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SUMMARY

Recent experimental studies suggest that the hairpin vortex plays an
important (and perhaps dominant) role in the dynamics of turbulent flows near
walls. In this study a numerical procedure is developed to allow the accurate
computation of the trajectory of a three-dimensional vortex having a small
core radius. For hairpin vortices which are convected in a shear flow above a
wall, the calculated results show that a two-dimensional vortex containing a
small three-dimensional disturbance distorts into a complex shape with
subsidiary hairpin vortices forming outboard of the original hairpin vortex.
As the vortex moves above the wall, it induces unsteady motion in the viscous
flow near the wall; numerical solutions suggest that the boundary-layer flow
near the wall will ultimately erupt in response to the motion of the hairpin
vortex and in the process a secondary hairpin vortex will be created. The
computed results agree with recent experimental observations.

INTRODUCTION

It has often been suggested that the hairpin vortex is a basic building
block in the dynamics of turbulent flows near walls (refs. 1 to 5). Such
vortices have been observed in a number of careful experimental studies
(refs. 2, 4, and 5). The experiments of Acarlar and Smith (refs. 4 and 5)
were carried out by introducing hairpin vortices into an otherwise laminar
boundary layer and subsequently observing their evolution as well as their
effects on the rest of the flow; these experiments suggest that hairpin
vortices are regenerative in at least two ways: (1) a hairpin vortex
convected in a shear flow appears to be able to multiply itself in the
spanwise direction in the sense that subsidiary hairpin vortices were observed
to form outboard of the original hairpin vortex and (2) hairpin vortices
appear to actuate the creation of secondary hairpin vortices through an
eruption of the viscous flow near walls and a subsequent viscous-inviscid
interaction. In this computational study, phenomena directly relevant to the
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experiments of Acarlar and Smith (refs. 4 and 5) will be addressed. In
particular, calculations related to two aspects were carried out: (1) the
time-dependent evolution of a hairpin vortex in a shear flow above a wall and
(2) the response of the viscous flow near the wall as the hairpin vortex
passes by. Since the Reynolds numbers associated with the vortex motions
within turbulent boundary layers are large, the subsequent analysis is carried
out based on equations and concepts which are valid in the limit of infinite
Reynolds number; here the objective is to determine basic fluid mechanics
phenomena and trends that are realized asymptotically over a range of Reynolds
numbers. In such circumstances, there are two (and eventually three) regions
of the flow field where the effects of viscosity are important. The hairpin
vortex is taken to convect in an effectively inviscid flow above the wall but
viscosity is important near the vortex core where sharp variations in the flow
field occur locally; viscosity is also important near the wall where the
moving vortex induces an unsteady boundary-layer effect. Eventually moving
vortices are known to trigger an unsteady separation effect near the wall
(refs. 6 and 7) and to cause an eruption of the flow near the wall; in such
circumstances, moving viscous layers erupt from the wall and penetrate into
the outer inviscid region in an interaction which is complex (refs. 8 and 9)
and (as yet) not well understood. In the present study, only events leading
up to this last type of phenomenon will be considered.

It is worthwhile to mention that in recent times, there has been an
increasing interest in performing direct numerical simulations of turbulent
flows such as fully-developed turbulent flows in channels (refs. 10 and 11).
In such computations, the full three-dimensional unsteady Navier-Stokes
equations are solved over a period of time for a limited portion of the
channel, subject to various assumptions concerning periodicity in the spatial
directions. One objective of such studies is to try to develop an
appreciation of the complex physical processes that take place in the
turbulence, particulariy near solid walls. At present, it has only been
possible to perform these simulations for fairly low Reynolds numbers and with
numerical grids that give rather limited spatial resolution. Inevitably,
large masses of numerical data are generated in this approach and to attempt
to answer questions concerning cause and effect relationships, it is necessary
to search through the data records for events which appear significant and to
then make some type of interpretation. Despite the aforementioned
difficulties, it has been found (ref. 11) (by tracing estimates of the
instantaneous vortex lines) that there is evidence of vortex structures in the
computed results which appear to be similar to hairpin vortices.

