NASA CR- 175,104

LIMITED DISTRIBUTION

NASA-CR-175104 19880019533

> NASA CR 175104 D500-11313-1

> > ÷.

Multiple-Purpose Subsonic Naval Aircraft (MPSNA) – Multiple Application Propfan Study (MAPS)

R. M. Engelbeck, C. T. Havey, A. Klamka, C. L. McNeil, M. A. Paige

BOEING MILITARY AIRPLANE COMPANY

A Division of The Boeing Company Wichita, Kansas 67277-7730

Contract No. NAS 3-24529

September 1986

. ? ?

National Aeronautics and Space Administration

Lewis Research Center Cleveland; Ohio NOTICE

Because of its significant technological potential, this information which has been developed under a U.S. Government program, is being given a limited distribution whereby awanced access is provided for use by domestic interest. This legend shall be marked on any reproduction of this momation in whole or in part.

Date for general release: September 1988.

THIS PAGE LEFT INTENTIONALLY BLANK

		1
- W - 20	- EM3287.PRT	
DISPLAY 05/2/1		í Í
<u>88N28917*# ISSUE 23 PAGE 3177 CAT</u>	EGORY 5 RPT#: NASA-CR-175104 NAS	Υ.
1,26:175104 D500-11313-1 CNT#: NAS3-2	24529 86/09/00 219 PAGES	
UNCLASSIFIED DOCUMENT		
UTTL: Multiple-Purpose Subsonic Naval Aircraf	t (MPSNA): Multiple Application	
Propfan Study (MAPS) TLSP: Final Repo	rt.	
AUTH: A/ENGELBECK, R. M.; B/HAVEY, C. T.; C	:/KLAMKA, A.; D/MCNEIL, C. L.;	
E/PAIGE, M. A.		
CORP: Boeing Military Airplane Development, W	Jichita, KS.	
SAP: Avail: NTIS HC A10/MF A02		í I
CIO: UNITED STATES		
MAJS: /*AIRCRAFT CARRIERS/*FIGHTER AIRCRAFT/*	NAVY/*PROP-FAN TECHNOLOGY/*TURBOFAN	
AIRCRAFT/*TURBOPROP AIRCRAFT		()
MINS: / ANTISUBMARINE WARFARE/ SHORT TAKEOFF	AIRCRAFT/ VERTICAL LANDING	
ABA: Author		
ABS: Study requirements, assumptions and gui	idelines were identified regarding	
carrier suitability, aircraft missions,	, technology availability, and	
propulsion considerations. Conceptual o	designs were executed for two	
missions, a full multimission aircraft	and a minimum mission aircraft	
using three different propulsion system	ns, the UnDucted Fan (UDF), the	
Propfan and an advanced Turbofan. Detai	iled aircraft optimization was	
completed on those configurations yield	ling gross weight performance and	(
carrier spot factors. Propfan STOVL cor	nceptual designs were exercised also	
ENTER:	MORE	
	- $Ems287, PR1$	1

(

f

(

(

ţ

(

LETTER OF TRANSMITTAL AND SHIPMENT NOTICE THE BOEING COMPANY 2 G

DATE 10 October 1986 SHIP TO: NASA Lewis Research Center 21000 Brookpark Road SHIPMENT NO. NASA 001 Cleveland, OH 44135 Attn: R. P. Dengler ROUTING ___ NASA Langley Research Center cc: C. Driver, MS 249A (w/1 enc. – copy #88) W. P. Henderson, MS 280 (w/1 enc. – copy #89) (w/1 enc. - copy #90) (w/1 enc. - copy #91) R. W. Koenig, MS 352 L. J. Williams, MS 286 Research Information Center, MS 151A (w/1 enc. - copy 92)Air Force Aero Propulsion Lab J. Chuprin, ASD/XRH (w/1 enc. - copy #93) R. Haas (w/1 enc. - copy #94) (w/3 enc. - copies #95-97) H. F. Jones, AFWAL/POSL R. V. Wible, AFWAL/FIAC (w/1 enc. - copy #98)Naval Air Systems Command G. Derderian, AIR 310-E (w/3 enc. - copies #99-101) D. Donatelli, AIR 5223-B2 (w/1 enc. - copy #102) (w/1 enc. - copy #103) J. Klapper, AIR 532C-1 Naval Air Propulsion Center P. J. Mangione, MS PE-32 (w/2 enc. - copies #104, 105) R. Valori, Code PE 34 (w/1 enc. - copy #106) Allison Gas Turbine Division D. H. Quick, MS U-3 (w/1 enc. - copy #107) Ronald Riffel (w/1 enc. - copy #108)Allison Gas Turbine Operations R. D. Anderson, MS T-18 (w/1 enc. - copy #109) A. S. Novick, MS T-18 (w/1 enc. – copy #110) D. A. Wagner, MS T-18 (w/1 enc. - copy #111)**Beech Aircraft Corporation** R. W. Awker, E8 (w/3 enc. - copies #112-114)Boeing Commercial Airplane Company G. P. Evelyn, MS72-27 (w/3 enc. - copies #115-117) Franklin Davenport MS 9W-61 (w/1 enc. - copy #118)Cessna Aircraft Company Dave Ellis, Dept. 178 (w/2 enc copies ED SIGNATURE IMPORTANT **RETURN ADDRESS** Sign and return white copy as acknowledgement of receipt of data. **BOEING MILITARY AIRPLANE COMPANY** A Division of The Boeing Company DATE RECEIVED _ Post Office Box 7730 • Wichita, Kansas 67277-7730 PRINT OR TYPE FULL NAME Attn: _ FULL SIGNATURE

E-191 Rev. 6/84

LIMITED DISTRIBUTION

This document will remain under distribution limitation until September 1988

3 1176 01326 8074

NASA CR 175104 D500-11313-1

Multiple-Purpose Subsonic Naval Aircraft (MPSNA) – Multiple Application Propfan Study (MAPS)

R. M. Engelbeck, C. T. Havey, A. Klamka, C. L. McNeil, M. A. Paige

BOEING MILITARY AIRPLANE COMPANY

A Division of The Boeing Company Wichita, Kansas 67277-7730

Contract No. NAS 3-24529

September 1986

National Aeronautics and Space Administration

Lewis Research Center Cleveland; Ohio NOTICE -Elimited Distribution Document

Because of its significant technological potential this information, which has been developed under a U.S. Government program, is, being given a limited distribution whereby advanced access is provided for use by domestic interests. This legond shall be marked on any reproduction of this information in whole or in part.

Date for general release: September 1988.

N88-28917 X86-10426

THIS PAGE LEFT INTENTIONALLY BLANK

TABLE OF CONTENTS

PAGE

	LIST OF FIGURES LIST OF TABLES LIST OF ACRONYMS	vii xi xiii
1.0	SUMMARY	1
2.0	INTRODUCTION	3
3.0	TASK I: STUDY REQUIREMENTS, ASSUMPTIONS, AND GUIDELINES	5 5
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9	Elevator Weight Limits Operational Park Line Hangar Bay Door Height Ground or Deck Clearances Propeller Clearances Catapult/Arresting Gear/Barricade Towing and Turning Access to Aircraft Landing Gear Dimensional Limitations	5 5 5 5 5 7 7 7 9
3.1.10 3.2 $3.2.1$ $3.2.2$ $3.2.3$ $3.2.4$ $3.2.5$ $3.2.6$ $3.2.7$ $3.2.8$ $3.2.9$ 3.3 $3.3.1$ $3.3.2$ $3.3.3$ $3.3.3.1$ $3.3.3.1$ $3.3.3.2$ $3.3.3.1$ $3.3.3.2$ $3.3.3.3$	Catalog of Data Mission Requirements AEW Mission ASW Mission EW Mission Tanker Mission COD Mission Relative Mission Ranking Configuration Options Figures of Merit Market Potential Assumptions and Guidelines Technology Availability Aircraft Design Parameters Propulsion Selection Considerations Propulsion Selections Propulsion Weights and Scaling Propulsion System Installation	9 9 15 18 18 18 20 20 20 20 20 20 20 20 20 20 20 20 20
4.0 4.1 4.2 4.3 4.4 4.5	TASK II: CONCEPTUAL DESIGN Takeoff and Landing Limitations Engine Sizing Criteria Loiter Altitude Sensitivity Wing Sweep Selection Display and Control System	43 43 43 46 46 46

TABLE OF CONTENTS

D	۸	Ċ	С
۲	н	L2	E.

4.6.1 4.6.2 4.7 4.7.1 4.7.2 4.7.3 4.7.4 4.8 4.8.1 4.8.2 4.9 4.10 4.10.1 4.10.2 4.10.3 4.11 4.11.2 4.12	ASW/AEW Mission COD/Tanker Mission Equipment and Payload Major System Changes Fixed Equipment/Non-Expendable Useful Load Mission Specific Equipment and Payloads Payload Requirements Preliminary Estimate - Vehicle Size vs. Payload Advanced Propfan Advanced Turbofan Alternate Mission Capability Configuration Selection Configuration Evaluation Summary Multimission Configurations Partial Multimission Configurations Conceptual Weights Breakdown Propfan Turbofan Figures of Merit	48 48 48 48 48 48 48 48 48 48 48 48 48 53 53 56 56 59 52 62 62 62 62 62 62 62 62 62 62 62 62
5.0	TASK III: DETAILED CALCULATIONS AND AIRCRAFT	67
5.1	OPTIMIZATION	67
5.2	Three View Drawings	67
5.3	Fixed Equipment and Payload Weights Breakdown	83
5.3.1	CTOL Sizing Matrices	83
5.3.2	Multimission CTOL Sizing Matrices	83
5.4	Minimum AEW/ASW Sizing Matrices	87
5.4.1	Mission Performance and Breakdown by Mission Leg	98
5.4.2	Multimission CTOL	98
5.5	Minimum AEW/ASW CTOL	98
5.6	Aircraft Weight Breakdowns	98
5.7	Drag Breakdowns	98
5.7.1	CTOL Design Sensitivity Trades	98
5.7.2	Aircraft Sizing Sensitivity	98
5.8	Design Mission Performance Sensitivity	98
5.8.1	Stability and Control Analysis	117
5.8.2	CTOL Longitudinal Stability	117
5.9	Wing Fold and Spot Factor Drawings	117
6.0	TASK IV: STOVL ALTERNATE DESIGNS	129
6.1	Propulsion System Assumptions	129
6.1.1	Reaction Control System Sizing	129
6.1.2	All Engines Operating	129

TABLE OF CONTENTS

6.1.3 6.1.4 6.1.5	Pitch and Roll Bleed and Burn Reaction Control Tilt Nacelle for Transition and Yaw Control Propeller Overspeed for Takeoff and Vortical Operations	131 131 131
6.2 6.3 6.4 6.4.1 6.4.2 6.5 6.6 6.7	Three View Drawings STOVL Sizing Mission Performance and Breakdown by Mission Leg Multimission STOVL Minimum AEW/ASW STOVL Aircraft Weight Breakdowns STOVL Drag Breakdowns Wing Fold and Spot Factor Drawings	131 134 134 134 139 139 139 139
7.0 7.1 7.1.1 7.1.2 7.1.3 7.1.4	TASK V: ADVANCED TECHNOLOGY RESEARCH PLAN Advanced Technology Research Recommendations Propfan/Airframe Installation Guidelines Propfan Analysis Codes for Airframe Installation Propfan Engine Cycle Optimization for MPSNA-MAPS Propfan Hover Control Systems for V/STOL or STOVL	149 149 149 149 150 150
8.0 8.1 8.1.1 8.1.1.1 8.1.1.2 8.1.1.3 8.1.1.4 8.1.1.5 8.1.1.6 8.1.2 8.1.3 8.2	LIFE CYCLE COST, FIGURE OF MERIT, AND SUMMARY Life Cycle Cost Market Potential Baseline Market Potential AEW Market Potential Adjustment ASW market Potential Adjustment Tanker Market Potential Adjustment COD Market Potential Adjustment Adjusted Market Potential Average Total Spots per Carrier Operating and Support Costs Figures of Merit	153 153 153 153 153 156 156 156 156 156 160 160
9.0	CONCLUSIONS	163
APPENDIX A:	HIGH SPEED DRAG POLARS	165
APPENDIX B:	CALCULATION OF RELIABILITY EFFECTS ON AIRCRAFT DEPLOYED	191
Bibliography	/	195

.

.

-

.

Ŧ

۷

THIS PAGE LEFT INTENTIONALLY BLANK

LIST OF FIGURES

3.1.4-1	Composite Clearance Envelope for Catapult	6
3.1.10-1	Carrier Aircraft Parameter Definitions Diagnam	11
3 2_1	Mission Profiles	11
3.2.1-1	Altitude and Detection Dequirements	16
3.2.1-2	AFW Time on Station Determination	17
3.2.2-1	ASW Time on Station Determination	10
3.3.2-1	Sizing Ground Rules and Assumptions	25
$3 3 2_{-2}$	Performance Dequirements (Takeoff)	25
3 3 2_3	Performance Dequirements (landing)	27
3 3 3 1	Initial Engine Survey	28
3.3.3 1_1	Engine State of the Art Comparison	20
$3 3 3 2_1$	UDE Scaling Eactors	33
3 3 3 2_2	Propfan Scaling Factors	30
3 3 3 2 3	Turbofan Scaling Factors	35
3.3.3 3_1	Wing Mounted Turbofan	36
3.3.3 3-2	Rody Pylon Mounted Turbofan	37
3 3 3 3 2 3	Body Pylon Mounted IDF	38
3.3.3.3.4	Pronfan (Pusher) Wing Mounted and Body Pylon	30
0101010-1	Mounted	55
3.3.3.3_5	Pronfan (Tractor) Wing Mounted and Body Pylon	40
0101010-0	Mounted	40
4.1-1	Takeoff Speeds at Takeoff Lift Coefficient of 1.85	44
4.1-2	Wing Loading Limits for Catapult Takeoff	44
4.1-3	Arresting Gear Limits	45
4.2-1	Engine Sizing Criteria	47
4.3-1	Loiter Altitude Sensitivity	47
4.4-1	Wing Sweep Selection	47
4.5-1	Display and Control System	49
4.6.1-1	Cross-Section of the 8.5 ft. Diameter Fuselage	49
4.6.2-1	Cross-Section of the 9.5 ft. Diameter Body	49
4.8.1-1	Preliminary Estimate - Vehicle Size vs. Pavload -	54
	Advanced Propfans - $W/S = 100 \text{ psf}$	• • •
4.8.2-1	Preliminary Estimate - Vehicle Size vs. Pavload -	55
	Advanced Turbofan - W/S - 100 psf	
4.9-1	Example Alternate Mission Capability - Turbofans	57
4.9-2	Example Alternate Mission Capability - Propfans -	58
	AEW P/L (18700 lb. equipment plus payload)	•••
4.10.2-1a	UDF Multimission Configuration	60
4.10.2-1b	Propfan Multimission Configuration	60
4.10.2-1c	Turbofan Multimission Configuration	60
4.10.3-1a	UDF ASW (Minimum) Configuration	61
4.10.3-1b	Propfan ASW (Minimum) Configuration	61
4.10.3-1c	Turbofan ASW (Minimum) Configuration	61
4.10.3-1d	Propfan AEW (Minimum) Configuration	61

LIST OF FIGURES

5.1-1 5.1-2	Multimission UDF ASW Configuration Multimission UDF AEW Configuration	68 69
5.1-3	Multimission Propfan ASW Configuration	09 70
5.1-4	Multimission Propfan AEW Configuration	70
5.1-5	Multimission Turbofan ASW Configuration	72
5.1-6	Multimission Turbofan AEW Configuration	73
5.1-7	Minimum UDF ASW Configuration	74
5.1-8	Minimum UDF AEW Configuration	75
5.1-9	Minimum Propfan ASW Configuration	76
5.1-10	Minimum Propfan AEW Configuration	70
5.1-11	Minimum Turbofan ASW Configuration	78
5.1-12	Minimum Turbofan AEW Configuration	79
5.3.1-1	Multimission UDF Sizing Matrix	84
5.3.1-2	Multimission Propfan Sizing Matrix	85
5.3.1-3	Multimission Turbofan Sizing Matrix	86
5.3.2-1	Minimum AEW/ASW UDF Sizing Matrix	88
5.3.2-2	Minimum AEW/ASW Propfan Sizing Matrix	89
5.3.2-3	Minimum AEW/ASW Turbofan Sizing Matrix	90
5.4.1-1	Multimission UDF Mission Performance	91
5.4.1-2	Multimission Propfan Mission Performance	92
5.4.1-3	Multimission Turbofan Mission Performance	93
5.4.2-1	Minimum AEW/ASW UDF Mission Performance	99
5.4.2-2	Minimum AEW/ASW Propfan Mission Performance	100
5.4.2-3	Minimum AEW/ASW Turbofan Mission Performance	101
5.8.1-1	Multimission Horizontal Tail Sizing	118
5.8.1-2	Minimum AEW/ASW Horizontal Tail Sizing	119
5.8.2-1	Multimission UDF - Engine Out Yawing	120
_	Moment Coefficient vs. Vertical Tail Area	
5.8.2-2	Multimission UDF - Static Directional	120
_	Stability Coefficient vs. Vertical Tail Area	
5.8.2-3	Multimission Propfan - Engine Out Yawing	121
	Moment Coefficient vs. Vertical Tail Area	
5.8.2-4	Multimission Propfan - Static Directional	121
	Stability Coefficient vs. Vertical Tail Area	
5.8.2-5	Multimission Turbofan Engine Out Yawing Moment	122
	Coefficients vs.Vertical Tail Area	
5.8.2-6	Multimission Turbofan - Static Directional	122
F A A Z	Stability Coefficient vs. Vertical Tail Area	
5.8.2-/	Minimum AEW/ASW UDF - Engine Out Yawing	124
5 0 0 0	Moment Coefficient vs. Vertical Tail Area	
3.8.2-8	Minimum ALW/ASW UDF - Static Directional	124
F 0 0 0	Stadility Coefficient vs. Vertical Tail Area	
5.8.2-9	MINIMUM ALW/ASW Propfan - Engine Out Yawing	125
	Moment Coefficient vs. Vertical Tail Area	

DT/86-234 1.1/C2

LIST OF FIGURES

5.8.2-10	Minimum AEW/ASW Propfan - Static Directional Stability Coefficient vs. Vertical Tail Area	125
5.8.2-11	Minimum AEW/ASW Turbofan - Engine Out Yawing Moment Coefficient vs. Vertical Tail Area	126
5.8.2-12	Minimum AEW/ASW Turbofan - Static Directional Stability Coefficient vs. Vertical Tail Area	126
5.9-1	Multimission Spotting Factors	127
5.9-2	Minimum AEW/ASW Spotting Factors	128
6.1.3-1	Bleed and Burn Reaction Control - Pitch	130
· · · · ·	and Roll	
6.1.4-1	Tilt Nacelle for Transition and Yaw Control	130
6.2-1	Multimission STOVL Propfan Configuration	132
6.2-2	Minimum AEW/ASW STOVL Propfan Configuration	133
6.3-1	Effect of Disk Loading and Thrust to Weight	135
	Ratio on Aircraft Gross Weight	
6.3-2	Effect of Bleed and Overspeed on Aircraft Gross Weight	135
6.3-3	Gross Weight Growth Due to Takeoff Thrust to Weight Ratio	136
6.3-4	Engine Thrust to Weight Behavior with Aircraft	136
	Takeoff Thrust to Weight Ratio	
6.3-5	Propeller Diameter as a Function of Aircraft	136
c	Takeoff Thrust to Weight Ratio	107
6.3-6	Minimum AEW/ASW STOVE Sizing	13/
6.3-/	Multimission SlovL Sizing	137
6.4.1-1	Multimission SlovL Propfan Mission Performance	138
0.4.2-1	Minimum ALW/ASW SIOVL Propfan Mission Performance	141
6./-1	SIUVL Spotting Factors	147
/.1-1	Advanced lechnology Research Schedule	151

ix

THIS PAGE LEFT INTENTIONALLY BLANK

LIST OF TABLES

3.1.7-I 3.1.10-I	Aircraft Taxi/Tow Maneuvering Data Carrier Aircraft Parameter Definitions and	8 10
3.1.10-II	Catalog of Current Carrier Suitability Data	12
3.2 - I	Mission Requirements Summary	13
3.2.6-1	Relative Mission Ranking	21
3.2.7-I	Navy Support Aircraft Mission Capabilities	22
3.2.9-I	Market Potential - 1993 Fleet Projection	23
3.3.3.1-I	Engine Cycle Summary	30
3.3.3.2-I	Propulsion System Weight (Unscaled)	32
4.7.1-I	Major System Changes for Improved Capability AEW	50
4.7.2-I	Fixed Equipment/Non-Expendable Useful Load	50
	(Common to All Missions)	
4.7.3-I	MPSNA Estimated Minimum Mission Specific Equipment	51
	and Payloads	
4.7.4-I	Summary of Equipment and Payload Versus Mission	52
4.11.1-Ia	Example - Full Multi-Mission Estimated Weights	63
	(Propfan)	
4.11.1-Ib	Example - Partial Multimission Estimated Baseline	63
	Weights (Propfans)	
4.11.2-Ia	Example - Full Multimission Estimated Baseline	64
	Weights (Turbofans)	
4.11.2-Ib	Example - Partial Multimission Estimated Baseline	64
	Weights (Turbofans)	
4.12-I	Preliminary Estimated Maximum Gross Weight	65
4.12-11	Preliminary Estimated Spot Factor	65
5.2-1	Common Core Avionics Equipment	80
5.2-11	Mission Unique Equipment	81
5.2-111	Payloads	82
5.4.1-1	Gross Weight and Mission Fuel Burn Summary	94
5.4.1-11	MISSION LEG Breakdown -Multimission UDF	95
Е Л 1 ТТТ	on lanker Mission Mission Log Buckdown - Multimission Buchfon	06
5.4.1-111	mission Leg Breakdown - Muitimission Propian	90
5 / 1 TV	On Tanker Mission Mission Log Preskdown - Multimission Turbofan	07
J.4.1-1V	of ASW Miccion	57
5 A 2_T	Mission Leg Breakdown - AFW/ASW UDE on AFW Mission	102
5.4.2 - 1	Mission Leg Breakdown - AEW/ASW DDi On ALW Mission Mission Leg Breakdown - AEW/ASW Propfan on	102
J. T. C - 11	AFW Mission	100
5.4.2-111	Mission Leg Breakdown - AFW/ASW Turbofan on AFW	104
	Mission	20.
5.5-I	Propulsion and Structure Weights	105
5.5-II	Fixed Equipment Weights	106
5.5-III	Aircraft Weights Breakdown	107
5.6-I	Multimission UDF Drag Breakdown	108
	\mathbf{v}	

LIST OF TABLES

5.6-II	Multimission Propfan Drag Breakdown	109
5.6-III	Multimission Turbofan Drag Breakdown	110
5.6-IV	Minimum AEW/ASW UDF Drag Breakdown	111
5.6-V	Minimum AEW/ASW Propfan Drag Breakdown	112
5.6-VI	Minimum AEW/ASW Turbofan Drag Breakdown	113
5.6-VII	Store Weight and Drag Increments	114
5.7-I	Multimission Aircraft Design Sensitivity	115
5.7-II	Minimum AEW/ASW Aircraft Design Sensitivity	116
6.1.1-I	Sizing of Reaction Control System	130
6.4.1-I	Mission Leg Breakdown - Multimission STOVL on	140
	Tanker Mission	
6.4.2-I	Mission Leg Breakdown - AEW/ASW STOVL on	142
	AEW Mission	
6.5-I	STOVL Weights - Propulsion and Structure	143
6.5-II	STOVL Weights - Fixed Equipment	144
6.5-III	STOVL Weights - Aircraft Weight Coefficient Breakdown	145
6.6-I	Multimission STOVL Propfan Drag Coefficient Breakdown	146
6.6-II	AEW/ASW STOVL Propfan Drag Coefficient Breakdown	146
8.1.1.1-I	Baseline Market Potential - 1993 Fleet	154
	Projection of Current Technology Aircraft	
8.1.1.1-II	Significant Mission Performance Parameters	154
8.1.1.2-I	AEW Mission Capable Aircraft Required	155
8.1.1.2-II	AEW Adjusted Operational Deployment	155
8.1.1.2-III	AEW Adjusted Market Potential	155
8.1.1.3-I	ASW Adjusted Operational Deployment	157
8.1.1.3-II	ASW Adjusted Market Potential	157
8.1.1.4-I	Tanker Adjusted Operational Deployment	158
8.1.1.4-II	Tanker Adjusted Market Potential	158
8.1.1.5-I	COD Adjusted Operational Deployment	159
8.1.1.5-II	COD Adjusted Market Potential	159
8.1.1.6-I	Adjusted Market Potential - Total Procurement	161
8.1.2-I	Average Total Spots Per Carrier	161
8.1.3-I	Operating and Support Costs	161
8.2-I	Figures of Merit -Size Parameters	162
8.2-II	Figures of Merit - Cost Parameters	162
9.0-I	Summary	164

xii

PAGE

AAM	Air-Air Missile
AAW	Anti-Air Warfare
ACLS	Automatic Carrier Landing System
AELW ,	Airborne Electronic Warfare
AEW	Airborne Early Warning
ALT	Altitude
ALWT	Advanced Lightweight Torpedo
AMAD	Airframe Mounted Accessory Drive
AMPR	Aeronautical Manufacturers Planning Report
AOA	Angle Of Attack
APFT	Advanced Propfan Engine Technology
APII	Auxiliary Power Unit
AR	Exposed Aspect Patio
ASEMP	Airplane Synthesis and Mission Program
	Ain to Sunface Miccile
Ази	Anti-LO-Surrace Missine
ASU	Anti-Submoving Useforg
	Anti-Submarine Wartare
ATACM	Advanced lechnology Airframe Lost Model
RMAC	Roeing Military Airplane Company
h	Span of Vertical Tail
v	
C ³ I	Command, Control, and Communication Information
CAP	Combat Air Patrol
CAT	Clear Air Turbulence
	Center of Gravity
	Lift Coefficient
	Lift Coofficient of Ainplane
CLA.	Maximum Lift Coofficient
	Maximum Liit Coefficient
	Yaw Woment Loetticient
$CN_{\beta} \rightarrow CN_{\beta} \rightarrow CN_{\beta}$	$u_{N/u}\beta$ variation of Yawing Moment with Sideslip
COD	Any re Commission Ophoond Dolivonu
CONUS	Carrier Unboard Delivery
CUNUS	Continental United States
	Conventional lakeoff and Landing
	Aircraft Larrier
	Carrier Battle Group
C/4sweep	Quarter Chord Sweep
DEG	Negree
	Diamotor
	Dialicier Dock-Launched Intercentor
	Denantment of Defense
	שביר הוויפור עד שבוכווגב
EBU	Engine Buildup
ECM	Electronic Countermeasures
EFH	Engine Flight Hours

ELW	Electronic Warfare
EMAD	Engine Mounted Accessory Drive
EW	Electronic Warfare
F _{NT}	Total Net Thrust
FPS	Feet Per Second
FT, Ft, ft	Feet
GAL	Gallon
GE	General Electric Company
GW	Gross Weight
IDG	Integrated Drive Generator
IFF	Identification Friend or Foe
ILS	Instrument Landing System
IN, in	Inch
INS	Inertial Navigation System
IPU	Integrated Power Unit
IR	Infra Red
ISAR	Inverse Synthetic Aperture Radar
JBD	Jet Blast Deflector
JTIDS	Joint Tactical Information Distribution System
KEAS	Knots Equivalent Airspeed
KTAS	Knots True Airspeed
KTS, kts	Knots
KVA	Kilovolt Amperes
L LB., Lb., 1b. LCC 1y	Lift Pounds Life Cycle Cost Distance Along X-Axis from C.G. to Aerodynamic Center of Vertical Surface
M	Mach Number
MAC	Mean Aerodynamic Chord
MAD	Magnetic Anomaly Detector
MAPS	Multiple Applications Program Study
MFHBF	Mean Flight Hours Between Failure
MIL-STD	Military Standard
MIW	Mine Warfare
MK	Model Number
MMH	Maintenance Man Hours
MOD	Modification Number
MPSNA	Multi-Purpose Subsonic Naval Aircraft
MTBF	Mean Time Between Failure

DT/86-234 1.1/E2

.

