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1. SUMMARY 

A method for generating three-dimensional finite differ- 
ence grids about or within arbitrary shapes is presented. The 
3-D Poisson equations are solved numerically, with values for 
the inhomogeneous terms found automatically by the algorithm. 
Those inhomogeneous terms have the effect near boundaries of 
reducing cell skewness and imposing arbitrary cell height. The 
method allows the region of interest to be divided into zones 
(blocks), allowing the method to be applicable to almost any 
physical domain. A FORTRAN program called 3DGRAPE has been 
written to implement the algorithm. Lastly, a method for 
redistributing grid points along lines normal to boundaries 
will be described. 

2. INTRODUCTION 

The complex "real worldH geometries to which computational 
physics is currently being applied demand a new level of flexi- 
bility in grid-generation. An airplane with strakes, canards, 
inlets, external stores, a plume, and a canopy is an example of 
the cases which cannot practically be gridded by a mapping into 
a single rectangular-solid computational domain. It becomes 
necessary to partition the physical domain into an arbitrary 
number of zones and then have a grid-generator which can treat 
such a zoned domain. Further complication derives from the 
needs imposed by the solvers of the equations of mathematical 
physics for which the grid is being generated. These include 
the need for orthogonality or near-orthogonality, especially 
near boundaries where high gradients typically occur; the abil- 
ity to control grid cell height at boundaries for the same 
reason; smoothness in the interior of the domain; and smooth- 
ness as the grid makes the transition across zone-to-zone 
boundaries. Lastly, grid-generation is an applied science, and 
a grid-generation methodology has value only when it has been 
"packaged1' in a well-documented, readily-available, well- 
written, robust, fast, user-friendly program. 
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A grid-generation methodology is described which meets the 
requirements listed above. Grids are generated by the solution 
of Poisson's elliptic partial differential equation, which can 
be shown [ I ]  to give the smoothest possible grid in the inte- 
rior of a domain. The inhomogeneous terms, or right-hand-side 
(RHS) terms, in this equation are constructed so as to minimize 
grid cell skewness and control grid cell height near any or all 
of the six boundary faces of the zones (computational cubes). 
This is accomplished in an automated manner, requiring a mini- 
mum of user expertise. The values of the RHS terms which give 
the desired properties in the resultant grid are found automat- 
ically from side-condition equations, concurrently with the 
solution for the grid. Grid cell height can be specified inde- 
pendently for each face of each zone; alternatively the feature 
of controlling cell height and skewness can be disabled at the 
various faces at the user's option. 

The method is zonal, meaning that the physical domain can 
be divided into an arbitrary number of contiguous zones. The 
user has complete freedom in topologically connecting the 
zones. The method solves for the grid in all of the zones 
simultaneously, assuring smoothness across zonal boundaries 
within the grid. The shapes of the zonal-interface surfaces, 
and the distribution of points thereon, need not be defined by 
the user a-priori; they can be the result of the Poisson equa- 
tion solution process. This feature significantly reduces the 
amount of surface-fitting preparation required before the 
grid-generator can be used. 

The technology described above is packaged in a grid- 
generator program called 3DGRAPE, an acronym for "Three- 
Dimensional Grids About Anything by Poisson's Equation." The 
problem of specifying how a complex, three-dimensional, multi- 
zone grid is to be constructed is not trivial. The variety of 
ways in which a user might want to twist and deform computa- 
tional cubes in a realistic zonal application is difficult to 
predict. A way of specifying that topology (including the 
block-to-block interconnections), in a manner which is precise 
yet not pedantic, has been developed. 

3. DEVELOPMENT OF GRID-GENERATON ALGORITHM 

The Poisson equations in three dimensions are well-known, 
and can be found in Ref. [2]. But the equations in this form, 
yielding ~ , q , c  for given x,y,z, would be awkward to use, 
especially when specifying the boundaries. Instead, the 



transformed Poisson equations are used, wherein x,y,z are 
found from given E,s,t: 

where : 

'ij 
is the ijth cofactor of the matrix M: 

and the Jacobian J is the determinant of M. 

In such a grid-generation approach the inhomogeneous terms 
may be chosen as one wishes. Here, as in the two-dimensional 
grid generation method discussed in Ref. [3 ] ,  they are chosen 
in a way which is complicated to describe, but simple to use. 
The actual term P, in "Eq . ( 1 a) , is : 

Terms Q and R are identical in form. 