In the present study, a somewhat more fundamental approach was taken,
which was guided to a large extent by experimental observations. The studies
of Head and Bandyophadyay (ref. 2) and Acarlar and Smith (refs. 4 and 5)
provide convincing evidence that hairpin vortices are an important dynamical
feature of turbulent flows near walls. Consequently the objective of this
study was to develop a better understanding of the dynamics of a convected
hairpin vortex near a wall, as well as the type of viscous flow response close
to the wall. In the near-wall region, a turbulent flow is highly sheared in
the streamwise direction; therefore the evolution of a hairpin vortex in a
Tinear shear flow near a wall was considered to be the simplest well-defined
problem which nevertheless captures many of the features of the environment of
a turbulent flow near a wall. The general problem of hairpin vortex evolution
is complicated since it is necessary to numerically compute the trajectory of
a three-dimensional space curve, which carries a viscous core region with it
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and which deforms with time into complex shapes. In the present study, the
hairpin vortex was assumed to initiate as a small perturbation in an otherwise
two-dimensional vortex.

VORTEX CALCULATION METHODS

In situations where the vorticity is concentrated in vortex tubes of
small cross-section, the evolution of the flow field is readily computed using
Lagrangian methods. For a single vortex tube with circulation T, a vortex
Reynolds number may be defined as TI/v, where v 1is the kinematic viscosity;
for large vortex Reynolds numbers, the cross-sectional area of the vortex core
region is generally small and at any instant the vortex position is defined as
a three-dimensional space curve. The instantaneous flow due to the vortex is
described by the Biot-Savart law, viz.:
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Here (x,y,2z) are Cartesian coordinates as indicated in figure 1, ?0 is a
position vector to an arbitrary location in space and Uext 1S a background
velocity field; s measures distance along the curve C defining the vortex
and t 1is the unit tangent. The sense of positive vorticity is given by the
right-hand rule and for the situation depicted in figure 1, the vortex has
negative rotation. Note that according to Kelvin's theorem, the circulation
I about the vortex core is constant in time and along the length of the
vortex. _

Since 3(?0) = aiolat, equation (1) apparently defines a differentia.
equation to frack the trajectory of each point on the vortex forward in time.
However as Xp approaches a location on the curve C, the integrand in
equation (1) becomes singular and consequently the velocity field described by
the Biot-Savart law must be interpreted as an outer inviscid solution which is
not uniformly valid near the vortex core. To define a rational calculation
procedure, it is necessary to match any solution obtained from equation (1)
with an inner viscous solution in the vortex core and thereby take into
account how the evolving core flow influences the overall vortex motion. A
general method of this nature has been described by Callegari and Ting
(ref. 12) for vortices which form closed loops. At present there is no
corresponding theoretical framework for infinitely long vortices. However an
alternative approach which has proved effective for closed loop vortices and
which gives essentially similar results is due to Moore (ref. 13); in this
method the singularity in equation (1) is avoided by artificially introducing
a small parameter u in the denominator of the integrand. Generally p is
proportional to the core radius a and the precise relationship is
established by insisting that the integration formula collapse to give known
exact results for a translating circular vortex ring in an infinite and
otherwise stagnant medium. In this manner, p/a is obtained as an expression
involving integrals of the swirl and axial velocities in the vortex core
(refs. 14 and 15). A further feature of Moore's (ref. 13) algorithm was
motivated by considerations of numerical accyracy; for small values of a and
hence p, the integrand varies rapidly near "X = Xo and Moore (ref. 13)



obtained the leading term in an expansion about this point. If s denotes a
Lagrangian coordinate measured along the vortex and sgp is a specific point,
the form of Moore's algorithm is
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In these equations, the subscript O indicates that a quantity is evaluated
at s = sg. The apparent advantage of this procedure is that the integrand in
the first integral in.equation (2) is 0(1) everywhere while the second
integral is easily evaluated analytically (ref. 16).

This vortex calculation method has been used with good success by various
authors (refs. 13, 17, and 18); however in all these studies fairly large
values of the vortex core were used (a ~ 0.1 to 0.3). In the present study
the objective was to compute the evolution of hairpin vortices close to solid
walls and to avoid situations where the vortex core impacted the wall at
relatively early stages; thus it was considered desirable to be able to
calculate cases with very small vortex cores. Unfortunately Moore's (ref. 13)
algorithm exhibits strong numerical instability for small values of a
(ref. 16); this instability becomes worse when the spatial mesh size along the
vortex is reduced and results in the rapid evolution of unrealistic sharp
corners in the calculated curves defining the instantaneous vortex position.
This problem is associated with the numerical evaluation of the first term in
the iptegrand of equation (2); for small u, numerical errors in the evaluation
of 9X/ds are magnified by the small denominator near s = sg. If R(s,sq)
denotes the integrand in the first integral in equation (2), it can be shown
(ref. 16) that
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Here the primes denote differentiation along the vortex with respect to s,
a subscript O indicates that a quantity is evaluated as s = so and vy is
defined by