MTBM	Mean Time Between Maintenance
MTTR	Mean Time To Repair
NAEC	Naval Air Engineering Center
NAVAIR	Naval Air System Command
NAM	Nautical Air Miles
NM	Nautical Miles
NNEP	Navy/NASA Engine Program
0&S	Operating and Support
PF	Propfan
P/L	Payload
P&W	Pratt and Whitney
PSF, psf	Pounds per Square Foot
Q,q	Dynamic Pressure, $\frac{1}{2}\rho V^2$
R&M	Reliability and Maintainability
R _e	Reynolds Number
ROM	Rough Order of Magnitude
S&C	Stability and Control
SF, S.F.	Scale Factor
S _H	Horizontal Tail Area
SL	Sea Level
S.P.	Short Period
Sref	Wing Reference Area
STOVL	Short Takeoff Vertical Landing
S _V	Vertical Tail Area
TACAN	Tactical Air Navigation
TF	Turbofan
TKR	Tanker
TOS	Time On-Station
TSFC	Thrust Specific Fuel Consumption
TOGW	Takeoff Gross Weight
T/C	Thickness/Chord
T/W	Thrust to Weight Ratio
TYP	Typical
UDACS UDF USN	Universal Display and Control System Unducted Fan (G.E. Copyrighted name for gearless propfan) United States Navy

VAPR	Approach Velocity
VLOF	Velocity at Liftoff
VMCA	Air Minimum Control Speed
VSTOL, V/STOL	Vertical & Short Takeoff and Landing
VTOL	Vertical Takeoff and Landing
W	Weight
WOD	Wind Over Deck
$ \begin{array}{c} \alpha \\ \beta \\ \delta \\ \delta \\ f \\ \delta \\ \Lambda \\ \Lambda \\ c/4 \\ \lambda \\ \theta \\ \tau \end{array} $	Angle of Attack Sideslip Angle Elevator Deflection Flap Deflection Rudder Deflection Sweep Angle of Wing Quarter Chord Line Vertical Tail Taper Ratio Roll Attitude Angle Change in zero life angle of attack with flap deflection ($\Delta \alpha / \Delta \delta$)

.

1.0 SUMMARY

A total of eight aircraft configurations were generated to identify effects of propfan/UDF vs. turbofan propulsion system and the effects of STOVL vs. CTOL propfans on gross weight, fuel usage and LCC.

The ten MPSNA missions were analyzed to determine the primary design missions, which were found to be AEW, ASW, EW, Tanker and COD. The Multimission CTOL configurations meet all of the primary mission requirements. The Minimum AEW/ASW configurations were sized to do the AEW mission. All the minimum mission vehicles fall approximately half an hour short of the ASW design loiter time of six hours, even with a reduced payload.

VTOL was deleted from the study because preliminary analysis showed it far exceeds the 80,000 lb. elevator limit. The STOVL configurations were analyzed for the propfan engine. A bleed and burn reaction control system was used for pitch and roll control. Yaw control was achieved through the use of tilt nacelles.

THIS PAGE LEFT INTENTIONALLY BLANK

2.0 INTRODUCTION

A number of previous studies have determined the potential benefits of propfan technology applied to commercial and military transports with fuel savings from 15 to 25 percent and a reduction in operating costs from 7 to 12 percent using identical engine and aircraft technology levels.

This study investigated the potential application of counter-rotating propfan propulsion systems to carrier-based conventional take-off and landing (CTOL), MPSNA type aircraft. The MPSNA aircraft are designed to satisfy projected mission requirements for airborne early warning (AEW); anti-submarine warfare (ASW); anti-surface warfare (ASUW); mine warfare (MIW); cargo (COD); anti-air warfare (AAW); tanker; electronic warfare (EW); and associated surveillance, communication, command and control missions. One MPSNA vehicle configuration is used in more than one role much as the S-3A is used for ASW, ASUW, MIW and surveillance today. The technology level is consistent with a mid 1990's introduction into service and is consistent with the mission requirements and overall benefits to the aircraft weapons system and the carrier battle group. The market potential for this type of aircraft is significant in that it could potentially replace the E-2, S-3, C-2, KA-6 and EA-6 aircraft.

The objectives of this study were to:

- 1) identify the cost/program benefits of the propfan propulsion system relative to a comparable technology turbofan system and those elements of the mission requirements which influence this comparison.
- 2) identify propulsion system technology requirements for the proposed MPSNA configuration.
- propose a recommended technology research and development plan.

The data resulting from the CTOL work done in this study became the baseline data for a concise study of propfan short take-off and vertical landing (STOVL) MPSNA aircraft. Data from the CTOL study was extrapolated for the STOVL studies, to the extent possible.

In order to be compatible with carrier based operation, limits of 80,000 lb. gross weight, 80 ft. span, and 25 ft. maximum height were imposed on all the CTOL configurations. All the CTOL configurations remain within the catapult and arresting gear limits.

The engines for each configuration were sized for the most demanding of the following criteria:

- 1) Sea level takeoff thrust to weight ratio of .4.
- 2) AEW cruise speed of 400 kts at 40,000 ft.
- 3) Air refueling condition of 400 kts at 25000 ft.

The multimission configurations were designed to provide full up capability on all missions. The minimum AEW/ASW configurations were sized to accomplish the full AEW mission and a less stringent ASW mission. The minimum AEW/ASW configurations were also designed so that the only difference between the configurations was the type of engines installed. This would provide a direct comparison between the powerplant types that would not be complicated by differences in configuration geometry.

3.0 TASK I: STUDY REQUIREMENTS, ASSUMPTIONS, AND GUIDELINES

3.1 CARRIER CONSTRAINTS TO AIRCRAFT DESIGN

Operation of aircraft from a carrier has a significant impact on the design of navy aircraft. The following sections highlight some of the major weight and geometry limitations affecting the service, storage and operation of aircraft aboard a carrier.

3.1.1 ELEVATOR WEIGHT LIMITS

The newly revised aircraft carrier chart specification is SI Chart 1134C, 1 May 1985, superceding SI 1134B, 1 January 1981. It should be noted that the 80,000 lb. maximum elevator limit has been raised to 110,000 lb. for the Forrestal class carriers. This resulted from the operational need to accommodate a full F-14 and an ordnance tug simultaneously. This limit includes the weight of the tow tractor. This study is based on the old 80,000 lb elevator limit.

3.1.2 OPERATIONAL PARK LINE

The operational park line for any catapult in use is 42 ft. to either side of the catapult centerline. The 42 ft. limit is derived from the 40.3 ft. semispan of an E-2C. The reduced wing span of an E-2C replacement aircraft could allow more operational parking space. The next largest wingspan in the current wing is the S-3A at 68.7 ft.

3.1.3 HANGAR BAY DOOR HEIGHT

The 25 ft. height of the carrier hangar deck is not uniform. There are clearance areas greater than 25 ft. However, due to fuel tanks, etc., stored in overhead racks, some areas have a clearance less than 25 ft. The hangar door ramps affect the allowable tail height as a function of the various wheelbases and nose gear-to-tail distances. This study uses the hangar bay door height of 25 ft. as the limit.

3.1.4 GROUND OR DECK CLEARANCES

The conditions for minimum clearances of 6 in. are given in SD-24L. These clearance components include propellers, control surfaces, flaps, speed brakes, and external stores. Figure 3.1.4-1 (from SD-24L) presents a composite clearance envelope to be maintained during all catapulting operations.

3.1.5 PROPELLER CLEARANCES

Engine placement is dependent upon maintaining a minimum 12 in. clearance between tips of propellers and the fuselage, landing gear, or any other structural members. Deflections of engines and supporting structure is considered in maintaining those clearances. SD-24L, Paragraph 3.12.13.7, elaborates on this requirement.

FIGURE 3.1.4-1 COMPOSITE CLEARANCE ENVELOPE FOR CATAPULT OPERATIONS

σ

.

3.1.6 CATAPULT/ARRESTING GEAR/BARRICADE

The C7 catapult characteristics guide the design of new aircraft nose gear and structure. Reference NAEC MISC, OA136, "Shipboard Catapult Minimum Performance and Load Factors," provides catapult performance and load factors for aircraft design. NAEC MISC, OA114, "C7 Minimum Performance," presents the CV62 bow catapult weight versus end speed curves.

MIL-L-22589C(AS) provides nose gear design for launching system guidelines while MIL-STD-2066(AS) presents catapult forcing functions for structural design.

The arresting hook design must conform to criteria found in MIL-A-18717B(AS) concerning arresting hook installation as well as MIL-STD-2066(AS) for arresting gear forcing functions for structural design. In addition, NAEC MISC, 08744, provides MK 7 MOD 3 arresting gear performance.

The MK 7 MOD 2 barricade performance is provided by NAEC MISC, 08784.

3.1.7 TOWING AND TURNING

Ease of maneuvering of aircraft onboard ship is extremely important for aircraft powered taxiing, towing with the tow-tug, or manually steering with a tow bar.

Taxiing or towing of the aircraft must not be restricted in any configuration. All aircraft designs must be able to pivot about either main gear while being towed. Table 3.1.7-I presents a summary of turning radii for selected aircraft.

All aircraft must have provisions for and be able to be towed from the rear as well as the front. One way this can be accomplished is by having tow fittings on both main gear strut for aft towing while the nose gear is steered manually. Discussion of tow fittings and provisions is found in MIL-STD-805A.

3.1.8 ACCESS TO AIRCRAFT

Carrier-based aircraft are often parked near the deck edge with either tail or nose out over the water. The main or nose gear may be as close as 18 in. from the deck edge in the parked position.

Some of the current inventory aircraft parked in this fashion restrict or prevent access to various areas of the aircraft. For example, the S-3A sonobuoy chutes cannot be rearmed while the aircraft is parked tail over water. It is desirable to maximize accessibility to the aircraft systems for provisioning and maintenance.

AIRCRAFT	PIVOT POINT	NOSE GEAR TURN LIMIT TAXI/TOW	MAIN GEAR RADIUS	NOSE GEAR RADIUS	WING FOLDED RADIUS	WING EXTENDED RADIUS
· E-2C	MAIN GEAR	63°/360° (1)	19' 6"	25' 4"	38' 1"	50' 0"
S-3A	MAIN GEAR	?/1100	13' 9"	20' 9"	26' 1 "	41' 2"
EA-6B	MAIN GEAR	60º/72º (2)	11' 3"	18' 0"	18' 9"	33' 0"
F-14	CENTERLINE BETWEEN MAIN GEAR	?/90 ⁰	8' 5"	23' 1"	26' 8"	.32' 1"

MECHANICAL STOPS MOUNTED ON STRUT MAY BE EXCEEDED FOR TOWING, ALLOWING 360° NOSE GEAR ROTATION.
 ANGLE THROUGH WHICH AIRCRAFT CAN BE PIVOTED ABOUT MAIN GEAR.

TABLE 3.1.7-I AIRCRAFT TAXI/TOW MANEUVERING DATA

ω

3.1.9 LANDING GEAR DIMENSIONAL LIMITATIONS

The maximum distance from the nose of the aircraft to the main gear or bumper (if any) is limited to 52 ft. due to the desired nose-inboard parking of the aircraft on any elevator. The elevator lowers along a slight inboard angle in order to follow the ship's hull. Thus, the aircraft nose cannot be allowed to contact the flight deck as the elevator is either raised or lowered.

The distance from the nose wheel catapult position to the forward mounted hinge line of the Jet Blast Deflector (JBD) of the No. 1 catapult for several carriers is approximately 58 ft. Since the JBD hinge line is not perpendicular to the catapult, this limits the distance from the nose gear fuselage station to the most aft empennage planview station to about 56 ft. The JBD is raised for all takeoffs including propeller-driven aircraft. NAEC 06900 shows the JBD data chart for all carriers and various JBD dimensional parameters. NAEC 06900 Section III should be referred to for the various carrier planform relationships of JBD to catapults.

3.1.10 CATALOG OF DATA

Several aircraft dimensions affect the carrier suitability of the configuration. Some of these have been discussed in the previous sections. A summary of parameter definitions and operational limitations are presented in Table 3.1.10-I and are graphically depicted in Figure 3.1.10-1. The catalog of current carrier aircraft suitability data is then summarized in Table 3.1.10-II.

3.2 MISSION REQUIREMENTS

This section addresses the development of aircraft mission requirements for a mid- 1990's carrier-based multi-purpose subsonic Naval aircraft (MPSNA). Requirements were developed for the ten basic MPSNA missions (airborne early warning (AEW), anti-submarine warfare (ASW), electronic warfare (EW), anti-surface warfare (ASUW), mine warfare (MIW), cargo (COD), anti-air warfare (AAW), tanker, electronic support measures (ESM), and communication, command, and control ($C^{3}I$)) using the following operational parameters as applicable: detection range, time on-station, overall aircraft reliability, utilization rates, and cruise velocity. The AEW, ASW, EW, COD, and tanker missions were selected as primary missions, where the remaining missions were determined to be derivatives of these primary missions. Table 3.2-I summarizes the mission requirements for the ten basic missions. Mission profiles for the primary missions are presented in Figure 3.2-1. These were approved under Task I of this contract.

3.2.1 AEW MISSION

The primary contribution an AEW aircraft makes to the survivability of the carrier battle group is to provide sufficient threat warning to effectively utilize CVBG aircraft assets to kill cruise missile carriers

W	MAX GROSS WEIGHT & TAKEOFF	80000 LB ELEVATOR LIMITATION
L	OVERALL LENGTH OF AIRCRAFT	SPOT FACTOR/HANDLING
Ъ.	WINGSPAN	CATAPULT CLEARANCE (80.6 FT LIMIT)
bf	WINGSPAN, FOLDED	SPOT FACTOR/HANDLING
h	OVERALL HEIGHT	ELEVATOR DOOR/MAINTENANCE OPERATIONS
hf	HEIGHT FOLDED	HANGAR BAY PARKING, TAXIING
hl	HEIGHT TO TOP OF FORWARD FUSELAGE	OPTICAL LANDING SYSTEM INTERFERENCE
A	NOSE GEAR TO TAIL DISTANCE	JBD CLEARANCE ON CATAPULT (56+ FT LIMIT)
B ₁ B ₂	NOSE TO MAIN GEAR DISTANCE	INBOARD ELEVATOR TO DECK EDGE CLEARANCE (52 FT LIMIT)
c	WHEELBASE	TIP OVER ANGLE (SD-24L)
Т	WHEEL TREAD	TIP OVER ANGLE (SD-24L) (20 FT CATAPULT LIMIT)
D	MAX TURNING ARC ABOUT MAIN GEAR	OPERATIONAL HANDLING
Ŷ	AFT TIP OVER ANGLE	SD-24L (AFT C.G. LIMIT IS 15° FORWARD OF MAIN GEAR)
α	TIP BACK ANGLE	TOUCHDOWN/ARRESTMENT ANGLE OF ATTACK
SF	MAX DENSITY SPOT FACTOR	OPERATIONAL HANDLING FLEET MIX

TABLE 3.1.10-I CARRIER AIRCRAFT PARAMETER DEFINITIONS AND LIMITATIONS

10

FIGURE 3.1.10-1 CARRIER AIRCRAFT PARAMETER DEFINITIONS DIAGRAM

.

	GROSS TAKEOFF WEIGHT	LENGTH (TAIL NOT FOLDED)	WINGSPAN NO WINGTIP MISSILES	FOLDED SPAN	OVERALL HEIGHT	FOLDED HEIGHT	FOLDING HEIGHT	FORWARD FUSELAGE HEIGHT	MAXIMUM HEIGHT ON JACKS	DISTANCE NOSE TO NOSE GEAR	DISTANCE NOSE GEAR TO TAIL	DISTANCE NOSE TO MAIN GEAR	DISTANCE NOSE TO BUMPER	WHEEL BASE	WHEEL TREAD	TURNING RADIUS ABOUT MAIN GEAR	TIP OVER ANGLE (AFT C.G)	TIP BACK ANGLE	SPOT FACTOR
AIRCRAFT	W (LBS)	(FEET) ·L	(FEET) b	(FEET) b _f	(FEET) h	(FEET) h _f	(FEET)	(FEET) h1	(1) (FEET)	(FEET)	(FEET) A	(FEET) B1	(FEET). B ₂	(FEET) C	(FEET) T	(FEET) D	7 (DEG)	OL (DEG)	•
E-2C	52000	57.6	80.6	29.3	18.3	16.5	22.9	9.7	18.7	4.6	53.0	27.9	47.0	23.3	19.5	50.0	17.3	9	2.01
C-2A	54830	56.6	80.6	29.3	16.9	16.9	22.4	11.1	19.1	1.4	55.2	24.6	45.6	23.2	. 19.5	50.0	14.2	8	1.97
S-3A	52539	53.3	68.7	29.5	22.8	15.3	31.1	11.6	17.0	7.0	45.3	25.8	NA	18.8	13.8	41.2	21.1	16	1.49
A-6E	58600	54.8	53.0	25.2	16.3	16.3	21.1	13.6	18.7	6.4	48.4	23.5	54.2	17.1	11.0	33.0	17.8	10	1.42
EA-6B	65000	59.4	53.0	25.2	16.7	16.7	21.1	14.1	20.3	11.0	48.4	28.2	59.4	17.2	10.8	33.0	19.9	10	1.46
F-14A	69800	61.9	64.1	33.3	16.0	NA	NA	12.4	18.9	16.7	45.2	39.7	NA	23.0	16.4	39.6	24.0	9	1.55
F/A-18	50060	56.0	37.5	27.5	15.1	15.1	15.1	10.4	17.6	17.9	38.1	35.8	NA	17.9	10.2	38	22.7	18	1.18
A-7E	42000	46.1	38.7	23.8	16.1	16.1	17.1	10.7	17.8	9.3	36.8	25.0	37.5	15.7	9.5	29	12.0	10	1.00
EA-3B (2)	73000	80.0	72.5	48.2	22.8	16.6	27.3	12.0	18.5	16.3	63. . 7	43.0	58.0	26.7	10.5	45	25.4	12	2.94

CATALOG OF CURRENT CARRIER AIRCRAFT SUITABILITY DATA

(1) GEAR EXTENDED AND TWO INCH TIRE CLEARANCE. (2) BRIDLE LAUNCHED TAIL & WINGS FOLDED.

TABLE 3.1.10-II CATALOG OF CURRENT CARRIER SUITABILITY DATA

. •

12

CONSIDERATIONS	AEW	ASW	ASUW	MIW	COD	AAW	EW	TANKER	ESM	C ³ I
BASING MODE	CARRIER	CARRIER	LAND/CARRIER	LAND/CARRIER	LAND/CARRIER	CARRIER	CARRIER	CARRIER	CARRIER	CARRIER
MISSION RANGE (NM) WITH MAXIMUM PAYLOAD		-	-	· . 	2,100		-	DICTATED BY OFFLOAD REQUIREMENT	-	-
PAYLOAD (LBS)	MISSION EQUIPMENT AND ARMAMENT	MISSION EQUIPMENT AND ARMAMENT	MISSION EQUIPMENT AND ARMAMENT	MISSION EQUIPMENT AND ARMAMENT	15,000	MISSION EQUIPMENT AND ARMAMENT	MISSION EQUIPMENT AND ARMAMENT	25,000 LB FUEL OFFLOAD AT 200 NM	MISSION EQUIPMENT AND ARMAMENT	MISSION EQUIPMENT AND ARMAMENT
LOITER TIME ON STATION	6.0 HOUR* HOLD AT 40,000 FT AT 350 NM	6.0 HOUR* HOLD AT 5,000 FT AT 350 NM	6.0 HOUR * HOLD AT 5,000 FT AT 350 NM	3.0 HOUR HOLD AT 5,000 FT AT 800 NM	NO REQUIREMENT	6.0 HOUR* HOLD AT 40,000 FT. AT 350 NM	2.0 HOUR HOLD AT 35,000 FT AT 650 NM	2.5 HOUR HOLD AT 25,000 FT AT 200.NM	6.0 HOUR* HOLD AT 40,000 FT AT 350 NM	6.0 HOUR* HOLD AT 40,000 FT AT 350 NM
MISSION ALTITUDE REQUIREMENT	40,000 FT	5,000 FT	5,000 FT	5,000 FT	ABOVE 25,000 FT	40,000 FT	35,000 FT	25,000 FT	40,000 FT	40,000 FT
MISSION SPEED (KTAS) CRUISE	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT	400 AT OPTIMUM ALT
MISSION SPEED (KTAS) LOITER	BEST ENDURANCE AT 40,000 FT	BEST ENDURANCE AT 5,000 FT	BEST ENDURANCE AT 5,000 FT	BEST ENDURANCE AT 5,000 FT	-	BEST ENDURANCE AT 40,000 FT	BEST ENDURANCE AT 35,000 FT	-	BEST ENDURANCE AT 40,000 FT	BEST ENDURANCE AT 40,000 FT
MISSION SPEED (KTAS) REFUEL	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT	400 AT 25,000 FT
REFUELING CAPABLE	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
CREW SIZE	5/6	4	4	2	3	2	4/5	2	3/4	3/4

*LOITER TIME ON STATION IS TRADEABLE FOR INCREASED NUMBER OF AIRCRAFT REQUIRED.

.

13

TABLE 3.2-I MISSION REQUIREMENTS SUMMARY

FIGURE 3.2-1 MISSION PROFILES
prior to the time they reach their missile launch point. Projected increases in both Soviet bomber speed and cruise missile launch ranges will require an increase in the minimum threat warning distance even when projected improvements in carrier fighter and air-to-air missile performance are incorporated in the analysis.

In order to provide increased warning over a larger threat sector, a combination of improved radar detection range and/or increased orbit number and radius is required. As shown in Figure 3.2.1-1, there is a definite design advantage in employing an operating altitude of approximately 40,000 ft. which increases the radar line of sight against a target at 1,000 ft. to 285 NM. When the expected target altitude is considered, a minimum of three orbits at 350 NM are required to provide sufficient warning over the threat sector.

Continuous maintenance of an increased number of orbits at longer ranges with the same number of aircraft requires an increase in overall reliability, utilization rate, cruise velocity, and endurance.

With an overall mission reliability of .85 and a reserve factor of 10%, six mission capable aircraft will be available to maintain the three AEW orbits. With projected technological advances, these aircraft should have a cruise velocity of at least 400 knots and be available on an average of 16 hours/day. As shown in Figure 3.2.1-2, these improvements in utilization rate and cruise velocity result in a minimum requirement of six hours on-station endurance.

The AAW, ESM, and $C^{3}I$ missions were determined to be logical derivatives of the AEW mission because of the position of the AEW aircraft. These missions, which were approved as part of Task I, require no additional performance from the AEW aircraft.

3.2.2 ASW MISSION

ASW aircraft contribute to the survival of the carrier battle group by providing initial detection and prosecution of submarine threats and by acting in a pouncer role where deck-launched ASW aircraft assist other ASW units in the prosecution of submarine contacts. The projected increase in cruise missile launch range requires a commensurate increase in the range at which these submarines must be detected and prosecuted.

To provide this extended ASW coverage, an increased number of orbits will be required even if the threat sector is not expected to increase. With the expected detection performance of the ASW sensors, a minimum of five orbits at 350 NM will be required to provide sufficient coverage using projected Naval ASW tactics and screen spacings. In addition to these station keeping requirements, three reserve aircraft are required in the reactive pouncer role to enhance the total ASW screen performance.

Improved aircraft performance will be required to meet these increased requirements without increasing the number of available aircraft. Of

- ALTITUDE AND RADAR DETECTION CAPABILITY MUST BE MATCHED
 - TARGET CHARACTERISTICS
 - RADAR PERFORMANCE
 - RADAR HORIZON
 - ORBIT SEPARATION

FIGURE 3.2.1-2 AEW TIME ON STATION DETERMINATION

the 20 ASW aircraft available aboard a two carrier battle group, 13 mission capable aircraft will be continuously available when the expected aircraft reliability of 0.85 is achieved at a 95% confidence level and 10% of the total aircraft available (2 in this case) are held in reserve. With three of those aircraft reserved for pouncer duty, ten aircraft will be available to provide continuous ASW barrier coverage. As shown in Figure 3.2.2-1, the ASW aircraft will require a minimum of six hours endurance even with the projected improvement in utilization rate and cruise velocity.

The ASUW and MIW mission requirements are derivative missions for today's ASW variants. Since the requirements for these missions were less stringent than the ASW requirement, it was assumed that they would continue to be derivative missions.

3.2.3 EW MISSION

The EW aircraft contribute to the effectiveness of the carrier battle group by providing ECM coverage for both offensive missions and fleet defense postures. Of these two areas, the offensive mission support was found to be the most stringent in terms of mission requirements. For effective participation in the 1990's carrier strike group, the EW aircraft should be compatible with other strike aircraft in terms of cruise speed, cruise altitude, and mission radius. The projected attack aircraft will have a mission radius of over 800 NM and cruise at over 35,000 ft. with a high subsonic cruise speed. To support this mission the EW aircraft should have as a minimum an unrefueled capability of holding for two hours at 650 NM and have cruise profiles similar to the attack aircraft.

3.2.4 TANKER MISSION

The role of the future tanker aircraft in supporting carrier battle group operations should remain much the same as that of today. However, the extended AAW posture will increase the offload requirements by as much as two to three times. A single tanker will be required to keep as many as three F-14s on extended CAP station for over six hours. This will require a 2.5 hour hold at 200 NM with a 25,000 lb. offload. Tanking operations should be conducted at over 25,000 ft. with a minimum refueling speed of 400 knots. Since all MPSNA variants will be refueling capable, they will also be required to maintain this speed and altitude for refueling.

3.2.5 COD MISSION

The COD aircraft improves carrier effectiveness and efficiency by delivering time sensitive cargo and personnel to a carrier battle group operating in any location worldwide. Based on island hopping and distance requirements in the Indian Ocean area, a mission range of approximately 2,100 NM with a 15,000 lb. payload is required. In order to remain compatible with refueling aircraft, an operating altitude of over 25,000 ft. with a cruise speed of 400 knots is required. High

	NEW ASW	
MAXIMUM AIRCRAFT	20	20
RESERVE AIRCRAFT (10%)	. 2	
POOL AIRCRAFT	18	
RELIABILITY (95% CONFIDENCE)	.85	
MISSION CAPABLE AIRCRAFT	13	/DAY
POUNCER AIRCRAFT	3	É 16 10 AIRCRAFT
STATION-KEEPING AIRCRAFT	10	ATE
UTILIZATION RATE (HRS/DAY)	16	NO 14
CRUISE SPEED (KTS)	400	IIV
BLOCK SPEED (KTS)	350	ITIL
ALTITUDE (FT)	5000	
STATION RANGE (NM)	350	
ORBITS	· 5	10
MINIMUM TIME ON STATION (HRS)	6.0	2 4 6 8 10 TIME ON STATION (HRS)

FIGURE 3.2.2-1 ASW TIME ON STATION DETERMINATION

cruise speeds and cruise altitudes will also reduce transit time, extend range, and increase efficiency.

3.2.6 RELATIVE MISSION RANKING

The ten approved MPSNA missions were ranked according to three criteria to identify the most critical mission areas. Those missions which directly support the offensive role of the carrier battle group were ranked highest. Next in importance were the missions which contribute to defensive postures. The lowest priority was assigned to those missions which are neither offensive nor defensive but which help to support the carrier in terms of effectiveness and efficiency.

Table 3.2.6-I shows the relative ranking of the MPSNA missions. The AEW mission area was chosen as the most critical because of the number of mission areas in which it has a significant role and because of the increases in performance over current aircraft which would be gained through a new design.

3.2.7 CONFIGURATION OPTIONS

Two configurations for the MPSNA were to be considered as part of this study. The first configuration was to be a full multimission airplane capable of performing a diverse set of missions. The second design option was to use the most critical mission area as the primary design driver and assess the resulting aircraft performance capabilities in the other mission areas. Table 3.2.7-I shows an initial qualitative assessment of these configurations.

3.2.8 FIGURES OF MERIT

The primary figures of merit selected for this study were takeoff gross weight, deck spot size per aircraft, and number of aircraft required. The first two parameters were chosen for design level evaluation where takeoff gross weight is indicative of the cost of aircraft, and deck spot size per aircraft is a measure of the amount of carrier deck space utilized. Additional first order functions of takeoff gross weight and propulsion system selection are fuel burn, acquisition, and life cycle cost per aircraft. The number of aircraft required is used to make an overall system level evaluation of total systems cost and deck space requirements.

