
NASA Contractor Report 4167

Modeling and Optimum
Time Performance for
Concurrent llrocessing

Roland R. Mielke, John W. Stoughton,
and Sukhamoy Som

GRANT NAG 1-683
AUGUST 1988

NI\SI\ I IUIIIII IIU IIII nlll IIUI 11111 \lIU IIII lUI
NF01803

NASA-CR-.J16719880017211

NASA Contractor Report 4167

Modeling and Optimum
Time Performance for
Concurrent Processing

Roland R. Mielke, John W. Stoughton,
and Sukhamoy Som
Old Dominion University
Norfolk, Virginia

Prepared for
Langley Research Center
under Grant NAGI-683

NI\SI\
National Aeronautics
and Space Administration

Scientific and Technical
·Information Division

1988

I. INTRODUCTION

The development of a new graph theoretic model for describing data and

control flow associated with the execution of large-grained algorithms in a

special distributed computing environment is presented. The model is iden­

tified by the acronym ATAMM which represents Algorithm To Architecture ~ap­

ping Model. The purpose of such a model is to provide a basis for estab­

lishing rules for relating an algorithm to its execution in a multiprocessor

environment. Specifications derived from the model lead directly to the

description of a data flow architecture. The availability of the ATAMM

model is important for at least three reasons. First, it provides a context

in which to investigate algorithm decomposition strategies without the need

to specify a specific computer architecture. Second, the model identifies

the data flow and control dialog required of any data flow architecture

which implements the algorithm. Third, the model provides a basis for cal­

culating analytically performance bounds for computing speed and throughout

capacity.

The problem domain of the ATAMM model consists of decision free algo­

rithms with computationally complex primitive operations which are assumed

to be implemented in a dedicated data flow environment. The algorithms are

such as may be found in (but not limited to) large scale signal processing

and control applications. The anticipated multiprocessor environment is

assumed to consist of two to twenty processing elements for concurrent exe­

cution of the various algorithm primitives.

The development of new computer architectures based upon distributed,

multiprocessor organizations [1], [2] is motivated mainly by the requirement

for increased speed and greater throughput capability in complex signal

processing applications [3]. Recent advances in the production of

high-density microelectronics [4J has made possible the construction of

parallel architectures consisting of identical, special purpose computing

elements [5J. A number of models for describing the behavior of algorithms

in this setting have been developed [6J - [8J. However, these models

represent only the data flow and do not adequately display the complex

issues of communication and control flow which must occur in any realization

of the model. For this reason, it has been difficult to investigate how to

effectively match the decomposition and scheduling of algorithms to the

structure and control of parallel architectures. The importance of better

understanding the relationship between algorithms and architectures is only

now becoming recognized [9J.

In Section II of the paper, the modeling process to describe algorithms

in data flow architectures, ATAMM, is presented. The model consists of

three Petri net marked graphs called the algorithm marked graph (AMG), the

node marked graph (NMG), and the computational marked graph (CMG). In Sec­

tion III, the operating characteristics of these graphs are investigated. A

state variable description is presented and used to establish the graph

properties of reachability, liveness, and safeness. Time performance mea­

sures for concurrent processing are defined in Section IV. The ATAMM model

is used as the basis for calculating analytically lower bounds for these

performance measures. Then in Section V, an operating strategy which

achieves optimum time performance is developed. Several examples are pre­

sented to illustrate these concepts, and the results of experimental runs on

actual multiprocessor hardware are reported.

II. ATAMM MODEL DEVELOPMENT

In this section the ATAMM model to describe concurrent processing of

2

decomposed algorithms is presented. The model consists of a set of Petri

net marked graphs which incorporate general specifications of communication

and processing associated with each computational event in a data flow

architecture. First, a detailed description of the problem context is

stated. This is followed by the definition of the ATAMM model consisting of

the algorithm marked graph, the node marked graph, and the computational

marked graph. Some familiarity with Petri nets [10J and marked graphs [llJ

is assumed in this presentation.

The problems of interest are decision-free, computationally complex

problems as are often found in signal processing and control applications.

A problem description normally results in the definition of a function given

by the triple (X,Y,F). The set X represents the set of admissible inputs,

the set Y represents the set of admissible outputs, and F:X->Y is the rule

of correspondence which unambiguously assigns exactly one element from Y to

each element of X. Associated with a computational problem is one or more

algorithms. An algorithm is an explicit mathematical statement, expressed

as an ordered set of primitive operations, which explains how to implement

the rule of correspondence F. In general, a given problem can be decomposed

by several different primitive operator sets. Also, for a given primitive

operator set, there are often different orderings of primitive operations

which can be specified to carry out the problem. Of special interest are

algorithm decompositions in which two or more primitive operations can be

performed concurrently. For such decompositions, the potential exists for

decreasing the computational time required to execute the problem by making

available a set of identical computational resources capable of implementing

each of the primitive operations.

3

The hardware environment for executing the decomposed algorithms is

assumed to consist of R identical processors or functional units (FUNs)

where R has a value in the range of two to twenty. This range of resources

is suggested for practical reasons due to the large-grained aspect of the

algorithm decomposition and the need to maintain small communication times

relative to process times. Each FUN is a processor having local memory for

program storage and temporary input and output data containers. Each FUN

can execute any algorithm primitive operation. The FUNs share a common

global memory (GLM) which may be either centralized or distributed. The

coordination of FUNs in relation to data and control flow is directed by the

graph manager (GRM). The GRM also may be centralized or distributed. Out­

put created by the completion of a primitive operation is placed into global

memory only after the output data containers have been emptied. That is,

outputs must be consumed as inputs to successor primitive operations before

allowing new data to fill the output locations. Assignment of a functional

unit to a specific algorithm primitive operation is made by the GRM only

when all inputs required by the operation are available in global memory and

a functional unit is available.