2 2 2
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A calculation procedure may then be formulated in which the first integrand in
equation (2) is represented locally near s = sop by the first two terms in
the expansion (4) and outside this range by conventional numerical

evaluation. Note that the local interval near s = sy, for which the
expansion (4) may be applied with good accuracy, is dependent on the mesh used
to discretize the vortex as well as the instantaneous shape of the vortex. In
practice, the representation (4) was used at the first one or two mesh points
on either side of s = s(.

THE HAIRPIN VORTEX

The hairpin vortex was assumed here to initiate as a small three-
dimensional disturbance in an otherwise two-dimensional vortex. It is
convenient to define dimensionless variables and to this end consider the
situation depicted in figure 2(a) where a rectilinear vortex of strength «
is located a distance d above a plane wall. For the indicated sense of
circulation, inviscid theory predicts that the vortex will move continuously
to the left with self-induced speed

Up = v/2d , (8)

and remain at constant height d above the wall. Now consider the more
complex situation depicted in figures 2(b) and (c) where a hairpin vortex is
in motion above the wall. At large distances from the hairpin portion, the
vortex will continue to behave as if two-dimensional. It is therefore
convenient to define dimensionless variables in terms of d and the
self-induced speed in equation (8); all following equations are assumed to be
in terms of these dimensionless variables. Note that the magnitude of the
circulation is related to the vortex strength x by |I| = 2mc and for the
situations of interest here T < 0.

The initial vortex configuration used is of the form

- 2
X(s,t) = A[(cos W1 + (sin a)j]e‘BS 4]+ sk . (9)
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Here (i,j,k) are unit vectors in the (x,y,z) directions corresponding to the
streamwise, normal and spanwise directions respectively. This configuration
is a two-dimensional vortex located at a distance 1 from the wall with a



three-dimensional distortion which is symmetrical about s = 0; the parameter
s is a Lagrangian coordinate which ranges from -» to « along the vortex.
In addition A represents the amplitude of the distortion and « 1is the
angle that the plane of the distortion makes with the wall; f 1is a (large)
number whose value determines the effective spanwise width of the initial
distortion. :

~ For a vortex of infinite length which is convected in a background flow
Upi above a plane wall, the equation of motion is obtained from (2) and in
dimensionless variables is of the form '
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Here sp denotes a typical nodal point on the vortex and the vector integrals
T: will help be defined in the following discussion. The integral in
equation (2) along the vortex is split into three parts corresponding to: (1)
a symmetric interval (sg - h, sg + h) where the representation (4) of the
integrand. is used; (2) integrals over the main curved part of the vortex and
(3) the range outboard of the disturbance where |s| > & and where the vortex
was assumed to remain a straight line. The half-length of the interval about
sop must be small enough so that equation (4) gives a convergent
representation of the integrand; after some trials, it was determined (for the
mesh distributions used in this study) that a convenient choice for h
corresponded to one mesh length in s. For |s| > 2, the equation of the
vortex is

>
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It should be noted that ¢ must be selected large enough to ensure that there
is no significant effect of 2 on the development of the hairpin vortex; as
the vortex disturbance spread with time in the spanwise direction, it was
necessary to continually increase the value of 2.

The first vector integrals in equation (10) correspond to integrations
along the main curved part of the vortex and
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The vector integral near the field point s = sg 1is given by
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where R is given by equation (4). The vector integral over the straight
portions of the vortex is

Q ©

> s >
I, - j_w Q 05 + jQ Qyad5 (15)
where
2 2
, 3 R0
Qo = - 35 X 3/2 - (16)

(Iio‘ilz + P2>

Here X s evaluated along the straight port}on of the vortex and is given by
equation (11); an analytical expression for 14 is readily obtained through a
straightforward integration (ref. 16). The vector integral 5 s given by
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which is also easily evaluated analytically (ref. 16). Finally TG and T7
represent integrals over the curved and straight portions of the image vortex
betow the wall, respectively, and
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and ?1 d;notes a vector to an arbitrary location on the image vortex below
the wall; 17 may also be evaluated analytically (ref. 16).

