the calculations were performed using PISO with IC-BC-ACM used to
solve the pressure correction equations. The number of iterations required te
achieve a convergence level of 0.005 are presented in-Table (8.2). |
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TABLE 8.2 NO. OF ITERATIONS FOR JET IN A CROSS FLOW PROBLEM

SCHEME GRID " | - No. OF ITERATIONS °
* Hybrid 18x8x4 -39

MW-SUDS 18x8x4 - : 46

LP-sUDS |- 18x8x4 53

Hybrid 18x14x8 : : 61

MW-SUDS - |  18x14x8 : 14

“LP-SUDS 18x14x8" 82

The computational effort per iteration for the SUDS schemes is approxi- = *
mately 7 times that required by the Hybrid Scheme. This large increase is not
surprising considering that the SUDS schemes use four integration points per -
control -volume face compared to the one for Hybrid and ‘that the ca]cu]at1ons o
required at each integration point are more complex for the' SUDS schemes.’ -

This increase.in computational effort could be reduced significantly'with more

efficient coding techniques. Unfortunately, this would require a complete S

overhaul of the existing TEACH Code. ‘ o S
Comparisons of calculated results for the axial veloc1ty components at a

location 4 jet widths downstream of the jet centre-line are shown-in L

figure (8.10). As expected, the Hybrid results exhibit what appears to be a e

considerable amount of smearing with only minor improvements ‘on the f1ner
grid. Using the modified code, the SUDS results exhibit considerably Tess
smearing with LP-SUDS producing results with the least amount of smearing:
These results indicate that the accuracy of turbulent flows can be improved
using -the modified SUDS schemes and, considering the excessive smearing e
exhibited by Hybrid, even on finer grids, the additional cost per iteration of
the modified SUDS schemes may very well be offset by the 1mproved accuracy of
the results. ' M A
Considering the performance of LP-SUDS in the 1ight of experimental
data, figures (8.11), (8.12) and (8.13) display axial velocity profiles at
locations 4 and 6 jet widths downstream of the jet centre-line using grids of
34x10x15 and 40x20x17 respectively. The grids used in these predictions
approximate the circular cross-section of the jets as well as the axial domain
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width in a manner identical to that reported in (5), but otherwise employ a
uniform grid distribution in the radial direction. Also, plotted on the above
figures are the coréesbbnding experimental data provided by Khan(96) and. the
predictions obtained by Syéd et al(s) usﬁng bounded skewed differené%ng

The initial jet .velocity profile used for the predictions incorporate -.
the experimentally measured centre-line prof11e,( ) but ptherwise use a mass ;
conserving similarity criteria to provide the variation in the tangential and .
axial width of the jet. The inlet brofi]e for the approach flow assumed a top
hat profile due to unavailability of experimental data. Use of such an idea-
1lized profile, considering the proximity of the jets to the inlet, along with.
the assumed turbulence intensity levels (1 percent for both flows) are serious
issues of concern for rigorous quantitative evaluation. However, figure (8.11)
revelas that the basic profile shape is predicted well with some radial dis-..
ptacement in the peak minimum velocity location. This latter feature is char-
acteristic of profiles generated by both grids and would tend to suggest need
for a closer examination of the various inlet profiles used. Also, ‘the.. ﬁ
coarseness of the grid in the vicinity of the jets, as well as the 1nappropr1-
ateness of the k-¢ model to model severely anisotropic turbulence fields,
Crabb, (37) might have contributed to the observed behavior. Even though the
bounded skewed differencing profiles agree with the experimentally measured N
values better at certain locations, both near the jet inlet and the roof, :
significant discrepancies are apparent due to the coarseness of the grid L
employed. In general, LP-SUDS profiles are less corrupt by numer1ca1 _‘
diffusion but tend to overpredict experimental values, possibly due ‘to poor .
modelling of turbulence and inlet profiles. .

Figures (8.12) and (8.13) display the axial velocity profi]esfobféined_w
at 4 and 6 jet widths of the jet centre-line using a grid of 40x27x17. The
solution difficulties reported by Syed, et al(s) in determining an appropri-
ate local blending factor for use with bounded skewed differencing (cérfes—
pondiﬁg results are also d1§p1ayed) were abéent from LP-SUDS preditfions. It
is seen from the.above figures that LP-SUDS produces improved profiles that
agree well with the experimental values in basic shape, albeit radially
shifted, with the numerical values.of the.peak minimum velocities in much
closer agreemént with experiments than bouhded’skew’predictipns. However, the
two schemes in this case yield profiles that agreé cioéely over a larger por-
tion of the flow field (hence significant improvements over Hybrid differenc-
ing) in spite of the large discrepancies observed in the vicinity of the jet
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inlet. The reservations expressed in relation to figure (8.11) are also vaiid
for these figures in quantitatively evaluating the performance of LP-SUDS with
experimental data. | _ '

Although significant improvements are observed in LP-SUDS prediction
with grid refinement from a study of figures (8.11) and (8.12), it is not
assured that the solution yielded by a grid of 40x27x17 (sti1) coarse for a
problem of this'k1nd) is grid 1ndependent; Local grid refinement near the jét
inlet might be required to capture the relevant flow details. However, the
computational cost associated with obtaining grid independent solutions during
the present effort was prohibitive. | -

8.4 CLOSURE

This Section has developed and assessed the previously selected SUDS -
schemes, as well as various accelerated schemes appropriate for pressure cor-
rection equation of segregated solution algorithms for three-dimensional
applications. For modelling the jet in a cross flow problem, adopted as the
relevant test case, significant improvements in overall convergence and compu-
tational efficiency were provided by the use of IC-BC-ACM, while the variants
of SUDS yielded so]utions that exhibit considerably less smearing than those
of Hybrid differencing. A number of questions'pertaining to inlet profile
- specification, along with the previously reported shortcomings of k-¢ to model
the details of the anisotopic turbulence field generated by a jet in a cross
flow, were raised for a quantitative assessment. It was also concluded that,
in spite of the significant'additional cost associated with the use of im- -
proved SUDS schemes in three-dimensional applications. their cdst effective
use is still recommended on grounds of improved acturacy. as Hybrid solutions
are plagued with excessive smearing.
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9.0 CLOSURE RN

9.1 SUMMARY AND DISCUSSZON . ’ : : : Loy U

Numericdl techn1ques to predict incompressible, turbulent viscous.‘
rec1rcu1at1ng flows frequently encountered in gas turbine engine components o
have undergone rapid development within the last decade. However. some ‘fun-
damental problems still exist that limit the performance of such methods in"
routine engineering computations. Such issues refer to discretization
inaccuracies -introduced when the parent differential transport equations are
replaced by discrete algebraic equations and the computer resourceszreuuired
to solve these discrete equations.: This study was motivated by the need to
address- both of these problems in a comprehensive manner.