An algorithm marked graph is a marked graph which represents a specific

algorithm decomposition. Vertices of the algorithm graph are in a one-to­

one correspondence with each occurrence of a primitive operation. The algo­

rithm graph contains an edge (i,j) directed from vertex i to vertex j if the

output of primitive operation i is an input for primitive operation j. Edge

(i,j) is marked with a token if an output from primitive operator i is

available as an input to primitive operator j. When constructing an algo­

rithm graph, vertices (primitive operations) are displayed as circles, and

edges (input-output signals) are displayed as directed line segments

4

connecting appropriate vertices. The presence of a token on an edge is

indicated by a solid dot placed on the edge. Source transitions and sink

transitions for input and output signals are represented as squares.

Sources for constants are not usually included in the algorithm marked

graph; however, triangles are used for this purpose when necessary.

To illustrate the construction of an algorithm marked graph, consider

the problem of computing the output of a discrete linear system given a

sequence of inputs to the system. Let the system be described by the state

equation

x(k) = Ax(k-1) + Bu(k)

and output equation

y(k) = Cx(k).

where x is a p-vector, u is an m-vector, and y is an r-vector. The prim­

itive operations are defined as matrix multiplication and vector addition,

and the natural algorithm decomposition resulting from the state equation

description is selected. The algorithm marked graph for this decomposed

algorithm is shown in Figure 1. The initial marking indicates that initial

condition data are available.

The algorithm marked graph is a useful tool for representing decomposed

algorithms and for displaying data flow within an algorithm. However, the

algorithm graph does not display procedures that a computing structure must

manifest in order to perform the computing task. In addition, the issues of

control, time performance, and resource management are not apparent in this

graph. These important aspects of concurrent processing are included in the

ATAMM model through the definition of two additional graphs. The node

marked graph (NMG) is defined to model the execution of a primitive

5

operation. The computational marked graph, obtained from the AMG and the

NMG by a set of construction rules, integrates both the algorithm require­

ments and the computing environment requirements into a comprehensive graph

model. These additional marked graphs are defined in the following.

The NMG is a Petri net representation of the performance of a primitive

operation by a functional unit. Three primary activities, reading of input

data from global memory, processing of input data to compute output data,

and writing of output data to global memory, are represented as transitions

(vertices) in the NMG. Data and control flow paths are represented as

places (edges), and the presence of signals is notated by tokens marking

appropriate edges. The conditions for firing the process and write transi­

tions of the NMG are as defined for a general Petri net, while the read

transition has one additional condition for firing. In addition to having a

token present on each incoming signal edge, a functional unit must be avail­

able for assignment to the primitive operation before the read node can

fire. Once assigned, the functional unit is used to implement the read,

process, and write operations before being returned to a queue of available

FUNs. The initial marking for an NMG consists of a single token in the

"process ready" place. The NMG model is shown in Figure 2.

A computational marked graph (CMG) is constructed from the AMG and the

NMG by the following rules.

1. Source and sink nodes in the algorithm marked graph are represented

by source and sink nodes in the CMG.

2. Nodes corresponding to primitive operations in the algorithm marked

graph are represented by NMGs in the CMG.

3. Edges in the algorithm marked graph are represented by edge pairs,

one forward directed for data flow and one backward directed for

6

rules.

control flow, in the CMG. The initial marking for the edge pair

consists of a single token in the forward-directed place if data

are available, or a single token in the backward-directed place if

data are not available.

The play of the CMG proceeds according to the following ~raph

1) A node is enabled when all incoming edges are marked with a token.

An enabled node fires by encumbering one token from each incoming

edge, delaying for some specified transition time, and then deposi­

ting one token on each outgoing edge.

2) A source node and a sink node fire when enabled without regard for

the availability of a FUN.

3) A primitive operation ~s tnitiated when the read node of an NMG is

enabled and a FUN is available for assignment to the NMG. A FUN

remains assigned to an NMG until completion of the firing of the

write node of the NMG.

In order to illustrate the construction of a computational marked

graph, the CMG corresponding to the algorithm marked graph of Figure 1 is

shown in Figure 3. The computational marked graph is useful because it

clearly displays the data and control flow which must occur in any hardware

implementation of the model process, and because it provides a hardware

independent context in which to evaluate process performance.

The complete ATAMM model consists of the algorithm marked graph, the

node marked graph, and the computational marked graph. A pictoral display

of this model is shown in Figure 4. In the next section, important opera­

ting characteristics of the ATAMM model are investigated.

7

III. MODEL CHARACTERISTICS

In the previous section, a marked graph model consisting of the AMG,

the NMG, and the CMG is defined as a means to describe concurrent processing

of decomposed algorithms. In this section the ATAMM model is studied

analytically to determine important graph operating characteristics. First,

a state description which expresses the next graph marking as a function of

the present marking and a vector indicating which transition is to be fired

is developed. Then, the marked graph properties of reachability, liveness,

and safeness are considered for the CMG. Two excellent papers by Murata

[IIJ, [12J on properties of marked graphs are the source for much of the

material presented in this section.

Let G be a marked graph consisting of m places and n transitions. The

m-vector Mk denotes the marking vector for G resulting from the firing of

some sequence of k transitions. The following two definitions are necessary

to develop the state description of the CMG.

Definition 1: Complete Incidence Matrix. The complete incidence matrix for

a marked graph G is the (nxm) matrix A = [a .. J having rows corresponding to
lJ

transitions, columns corresponding to places, and where

a .. =
lJ o

+1(-1) if place j is incident at transition i
and directed out of (into) the transition

if place j is not incident at transition j

Definition 2: Elementary Firing Vector. An elementary firing vector uk is

an n-vector having all zero entries except for the ith component which is 1

denoting that transition i is the kth transition to fire in some transition

firing sequence.

To gain insight to the state equation description, it is helpful to

8

consider the firing of transition k. If aki = -1(+1), place i is an input

(output) place to transition k. Therefore, transition k is enabled if

M(i) = 1 for each input place. When transition k fires, one token is re­

moved from each input place and one token is added to each output place.

