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ABSTRACT

The first part of this paper describes the

performance of GMSK using differential detection in

fast Rician fading, with a novel treatment of the

inherent ISI leading to an exact solution. In the

second part trellis coded DPSK with a convolutional

interleaver is considered. The channel is the Rician

Channel with the line-of-sight component subject to a

lognormal transformation. This accounts for shadowing
on the Rician Channel.

INTRODUCTION

We consider digital transmission using phase modulation over the

Rician Channel. This is meant to model a mobile satellite

communications link. In the first part of the paper, which is based

on [Smith, 1988], GMSK is considered from an analytical point of view

for the Rician case. In the second part we treat shadowing and

trellis coded DPSK via Monte Carlo simulation.

GMSK IN FAST RICIAN FADING

The problem addressed here is that of obtaining an explicit

analytical expression for the error performance of Gaussian baseband

filtered minimum shift keying, (GMSK), using differential detection in

a fast Rician fading channel with additive Gaussian noise [Smith,

1988]. This problem can be divided into two sections, namely

determining the probability of error conditioned on a specific phase

change over the bit period, and accounting for the intersymbol
interference (ISI) inherent in GMSK modulation. The solution to the

first has been reported in [Mason, 1987]. He points out that an

alternate treatment is given in [Stein, 1964], which will be the

approach taken here. The second step is accomplished by a new

technique which allows the calculation of the expected value of a

function over the probability distribution of the interference
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variables. This method results in an exact explicit expression for
the error probability which may be calculated to the desired degree of
accuracy. The procedure is generally applicable in a wide range of
digital communications problems involving ISI.

A GMSKsignal is generated by passing a non-return-to-zero data
stream through a Gaussian basebandfilter followed by an FM modulator
with modulation index 0.5. The transmitted GMSKdata phase signal may
be represented as

I t 1e(t) = _ _ a n (_-'_)g(v - nT)dv (1)

}_ _ is a sequence of independent, identically distributedwhere {a n _=-

random variables taking on the values +I or -I with equal probability,

T is the bit period, and g(t), the basic frequency pulse, is given in

[Simon and Wang, 1984, eqn. 18]. The factor (I/2T) normalizes g(t)

such that the net phase change due to one data bit, after FM

modulation with index 0.5, is _/2.

The receiver consists of a standard differential detector, where

the predetection bandpass filter and postdetection baseband filter are

assumed to have negligible effect on the signal components.

Considering a lowpass equivalent representation, the received signal

at the input to the differential detector, z(t), consists of the

direct component u(t) = A exp[j@(t)], the Rayleigh faded component

r(t) = w(t)exp[j@(t)], and the additive Gaussian noise n(t), where A

is the signal amplitude, and w(t) and n(t) are mutually independent

stationary zero-mean complex Gaussian processes. The differential

detector acts as a quadrature product demodulator forming the

output v(t)= (I/2)Re{-jz(t)z*(t- T)} where * denotes conjugation,

Re{-} denotes the real part of {.}, and it is assumed that the carrier

radian frequency m = n2_/T for n an integer. This is sampled at times
t = T/2 ÷ nT and the data is recovered based on the polarity of

v(T/2 + nT).

Consider the detection of the zeroth bit, assumed +I.

Conditioned on receiving a particular phase change, A@=@(T/2)-@(-T/2),

z(T/2) and z(-T/2) are dependent conditional complex Gaussian

variables. Following the development given in [Stein, 1964], the

probability of error may be expressed as

P(errorlA@,ao=1)=i/2[1_Q(_,_)+Q(_,_) ] _ C2 exp(- (a+b))Io(V_-62) (2)

where {_} KA= _-[(A+K÷1)-APsCOS2A@ - (K+1)PnCOSA@ _ sinA@]

C = (APssinA@)/_-D D = (A+K+I) 2 - (APsCOSA_ + Pn(K+1)) 2

where ps=Jo(2_fDT), is the normalized autocorrelation function for the

mobile fading spectrum with maximum Doppler frequency fD'

Pn=Sin(2_BiFT)/(2_BiF T) is the normalized autocorrelation of the noise

for an ideal rectangular bandpass filter with one-sided bandwidth BIF,
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K is the propagation SNR, A is the average SNR,Q(_,8) is Marcum's
Q-function and I and J are Bessel functions.o o

The foregoing analysis is conditioned on the value of the phase
change over the bit interval, which depends on the infinite sequence
of data bits being transmitted.