The effort was initiated by identifying the desirable attributes that .
optimum discretization schemes and cost effective solution methodologies .
should possess to provide a unified assessment criteria for subsequent RN
quantitatiue/qualitative-eva]uations. As:adopted in the present study, these”
criteria comprise guidelines to define critical issues of accuracy, stability
(robustness), efficiency, storage reguirements and-ease of .impiementation in a
three-dimensional code structured in TEACH methodology. The initial evalu-
ation of more than ten potential techniques considered was primarily based on
examination.of accuracy and linear stability of the resulting difference equa-
tions via“evaluation.of the properties of the coefficient matrix, Taylor ser-:
ies analysis and existing heuristic stability analyses for iterative solvers " :
commonly used in segregated solution procedures. ’ :

Upon completion of this initial evaluation four of.the most -promising -
techniques were incorporated in a variant of 2D-TEACH code for further quanti-
tative evaluation using carefully selected test problems. The particular
schemes selected address issues of both discretization accuracy and converg-
ence enhancement. The latter concern 1n:this study specifically refers to the
solution techniques adopted for the pressure/correction equation(s) generated
by general segregated solution algorithms for incompressible flows, although
similar practices could be equally employed in solving for momentum and other
scalars. However, the pressure/correction equation which displays a symmetric

-204-



structure with properties similar to those for a diffusion process, accounts .
for a major portion of the solution cost associated with segregated solution
- procedures. '

Effective solution of the pressure/correctlon equation in this study was
accomplished by adopting approximate factorization techniques, including the
Incomplete Choleski (IC) and Stone's Strongly Implicit Procedure (SIP), in
place of the Alterhating Direction Line Gauss-Seidel (ALGS) commonly uséd.
However, the high initial convergence rate displayed by IC and SIP in test
problems due to removal of high frequency error components was severed, as the
asymptotic convergence rate is usually dictated by removal of low frequency
error components which are not diminished effectively by such base solvers.

To overcome this difficulty and to simultaneously address the complete error
spectrum, a series of accelerators including Conjugate Gradient (CG), Block

Correction (BC) and Additive Correction Multigrid (ACM) were considered for

use with IC and SIP. p

The performance of these acce]erated solvers were evaluated in a variety
of test problems where the behavior of IC-CG, as measured by residual reduc-
tion, was shown to be erratic for many iterations. For fine grid performances
of’interest here, the number of iterations required by IC-CG to reach the
point of precipitous residual reduction were found to be prohibitive, as each
iteration establishes an orthogonal base vector of the solution in a manner
that minimizes a prescribed norm of the error. For the same single scalar
problems, accelerations of both SIP and IC by ACM resulted in exceptionally
improved (comparable) convergence rates, while BC acceleration of these
respective solvers yielded improvements in performance that range from
dramatic to moderate. The cost reduction factor associated with the introduc-
tion of ACM acceierated SIP for pressure/correction solution in a segregated
solution procedure was found to be up to 40 percent for 1am1nar flows and 20
percent for turbulent flows.

For incompressible flow computations using segregated solution methodol-
ogies there also exists substantial additional cost associated with the appro-
priate coupling of pressure and velocity fields to yield the required zero
divergence for mass. In this study (for two-dimensional applications)
repeated SIMPgEC was adopted to enhance convergence by reducing both the num-
ber of coefficient updates and CPU requirements. The introduction of repeated
SIMPLEC was shown to have the largest impact on the high cost of coefficient
updates of CPU‘intensiVe schemes 1ike MW-SUDS and LP-SUDS.
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Concering the discretization schemes selected for quantitative evalua-
tion using a finite volume method, a unified framework was deviéed”td~déling-
ate the nature of the approximations introduced by the various treatment of
convective fluxes at the cell -interfaces. This involved a study of the '
separate -components of the discretization error (prof1le’énd”operator~brror$)
in a manner indicated by Stub]ey(74) and concluded that a low truncation |
error profile used for convective fluxes @ight not necessarily result-in small -
solution- error, Because the finite difference operator doeé not embody the
correct phyéica1 influence. Furthermore, poor physical influence schemes,
that fail ito correctly incorporate the influences of convection, diffusion and
source terms in the discretization procedure, were shown to invariably result
in algebraic equations that are difficult to solve using iterative methods and
possibilities for physically unbounded solutions exist. : ’

“ Viewed in this 1ight, the schemes selected, notably Second Order Upwind
(SOU) differencing and appropriate variants of Compact Implicit schemes (CI),
are seen to incorporate increasing physiéa] corrections in their respective
grid-upstream.formulations, over the conv?ntional Ubwind differencing-(UDS).
However, due to the possibility of generating negative coefficients-and the-
{nappropriateneSS of the strictly one-dimensional boundedness-in criteria in
multi dimensions, ‘the solutions generated by these schemes suffered-from over---
shoots and undershoots for some test problems, especially when-the flow was at”
an angle to the grid. Specifically, SOU solutions were found to be more - -
accurate than UDS solutions with accompanying overshoots and undershoots as
~ well as smearing of gradients on coarse grids, when appreciable stréamline -
inclination to the grid was present. In fact, only on fine meshes where the
second order rate of convergence for SOU was approached that the sméaring and = -
overshoots and undershoots diminished. Variants of CI schemes, particularly
CvoCI, that implicitly relate the nodal values of the variable and the’
operator yielded significantly more accurate solutions than UDS. However, **
using the current implementation, probabiTities of generating relatively large
overshoots and undershoots for multi-dimensional flows still exist in the ~
presence of streamline skewness to the grid:-for high Peclet numbers. -

Skewed Upstream Differencing Schemes (SUDS) eliminate the need for the
convective component -of the PAC term'by a suitable transformation ﬁgnored”fn
Grid Upstream Schemes, but otherwise incorporate the correct—physicai‘f' '

-206-



influences of diffusion and source terms in their formulation. The two vari-
ants examined in this study are distinguished merely by the definition of the
upstream value of the variable which, in turn, determines Qhether the un-
bounded, but accurate LP-SUDS or physically bounded, but less accurate MW-SUDS
results. Both LP-SUDS and MW-SUDS using implicit and explicit integration
point values were evaluated in a Variety of test problems in which different
balances were dominant to examine their respective accuracy, stability and
cost effectiveness characteristics. It was concluded that the Physical
Advection Correction (PAC) to LP-SUDS leads to a full second order scheme that
was shown to be robust, although the solution cannot be guaranteed a priori to
be physically bounded. MW-SUDS, in turn, provided the best alternative, among
the schemes examined, for problems where physical bounding is mandatory.