These observations lead to the following next state description for a marked

graph.

Property 1: Next State Description. For a marked graph G with present

marking vector Mk_1 and elementary firing vector uk' the next marking vector

is given by

The next state description can{be used to express the graph marking

resulting from the application of sequences of elementary firing vectors.

This is done in the next definition and property.

Definition 3: Firing Count Vector. Let (u1,u2, ... ,ud) be a sequence of

elementary firing vectors taking a marked graph G from an initial marking

MO to a destination marking Md. The firing count vector xd for this firing

sequence is defined by

x =
d

Property 2: State Equation Description. For a marked graph G with initial

marking vector MQ, the marking vector resulting from the application of

elementary firing vector sequence (u1,u2, .•• ,ud) is given by

9

Using the state description of a marked graph as a basis, the property

of reachability is investigated. Necessary and sufficient conditions for a

CMG marking vector to be reachable from an initial marking are established,

and it is shown that the number of tokens contained in any directed circuit

of the CMG is invariant under transition firings.

Definition 4: Reachability. A marking Md is reachable from an initial

marking MO if there exists a sequence of elementary firing vectors that

transforms MO to Md.

The following definition is required to state the reachability condi-

tions for a CMG.

Definition 5: Fundamental Circuit Matrix. Let T be a tree of a connected

marked graph G. The set of (m-n+1) circuits, each uniquely formed by ap­

pending one cotree edge to the tree, is called the set of fundamental cir­

cuits of G for tree T [13J. The fund~nental circuit matrix for G for tree T

is the (m-n+1) x (m) matrix Bf = [bijJ having rows corresponding to funda­

mental circuits, columns corresponding to places, and where

b .. =
lJ

+1(-1) if place j is contained in f-circuit i and
the place and circuit directions agree
(disagree)

o if place j is not contained in f-circuit i.

Property 3: Reachability in the CMG. In a computational marked graph G, a

marking Md is reachable from an initial marking MO if and only if BfMd =

BfMO' where Bf is a fundamental circuit matrix for G.

10

Proof. It is shown in [llJ (Theorem 3) that the property is true for marked

graphs containing no token-free directed circuits. By the construction

rules for the CMG, directed circuits occur in exactly four ways. First,

each NMG consists of a directed cir~uit which contains an initial ma~king

token in the "process ready" place. Second, a directed circuit is formed

each time an NMG is linked to another NMG. Since one of the two linking

places contains an initial marking token and both places are contained in

the circuit, this circuit is never token free. Third, directed circuits

exist in the CMG corresponding to interconnected feedforward paths in the

algorithm marked graph. Each such circuit contains one or more backward­

directed control edge containing one initial marking token. Fourth,

directed circuits exist in the CMG corresponding to directed circuits in the

algorithm marked graph. Each such circuit contains exactly one forward­

directed edge containing one initial marking token representing initial

condition data. Therefore, the CMG contains no token-free directed circuits

and the property follows.

As a direct consequence of the reachability property of theCMG, it can

be shown that the number of tokens in any directed circuit is constant.

This characteristic is stated as Property 4.

Property 4: Token Count Invariance. In a CMG, the number of tokens con­

tained in a directed circuit is invariant under transition firing.

Proof. Consider a directed circuit C of a CMG. The entries in the row of a

circuit matrix B corresponding to Care +1 in columns representing edges in

C and are 0 otherwise. If M is a marking vector, the component of BM corre­

sponding to C is equal to the number of tokens in directed circuit C under

marking M. Therefore, if Md is any marking reachable from an initial mark­

ing MO' it follows from Property 3 that BMd = BMO. That is, the number of

11

tokens in directed circuit C under initial marking MO is equal to the number

of tokens under any marking Md reachable from MO. This completes the

proof.

Next, liveness and a closely related property called consistency are

considered. It is shown that the CMG is live and consistent.

Definition 6: Liveness. A marked graph G is said to be live for a marking

M if, for all markings reachable from M, it is possible to fire any transi-

tion of G by progressing through some transition firing sequence.

Property 5: Liveness in the CMG. The computational marked graph is live

for all appropriate initial marking vectors.

Proof. It is shown in [12] (Property 2) that a marked graph G is live for a

marking M if and only if G contains no token-free directed circuits in mark­

ing M. As stated in the proof of Property 3, for all appropriate initial

markings MO' the CMG contains no token-free directed circuits. Therefore,

the property follows.

Definition 7: Consistency. A marked graph G is said to be consistent if

there exists a marking M and a transition firing sequence S from M back to M

such that every transition occurs at least once is S.

Property 6: Consistency in the CMG. A connected computational marked graph

G is consistent. In addition, each transition of G occurs an equal number

of times in a firing sequence from a marking M back to M.

Proof. From Property 2, if a CMG is consistent, then there exists a marking

Md = MO and a firing count vector xd > a such that ATxd = O. The converse

is also true. The incidence matrix for a marked graph G is an (n x m)

matrix A. If G is connected, then it is known [13] that the rank of A is

n-1, and thus the null space of AT has dimension one. It is observed that

12

T each row of A has one (1), one (-1), and all remaining terms are (0).

Therefore, if Cj denotes the jth column of AT, it follows that

n
oL CJo = O.
J=l

Thus, there exists a vector xd = [k k ... kJ T, k > 0, which uniquely satis­

fies ATXd = O. This completes the proof.

The final graph property considered in this section is safeness. This

property is first defined, and then it is shown that CMG is safe.

Definition 8: Safeness. A marked graph G is said to be safe for marking M

if, for all markings reachable from M, no place contains more than one to-

ken.

Property 7: Safeness in the CMG. The computational marked graph is safe

for all appropriate initial marking vectors.