3.2.9 MARKET POTENTIAL

The market potential for the MPSNA aircraft is shown in Table 3.2.9-I and includes the aircraft required for the operational deployment of 15 carriers plus the anticipated requirements for replacement air groups and attrition. As discussed in the mission requirements section, the ASUW, MIW, ESM, C³I, and AAW missions are considered derivatives of the primary support missions and do not produce additional aircraft requirements. As a point of departure, a one-for-one replacement was assumed. The final market potential for each configuration will be

	the second s		
	PRIORITY 1	PRIORITY 2	PRIORITY 3
MISSION	DIRECTLY SUPPORTS CARRIERS OFFENSIVE ROLE	ENHANCES PRESERVATION OF RESOURCES	IMPROVES CARRIER EFFECTIVENESS AND EFFICIENCY
- AEW	X	x	
ASW	x	х	·.
ASUW	x	X	
MIW		X	
COD			x
AAW		x	
EW	x		
TANKER	. х		
ESM		x	•
c ³ I	x		

ALL MISSIONS LISTED ARE ESSENTIAL TO EFFECTIVE CARRIER BATTLE GROUP OPERATION.

TABLE 3.2.6-I RELATIVE MISSION RANKING

21

.

		CUR	RENT AI	RCRAFT		REPLACEMENT AIRCRAFT		
MISSIONS	E-2C	S-3A	C-2A	EA-6B	KA-6D	MULTI-MISSION AIRCRAFT (MPSNA)	DERIVATIVE CONFIGURATION 1	
AEW	Х					x	X	
ASW		х				x	LIMITED	
ASUW		x				x	LIMITED	
MIW		х				x	LIMITED	
COD		х	х			x	LIMITED	
AAW	х					x	X	
EW				x		. X	X	
TANKER		x			х	x	LIMITED	
ESM	x	х		x		x	x	
c ³ I	x	x		х		x	x	

TABLE 3.2.7-I NAVY SUPPORT AIRCRAFT MISSION CAPABILITIES

-

22

-

MISSION	OPERATIONAL DEPLOYMENT (1)	REPLACEMENT AIR GROUP (RAG) (2)	PIPELINE (3)	ATTRITION(4)	TOTAL LIFE CYCLE PROCUREMENT
AEW	75	19	11	. 34	139
TANKER	82	21	12	37	152
ASW	128	32	19	58	237
EW	60	15	9	27	111
COD			2	7	
TOTAL	360	91	53	163	667

(1) 15 CARRIER FLEET

(2) 25% OF OPERATIONAL DEPLOYMENT

(3) 15% OF OPERATIONAL DEPLOYMENT

(4) 45% OF OPERATIONAL DEPLOYMENT BASED ON 3% ATTRITION PER YEAR FOR 15 YEARS

 $^{\rm NO}_{\rm SS}$ NOTES:

- THE ASUW, MIW, ESM, C³I, AND AAW MISSIONS ARE CONSIDERED DERIVATIVES OF THE PRIMARY SUPPORT MISSIONS
- INCLUDES ONLY U.S. NAVY PROCUREMENT
- SOME FOREIGN POTENTIAL FOR V/STOL
- AIRCRAFT REPLACED ON A ONE-FOR-ONE BASIS. QUANTITIES WILL BE ADJUSTED BASED ON FINAL PERFORMANCE DATA.

TABLE 3,2.9-I MARKET POTENTIAL - 1993 FLEET PROJECTION

adjusted to account for differences in aircraft performance among the six candidate configurations. For instance, a higher performance aircraft will require fewer acquisitions.

3.3 ASSUMPTIONS AND GUIDELINES

The following sections present some of the aircraft design parameters and propulsion selection considerations appropriate to the technology level that should be available in the mid- 1990's.

3.3.1 TECHNOLOGY AVAILABILITY

The aerodynamic technology level used in this study is consistent with the mid-1990's introduction of this aircraft into naval service. Use of supercritical airfoil technology and the projected gains in drag divergence mach number are presented in Figure 4.4-1. Advances in laminar flow research will allow aircraft to be designed with transition to turbulent flow delayed past the 50% chord point. For this study a transition location of 30% was assumed. The level of excrescence drag used is 12% to 16%, including antennas. Conformal radar antennas are also used.

A technology availability date of 1990 allows use of advanced composite materials for primary structural components, with an estimated structures weight reduction of 17 to 19% compared to conventional aluminum construction.

3.3.2 AIRCRAFT DESIGN PARAMETERS

All aircraft performance computations are consistent with normal conceptual design practice. Figure 3.3.2-1 lists the major groundrules and assumptions used in aircraft sizing and performance calculations. Takeoff and landing criteria used in sizing the configurations is presented in Figures 3.3.2-2 and 3.3.2-3, respectively.

3.3.3 PROPULSION SELECTION CONSIDERATIONS

An initial engine survey, which was generated prior to starting the MPSNA-MAPS effort, is presented in Figure 3.3.3-1. From other information it was obvious that the Allison and Rolls Royce engines were not of competitive state of the art. Therefore, the initial conclusions were that the General Electric UDF and Pratt and Whitney/Hamilton Standard counter rotating propfans were competitive propfan engines and that the Pratt and Whitney turbofan engine was representative of turbofan state of the art. • RESERVE FUEL: 20 MINUTES SEA LEVEL ENDURANCE PLUS 5 PERCENT OF INITIAL FUEL

- 5 PERCENT FUEL FLOW CONSERVATISM
- FUSELAGE SHAPE PARAMETERS
 - NOSE FINENESS RATIO: 1.5 TO 1
 - TAIL FINENESS RATIO: 3 TO 1
 - MAIN BODY CONSTANT CIRCULAR CROSS-SECTION
- SUPERCRITICAL AIRFOIL TECHNOLOGY
- EXCRESCENCE DRAG FACTOR: 12 TO 16 PERCENT (INCLUDES ANTENNAS)
- NATURAL LAMINAR FLOW: 30 PERCENT CHORD
- CONFORMAL RADAR

FIGURE 3.3.2-1 SIZING GROUND RULES AND ASSUMPTIONS

ATMOSPHERIC CONDITIONS: - 90°F/95 PERCENT RELATIVE HUMIDITY AT SEA LEVEL

WIND OVER DECK: - ZERO WIND

CATAPULT CAPABILITY: - MINIMUM C-7 AS ON CV61 AND CV62 (NOMINAL STROKE 253 FEET).

LIFTOFF SPEED:

- NOT LESS THAN 110 PERCENT OF THE SPEED FOR LEVEL FLIGHT AT 90 PERCENT CLMAX, POWER ON, IN GROUND EFFECT (MIL-M-85025A).

- NOT LESS THAN V_{MII} (MIL-M-85025A)

- NOT LESS THAN 105 PERCENT V_{MCA} (MIL-M-85025A).

- NOT LESS THAN SPEED FOR 0.5 PERCENT CLIMB GRADIENT IN THE TAKEOFF CONFIGURATION, OUT OF GROUND EFFECT WITH CRITICAL ENGINE INOPERATIVE (MIL-C-005011B).

CLIMBOUT SPEED:

- BEST CLIMB GRADIENT SPEED OUT OF GROUND EFFECT WITH CRITICAL ENGINE INOPERATIVE (PROPELLER FEATHERED IF APPLICABLE) (MIL-M-85025).
- NOT LESS THAN 120 PERCENT POWER-OFF STALL SPEED (MIL-M-85025A).

- NOT LESS THAN 110 PERCENT V_{MCA} (MIL-M-85025A)

CLIMBOUT GRADIENT:

- NOT LESS THAN 2.5 PERCENT WITH GEAR UP, FLAPS IN TAKEOFF SETTING, OUT OF GROUND EFFECT WITH CRITICAL ENGINE INOPERATIVE (MIL-C-005011B).
 - NOT LESS THAN 0.5 PERCENT WITH GEAR IN TRANSIT, FLAPS IN TAKEOFF SETTING, OUT OF GROUND EFFECT WITH CRITICAL ENGINE INOPERATIVE (MIL-C-005011B).

FIGURE 3.3.2-2 PERFORMANCE REQUIREMENTS (TAKEOFF)

ATMOSPHERIC CONDITIONS: - 90°F/95 PERCENT RELATIVE HUMIDITY AT SEA LEVEL.

WIND OVER DECK: - ZERO WIND

APPROACH GRADIENT: - 4 DEGREES DESCENT PATH GRADIENT

- APPROACH SPEED: NOT LESS THAN 105 PERCENT V_{PAMIN} (V_{PAMIN} IS 110 PERCENT V_{SPA} AND NOT LESS THAN V_{SPA} + 10 KEAS) -(MIL-M-85025A, MIL-F-8785C).
 - NOT LESS THAN V_{MCA} AT WAVEOFF POWER.

TOUCHDOWN SPEED: - SAME AS APPROACH SPEED.

LANDING WEIGHT: - GREATER THAN OEW AND PAYLOAD PLUS FUEL RESERVE.

- MUST NOT EXCEED ARRESTING GEAR ENERGY LIMITS.

WAVEOFF CAPABILITY: - MAINTAIN AT LEAST 2.1 CLIMB GRADIENT POTENTIAL AT APPROACH SPEED, LANDING CONFIGURATION, CRITICAL ENGINE INOPERATIVE.

ARRESTING GEAR: - TYPE MK7-3 BARRICADE: - TYPE MK7-2

FIGURE 3,3,2-3 PERFORMANCE REQUIREMENTS (LANDING)

.

3.3.3.1 **PROPULSION SELECTIONS**

As noted above, the GE-36-A16 unducted fan was selected as a propfan along with the Pratt and Whitney STS 742/ 743* propfan with an inline differential planetary counter rotational gearbox. Both engines were examined in the study to find if there were significant differences between the unconventional UDF and the conventional Propfan. The Pratt and Whitney STF 686 turbofan was used as representative of turbofans with the same state of the art as the propfans chosen. Table 3.3.3.1-I presents the cycle characteristics of these engines along with the NASA/GE E^3 engine characteristics as a point of comparison. Figure 3.3.3.1-1 presents these cycle parameters on a figure adopted from the Pratt and Whitney Advanced Propfan Engine Technology report. This figure relates the overall pressure ratio and combustion exit temperature to thrust specific fuel consumption if all the cores were configured for the same class of turbofan.

3.3.3.2 PROPULSION WEIGHTS AND SCALING

Table 3.3.3.2-I presents a summary of the unscaled weights for use in the MPSNA-MAPS study. The only modifications made to engine company supplied data was through use of 8.5 ft. propellers on the scaled STS 742/743 engines. The information used in scaling engines are presented in Figures 3.3.3.2-1 through 3.3.3.2-3. Figure 3.3.3.2-1 presents the General Electric UDF scaling factors and figure 3.3.3.2-2 presents Pratt and Whitney/Hamilton Standard propfan scaling factors. Figure 3.3.3.2.3 presents the Pratt and Whitney turbofan scaling factors.

3.3.3.3 PROPULSION SYSTEM INSTALLATION

Figures 3.3.3.3-1 thru 3.3.3.5 present potential propfan/UDF and turbofan installation configurations. Specifically they are:

- o Wing Mounted Turbofan, (Figure 3.3.3.3-1)
- o Body Pylon Mounted Turbofan, (Figure 3.3.3.3-2)
- o Body Pylon Mounted UDF, (Figure 3.3.3.3-3)
- o Propfan (Pusher), Wing Mounted and Body Pylon Mounted, (Figure 3.3.3.4)
- Propfan (Tractor), Wing Mounted and Body Pylon Mounted, (Figure 3.3.3.3-5)

Engine installed performance is based on the constant built in bleed rate of 3.77% in the STS 742 and STS 743 engines; a constant inlet recovery of 99.8% for both engines with the STS-742 also reflecting the tractor

*The initial screening was done using the STS679 which is the same cycle as the STS 742/743. The latter uses a dedicated continuous bleed for aircraft systems, thereby minimizing the effects on aircraft performance.

DT/86-234 1.1/H8

	NASA E ³ (G.E.)	STF 686*	GE-36 UDF	STS-679**
SLS THRUST CLASS KN (LB)	162.4 (36.5K)	84.5 (19K)	87.2(19.6K)	89.4 (20.1K)
OVERALL PRESSURE RATIO	35.8	40.8	42.4	34.2
LP COMPRESSOR RATIO	1.61	2.2	6.68	5.4
HP COMPRESSOR RATIO	22.3	17.0	6.43	6.43
BY-PASS RATIO	6.9	7.0	N/A	N/A
FAN PRESSURE RATIO	1.61	1.66	N/A	N/A
COMB.EXIT TEMP °C (°F)	1246 (2274)	1206 (2203)	1226 (2240)	1274 (2326)

MXCR 35K'

*90% MXCR

**REPRESENTATIVE OF sts-742/-743

TABLE 3.3.3.1-I ENGINE CYCLE SUMMARY

FIGURE 3.3.3.1-1 ENGINE STATE OF THE ART COMPARISON

.

ENGINE DESTINATION	STS 686	STS 742 TRACTOR	STS 743 PUSHER	UDF
SIZE (THRUST @ SLS STD)	8776 (19347)	9550 (21055)	9625 (21219)	8366 (18444)
ENGINE WEIGHT	1678 (3700)	1041 (2295)	1116 (2460)	856 (1887)
GEAR BOX WEIGHT		415 (915)	429 (945)	
PROPELLER WEIGHT		393 (867)	599 (1320)	958 (2111)
PROPELLER DIA		9.75 FT **	11.6 FT **	10 FT
NACELLE WEIGHT *	794 (1750)	440 (970)	410 (905)	518 (1141)
TOTAL WEIGHT	2472 (5450)	2289 (5047)	2554 (5630)	2332 (5139)

* INCLUDING EBU, MOUNTS AND CONTINGENCY

** DIA. REQUIRED TO OBTAIN 8.5' DIA. AT SCALED SIZE

TABLE 3.3.3.2-1PROPULSION SYSTEM WEIGHT (UNSCALED)

٠

1

1.

ι ω ÷.

.

Sase size rearbox output torque @ sea level taken f power STD. =13°C (+25°F) day, Mach 0.3 = 74,662 newton-meters (55,068 ft-lb) for single rotation and 74,492 newton-meters (54,943 ft-lb) for counter rotation

FIGURE 3.3.3.2-2 PROPFAN SCALING FACTORS

*Base engine takeoff thrust = 86069 N (19350 Ib) @ SLS - 13°C (+25°F) day

FIGURE 3.3.3.2-3 TURBOFAN SCALING FACTORS

<u>ω</u>5

FIGURE 3.3.3.3-1 WING MOUNTED TURBOFAN

FIGURE 3.3.3.3-2 BODY PYLON MOUNTED TURBOFAN

÷

-8

4

FIGURE 3.3.3.3-3 BODY PYLON MOUNTED UDF

٠

.

.

x

FIGURE 3.3.3.3-4 PROPFAN (PUSHER), WING MOUNTED AND BODY PYLON MOUNTED

L.H. SIDE VIEN

FIGURE 3.3.3.3-5 PROPFAN (TRACTOR), WING MOUNTED & BODY PYLON MOUNTED

configuration inlet propeller boost as built into the STS-742 computer deck; and all engines, regardless of scale, had shaft power extraction as follows:

Rati	ng Code		Altitude	Horsepower Extraction/eng
50 50 40, 40, 40,	35, power 35, power 35, power	hooks hooks hooks	SL 5000 & 10000 SL 5000 10000-45000	181.5 169.0 126 135 145

The STF686 and the GE-36-22B UDF engines had full scale bleed rates of 0.333 lb/sec, the inlet/ram recovery of 99.8% constant and the same horsepower extraction as the STS 742/743 engines.

THIS PAGE LEFT INTENTIONALLY BLANK

Task II of the Multiple Purpose Subsonic Naval Aircraft (MPSNA) Multiple Applications Program Study (MAPS) was concerned with the following aspects:

- o Takeoff and landing limitations
- o Engine sizing criteria
- o Loiter altitude sensitivity
- o Wing sweep selection
- o Breakdown of weights of the major systems
- o Aircraft sizing
- o Configuration selections for vehicle optimization and propulsion trades
- o Base weight breakdown for each mission and type of propulsion
- o Key figures of merit

4.1 TAKEOFF AND LANDING LIMITATIONS

The minimum deadload endspeeds as a function of gross weight that were used in the analysis were defined by the C-7 catapult capabilities. These data were used to determine required takeoff lift coefficients as a function of wing loading and gross weight. A takeoff lift coefficient of 1.85 was selected as attainable with a moderately complex flap system (double-slotted trailing edge flap with a leading edge device). Figure 4.1-1 presents takeoff speeds for various wing areas and gross weights at a takeoff lift coefficient of 1.85. The C-7 catapult's capability at several wind over deck (WOD) levels is also shown. From this figure, the limiting wing loading to meet the zero wind over deck capability can be obtained, as shown in Figure 4.1-2.

Approach and landing speeds are limited by the arresting gear energy limits of the type MK7-3 arresting gear. The limiting speeds as a function of gross weight are shown in Figure 4.1-3. An approach velocity of 110 knots true airspeed was selected. This allows an 80,000 lb. maximum gross weight aircraft to land at 80% of maximum gross weight (64,000 lb.) with zero WOD and also provides more reasonable vertical tail size requirements for an engine-out waveoff.

4.2 ENGINE SIZING CRITERIA

For the purpose of aircraft sizing, engine data (thrust level and TSFC) and physical engine size were scaled for the worst case of either takeoff or a mission dependent cruise condition. For takeoff, an airplane thrust/weight ratio was determined that enabled the aircraft to climb, flaps down, with one engine inoperative at a climb gradient of at least 2.5%. Figure 4.2-1 shows the single engine thrust/weight ratio required for 2.5% and 3% climb gradients. Since flaps down drag and control drag are very preliminary estimates, an airplane thrust/weight ratio of 0.4 was selected to provide conservatism. The mission dependent cruise conditions used for sizing were 360 KTAS at 40,000 ft. (AEW requirement) and 400 KTAS at 25,000 ft. (Tanker requirement). Five

TRUE AIRSPEED - KTS

FIGURE 4.1-2 WING LOADING LIMITS FOR CATAPULT TAKEOFF

APPROACH AND LANDING SPEED SELECTION

• CRITERIA

ZERO WIND OVER DECK MAXIMUM LANDING WEIGHT = 80% OF GROSS WEIGHT (MAXIMUM ALLOWABLE GROSS WEIGHT = 80,000 LBS.)

FIGURE 4.1-3 ARRESTING GEAR LIMITS

45 - hundred KTAS sea level dash was considered a desirable condition but not a sizing requirement.

4.3 LOITER ALTITUDE SENSITIVITY

The sensitivity of aircraft gross weight and size to loiter altitude was determined by sizing aircraft to the AEW mission. Wing loadings were optimized at each loiter altitude in order to obtain a minimum gross weight. The engines were sized based on the worst case of either 0.4 thrust/weight at takeoff or 360 KTAS at the loiter altitude. The results are shown in Figure 4.3-1. The break in the curves occurs where the engine sizing constraint changes from takeoff to cruise. There is a minimal gross weight penalty for loiter altitudes up to 41,000 ft. for the propfan and 42,000 ft. for the turbofan. Above these altitudes the gross weight penalty is severe. A design loiter altitude of 40,000 ft. can be achieved with a minimal gross weight penalty for both engine types.

4.4 WING SWEEP SELECTION

Representative values of camber (1.5%) and taper ratio (0.4) were selected for the MPSNA study. Wing thickness ratio was set at 15% at the root and 12% at the tip. The spanwise thickness distribution is assumed to vary in a manner such that the wing critical Mach number can be defined based on a thickness ratio of 12%. Supercritical airfoil technology was used in order to push critical Mach numbers beyond the airspeed and altitude ranges of the design missions. Critical Mach number as a function of lift coefficient is presented for various wing sweep angles in Figure 4.4-1. Also shown are the speeds required at lift coefficients representative of the various flight regimes. A wing quarter chord sweep of 20° was chosen for the design study to meet speed requirements and maintain conservatism.

4.5 DISPLAY AND CONTROL SYSTEM

An aid used in sizing the operator work station was the Boeing "Universal Display and Control System" (UDACS) crew station, as shown in Figure 4.5-1. The MPSNA MAPS aircraft ASW/AEW mission performance is enhanced by the use of this console. Advanced integrated panel display devices are used in conjunction with high technology integrated circuits and systems in the console. Each individual UDACS station can be electronically reconfigured in real time for full display and control of any mission function. Operator controls, display formats, and symbology are programmable, and the image displays are compatible with all sensor video formats.

4.6 FUSELAGE SIZING

Considerations used in determining the required fuselage cross section dimensions for the six configurations are discussed below.

AEW DESIGN MISSION
 SCALED ENGINES

• OPTIMUM WING LOADING UP TO 110 PSF

FIGURE 4.4-1 WING SWEEP SELECTION

47

•

4.6.1 ASW/AEW MISSION

For aircraft performing ASW/AEW missions, a fuselage cross section of 8.5 ft. diameter was selected. A comfortable standing overhead clearance for crew members is provided with a 78 in. aisle height to reduce fatigue on long endurance missions. Freedom of movement for the crew during mission rest periods and entry or egress is a result of an aisle width of 18 to 20 in. Using the UDACS console, a minimum crew compartment cross section was determined assuming a pressurized circular contour with 4 in. frame thickness, as shown in Figure 4.6.1-1.

4.6.2 COD/TANKER MISSION

For aircraft performing the COD mission, a 9.5 ft. diameter was selected based upon the standardized 463L cargo pallet. Figure 4.6.2-1 presents a fuselage cross section. Commonality between the crew compartment and cargo compartment flooring is maintained by assuming a floor to ceiling height of 6.5 ft.

4.7 EQUIPMENT AND PAYLOAD

The equipment and payloads used for each mission variant to accomplish the projected mission functions is presented. A comparison with current Navy systems is also shown.

4.7.1 MAJOR SYSTEM CHANGES

In order to provide updated capability, equipment was added to the MPSNA-MAPS vehicle that is not presently on the E-2 vehicle. Table 4.7.1-I summarizes the major system changes assumed for the MPSNA vehicle and the additional weight to accommodate a six-man crew with work stations.

4.7.2 FIXED EQUIPMENT/NON-EXPENDABLE USEFUL LOAD

Table 4.7.2-I presents a listing of common core weights, the fixed equipment, and the non-expendable useful load that is common to all missions.

4.7.3 MISSION SPECIFIC EQUIPMENT AND PAYLOADS

Table 4.7.3-I lists the mission specific weights. These weights consist of the fixed equipment and payloads which were taken into consideration when sizing the aircraft.

4.7.4 PAYLOAD REQUIREMENTS

A summary of the previous charts is presented in Table 4.7.4-I. Payloads are defined for each mission based on projected mission requirements and past studies. Improved payload and mission capability is noted for the MPSNA-MAPS designs over the existing aircraft they replace. Payload is defined to include mission specific equipment,

.,

49

.

	h	EIGHTS, LBS	
· · ·	<u>E-2</u>	MPSNA	$\underline{\Delta}$
COMPUTER / PROCESSORS DISPLAY GROUP (1) FURNISHINGS & SEATS (2) AIR CONDITIONING & COOLING CREW & EQUIPMENT MISSILE LAUNCHERS & MISSILES	2050 1029 846 804 1043	1500 1200 1680 1125 1500 1120	-550 + 171 834 321 457 1120
MPSNA UNIQUE AVIONICS & EQUIPMENT IR / VISUAL / KUBAND WEAPONS DELIVERY FLEET SATELLITE COMMUNICATIONS JTIDS MILSTAR FLIGHT DATA RECORDER VOR / ILS / MARKER BEACON GLOBAL POSITIONING SYSTEM INSTALLATION SEARCH AND TRACK RADAR (3)	6326	(2410) 550 200 70 95 700 20 125 25 625 2970	-3356
TOTAL			+ 1407

(1) E-2: THREE RADAR STATIONS MPSNA: FOUR INTEGRATED DISPLAY SYSTEMS

- (2) MPSNA: SIX-MAN CREW WITH EJECTION SEATS
- (3) ROTODOME UHF (E-2) S-BAND CONFORMAL (MPSNA)

TABLE 4.7.1-I MAJOR SYSTEM CHANGES FOR IMPROVED CAPABILITY AEW

MPSNA MAPS 1-25

	WEIGHT LBS
FIXED EOUIPMENT	
AVIONICS	
UHF/VHF RADIOS & DATA LINK	36
HF RADIOS & DATA LINK	263
INTERCOMMUNICATIONS SET	29
SECURE SPEECH & DATA SET	50
FLEET SATELLITE COMMUNICATIONS	70
JTIDS	95
FLIGHT DATA RECORDER	20
RADAR ALTIMETER/ALTITUDE WARNING	28
TACAN	38
AUTOMATIC CARRIER LANDING SYSTEM	20
HEADING ATTITUDE REFERENCE SYSTEM	18
CARRIER AIRCRAFT INERTIAL NAV SYSTEM	96
AIR DATA COMPUTER	16
IFF TRANSPONDER & INTERROGATOR	105
DOPPLER RADAR	85
MARKER BEACON	125
AUTOMATIC DIRECTION FINDER (OHF/VHF)	8
	253
	20 400
	403
	(1803)
	220
	224
	2630
FURNISHINGS & FOLIPMENT (PU OT / COPILOT FIFCTION SEATS FTC)	560
AIR CONDITIONING & ANTI-ICING	1437
	20
PLIOT & COPILOT CONSOLES	315
NON-EXPENDABLE USEFUL LOAD	2.0
PILOT & COPILOT & EQUIPMENT	500
	56
OIL	125
τοται	9234

TABLE 4.7.2-I FIXED EQUIPMENT/NON-EXPENDABLE USEFUL LOAD (COMMON TO ALL MISSIONS) MPSNA MAPS 1 26
· · ·		<u>1</u>	WEIGHT-LB	<u>s</u>	
	AEW	ASW	TANKER	COD	ECM
STRUCTURE					
CARGO RAMP		1		960	
SONOBUOY STRUCTURE MODULE		1232			
WEAPONS BAY "DOG HOUSE"		400		0(0	
SUBTOTAL - STRUCTURE	0	1032	U	960	U
FIXED FOULPMENT					
AVIONICS					
DEFENSIVE ACTIVE COUNTERMEASURES	650	650			650
SEARCH & TRACK RADAR & PROVISIONS	2970				
INFRARED RADAR SYSTEM	550	550			
WEATHER RADAR SYSTEM		200	200	200	200
MAGNETIC ANOMALY SYSTEM		250			
SONOBUOY REFERENCE SYSTEM		100			
WEAPONS DELIVERY SYSTEM	40	40			40
INTERFACE UNITS	160	160			160
MILSTAR	700	700	2.		700
(AVIONICS SUBTOTAL)	(5070)	(2650)	(200)	(200)	(1750)
CREW CONSOLE #1	300				300
CREW CONSOLE #2	300				300
CREW CONSOLE #3	300	300			300
CREW CONSOLE #4	300	300			
EJECTION SEATS & PROV-CREW (200 LBS EA)	008 (400			600
MISC FURNISHINGS - CREW (80 LBS EA)	320	160		050	240
CARGO HANDLING EQUIPMENT	7000	2010		850	
SUBTOTAL - FIXED EQUIPMENT	7390	3810	200	1050	3490
NON-EXPENDABLE USEFUL LOAD					
CREW & FOULTPMENT (250 LBS FA)	1000	500			750
AAM LAUNCHERS	344	500			344
HARPOON MISSILES MOUNTING PROVISIONS		85			0.4
INTERNAL WEAPONS MOUNTING PROVISIONS		170			
WEAPONS BAY FUEL TANKS & PROVISIONS			1500		
EXTERNAL REFUEL POD			900		
SUBTOTAL - NON-EXPENDABLE USEFUL LOAD	1344	755	2400		1094
TOTAL - MISSION SPECIFIC EQUIPMENT	8734	6197	2600	2010	4584
/ ATD-TO-ATD MICCIIDO	776	•			776
A MY-/6 TODEDOES	770	3200			//0
4 MR-40 TORIEDOED		1515			
CARGO		2323		(3)	
TRANSFERABLE FUEL			(2)	(3)	
SUBTOTAL - PAYLOAD	776	4715(1) (2)	(3)	776
TOTAL MINIMIM MISSION SPECIFIC FOUTP & P/L	9510	10912	2600+	VAR	5360
toing marinon mission breditio by our & F/L	2210	10/14	FUEL OFF	LOAD	0060
TOTAL - FULL CAPABILITY MISSION SPECIFIC EQUIP & P/L	9510	14780	27600	17010	5360
(1) INCLUDING 4 MK-50 TORPEDOES. FOR MAX					
	ASW PHAS	SE II ST	UDY, P/L=	8583 LBS	

(3) VARIABLE FOR MINIMUM VEHICLE; 15000 LBS FOR FULL COD MISSION

TABLE 4.7.3-I, MPSNA ESTIMATED MINIMUM MISSION SPECIFIC EQUIPMENT & PAYLOADS

MISSION	TYPE PAYLOAD	<u>COMMON</u> <u>FIXED</u> EQUIPMENT	MISSION SPECIFIC EQUIPMENT (EQUIPMENT & AVIONICS <u>& CREW)</u>	<u>TOTAL</u> EQUIPMENT	EXPENDABLE <u>PAYLOAD</u>	TOTAL EQUIPMENT PLUS <u>PAYLOAD</u>
AEW AAW ASM C ³ I	EQUIPMENT TO HAVE INCREASED CAPABILITY OVER E-2C. DEFENSIVE CAPABILITY TO BE PROVIDED.	9,234	8,734	17,968	776	18,744
ASW ASUW MIW	EQUIPMENT TO HAVE INCREASED CAPABILITY OVER S-3A. ARMAMENT PROVISIONS INCREASED.	9,234	6,197	15,431	8,580 (1) 4,715 (2)	24,011 20,146
COD	IMPROVED C-2 CAPABILITY. (MAX. CARGO)	9,234	2,010	11,244	15,000	26,244
etti EW	EQUIPMENT TO HAVE INCREASED CAPABILITY OVER EA-6B. ARMAMENT PROVISIONS INCREASED.	9,234	4,584	13,818	776 (3)	14,594
TANKER	MAX. FUEL OFFLOAD, IMPROVED KA-6D CAPABILITY.	9,234	2,600	11,834	25,000	36,834

* THESE PAYLOADS INCLUDE MISSION SPECIFIC EQUIPMENT, EXPENDABLE STORES AND INSTALLATION PROVISIONS, MISSION SPECIFIC CREW AND FURNISHINGS REQUIREMENTS. ALL UNITS SHOWN ARE POUNDS.