- The above quantitative two-dimensional evaluations also identified
LP/MW-SUDS coupled with SIP accelerated by ACM as deserving further evaluation
on three-dimensions, based on the practical criteria of best accuracy on
coarse gr1ds, robustness and stability and eff1c1ency Subsequently, these
schemes, with appropriate mod1f1cat1ons, were 1ncorporated in a variant of
3D-TEACH code and were further evaluated regarding issues of accuracy and
convergence enhancement characteristics in modelling of a jet in cross flow.
Dramatic 1mprovements in overall convergence and computational efficiency were -
realized for this problem regarding the solution of the pressure correction
equations using IC-BC-ACM, while use of SUDS schemes yielded considerably
reduced smearing of the solution, hence justifying the additional cost per
iteration associated with their use. |

It can be said in conclusion that for the problems examined, this study
has clearly demonstrated that appropriate solution techniques for incompress-
ible, turbulent, viscous recirculating flows in current use benefit substan-
tially from the introduction of the convergence enhancement techniques adopted
here (up to 40 percent). Furthermore, the various improved discretization
schemes considered, specifically improved SUDS with PAC, usually provide a
significant improvement in accuracy and hence cost effectiveness relative to
most of the schemes currently used.

This study has a]so identified various areas where further research
might prove beneficial. These will now be discussed briefly.
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9.2 RECOMMENDATIONS FOR. FUTURE RESEARCH

i) As the results of this study are based on a lim1iedland carefully’
selected set of problems, the berformance of the techniques considered should
be evaluated on a broader scope‘of test prob]emi'that emphasiie relevant num-
erical aspects, before more general conclusions can be reached regarding their:
utility.

ii) The current treatment of source terms in the integration poiht
equations of SUDS is explicit. For the discretized momentum equations that °
incorporate pressure gradients as additional sources in the determination of
integration point variable, such a practice when employed in a segregated
solution procedure yields the usual pressure/correction equation. While thist
deferred correction approach eventually provides the required solution at con-
vergence, it significant]y increases the number of coefficient updété;. What
is réquired is an imp]icit treatment of pressure gradient sources for moméntum
especially, coupled with the appropriate numerical techniques to deal w1th the
potentially troublesome pressure/correct1on equation. »

jii) The current discretization for the positive definite vafiables
like k and e, adobts MW-SUDS without considering the influences of source and
diffusion in the integration point equations. Such a numerical treatment for
primari1y source and diffusion dominated k and ¢ (in most regiohs of the flow)
may not be appropriate for flows driven by the details of the turbulence field
(aside from the physical modelling issues .of turbulence). Thus, alternative
formulations that properly incorporate the predominant soufce term influences
have to be evaluated. A related concern pertains to the current 1mplementé—
tion of MW-SUDS which has been shown to be frequently prone to eitéséive num-
erical diffusion. The implications of adopting a Hw-SUDS'fofmu1ation,
suggested by Huget, (30) that simu]taneously‘attenuates the inherent num-
erical diffusion and eliminates the poss1b111ty of unbounded so]utions should
be examined. o

iv) This study has adopted the use -of a nine point Alternating
Direction Line Gauss-Seidel procedure to solve the linear a1gebraﬁc eqUatfons
generated by LP-SUDS (and SOU), even in the presence of mildly nEgative o
coefficients, without ény serious solution difficulties.  However, solution
stability and convergence via such solvers is not strict]y assufed. To
circumvent potential problems associated with these and alternative discreti-
zation schemes, that introduce computational molecules incompatible with ADI,
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development and use of appropriate matrix solvers should be seriously
considered. .

v) 'Currenf solution algorithms for incompressible flows invariably
employ a staggered grid arrangement for variables to prevent the deéoupling of
the pressure field. The PAC approach used here forlimproved accuracy, spe-
cifically the correction 6f momentum fluxes via pressure dradient source cor-
rection, however, does provide naturally the coupling between the pfessure and
velocity fields to eliminate the need for such cumbersome and unwieldy prac-
tices. Raw (10) has recently incorporated similar ideas in his co-located
finite element angrithm. Furthermore, using such a co-located solution pro-
cedure, implementation and use of adaptive gridding via moving or stationary
adaptive grids to resolve fronts better, becomes manageable and should be
examined. ' |

vi) The particu]ar formulations of SOU and variants of CI examined in
this study incorporate various Grid Upstream practices resulting in inaccura-
cies‘and‘so10tion difficulties in the presence of appreciable streamline skew=
ness to the grid for high Peclet numbers. Considering the high accuraty_
provided by GOCI schemes (CVOCI in particular), albeit accompanied by non-
physical oscillations, a natural multi-dimensional extension for such schemes
that does not violate the one-dimensional boundedness criteria should consider
a "skewed" formulation. In this manner it is possible to retain strict 4
1mp11citness between the nodal values of the variable and the operator to -
y1e1d 1mproved accuracy, while eliminating the non-physical solution wiggles.

vii) The above formulation for GOCI will also require development and
use of appropriate costveffective solvers in multi dimensions for the scheme
to be rbutine]y used in engineering computations. Such solvers must recognize
the 1mplicati6hs inherent in the equations, while using practiceé—to substan-
tially reduce the solution cost associated with block coupled systems.

viii) The significant reduction in cost provided by the introduction of
repeated SIMPLEC in the current segregated solution procedure was demonstréted
for two-dimensional problems using CPU intensive schemes like LP/MW-SUDS. In
‘practical three-dimensional applications, where the coefficient update costs
associated with such schemes become almost prohibitive for routine use,
repeated SIMPLEC should be incorporated in the solution algorithm. Further-
more, most current-éegregated solution algorithms including SIMPLEC degrade
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(22)

severely in performance with grid refinement. Thus,‘development and:use
of "grid-insensitive" segregated solution procedures in the same phi]osophy as
SIMPLEX(ZZ) should provide substantial savings for appropriate problems. ,

ix) - While this study emphasized the relevant details of the predominant
pressure-velocity coupling, appropriate for "simple" incompressible flows, by
a careful study of the various approximations employed, additionai and/or
alternative couplings might significantly influence the solution characteris-
tics for some problems. For instance, the nature ofhthe couplings provided by

swirl (not considered in this study) as well as turbulence variabies'shouid be
examined and appropriate practices be developed.

x) The turbulent test cases examined in this study introduce additional
considerations in quantitatively evaluating the performance of discretization
schemes. Appropriateness of the physical modelling assumptions implied by the
particular turbulence model and availability of benchmark data for initial and
boundary condition specification, as well as quantitative assessment, signifi—
cantly 1nf1uence the nature of the solutions. For such problems improved pre—
dictions are generally obtained by solution procedures that incorporate
appropriate physical and computational modeis, in addition to improved
discretization techniques.

xi) Finally, a deeper understanding and appreciation of accurate d1S—
cretization techniques and solution algorithms should be developed This 4_
study has only presented a phase of progress in a complex but steadily evo]v—i
ing subject. For example, future numerical techniques for the problems con-
sidered here might adopt spectral iteration techniques in conjunction w1th a
lower order scheme (like SUDS) to achieve higher accuracy via a deferred cor—L
rector approach (53) l . o
a]gorithms(zo) might be appropriately formulated to yield practical solu- ..
tions for engineering problems. ' | ' A