CALCULATED VORTEX TRAJECTORIES

Starting from the initial vortex configuration in equation (9), the
subsequent shape of the vortex was tracked forward in time using the standard
fourth-order Runge-Kutta algorithm. The initial vortex was split into a



number of equal increments in the variable s and the subsequent motion of
each_ point (corresponding to a fixed value of s) was computed. The gradients
of X along the vortex were evaluated using central difference formulae and
the integrations along the vortex were carried out using Simpson's rule. The
vortex core was assumed to be in a state of solid body rotation with no axial
flow along the core; it is easily shown (refs. 14 and 15) that u in
equations (13) and (16) is related to the core radius a by

u = e-3/4g | (20)

in such circumstances. Other core velocity distributions may be assumed but
the effect on the overall vortex motion is weak and only affects the constant
of proportionality in equation (20). 1In all cases, the dimensionless vortex
core was assumed small (a = 0.02) and was held constant during the integration.

Consider first the case where the vortex develops in an otherwise
stagnant flow (with Up = O in equation (11)) above the wall. Computed
results are shown in figure 3 for a case with initial amplitude A = 0.5,
angle of inclination a = 45° and spread parameter @ = 20. Initially the
self-induced velocities predicted by the Biot-Savart law are quite large near
s = 0 where the vortex curvature is largest; thus it proved necessary to use
rather small time steps in order to avoid the occurrence of "wiggles" and
sharp corners in the vortex shape. A time step of At = 0.0002 was used in
the integrations with a uniform mesh size of As = 0.005; initially the value
of 0 wused was 2 and the computation thus started with 800 points along the
vortex. As time increased and the vortex disturbance spread to the side, the
value of ¢ was increased to 2 = 3.0 at t = 0.03 and then to ¢ = 4 at
t = 0.06. MWith an increased number of points on the vortex, the calculations
become very time consuming and were stopped at t = 0.072 when the general
trends were evident. The vortex evolution in top, side, and end views is
displayed in figure 3 where the vortex position has been drawn every 40 time
steps. It may be observed that the head of the vortex (corresponding to the
tip of the distortion) moves rapidly backward and ultimately moves downward
toward the wall. The rate of movement of the vortex head should be contrasted
with the relatively slow movement of the straight portions of the vortex which
advance upstream in the velocity field of the image. It is evident that the
vortex evolves in such a manner so that high local curvature is rapidly
diminished. The portion of the curved part of the vortex nearest the wall
begins to develop "legs" which curl backward in a counter-clockwise direction:
the disturbance moves down toward the wall and spreads in the spanwise
direction. MWith the evolution of the vortex legs, new subsidiary hairpin
heads evolve in the spanwise direction to the side of the main disturbance.

By t = 0.072 the general trend is well established; the disturbance is
expected to continue to propagate to the side without significant
amplification in the streamwise direction, as the vortex turns itself into a
“corkscrew" shape. This pattern of evolution appears to be independent of the
shape and amplitude of the initial distortion and was also obtained for
different initial disturbance configurations (ref. 16). It is important to
note that although the calculations were carried out for a stagnant background
flow, the same evolution occurs for a background uniform flow with the
exception that the changing vortex is progressively convected to the right
(for Up > 0.

When the vortex is convected in a shear flow, the changes'in the vortex
trajectory are rather more dramatic and the most important effect is
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associated with an increase in extent of the vortex in the streamwise
direction. Consider the following simple shear flow

Wlye Yy <Y
Up(y) = 21)

v, vy Y s

which is linear near the wall and then is uniform for y > yg; the situations
of interest correspond to a disturbance developing in a strong shear flow.
Vortex trajectories for a number of cases have been obtained in reference 16;
here the results of one representative case will be described. For the
initial vortex confiquration in equation (9), the self-induced velocities near
the head of the vortex are initially about 25 units to the left. For the case
detailed here, V = 250 and yg = 1.5; thus the uniform flow, at distances far
from the wall, has a speed about 10 times larger than the maximum self-induced
velocities. This simulation therefore describes the evolution of a
three-dimensional disturbance riding on a strong shear flow. The computed
trajectory is depicted in figure 4 where the vortex position is plotted about
30 time steps (At = 0.0002) and the initial vortex parameters are the same as
for the case depicted in figure 3. It may be observed that the streamwise
extent of the initial hairpin vortex grows as it convects downstream in the
shear flow. The vortex head 1ifts away from the wall and eventually rises
into the uniform flow region. The vortex legs, which develop outboard of the
vortex head, begin to move progressively toward the wall and to trail behind
the undisturbed two-dimensional portion of the vortex. With the development
of the legs, new subsidiary hairpin vortices begin to form and develop to the
sides of the original disturbance; as the subsidiary hairpin vortices form,
the heads bend back and rise from the wall. The calculation was carried out
to t =0.06 and during the integration it was necessary to increase 2 to 3
and then to 4. A continuation of the integration is depicted in figure 5 up
to t = 0.078 with the vortex position plotted every 15 time steps. It may be
observed that the trends seen in figure 4 continue until eventually the vortex
legs, immediately to the side of the primary hairpin vortex, touch the wall
just after t = 0.078, thus terminating the computation.