Space limitations prevent a detailed treatment of the 
derivation of each of the terms in the right side of Eq. (2). 
But those derivations are completely analogous, so a treatment 
of P1 will have to suffice. In the remainder of this paper, 
as well as in the 3DGRAPE program, the faces of the computa- 
tional cube are numbered. Face 1, for example, is the face 
wherein 6 is fixed at zero. The index n in Eq. (2) is the 
face number for 1 I n I 6. So in deriving PI, we will be 
considering how to control the grid cell height and skewness on 
face 1. The term P1 is defined as: 



where a is a p o s i t i v e  c o n s t a n t .  A t  face 1 t h e  e x p o n e n t i a l  
f a c t o r  becomes 1 .0 ,  s o  t h e  problem f o r  face 1 r e d u c e s  t o  f i n d -  
i n g  p l .  I t  can  be  shown t h a t  on face 1 ,  t h e  o t h e r  terms P2 
through P6 are o f  no  effect. S o  on f a c e  1 ,  inhomogeneous 
term P r e d u c e s  t o  j u s t  p l .  T h i s  is t r u e  s i m i l a r l y  f o r  Q 
reduc ing  t o  q l  and R r educ ing  t o  r l  . 

Thus on face 1 ,  t h e  t r ans formed  Po isson  e q u a t i o n s  ( l a )  
cou ld  be t h o u g h t  o f  as a coupled set  o f  t h r e e  l i n e a r  e q u a t i o n s  
i n  t h e  t h r e e  unknowns p l ,  q l ,  and r , ,  w i t h  t h e  l e f t  s i d e s  
be ing  c o n s t a n t  on t h e  boundary and w i t h i n  e a c h  computa t iona l  
time s t e p .  Those e q u a t i o n s  are s o l v e d  f o r  p l ,  q l ,  and r l .  
Tha t  s o l u t i o n ,  however, r e q u i r e s  t h a t  a l l  o f  t h e  d e r i v a t i v e s  
p r e s e n t  on t h e  l e f t  s i d e s  be  known a t  f a c e  1. T h i s  means t h a t  
a l l  p o s s i b l e  f irst  and second p a r t i a l  d e r i v a t i v e s  o f  x , y , z  
w i t h  r e s p e c t  t o  , must be found. The d e r i v a t i v e s  invo lv-  
i n g  o n l y  0 ,  o r  r ,  o r  b o t h  r~ and c ,  are found by s imply  d i f f e r -  
enc ing  t h e  g i v e n  f i x e d  boundary p o i n t s .  

D e r i v a t i v e s  i n v o l v i n g  o n l y  5 are found i n  t h e  f o l l o w i n g  
manner. Three  g e o m e t r i c  c o n s t r a i n t s  are imposed upon a l i n e  o f  
va ry ing  6 which i n t e r s e c t s  f a c e  1: ( 1 )  it must b e  normal t o  
t h e  i n t e r s e c t i n g  l i n e  o f  v a r y i n g  on t h e  s u r f a c e ,  ( 2 )  it 
must be  normal t o  t h e  i n t e r s e c t i n g  l i n e  o f  v a r y i n g  c on t h e  
s u r f a c e ,  ( 3 )  t h e  l e n g t h  a l o n g  t h a t  l i n e  from t h e  s u r f a c e  t o  t h e  
n e x t  node must b e  c o n t r o l l e d .  These g e o m e t r i c  c o n s t r a i n t s  are 
e q u i v a l e n t  t o  t h e  t h r e e  a l g e b r a i c  c o n s t r a i n t s :  

where S is t h a t  d e s i r e d  d i s t a n c e  t o  t h e  f i r s t  p o i n t  o f f  of  
t h e  s u r f a c e .  From t h e s e  e q u a t i o n s ,  e x p r e s s i o n s  can  be  o b t a i n e d  
f o r  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  t o  5 a t  t h e  s u r f a c e  i n  terms 
o f  S and t h e  y s  o f  Eq. ( 1 ) .  Again, s p a c e  l i m i t a t i o n s  pro- 
h i b i t  a complete  d e r i v a t i o n ,  b u t  a n  example is: 