Also fully coupled numerical schemes/so]ution
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APPENDIX A
IMPLEMENTATION OF MODIFICATIONS IN THE PRATT AND WHITNEY 3-D TEACH CODE TO
IMPROVE ACCURACY AND EFFICIENCY ° - ,

INTRODUCTION - ' _ T

The following notes briefly Qutline the modifications of the Pratt and
Whitney 3-D TEACH code to incorporate various numerical techniques for
improving accuracy and computational efficiency. Relevant modifjcations for
the 2-D TEACH code follow a similar implementation.structure and corresponding
details can be appreciated-ful1y by é careful study of the material presented

here. . _
The outline presented includes descFiptions of new routines and
modifications to the supplied TEACH code. These notes assume that -the reader
is familiar with the supplied TEACH code and all relevant documentat{on,(s) ]
as well as the appropriate discussion presented Section 8 regarding
formulation and extension of schemes. |

MODIFICATIONS FOR IMPROVING EFFICIENCY

To ihprove the computational efficiency of TEACH, the fo]low1ﬁg o
numerical techniques were implemented: . ‘ ’

i) Residual reduction convergence criterion for solution of the préssure

correction equation. , .

ii) Stone's Strongly Imp]iqit Procedure (SIP) for the solution of the

pressure .correction equation. : ' ' 4

iii) Incomplete Cho]eéki (IC) for the solution of the pressure correction
equation. . ' : ‘ |
jv) Additive Correction Multigrid (ACM) to accelerate the convergence of SIP
and IC.  ACM was implemented for both 2x2x2 and 3x3x3 blocks.
v) Block Correction (BC) to accelerate the convergence of IC with:the
option of further accelerating convergence by ACM.

Originally, there was no intention to include BC in the modifications of
the 3-D TEACH code, Section (8.1), however, for some 3-D applicat}ons,'
particularly invo]vingAgeometries with high cell aspect ratios, the
convergence acceleration provided by ACM was limited. For these applications
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BC provides considerabiy greater acceleration to convergence. To take
advantage of the features of both acceleration schemes, the two acceleration
schemes have been implemented so that they can be used together. As
demonstrated in Section (8.1), the combination of the two techniques results
in convergence acCelerat{on which exceeds the acceleration provided by either

technique alone.

Residual Reduction Convergence Criterion

To imp1emént'the reéidual reduction convergence criterion for the
solution of the bressure correction equations, Secfaon (4.3), modif{cations to
the subroutines CALCP and PISO were required. These changes include the
introduction of the following variables: ’

RES (I,J,K) = array of residuals for pressure correction equation

RESNOW

variable containing'the square root of the sum of the
squares of values of entries in RES of current p'
iteration. '

RESMAX maximum value of resnow

ROCP

required reduction factor of residual, iteration
terminated when RSDNOW < RSOMAX*RDCP. Note: RDCP is an
input parameter passed into CALCP and PISO via the
labelled COMMON/PXLR8/.

The residual redqction convergence criterion is 1mp1émented in both pressure
correction stages of PISO (including the single correction stage of SIMPLE)
and is in effect only when SIP or IC with or without acceleration is being

used.

Strongly Implicit Procedure

(26) the following new subroutines were

To implement Stone's SIP,
provided: . ‘
i) ITRSOS with entry ITRSIS to set up the pointers into the real workspace
for subsequeﬁt calls to SIPO and SIPI. This data structure arrangement,

requiring the set up of pointers, was adopted to facilitate a modular

code structure.
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ii) SIPO with entry SIPI to perform one SIP iteration. The SIPO portion of
the routine performs'the approximate factorization of SIP requ1féd-on1y
before the first SIP iteration and the SIPI portion performs the forward
and backward substitution required for each SIP iteration. ‘

‘ii1) RESIDL to determine residuals of the equations.

iv) NOTENF to generate an error message when there is not enough available-

work space. o .
v) OUTTLE to generate a message 1nd1cat1ng which routine 1s being used
The argument 1ist of these subroutines and entries include the following:

. T = dependent variable array
V. = correction array to current values of T
RES = residual array ‘
AP |
AE : A ;‘
AW , .
AN ¥ coefficients of algebraic equations
AS '
AU
AD
BP = source term of equation . A
RLX = relaxation = 1. + partial cancellation of Stone

T.O < RLX < 2.0; for RLX set to unity, equivalent to IC
(recommended use of IC subroutines described below)
IOFLE = unit number for output
I8, IE, JB, JE, KB, KE = 1imits on index triplet (1,]j,k)
ID, JD, KD = dimensions of arrays ' '
WRK = work space containing NAVAIL elements o
NAVAIL = number of available elements or words available in WRK
NREQ = number of elements WRK required by SIP.

Incomp]éte Choleski

The implementation ¢f SIP with RLX=1 as described above is algebraically
equivalent to IC.(Sg) However, the use of SIP routines for IC results in an
unneccessary and considerable storage penalty. To overcome this, IC was
implemented separately with the following new subroutines prdvidéd:
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i)

ii)

ITRSOI with entry ITRSII to set up the pointers into the real workspace
for subseqﬁent calls to ICO and ICI. Again, this data structure
arrangement requiring the set up of pointers was adopted to facilitate a

modular code structure.

ICO with entry ICI to perform one IC iteration. The ICO poftion of the
routine performs the approximate factorization of IC required only
before the first IC iteration, and the ICI portion performs the forward
and backward substitution required for each IC iteration. The argument
list of these subrout1nes and entries are identical to those for the
implementation of SIP

Routines Providing No Acceleration of Base Solvers

Identifying SIP and IC as the base solvers used to so]velfor pressure

corrections, routines designed to provide the desired convergence of the base
solvers are required. To provide no acceleration of the base solvers, the

following new subroutines are provided:

1) NOACO with entry NOACI to call the appropriate base solver routines for

approximate factorization and forward and backward substitution. The
base solver routines called depend on the value of RLX:

If RLX < 1.001, then IC is used

IF RLX > 1.001, then SIP is used

The argument list of these subroutines and entries are 1dent1ca1 to
those for the 1mp1ementat1on of SIP

Routines Providing BC Acceleration

To provide BC acceleration of the IC base solver, the following new

subroutines are provided:

1)
ii)
iii)

iv)

ITRBCO to set up pointers into workspace for subsequent call to BCO,
ITRBCI to set up pointers into workspace for subsequent call to BCI,
BCO to call COFBC to determine the coefficients of the block correction

~equations for each of the three (E-W, N-S, and U-D) 1ndex'd1rett10ns and

to call ITRSOI to perform the approximate factorization for IC,

BCI to call SORBC.to determine source term of block correction equations
for each of the three index directions, to call FACTR1 and SWEEP1 to
solve the block correction fields, to call TMODBC to apply the
appropriate block correction and to call ITRSII to perform the forward
and backward substitution of IC,
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v) COFBC to determine the coefficient§ of the block correction eqﬂatibnsl
for each of the three index directions, - ‘
vi) SORBC to determine the source terms of the block cdirection gquatidns
for each of the three index directions, | - '
vii) TMODBC to apply the block correction (note that only the block
correction that has the largest sum of the squares of corrections is
applied), o
viii) FACTR1 and entry SWEEP1 to perform Tri-Diagonal Matrix Algorithm for
solving the three block correction fields.