The present results provide a detailed time history of the evolution of a
vortex in a shear flow; a major effect of the shear flow is to spread the
original distortion dramatically in the streamwise direction. Further
calculations (ref. 16) show that increased levels of shear lead to an
increased rate of spreading in the streamwise direction. The disturbance also
spreads rapidly in the spanwise direction producing a series of similar
distortions referred to here as subsidiary vortices. It should be noted that
the present results are similar to those obtained by Aref and Flinchem
(ref. 19) who used a "localized induction" method due to Hama (ref. 20): in
this approach, the image vortex is ignored (as well as the effect of most of
the main vortex) and the self-induced velocity is evaluated from the
contribution due to a small arc surrounding the point in question. The
computed results are also in broad agreement with the experimental
observations of Acarlar and Smith (refs..4 and 5) who artificially created and
observed the motion of hairpin vortices in a sub-critical boundary-layer flow;
these authors noted: (1) the tendency for the vortex head to bend back and
rise from the wall; (2) the trend for the vortex legs to move downward toward
the wall and (3) the evolution of subsidiary hairpin vortices outboard of the
primary hairpin vortex.



THE BOUNDARY LAYER

As the hairpin vortex is convected in the shear flow, it induces a
complex unsteady three-dimensional boundary-layer flow on the wall and the
nature of this viscous response to the motion is considered in this section.
At any instant, the velocity induced by the moving vortex is

® 2 2 2 ® : 2
aX (X\=X,)) X, (XA-X.)
>3 h 0 "h i 0 i
u(XO,t) = sgn(T) s X5 9 3 ds - 35 X3 o 3 ds| , (22)
X=Xy X=X |

where ?0 ig a vector to any location in the flow which is not on the hair-
pin vortex; Xp and Xj are vectors to the hairpin and image vortices
respectively. The inviscid velocity distribution near the wall is obtained by
taking the 1imit as y » 0 in equation (22) and this results in expressions
for the streamwise and spanwise velocity distributions, Uy(x,z,t) and
Wy(X,y,2) respectively. Calculation of the full unsteady three-dimensional
boundary-layer development requires computational resources which were beyond
what was available in the present study; however in order to gain an
appreciation of the nature of the viscous flow near the wall, the evolution of
the boundary layer was calculated on the symmetry plane of the hairpin z =0
using a procedure outlined in reference 21. Denoting the limit of U, as

Z >0 by Ux(x,t), it is easily shown (ref. 16) that

3z 3y )
h h
(yh 3 " %h 3s

2 2
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2
[(x - xh) +y
0

h

Here (xp,¥h,2p) denote locations along the curve defining the vortex, which
change with time. The temporal development of U, is depicted in figure 6.
At t = 0, the streamwise velocity distribution near the wall shows a region
of strong deceleration and then acceleration. As time increases, the vortex
head moves progressively away from the wall and the maximum inviscid speed
near the wall diminishes slightly. At a later stage (t = 0.04), the hairpin
head has moved further from the wall but has also translated further
downstream as the vortex is stretched out in the shear flow; the influence of
the moving hairpin head may be seen in figure 6 at t = 0.04 where a
distention has developed in the U, distribution near x = 11. HWith the
passage of time, the distention develops into a local minimum which may be
observed at t = 0.05 near x = 14, at t = 0.06 near x = 15 and then near
x = 18 at t = 0.07. This effect is directly associated with the moving
vortex head which is convected downstream most rapidly and which always
induces a region of deceleration-acceleration beneath it. As the vortex
begins to develop subsidiary hairpin heads, additional local minima are
observed; for example, the local minimum near x = 12 at t = 0.06 (and near
x =13 at t = 0.07) is associated with the subsidiary hairpin heads which
first form outboard of the primary hairpin vortex. Note that with increasing
time, the streamwise velocity near the wall is influenced over increasing
streamwise distances.
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The spanwise velocity distribution near the wall vanishes as z » 0 but
Wy ~ 28(x,t) = ... as z»0, (24)
where it may be shown (ref. 16) that
ax T3y
h h
[yh 3t XX és_]
=73 zhds .