Proof. By Property 4, the token count for each directed circuit of the CMG

is invariant under transition firing. Therefore it is sufficient to show

that each edge of the CMG belongs to at least one directed circuit contain­

ing a single token. By the construction rules for the CMG, all CMG edges

can be classified into two groups, NMG edges and linking edges. NMG edges

occur in groups of three and always form a directed circuit containing one

token. Linking edges occur in pairs, one forward directed and one backward

directed, and also form a directed circuit with the forward directed edges

of the NMG. One of the linking edges, but not both, always contains one

token while the forward directed edges of the NMG contain no tokens.

13

Therefore, each edge of the CMG is contained in a directed circuit with one

token, and the property follows.

IV. PERFORMANCE ANAlYSIS

The importance of the ATAMM model is that it establishes a context in

which,to investigate the performance qf decomposed algorithms in multipro­

cessor data flow architectures. In this section, performance measures indi­

cating computing speed and throughput capacity are defined. Bounds for

these quantities are calculated analytically from the algorithm marked graph

and the computational marked graph. This information is essential for effi­

ciently matching algorithm decompositions with architecture implementations.

The work presented in this section is an interesting application and

extension of recent investigations of the performance of Petri nets [14J,

[15J and marked graphs [16J.

It is assumed that a decomposed algorithm is implemented in a multipro­

cessor architecture containing R computing resources or functional units.

Each functional unit is capable of performing any of the primitive opera­

tions whose sequence defines the decomposition. A computational task con­

sists of completing the algorithm for one frame of data and is initiated

when an input data token from the source node is encumbered. Task output

occurs when a corresponding output data token is deposited at the output

sink node. A task is completed when all computing associated with the task

is completed. It should be noted that task output and task completion do

not always coincide. In many iterative signal processing algorithms, com­

puting to generate initial conditions for the next iteration often occurs

after an output has been calculated. Task completion is usually indicated

in the AMG or CMG by the return of the graph to some steady-state initial

14

marking. To facilitate measurement of throughput capacity, it is assumed

that tasks are repeated periodically with new input data sets. New data

sets are available continuously as input tokens from the input source node.

Included in this problem class are iterative algorithms where the present

task requires as inputs data from previous task calculations.

Concurrency in this problem setting occurs in two ways. First, differ­

ent functional units may perform simultaneously several primitive operations

belonging to a single task. This type of concurrency is referred to as

vertical concurrency. Vertical concurrency has a direct effect on task

computing speed. It is limited by the number of primitive operations that

can be performed simultaneously in a given algorithm decomposition, and by

the number of functional units available to perform the primitive

operations. Second, different functional units may perform simultaneously

primitive operations belonging to different tasks sequentially input to the

computing system. Called horizontal concurrency, this type of concurrency

has a direct effect on throughput capacity. It is limited by the capacity

of the graph to accommodate additional task inputs, and by the number of

functional units available to implement the tasks. In the following it is

shown that the process of algorithm decomposition imposes bounds on the

amount of vertical concurrency and horizontal concurrency possible in a

given problem. If sufficient computing resources are available, operation

at these bounds can be achieved. If the number of computing resources is

limited, the bounds cannot be reached simultaneously and trade-offs between

the amount of vertical concurrency and horizontal concurrency are possible.

Three performance measures for concurrent processing are defined. The

first two parameters, TBIO and TT, are indicators of computing speed and

reflect the degree of vertical concurrency. The third parameter, TBO, is a

15

measure of throughput capacity and thus reflects the degree of horizontal

and vertical concurrency.

Definition 9: TBIO. The performance measure TBIO is the computing time

which elapses between a task input and the corresponding task output.

Definition 10: TT. The performance measure TT is the computing time which

elapses between a task input and the completion of all computation associ-

ated with that task.

Definition 11: TBO. The performance measure TBO is the computing time

which elapses between successive task outputs when the graph is operating

periodically in steady-state.

The remainder of this section is devoted to developing lower bounds for

these performance measures.

Let G denote an algorithm marked graph representing a decomposed algo­

rithm. The lower bound for TBIO is the shortest time required for a data

token from the data input source to propagate through the graph to the data

output sink. Similarly, the lower bound for TT is the shortest time re­

quired to complete all computing activity initiated by the injection of a

data input source. These shortest times are the actual performance times

when only a single task is active in the graph during any time interval

(no horizontal concurrency), and as many computing resources as are required

are available (maximum vertical concurrency). Under these operating

conditions, lower bounds for TBIO and TT are calculated by identifying

certain longest paths in a graph obtained from the algorithm marked graph.

This new graph, called the modified algorithm graph GM, is defined and then

used to determine lower bounds for TBIO and TT.

Definition 12: Modified Algorithm Graph. Let Pi be a place of G, directed

from transition t to transition t , which contains a token of the initial r s

16

marking. The modified algorithm graph GM is obtained from the graph G by

the following construction rules.

1. Place Pi is deleted from G.

2. A new place Pi1' directed from the data input source to transition

t s ' is added to G.

3. A new output sink s. different from all other output sinks, and a
1

new place P.2' directed from transition t to s., are added to G.
1 r 1

4. The above rules are repeated for each place of G containing a token

of the initial marking.

Lower bounds for TBI0 and TT are presented in Theorem 1 and Theorem 2

respectively.

Theorem 1: Lower Bound for TBI0. Let Pi be the ith directed path in GM
from the data input source to the data output sink, and let T(P.) denote the

! , 1

sum of transition times for transitions contained in P .. Then,
1

where the maximum is taken over all paths Pi in graph GM•

Proof. Without loss of generality, let t f be the last transition in all

paths Pi directed from the data input source to the data output sink.

Transition t f is enabled when each input place for t
f

contains a token.