(1) FULL MULTI-MISSION 2 MK 56 MINES + 2 HARPOONS + 5 SONOBUOYS

(2) PARTIAL MULTI-MNISSION 4 TORPEDOES + SONOBUOYS

(3) AIR-TO-AIR MISSILES

.

TABLE 4.7.4-I SUMMARY OF EQUIPMENT & PAYLOAD WEIGHTS VERSUS MISSION

.

expendable stores and installation provisions, and mission specific crew and furnishings requirements.

4.8 PRELIMINARY ESTIMATE - VEHICLE SIZE VS. PAYLOAD

Preliminary estimates of aircraft size variation with payload carried is used to match vehicle size with operational needs. The discussion for the turbofan and the propfan aircraft matching is presented below.

4.8.1 ADVANCED PROPFAN

For the advanced propfan, a total equipment and payload weight of 18,700 lb. representative of an AEW Mission was used. From Figure 4.8.1-1a, an approximation of a minimum vehicle size of 50,000 lb. for the 8.5 ft. diameter fuselage is obtained. Such a weight would permit approximately a 3,300 lb. expendable payload for the ASW mission, assuming an equipment weight of 15,500 lb. A 6.5 ft. diameter fuselage is shown in Figure 4.8.1-1a to show results of previous studies that were conducted.

Figure 4.8.1-1b shows the results of the COD sizing. The chart shows the estimated effect of increasing the fuselage to the 9.5 ft. diameter. A total range of 2,100 NM is used in the COD sizing.

Figure 4.8.1-1c shows the results of the tanker sizing. In order to provide a 25,000 lb. offload, a vehicle of approximately 70,000 lb. will be required. The tanker is sized with a 200 NM radius and a 2.5 hour loiter. The 50,000 lb. tanker aircraft offloads 11,500 lb. of fuel.

The minimum weights for each mission are taken from Figure 4.7.4-1.

4.8.2 ADVANCED TURBOFAN

Using the same guidelines and requirements as used in Section 4.8.1, the aircraft are sized for the advanced turbofan. Figure 4.8.2-1a shows that for the assumed 18,700 lb. of total equipment and payload weight, a vehicle of approximately 57,000 lb. is required for the AEW mission. Figure 4.8.2-1b shows the COD mission sizing. Figure 4.8.2-1C shows that for any given TOGW the larger fuselages will carry less fuel offload than a smaller one. This is due to the larger fuselage being penalized by weight and drag. However, for the smaller fuselage (i.e. 6.5 ft. dia), the maximum fuel capacity limits the TOGW to 50,000 lb. The maximum fuel capacity limits for the 8.5 ft. diameter fuselage allows a maximum TOGW of 80,000 lb. which implies a 77,000 lb tanker will allow the 25,000 lb. offload.

The reasons for the increase in gross weight as the airplane is sized from propfan to turbofan are twofold:

- o Increase in fuel burn rate
- o Weight spiral

FIGURE 4.8.1-1a

FIGURE 4.8.1-1 PRELIMINARY ESTIMATE - VEHICLE SIZE VS. PAYLOAD - ADVANCED PROPFANS - W/S = 100 PSF

FIGURE 4.8.2-1 PRELIMINARY ESTIMATE-VEHICLE SIZE VS. PAYLOAD - ADVANCED TURBOFANS - W/S =100 PSF

сл Сл

4.9 ALTERNATE MISSION CAPABILITY

Using preliminary estimates, alternate mission capabilities were determined. Both turbofans and propfans were used as well as either an 8.5 ft. or a 9.5 ft. diameter fuselage. Data from Figures 4.9-lb and 4.9-lc for both a 56,000 and a 77,000 lb. aircraft equipped with turbofans was extracted and plotted on Figure 4.9-la as loiter vs. radius.

Propfan data was extracted from Figure 4.9-2b and 4.9-2c and plotted on Figure 4.9-2a. All configurations were based on an AEW payload which includes 18,700 lb. of equipment.

4.10 CONFIGURATION SELECTION

The process by which the initial configuration matrix was narrowed down to the final six configurations is presented in the following sections.

4.10.1 CONFIGURATION EVALUATION SUMMARY

The configuration design in Task II of the MPSNA-MAPS study addressed the following configuration concepts:

- o Full multimission configurations
- o Partial multimission configurations

A matrix of 35 potential configurations was evaluated. Primary considerations during final selection of both full and partial multimission configurations were as follows:

- o Wing and propulsion location vs. aerodynamic static margin
- Crew ejection restraints (zero altitude/zero speed ejection for all crew members)
- o Bomb bay and wing box location

The full multimission bomb bay requirements tends to drive the configuration to a high wing in order to avoid wing box/bomb bay interference. This resulted in special problems for the UDF configuration; i.e. the pusher propeller. Sting-wing mounted UDF was considered, however, this results in a forward location of the wing to achieve static balance. The forward location results in the engines extending alongside the pilot station and obstructing pilot visibility. A high wing canard configuration with a sting mounted UDF could meet all multimission requirements but was eliminated due to possible spotting factor problems and high technical risks. A high wing, aft fuselagemounted UDF was considered but discarded due to wing wake/propeller interference. Low wing configurations were considered but to avoid wing box/bomb bay interference, the wing box must be positioned forward of the bomb bay. With the bomb bay positioned near the C.G., the wing box must be considerably forward of the C.G. to keep the wing aerodynamic center near the C.G. The wing sweep must be more than was judged desirable. The resolution of all these considerations and conflicts

would be required before a final UDF configuration could be synthesized. However, due to time restraints a low wing UDF configuration with the wing box located in front of the bomb bay was used to conduct the trade studies. For the high wing configurations, the crew must be located either forward or aft of the wing box to allow zero speed/zero altitude ejection. For the turbofan configuration, the crew was located forward of the wing box. For the propfan configuration the crew was located aft of the wing box. The aft crew location was due to the danger of propeller alignment with the crew and not wing box crew ejection interference.

The partial multimission bomb bay requirements allowed the wing box to be moved higher to provide an under-the-wing bomb bay which permits the bomb bay to be near the center of gravity. The aft engine location for all engines allowed a common propulsion location for performing the propulsion trades.

Based upon these considerations yet still trying the maintain configuration commonality for the propulsion trades, the following configurations were selected:

- o For AEW/ASW with limited bomb bay and COD capabilities, a low wing with common propulsion location for all engines.
- o For the full multimission with large bomb bay and rear loading COD: either a) a conventional high wing for turbofan and tractor propfans, or b) a low wing for UDF.

4.10.2 MULTIMISSION CONFIGURATIONS

Presented here are the composite views of the multimission configurations for the UDF, propfan, and turbofan engines. All three configurations feature a 9.5 ft. diameter fuselage with accommodations for a six-man crew. The AEW mission will use a six-man crew while the ASW will use a four-man crew. AEW antenna accommodations are for 2 ft. x 8 ft. S-band phase arrays in the nose, tail, and both sides of the forward fuselage. The ASW bomb bay is adapted by modifying the COD floor with inverted bomb bay assemblies. Figures 4.10.2-1a through 4.10.2-1c, show multimission UDF, propfan, and turbofan configurations, respectively. Cross-hatched lines on the side view are the 25 ft. hangar bay door height limit. Payloads shown are MK-56 or MK-60 mines internally and with Harpoon missiles and fuel tanks externally. The bomb bay length is sized to accommodate two Harpoon missiles or two MK-56 mines. In the COD configuration, an 88 in. wide by 33 ft. long floor will accommodate three MIL 463L pallets.

4.10.3 PARTIAL MULTIMISSION CONFIGURATIONS

For the AEW/ASW minimum configurations, the 8.5 ft. diameter fuselage is used with accommodations for a four-man crew in ASW configuration and six-man crew for AEW configuration. Figures 4.10.3-1a through 4.10.3-1c show the ASW configurations in which the bomb bay is sized to carry four

GENERAL DIMENSIONS

FUSELAGE LENGTH	70.0	FT
FUSELAGE DIAMETER	9.5	FT
WING SPAN	71.3	FT

GENERAL DIMENSIONS

FUSELAGE LENGTH	70.0	\mathbf{FT}
FUSELAGE DIAMETER	9.5	FT
WING SPAN	69.8	FT

ununu

GENERAL DIMENSIONS

FUSELAGE L	ENGTH	70.0	FT
FUSELAGE D	IAMETER	9.5	FT
WING SPAN		74.8	FT

FIGURE 4.10.2-1a UDF MULTI-MISSION CONFIGURATION

FIGURE 4.10.2-16 PROPFAN MULTI-MISSION CONFIGURATION

FIGURE 4.10.3-1c TURBOFAN ASW (MINIMUM) CONFIGURATION

GENERAL DIMENSIONS

FUSELAGE LENGTH	65.0 FT
FUSELAGE DIAMETER	8.5 FT
WING SPAN	62.33 FT

FIGURE 4.10.3-1b PROPFAN ASW (MINIMUM) CONFIGURATION

FIGURE 4.10.3-1d PROPFAN AEW (MINIMUM) CONFIGURATION

MK-60 torpedoes. The wing stores are shown for an alternate surface strike mission with two Harpoons and two air-to-air missiles. The wing box has been moved above the bottom of the vehicle to accommodate the bomb bay.

Figure 4.10.3-1d shows the AEW minimum configuration with propfans. AEW antenna accommodations are two 2 ft. x 8 ft. S-band side looking, a 4 ft. diameter nose, and 2 ft. diameter tail antennas. Wing hard points may accommodate air-to-air missiles or external fuel tanks.

4.11 CONCEPTUAL WEIGHTS BREAKDOWN

Estimated base weight breakdowns for each mission and propulsion type are presented in the following sections.

4.11.1 PROPFAN

The estimated base weight breakdown for the propfan full multimission configuration is shown in Table 4.11.1-Ia and the partial multimission is shown in Table 4.11.1-Ib. The propulsion weights are taken as the composite average of the STS-679 and the GE-36 (UDF). The final trades (Task III) break out each propulsion system. The structures weights were also a composite average of the UDF and propfan configurations. The final trades (Task III) break out each structures weight separately. Maximum ranges are presented in nautical miles.

4.11.2 TURBOFAN

The estimated base weight breakdown for the turbofan full multimission configuration is shown in Table 4.11.2-Ia. The partial multimission is displayed in Table 4.11.2-Ib.

4.12 FIGURES OF MERIT

A key figure of merit influencing the design activity for Task II was the takeoff gross weight, which was minimized. The results are presented in Table 4.12-I. It should be noted that fuel burn per aircraft, acquisition cost per aircraft, and life cycle cost per aircraft are first order functions of TOGW and propulsion system selection.

The second key figure of merit was the deck spot size of the aircraft. The deck spot values, which are presented in Figure 4.12-II, were calculated by Boeing parametric methods, which are consistent with current Navy practice.

WING		5850					
EMPENNAGE		1600					
BODY		9500					
GEAR		2550					
TOTAL STRUCT	URE	19500					
PROPULSION(1	.)	8700		AEW	ASW	TANKER	COD
STRUCTURES &	PROPULSION	28200		28200	28200	28200	28200
EQUIPMENT &	PAYLOAD '			18700	24000	36800	26200
EXPENDABLE F	AYLOAD (REF C	NLY)		(776)	(8580)	(25000)	(15000)
GROSS WEIGHT	LESS .						
MISSION	FUEL			46900	52200	65100	54400
FUEL				23900	18600	6500	16400
GROSS WEIGHT	:			70800	70800	71600	70800
			MAX RANGE - NM	(5000)	(3800)	(1200)	(3300)
Nome							
NOTES:							
(I) PROPULS	SION*	67/0		BODY GRO	DUP		
ENGINE	& NAC	0/40		FUSELAGE		_	7950
EBU		1900		NUCLEAR	HARDENING	j	660
	,			ADDROUT			490
				AKKESIII	NG HOUK		//0
				SOUND PI	COLLUC		125
TOTAL		8648					9495
	OB 080 (30)	(USED 87	00)				(USED 9500)
EINAL TRADEC	OF STS 6/9 A	ND GE-36 ((UDF),				
PROPULCION C	WILL BREAK (OUT AS SEPA	ARATE				
INDIVISION S	ISTEMS						
TABLE 4.	11.1-Ia EXAM	PLE-FULL	MULTT-MISSION	ESTIMATE	D WETCH	יק (דפחקד)	NC
			HOBIE HEDDEON	LUILINIII		S (IROFFA	uio)
WING		4500					
EMPENNAGE	· .	1600					
BODY		6900					
GEAR		1800					
TOTAL STRUCT	URE	14800					
PROPULSION(1)	7300		AFW	ASW	TANFED	000
STRUCTURES &	PROPULSION	22100		22100	22100	22100	22100
EQUIPMENT &	PAYLOAD			18700	20100	22300	20800
EXPENDABLE P	AYLOAD (REF O	NLY)		(776)	(4715)	(11500)	(0600)
GROSS WEIGHT	LESS	-		(770)	(4713)	11000	
MISSION	FUEL			40800	42200	45400	42000
FUEL				9300	9500	4700	7200
GROSS WEIGHT	•			50100	51700	50100	50100
					34700	20100	50100
			MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
			MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES:			MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>propuls</u>	SION		MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE	SION	5377	MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>propuls</u> Engine Ebu	ION	5377 1900	MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>Propuls</u> Engine Ebu	TION	5377 1900	MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL	IION	5377 1900 7277	MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL	SION	5377 1900 7277 (USED 730	MAX RANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL	SION	5377 1900 7277 (USED 730 AND UDF	MAX RANGE - NM 0) Final	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL *COMPOSITE A	NY FOR STS 679	5377 1900 7277 (USED 730) AND UDF, 5 SEPARATE	MAX RANGE - NM 0) FINAL	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL *COMPOSITE A TRADES WILL PROPULSION	V FOR STS 679 BREAK OUT AS	5377 1900 7277 (USED 730 AND UDF, S SEPARATE	MAX RANGE - NM 0) final	(2700)	(2700)	(1200)	(2100)
NOTES: (1) <u>PROPULS</u> ENGINE EBU TOTAL *COMPOSITE A TRADES WILI PROPULSION	LION AV FOR STS 679 BREAK OUT AS SYSTEMS	5377 1900 7277 (USED 730) AND UDF, 3 SEPARATE	MAX RANGE - NM 0) FINAL	(2700)	(2700)	(1200)	(2100)

TABLE 4.11.1-Ib EXAMPLE-PARTIAL MULTI-MISSION ESTIMATED BASELINE WEIGHTS (PROPFANS)

WING	6300				
EMPENNAGE	1700				
BODY	9500				
GEAR	2800				
TOTAL STRUCTURE	20400				
PROPINISTON(1)	10900	AEW	ASW	TANKER	COD
STRUCTURES & PROPHLSION		31300	31300	31300	31300
FOULDMENT & DAVLOAD		18700	24000	36800	26200
EXPENDABLE PAYLOAD (REF ONLY)		(776)	(8570)	(25000)	(15000)
GROSS WEIGHT LESS					
MISSION FUEL		50000	55300	68100	57500
FIIFI		28100	21700	8900	19000
CDOCC WEICHT		77000	77000	77000	77000
GRUSS WEIGHT	MAX RANGE N	M (4500)	(3300)	(1200)	(2900)

NOTE (1)	S: <u>PROPULSION</u> ENGINE & NAC EBU	8986 1900		
	TOTAL	10886 (USED 10900)		

TABLE 4.11.2-Ia EXAMPLE-FULL MULTI-MISSION ESTIMATED BASELINE WEIGHTS (TURBOFANS)

WING	4900				
EMPENNAGE	1800				
BODY	6900				
GEAR	2000				
TOTAL STRUCTURE	15600				
PROPULSION(1)	9200	AEW	ASW	TANKER	COD
STRUCTURES & PROPULSION	24800	24800	24800	24800	24800
EQUIPMENT & PAYLOAD		18700	20100	26300	23200
EXPENDABLE PAYLOAD (REF ONLY)		(776)	(4715)	(14500)	(12000)
GROSS WEIGHT LESS		•			
MISSION FUEL		43500	44900	51100	4800
FILEI.		13500	14000	6000	10500
CROSS WEIGHT		57000	58900	57100	58500
	MAX KANGE - NM	(2700)	(2700)	(1200)	(2100)
NOTES:					
(1) PROPULSION					
ENGINE	7296				
EBU	1900				
TOTAL	9196				
	(USED 9200)				

TABLE 4.11.2-Ib EXAMPLE-PARTIAL MULTI-MISSION ESTIMATED BASELINE WEIGHTS (TURBOFANS)

	PROPULSION TYPE					
MISSION	UNDUCTED FAN	TURBO PROP	TURBO FAN			
MULTI-MISSION	71,000 LBS.	71,000 LBS.	77,000 LBS.			
(AEW,ASW, COD, ECM,TANKER)	FUEL BURN = 23.900 LBS (AEW ONLY)	FUEL BURN = 23.900 LBS (AEW ONLY)	FUEL BURN = 28.100 LBS (AEW ONLY)			
LIMITED (ASW/AEW)	50,000 LBS. FUEL BURN = 9300 LBS (AEW ONLY)	50,000 LBS FUEL BURN = 9300 LBS (AEW ONLY)	57,000 LBS. FUEL BURN = 13,500 LBS (AEW ONLY)			

TABLE 4.12-1 PRELIMINARY ESTIMATED MAXIMUM GROSS WEIGHT

65

.

	-	I	ROPULSION TY	PE
MISSION	HORIZONTAL TAIL	TURBO FAN	PROP. FAN	UNDUCTED FAN
MULTI-MISSION	UNFOLDED	2.40	2.40	2.00
	FOLDED	1.85	2.00	1.70
LIMITED	UNFOLDED	1.80	1.75	1.75
(ASW/AEW)	FOLDED	1.40	1.40	1.40

TABLE 4.12-II PRELIMINARY ESTIMATED SPOT FACTOR

THIS PAGE LEFT INTENTIONALLY BLANK

5.0 TASK III: DETAILED CALCULATIONS AND AIRCRAFT OPTIMIZATION

The six CTOL configurations are sized and the resulting point design mission performance and design sensitivities are presented. Details on each point design such as drag breakdowns, weight breakdowns, and spot factors are also presented in the following sections.

5.1 THREE VIEW DRAWINGS

Three views of the configurations selected for detailed analysis in Task II are presented in their final form in Figures 5.1-1 through 5.1-12. Geometric parameters and three view drawings for the three multimission aircraft (UDF, propfan, and turbofan) and the three minimum AEW/ASW aircraft (UDF, propfan, and turbofan) are presented in two variants, AEW and ASW. The shaded areas in the front views show the estimated deck clearance with one gear strut collapsed and the tire flat.

The multimission UDF configuration presented in Task II had structural interference problems between the wing box and the bomb bay. It was suggested to reconfigure the aircraft from the low wing shown in Task II to the high wing shown here. Since this study was primarily done to assess the effects of powerplant on aircraft size and performance, weight and TSFC penalties resulting from the engine and inlet being in the wake of the wing were not included because this would unfairly penalize the UDF for a unique configuration dependent effect.

5.2 FIXED EQUIPMENT AND PAYLOAD WEIGHTS BREAKDOWN

The weights presented in Task II were rough order of magnitude accessments of overall system weights. The weights presented in Task III represent a detailed assessment of weights to the component level. The equipment weights were further divided into those present on all mission variants, common core; and those present on specific mission variants, mission unique equipment. Weight reductions for optical data busses and new avionics weights are the major items causing the weight changes between Task II and Task III.

Common core avionics equipment weights are presented in Table 5.2-I. These systems are carried by all configurations regardless of design mission. Mission unique equipment and payload weights presented in Table 5.2-II and 5.2-III are broken down by design mission. The mission dependent miscellaneous equipment is presented in Table 5.5-II.

Final weights breakdowns for each of the configurations on their respective design mission are presented in Section 5.5.

5.3 CTOL SIZING MATRICES

Two sizing matrices are presented for each configuration. The gross weight sizing matrix shows the behavior of gross weight with changes in wing loading and aspect ratio. Constraints such as the 80 ft. wing span limit, the locus of minimum fuel burns, the transition locus of engine

	GENERAL SPECIFICATIONS MAX DESIGN GROSS WEIGHT 71,156 LBS FUSELAGE LENGTH 67.4 FT FUSELAGE LENGTH 9.5 FT		\int	
68	FUSELAGE DIAMETER 9.5 FT WING SPAN 71.9 FT AREA 646.9 FT2 ASPECT RATIO 8.0 TAPER RATIO 400 SWEEP @ C/4 20.0 DEC DINEDBAL -5.0 DEG INCIDENCE 3.0 DEG ROOT THICKNESS RATIO .150 TIP THICKNESS RATIO .150 HORIZONTAL (CAMARD) SURFACE 37.3 FT AREA 250 FT2 ASPECT RATIO .50 HORIZONTAL (CAMARD) SURFACE 5.6 SPAN 37.3 FT AREA 250 FT2 ASPECT RATIO .50 SPAN .50 TT2 MEAN AERODYNAMIC CHORD 9.50 FT HORIZONTAL (CAMARD) SURFACE 5.6 SPAN .50 TT2 ASPECT RATIO .50 SPAN .00 THICKNESS RATIO .100 VERTICAL SURFACE .57AN SPAN .20 FT2 ASPECT RATIO .500 SWEEP @ C/4 .27.1 DEG TAPER RATIO .500 SWEEP @ C/4 .27.1 DEG THICKNESS RATIO .100 POWERPLANT DATA .100 NUNBER NO ARD TYPE OF ENGINES (2) C.E. UDP (SCALI SAL L2	13		

FIGURE 5.1-1 MULTIMISSION UDF ASW CONFIGURATION

GENERAL SPECIFICATIONS	
MAX DESIGN GROSS WEIGHT	71.156 LBS
FUSELAGE LENGTH	67.4 FT
FUSELAGE DIAMETER	9.5 PT
WING	
SPAN	71.9 PT
AREA	646 9 PT2
ASPECT RATIO	8.0
TAPER RATIO	400
SWEEP @ C/4	20.0 DFC
DIHEDRAL	20.0 DEG
INCIDENCE	3.0 DEG
ROOT THICKNESS RATIO	150
TIP THICKNESS RATIO	120
MEAN AERODYNAMIC CHORD	9.50 FT
HORIZONTAL (CANARD) SURFACE	
SPAN	37 7 7 7
AREA	37.3 FT
ASPECT RATIO	250 112
TAPER BATIO	5.6
SWEEP @ C/4	.300
DTHEDRAL.	16.9 DEG
THICKNESS RATIO	.100
VERTICAL SURFACE	
SPAN	14 7 89
AREA	14.7 FI
ASPECT RATIO	220 112
TAPER RATIO	. 98
SWEEP @ C/4	.500
THICKNESS RATIO	.100
POWERPLANT DATA	

NUMBER (NO) AND TYPE OF ENGINES (2)	G.E. UDF	(SCALED)
SEA LEVEL STATIC THRUST (SLST) EA.	14,232	LBS
PROPELLED DIAMETER		HP
TROUGDOUR DIAMETER	8.5	FT

0 10 20 30 SCALE - FEET

GENERAL SPECIFICATIONS	72.607	1.8
PRESIDE CRUSS WEIGHT	67.4	FT
FUSELAGE DIAMETER	9.5	71
WING		
SPAN	72.7	PT
ARZA	660.1	FT2
ASPECT RATIO	8.0	
TAPER RATIO	.400	
SWEEP @ C/4	20.0	DEG
DIREDRAL	-5.0	DEG
INCIDENCE	3.0	DEG
ROOT THICKNESS RATIO	.150	
TIP THICKNESS RATIO	.120	
MEAN AERODYNAMIC CHORD	9.6	FT
HORIZONTAL (CANARD) SURPACE		
SPAN	28.08	FT
AREA	141	FT2
ASPECT RATIO	5.59	
TAPER RATIO	. 500	
SWEEP @ C/4	16.9	DEC
DIHEDRAL	0.0	DEC
THICKNESS RATIO	.100	
VERTICAL SURFACE		
SPAN	14.75	FT
ARZA	158.56	FT2
ASPECT RATIO	1.37	
TAPER RATIO	. 500	
SWEEP @ C/4	21.8	DEC
THICKNESS RATIO	.100	
POWERPLANT DATA		
HUMBER (NO) AND TYPE OF ENGINES	(2) PROPFAN	
SEA LEVEL STATIC THRUST (SLST) EA.	14,522	LBS
OR THRUST HORSEPOWER (THP) EA.	•••••	HP
PROPELLER DIAMETER	8.50	FT

MAX DESIGN GROSS WEIGHT	72.60	/ T.R		
FUSELAGE LENGTH	67.4	. PT		
FUSELAGE DIAMETER	9.9	FT		
WING				
SPAN	72.7	FT		
AREA	660.1	. FT2		
ASPECT RATIO	8.0)		
TAPER RATIO	.400	1		
SWEEP @ C/4	20.0	DEG		
DIHEDRAL	-5.0	DEG		
INCIDENCE	3.0	DEG		
ROOT THICKNESS RATIO	.150			
TIP THICKNESS RATIO	.120			
MEAN AERODYNAMIC CHORD	9.6	FT		
HORIZONTAL (CANARD) SURFACE			_	A
SPAN	28.08	FT		
AREA	141	FT2		100
ASPECT RATIO	5.59			
TAPER RATIO	. 500			\sim
SWEEP @ C/4	16.9	DEG		
DIHEDRAL	0.0	DEG		
THICKNESS RATIO	.100			
VERTICAL SURPACE				
SPAN	14.75	FT		
AREA	158.56	FT2		
ASPECT RATIO	1.37			
TAPER RATIO	.500			
SWEEP @ C/4	21.8	DEG		
THICKNESS RATIO	.100			
POWERPLANT DATA				
NUMBER (NO) AND TYPE OF ENGINES	(2) PROPFAN			
SEA LEVEL STATIC THRUST (SLST) EA.	14,522	LBS		
OR THRUST HORSEPOWER (THP) EA.		HP		
PROPELLER DIAMETER	8.50	FT		

FIGURE 5.1-4 MULTIMISSION PROPFAN AEW CONFIGURATION

MAX DESIGN CROSS WEIGHT	78.337	LBS
FUSELAGE LENGTH	67.4	FT
FUSELAGE DIAMETER	9.5	FT
WING		
SPAN	80.1	FT
AREA	721.2	FT2
ASPECT RATIO	9.0	
TAPER RATIO	.400	
SWEEP @ C/4	20.0	DEG
DIHEDRAL	-5.0	DEG
INCIDENCE	3.0	DEG
ROOT THICKNESS RATIO	.150	
TIP THICKNESS RATIO	.120	
MEAN AERODYNAMIC CHORD	9.4	FT
HORIZONTAL (CANARD) SURFACE		
SPAN	28.87	FT
AREA	150	FT2
ASPECT RATIO	5.6	
TAPER RATIO	.500	
SWEEP @ C/4	16.91	DEC
DIHEDRAL	0.0	DEC
THICKNESS RATIO	.100	
VERTICAL SURFACE		
SPAN	14.8	FT
AREA	169.6	FT2
ASPECT RATIO	1.28	
TAPER RATIO	. 500	
SWEEP @ C/4	21.3	DEC
THICKNESS RATIO	.100	
POWERPLANT DATA		
NUMBER (NO) AND TYPE OF ENGINES	(2) PROPPAN	
SEA LEVEL STATIC THRUST (SLST) EA.	15,668	LBS
OR THRUST HORSEPOWER (THP) EA.		HP
PROPELLER DIAMETER		FT.