[T/21
Ae = _ _ ak J (_-_) g(v-kT)dv

k=-_ -T/2

-- ao8 o + _ a_kB k + _ akB k = B° + X + Y

k=1 k--1

IT/21

where Bk -- B_ k -- 11-J (_-_) g(v-kT)dv

-T/2

X -- _ a_kBk y = _ akB k

k--1 k--1

(3)

In (3), ao the data bit being detected is assumed to be +I, and X and

Y are independent random variables with identical distributions. It

can be shown that the variables X and Y are singular and of the Cantor

type, [Wittke et al., 1988], provided that BT > 0.0784. In this case,

the probability distribution function of X or Y is a continuous

function that takes on constant values except on a set of measure

zero. The expected value of a general function conditioned on one

interference variable, say X, may be evaluated as

® 2j-I

- _ _ (2k-1)2-J[f(Ejk) - f(Sjk)] (4)E{f(X) }=f(R I )

j=1 k=1

where Sjk = Yj_1,k-Pj , Ejk-- Yj_1,k+Pj, pj--Bj-Rj+I, Hj_ -- Bk ,

k=j

Yj,k can take on the 2j values, + BI , + B2 , ...+ Bj and are ordered in

increasing value, and Y01 has been defined as zero. Conditioning on

two independent identically distributed Cantor variables, as is

required by this analysis, leads to the result

® 2j-1 _ 2m-1

E{f(X,Y)} = f(R1,e I) + _ _ _ _ (2k-1)e-J(2n-1)2 -m

j--1 k=1 m=1 n--1

• [f(Smn ' Sjk) + f(Emn ' Ejk) - f(Smn ' Ejk) - f(Emn ' Sjk)] ÷
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2j-1

_ (2k-1)a-J[f(e 1,Sjk
j=1 k=1

)*f(Sjk,R I )-f(R I ,Ejk)-f (Ejk,RI)] (5)

Combining the previous two results, equations (2) and (5) gives
the overall error probability. This has been plotted in Fig. I for
varying premodulation bandwidth BT, with propagation SNRK = 10 dB,
maximumDoppler frequency fDT = 0.05, and one-sided 3 dB bandpass

filter bandwidth BIFT = 1.0. These parameters are typical of the
conditions expected for the Canadian MSATprogram. In evaluating
the error probability, the number of terms required for 3 figure
accuracy decreases with increasing premodulation filter bandwidth, BT.
For example the curve for BT:O.3 was evaluated by truncating the
series beyond j=m=2, and for BT:O.5 beyond j=m=1.

TCMWITHD8PSK

In this section we report on the use of interleaved, trellis
coded modulation used in conjunction with D8PSKmodulation. A block
diagram of the system under consideration is shown in Fig. 2. Here
the burst error channel is modelled as an additive white Gaussian
noise channel where the gain and phase are modeled as a random
process. This dynamically varying phasor represents non-static signal
fading.

Most investigations [Simon and Divsalar, 1986] use the Rician
model for signal fading which is composedof a constant line-of-sight
(LOS) component plus a scatter componentwhich is a complex Gaussion
random process. In Canada, due to a low angle of elevation to the
satellite, a shadowed Rician model has been developed [Loo, 1985].
This model has the samescatter componentas the Rician, but the LOS
component is subjected to a lognormal transformation. The dynamics of
the fading is controlled by a third-order-Butterworth filter.

System performance is determined by digital computer simulation
of the fading channel. A single sample per symbol interval is used to
represent the fading process. Results using this model for 4- and
8-state trellis coded PSK and DPSKmodulations were reported in
[McLane et al., 1987]. It was found that for up to average shadowing
conditions a fade margin of 12 dB could be maintained at a BERof
10-3; this is a relevant BERas speech transmission is regarded as the
major application.

In [McLane et al., 1987] interleaved transmission was treated
only from an approximate point of view. We have included the
convolutional interleaver shown in Fig. 3 into our simulations. Such
a convolutional interleaver is ideal for use with Ungerboeck codes as
such codes use convolutional encoders as generators. Also,
convolutional interleavers have lower delay than block interleavers.
This is important in speech applications where the overall delay must
be kept below 300 ms. As the progagation delay in MSATis 250 ms this
leaves 50 ms for Viterbi decoder plus convolutional interleaver delay.
The results of our simulations are shown in Fig. 4. The case _ = 6

294



meets the 50 msec constraint but the A = 8 case does not. However, we

have recently found, as suggested in [McLane et al., 1987], that the

Viterbi decoding delay can be reduced to make A = 8 meet the 50 msec

time delay constraint and with very little loss in BER.

CONCLUSION

Analytical techniques to determine the performance of GMSK in a

fast fading Rician Channel have been presented. For TCM and DPSK

modulation, system simulation has been used to determine performance

when convolutional interleavers are used. We are currently applying
Ol_r an_l vii hal h_nhni n1,_m 9n fh: _nM _a:_
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