Since by assumption a computing resource is available, t f fires as soon as

it becomes enabled. Let Pq be the last input place for t f to acquire a

token, and let t be the input transition for place p. Continuing this
g q

labeling procedure results in a backward path construction process. This

process is repeated, first at t g, and then at each succeeding transition

17

until the data input source is reached, identifying a path P .. By the
J

construction process for the path, it is clear that T(P j) = Max fT(Pi)},

where the maximum is over all paths Pi in GM. It is also clear that TBIOlB

can be no shorter than T(P j) so that TBIOlB) T(P j). Since a computing

resource is available when each transition in P. is enabled, the time
J

between input and corresponding output can be no longer than T(P.) so that
J

TBIOlB < T(P j). Therefore, TBIOlB = T(P j) = Max fT(P;)}, where the maximum

is over all paths Pi in GM. This completes the proof.

Theorem 2: lower Bound for TT. let Pi be the ith directed path in GM from

the data input source to any output sink, and let T(P.) denote the sum of
1

transition times of transitions contained in P .. Then,
1

where the maximum is taken over all paths Pi in graph GM.

Proof. By the construction rules for graph GM, a task is initiated when

input data tokens are input from the data input source, and is completed

when all output sinks have accepted tokens. Therefore, TT is the time which

elapses from injection of input tokens to the arrival of a token at the last

fired output sink. let T(P t) = MaxfT(P.)}, p. in ~., be the longest path
1· 1 ~

time of paths from the data input source sI to any output sink, say St.

Since a token must reach sink St before a task is completed, it follows that

TTlB) T(Pt). Since a resource is available for each transition to fire

when enabled, and since Pt is the longest path in GM, it also follows that

TTlB < T(Pt)· Therefore, TTlB = T(Pt) = Max{T(P i)}, where the maximum is

over all paths Pi in Gr.,. This completes the proof.

18

To illustrate the application of Theorem 1 and Theorem 2, TBI0LB and

TTLB are computed for the algorithm graph shown in Figure 1. For this exam­

ple, the following transition times are assumed: T(l) = 4, T(2) = 1,

T(3) = 5, and T(4) = 6. The modified algorithm graph corresponding to Fig­

ure 1 is shown in Figure 5. The modified algorithm graph contains two paths

directed from the data input source sl to the data output sink sO· Path P1
consists of edge set {1, 2, 3, 41 with T(P1) = 10, and path P2 consists of

edge set {5-1, 3 , 4} with T(P2) = 6. Therefore, since T(P 1) > T(P2), path

P1 determines the lower bound for TBI0 and TBI0 LB = 10. The modified algo­

rithm graph contains two additional directed paths from the data input

source sl to the output sink s5. Path P3 consists of edge set {1, 2, 6,

5-21 with T(P
3

) = 11, and path P4 consists of edge set f5-1, 6, 5-21 with

T(P4) = 7. Since T(P3) > T(P1) > T(P4) > T(P 2), path P3 determines the

lower bound for TT and TTLB = 11.

Next a lower bound for the performance measure TBO is presented. Let G

be a computational marked graph representing a decomposed algorithm. It is

assumed that operating conditions for G are set to maximize horizontal con­

currency. That is, data tokens are continuously available at the data input

source, and as many computing resources as needed can be called to perform

primitive operations. With these conditions, the graph plays periodically

in steady-state, and TBOLB is the shortest time possible between successive

outputs.

Theorem 3: Lower Bound for TBO. Let G be a computational marked graph and

let Ci be the ith directed circuit in G. The notation T(C.) denotes the sum
1

of transition times of transitions contained in C., and M(C.) denotes the
1 1

number of tokens contained in C.. Then,
1

19

where the maximum is taken over all directed circuits in G.

Proof. Without loss of generality, let t f be the output transition in G so

that an output is produced each time t f completes firing. Then TBOLB is the

minimum firing period of transition t f . By Property 6, G is consistent so

that all transitions of G fire periodically with minimum period TBO
LB

. It

is shown in [12] (pp. 58-60) that the minimum firing period of each transi­

tion of a marked graph is given by MaxfT(C.)/M(C.)l, where the maximum is
11'

taken over all directed circuits C. in G. Therefore, the theorem follows.
1

The computational marked graph shown in Figure 3 is used to illustrate

Theorem 3. This CMG contains many directed circuits. However, the directed

circuit which contains all NMG nodes of transitions 2 and 4 contains only

one token and maximizes the ratio T(Ci)/M(C i). Therefore, the shortest time

possible between successive outputs in this graph is TBOLB = 7. In the next

section, a strategy for achieving optimum time performance is investigated.

v. STRATEGY FOR OPTIMUM TIME PERFORMANCE

A model describing decomposed algorithms for implementation in a dis­

tributed data flow architecture is described in Sections II and III, and

performance measures are defined in Section IV. An important problem re­

maining is to develop an operating strategy for the ATAMM model which

achieves optimum time performance with a minimum number of computing

resources. Unfortunately, this problem is equivalent to a class of sched­

uling problems which is known to be NP-complete. Thus, there exists no

algorithm for obtaining an optimum solution which is better than enumerating

all possible solutions and then choosing the best one. However, an

20

important suboptimal operating strategy which achieves optimum time

performance, but possibly requires more than the minimum number of computing

resources, has been developed. This strategy is presented and illustrated

by example in this section.

When presented with continuously available input data sets, the natural

behavior of a data flow architecture results in operation where new data

sets are accepted as rapidly as the available resources permit. That is,

the architecture naturally operates at high levels of horizontal concurrency

with the possible loss of capability for achieving high levels of vertical

concurrency. This results in performance characterized by high throughput

rates, TBO=TBCLB' but relatively poor task computing speed so that TBIO »

TBIOLB and TT »TTLB • In many signal processing and control applications,

it is important to achieve both high throughput rate and high task computing

speeds. Often, designers are willing to provide extra hardware to realize

optimum time performance. The suboptimal operating strategy presented in

this section results in performance having the following characteristics.

1. When R) ~ax' operation achieves TBIOLB , T\B' and TBOLB · RMax is

computed in implementing the strategy, and represents the minimum

number of resources which insures maximum horizontal concurrency

and maximum vertical concurrency under this strategy.