FIGURE 5.1-5 MULTIMISSION TURBOFAN ASW CONFIGURATION

GENERAL SPECIFICATIONS		
MAX DESIGN GROSS WEIGHT	78,337	L85
FUSELAGE LENGTH	67.4	FT
FUSELAGE DIAMETER	9.5	FT
WING		
SPAN .	80.1	FT
AREA	721.2	FT2
ASPECT RATIO	9.0	
TAPER RATIO	.400	
SWEEP @ C/4	20.0	DEG
DIHEDRAL	-5.0	DEG
INCIDENCE	3.0	DEG
ROOT THICKNESS RATIO	.150	
TIP THICKNESS RATIO	.120	
MEAN AERODYNAMIC CHORD	9.4	FT
HORIZONTAL (CANARD) SURFACE		
SPAN	28.87	FT
AREA	150	FT2
ASPECT RATIO	5.6	
TAPER RATIO	.500	
SWEEP @ C/4	16.91	DEG
DIHEDRAL	0.0	DEG
THICKNESS RATIO	.100	
VERTICAL SURFACE		
SPAN	14.8	FT
AREA	169.6	PT2
ASPECT RATIO	1.28	
TAPER RATIO	.500	
SWEEP @ C/4	21.3	DEG
THICKNESS RATIO	.100	
POWERPLANT DATA		
NUMBER (NO) AND TYPE OF ENGINES	(2) PROPPAN	
SEA LEVEL STATIC THRUST (SLST) EA.	15,668	LBS
OR THRUST HORSEPOWER (THP) EA.		HP
PROPELLER DIAMETER		FT

FIGURE 5.1-6 MULTIMISSION TURBOFAN AEW CONFIGURATION

GENERAL SPECIFICATIONS	
MAX DESIGN CROSS WEIGHT	53,740 LBS
OVERALL LENGTH	65.0 FT
FUSELACE DIAMETER	8.5 FT
WING .	
SPAN	66.30 PT
AREA	488.5 FTZ
ASPECT RATIO	9.0
TAPER RATIO	.400
SWEEP @ C/4	20.0 DEG
DIHEDRAL	7.0 DEG
INCIDENCE	3.0 DEG
ROOT THICKNESS RATIO	. 150
TIP THICKNESS RATIO	. 120
HEAN AERODYNAMIC CHORD	7.80 FT
HORIZONTAL (CANARD) SURFACE	
SPAN	22.40 FT
AREA	120.00 112
ASPECT RATIO	4.18
TAPER RATIO	.500
SWEEP @ C/4	16.34 DEG
DIHEDRAL	0.0 DEG
THICKNESS RATIO	.100
VERTICAL SURPACE	
SPAN	15.17 FT
AREA	197.2 PT2
ASPECT RATIO	1.17
TAPER BATIO	.530
SWEEP @ C/4	35.4 DEC
THICKNESS RATIO	.100
POWERPLANT DATA	
NUMBER (NO) AND TYPE OF ENGINES	(2) G.E. UDF (SCALED)
SEA LEVEL STATIC THRUST (SLST) EA.	10,757 L85
OR THRUST HORSEPOWER (THP) EA.	NP
PROPELLEE DIAMETER	/.4 FT

\$

FIGURE 5.1-7 MINIMUM UDF ASW CONFIGURATION

MAX DESIGN GROSS WEIGHT	53,740 LBS
OVERALL LENGTH	65.0 FT
FUSELAGE DIAMETER	8.5 FT
MING	
SPAN	66.30 PT
AREA	488.5 FT2
ASPECT RATIO	9.0
TAPER RATIO	.400
SWEEP @ C/4	20.0 DEG
DIHEDRAL	7.0 DEG
INCIDENCE	3.0 DEG
ROOT THICKNESS RATIO	.150
TIP THICKNESS RATIO	.120
HEAN AERODYNAMIC CHORD	7.80 FT
HORIZONTAL (CANARD) SURFACE	
SPAN	22.40 FT
AREA	120.00 FT2
ASPECT RATIO	4.18
TAPER RATIO	.500
SWEEP @ C/4	16.34 DEG
DIHEDRAL	0.0 DEG
THICKNESS RATIO	.100
VERTICAL SURFACE	
SPAN	15.17 PT
AREA	197.2 FT2
ASPECT RATIO	1.17
TAPER RATIO	.530
SWEEP @ C/4	35.4 DEG
THICKNESS RATIO	.100
POWERPLANT DATA	
NUMBER (NO) AND TYPE OF ENGINES	(2) G.E. UDF (SCALED
SEA LEVEL STATIC THRUST (SLST) EA.	10,757 LBS
OR THRUST HORSEPOWER (THP) EA.	MP
PROPELLER DIAMETER	7.4 FT

GENERAL SPECIFICATIONS		
MAX DESIGN GROSS WEIGHT	54,876	LBS
OVERALL LENGTH	65.0	FT
FUSELAGE DIAMETER	8.5	PT
WING		
SPAN.	72.1	FT
AREÀ	577.0	FT2
ASPECT RATIO	9.0	
TAPER RATIO	.400	
SWEEP @ C/4	20.0	DEG
DIHEDRAL	7.0	DEG
INCIDENCE	3.0	DEG
ROOT THICKNESS RATIO	.150	
TIP THICKNESS RATIO	.120	
MEAN AERODYNAMIC CHORD	8.50	FT
HORIZONTAL (CANARD) SURFACE		
SPAN	25.4	FT
AREA	100.0	FT2
ASPECT RATIO	4.03	
TAPER RATIO	. 500	
SWEEP @ C/4	16.34	DEG
DIHEDRAL	0.0	DEC
THECKNESS RATIO	.100	
VERTICAL SURFACE		
SPAN	15.17	FT
AREA	197.2	FT2
ASPECT RATIO	1.17	
TAPER BATIO	.530	
SWEEP @ C/4	35.4	DEC
THICKNESS RATIO	.100	
POWERPLANT DATA		
NUMBER (NO) AND TYPE OF ENGINES	(2) PROPFAN	(SCALED)
SEA LEVEL STATIC THRUST (SLST) EA.	11,583	LBS
OR THRUST HORSEPOWER (THP) EA.		LBS
PROPELLER DIAMETER	8.5	PT

FIGURE 5.1-9 MINIMUM PROPFAN ASW CONFIGURATION

GENERAL SPECIFICATIONS	54.876 LBS
MAX DESIGN GROSS WEIGHT	65.0 FT
DVERALL LENGTH Rightact Diameter	8.5 FT
FUSELAGE DIANCIER	
WING	
SPAN	72.1 FT
AREA	577.0 FT2
ASPECT RATIO	9.0
TAPER RATIO	.400
SWEEP @ C/4	20.0 DEG
DIHEDRAL	7.0 DEG
INCIDENCE	3.0 DEG
ROOT THICKNESS RATIO	.150
TIP THICKNESS RATIO	. 120
MEAN AERODYHAMIC CHORD	8.50 FT
HORIZONTAL (CANARD) SURFACE	
SPAN	25.4 FT
AREA	100.0 PT2
ASPECT RATIO	4.03
TAPER RATIO	. 500
SWEEP @ C/4	16.34 DEG
DIHEDRAL	0.0 DEG
THICKNESS RATIO	.100
VERTICAL SURFACE	
SPAN	15.17 FT
AREA	197.2 FT2
ASPECT RATIO	1.17
TAPER RATIO	- 530
SWEEP @ C/4	35.4 DEG
THICKNESS RATIO	.100
POWERPLANT DATA	
NUMBER (NO) AND TYPE OF ENGINES	(2) PROPFAN (SCALED
SEA LEVEL STATIC THRUST (SLST) EA.	11,583 LBS
OR THRUST HORSEPOWER (THP) EA.	LBS
PROPELLER DIAMETER	8.5 FT

30

10 20 SCALE + FEET

FIGURE 5.1-10 MINIMUM PROPFAN AEW CONFIGURATION

. 77

MAX DESIGN CROSS WEICHT	59,348	LBS
OVERALL LENGTH	65.0	FT
FUSELACE DIAMETER	8.5	PT
WING		
SPAN	72.5	FT
AREA	584.7	FT2
ASPECT RATIO	9.0	
TAPER BATIO	,400	
SWEEP @ C/4	20.0	DEG
DIHEDRAL	7.0	DEG
INCIDENCE	3.0	DEG
ROOT THICKNESS RATIO	.150	
TIP THICKNESS RATIO	.120	
MEAN AERODYNAMIC CHORD	8.60	FT
HORIZONTAL (CANARD) SURFACE		
SPAN	25.7	FT
AREA	160.0	FT2
ASPECT RATIO	4.13	
TAPER RATIO	. 500	
SWEEP @ C/4	16.34	DEC
DIHEDRAL	0.0	DEG
THICKNESS RATIO	.100	
VERTICAL SURFACE		
SPAN	5.17	FT
AREA	197.2	FT2
ASPECT RATIO	1.17	
TAPER BATIO	. 530	
SWEEP @ C/4	35.4	DEG
THICKNESS BATIO	.100	
POWERPLANT DATA		
NUMBER (NO) AND TYPE OF ENGINES	(2) TURBOFAN	(SCALED)
SEA LEVEL STATIC THRUST (SLST) EA.	12,015	LBS
OR THRUST HORSEPOWER (THP) EA.		HP
PROPELLER DIAMETER		FT

	GENERAL SPECIFICATIONS MAX DESIGN GROSS WEIGHT OVERALL LENGTH FUSELAGE DIAMETER WING SPAN AREA ASPECT RATIO TAPER RATIO SWEEP @ C/A DIMEDRAL INCIDENCE ROOT THICKNESS RATIO MEAN AERODYNAMIC CHORD HORIZONTAL (CANARD) SURFACE SPAN AREA ASPECT RATIO TAPER RATIO SWEEP @ C/A DIMEDRAL THICKNESS RATIO VERTICAL SURFACE SPAN AREA ASPECT RATIO TAPER RATIO SWEEP @ C/A THICKNESS RATIO TAPER RATIO SWEEP @ C/A THICKNESS RATIO TAPER RATIO SWEEP @ C/A THICKNESS RATIO SWEEP @ C/A THICKNESS RATIO SWEEP @ C/A THICKNESS RATIO TAPER RATIO SWEEP @ C/A THICKNESS RATIO POWERFLANT DATA NUMBER (NO) AND TYPE OF ENGINES SEA LEVEL STATIC THRUST (SLST) EA. OR THRUST HORSEPOWER (THP) EA. PROPELLER DIAMETER	59, 348 LBS 65.0 PT 8.5 PT 72.5 FT 584.7 PT2 9.0 20.0 DEG 7.0 DEG 7.0 DEG 3.0 DEG .150 .120 8.60 PT 25.7 FT 160.0 PT2 4.13 .500 16.34 DEG 0.0 DEG .100 5.17 FT 197.2 FT2 1.17 .330 35.4 DEG .100 (2) TURBOFAN (SCALED) 12.015 LBS FT	
0	10 2C 30 SCALE + FEET		

FIGURE 5.1-12 MINIMUM TURBOFAN AEW CONFIGURATION

.

ALL					
M	IS	SI	0	Ν	S

ŧ.

FIXED EQUIPMENT WEIGHT INCREMENT	
COMMON CORE AVIONICS EQUIPMENT	
COMMUNICATIONS	
UHF/VHF RADIOS (2)	30
HF RADIO	188.7
CRYPTO DEVICES (3)	106.2
INTERCOM SET (1) W/REMOTES (2)	19.3
FLEET SATELLITE COMMUNICATIONS	39.9
NAVIGATION	
RADAR ALTIMETER	8.5
TACAN	42.5
AUTO. CARRIER LANDING SYSTEM	20
ATTITUDE HEADING REFERENCE SYS.	18
INERTIAL NAVIGATION SYSTEM (2)	96
AIR DATA COMPUTER	16
AUTOMATIC DIRECTION FINDER	7.5
GLOBAL POSITIONING SYSTEM	24.6
IDENTIFICATION	
IFF TRANSPONDER	30.1
PROCESSING	
COMPUTER PROCESSORS	100
OTHER EQUIPMENT	
FLIGHT DATA RECORDER	20
TOTAL	767.3 LBS

TABLE 5.2-I COMMON CORE AVIONICS EQUIPMENT

80

.

	ASW	AEW	TANKER	COD
MISSION UNIQUE EQUIPMENT				
COMMUNICATIONS				
UHE/VHE RADIOS		45		
INTERCOM REMOTE SETS	4.8	9.6		
JTIDS	95	95		
HE RADIO		••	188 7	
NAVIGATION			100.7	
LOW FREO, AUTO, DIRECTION FINDER	15			15
WEATHER RADAR			113 7	1137
RADAR ALTIMETER, HIGH ALT.			10	1.2
TACAN			42.5	
OMEGA			39.2	39.2
VHE NAVIGATION SET (VOR)			36.6	55.2
THREAT ASSOCIATED			50.0	
ARMAMENT MONITOR AND CONTROL	200			
WEAPONS DELIVERY SYSTEM		40		
SONOBUOY REFERENCE SYSTEM	56	10		
ADVANCED SONOBUOY COMM. LINK	115			
SONOBLIOY ACOUSTIC REC / REP	76			
MAGNETIC ANOMALY SYSTEM	100			
ISAR RADAR	472			
INFRARED RADAR	264 6			
SEARCH AND TRACK RADAR		2200		
IR/OPTICAL/K-BAND RADAR		550		
FLECTRONIC SURVEILLANCE MEASURES	115	579.9		
DECEPTIVE COUNTERMEASURE		70.5		
	40	40		
IEF INTERROGATOR	19.8	19.8	19.8	•
PROCESSING		19.0	15.0	
COMPLITER PROCESSORS	500	500		
OTHER FOUIPMENT	500	500		
AIRBORNE MICROWAVE REERAC		30		
TOTAL	2073.2 LBS	4179.8 LBS	450.5 LBS	167.9 LBS

.

٠

TABLE 5.2-II MISSION UNIQUE EQUIPMENT

-

81

~

.

PAYLOADS	AS FULL MULTIMISSION	W MINIMUM AEW/ASW	AEW	TANKER	COD
SIDEWINDERS (4)			776		
HARPOONS (2)	2336				
MK-60 MINES (2)	4732				
MK-50 TORPEDOES (4)		3200			
SONOBUOYS (60)	1515	1515			
CARGO					15000
FUEL OFFLOAD TOTAL PAYLOAD	8583 LBS	4715 LBS	776 LBS	25000 25000 LBS	15000 LBS.

TABLE 5.2-III PAYLOADS

sizing for takeoff to engine sizing for cruise, and the wind over deck limits are shown when applicable. The mission fuel sizing matrices show the variation of mission fuel with wing loading and aspect ratio.

Carrier based aircraft require more rigid wings than their land based counterparts because of takeoff/landing loads and sink rates. Therefore, none of the configurations were allowed to exceed an arbitrary aspect ratio limit of nine.

5.3.1 MULTIMISSION CTOL SIZING MATRICES

The critical mission for sizing the UDF multimission configuration was tanker. The data shown in Figure 5.3.1-1 reflects both the gross weight and fuel requirements as a function of wing loading and aspect ratio. Also shown on the gross weight matrix is the locus of minimum fuel required and the 80 ft. span limit. The design point chosen is a wing loading of 110 psf and an aspect ratio of eight. Higher wing loadings would provide a lighter aircraft at the expense of high altitude capability on the AEW mission. Aspect ratio eight was selected because it yields the minimum gross weight at the chosen wing loading of 110 psf. The entire matrix is sized to a takeoff thrust/weight ratio of 0.4.

The multimission propfan critical sizing mission is the same as the multimission UDF, tanker. The wind over deck limits for zero wind over deck, with and without engine acceleration, are shown for the propfan and not the UDF because the propfan is heavier than the UDF at the same wing loading. See Section 3.1 for more details on the catapult limits. Figure 5.3.1-2 shows that the design point was chosen at a wing loading of 110 psf and an aspect ratio of eight to remain within the zero wind over deck constraint and to achieve minimum gross weight at the smallest span.

Turbofan engines have poorer fuel consumption than propfans, especially for low altitude endurance. This fact drives the multimission turbofan to the ASW critical sizing mission. Task II seems to indicate that tanker should have been the driving mission but Task II assumed similar AEW/ASW payloads/missions and the ASW mission was not specifically addressed. Figure 5.3.1-3 shows the constraints of 80,000 lb. maximum gross weight, 80 ft. span, and zero wind over deck launch. These constraints all intersect at a point and thus do not allow any design flexibility. Therefore, the wind over deck criteria was relaxed from zero to five knots, with engine thrust acceleration, yielding an aspect ratio of nine at a wing loading of 110 psf. This keeps the gross weight approximately 1,600 lb. below the 80,000 lb. limit.

5.3.2 MINIMUM AEW/ASW SIZING MATRICES

Task II conceptual sizing indicated a probable configuration match between AEW and ASW missions with a reduced ASW payload. Therefore, the minimum AEW/ASW configurations were all sized to the AEW mission and the ASW loiter time is allowed to vary depending on fuel available. The

80,000 LB. CROSS WT. 30 FT. SPAN

.

- - HINIMUM FUEL BURN

FIGURE 5.3.1-1 MULTIMISSION UDF SIZING MATRIX

.

.

÷.

^

..

•

FIGURE 5.3.1-2 MULTIMISSION PROPFAN SIZING MATRIX

.

SIZING MISSION: ASW

FIGURE 5.3.1-3 MULTIMISSION TURBOFAN SIZING MATRIX

.

6

.
small configurations size on both takeoff thrust/weight and cruise engine sizing criteria. The locus of points showing where the engine sizing transitions from being sized for cruise to being sized for takeoff is shown on all the minimum AEW/ASW configurations. This locus of points shows where the engines are matched for both sizing conditions.

The locus of points depicting the engine sizing transition is shown in Figure 5.3.2-1 for the UDF configuration. All the points to the right of the T/W=.4 line sized for cruise. The design point for the UDF is at a wing loading of 95 psf and an aspect ratio of nine. This yields a good engine match between takeoff and cruise requirements and falls on the locus of gross weight buckets with wing loading.

The propfan sizing matrix in Figure 5.3.2-2 shows similar trends as the UDF. However, in this case, an aspect ratio of 11 would be required to size to a thrust/weight ratio of .4 and achieve minimum gross weight. The design point selected is at an aspect ratio nine which yields a more rigid wing for approximately a 1,000 lb. weight penalty. The wing loading of the propfan was optimized at 110 psf instead of the 95 psf of the UDF.

The turbofan design point is also selected at aspect ratio nine as shown in Figure 5.3.2-3. Here the design is near minimum thrust to weight ratio and falls on the locus of gross weight buckets with wing loading.

5.4 MISSION PERFORMANCE AND BREAKDOWN BY MISSION LEG

Multimission and Minimum AEW/ASW aircraft mission performance on AEW, ASW, Tanker, and COD missions is presented. Additionally, a breakdown of mission performance at the end of each mission leg is shown for each point design.

5.4.1 MULTIMISSION CTOL

Multimission aircraft performance data for AEW, ASW, tanker, and COD missions is presented in Figures 5.4.1-1 through 5.4.1-3. There is a large amount of excess capability on those missions not used for sizing. Therefore, it is not necessary to load the aircraft to the maximum gross weight when performing the alternate missions. Conversely, it would be possible in some cases to carry additional payload or equipment and perform a mission mix. It is important to note that although the multimission turbofan is sized for the ASW mission, it is only 300 lb. over being a perfect match with the tanker mission. A summary of the gross weight and fuel burns for the multimission CTOL aircraft is presented in Table 5.4-1-I.

Design mission breakdowns by leg are shown in Tables 5.4.1-II through 5.4.1-IV. Data for range, time, weight, altitude, and Mach number are presented at the end of each segment.

SIZING MISSION: AEW

80,000 LB. CROSS WT. 30 FT. SPAN MINIMUM FUEL BURN WOD LIMITS

٠

88

•

SIZING MISSION: AEW

FIGURE 5.3.2-2 MINIMUM AEW/ASW PROPFAN SIZING MATRIX

.

,

68

SIZING MISSION: AEW

Puel

6

110

٠

60

80,000 LB. GROSS WT. 30 FT. SPAN - - MINIMUM FUEL BURN

FIGURE 5.3.2-3 MINIMUM AEW/ASW TURBOFAN SIZING MATRIX

4

...

90

Grees Vaight ~1000 lbs

.

FIGURE 5.4.1-1 MULTIMISSION UDF MISSION PERFORMANCE

^

O DESIRED CAPABILITY

FIGURE 5.4.1-2 MULTIMISSION PROPFAN MISSION PERFORMANCE

-8

¥.

.

92

4

.

.

.

٠

^

93

.

٠

	WGROSS	MISSION FUEL WEIGHTS - LBS				
	(LBS)	AEW	ASW	TANKER*	CODt	
MULTIMISSION TF	78337	27911	23399	11471	21425	
MULTIMISSION PF	72607	24938	20036	7998	17346	
MULTIMISSION UDF	71156	24614	19756	7674	17044	
MULTIMISSION STOVE	96810	28572	23670	11639	20980	
MIN AEW/ASW TF	59348	16988	16085	7648	9462	
MIN AEW/ASW PF	54876	12882	11981	5942	5356	
MIN AEW/ASW UDF	53740	13712	12815	6172	6188	
MIN AEW/ASW STOVL	71660	16640	15735	8996	9110	

TABLE 5.4.1.-I GROSS WEIGHT AND MISSION FUEL BURN SUMMARY

* DOES NOT INCLUDE FUEL OFFLOAD AT 200 NM RADIUS

FUEL LOADS WITH 15000 LBS PAYLOAD

SEGMENT	SEGMENT	RANGE	SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	· NAN	1	HRS	LBS	FT		NAM	HRS
TAKEOFF			0.063	70633.72	0.00		0.00	0.083
CLIMB	66.3	5	0.200	69706.00	34088.73	0.694	66.38	0.283
CRUISE	133.6	5	0.354	68933.29	34088.73	0.690	200.00	0.637
LOITER			1.250	66648.15	25000.00	0.488	200.00	1.887
REFUEL			0.083	41157.95	25000.00	0.663	200.00	1.971
LOITER			1.250	39846.43	25000.00	0.377	200.00	3.231
CLIMB	49.3	6	0.126	39504.53	46019.39	0.694	249.36	3.347
CRUISE	150.6	4	0.400	38981.06	46019.39	0.690	400.00	3.747
LOITER			0.333	38606.50	0.00	0.261	400.00	4.080
DISTANCE CUT AT EN	ID REFUEL	=	200.00 NAM					
TOTAL MISSION RAN	GE	=	400.00 NAM					
TOTAL MISSION FUEL		æ	7165.64 LBS					
TOTAL FUEL RESERVE	S	=	308.36 LBS					
TOTAL MISSION TIME		=	4.08 HRS					
PAYLOAD		=	0.00 LBS					
TOTAL FUEL OFFLOAD	D	=	25000.00 LBS					·

TABLE 5.4.1-II MISSION LEG BREAKDOWN-MULTIMISSION UDF ON TANKER MISSION

.

1-

.

.

SEGMENT	SEGMENT	RANGE	SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAN	1	HRS	LBS	FT		NAM	HRS
TAKEOFF			0.093	72079.36	0.00		0.00	0.083
CLIMB	70.4	9	0.218	21088.77	33092.27	0.683	70.49	0.301
CRUISE	129.5	1	0.338	70337.94	33092.27	0.678	200.00	0.639
LOITER			1.250	68017.22	25000.00	0.488	200.00	1.889
REFUEL			0.083	42508.21	25000.00	0.665	200.00	10.973
LOITER			1.250	41102.47	25000.00	0.374	200.00	3.223
CLIMB	44.89	Ð	0.117	40767.51	44820.91	0.683	244.89	3.340
CRUISE	155.11	1	0.403	40222.36	44820.91	0.687	400.00	3.743
LOITER			0.333	39744.90	0.00	0.262	400.00	4.076
DISTANCE CUT AT EN	D REFUEL	=	200.00 NAM					
TOTAL MISSION RANG	iE	=	400.00 NAM					
TOTAL MISSION FUEL		=	7375.58 LBS					
TOTAL FUEL RESERVES	5	=	622.42 LBS					
TOTAL MISSION TIME		=	4.08 HFS					
PAYLOAD		=	0.00 LBS					
TOTAL FUEL OFFLOAD		=	25000.00 LBS					

. .

TABLE 5.4.1-III MISSION LEG BREAKDOWN-MULTIMISSION PROPFAN ON TANKER MISSION

.

10

÷

ł

SEGMENT	SEGMENT RANG	E SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAM	HRS	LBS	FT		NAM	HRS
TAKEOFF		0.083	77572.50	0.00		- 0.00	0.083
CLIMB	71.85	0.218	76183.88	33121.29	0.674	71.85	0.301
CRUISE	278.15	0.717	74092.66	33121.29	0.666	350.00	1.018
LOITER		4.000	64717.46	5000.00	0.308	350.00	5.018
LOITER		1.800	60783.06	0.00	0.270	350.00	6.818
LOITER		0.200	59044.25	0.00	0.696	350.00	7.018
CLIMB	18.06	0.047	58817.01	38718.02	0.674	368.06	7.064
CRUISE	331.94	0.860	56828.16	38718.02	0.671	700.00	7.924
LOITER		0.333	56114.16	0.00	0.286	700.00	8.257
TOTAL MISSION RANGI	E = 70	0.00 NAM					
TOTAL MISSION FUEL	= 2150)8.84 LBS					
TOTAL FUEL RESERVES	= 189	90.16 LBS					
TOTAL MISSION TIME	=	8.26 HRS					

1

×.

PAYLOAD = 8583.00 LBS

TABLE 5.4.1-IV MISSION LEG BREAKDOWN-MULTIMISSION TURBOFAN ON ASW MISSION

 \sim

.

MPSNA-MAPS 4-17

5.4.2 MINIMUM AEW/ASW CTOL

The minimum AEW/ASW mission performance is presented in Figures 5.4.2-1 through 5.4.2-3. All configurations perform the full AEW mission and fall less than 30 minutes short of the desired six hours on-station for the ASW mission with the reduced payload. AEW design mission breakdowns by leg are presented in Tables 5.4.2-I through 5.4.2-III. They show the same type of data as was presented for the multimission configurations.

5.5 AIRCRAFT WEIGHT BREAKDOWNS

A detailed weight breakdown for each configuration on its design mission is presented in Tables 5.5-I through 5.5-III. Table 5.5-I is a breakdown of the propulsion and structure, Table 5.5-II is a breakdown of fixed equipment, and Table 5.5-III is a summary of the complete weight breakdown of each configuration.

5.6 DRAG BREAKDOWNS

Drag coefficient breakdowns, based on wing planform area for each configuration, are presented in Table 5.6-I through 5.6-VI. These breakdowns show by aircraft component the levels of friction drag, pressure drag, and the total parasite drag. Additionally, the drag rise due to compressibility, induced drag, and trim drag are also shown. The breakdown is presented at the engine cruise sizing condition and maximum gross weight on the design mission. The drag breakdowns, and the drag polars shown in Appendix A, include the store drag of the design configurations. A breakdown of store weights and drag levels is shown in Table 5.6-VII.