In addition to the arguments described above, the argument lists of the
above routines include the following: | h - -

VEWB = E-W block correction vector

APEWB, AEB, AWB, BPEWB = coefficients of E-W block correction equations’

VNSB = N-S block correction vector S e

APNSB, ANB, ASB, BPNSB = coefficients of N-S block correction equations

VUDB = U-D block correction vector '

APUDB, AUB, ADB, BPUDB = coefficients of.U-D block correqtion_equations
Note: To ensure that block correction equations are not singular, one block
correction equation for each index direction is adjusted so that the
corresponding block correction is zero. Also, BC is currently implemented for
IC only. Implementation for SIP is readily accomplished by adding‘abpropriate
calls to ITRSOS and IRSIS.

Routines Providing Additive Correction Multigrid Acce]engtiqn of Base Solvers

To provide ACM acceleration of the IC and SIP base solvers as well as
I1C-8C, the following new subroutines are provided: ‘

i) XLRBOM to call ACMPNT to set pointers into workspace, to call NCRMNT to
determine the number of fine grid control volumes in each coarse grid
block, to call COFGEN to determine coefficients of coarse grid additive
correction equations and to.call ITRSOI, ITRSOS or ITRBCO to perform the
approximate factorization for all grids. The current implementation of
ACM required the introduction of a number of variables and vectors-
including the following: S
TC = vector of pointers into real workspace pointing to first element

of coarse grid additive correction arrays
RESC=  vector of pointers into real workspace pointing to-first element
of coarse grid residual arrays
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vC

= vector of pointers into real workspace pointing to first
element of coarse grid corrections to additive corrections,
required for current implementation of base solvers
WC = vector of_pointers into real workspace pointing to first
element of base solver workspaces reduired for each grid.
APC
AEC _ , ,
AWC vector of pointers into real workspace pointing to first
ANC elements of coefficients of additive correction equations for
ASC each grid .
" AUC
ADC
BPC = vector of pointers into réa] workspace pointing to first

element of coarse grid arrays of additive correction equation
' source term . _
INC, INC, KNC = vector of pointers into integer workspace pointing to
first elements of vectors of increments for each grid
18C, IEC, J8c, JEC, KBC, KEC = vectors containing limits on index
;riplet_(i,j,k) for each grid. ‘
IDC, JDC, KDC = vectors containing dimension of arrays for each grid
RESNOW = vector of square root of the sum of the squares of the current
residuals for each grid
.RESPRV = vector of square root of the sum of the squares of the
'previous iteration residuals for each grid
RESO = vector of square root of the sum of the squares of the
original residuals for each grid _
IBLK, ~ JBLK, KBLK = nominal size of blocks -

RESRAT = required rate of convergence
.RESRDC = required reduction of residuals
WRKMAX = maximum number of allowable total work units
NLVLS = number of coarse grids .
LVL = current grid level, finest grid is LVL = 0, coarsest grid is
LVL = NLVLS

ii) Entry XLRBIM to call SORGEN to determine source terms of coarse grid
'~ additive correction equations, to call ITRSII, ITRSIS, or ITRBCI and
TCCOR to perform appropriate forward and backward substitution and
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iii)

vi)

vii)

viii)

obtain required update of solution for the current grid, to'éall
RESID), RESCAL and LEVCON to evaluate residuals on current grid, to
evaluate sum of squares of residuals and decide whether to remain on
current grid or to move to finer or coarser and to call TMODAC teo-apply
additive correction to finer grid solution and adjust finer grid
residuals. o

ACMPNT to set up pointers into workspace for coefficients ofiall
coarser grid additive correction equations. The number of coarse grids

“is based on logic used to determine increments, see (1vf;

NCRMNT to determine increment of fine grid control volumes which are
used to make up a coarse grid block in each of three index directions.
Increments in each direction are nominally set to value of iJkBLK.
except at boundaries where the number of fine grid control volumes in
an index direction is not evenly divisible by IJKBLK. In this case the
remaining increment is set to the;integer remainder of the division.
The logic of NCRMNT is set up so that the number of blocks in any index
direction is not Yess than 2. The humber of coarsé grid levels assumed

in ACMPNT is such that the coarsest grid is 2x2x2.

COFGEN to determine coefficients of coarser grid additive correction
equations. The coarse grid AP coefficient is determined by first
summing fine grid AP values over coarse grid blocks. Then coarse grid
AP values are modified by subtracting fine grid AE, AW, AN, AS, AU and
AD coefficients where these coefficients are not coincident with coarse
grid control volume faces. The coarse grid coefficients AE, AW, AN, AD
are determined by summing the fine grid coefficients, where fine grid
and coarse grid control volume faces are coincident. '

SORGEN to determine the source term of coarse grid additive correction
equations; These source term§ are simply determined from the'sum of
fine grid residuals over coarse grid blocks. |

RESCAL to calculate the square root of the sum'of the squares_of the
residuals. ' T
LEVCON to set a flag controlling mpvement'of ACM from one Qrid to
another. Note that the current implementation of ACM adopts the
flexible cycle multigrid approach. ACM moves to a finer gr1d:%f
residuals are 20 percent of original value and moves to a cbarser grid
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if residuals have not been reduced to 10 percent of the previous value.
ACM also moves to a finer grid if the number of total work units, summed
over all grids but the LVL = 0 grid, exceeds 1.0.

ix) TCCOR to apply corrections from base solver to the current estimate of
solution. ' ‘

x) TMODAC to apply additive correction to finer grid solution and adjust
finer grid residuals. Fine grid residual adjustments are made in
several stepﬁ: the first step is to adjust all fine grid residuals
assuming that the additive corrections to neighbouring fine grid control
volumes are the same; the second step then adjusts all fine grid
residuals where fine grid faces and coarse grid faces are coincident
(where neighbouring additive corrections are not necessarily the same).
In addition to the arguments already described, the argument lists of
the ACM.routines also-include the following:

T8 dependent variable array for coarse grid

RESB residual array for coarse grid

APB
AEB
AWB
ANB
ASB
AUB
ADB
BB source term of coarse grid additive correction equation |
LB,LE,MB,ME;NB,NE = 1imits on index triplet (1,m,n) for coarse grid
LD, MD, ND = dimens1ons of arrays for coarse grid.