2. When RMax > R) RMin, operation achieves TBIOLB and TTLB , but

TBO) TBO LB . The strategy preserves task computing speed or

vertical concurrency at the exp~nse of throughput rate or

horizontal concurrency. RM. is also computed in implementing the
In

strategy, and represents the minimum number of resources needed to

maintain vertical concurrency with limited horizontal concurrency.

3. When RMin > R) 1, operation continues but performance degrades so

21

that TBIO) TBIOLB , TT) T\B' and TBO) TBOLB .

Implementation of the operating strategy is illustrated in Figure 6.

All that is required is to limit the rate at which new input data are

presented to the CMG. This is accomplished by adding a control transition

connected in a directed circuit with the data input source. The control

transition imposes a minimum delay of D time units between inputs. Delay D

is chosen according to the following rule:

TBOLB R) RMax

D = TBOM" RM > R) RM"
1 n ax 1 n

TCE RM" > R) 1. ln

TCE denotes the total computing effort required to complete the task, and

TBOMin , RMax ' and RMin are computed as part of the strategy design proce­

dure.

The operating strategy design process consists of five steps. These

steps are presented and explained in the remainder of this section. An

operating strategy is developed for the example algorithm graph shown in

Figure 7 to illustrate each step as it is presented.

Step 1. Choose a convenient transition firing rule. A rule to determine

when an enabled transition in the CMG fires must be specified. A natural

rule is to specify that enabled transitions fire when a computing resource

is available. If conflict exists, such as when there are more enabled

transitions than computing resources, then firing occurs according to a

priority ordering of the transitions. For the example algorithm graph, the

highest to lowest priority ordering of the transitions is chosen as (5,4,3,-

7,2,6,1).

Step 2. Determi ne TBOLB . The performance bound TBOLB is found from the

22

computational marked graph by application of Theorem 3. The CMG correspond­

ing to the example algorithm graph is shown in Figure 8. The directed cir-

cuit identified in this figure contains 6 transition time units and 2 to-

kens, and maximizes the ratio T(C.)/M(C.) for all directed circuits. There-
1 1

fore, TBOLB = 3.

Step 3. Determine the resource utilization envelope of a single task re­

quired for maximum vertical concurrency at steady-state with TBO = TBO LB •

The purpose of this step is to determine the number of computing resources

required as a function of time to achieve maximum vertical concurrency in a

single task. The envelope is determined by playing the graph assuming un­

limited resources and an input rate of TBOLB until steady-state operation is

reached. The resource utilization envelope is obtained by counting the

number of computing resources used for a single task during each time inter-

val. The play of the example algorithm graph under these conditions is

shown in Figure 9, and the resulting resource utilization envelope is shown

in Figure 10.

Step 4. Stabilize the resource utilization envelope by adding control

places as necessary. If the time between inputs to the CMG is increased

above TBOLB' the resource utilization envelope may change from that observed

in Step 3. Since knowledge of the envelope is required to calculate the

number of required resources, additional places are appended to the AMG and

the CMG to freeze the shape of the envelope. For example, the play of the

example algorithm graph of Figure 8 with an injection time of 4 is shown in

Figure 11. At this slower injection rate, transition 6 fires one time unit

earlier. To prevent time movement of transition 6, a control place directed

from transition 2 to transition 6 is added. This place prevents the firing

of transition 6 until transition 2 has completed firing. Thus the resource

23

utilization envelope computed for an input period of TBOLB is the envelope

for all input periods TBO) TBOLB •

Step 5. Compute RM ,RMo , and TBOMo (R) using the resource utilization ax ln ln
envelope. RM is determined by overlaying resource utilization ax
requirements, each delayed by TBOLB with respect to the previous one, as

shown in Figure 12 for the example. RM is equal to the largest resource ax
requirement during any time interval within the steady state operating

period. RMin is the minimum number of resources necessary to insure maximum

vertical concurrency with no horizontal concurrency. This number is equal

to the maximum resource requirement indicated in the resource utilization

envelope for a single task. For the example problem, RMax = 5 and RMin = 3.

The value of TBOMo for each resource number R between RM and RMo ln ax ln
inclusive, is determined by increasing the delay between overlapping

resource utilization envelopes until the maximum resource requirement is R.

TBOMo is the smallest input delay to produce this resource requirement. ln
For the example, the calculations of TBOMo for R = 4 and R = 3 are illus­ln
trated in Figure 13 and Figure 14 respectively. The results of these calcu-

lations are TBOMo (4) = 3.5 and TBOMo (3) = 4. ln ln
The performance of the example algorithm graph is summarized in Figure

15. Optimum time performance of TBIOLB = TTLB = 7 and TBOLB = 3 is achieved

for R > RMax = 5. At R = 4, TBIO and TT remain at the optimum values and

TBOMo decreases to 3.5. At R = 3, TBIO and TT again remain at the optimum ln
values and TBOMin ~ecreases to 4. For values of R below RMin , time

performance generally degrades. However, in this example TBIO and TT remain

at 7 for R = 2, while TBOMo decreases to 6. Finally, at R = 1, performance ln
degrades to TBIO = TT = TBO = TCE = 10. Another perspective of algorithm

24

performance is shown in Figure 16. This figure displays throughput rate,

(I/TBO), as a function of the number of functional units R. The peak height

of each bar indicates the maximum throughput rate which can be achieved with

the indicated number of processors. The bars also indicate more clearly

that operation at any throughput rate less than maximum is possible for a

given number of functional units. This design procedure is easily applied

to much larger algorithm graphs more representative of actual signal pro­

cessing and control problems.

VI. CONCLUSION

A new model useful for understanding the relationship between decom­

posed algorithms and data flow architectures has been presented. Named

ATAMM for Algorithm to Architecture Mapping Model, the model consists of

Petri net marked graphs called the algorithm marked graph, the node marked

graph, and the computational marked graph. After estab)ishing that the

computational marked graph is live, safe and consistent, graph time

performance measures of time between input and output (TBI0), task time

(TT), and time between outputs (TBO) were defined. Then lower bounds for

the performance measures were calculated analytically from the modified

algorithm graph and the computational marked graph. A design strategy for

achieving optimum time performance was proposed and illustrated with a

design example.