5.7 CTOL DESIGN SENSITIVITY TRADES

The sensitivity of the CTOL point designs sizing to changes in weight, TSFC, and drag are presented in the following sections. The sensitivity on the design mission radius for a fixed aircraft size is also presented.

5.7.1 AIRCRAFT SIZING SENSITIVITY

Aircraft gross weight sensitivity to changes in drag, specific fuel consumption, and incremental weight are shown in Table 5.7-I and Table 5.7-II for each configuration design mission. These data can be used as trade factors to assess the penalty in aircraft size resulting from subsequent changes in propulsion efficiency, equipment weights, and external configuration changes affecting drag. Note that only comparisons between configurations having the same design mission are valid.

5.7.2 DESIGN MISSION PERFORMANCE SENSITIVITY

With aircraft geometry and gross weight held constant, mission sensitivity to changes in drag, specific fuel consumption, and

,

.

FIGURE 5.4.2-1 MINIMUM AEW/ASW UDF MISSION PERFORMANCE

66

t

FIGURE 5.4.2-2 MINIMUM AEW/ASW PROPFAN MISSION PERFORMANCE

3

ŧ

4

Ŧ

100

L

>

FIGURE 5.4.2-3 MINIMUM AEW/ASW TURBOFAN MISSION PERFORMANCE

~

.

101

ŧ

L.

776.00 LBS

=

£

SEGMENT	SEGMENT RANG	E SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAM	HRS	LBS	FT		NAM	HRS
TAKEOFF		0.083	53323.65	0.00		0.00	0.083
CLIMB	75.37	0.222	52529.64	35848.56	0.701	75.37	0.306
CRUISE	236.62	0.630	51466.50	35848.56	0.700	311.99	0.936
CLIMB	37.23	0.093	51269.54	40000.00	0.701	349.22	1.028
CRUISE	0.77	0.002	51266.26	40000.00	0.695	350.00	1.030
LOITER		6.000	42398.87	40000.00	0.589	350.00	7.030
CLIMB	4.00	0.010	42379.87	40620.60	0.701	354.00	7.040
CRUISE	345.99	0.902	41120.57	40620.60	0.701	700.00	7.942
LOITER		0.333	40704.23	0.00	0.272	700.00	8.275
TOTAL MISSION RANG	iE = 70	0.00 NAM					
TOTAL MISSION FUEL	= 1261	10.06 LBS .					
TOTAL FUEL RESERVES	= 110	1.94 LBS					
TOTAL MISSION TIME	=	8.28 HRS					

TABLE 5.4.2-1 MISSION LEG BREAKDOWN-AEW/ASW UDF ON AEW MISSION

¥

4

-

. **a**

.

102

PAYLOAD

4 T

· •

SEGMENT	SEGMENT RANGE	SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAM	HRS	LBS	FT		NAM	HRS
TAKEOFF		0.083	54510.21	0.00		0.00	0.083
CLIMB	122.59	0.378	53480.79	39575.60	0.695	122.59	0.461
CRUISE	202.41	0.508	⁻ 52655.11	39575.60	0.706	325.00	0.969
CLIMB	8.31	0.021	52617.53	40000.00	0.695	333.31	0.990
CRUISE	16.69	0.041	52550.95	40000.00	0.709	350.00	1.031
LOITER		6.000	44300.04	40000.00	0.568	350.00	7.031
CLIMB	52.34	0.131	44087.45	43890.79	0.695	402.34	7.162
CRUISE	297.66	0.749	43065.25	43890.79	0.700	700.00	7.911
LOITER		0.333	42628.44	0.00	0.280	700.00	8.244
TOTAL MISSION RAN	GE = 700.	00 NAM					
TOTAL MISSION FUEL	= 11801.	09 LBS					
TOTAL FUEL RESERVE	S = 1080.	91 LBS					
TOTAL MISSION TIME	= 8.	24 HRS					

.

. .

.

PAYLOAD

.

= 776.00 LBS

.

TABLE 5.4.2-II MISSION LEG BREAKDOWN-AEW/ASW PROPFAN ON AEW MISSION

103

^

.

ı.

SEGMENT	SEGMENT RANGE	SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAM	HRS	LBS	FT		NAM	HRS
TAKEOFF		0.083	58774.41	0.00		0.00	0.083
CLIMB	87.96	0.256	57616.63	36513.65	0.717	87.96	0.339
CRUISE	233.05	0.581	56379.02	36513.65	0.714	321.01	0.920
CLIMB	28.41	0.069	56188.67	40000.00	0.717	349.42	0.990
CRUISE	0.59	0.001	56185.65	40000.00	0.713	350.01	0.991
LOITER		6.000	45263.52	40000.00	0.609	350.01	6.991
CLIMB	11.96	0.029	45192.76	41948.25	0.717	361.97	7.020
CRUISE	338.03	0.839	43753.85	41948.25	0.714	700.00	7.829
LOITER		0.333	43199,62	0.00	0.282	700.00	8.192
TOTAL MISSION RANG	GE = 70	0.00 NAM					
TOTAL MISSION FUEL	= 1558	4.37 LBS					•
TOTAL FUEL RESERVE	S = 140	3.63 LBS					
TOTAL MISSION TIME	=	8.19 HRS					
PAYLOAD	= 77	6.00 LBS					

TABLE 5.4.2-III MISSION LEG BREAKDOWN-AEW/ASW TURBOFAN ON ADW MISSION

	MIN	IIMUM AEW/A	sw	MULTIMISSION		
ENGINE TYPE	UDF	PROPFAN	TURBOFAN	UDF	PROPFAN	TURBOFAN
DESIGN MISSION	AEW	AEW	AEW	TANKER	TANKER	ASW
PROPULSION GROUP						
PRIMARY ENGINES	5210	6290	5338	6005	6777	6648
EBU	1200	1200	1200	1200	1200	1200
FUEL SYSTEM	433	408	528	940	948	705
ENGINE/PILOT CONTROL LINK	60	60	60	60	,60	60
TOTAL	6903 LBS	7958 LBS	7126 LBS	8205 LBS	 8985 LBS	8613LBS
STRUCTURES GROUP						
WING	3389	4081	4125	4795	4493	5335
HORIZONTAL TAIL	429	552	562	554	571	604
VERTICAL TAIL	672	863	879	600	618	735
FUSELAGE	5217	5288	5313	6767	7488	8129
LANDING / ARRESTING GEAR	2472	2524	2730	3273	3340	3604
ENGINE STRUTS	484	465	554	867	824	1081
ENGINE NACELLES	618	432	1368	811	656	1580
NUCLEAR HARDENING	751	751	751	751	751	751
WING FOLD PENALTY	1000	1000	1000	1000	1000	1000
WING HARD POINTS (4)	· 100	100	100	100	100	100
DOUBLE HINGED RUDDER	50	50	50	50	50	50
SOUND PROOFING	250	250		250	250	***
AIR REFUELING PROBE	60	60	60	60	60	60
AIR REFUELING FUEL SYS.	· 60	60	60	60	60	60
BOMB BAY DOGHOUSE						400
SONOBAY						420
TOTAL	15552 LBS	16476 LBS	17552 LBS	19938 LBS	20261 LBS	23909 LBS

TABLE 5.5-I PROPULSION AND STRUCTURE WEIGHTS

.

		MULTIMISSION		MINIMUM AEW/A		sw	
ENGINE TYPE	UDF	PROPFAN	TURBOFAN	UDF	PROPFAN	TURBOFAN	
DESIGN MISSION	TANKER	TANKER	ASW	AEW	AEW	AEW	
FIXED EQUIPMENT GROUP							
FLIGHT CONTROLS	1236	1254	1433	1100	1071	1154	
HYDRAULICS	163	164	167	154	154	157	
PNEUMATICS	147	148	149	143	143	144	
ELECTRICALS	2480	2480	2885	2600	2600	2600	
CREW ACCOMMODATIONS	404	404	668	848	848	848	
CARGO ACCOMMODATION	25	25	25	16	16	16	
EMERGENCY EQUIPMENT	364	365	368	355	355	358	
AIR CONDITIONING	1119	1119	1119	993	993	993	
ANTI-ICING	337	338	350	322	331	333	
APU	330	330	330	330	330	330	
COMMON CORE AVIONICS	767	767	767	767	767	767	
MISSION UNIQUE AVIONICS	451	451	2073	4180	4180	4180	
AVIONICS INSTALLATION (21%)	256	256	597	1039	1039	1039	
LAUNCHERS AND RACKS			282	344	344	344	
MISSION CREW CONSOLES			600	1200	1200	1200	
EXTERNAL REFUELING POD	700	700					
FLIGHT/ENGINE/FUEL INSTRUMENTS	600	600	600	600	600	600	
	9379 LBS	9401 LBS	12413 LBS	14991 LBS	14971 LBS	15063 LBS	

TABLE 5.5-II FIXED EQUIPMENT WEIGHTS

.

+

1

\$

		MULTIMISSION			MINIMUM AEW/ASW		
ENGINE TYPE	UDF	PROPFAN	TURBOFAN	UDF	PROPFAN	TURBOFAN	
DESIGN MISSION	TANKER	TANKER	ASW	AEW	AEW	AEW	
PROPULSION GROUP	8205	8985	8613	6903	7958	7126	
STRUCTURES GROUP	19938	20261	23909	15552	16476	17552	
FIXED EQUIPMENT GROUP	9379	9401	12413	14991	14971	15063	
STANDARD AND OPERATIONAL ITEMS							
CREW AND EQUIPMENT	500	500	1000	1500	1500	1500	
TRAPPED OIL AND FUEL	478	479	425	362	357	385	
OPERATIONAL EMPTY WEIGHT	38500	39626	46360	39308	41262	41626	
PAYLOAD							
SIDEWINDERS (4)				776	776	776	
HARPOONS (2)			2336		•		
MK-60 MINES (2)			4732				
SONOBUOYS (60)			1515				
FUEL OFFLOAD	25000	25000					
MISSION FUEL AND RESERVES	7674	7998	23399	13712	12882	16988	
TAKEOFF MAXIMUM GROSS WEIGHT	71174 lbs	72624 lbs	78342 lbs	53796 lbs	54920 lbs	59390 lbs	

7 (

ø

٠

TABLE 5.5-III AIRCRAFT WEIGHTS BREAKDOWN

.

. .

	DRAG BREAK	DOWN AT ENGIN	E CRUISE SIZING	CONDITION	
		$S_{ref} = 6$	47 ft ²		
MACH NO.	= 0.66 CL	= 0.45 RE/F	T = 0.22328E + 07	ALT = 0	.25000E + 05
GEOMETRY TOTAL DRAG <u>0.033889</u>	PARASITE DRAG <u>0.023486</u>	FLAT PLATE FRICTION DRAG <u>0.013412</u>	PRESSURE DRAG 0.010074	DRAG RISE 0.000187	VORTEX DRAG 0.010216
COMPONENT DRAG					INDUCED DRAG 0.009277
WING	0.005158	0.003336	0.001821	0.0	TRIM DRAG 0.000939
BODY	0.008162	0.005626	0.002537	0.0	
HORZ TAIL	0.001074	0.000786	0.000287	0.0	
VERT TAIL	0.001885	0.001357	0.000528	0.0	
NACELLE	0.002592	0.000835	0.001757	0.000187	
STRUT	0.000474	0.000298	0.000177	0.0	
STORES	0.001174	0.001174	0.0	0.0	
EXCRESCENCE	0.002966				

TABLE 5.6-I MULTIMISSION UDF DRAG BREAKDOWN

3 1

4

.

MPSNA MAPS 3-11

. .

		$S_{ref} = 6$	60 ft ²			
MACH NO.	= 0.66 CL	= 0.45 RE/F	T = 0.22328E + 07	ALT = 0.25000E + 05		
GEOMETRY TOTAL DRAG <u>0.033775</u>	PARASITE DRAG 0.023354	FLAT PLATE FRICTION DRAG <u>0.013277</u>	PRESSURE DRAG <u>0.010077</u>	DRAG RISE 0.000201	VORTEX DRAG 0.010221	
COMPONENT DRAG		<i></i>			INDUCED DRAG 0.009274	
WING	0.005161	0.003338	0.001823	0.0	TRIM DRAG 0.000946	
BODY	0.007999	0.005513	0.002486	0.0		
HORZ TAIL	0.001082	0.000793	0.000289	0.0		
VERT TAIL	0.001900	0.001368	0.000533	0.0		
NACELLE	0.002873	0.000965	0.001908	0.000201		
STRUT	0.000248	0.000150	0.000098	0.0		
STORES	0.001151	0.001151	0.0	0.0		
EXCRESCENCE	0.002940					
	TABLE	5.6-II MULTIMISSION	PROPFAN DRAG BREAK	OOWN		

DRAG BREAKDOWN AT ENGINE CRUISE SIZING CONDITION

. .

.

.

109

٠

1

MPSNA MAPS 3-12

	DRAG BREAD	COOWN AT EN	IGINE CRUISE SIZING	CONDITION	
		Sret	$f = 712 ft^2$		
MACH NO.	= 0.66 CL	= 0.45	RE/FT = 0.22328E + 07	ALT = 0	.25000E + 05
GEOMETRY TOTAL DRAG <u>0.034022</u>	PARASITE DRAG 0.024635	FLAT PLATE FRICTION DRA <u>0.013599</u>	PRESSURE AG DRAG <u>0.011036</u>	DRAG RISE 0.000313	VORTEX DRAG <u>0.009074</u>
COMPONENT DRAG					INDUCED DRAG 0.008222
WING	0.005262	0.003414	0.001848	0.0	TRIM DRAG 0.000852
BODY	0.007375	0.005110	0.002265	0.0	
HORZ TAIL	0.001055	0.000773	0.000282	0.0	
VERT TAIL	0.002066	0.001487	0.000579	0.0	
NACELLE	0.004045	0.001197	0.002848	0.000313	
STRUT	0.000417	0.000285	0.000132	0.0	
STORES	0.001333	0.001333	0.0	0.0	
EXCRESCENCE	0.003082				

۹.

đ,

TABLE 5.6-III MULTIMISSION TURBOFAN DRAG BREAKDOWN

1

		$S_{ref} = 48$	89 ft²		
MACH NO.	= 0.63 CL	= 1.02 RE / F	T = 0.11953E + 07	ALT = 0	.40000E + 05
GEOMETRY TOTAL DRAG <u>0.077780</u>	PARASITE DRAG <u>0.033824</u>	FLAT PLATE FRICTION DRAG <u>0.017496</u>	PRESSURE DRAG <u>0.016328</u>	DRAG RISE 0.000343	VORTEX DRAG 0.043614
COMPONENT DRAG					INDUCED DRAG 0.040878
WING	0.012072	0.003827	0.008245	0.0	TRIM DRAG 0.002736
BODY	0.006635	0.005475	0.001160	0.0	
HORZ TAIL	0.001245	0.000912	0.000333	0.000343	
VERT TAIL	0.003053	0.002198	0.000856	0.0	
NACELLE	0.001684	0.000946	0.000737	0.0	
STRUT	0.001361	0.000865	0.000496	0.0	
STORES	0.003273	0.003273	0.0	0.0	
EXCRESCENCE	0.004500				

DRAG BREAKDOWN AT ENGINE CRUISE SIZING CONDITION

٩

.

TABLE 5.6-IV AEW/ASW UDF DRAG BREAKDOWN

.

	DRAG BREAH	COWN AT ENGIN	E CRUISE SIZING	CONDITION	
		$S_{ref} = 5$	78 ft ²		
MACH NO.	= 0.63 CL	. = 0.88 RE/F	T = 0.11953E + 07	ALT = 0	.40000E + 05
GEOMETRY TOTAL DRAG <u>0.061152</u>	PARASITE DRAG <u>0.028399</u>	FLAT PLATE FRICTION DRAG <u>0.015798</u>	PRESSURE DRAG <u>0.012600</u>	DRAG RISE <u>0.0</u>	VORTEX DRAG <u>0.032753</u>
COMPONENT DRAG					INDUCED DRAG 0.030408
WING	0.009482	0.003838	0.005645	0.0	TRIM DRAG 0.002345
BODY	0.005665	0.004630	0.001034	0.0	
HORZ TAIL	0.001326	0.000971	0.000355	0.0	
VERT TAIL	0.003255	0.002343	0.000912	0.0	
NACELLE	0.001357	0.000762	0.000594	0.0	
STRUT	0.000823	0.000485	0.000338	0.0	
STORES	0.002768	0.002768	0.0	0.0	
EXCRESCENCE	0.003722				

TABLE 5.6-V AEW/ASW PROPFAN DRAG BREAKDOWN

1 C

¥.

		$S_{ref} = 5$	685 ft ²		
MACH NO.	= 0.63 CL	. = 0.94 RE/I	FT = 0.11953E + 07	ALT = 0.4	40000E + 05
GEOMETRY TOTAL DRAG <u>0.066908</u>	PARASITE DRAG 0.029556	FLAT PLATE FRICTION DRAG <u>0.016080</u>	PRESSURE DRAG <u>0.013476</u>	DRAG RISE 0.00048	VORTEX DRAG 0.037304
COMPONENT DRAG					INDUCED DRAG 0.034711
WING	0.010621	0.003839	0.006782	0.0	TRIM DRAG 0.002593
BODY	0.005571	0.004574	0.000997	0.0	
HORZ TAIL	0.001332	0.000976	0.000356	0.000048	
VERT TAIL	0.003270	0.002354	0.000917	0.0	
NACELLE	0.001826	0.001371	0.000455	0.0	
STRUT	0.000352	0.000232	0.000120	0.0	
STORES	0.002735	0.002735	0.0	0.0	
EXCRESCENCE	0.003849				

TABLE 5.6-VI AEW/ASW TURBOFAN DRAG BREAKDOWN

DRAG BREAKDOWN AT ENGINE CRUISE SIZING CONDITION

.

L

,

.

MPSNA MAPS 3 10

.

SIDEWINDERS AND RACKS	QTY 4	WEIGHT-LBS 1120	DRAG-FT ² 1.6
HARPOONS AND RACKS	2	2618	.95
REFUELING POD	1	700	.8
300 GALLON EXTERNAL TANK	2	414	1.04
400 GALLON EXTERNAL TANK	2	528	1.19
600 GALLON TXTERNAL TANK	2 .	536	1.34

.

.

.

.

114

6

. *

.

TABLE 5.6-VII STORE WEIGHT AND DRAG INCREMENTS

۰,

MULTIMISSION AIRCRAFT	TA	NKER	ASW
SIZING SENSITIVITY	UDF	PF	TF
\bigtriangleup GW / \bigtriangleup W ~ LB / LB	1.72	1.59	2.44
△ GW / % △ TSFC ~ LB / %	71.74	122.25	573.5
\bigtriangleup GW / \bigtriangleup DRAG/ _q ~ LB / FT ²	308.4	281.48	1200.5
\bigtriangleup FUEL / \bigtriangleup W ~ LB / LB	.1896	.1764	1.557
△ FUEL / % △ TSFC ~ LB / %	49.46	89.79	373.8
\triangle FUEL / \triangle DRAG/q ~ LB / FT ²	212.71	207.21	779.0

.

.

.

FIXED GEOMETRY MISSION SENSITIVIT	Y		
\triangle RADIUS / \triangle W ~ NM / LB	.1226	.1178	.0596
\triangle RADIUS / % \triangle TSFC ~ NM / %	7.94	9.21	15.287
\triangle RADIUS / \triangle DRAG/ _q ~ NM / FT ²	10.92	17.72	14.271

٠

TABLE 5.7-I MULTIMISSION AIRCRAFT DESIGN SENSITIVITY

.

.

MPSNA MAPS 4-19

AEW/ASW AIRCRAFT		AEW		
SIZING SENSITIVITY	UDF	PF	TF	
\bigtriangleup GW / \bigtriangleup W ~ LB / LB	1.90	1.84	2.28	
△ GW / % △ TSFC ~ LB / %	238.3	216.6	321.1	
\bigtriangleup GW / \bigtriangleup DRAG/ _q ~ LB / FT ²	1083.93	917.50	1565.43	
\triangle FUEL / \triangle W ~ LB / LB	.4124	.3675	.5601	
△ FUEL / % △ TSFC ~ LB / %	175.9	160.10	224.40	
\triangle FUEL / \triangle DRAG/q ~ LB / FT ²	710.88	599.93	925.14	

116

FIXED GEOMETRY MISSION SENSITIVITY

.

\triangle RADIUS / \triangle W ~ NM / LB	.1494	.1538	.1240
△ RADIUS / % △ TSFC ~ NM / %	15.77	15.16	15.87
\triangle RADIUS / \triangle DRAG/ _q ~ NM / FT ²	31.38	27.86	37.14

TABLE 5.7-II AEW/ASW AIRCRAFT DESIGN SENSITIVITY

1 E

1

6

incremental weight are presented in Tables 5.7-I and 5.7-II as they affect design mission radius.

5.8 STABILITY AND CONTROL ANALYSIS

CTOL longitudinal and lateral directional control analysis used to size the horizontal and vertical tails for all six point designs is presented below.

5.8.1 CTOL LONGITUDINAL STABILITY

The results of a limited stability and control analysis to size the horizontal tail for each multimission aircraft is presented in Figure 5.8.1-1. Shown are lines representing neutral point loci, maneuver point loci, and takeoff rotation power as a function of center of gravity and horizontal tail area. Also shown are the worst case center of gravity limits for each aircraft based on the missions and requirements of the MPSNA-MAPS study. The sensitivity of takeoff rotation power to variable horizontal tail incidence and to single/double hinged elevators is also shown. The design areas selected are presented above each configurations X-plot.

Tail sizing data is presented in Figure 5.8.1-2 for the minimum AEW/ASW configurations. The worst case is the turbofan which is neutrally stable at the most aft center of gravity.

5.8.2 CTOL LATERAL-DIRECTIONAL STABILITY

The results of the two degree of freedom stability and control static sizing analysis are shown in Figures 5.8.2-1 through 5.8.2-6 for the multimission configurations. The vertical tail and rudder geometries are sized for either the critical engine out maneuver or low speed approach. The multimission UDF configuration has a maximum aft C.G. limit of 47% and is a short coupled configuration. These constraints do not allow adequate static directional stability for aft C.G. locations.

For this study, the criteria used to determine the level of $C_{N\beta}$ recommended by Perkins & Hage is:

$$C_{N\beta}$$
 DESIRABLE = .005($\frac{W}{h2}$)

The multimission UDF configuration with the vertical tail sized at

 $S_{V} = 220 \text{ Ft}^{2}$

has acceptable engine out directional control and positive but weak directional stability (C_{N_R} = .0008).

In order to assess the impact of this weak open loop static directional stability. The lateral/directional dynamic response characteristics must be identified.

CENTER OF GRAVITY~% MAC

FIGURE 5.8.1-1 MULTIMISSION HORIZONTAL TAIL SIZING

ŧ.

.

.

.

.

.

CENTER OF GRAVITY~% MAC

FIGURE 5.8.1-2 MINIMUM AEW/ASW HORIZONTAL TAIL SIZING

MULTIMISSION UDF

FIGURE 5.8.2-1 ENGINE OUT YAWING MOMENT COEFFICIENT VS VERTICAL TAIL AREA

FIGURE 5.8.2-2 STATIC DIRECTIONAL STABILITY COEFFICIENT VS VERTICAL TAIL AREA

,

FIGURE 5.8.2-3 ENGINE OUT YAWING MOMENT COEFFICIENT VS VERTICAL TAIL AREA

FIGURE 5.8.2-4 STATIC DIRECTIONAL STABILITY COEFFICIENT VS VERTICAL TAIL AREA

MULTIMISSION TURBOFAN

FIGURE 5.8.2-5 ENGINE OUT YAWING MOMENT COEFFICIENTS VS VERTICAL TAIL AREA

FIGURE 5.8.2-6 STATIC DIRECTIONAL STABILITY VS VERTICAL TAIL AREA
The same methodology is used to size the vertical tail and rudder geometry of the minimum AEW/ASW configurations in Figures 5.8.2-7 through 5.8.2-12.

The vertical tail areas selected appear with the horizontal tail areas selected in Figures 5.8.1-1 and 5.8.1-2.

5.9 WING FOLD AND SPOT FACTOR DRAWINGS

The wing fold arrangements and resulting spot factors for the optimized configurations are presented in Figure 5.9-1 for the multimission configurations and Figure 5.9-2 for the minimum AEW/ASW configurations. Each configuration has a 9 in. minimum clearance line drawn around the aircraft. They were manually spotted using scale model cutouts at the BMAC Aircraft Carrier Spotting Facility (similar to the USN spotting facility at Lakehurst, N.J.) in accordance with current Navy practice. Spotting studies used the USS Nimitz (CVN-68) with the A-7 type as baseline (SF = 1.0).

MINIMUM AEW/ASW UDF

FIGURE 5.8.2-7 ENGINE OUT YAWING MOMENT COEFFICIENT VS VERTICAL TAIL AREA

FIGURE 5.8.2-8 STATIC DIRECTIONAL STABILITY VS VERTICAL TAIL AREA

124

FIGURE 5.8.2-9 ENGINE OUT YAWING MOMENT COEFFICIENT VS VERTICAL TAIL AREA

FIGURE 5.8.2-10 STATIC DIRECTIONAL VS VERTICAL TAIL AREA

125

MINIMUM AEW/ASW TURBOFAN

FIGURE 5.8.2-11 ENGINE OUT YAWING MOMENT COEFFICIENT VS VERTICAL TAIL AREA

FIGURE 5.8.2-12 STATIC DIRECTIONAL STABILITY VS VERTICAL TAIL AREA

4

.

,

.

.

FIGURE 5.9-1 MULTIMISSION SPOTTING FACTORS

f

FIGURE 5.9-2 MINIMUM AEW/ASW SPOTTING FACTORS

6.0 TASK IV: STOVL ALTERNATE DESIGNS

The intent of this task was to identify the effects/penalties of V/STOL or STOVL on the basic MPSNA concepts. A general assumption made to facilitate this limited examination was that STOVL would be a lesser penalty to the basic MPSNA concepts than V/STOL. It was also deemed expedient to change the basic aircraft concept to one which would allow rotation of the propfan propulsion systems from cruise position to vertical landing position near the aircraft center of gravity.

6.1 PROPULSION SYSTEM ASSUMPTIONS

Consistent with the limited nature of this task, certain propulsion system assumptions were also made. The following paragraphs identify the major assumptions and address the rationale leading to them.

6.1.1 REACTION CONTROL SYSTEM SIZING

Task I defined the maximum weight for any MPSNA aircraft as 80,000 lb. Therefore, stability and control (S&C) analysis was performed to establish the nominal reaction control forces required for an 80,000 lb. STOVL configuration in the vertical landing segment of its mission. Table 6.1.1-I presents the results of the S&C analysis for two conditions, a step input of control force (instantaneous) and a ramp input of control force (one second delay). The roll and pitch step input levels were chosen based on use of the bleed and burn reaction control system to be discussed in Paragraph 6.1.3. The yaw ramp input was chosen based on the differential tilt nacelle concept discussed in Paragraph 6.1.4.

6.1.2 ALL ENGINES OPERATING

The advantages of assuming all engines operating during the vertical landing phase are:

- Simplified system by eliminating the requirements for cross shafting and/or cross ducting (no engine out capability during vertical operations).
- o Reduces the required installed thrust to a level which is more compatible with the cruise thrust requirements of the aircraft.
- o These assumptions were first promulgated by Cmdr. M.P. LaReau, USN during discussions/presentations with BMAC in 1984.

A disadvantage of this assumption is reduced safety in the event of an engine failure.

The rationale for accepting this assumption is of course based on Cmdr. LaReau's remarks and further justified on a cursory basis by taking into account the continued improvement of turbomachinery reliability and the - MAX GROSS WT = 80000 LBS.

	CONTROL STEP INPUT	CONTROL RAMP INPUT
ROLL	± 17,082 FT. · LBS.	± 34,164 FTLBS.
рітсн	± 27,513 FTLBS.	± 55,026 FTLBS.
YAW	± 77,770 FTLBS.	± 155,540 FTLBS.

- AUGMENTATION DUE TO BURN = 2.0
- QUASI INSTANTANEOUS RESPONSE
- CONTINUOUS BY-PASS BLEED TO SUSTAIN COMBUSTION

FIGURE 6.1.3-1 BLEED AND BURN REACTION CONTROL-PITCH AND ROLL

- ± 12° DIFFERENTIAL TILT FOR YAW AT 12°/SEC MIN.
 - TRANSITION TILT RATE MODULATED AS REQUIRED
 - FORE AND AFT THRUST COMPONENTS = 21% AXIAL
 - VERTICAL COMPONENTS = 98% AXIAL

FIGURE 6.1.4-1 TILT NACELLE FOR TRANSITION AND YAW CONTROL

achieved and projected advance in engine monitoring to warn the pilot of deteriorating/unreliable conditions.