coefficients of coarse grid additive correction equations

Modifications to Routines to Calculate Pressure Corrections
To invoke the varjous improved techniques for solving the equation for

pressure correction, a number of calls were added to the CALCP and PISO
routines. These calls can be broken into two types; calls to routines with
names beginning with XLR80 which perform to necesssary initializations and
approximate factorization and calls to routines with names beginning with
XLR8I to perform one base solver iteration with acceleration. In general,
calls to XLRBO routines are required only when the A coefficients of the p'
equation change. Therefore a call to XLR80 is not required prior to solving
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the second set of p' of PISO. The call to the appropriate XLR80-XLRSI :pair is
controlled by the value of IPXLRS8: . : SR e '
IPXLR8 = 0 use original Alternating L1ne.Gauss-Seide1~1-
= 1 no acceleration of SIP or IC
ACM acceleration of SIP or IC (2x2x2 blocks)
"ACM acceleration of SIP or IC (3x3x3 blocks)
BC acceleration of IC
ACM acceleration of IC—BCl(2x2x2 blocks)
- ACM acceleration of IC-BC (3x3x3 blocks)
For IPXLR8 = 1,2 or 3 the choice of SIP or IC is dependent on the value of
RLXP, the parameter controlling the partial cancellation of SIP
RLXP < 0.001 : IC is used
> 0.001 : SIP is used
The variables IPXLR8, RLXP and RDCP are passed into CALCP and PISO via the
labelled COMMON/PXLR8/. Recommended values for these variables are:
IPXLR8 = 5 (IC-BC-ACM 2x2x2 blocks) '
RLXP = 0.0 (IC, by default if IPXLR8 = 5) _
RDCP 0.1 (terminate p' solution if p' residuals are reduced to within
_ 10 percent of their original value) ;
A]though these values are not necessarily optima],_they shou]d(be:

i}
NS Ww N -

]
c‘ .

appropriate for a wide range of problems. “
For the solution of the pressure correction equations required in CALCP

and PISO, the coefficients and source terms of pressure correction equations
must have effects of all boundaries eliminated. This is the default for the
TEACH code. As a result no additional modifications are required:

~ Finally, the modified PISO routine contains changes required to correct
the block-off logic when applying pressure corrections to the velocities.

MODIFICATIONS FOR IMPROVING ACCURACY

To improve the accuracy of the TEACH code the Linear Profile (LP) and
‘Mass Weighted (MW) Skewed Upstream Differencing Schemes (SUDS) were
implemented. Details of the implementation for these techniques can be found
in Section (8.2). To implement MW-SUDS and LP-SUDS, new subroutines were
required to determine integration point expressions, to evaluate positive
octant mass flows and to assemble integration point influences. . Modifications
to existing routines to calculate exchange coefficients for various variables

are also required.
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Integrétion Point Expression for Mw-SUDS and LP-SUDS

To determine the integration point expression, subroutine IPEQ is
provided. The routine is written using the notation outlined in Section (8.2)
and determines the integration point expression for only one: integration
point, 011. IPEQ is broken into four sections: i) preliminaries, 1i) LP-SUDS,
ii1), MwW-SUDS, and iv) Physical Advection Correction (PAC).

In the preliminary section of IPEQ, the exponential weighting factor and
the value of pV/L are determined. To determine the value of pV/L the first
~ step is to calculate the six different values of pV/L corresponding to the
cases where the streamline intersects each of the six sides of the flux
element. The value of pV/L chosen is that which corresponds to the smallest
positive value of L (i.e., the side first intersected by following the
streamline upstream) or the largest value of pV/L. '

The LP-SUDS section of IPEQ determines the coefficients of the
integration point equation from a bilinear interpolation of the nodes on the
flux element side intersected by the streamline. For low grid Peclet numbers
LP-SUDS is blended with a trilinear interpolation of the eight flux element
nodes. The blending is determined from the exponential weighting factor, B.

v The MW-SUDS section applies the positive mass weighted algorithm, to
determine coefficients of the integration point equation. The mass weighted
algorithm is applied to the 000, 010, 001 and 011 set of nodes if the
mass flow at the X011 integration point is positive and to the 100, 110, 101,
and 111 set of nodes if the mass flow is.negative. Note that the notation
used for the positive mass flows of octant faces is slightly different in IPEQ
than that used in Section (8.2). In the IPEQ routine mass flows through
integration point faces and faces adjacent to nodes are required on an octant
basis. See description of OCTMAS below. For low grid Peclet numbers MW-SUDS
is blended with a linear interpolation of the flux element nodes 011 and 111.

The physical advection correction is determined from a trilinear inter-
polation of nodal estimates of the correction.

- The argument 1ist of IPEQ includes the following:

AIP

BIP

ANPOOO

AQP]OO = coefficients of integration point equations:

ANP111
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DX0,DX1 = distances in X direction from integration point to
flux element sides o -
DYO,DY1 = distances in Y direction from integration point: to .
' flux element sides A . ,
020, D21 = distances in Z direction from integration point to
flux element sides
RVX000, RVX010,... = mass flux at integration point on faces
' coincident with X plane . )
RVYO0O, RVY100,... = mass flux at integration point on faces
A coincident with Y plane
RVZ000, RVilOO,... = mass f1ux at integration point on faces
coincident with Z plane
FNPOOO, FNP100,... = positive (into octant) mass flows ,
through faces adjacent to flux element node
FXI000, FXIV00,... = pbsitive mass flows through octant
integration point faces coincident with X plane
~ FYIO00, FYIN00,... = positive mass flows through octant-.
. ' '1ntegration point faces coincident with.Y plane
FZ1000, FZI100,... = positive mass flows through octant - -

integration point faces coincident with Z plane
éstimates of PAC at flux element nodes

diffusion coefficient at X011 integration point
parameter controlling formulation of integration

QNPOOO, QNP10O0,...
DIFIP
ACC

point equation

= 0 then MW-SUDS without PAC
1' then MW-SUDS with PAC

2 then LP-SUDS with PAC

"Positive Octant Mass Flow

MW-SUDS for three—dimensidna] applications requires the eva]uétibn of
positive mass flows through octant faces. The routine OCTMAS performs this
function. Mass flows are defined to be positive, if they are into the
octant. For flows leaving the octant, the value of the positive mass flow
values are required for four sets of faces:. i) flows through the X>1ntegration
point face of the octant, ii) flow through the Y integration point face of the
octant, iii) flow through the Z integration point face of the octant, and iv)
net flow through octant faces intersecting at octant node.
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In addition the the’variéblés describéd above, the argument 1i§t of
OCTMAS includes the following: o . . '
AX000, AX010,... = area of X integration poinf faces of octant
AY000, AY100,... = area of Y integration point faces of octant
AZ000, AZ100,... =’area of Z integration point faces of octant

Flux Element Assembly

To assemble the influences of integration point equations of é flux
element into the appropriate control volume flux balance equatioﬁ, the routine
FEASM is provided. There are fouf major sections to FEASM: 1) daté statements
initializing maps, i1i) determination-of positive mass flows, i1ii)
determination of integration point equation coefficients for each integration
point of the f]ux‘element, and iv) assembly of influences.