Simulation tools and an actual hardware prototype have been developed

to test and validate the ATAMM model. The simulation software package [17J

consists of a PC-based computer model of the CMG. Algorithms are entered to

the package by specifying the algorithm marked graph, and simulation output

consists of a graphical display of the movement of tokens. An accompanying

diagnostic software package [18J automatically computes and displays

25

performance measures and other performance data. A hardware prototype [19J

has also been constructed to validate the ATAMM operating rules and to pro-

vide a benchmark for testing the simulation software. The architecture is

shown in Figure 17 and is one of several candidates which could be used to

perform concurrent operations according to the ATAMM rules. A primary moti­

vation for this particular design was the availability of hardware. The

system consists of 5-100 crates having a 16-bit CPU card, multiple serial

I/O channels, and 32K memory. A personal computer is used to host the

system and to down load algorithm graph descriptions to the system. A

number of decomposed algorithms, including those presented here, have been

investigated using these tools.

Continuing research is designed to generalize the ATAMM model and is

focused in three main areas. The present model assumes that all functional

units are identical and that each is able to perform all primitive opera­

tions. An important extension is to model the situation where there are two

or more different groupings of processors where each group is able to per­

form only a subset of the required primitive operations. The present model

represents only decision-free algorithms. Another important extension is to

develop the capability to admit algorithms containing data-dependent branch­

ing points. Finally, methods for decomposing algorithms which result in

good performance are being studied in the context of the ATAMM model.

26

REFERENCES

1. P. Treleaven, D. Brownbridge and R. Hopkins, "Data-driven and
demand-driven computer architectures," Computing Surveys, vol. 14,
pp. 93-143, March 1982.

2. V. Srini, "An architectural comparison of dataflow systems," Computer,
pp. 68-88, March 1986.

3. W. Rheinbolt, "Report of the panel on future directions in computational
mathematics, algori duns, and scientific software," Sponsored by NSF Grant
DMS-85-3483, SIAM, 1985.

4. T. Longo, G. Herzog and D. Maxwell, "A fast single chip 1750A CPU and
compatible support components in YHSIC-size CMOS technology," Proceedings
of the Government Microcircui t Applications Conference, pp. 317-320,
1986.

5. W. Wehner, W. Everhart, S. Shankar and K. Stalsberg, "A VSHIC
architecture for highly parallel image understanding," Proceedings of the
Government Microcircuit Applications Conference, pp. 117-120,
November 1986.

6. M. Sowa and T. Murata, "A data flow computer archi tecture wi th program
and token memories," IEEE Transactions on Computers, vol. 31, pp.820-824,
September 1982.

7. K. Kavi, B. Buckles and U. Narayan Bhat, "A formal defini tion of data
flow graph models," IEEE Transactions on Computers, vol. 35, pp. 940-948,
November 1986.

8. M. Granski, 1. Koren and G. Silberman, "The effect of operation
scheduling on the performance of a data flow computer," IEEE Transactions
on Computers, vol. 36, pp. 1019-1029, September 1987.

9. L. Jamieson, H. Siegel. E. Delp and A. Whinston, "The mapping of parallel
algorithms to reconfigurable parallel architectures," Proceedings of
Future Directions in Computer Architecture and Software, D. Agrawal Ed.,
ARO Contract DAAG29-81-D-0100, pp. 147-154, May 1986.

10. J. Peterson, Petri Net Theory and the Model ing of Systems, Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

27

11. T. Murata. "Circui t theoretic analysis and synthesis of marked graphs."
IEEE Transactions on Circuits and Systems. vol. 24. pp. 400-405. July
1977.

12. T. Murata. "Modeling and analysis of concurrent systems." Handbook of
Software Engineering. C. Vick and C. Ramamoorthy Editors. pp. 39-63. Van
Nostrand Reinhold. 1984.

13. S. Seshu. and M. Reed. Linear Graphs and Electrical Networks.
Addison-Wesley Publishing Co .• Inc. 1961.

14. J. Sifakis. "Performance evaluation of systems using nets." Net Theory
and Applications. W. Brauer Editor. pp. 307-319. Springer-Verlag. 1979.

15. C. Ramamoorthy and G. Ho. "Performance evaluation of
concurrent systems using Petri nets." IEEE Transactions
Engineering. vol. 6. pp. 440-449. September 1980.

asynchronous
on Software

16. T. Murata. "Synthesis of decision-free concurrent systems for prescribed
resources and performance." IEEE Transactions on Software Engineering.
vol. 6. pp. 525-530. November 1980.

17. K. Jackson. R. Tymchyshyn. R. Mielke and J. Stoughton. "Simulation
software for concurrent processing." Proceedings of the IEEE Southeastcon
Conference. pp. 82-86. April 1987.

18. R. Obando. "Simulation software for performance evaluation of concurrent
processing." Master's Thesis. Old Dominion University. Norfolk. Virginia.
October 1987.

19. J. Stoughton and R. Mielke. "Petri net model for concurrent processing of
complex algorithms." Proceedings of the Government Microcircuit
Applications Conference. pp. 11-14. November 1986.

28

N
U)

B*() () + () c*()

51
u(k) x(k)

3

y(k)

4 1
50

Ax(k-1) x(k)

A*()

Figure 1. Algorithm marked graph for discrete system equation.

----------~----------OE

IF
~---'!I-OF

IE~-

NMG EDGE LABELS

I F Input Buffer Full
I E Input Buffer Empty
DR Data Read
PC Process Complete
P R Process Ready
OE Output Buffer Empty
OF Output Buffer Full

Figure 2. ATAMM node marked graph model.