In the event of one engine out or indications that a vertical landing would be unacceptably risky (engine monitoring indications) the pilot would have to execute a one engine out arrested landing during peacetime operations. In the case of these aircraft conditions during hostile conditions, there is the possibility of having to ditch the aircraft.

6.1.3 PITCH AND ROLL BLEED AND BURN REACTION CONTROL

The relatively cold interstage bleed air offers the potential for relatively high augmentation due to burning. Since plenum chamber burning used by Rolls Royce in the advanced Pegasus produces an augmentation over 2.0, that level was assumed for this study. Figure 6.1.3-1 presents the notional bleed and burn system assumed. Its features include:

- o Sustained combustion during vertical operations
- o Variable nozzle for maximum thrust
- o Central control system for quasi instantaneous response
- o Static stability and control system weight of 175 lb.
- o Burner exit temperature of 2540°F

6.1.4 TILT NACELLE FOR TRANSITION AND YAW CONTROL

Figure 6.1.4-1 presents the assumed geometry to assess yaw control authority. Resulting analysis showed that differential tilting of the nacelle $\pm 12^{\circ}$ while in hover provided the required control authority specified in Paragraph 6.1.1. Therefore, the rate of tilt required to be consistent with the assumed "ramp input" was 12° /sec. minimum. The fore and aft components at 12° differential tilt yield 21% of the axial engine thrust while the vertical thrust component is degraded only 2%.

6.1.5 PROPELLER OVERSPEED FOR TAKEOFF AND VERTICAL OPERATIONS

In circumstances where maximum propfan performance is required for takeoff or vertical operations, the use of propfan overspeed yields significant increases in static and low speed thrust. A reasonable tip speed was assumed to be 900 ft./sec., which allows for low speed transition without excessive losses due to exceeding sonic tip velocity. The resulting thrust increase is approximately 30% with an increase of propeller weight proportional to the ratio of the design tip speeds raised to the 0.3 power, i.e., $(900/750)^{0.3} = 1.0662$ or 6.62% weight increase.

6.2 THREE VIEW DRAWINGS

Three views of the STOVL configurations selected in Task IV are shown in Figure 6.2-1 for the multimission STOVL and Figure 6.2-2 for the minimum AEW/ASW STOVL. These aircraft are only configured and analyzed for the propfan engine.

FIGURE 6.2-1 MULTIMISSION STOVL PROPFAN CONFIGURATION (U)

¥.

.

-

.

.

132

.

.

.

.

FIGURE 6.2-2 MINIMUM AEW/ASW PROPFAN CONFIGURATION (U)

-

.

.

.

6.3 STOVL SIZING

The effect of disk loading on aircraft gross weight as thrust/weight ratio increases is shown in Figure 6.3-1. The sizing missions used to size the STOVL configurations were selected to be the same as their CTOL counterparts; tanker for the multimission and AEW for the minimum AEW/ASW. The dashed line representing the CTOL configuration lies above the .4 thrust/weight line because the aircraft requires higher thrust/weight ratios to meet the cruise altitude and speed requirements. The weight trend in this figure does not include thrust losses resulting from the additional bleed required for the hover control or the extra thrust produced by overspeeding the propfan at low speeds. At this point the possibility of a VSTOL aircraft to do the AEW mission is eliminated because it would exceed the 80,000 lb. gross weight limit.

The effect of engine bleed for hover control and overspeeding the propfan is shown in Figure 6.3-2.

Sizing trends for CTOL and VSTOL/STOVL as a function of thrust/weight are presented in Figure 6.3-3. The overlap in the data is due to using overspeed for the VSTOL/STOVL aircraft and not for the CTOL aircraft. Figure 6.3-4 shows that as aircraft thrust/weight increases, engine thrust to weight ratio is decreasing. The CTOL exhibits this same behavior until the physical size of the engine and accessories become constrained to a physical size limit. The effect of aircraft thrust/weight ratio on propeller diameter is shown in Figure 6.3-5.

Final sizing for the multimission and minimum AEW/ASW STOVL aircraft was accomplished by varying takeoff thrust/weight until landing thrust to weight ratio reached 1.1. Figure 6.3-6 and 6.3-7 shows the behavior of takeoff gross weight (solid lines) and landing gross weight (dashed lines) as a function of landing thrust to weight ratio. The carcier design maximum landing weights of the multimission AEW and ASW variants were also examined in Figure 6.3-7. The heaviest variant at the 1.1 landing thrust to weight ratio was ASW. It sized the engines because all the variants have to be capable of vertically landing on the carrier. Note that the engines have to be sized to handle the ASW variant landing weight on an aircraft sized to the tanker mission.

6.4 MISSION PERFORMANCE AND BREAKDOWN BY MISSION LEG

A design mission performance breakdown by mission leg is presented for the STOVL point designs. Alternate mission performance on the AEW, ASW, Tanker, and COD missions is also shown.

6.4.1 MULTIMISSION STOVL

Mission performance data for AEW, ASW, tanker, and COD missions for the multimission STOVL is presented in Figure 6.4.1-1. This aircraft does not meet the time on-station requirements of the ASW mission. Since sizing was accomplished using the same sizing missions as the CTOL configurations, this can be considered as an additional penalty for

2 L

.

.

t

E

GROSS WEIGHT

ĸ

.

135

FIGURE 6.3-3 GROSS WEIGHT GROWTH DUE TO TAKEOFF THRUST TO WEIGHT RATIO

3

ť

ě.

AEW/ASW

FIGURE 6.3-4 ENGINE THRUST TO WEIGHT BEHAVIOR WITH AIRCRAFT TAKEOFF THRUST TO WEIGHT RATIO

FIGURE 6.3-5 PROPELLER DIAMETER AS A FUNCTION OF AIRCRAFT TAKEOFF THRUST TO WEIGHT RATIO

٤.

£

ŧ

£

FIGURE 6.3-6 MINIMUM AEW/ASW STOVL SIZING

•

.

1

137

FIGURE 6.4.1-1 MULTIMISSION STOVL PROPFAN MISSION PERFORMANCE

3

e

k

.

138

.

C.

STOVL capability. If the sizing mission were changed to ASW, the additional weight penalty would be approximately 3,700 lb. A mission breakdown by leg is presented in Table 6.4.1-I for the tanker design mission.

6.4.2 MINIMUM AEW/ASW STOVL

Minimum AEW/ASW STOVL mission performance data is presented in Figure 6.4.2-1. Again, the STOVL capability is exacting a more severe penalty on the ASW mission than was found in the CTOL designs of Task III. A breakdown of the AEW design mission by leg is presented in Table 6.4.2-I.

6.5 AIRCRAFT WEIGHT BREAKDOWNS

Detailed weights breakdowns for the multimission STOVL and minimum AEW/ASW are presented in Tables 6.5-I through 6.5-III. A breakdown of the propulsion and structure groups is shown in Table 6.5-I, and the fixed equipment group is shown in Table 6.5-II. The weights breakdowns for common core avionics, mission unique equipment, and payloads are the same as presented in Section 5.2. A summary of aircraft weight breakdown is presented in Table 6.5-III.

6.6 STOVL DRAG BREAKDOWNS

Drag breakdowns of the STOVL configurations on their design missions are presented in Table 6.6-I for the multimission STOVL and Table 6.6-II for the minimum AEW/ASW STOVL. The same information is provided on the STOVL drag breakdowns as was presented on the CTOL configurations. High speed cruise drag polars for the STOVL configurations are presented in Appendix A. These drag data include drag of the stores carried on the design mission.

6.7 WING FOLD AND SPOT FACTOR DRAWINGS

The spot factors presented with the drawings in Figure 6.7-1 were determined using the same ground rules as the CTOL configurations presented in Section 4.9.

PARAMETERS AT END OF SEGMENT

.

£

SEGMENT	SEGMENT	RANGE	E SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAN	1	HRS	LBS	FT		NAM	HRS
TAKEOFF			0.083	95929.30	0.00		0.00	0.083
CLIMB	41.4	2	0.126	94945.03	38278.12	0.675	41.42	0.209
CRUISE	158.5	8	0.474	93612.11	38278.12	0.685	200.00	0.683
LOITER			1.250	90527.36	25000.00	0.433	200.00	1.933
REFUEL			0.083	64757.84	25000.00	0.665	200.00	2.017
LOITER			1.250	62524.62	25000.00	0.373	200.00	3.267
CLIMB	28.7	6	0.076	62155.98	47184.09	0.675	228.76	3.343
CRUISE	171.2	4	0.508	61187.98	47184.09	0.680	400.00	3.851
LOITER			0.333	60398.13	0.00	0.283	400.00	4.184
DISTANCE OUT AT EN	D REFUEL	=	200.00 NAM				,	
TOTAL MISSION RANG	E	=	400.00 NAM					
TOTAL MISSION FUEL		=	10613.16 LBS					
TOTAL FUEL RESERVES	5	=	1018.84 LBS					
TOTAL MISSION TIME		=	4.18 HRS					
PAYLOAD		=	0.00 LBS					
TOTAL FUEL OFFLOAD		=	25000.00 LBS					

TABLE 6.4.1-I MISSION LEG BREAKDOWN - MULTIMISSION STOVL ON TANKER MISSION

1

.

1

۰.

.

.

.

FIGURE 6.4.2-1 MINIMUM AEW/ASW STOVL PROPFAN MISSION PERFORMANCE

141

.

6

PARAMETERS AT END OF SEGMENT

SEGMENT	SEGMENT RANGE	SEGMENT TIME	GROSS WEIGHT	ALTITUDE	MACH	TOTAL RANGE	TOTAL TIME
	NAM	HRS	LBS	FT		NAM	HRS
TAKEOFF		0.083	70813.95	0.00		0.00	0.083
CLIMB	39.82	0.118	70057.78	39835.70	0.696	39.82	0.202
CRUISE	285.29	0.754	68530.70	39835.70	0.708	325.11	0.956
CLIMB	0.38	0.001	68527.16	40000.00	0.696	325.49	0.957
CRUISE	24.51	0.061	68405.52	40000.00	0.709	350.00	1.017
LOITER		6.000	58125.53	40000.00	0.530	350.00	7.017
CLIMB	7.97	0.020	58057.46	43943.84	0.696	357.97	7.037
CRUISE	342.14	0.901	56528.22	43943.84	0.702	700.00	7.938
LOITER		0.333	55846.22	0.00	0.286	700.00	0.272
TOTAL MISSION RANG	iE =	700.00 NAM					
TOTAL MISSION FUEL	=	15122.20 LBS					
TOTAL FUEL RESERVES	; =	1513.80 LBS					
TOTAL MISSION TIME	=	8.27 HRS					
PAYLOAD	=	776.00 LBS					

.

TABLE 6.4.2-I MISSION LEG BREAKDOWN - AEW/ASW STOVL ON AEW MISSION

3

.

ĸ

.

142

.

· ·	STOVL AEW/ASW	STOVL MULTIMISSION
ENGINE TYPE	· PROPFAN	PROPFAN
DESIGN MISSION	AEW	TANKER
PROPULSION GROUP PRIMARY ENGINES EBU FUEL SYSTEM ENGINE / PILOT CONTROL LINK TOTAL	13989 1352 518 60 15919 LBS	19682 1396 1033 60 22171 LBS
STRUCTURES GROUP WING HORIZONTAL TAIL VERTICAL TAIL FUSELAGE LANDING / ARRESTING GEAR ENGINE STRUTS ENGINE NACELLES NUCLEAR HARDENING WING FOLD PENALTY WING HARD POINTS (4) DOUBLE HINGED RUDDER SOUND PROOFING AIR REFUELING PROBE AIR REFUELING FUEL SYS.	5636 823 648 5490 4203 1232 730 751 1000 100 50 250 60 60	6148 880 952 8237 5678 1597 1295 751 1000 100 50 250 60 60
TOTAL	21033 LBS	27058 LBS

TABLE 6.5-I STOVL WEIGHTS - PROPULSION AND STRUCTURE

-

-

143

.

.

.

1

~

	STOVL AEW/ASW	STOVE MULTIMISSION
ENGINE TYPE	PROPFAN	PROPFAN
DESIGN MISSION	AEW	TANKER
FIXED EQUIPMENT GROUP	<u> </u>	
FLIGHT CONTROLS	1286	1526
HYDRAULICS	163	177
PNEUMATICS	148	154
ELECTRICALS	2600	2480
CREW ACCOMMODATIONS	848	404
CARGO ACCOMMODATIONS	16	25
EMERGENCY EQUIPMENT	364	378
AIR CONDITIONING	993	1119
ANTI-ICING	386	410
APU	330	330
COMMON CORE AVIONICS	767	767
MISSION UNIQUE AVIONICS	4180	451
AVIONICS INSTALLATION (21%)	1039	256
LAUNCHERS AND RACKS	344	
MISSION CREW CONSOLES	1200	
EXTERNAL REFUELING POD		700
FLIGHT / ENGINE / FUEL INSTRUMENTS	600	600
TOTAL	15264 LBS	9777 LBS

TABLE 6.5-II STOVL WEIGHTS - FIXED EQUIPMENT

8

144

ĸ

"

	STOVL AEW/ASW	STOVL MULTIMISSION
ENGINE TYPE	PROPFAN	PROPFAN
DESIGN MISSION	AEW	TANKER
PROPULSION GROUP	15919	22171
STRUCTURES GROUP	21033	27058
FIXED EQUIPMENT GROUP	15264	9777
STANDARD AND OPERATIONAL ITEMS CREW AND EQUIPMENT TRAPPED OIL AND FUEL	1500 528	500 665
OPERATIONAL EMPTY WEIGHT	54244 LBS	60171 LBS
PAYLOAD SIDEWINDERS (4) HARPOONS (2) MK-60 MINES (2) SONOBUOYS (60) FUEL OFFLOAD MISSION FUEL AND RESERVES	776 16640	 25000 11639
TAKEOFF MAXIMUM GROSS WEIGHT	71660 LBS	96810 LBS

TABLE 6.5-III STOVL WEIGHTS - AIRCRAFT WEIGHT BREAKDOWN

•

145

--

DRAG	BREAKDOWN	AT	ENGINE	CRUISE	SIZING	CONDITION

		$S_{REF} = 880$	0.1		
MACH NO.	= 0.66 CL	= 0.45 RE/	FT = 0.22328E + 07	ALT = 0	25000E + 05
GEOMETRY TOTAL DRAG <u>0.031406</u>	PARASITE DRAG <u>0.020930</u>	FLAT PLATE FRICTION DRAG 0.011957	PRESSURE DRAG <u>0.008973</u>	DRAG RISE <u>0.000178</u>	VORTEX DRAG <u>0.010298</u>
COMPONENT DRAG					INDUCED DRAG 0.009239
WING	0.005190	0.003357	0.001833	0.0	TRIM DRAG 0.001059
BODY	0.005999	0.004135	0.001865	0.0	
HORZ TAIL	0.001207	0.000884	0.000323	0.0	
VERT TAIL	0.002124	0.001528	0.000595	0.0	
NACELLE	0.002844	0.001075	0.001769	0.000178	
STRUT	0.000189	0.000114	0.000075	0.0	
STORES	0.000863	0.000863	0.0	0.0	
EXCRESCENCE	0.002514				

TABLE 6.6-I MULTIMISSION STOVL PROPFAN DRAG BREAKDOWN

DRAG BREAKDOWN AT ENGINE CRUISE SIZING CONDITION

		$S_{REF} = 75$	4.3		
MACH NO.	= 0.63 CL	= 0.88 RE/	FT = 0.11953E+07	ALT = ().40000E + 05
GEOMETRY TOTAL DRAG <u>0.059029</u>	PARASITE DRAG <u>0.026120</u>	FLAT PLATE FRICTION DRAG <u>0.013961</u>	PRESSURE DRAG <u>0.012159</u>	DRAG RISE <u>0.0</u>	VORTEX DRAG <u>0.032909</u>
COMPONENT DRAG					INDUCED DRAG 0.030319
WING	0.009498	0.003844	0.005654	0.0	TRIM DRAG 0.002590
BODY	0.004338	0.003546	0.000792	0.0	
HORZ TAIL	0.001466	0.001074	0.000392	0.0	
VERT TAIL	0.001914	0.001377	0.000536	0.0	
NACELLE	0.001814	0.001020	0.000795	0.0	
STRUT	0.001663	0.000980	0.000683	0.0	
STORES	0.002120	0.002120	0.0	0.0	
EXCRESÇENCE	0.003307				

TABLE 6.6-II AEW/ASW STOVL PROPFAN DRAG BREAKDOWN

٠

.

.

.

.

FIGURE 6.7-1 STOVL SPOTTING FACTORS

147

-

•

.

THIS PAGE LEFT INTENTIONALLY BLANK

7.0 TASK V – ADVANCED TECHNOLOGY RESEARCH PLAN

The following paragraphs outline the areas of research which can logically be conducted by BMAC or other airframe companies. Items which are generally in the engine companies sphere of interest are not addressed since they would tend to be a repeat of recommendations put forth in the APET series of studies.

7.1 ADVANCED TECHNOLOGY RESEARCH RECOMMENDATIONS

Two specific recommendations are made relating to the propfan/airframe installation effects. One recommendation is related to investigating "state-of-the-art" engine cycle effects on the MPSNA-MAPS life cycle cost. The other recommendation is for investigation of V/STOL/STOVL propfan reaction control systems.

7.1.1 PROPFAN/AIRFRAME INSTALLATION GUIDELINES

The purpose of this effort is to collect data on propfan engine integration with respect to the fuselage or any aerodynamic surface. More specifically for fuselage mounted configurations, this effort would formulate guidelines relating propfan engine placement with respect to upstream or downstream aerodynamic surfaces, coincident aerodynamic surfaces, and the fuselage surface. Also for wing mounted configurations, guidelines would be developed relating propfan efflux over and under the wing as well as position of a canard wake into the inlet and propeller planes.

To accomplish this effort, it is suggested that it be approached from four ways:

- 1) sponsor national meeting sessions devoted to propfan installation.
- 2) make a survey of airframe companies.
- 3) make a survey of engine/propfan companies.
- 4) make a search of national and international literature/data.

The schedule, shown in Figure 7.1-1, indicates this activity being completed in three years. In actuality, the activity could continue indefinitely on a sustaining basis but with the first publication within the indicated three year period. Cost for that initial effort should be based on 1/3 man year level for first two years and one man level for the third year for final documentation which equates to approximately \$210,000 in 1986 dollars.

7.1.2 PROPFAN ANALYSIS CODES FOR AIRFRAME INSTALLATION

The purpose of this effort is to develop analytical tools to predict non-uniform flow effects on the engine/propfan performance. The scope of this effort should include the effects of maneuvering flight, low speed flight (high angles of attack), thrust effects due to asymmetric and/or angular wake flow ingestion, and inlet pressure/temperature rise/decrement for tractor installations.

The plan includes conducting a survey of existing propfan analysis codes, selecting one and enhancing it as required to meet all of the objectives. Figure 7.1-1 shows that approximately two people working for two years will be required to accomplish this activity. The cost is based on two men for two years which equates to approximately \$500,000 in 1986 dollars.

7.1.3 PROPFAN ENGINE CYCLE OPTIMIZATION FOR MPSNA-MAPS

As implied by the title, it may be advantageous to examine lower gas generator technology levels for a Navy application that has approximately 400 to 450 hrs. per year flight time vs. the 2000+ hrs. per year flight time of the commercial aircraft for which the higher technology gas generators were designed. The basis will be the aircraft life cycle cost (LCC) as a function of technology level with approximately three levels being examined. The primary variables will be overall pressure ratio and turbine inlet temperature.

The plan is to use the Navy/NASA Engine Program (NNEP) with its weight and cost codes to generate approximately three levels of technology with attendant cost. This data applied to the vehicle and mission in the Airplane Synthesis and Mission Program (ASAMP) will yield information necessary to determine initial aircraft cost and operating and support costs. With this data input to an existing LCC model code, the LCC effects of engine technology can be quantified.

Two people for approximately 10 months will be required to accomplish this activity (Figure 7.1-1). The approximate cost will be \$210,000 in 1986 dollars.

7.1.4 PROPFAN HOVER CONTROL SYSTEMS FOR V/STOL OR STOVL

The increasing interest in propfan V/STOL and STOVL makes this investigation important. Since the gas generators driving the propfan are relatively small in comparison to turbofan or turbojet configurations, the means to accomplish reaction hover control becomes more critical.

The plan to accomplish this study includes several means of control, all of which impose some thrust/drag penalty on the aircraft configuration. Among the possibilities to be examined are gas generator bleed with no form of augmentation; gas generator bleed with ejector augmentation; gas generator bleed and burn (afterburning augmentation); the placing of aerodynamic control surfaces in the propfan efflux; and the implementation of cyclic pitch of the propfan blades.

This activity, as noted in Figure 7.1-1, will require two people for approximately one year and yields an approximate cost of \$250,000 in 1986 dollars.

FIGURE 7.1-1 ADVANCED TECHNOLOGY RESEARCH SCHEDULE

151

THIS PAGE LEFT INTENTIONALLY BLANK

8.0 LIFE CYCLE COST, FIGURE OF MERIT, AND SUMMARY

The life cycle cost (LCC) of the CTOL and STOVL point designs and figures of merit are addressed in the sections below. The results of this study are then summarized.

8.1 LIFE CYCLE COST

The methodology used to develop the operating and support costs is presented in the following sections.

8.1.1 MARKET POTENTIAL

The baseline market potential and the adjustment for each mission variant is used to compute the adjusted market potential in the manner discussed below.

8.1.1.1 BASELINE MARKET POTENTIAL

The baseline market projection for a 1993 fleet utilizing current fleet aircraft is shown in Table 8.1.1.1-I. It assumes one-for-one replacement of the current support aircraft fleet. This table was submitted with the groundrules and assumptions letter which was approved.

The mission performance parameters used to adjust the baseline market potential are shown in Table 8.1.1.1-II.

8.1.1.2 AEW MARKET POTENTIAL ADJUSTMENT

Tables 8.1.1.2-I through 8.1.1.2-III show the market adjustment buildup of the AEW mission aircraft. The method used is based on the Boeing multiple element station keeping model. The baseline mission provides a 550 NM detection range for a 120° threat sector. This requires a 350 NM station range and three orbits. The utilization rate used for both new and old aircraft is 16 hours per day. The number of mission capable aircraft required is calculated in Table 8.1.1.2-I as:

```
(NUMBER OF ORBITS REQUIRED)*(MISSION TIME) * (24HOURS/DAY)
(UTILIZATION RATE)* (TIME ON-STATION)
```

This number represents ideal aircraft with 100% reliability. The adjusted operational deployment, Table 8.1.1.2-II, is calculated by first calculating the number of real aircraft with 85% reliability required to supply this number of ideal aircraft with a 95% confidence level. Appendix B presents the derivation of this calculation. A 10% reserve is added to the calculated number of real aircraft.

Finally, adjusted operational deployment is calculated as:

(NUMBER OF NEW AIRCRAFT REQUIRED) * BASELINE OPERATIONAL DEPLOYMENT (NUMBER OF OLD AIRCRAFT REQUIRED)

MISSION	OPERATIONAL DEPLOYMENT	REPLACEMENT AIR GROUP (RAG)	PIPELINE	ATTRITION	TOTAL LIFE CYCLE PROCUREMENT
AEW	75	19	11	34	139
TANKER	82	21 ·	12	37	152
ASW	128	32	19	58	237
EW	60	15	9	27	111
COD	15	4	2	7	28

OPERATIONAL DEPLOYMENT FOR 15 CARRIER FLEET

RAG CALCULATED AS 25% OF OPERATIONAL DEPLOYMENT

PIPELINE CALCULATED AS 15% OF OPERATIONAL DEPLOYMENT

ATTRITION CALCULATED AS 45% OF OPERATIONAL DEPLOYMENT (BASED ON 3% PER YEAR FOR 15 YEARS)

THE ASUW, MIW, ESM, C³I, AND AAW MISSIONS ARE CONSIDERED DERIVATIVES OF THE PRIMARY SUPPORT MISSIONS

INCLUDES ONLY U.S. NAVY PROCUREMENT

AIRCRAFT REPLACED ON A ONE-FOR-ONE BASIS

TABLE 8.1.1.1-IBASELINE MARKET POTENTIAL - 1993 FLEET PROJECTION
OF CURRENT FLEET AIRCRAFT

AIDCRAFT	AEW MISSION (350 nmi)		ASW MISSION (350 nmi)		TANKER MISSION	COD MISSION (1397 nmi)	
AINCRAFT	BLOCK TOS BLOCK SPEED TOS SPEED T	TOS	OFFLOAD (200 nmi)	PAYLOAD	BLOCK SPEED		
MULTIMISSION - TF	367	8.1	363	6.70	25,300	23,000	369
MULTIMISSION - PF	370	10.0	367	7,65	25,000	23,200	380
MULTIMISSION - UDF	374	10.3	373	8.20	25,000	23,400	378
MIN AEW/ASW - TF	383	6.0	382	4.95	17,400	15,800	398
MIN AEW/ASW - PF	370	6.0	369	4.95	15,000	14,000	382
MIN AEW/ASW - UDF	376	6.0	374	5.00	15,600	14,400	391
MULTIMISSION - PF STOVL	394 '	8.7	391	6.00	25,000	22,500	396
MIN AEW/ASW - PF STOVL	402	6.0	401	4.25	15,700	14,750	404
BASELINE (REF.)	220	2.0	344	4.25	17,000	10,000	250

TABLE 8.1.1.1-II SIGNIFICANT MISSION PERFORMANCE PARAMETERS

AIRCRAFT	BLOCK	706	MISSION	MISSION CAPABLE AIRCRAFT		
	SPEED	SPEED		CALCULATED	ROUNDED UP	
MULTIMISSION - TF	367	8.1	10.0	5.56	6	
MULTIMISSION - PF	370	10.0	11.9	5.36	6	
MULTIMISSION - UDF	374	10.3	12.2	5.33	6	
MIN AEW/ASW - TF	383	6.0	7.8	5.85	6	
MIN AEW/ASW - PF	370	6.0	7.9	5.93	6	
MIN AEW/ASW - UDF	376	6.0	7.9	5.93	6	
MULTIMISSION - PF STOVL	394	8.7	10.5	5.43	6	
MIN AEW/ASW - PF STOVL	402	6.0	7.7	5.78	6	
BASELINE (REF.)	220	2.0	5.2	11.70	12	

TABLE 8.1.1.2-I AEW MISSION CAPABLE AIRCRAFT REQUIRED

AIRCRAFT	IDEAL AIRCRAFT REQUIRED	POOL AIRCRAFT REQUIRED	+ 10% RESERVE	RATIO	ADJUSTED OPERATIONAL DEPLOYMENT	
					CALCULATED	ROUNDED
MULTIMISSION - TF						
MULTIMISSION - PF						
MULTIMISSION - UDF						
MIN AEW/ASW - TF						
MIN AEW/ASW - PF	6	9	10	0.526	39.5	40
MIN AEW/ASW - UDF						
MULTIMISSION - PF STOVL						
MIN AEW/ASW - PF STOVL						
BASELINE (REF.)	12	17	19	1.000	75.0	75

TABLE 8.1.1.2-II AEW ADJUSTED OPERATIONAL DEPLOYMENT

~

AIRCRAFT	OPERATIONAL DEPLOYMENT	REPLACEMENT AIR GROUP (RAG)	PIPELINE	ATTRITION	TOTAL LIFE CYCLE PROCUREMENT
MULTIMISSION - TF MULTIMISSION - PF MULTIMISSION - UDF MIN AEW/ASW - TF MIN AEW/ASW - PF MIN AEW/ASW - UDF MULTIMISSION - PF STOVL MIN AEW/ASW - PF STOVL	40	10	6	18	74
BASELINE (REF.)	75	19	11	34	139

TABLE 8.1.1.2-III AEW ADJUSTED MARKET POTENTIAL

The adjusted market potential, Figure 8.1.1.2-3, is calculated using the same ratios as the baseline market potential.