0. (x,t) = -12 sgn(T) (25)

2
[(x - xh)2 + yh + zhz]
0

It follows that 6, is proportional to the spanwise velocity near the
symmetry plane and the temporal development of 6, is shown in figure 7. It
may be seen that, as the hairpin vortex is stretched out in the shear flow,
there is a spanwise inflow (6, < 0) which is of increasing magnitude as time
passes; this occurs because of the development and movement of the hairpin
legs toward the wall. By t = 0.06, the 6, distribution is developing a
complicated form with very strong inflow toward the symmetry plane occuring at
the streamwise location where the vortex legs are closest to the wall. It
should be noted that the 6, is not entirely negative and changes sign (even
at early times) at an x location to the left of the minimum 65. One other
feature of interest is that by t = 0.06, the streamwise range over which
significant values of 6. occur has expanded considerably; to some extent,
the induced inflows are similar to that which would be generated by a pair of
counter-rotating streamwise vortices (except near the vortex legs).

The boundary layer on the symmetry plane z = 0 develops independently of
the rest of the three-dimensional unsteady boundary layer and does give some
insight as to the viscous response to the moving hairpin vortex. The Reync:ds
number for the boundary-layer flow may be defined by

Re = Upd/v , (26)
where "Ug and d are the self-induced velocity and distance from the wall of
the two-dimensional portion of the vortex respectively. A scaled normal
coordinate and normal velocity in the boundary layer are defined by

y' =y Rel/2 | v' = v Rel/2 . (27)

In the boundary layer, u and v' are symmetric about z while w is an
odd function of 2z, viz.:

w~ z8(x,y,t) as z-=>0. (28)
Substituting into the three-dimensional boundary-layer equations and taking

the 1imit 2z » 0 Teads to the following special form of the boundary-layer
equations on the symmetry plane: :

u___= 2, (29)
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. g%% +8=0, 31
with the boundary conditions
O=u=v' =0 at y' =0; U2 U, @ ©620, as y' 3+ o, (32)

To solve this system, it is convenient to introduce functions &(x,y',t) and
y(x,y',t) defined by

6 - g%-,- 6(x,0,t) = 0 , (33)

U= gﬁ—, ve-d_h . wxot) =0, (34)

and for which the continuity equation is identically satisfied.
The streamwise coordinate ranges from -» to « and for the numerical

computations, it is convenient to transform to a new variable & defined on
the finite range (-1,1) by ’

(35

X = X, (t) +
¢ o2 pan! [ ot ,}
m ™

Here xg(t) represents the instantaneous streamwise location of the

undistu bed two-dimensional portion of the vortex. The factors of = were
chosen with the objective of transforming the streamwise position of the
trailing legs of the vortex to locations near £ = 0.5. Generally an
objective of a transformation 1ike equation (35) is to expand regions where
the streamwise velocity distribution is undergoing intense variations; in the
present case, this is a difficult task since the locations of severe variation
in U, are constantly shifting in time. It was found by trial and error
(using many transformations like (35)) that the form selected for the
transformation was important and that unless particular care was taken to
properly represent regions of intense variation in 6, and U, significant
inaccuracies occurred in the numerical boundary-layer solutions. The
transformation in equation (35) does a reasonable job at accomplishing the
aforementioned objectives but becomes increasingly unsatisfactory as the
hairpin legs move closer to the wall (at x locations which become
progressively less than xg with increasing time). It is possible, for
problems of this nature where the zones of intense variation in the inviscid
distributions constantly shift with time, that a time-dependent series of
adaptive transformations might be more satisfactory.