30

.
c

0 0
(,/) -0

~
C"
Q)

E
Q) -en
~
en
Q)

* -(J Q)
L-
U
en
'U

L-

0 -
Q)

'U
0
E
~
0..
0
L--+ * en

~
'U
Q)

oX
L-

0
E

0
c
0 -0 -~
0..
E
0
u

* co ~
~
~
t-
~ .
M

Q)
L-

~

U') en .-
u.

31

ALGORITHM

ALGORITHM
DIRECTED

GRAPH

ALGORITHM
MARKED
GRAPH

PETRI
NET

THEORY

COMPUTATIONAL

COMPUTING

ENVIRONMENT

NODE
MARKED
GRAPH

Figure 4. ATAMM model components.

32

1 4

5-1

Figure 5. Modified algorithm graph for Figure 1.

33

Problem CMG So

Control

Figure 6. Operating strategy implementation.

34

o
CJ)

CJ)

35

.
QJ -a.
E
c
x
Q)

c:
0)

(I)
Q)

""C

L..
o -
~
a.
c
L..
0)

E
~ -L..
o
0) -<

36

Q) -Q.

E
o
x
Q)

c
C)

CJ)

Q)

"'0

'­o

J::.
Q.

o
'­
C)

"'0
Q)
~
'­
o
E

o
c
o -o -::J
Q.

E
o

(.)

co
Q)

'­
::J
C)

U.

1 2 3 4 5 • I(• I(. .. •
6 • •

7
1 2 3 • II; ... 4 5

7
6 ..
1 2 3 4 5 I(.. II; • .. • ...

Figure 9. Graph play with TBO=3 and unlimited

functional units.

37

Time

Resources

3

2

1

/1'

r-

r-

I

"'"--

I _1 ~ I I

1234567
Time

Figure 10. Resource utilization envelope

for design example.

38

1 2 3 4 5
III(.... .. c •

6 ... •
7

1 2 3 4 5
... . ..)I If)I ...)I ...

6
If •

7
Time

Figure 11. Graph play with TBO=4 and no control edges.

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .. Time

1 1 1 3 2 1 1

1 1 1 3 2 1 1

1 1 1 3 2 1 1

3 2 5
~ Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 12. Resource envelope overlay diagram with TBO=3.

40

CD
CD

a

1

R~

a

1

1 2

1 1 1

1 2

3 4

1 3 3 2 2

1 1 1

4 3 3

3 4

5 6 7 8 .. Time
1 1 1 1

1 1 1 3 3 2 2

2 2 2 4 .. Time

5 6 7 8

Figure 13. Resource envelope overlay diagram with TBO=3.S.

41

o 1 2 3 4 5 6 7 8 9 10 11

! .. Time
1 1 1 3 2 1 1

1 1 1 3 2 1 1

3 2 2 3 .. Time

o 1 2 3 4 5 6 7 8 9 10 11

Figure 14. Resource envelope overlay diagram with

TBO=4.0.

42

TBO

10 - - - - - - - - - - - - - - - - - - - .. R=1

9

8

7

6

5

4

TBO lB 3

2

1

- - - - - - - - - - - - - "R=2
I
I
I

- - - - - - - - - - - - - .. R=3
- - - - - - - - - - - - - "R=4
- - - - - - - - - - - - - .. R=5

I
I
I

~------------------~--~----~--~--TBIO

1 2 3 4 5 6 7 8 9 10

TBIO lB

Figure 15. Example algorithm graph performance

analysis summary.

43

.---
tI) .. --C

::;:)

~ ..
CO --.a ...
c(

-----~ ~

:::::I
a.
.c
OJ
:::::I
0 ..
.c
I-

.50 T

.45

.40

.35 t- -- 1/TBO
LB

.30

. 25

.20

.15

.10

.05

o
1 2 3 4

No. of
5 e 7 8

Processors
9

FIGURE 16. PERFORMANCE MARGIN FOR EXAMPLE ALGORITHM.

~ OPERATE

10

FUN #1

HOST
COMPUTER

GRAPH
MANAGER

FUN#2

GLOBAL
MEM.

RS-232
9600 BAUD

FUN#3

Figure 17. Prototype hardware configuration for

ATAMM validation.

45

NI\SI\
N.1tK)(U1 AeronautICS and
SO;'lCe AdtnlnlSlralO'l

1. Report No.

NASA CR-4167

4. Title and Subtitle

Report Documentation Page

2. Government Accession No.

Modeling and Optimum Time Performance for Concurrent
Processing

7. Author(,,)

Roland R. Mielke, John W. Stoughton, and
Sukhamoy Som

9. Performing Organization Name and Address

Department of Electrical and Computer Engineering
Old Dominion University
Norfolk, Virginia 23508-0369

3. Recipient's Catalog No.

5. Report Date

August 1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

584-02-11-01

11. Contract or Grant No.

NAGl-683

13. Type of Report and Period Covered
~~--~------~--~~~----------------------------~

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Paul J. Hayes

Interim Report
May 1987 - November 1987

16. Abstract

14. Sponsoring Agency Code

The development of a new graph theoretic model for describing the relation
between a decomposed algorithm and its execution in a data flow environment is
presented. Called ATAMM, the model consists of a set of Petri net marked graphs
useful for representing decision-free algorithms having large-grained, computa­
tionally complex primitive operations. Performance time measures which
determine computing speed and throughput capacity are defined, and the ATAMM
model is used to develop lower bounds for these times. A concurrent processing
operat i ng strategy for achi evi ng optimum time performance is presented and
illustrated by example.

17. Key Words (Suggested by Author(s))

Data flow computers
Algorithms to architecture mapping
Petri nets
Marked graphs
Concurrent processing
Large-grained algorithms

18. Distribution Statement

UNCLASSIFIED - UNLIMITED

Subject Category 33

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of pages 22. Price

48 A03

NASA FORM 1626 OCT 86 NASA-Langley, 1988
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

End of Document

------------~----~------------------- --