As described above, fhe routine IPEQ, provided to determine the
coefficienfs of the {ntegration point equations, is writfen for only the X011
integration point. .fo make use of one routine for all twelve integration
points of a flux element it is necessary to use transformations. In FEASM
these trqnsformations are made through the use of maps. To use these maps it
is first necessary to introduce a change in notation. Instead of the indexed
triplet notation described in Section (8.2) and used in IPEQ and OCTMAS, node
poinis‘énd integration_points are assigned the integer numbers listed be1pw: |

Index Triplet : Numbered
Node -Notation

000
100
010
110
001
101
011
m

X ~N O bW N -
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Integration Point

Notation ' ' T e

X000
X010
X001
X011
Y000
Y100
Y001
v
2000
2100 10
2010 n
2110 12

W ~N O N W N -

7]

Using the ndmbered notation, transformations are readily created and
implemented. For instance, if the coefficients of the integration point fory -
integration point 1 (or integration point X001) are required, then IPEQ can be
called with integration point 1 arguments used in place of integration.point 4
arguments, integration point 2 arguments in place of integration point 3
arguments, etc. The transformation of integration points is given in FEASM in
the map IM. Note that a map is required for each integration point with 12
entries in each map, hence IM is dimensioned 12x12. In addition to the
integration point maps, node point maps are required. For each of the twelve
integration points, the eight entries required to map nodes are given by NM.
Maps are also arovided for three dimensions of the flux element and the sense
of the coordinates under each of the twelve transformations. The map for the
f]dx element dimensions assumes that dimensions have been assigned numbers in
the following order: ' '

Index Notation Numbered Notation

DXO0
0X1
DYO
Y1
Dz0
DN

ownHwNn—
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The assignment of indexed notation variables to numbered notation
variables follows the call to OCTMAS. This is followed by twelve calls to
IPEQ. After normalizing the coefficients of the integration point equations
and multiplying by the appropriate mass flows, the flux element influences are
assembled. This assembly is done on a flux element octant .basis. Each
control volume octant has three flux element integration points with each
integration point expressed in terms of the eight flux element nodes.

-In-addition to the variables described previously, the argument 1ist: of
FEASM includes the following: -

ADSW

ADS

ADSE

"= exchange coefficient arrays ,

. > .
0000 'O......

>

o]

-
z
m

="source term coefficient
I,J,K = integer index triplet of 000 flux element mode
ID,JD,KD = dimensions of all exchange coefficient arrays

Modificgtions to Routines Calculating Exchange Coefficients
, MW-SUDS and LP-SUDS discretizations are implemented for the calculation

of the coefficients of equations for u (CALCU), v (CALCV), w (CALCW),
turbulent kinetic'energy (CALCTE), and dissipation (CALCED). 1In general, the
type of discretization used is controlled by the value of IFESKW passed into
the routines through the labelled COMMON/FESKW/:

IFESKW = 0 default to baseline TEACH
1 MW-SUDS |
2 LP-SUDS

As outlihed above, the flux element assembly of coefficients using SUDS,
invoked by calling FEASM, requires information regarding geometry, mass fluxes
and estimates of diffusion and source term influences. Geometric information
is readily available in TEACH. The mass flux terms are required on an octant
basis and re-derived from the control volume mass fluxes which are stored in
RVX, RVY and RVZ and passed as arrays through /FESKW/. To obtain diffusion
and source term influences when using SUDS, the TEACH calculations of diffusion

il
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calculations of diffusion coefficients and source terms are retained and
assembled in the A and SU coefficients prior to the call to FEASM.. Note
however, that no convective influences are included until after the call to
FEASM. The results is that, before the call to FEASM, the A coefficients
contain all the sufficient diffusion information and SU coefficients contain
source term information. The estimate of combined diffusion and source term
influences, requiréd to estimate the physical advection -correction term,. is
obtained from the residual of the:conservation equation (without convective
1nf1uehces) using the best available estimates of the dependent variable.
Normalized by the volume of the control volume, these influences are stored in
the array QU passed into the subroutine through /FESKW/.

In the vicinity of boundariés, some modification of the protedure
outlined above is required. First, in TEACH, fictitious modes are located
coincident with the boundary. The implementation of flux element SUDS retains
this by appropriately adjusting distances between integration points and flux
element boundaries. Second, in the supplied TEACH, any influence.of any
boundary node which is not E,W,N,S,B or F must be zero. In the flux element
implementation of SUDS this assumption remains valid if, in flux elements
adjacent to boundaries, only MW-SUDS is used. This assumes that, at specified
openings, the components of velocity tangent to the boundary are zero.
Finally, at boundary nodes the value of QU cannot be defined in the manner
given above. Instead, boundary QU values are set equa] to adjacent jnterior
values. | o )

With the necessary Qeometric, mass and diffusive fluxes and source term
information available, coefficients are assembled on a flux element basis by
calling FEASM. The evaluation of mass fluxes and source term influences, -
required by FEASM, are determined in a manner which is approbriéte for either
Cartesian or cylindrical coordinates. ' ' o

Finally, for kinetic energy and dissipation equatiohs the value of Qu
are everywhere set to zero and, if IFESKW > 0, then only MW-SUDS, ACC = 0,
is used. This is done to ensure the required boundedness of the kinetic

energy and dissipation solutions.

MODIFICATIONS TO INPUT AND OUTPUT ROUTINES

To implement the modifications in TEACH for improving accuracy and
efficiency, it was necessary to add several new variables which must be
supplied by the user from an input file. This required the modification of .
the INPUT routine. These changes are summarized below:
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i)
i)

iii)

iv)

v)

vi)

the labelled COMMONs /PXLR8/ and /FESKW/ are included

following card type 9, a statement to read FESKW (format
statement 5491, i5) was introduced

following card type 11, a statgment to read IPXLR8, RLXP, ROCP
(format statement. 5471, 15, 2£5.3) was introduced

the introduction of a statement to overide the use of MW-SUDS or

. LP-SUDS if BSUDS1 or BSUDS2 were specified, ie., MW-SUDS or

LP-SUDS are used only if ISKEW > O and FESKEW > 0

the introduction of a statement to ensure that RLXP = 0 for
IPXLR8 > 3. This ensures that only IC is used with BC.
write and format statements to echo input of changes 2 and 3

were introduced.