The p o s i t i v e  s i g n  f o r  t h e  r a d i c a l  is chosen f o r  a r igh t -handed  
c o o r d i n a t e  system. Note t h a t  t h e  "handednessfl can v a r y  from 



block  t o  b l o c k  i n  t h e  same g r i d .  D e r i v a t i v e s  s o  o b t a i n e d ,  
t h e n ,  can b e  d i f f e r e n c e d  w i t h  r e s p e c t  t o  r~ and c t o  o b t a i n  
t h e  6s and 6 5  mixed s e c o n d - p a r t i a l  d e r i v a t i v e s .  A l l  o f  t h e  
d e r i v a t i v e s  d i s c u s s e d  s o  far are f i x e d  w i t h  r e s p e c t  t o  computa- 
t i o n a l  time, and  need be computed o n l y  once.  

The o n l y  d e r i v a t i v e s  remaining t o  be  found are t h e  second 
p a r t i a l  d e r i v a t i v e s  w i t h  r e s p e c t  t o  5. Those can  be  found by 
d i f f e r e n c i n g  t h e  e x i s t i n g  s o l u t i o n  a t  t h e  c u r r e n t  computa t iona l  
time s t e p .  Equa t ion  ( l a )  t h e n  is t r e a t e d  as a 3-by-3 l i n e a r  
sys tem with t h e  l e f t  s i d e  b e i n g  c o n s t a n t ,  and is s o l v e d  f o r  
p l ,  q l ,  and r l .  Given t h e s e ,  t h e  P I ,  Q1 ,  and R 1  are 
known. Terms Pn, Qn, and R n ,  f o r  2 < n < 6 are found s i m i -  
l a r l y ,  e n a b l i n g  c a l c u l a t i o n  o f  v a l u e s  f o r  P,Q,R a t  t h e  cur -  
r e n t  time s t e p .  

The p o s i t i v e  c o n s t a n t  a t h a t  a p p e a r s  i n  Eq .  ( 3 ) ,  a l o n g  
w i t h  similar c o n s t a n t s  used i n  t h e  d e f i n i t i o n s  o f  Q and  R ,  
de te rmine  t h e  rate a t  which t h e  c o n t r o l  o f  ce l l  h e i g h t  and 
skewness d i s s i p a t e s  w i t h  d i s t a n c e  from t h a t  boundary.  Reducing 
t h e s e  c o n s t a n t s  c a u s e s  t h e  c o n t r o l  t o  p r o p a g a t e  far o u t  i n t o  
t h e  f i e l d ,  w i t h  t h e  p o s s i b l e  consequence o f  i n s t a b i l i t y  i n  t h e  
g r i d - g e n e r a t i o n  p r o c e s s .  

4 .  BLOCK STRUCTURE 

Complicated problems from t h e  "real world" o f t e n  r e q u i r e  
t h a t  t h e  r e g i o n  o f  i n t e r e s t  be  d i v i d e d  i n t o  zones .  Cons ider ,  
f o r  example, a n  e f f o r t  t o  c r e a t e  a g r i d  w i t h  c y l i n d r i c a l  t o p o l -  
ogy a b o u t  a n  F-16 aircraft, as d e s c r i b e d  i n  Ref. [ 4 ] .  The 
s u r f a c e  g r i d ,  w i t h  zone numbers and z o n a l  b o u n d a r i e s ,  is shown 
i n  F ig .  1. I t  is d e s i r e d  t h a t  c o n t r o l  o f  c e l l  h e i g h t  and 
skewness be  a p p l i e d  on t h e  f u s e l a g e  and t h e  s u r f a c e  o f  t h e  
v e r t i c a l  and h o r i z o n t a l  t a i l s ,  b u t  n o t  on t h e  symmetry p l a n e  o r  
the planform s u r f a c e .  These  s p e c i f i c a t i o n s  a r g u e  f o r  a m u l t i -  
b lock  approach ,  w i t h  b lock  boundar ies  c o i n c i d i n g  w i t h  t h e  l e a d -  
i n g  edges  and t r a i l i n g  edges  o f  t h o s e  c o n t r o l  s u r f a c e s .  But 
t h e  l e a d i n g  and t r a i l i n g  edges  o f  t h e  v e r t i c a l  and h o r i z o n t a l  
ta i ls  do n o t  a p p e a r  a t  t h e  same a x i a l  l o c a t i o n s ,  so the  b l o c k  
s t r u c t u r e  i n d i c a t e d  i n  F i g .  1 r e s u l t s .  Note t h a t  t h e  upper  
f a c e  o f  b l o c k  6 is d i v i d e d  i n t o  two s e c t i o n s :  o n e  mat ing w i t h  
t h e  lower face o f  b l o c k  10, and  t h e  o t h e r  mat ing  w i t h  p a r t  o f  
t h e  lower face o f  b lock  11. The remainder  o f  t h e  lower face o f  
b lock  11 mates w i t h  p a r t  o f  t h e  upper  face o f  b l o c k  7 ,  etc.  