The boundary-layer computations were initiated at t = O when it was
assumed the effects of viscosity became abruptly important near the wall. For
all t > 0, a thin unsteady boundary layer develops on the wall and in order
to take into accoun; the fact that the boundary layer thickens initially
proportional to t!/2, Rayleigh variables defined by

12



u=y ¥ 0=6 erfn+0, 30, oot (36)
n 2VY

were used. Here the functions ¢ and & are defined by
v =2\t y, ¢ = z\[¥[e]1<n> . ez¢] : (37)

where I(n) 1is the integral of the error function

n
2
I(n) = J erf ndn = nerfn + 1 (e'“ - 1) . (38)
0 Y

In this formulation (refs. 15 and 16), it is desirable to decompose 6., into
two parts according to 6, = 67 + 97, both of which are of one sign for all
x; the following decomposition is not unique and was obtained by trial and
error

(o]

[(x - x4 3]]/2

0.(x,t) = “Sds (39)

1 5/2 ©

. [(X - xh)2 + yhz + th]
e

(x,t) = 6(x,t) - 6,(x,t) .

2

This was found to give satisfactory results.

1

A set of two coupled equations for ¢ and ¢ is readily obtained
from equations (29) and (30). A mesh was selected in the &n plane and the
boundary-layer solution was advanced forward from t = 0 using a
Crank-Nicolson type method (refs. 15 and 16). For a given value of t, the
solution at & = +1 was advanced on time step and then the solution in the
interior |[£| < 1 could be computed iteratively. In a typical computation,
the outer flow conditions were imposed at n = 6 as an approximation, the time
step was At = 0.002 and there were 201 and 121 mesh points in the & and n
directions respectively.

The complete development of the flow patterns in the symmetry plane is
described in reference 16 and here only a brief summary is given. Shortly
after the initiation of the boundary-layer motion, separation was observed to
occur in the form of regions of recirculation. Unlike two-dimensional
separation in which the streamlines form closed loops, the three-dimensional
separations observed here involve a spiral motion toward a focus as depicted
in figure 8, where the instantaneous streamlines at t = 0.05 are plotted.
The point labelled F1 is a focus at which the instantaneous flow is leaving
the symmetry plane; streamlines near F1 all spiral in toward the focus. The
stagnation point S1 is a saddlepoint of detachment and along the limiting
streamline emanating from S1 the flow is away from the wall and toward the
focus at F1. As useful points of reference, the instantaneous streamwise
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locations of the hairpin vortex head and the two-dimensional portion of the
vortex are indicated at the top of figure 8 by the square and triangular
symbols respectively. It may be observed that the significant developments in
the boundary layer are occuring behind the two-dimensional part of the

vortex. At a later stage, as the hairpin legs approach the wall, multiple
stagnation points appear in the flow on the wall (ref. 16) and the flow
patterns become rather complex. However the important point is that the
latter stages of the integration are characterized by rapid boundary-layer
growth on the symmetry plane in the region behind the two-dimensional part of
the vortex; the growth occurs in several locations corresponding to those near
the current streamwise positions of the vortex legs as well as behind the
heads of the subsidiary hairpin vortices.

DISCUSSION

In this study, some aspects of the dynamics of hairpin vortices in a
shear flow near a wall have been examined on a theoretical basis. The results
of the present investigation support and complement the findings of the flow
visualization studies of Acarlar and Smith (refs. 4 and 5). In particular,
specific conclusions are: (1) Hairpin vortices in a shear flow develop
subsidiary hairpin vortices which spread and multiply in the spanwise
direction and (2) convected hairpin vortices induce a pressure distribution
near the wall which ultimately leads to strong boundary-layer growth in the
region behind the vortex. In relation to this last point, it is reasonable to
expect that, as the rapidly thickening boundary layer penetrates out into the
inviscid region, a roll-over into a new secondary hairpin vortex will occur.
Such an event constitutes a strong unsteady viscous-inviscid interaction.
Although it has not been possible to compute the evolution of the interaction
using the methods described in this paper, the experimental results of Acarlar
and Smith (refs. 4 and 5) confirm that secondary hairpin vortices do evolve in
the manner described here. This process is clearly regenerative and shows how
one hairpin vortex can lead to the creation of another through an interaction
with the viscous flow near the wall. Finally it is worthwhile to note that
the boundary-layer evolution has been computed only on the symmetry plane in
this study. It is entirely possible that the interaction between the boundary
layer and the outer inviscid flow may initiate at an earlier stage at
locations off the symmetry plane. Previous studies of vortex motions in two
dimensions (refs. 6, 7, and 15) indicate that a vortex will evoke an eruptive
response from the viscous flow near the wall more rapidly if the vortex is
stronger and/or is moved closer to the wall. In the present case, the closest
approach to the wall is made by the hairpin vortex legs at locations off the
symmetry plane; it is in this region where the most violent boundary-layer
response might be anticipated. o
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