The routine XINPUT was also modified so that explanations of the
additional options could be provided. Note, all additional input is read from
.unit 5 and additional output is directed to unit 6. '

in addition to the changes listed above, the following modifications to
the BLOCK DATA and RESTRT as well as'the MAIN were required: '

i)

i)

in the interest of saving compute resources (disk space and
memory) the inclusion of SKW3.INCL and initialization of the
variable SMALL. were removed from BLOCK DATA. The variable SMALL
is initialized in MAIN. '

so that the restart feature of TEACH could be used, the variable
KMBSTR was removed from the second record read from unit 1 in
RESTRT.
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APPENDIX B S
DERIVATION OF COEFFICIENTS FOR R AND Q MATRICES IN THE COCI SCHEHE

It is shown in Appendix C that the truncation error defined by:
4 [R]imf - [Q] %L"i (B.1)

can be expressed as, using Taylor Series Expansion:

= T0o1‘+ T]Q} + Tzof + TSQ? +‘T4¢: +

where Qn = dnﬁ/dxn and

T0 = [re + P rw]
2
] _ W g W P e
T=hir-r 2 (AU + 07y + auy )]
: 2 2r 2zl o
2 _h_ e w__ 8 W e P, _ 8, e AW
= Srlr+r 2 (a°+ q° +q7) 2 (Q7uy g - auy )]
: (B.2)
3 6T 3z
3_h e W __8 e W _ g e W
=gy lr-r 2 (a°- q7) 2 (QTuy + a7y DT
4 12 4z
4 _h_.e w_ B, €. W g e oA
T gr [r+r 2 (g7+q") 2 (Q7uy,, - Q)]
y v n vz
v _h . e _1\Y W 1y B /.8 1\ Y AWy g, e _qyv-1
= I+ (=) r" -v (v-1) -2 (@7 + (-1)" q) 2 (Q7ugyy + (1)
" vy )]

for v=3, 4, 5and z = h/Fb
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_ COCI is said to be formally fourth order if r in Equation (B.1) =
‘och%) implying that T" = 0(h*) in equations (B.2). Since.T° = 0(h°),

then to obtain a fourth order scheme consideration need only be given to T°

for v = 0,1,2,3 and 4.  Rearrangement of T0 = T] = T2 = 0 defines tri-

diagona) matrix operator R in terms of Q in equation (6.65), as:

o |
w8 W oo Pio_ e
2r” = 2 [q7(2-3zuy_y) + a"(2-zuy) + q (2420, )1 (B.
2% = T8 oz, ) + ”(2‘+zu'$ + q%(283zu; )] (B
REES i-1) 4 i) + a7(esdzuy, - (B
L (re + Pw) (B.
3

cocI is un1quely defined by further 1ns1sting that T =T -0 The resuiting
express1ons for T  and T4 become: '

e W Gnﬂ e w szrﬂ e W
e 2 B OO T L B
1200 LYy

e W g e W g , e W
r-r - 2 (g7-q7) ) (Q U,y - Q'

]) =0 (8

o o, . .
Normalizing Equations (B.3) and (B.4) by qP and rearranging,

r .
Ae N _ 8 AW Ae
r-r h2 [q (zui_]) tozuy + g (zu1+1)] (B.
' 3y ‘
Ne Aw _ " "p AW Ne .
r +r = ;5— [q (1—zu1_]) +1+4q (1+zu1+])] (B.
ol 3z
NAe Aw _ @ AeAw g Ne Aw
-r = ;5— (g7-q)- ) (Q7uy,y - a7y, ) (8
Ae Aw 12'1"¢ Ae A 42[10' e A
+r -;5— ) - =% (dTuy, uj4) (8
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where
. . ~ . '
QP = q1/qp; ri = r1/qp. i=%e, p, W

Equations (B.5) can noQ be solved for’?e.’?”.’ae andfa“ to:yiéld o

AW . : Y PP 2
q =[6 + (2u1+]— 5u1+])z - uiui+1] / (60 + 16(u1+1 - ui_])z - 4u1+]u1_]z ]
e i 2
q =[6+ (Su1 - 2u1_])z - u{ui_]] / [60 + 16(u1+]-¢u1_])z - 4u1+]u1_]z ]
. AW Ne :
Based on the common denominators of'q and’q , a logical selection for
p J¢ . - . !
q is: .
qp =60 + 16(u ~u )z —'4u u z2 | ' (B.7a)
i+ i-1 i1t o :
Hence, the remaining coefficients are:
q® = 6+ (5u; - 2u, )z | ~ (B.7b)
W z
q =6 - (Sui -2 ui_]) o - (B.7¢c)
r* =7'"592 (@ (2 - 20+ P2 + 2 )‘ ¢ B3z, )] (B.74)
2h -1 1 141
r .
w _Lpg W, P,y e (B.7e)
r-= 2h2_[q (2-3zu; 1)+ a7(2-2u5) +Q7(2 + zuy )] -
Pty o (B.7f)

The above relationships provide the coefficients in the postulated COCI

expression, i.e.,
W p e wWpx PpX e X
rg, ,+re,+re,=aq 1_]+q£1 +a Lin

or [R] {0} = [Q] {Cx}
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APPENDIX C
'DETAILS OF TRUNCATION ERROR SERIES FOR COCI DISCRETIZATION

The COCI scheme postulates that a tri- diagonal relation exists between

a and the spatial operator J:i = °1 + uy '1 (assuming rg = constant
and u varies in space) of the form:

) W P e _ WpX PpX e 'X
regg tregrre g, =aly, ralyvadlyy, (c.1)

If the truncation error is now defined as:

1= (R] ni'- (0] L:%
where e, and Lx are the exact s.lution to equation (C.1). By expand-
ing each neighbour1ng value of ¢ and‘C in equation (C.1) about Xy the
following relationship results: : :

2 3 4
W ' hS oo h” h v
r [ﬂi- hﬂi + 2 01- - 6 ¢_i + 24 61 + ... ] +

2 3
h n h_ (] h iv P, _
r [01+ ho1 5 n * 6 o Ay 01 + ..., ] +r oi

w " "t ﬂ_ iv _ h_ v h_ _vi ‘
{I‘o_[n1 - ho1 + 5 By 6 %5 tozf * R ,
. (C.2)
2 3 4 ' '

] " h_ n h_ 1v L V . .

2 3 -4

o o iv b
{T [n +h By + 58, +3— 8
3

2
ho h” v h v _
Uy [y + heg w0l oo alV e Boal )

P o
q {I‘a o, + "i”i}"'

Co]lecting'terms common to each derivative of 8, r is expressed-as:

_ .0 10 2 g iv
r=T g, +T 8, +T 8, +T 9, + T 8, (C.3)
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where it follows directly from equation (C.2) that

TO =r® e+ WP

zr’

1 _ e W _ @8 W P e
T =hir-r 2 (Q7uy,, * @ u; + 4 Uspq)]
2 h2 e w 21; w e p -ZZI; e w
5= S7lri+ r - hT(q +q +q) - h—z(q Ujp9 Yy 4)]
- (C.4)
6T 3zT

3 _h_ e w__8 € W _ g e W .
=37 lr-r 2 (@ -q) - 2 (Q7uyy +q7uy )]

4 ©o2r,; 4zT ,
4 _h e w_ 8 ,.e Wy _ g e oW
T = 3! [r+r ’h2 (- +q) h2 (q Uy 9 01_1)]

n’ r vzl v-1 w

o= ()Y - (-1 h—g- (0% + (-1)%q")- = (a°uy 1+ (-1 'q", )]

v!

H

for v=3, 4, 5 and z h/I;

It is important to note that the above deviation is equally valid,

allowing for spatial variation of rb and h, which was not accounted for here
only for simplicity.
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