To compensate f o r  t h i s  s i t u a t i o n  and a p l e t h o r a  o f  o t h e r  
p o s s i b i l i t i e s ,  t h e  faces o f  t h e  b l o c k s  can b e  d i v i d e d  i n t o  



F i g .  1. S u r f a c e  G r i d ,  on Aft End o f  F-16 Aircraft Showing 
Block S t r u c t u r e  

s e c t i o n s  ( s u b f a c e s ) ,  w i t h  e a c h  s e c t i o n  hav ing  its own un ique  
boundary t r e a t m e n t .  S e c t i o n s  o f  boundary f a c e s  may be a s s i g n e d  
t h e  f o l l o w i n g  boundary c o n d i t i o n s :  

1. They can  a b u t  o t h e r  s e c t i o n s .  The s h a p e  of t h e  s u r -  
face and  t h e  d i s t r i b u t i o n  o f  p o i n t s  on it are de te rmined  by t h e  
e l l i p t i c  s o l u t i o n .  L i n e s  p a s s i n g  th rough  t h e  s u r f a c e  w i l l  be 
c o n t i n u o u s ,  w i t h  o p t i o n a l  s p a c i n g  c o n t i n u i t y  a l o n g  t h o s e  l i n e s .  

2. They can c o n s i s t  o f  x , y , z  l o c a t i o n s  s p e c i f i e d  by t h e  
u s e r  and made unchanging w i t h  c o m p u t a t i o n a l  time. 

3 .  They can have p o i n t s  which f l o a t ,  as d i c t a t e d  by t h e  
e l l i p t i c  s o l u t i o n ,  on a p l a n e  normal t o  one  o f  t h e  x , y , z  
a x e s .  

4. They can  have p o i n t s  which f l o a t ,  as d i c t a t e d  by t h e  
e l l i p t i c  s o l u t i o n ,  on a c y l i n d e r  hav ing  its a x i s  c o i n c i d e n t  
w i t h  one  o f  t h e  x , y , z  a x e s .  



5. They can have points which float, as dictated by the 
elliptic solution, on an ellipsoid having its semi-axes paral- 
lel to the x,y,z axes. 

6. They can have points which float, as dictated by the 
elliptic solution, along a surface which is collapsed to a line 
coincident with one of the x,y,z axes. 

7. They may be collapsed to a point. 

The boundary treatments listed above for the various sec- 
tions of the faces of the blocks are all effected in an 
explicit manner. After finding new values for the x,y,z in 
the interior of each block in each iteration step, new values 
for x,y,z on the boundary faces are found, as appropriate for 
each face. This explicit treatment makes the grid-generator 
run slower, but it greatly enhances the modularity of the 
code. New boundary treatments can be added in a fairly 
straightforward fashion. Control of grid cell height and skew- 
ness may be exercised or not, and the height S in Eqs. (4c) 
and (5) is specified individually for each face. Note that 
when two sections of faces abut, the two indices on each face 
may be different (e.g., if j, k,and 1 are the indices running 
in the three computational directions, we might have j and k 
running.on one section, with k and 1 running on the other 
section to which it abuts). The indices on abutting sections 
can even run in opposite directions. These possibilities are 
allowed in the 3DGRAPE code. Note that the cell height, S, is 
user specified, and can be used to cluster points very close to 
the boundary, making viscous calculations possible. 

The 3DGRAPE code has also been used to generate an invis- 
cidly spaced grid about an F-16 aircraft, shown in Fig. 2. 

5. A RECLUSTERING TECHNIQUE 

A problem was encountered while testing 3DGRAPE. When a 
grid of spherical topology (as on a blunt-nosed aircraft fuse- 
lage) was being generated with grid cell height and skewness 
controlled on the surface, the RHS terms became ineffective 
near the axis. The problem appeared to be associated with the 
fact that the Jacobian [see Eq. ( I ) ]  became zero at the axis. 

While addressing this problem a reclustering technique was 
discovered, and has proved to be so effective that it will 
probably be included in the 3DGRAPE code. A typical approach 
is to generate a Laplacian grid, retain the radial lines (those 
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Fig.  2. S e l e c t e d  Su r f aces  i n  F-16 F i e l d  Grid 

running from t h e  body t o  t h e  o u t e r  boundary),  and d i s c a r d  t h e  
l o c a t i o n s  of t h e  p o i n t s  on those  l i n e s ,  and r e c l u s t e r  somehow 
a long  those  l i n e s  t o  o b t a i n  a d e s i r e d  d i s t a n c e  between t h e  body 
and t h e  f i rs t  node i n  t h e  f i e l d .  Such techniques  u s u a l l y  work 
f o r  smooth bodies ,  bu t  a problem arises f o r  bodies  having s l o p e  
d i s c o n t i n u i t i e s ,  e s p e c i a l l y  convex c o r n e r s  ( s e e  t h e  example i n  
F igure  3a). Such s l o p e  d i s c o n t i n u i t i e s  t end  t o  be propagated 
far o u t  i n t o  t h e  f i e l d ,  i n  some c a s e s  a l l  t h e  way t o  t h e  o u t e r  
boundary. I t  was thought  t h a t  i f  t h e  r e c l u s t e r i n g  could s tar t  
wi th  a Laplac ian  g r i d  o r  even a mi ld ly  c l u s t e r e d  Poisson g r i d  
( c o n t r o l  terms turned  o n ) ,  and i f  a r e c l u s t e r i n g  method could 
be developed which somehow used t h e  e x i s t i n g  spac ings  a long  
r a d i a l  l i n e s  i n  t h a t  unc lus t e r ed  o r  mi ld ly  c l u s t e r e d  g r i d ,  then 
t h e  n a t u r a l  tendency o f  t h a t  g r i d  t o  round o f f  t h e  s h a r p  co r -  
n e r s  could i n f luence  t h e  r e c l u s t e r e d  g r i d .  

The p r e s e n t  approach employs t h e  p r i n c i p l e  t h a t  i f  a mono- 
t o n i c a l l y  i nc reas ing  f u n c t i o n  t h a t  pa s se s  through t h e  o r i g i n  
and t h e  p o i n t  ( I , ! )  is taken  t o  a p o s i t i v e  power, it w i l l  s t i l l  
i n c r e a s e  monotonically and w i l l  still pas s  through t h e  o r i g i n  
and t h e  p o i n t  ( 1 , l ) .  The procedure is a s  fol lows.  Along each  
r a d i a l  l i n e ,  c a l c u l a t e  the cumulat ive d i s t a n c e s  t o  each 
po in t .  Normalize t h a t  sequence o f  numbers t o  range from 0 



a) Typical Method, With Discontinuities Propagating Far into 
the Interior 

b) Present Method, Smoother in the Interior 

Fig. 3. Closeup of Two Grids with Slope-Discontinuities in 
Boundary 

to 1; thereafter 0 represents the body and 1 the outer 
boundary. Then take that set of normalized spacings to some 
power (the same power on all lines), such that the first inter- 
val will become the desired first spacing. Then 



unnormalize those new spacings, and interpolate the x,y,z to 
be functions of the new spacings. 

Figure 3b shows the same reclustering problem done by the 
present method. The propagation of boundary-slope discontinui- 
ties into the field is significantly reduced. With a small 
increase in complexity, the present method can be used to mod- 
ify the number of points along the radial line. Thus, for 
example, an inviscid spacing using 20 radial points can be 
generated, and that can be re-interpolated to be a viscous 
spacing using 50 radial points. 

6. CONCLUSIONS 

A grid-generation algorithm has been developed which can 
generate three-dimensional grids for any block-structured 
topology. On any or all of the six faces of the blocks, grid 
cell skewness is controlled and any arbitrary cell height (vis- 
cous or inviscid) may be imposed. The resulting grid is smooth 
in the interior of the blocks and across block-to-block bound- 
aries. A FORTRAN program called 3DGRAPE has been written to 
implement the grid-generation algorithm. The program includes 
a scheme for redistributing points in existing grids is 
described which reduces the propagation of boundary slope dis- 
continuities into the field. 
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