8.1.1.3 ASW MARKET POTENTIAL ADJUSTMENT

The new ASW aircraft time on-station is chosen so the (weapons payload)/(time on-station) ratio matches that of the S-3A baseline mission. The baseline mission has a 350 NM station radius.

The adjusted operational deployment, Table 8.1.1.3-I, is calculated as:

(MISSION TIME) (TIME ON-STATION) NEW AIRCRAFT *BASELINE OPERATIONAL DEPLOYMENT (MISSION TIME) (TIME ON-STATION) OLD AIRCRAFT

The adjusted market potential, Table 8.1.1.3-I, is calculated using the same ratios as the baseline market potential.

8.1.1.4 TANKER MARKET POTENTIAL ADJUSTMENT

The tanker fuel offload available during a 2-1/2 hour hold at a 200 NM radius is used to determine the market potential adjustment.

The adjusted operational deployment, Table 8.1.1.4-I, is calculated as:

OFFLOAD OF OLD AIRCRAFT * BASELINE OPERATIONAL DEPLOYMENT OFFLOAD OF NEW AIRCRAFT

The adjusted market potential, shown in Table 8.1.1.4-II, is calculated using the same ratios as the baseline market potential.

8.1.1.5 COD MARKET POTENTIAL ADJUSTMENT

The COD payload and block speed capabilities for a 1397 NM range mission is used to determine the market potential adjustment. This is the maximum range at which the C-2 aircraft can deliver its payload.

The adjusted operational deployment, Table 8.1.1.5-I, is calculated as:

PAYLOAD*BLOCK SPEED OF OLD AIRCRAFT * BASELINE OPERATIONAL DEPLOYMENT PAYLOAD*BLOCK SPEED OF NEW AIRCRAFT

The adjusted market potential, shown in Table 8.1.1.5-II, is calculated using the same ratios as the baseline market potential.

8.1.1.6 ADJUSTED MARKET POTENTIAL

Table 8.1.1.6-I summarizes the adjusted market potential. It shows the total life cycle procurement from the preceding adjusted market

AIRCRAFT	BLOCK SPEED	TOS	MISSION TIME	RATIO	ADJUSTED OPERATIONAL DEPLOYMENT	
					CALCULATED	ROUNDED UP
MULTIMISSION - TF	363	6.70	8.63	0.872	111.62	112
MULTIMISSION - PF	367	7.65	9.56	0.846	108.29	109
MULTIMISSION - UDF	373	8.20	10.08	0.832	106.50	107
MIN AEW/ASW - TF	382	4.95	6.78	0.927	118.66	119
MIN AEW/ASW - PF	369	4.95	6.85	0.937	119.94	120
MIN AEW/ASW - UDF	374	5.00	6.87	0.930	119.04	120
MULTIMISSION - PF STOVL	391	6.00	7.79	0.879	112.51	113
MIN AEW/ASW - PF STOVL	401	4.25	6.00	0.955	122.24	123
BASELINE (REF.)	344	4.25	6.28	1.000	128.00	128

TABLE 8.1.1.3-I ASW ADJUSTED OPERATIONAL DEPLOYMENT

AIRCRAFT	OPERATIONAL DEPLOYMENT	REPLACEMENT AIR GROUP (RAG)	PIPELINE	ATTRITION	TOTAL LIFE CYCLE PROCUREMENT
MULTIMISSION - TF	112	28	17	50	207
MULTIMISSION - PF	109	27	16	49	201
MULTIMISSION - UDF	107	27	16	48	198
MIN AEW/ASW - TF	119	30	18 .	54	221
MIN AEW/ASW - PF	120	30	18	54	222
MIN AEW/ASW - UDF	120	30	18	54	222
MULTIMISSION - PF STOVL	113	28	17	51	209
MIN AEW/ASW - PF STOVL	123	31	1.8	55	227
BASELINE (REF.)	128	32	19	58	237

TABLE 8.1.1.3-II ASW ADJUSTED MARKET POTENTIAL

AIRCRAFT	OFFLOAD	RATIO	ADJUSTED OPERATIONAL DEPLOYMENT		
			CALCULATED	ROUNDED UP	
MULTIMISSION - TF	25,300	0.672	55.10	56	
MULTIMISSION - PF	25,000	0.680	55.76	56	
MULTIMISSION - UDF	25,000	0.680	55.76	56	
MIN AEW/ASW - TF	17,400	0.977	80.11	81	
MIN AEW/ASW - PF	15,000	1.133	92.91	93	
MIN AEW/ASW - UDF	15,600	1.090	89.38	90	
MULTIMISSION - PF STOVL	25,000	0.680	55.76	56	
MIN AEW/ASW - PF STOVL	15,700	1.083	88.81	89	
BASELINE (REF.)	17,000	1.000	82.00	82	

TABLE 8.1.1.4-I TANKER ADJUSTED OPERATIONAL DEPLOYMENT

		REPLACEMENT			TOTAL
AIRCRAFT	DEPLOYMENT	AIR GROUP (RAG)	PIPELINE	ATTRITION	LIFE CYCLE PROCUREMENT
MULTIMISSION - TF	56	14	8	25	103
MULTIMISSION - PF	56	14	8	25	103
MULTIMISSION - UDF	56	14	8	25	103
MIN AEW/ASW - TF	81	20	12	36	149
MIN AEW/ASW - PF	93	23	14	42	172
MIN AEW/ASW - UDF	90	23	14	41	168
MULTIMISSION - PF STOVL	56	14	8	25	103
MIN AEW/ASW - PF STOVL	89	22	13	40	164
BASELINE (REF.)	82	21	12	37	152

TABLE 8.1.1.4-II TANKER ADJUSTED MARKET POTENTIAL
AIRCRAFT	PAYLOAD	BLOCK	BLOCK SPEED	PATIO	ADJUSTED OPERATIONAL DEPLOYMENT			
AINCRAFT	FAILOAD	SPEED X RATIO	RAHO	CALCULATED	ROUNDED UP			
MULTIMISSION - TF	23,000	369	8487000	0.295	4.43	5		
MULTIMISSION - PF	23,200	380	8816000	0.284	4.26	5		
MULTIMISSION - UDF	23,400	378	8845200	0.283	4.25	5		
MIN AEW/ASW - TF	15,800	398	6288400	0.398	5.97	6		
MIN AEW/ASW - PF	14,000	382	5348000	0.467	7.01	8		
MIN AEW/ASW - UDF	14,400	391	5630400	0.444	6.66	7		
MULTIMISSION - PF STOVL	22,500	396	8910000	0.281	4.22	5		
MIN AEW/ASW - PF STOVL	14,750	404	5959000	0.420	6.30	7		
BASELINE (REF.)	10,000	250	2500000	1.000	15.00	15		

TABLE 8.1.1.5-1COD ADJUSTED OPERATIONAL DEPLOYMENT
(RANGE=1397 NM)

ي.

AIRCRAFT	OPERATIONAL DEPLOYMENT	REPLACEMENT AIR GROUP (RAG)	PIPELINE	ATTRITION	TOTAL LIFE CYCLE PROCUREMENT
MULTIMISSION - TF	5	1	1	2	9
MULTIMISSION - PF	5	1	1	2	9
MULTIMISSION - UDF	5	1	1	2	9
MIN AEW/ASW - TF	6	2	1	3	12
MIN AEW/ASW - PF	8	2	1	4	15
MIN AEW/ASW - UDF	7	2	1	3	13
MULTIMISSION - PF STOVL	5	1	1	2	9
MIN AEW/ASW - PF STOVL	7	2	1	3	13
BASELINE (REF.)	15	4	2	7	28

TABLE 8.1.1.5-II COD ADJUSTED MARKET POTENTIAL

potential figures for each mission type. The EW mission aircraft are replaced on a one-for-one basis. The current fleet aircraft have sufficient capability to minimize the number of aircraft required for the examined missions. The baseline aircraft is included for reference. The numbers include U.S. Navy procurement only.

8.1.2 AVERAGE TOTAL SPOTS PER CARRIER

The average spots per carrier is presented in Table 8.1.2-I. Spot factor was determined per U.S. Navy practices at the Boeing spotting facility. The deployed aircraft numbers are taken from the preceding adjusted operational deployment figures. COD aircraft are considered to be land-based. The average calculated is for a 15 carrier deployment.

8.1.3 OPERATING AND SUPPORT COSTS

The estimated operating and support costs are summarized in Table 8.1.3-I. These values were calculated using a modified version of the operating and support portion of the Modular Life Cycle Cost Model. The major modification was to replace the parametric engine cost calculations in the model with estimates provided by the engine and propeller manufacturers. Costs for the EW aircraft were assumed identical to the AEW aircraft. The average was calculated using the adjusted market potential quantities as weighting factors.

8.2 FIGURES OF MERIT

Table 8.2-I summarizes size parameters presented in Section 4.0. Table 8.2-II presents cost values. Total aircraft required and O&S costs were explained in the previous sections. Acquisition costs were developed from three sources. The airframe costs were estimated parametrically using the Boeing developed Advanced Technology Airframe Cost Model (ATACM). Avionics costs were estimated by applying relative complexity factors to data from the Offensive Avionics System/Cruise Missile Integration historical data base. Engine cost estimates were supplied by the manufacturers. Learning curve factors were applied to all data. A 20% foreign market potential was applied to the STOVL aircraft. The cost data includes a 15% increment for Class II changes and warranty, and a 16% profit. *System life cycle cost assumes 25 years of operating a per year average number of aircraft equal to the operational deployment plus the replacement air group.

*These cost figures have been revised since the final oral briefing to reflect recent refinement in the ATACM.

AIRCRAFT	AEW	ASW	EW	TANKER	COD	TOTAL
MULTIMISSION - TF	74	207	111	103	9	504
MULTIMISSION - PF	74	201	111	103	9	498
MULTIMISSION - UDF	74	198	111	103	9	495
MIN AEW/ASW - TF	74	221	111	149	12	567
MIN AEW/ASW - PF	74	222	111	172	15	594
MIN AEW/ASW - UDF	74	222	111	168	13	588
MULTIMISSION - PF STOVL	74	209	111	103	9	506
MIN AEW/ASW - PF STOVL	74	227	111	164	13	589
BASELINE (REF.)	139	237	111	152	28	667

TABLE 8.1.1.6-1 ADJUSTED MARKET POTENTIAL - TOTAL PROCUREMENT

			<u> </u>					
AIRCRAFT		DEPLO	OYED AIR	CRAFT		SPOT	TOTAL	AVERAGE
AIACAALI	AEW	ASW	EW	TANKER	TOTAL	FACTOR	SPOTS	CARRIER
MULTIMISSION - TF	40	112	60	56	268	2.28	611.04	40.74
MULTIMISSION - PF	40	109	60	56	265	2.13	564.45	37.63
MULTIMISSION - UDF	40	107	60	56	263	2.01	528.63	35.24
MIN AEW/ASW - TF	40	119	60	81	300	1.70	510.00	34.00
MIN AEW/ASW - PF	40	120	60	93	313	1.78	557.14	37.14
MIN AEW/ASW - UDF	40	120	60	90	310	1.66	514.60	34.31
MULTIMISSION - PF STOVL	40	113	60	56	269	3.12	839.28	55.95
MIN AEW/ASW - PF STOVL	40	123	60	89	312	2.19	683.28	45.55

TABLE 8.1.2-I AVERAGE TOTAL SPOTS PER CARRIER

AIRCRAFT		OPERATING AND SUPPORT COST PER AIRCRAFT PER YEAR											
	AEW	ASW	EW	TANKER	COD	AVERAGE							
MULTIMISSION - TF	2,566,594	2,378,261	2,566,594	1,513,022	2,281,859	2,267,987							
MULTIMISSION - PF	2,514,435	2,311,455	2,514,435	1,473,049	2,218,296	2,210,936							
MULTIMISSION - UDF	2,507,902	2,296,050	2,507,902	1,469,218	2,213,700	2,200,853							
MIN AEW/ASW - TF	2,515,042	2,313,014	2,515,042	1,445,070	2,161,478	2,196,901							
MIN AEW/ASW - PF	2,472,336	2,266,052	2,472,336	1,407,904	2,081,619	2,077,224							
MIN AEW/ASW - UDF	2,474,418	2,259,373	2,474,418	1,408,946	2,103,369	2,081,485							
MULTIMISSION - PF STOVL	2,617,694	2,470,893	2,617,694	1,527,842	2,308,642	2,328,679							
MIN AEW/ASW - PF STOVL	2,559,823	2,391,068	2,559,823	1,464,567	2,179,827	2,181,423							

TABLE 8.1.3-I OPERATING AND SUPPORT COSTS

AIRCRAFT	GROSS WEIGHT	LENGTH	SPAN	FOLDED SPAN	SPOT FACTOR	TOTAL SPOTS PER CARRIER
MULTIMISSION - TF	78,337	67.3	80.1	29.1	2.28	40.74
MULTIMISSION - PF	72,607	67.3	72.7	28.4	2.13	37.63
MULTIMISSION - UDF	71,156	67.3	71.9	27.2	2.01	35.24
MIN AEW/ASW - TF	59,348	65.0	72.5	26.8	1.70	34.00
MIN AEW/ASW - PF	54,876	65.0	72.1	26.8	1.78	37.14
MIN AEW/ASW - UDF	53,740	65.0	66.3	25.0	1.66	34.31
MULTIMISSION - PF STOVL	96,810	70.0	80.0	51.0	3.12	55.95
MIN AEW/ASW - PF STOVL	71,660	65.0	80.0	45.0	2.19	45.55

TABLE 8.2-1 FIGURES OF MERIT - SIZE PARAMETERS

AIRCRAFT	TOTAL AIRCRAFT REQUIRED	AVERAGE ACQUISITION COST PER AIRCRAFT (MILLIONS)	AVERAGE O&S COST PER AIRCRAFT PER YEAR (MILLIONS)	TOTAL ACQUISITION COST (MILLIONS)	SYSTEM LIFE CYCLE COST (MILLIONS)
MULTIMISSION - TF	504	75.3	2.27	37,954	57,289
MULTIMISSION - PF	498	71.6	2.21	35,655	54,282
MULTIMISSION - UDF	495	77.1	2.20	38,151	56,583
MIN AEW/ASW - TF	567	66.3	2.15	37,601	58,158
MIN AEW/ASW - PF	594	65.6	2.08	38,987	59,811
MIN AEW/ASW - UDF	588	68.9	2.08	40,525	61,184
MULTIMISSION - PF STOVL	506	81.5	2.33	41,295	61,205
MIN AEW/ASW - PF STOVL	589	70.3	2.18	41,380	63,140

TABLE 8.2-II FIGURES OF MERIT - COST PARAMETERS

9.0 CONCLUSIONS

The upper portion of Table 9.0-I summarizes geometry and performance characteristics of all the configurations on their respective design missions. The lower portion of the figure summarizes the alternate mission performance of each point design at the conditions noted.

Propfan configurations weigh 7.5% less and consume 24% less fuel than turbofan configurations on the same design mission. This is due to the propfan having better fuel consumption characteristics than the turbofan and the gross weight spiral on the turbofan required to carry the additional fuel to do the mission. The resulting effect on LCC is a 5% savings for the propfan over the turbofan.

Fewer, more capable aircraft (multimission) have lower LCC than more numerous, less capable aircraft (minimum AEW/ASW).

The STOVL propfan weighs 31% more and consumes 30% more fuel than the CTOL propfan on the same design mission. The STOVL aircraft require 23% to 49% more total spots per carrier than their CTOL counterparts. The LCC of the STOVL aircraft are 8% and 16% more than their CTOL counterparts without the foreign market advantage. The foreign market sales reduce the STOVL LCC approximately 3%.

			MINIMUM	AEW/ASV	/		MULTIN	NISSION	ISSION	
		CTOL UDF	CTOL PF	CTOL TF	STOVL PF	CTOL UDF	CTOL PF	CTOL TF	STOVL PF	
DESIGN MISSION	****	AEW	AEW	AEW	AEW	TANKER	TANKER	ASW	TANKER	
DESIGN GROSS WEIGHT	- LBS	53740	54876	59348	71660	71156	72607	78337	96810	
ENGINE THRUST	- LBS	10757	11583	12015	30993	14232	14522	15668	41144	
PROPELLER DIAMETER	- FT	7.4	8.5	N/A	16.5	8.5	8.5	N/A	19.1	
WING SPAN	- FT	66.3	72.1	72.5	80.0	71.9	72.7	80.1	80.0	
SPOT FACTOR		1.66	1.78	1.70	2.19	2.01	2.13	2.28	3.12	
TOTAL MISSION FUEL	- LBS	13732	12899	16988	16640	7643	8001	23430	11639	
INITIAL CRUISE ALTITUDE	- FT	35848	39532	36517	39836	34188	33093	33434	38278	
CRUISE CEILING AT MAX. GROSS	- FT	39431	39532	40334	50000*	38567	38353	38624	50000*	
SERVICE CEILING AT MAX. GROSS	- FT	40109	40706	41120	50000*	39409	39234	39539	50000*	
CRUISE SPEED (OUTBOUND/INBOUND)	KTAS	402/402	405/401	409/409	406/402	390/388	388/386	383/383	393/390	
MAXIMUM RADIUS (NO LOITER)	- NM	1520	1470	1515	1480	2255	2201	1852	2250	
TOTAL MISSION TIME	- HRS	8.12	8.25	8.16	8.18	4.21	4.22	8.27	4.21	
ALTERNATE MISSION PERFORMANCE										
AEW - LOITER TIME @ 350 NM	- HRS	6.0	6.0	6.0	6.0	10.3	10.0	8.1	8.6	
TANKER - OFFLOAD @ 200 NM	- LBS	15600	15000	17400	15700	25000	25000	25300	25000	
ASW - LOITER TIME @ 350 NM	- HRS	5.7	5.4	5.1	4.2	8.2	7.6	6.0	5.1	
COD - PAYLOAD @ 2100 NM	- LBS	11800	11500	12750	12000	19800	19500	18250	18200	
-RANGE @ 15000 LBS P/L	- NM	1250	1130	1800	1350	3050	3000	2600	2600	

* PRESSURE SUIT LIMIT

*

.

TEBLE 9.0-I SUMMARY

۲

.

,

ŧ.

164

APPENDIX A

MPSNA-MAPS HIGH SPEED DRAG POLARS

*

.

MINIMIM ARU/A	CU	c	<u>رر م</u>	ריסו	СТ	עו	Tr T	0	re																			
UDE Engino	1.5W 1.7W		ON	гт	Gu	Γ.F		.01	0																			
Con I anol	тy	pe																										166
30000 FT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	167
20000 FI	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	167
40000 FT	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	168
Propfan Eng	, in	P	Tτ	יחי	2																							
Sea Level			-,	r •	-							_					_	-	_		_	_					-	169
20000 FT	- •	•	•	Ţ	Ţ	Ţ		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	170
40000 FT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	171
40000 11	•	•,	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1/1
Turbofan Er	ıgi	nę	e T	'yı	be																							
Sea Level	L.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•		•	•	•			•	•	172
20000 FT		•			•	•	•				•	•	•	•			•	•	•	•		•	•	•	•			173
40000 FT	•		•	•			•												•						•			174
	-						-				•	-		-				-	•		-	-		-	-	-		
STOVL (Prop	ofa	n	Er	ıgi	in€	e 7	Гур)e))																			
Sea Leve	L.	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	175
20000 FT	•	•	•	•	•	•	•	•	•	•		•		•	•	•		•		•	•	•	•	•	•	•	•	176
40000 FT	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	177
MUTTATA	00	NTT				пти	2210	•																				
MULTIMISSION		Nr	10	501	KA.	ΓĽ	JNS	>																				
UDF Engine	TY.	pe	2																									
Sea Leve.	L.	•	٠	•	٠	•	•	•	٠	•	٠	٠	•	•	٠	•	•	٠	•	٠	٠	•	•	•	•	•	•	178
20000 FT	•	٠	٠	٠	•	•	٠	٠	•	٠	٠	٠	•	٠	•	٠	•	٠	•	٠	•	•	•	•	٠	•	٠	179
40000 FT	•	•	٠	٠	•	•	•	٠	٠	•	•	•	•	٠	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	180
Pronfan En	oin	A	Τ,	771	þ																							
Sea Love	5 1		-	. 5.	-																							101
20000 57		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	181
20000 FI 60000 FT	•	•	•	•	٠	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	182
40000 F1	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٠	•	٠	٠	٠	•	183
Turbofan E	ngi	ne	э [Γv	ре																							
Sea Leve	$1.^{-1}$																											10/
20000 FT																		÷		•			-	-				104
40000 FT	•	•	•			Ī	Ī	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	105
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	100
STOVL (Pro	pfa	ın	Eı	ng	in	е	Ту	pe)																			
Sea Leve	1.	•	•					•	•					•			•				•							187
20000 FT		•		•	•	•			•	•	•	•			•		•		•	•	•		•				•	188
40000 FT	•	•					•		•									•	•		•			•		•	-	189
	•		-	-	-	-	-	÷	-		2	-	2	•	•	-	-	-	•	-	•	-	-	•	-	-	-	

LIST	Minimum AEW/AS	SW UDF Drag	Polar TAB	LE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 1
ALT	= 0.0000)					-		
CL	/M	0. 60000	0. 62000	0. 54000	0. 66000	0. 68000	0. 70000	0.72000	0. 74000
					0.02411	0.02402	0. 02393	0. 02390	0. 02394
	0. 10000	0.02441	0. 02430	0.02421	0.02411	0.02433	0 02424	0.02421	0. 02424
	0.15000	0.02471	0. 02461	0.02451	0.02442	0.02489	0. 02480	0.02477	0. 02481
	0. 20000	0.02527	0.02517	0.02507	0. 02470	0.02572	0. 02563	0. 02560	0. 02564
	0. 25000	0.02510	0. 02600	0.02590	0.02381	0.02572	0 02669	0.02666	0. 02670
	0. 30000	0.02716	0.02706	0, 02696	0.0268/	0.02806	0.02798	0.02795	0. 02798
	0.35000	0. 02845	0. 02835	0.02825	0.02815	0.02808	0.02949	0.02946	0. 02950
	0. 40000	0. 02997	0. 02987	0.02977	0.02967	0.02730	0.02123	0 03120	0.03124
	0.45000	0.03171	0. 03161	0.03151	0.03141	0.03132	0.03120	0.03317	0. 03325
	0. 50000	0.03368	0. 03358	0.03348	0.03339	0.03327	0.03543	0.03540	0.03555
	0.55000	0.03591	0. 03581	0.03571	0.03561	0.03552	0.03343	0.03795	0 03841
	0. 60000	0. 03841	0. 03830	0.03820	0.03810	0.03801	0.03/74	0.03775	0 04229
	0.65000	0.04122	0.04111	0.04101	0.04091	0.04082	0.04074	0.04070	0.04778
	0.70000	0.04431	0. 04420	0. 04409	0, 04400	0.04390	0.04394	0.04472	0.04770
	0.75000	0.04773	0.04762	0.04751	0.04741	0. 04738	0.04/6/	0.04939	0.00221
	0. 80000	0.05142	0.05131	0. 05120	0.05111	0.05122	0.05245	0.00310	0.10031
	0 95000	0 05571	0.05559	0.05548	0. 05551	0.05621	0. 05984	0.10474	0. 22400
	0.90000	0.06021	0.06009	0,06004	0. 06027	0.06213	0. 09472	0.23394	0. 48302
	0.95000	0.06492	0.06479	0,06491	0.06609	0. 09188	0. 22743	0. 53552	1.00497
	1 00000	0.06984	0.06985	0.07051	0.07426	0.20132	0.56253	1.15622	1. 98240
	Minimum AEW/AS	W UDF Drag	Polar TAB	LE NO. 1	3-DIMENSIONAL	(<u>1</u> 9X 14X 3)	TABLE LEN	3TH 925	PAGE 2
ALI	= 0.00000	,					0.94000		
CL	/M	0. 75000	0.78000	0. 80000	0. 82000	0.84000	0. 88000		
•	0 10000	0 02409	0. 02444	0, 02648	0. 03129	0. 04604	0. 07427		•
	0.10000	0.02439	0 02476	0.02682	0. 03167	0.04644	0.07460		
	0.10000	0.02496	0 02533	0. 02741	0. 03236	0. 04734	0. 07580		
	0.20000	0.02579	0.02621	0. 02839	0. 03372	0.04961	0. 07931		
	0.20000	0.02686	0 02736	0. 02961	0. 03543	0. 05250	0. 08388		
	0.30000	0.02816	0.02884	0.03129	0.03822	0. 05734	0.09137		
	0 30000	0.02010	0.03060	0.03335	0.04216	0, 06399	0.10130		
	0.40000	0.02771	0.03277	0.03661	0.04845	0. 07417	0. 11591		
	0.45000	0.03150	0.03558	0 04101	0. 05837	0. 08949	0. 13721		
	0. 50000	0.03537	0.03953	0.05012	0.07442	0.11334	0. 16972		
	0. 55000	0.03031	0.03753	0.06905	0 10519	0. 15759	0. 22908		
	0. 20000	0.04048	0.04419	0 10297	0.15769	0. 23185	0. 32828		
	0. 53000	0.04801	0. 10452	0 16783	0. 25490	0. 36724	0. 50769		
	0.70000	0.05430	0.104JE	0 29642	0.44124	0. 62131	0. 83946		
	0. 75000	0.10/34	0. 10000	0 54970	0. 79442	1.09148	1.44271		
	0. 80000	0.20008	0. 33401 A 40524	1 02672	1 44179	1.93328	2. 50360		
	0. 85000	0.41818	1 31023	1 88974	2. 57948	3. 38147	4. 29857		
	0. 90000	0.84196	1. 31004	3 38210	4 49832	5. 77835	7. 22501		
	0. 93000	1.63587	A 22224	5 85470	7 61368	9. 60597	11.83600		
	1.00000	3.04107	4.33237	9. 00000					

•

-

1

.

MINIMUM AEW/ASW UDF HIGH SPEED DRAG POLAR, SEALEVEL

ŧ

.

1

LIST	Minimum	AEW/ASW UDF Drag	Polar TA	BLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LE	NGTH 925	PAGE 3
ALT	= 20000	00000		-				*	
			_						
CL.	/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0. 10000	0. 02635	0. 02623	0. 02612	0. 02601	0. 02591	0. 02581	0. 02577	0. 02580
	0.15000	0. 02664	0. 02653	0. 02642	0. 02631	0. 02621	0.02611	0. 02607	0.02610
	0. 20000	0. 02721	0. 02709	0. 02698	0. 02688	0. 02677	0. 02667	0. 02663	0. 02666
	0. 25000	0. 02804	0. 02792	0. 02781	0. 02771	0. 02760	0. 02750	0. 02746	0. 02749
	0. 30000	0. 02910	J. 02899	0. 02888	0. 02877	0. 02867	0.02857	0. 02853	0. 02855
	0. 25000	0. 03039	0. 03028	0. 03017	0. 03006	0. 02996	0. 02986	0. 02982	0. 02984
	0. 40000	0. 03192	0. 03180	0. 03169	0.03159	0. 03148	- 0.03138	0. 03134	0. 03137
	0.45000	0, 03367	0. 03355	0. 03344	0. 03333	0. 03323	0. 03313	0. 03309	0. 03311
	0. 50000	0.03565	0. 03553	0. 03542	0. 03531	0. 03521	0.03511	0. 03507	0. 03513
	0. 55000	0. 03799	0. 03777	0. 03766	0. 03755	0. 03744	0. 03734	0. 03730	0. 03745
	0. 60000	0. 04040	0. 04028	0. 04017	0. 04006	0.03995	0. 03985	0. 03987	0. 04032
	0. 65000	0.04324	0.04312	0.04300	0. 04289	0. 04279	0. 04270	0. 04284	0. 04423
	0.70000	0. 04636	0.04624	0. 04612	0. 04601	0. 04590	0. 04593	0. 04670	J. 04975
	0.75000	0. 04982	0. 04970	0. 04958	0. 04946	0. 04942	0. 04970	0. 05160	0. 06421
	0. 80000	0. 05357	0. 05344	0.05332	0. 05321	0. 05331	0. 05453	0. 06522	0. 11037
	0. 85000	0. 05794	0. 05781	0. 05768	0. 05770	0. 05838	0.06200	0.10688	0. 22679
	0. 90000	0. 06252	0, 06238	0. 06232	0. 06253	0.06438	0.09696	0. 23617	0. 48523
	0.95000	0. 06731	0.06717	0. 06727	0. 06844	0. 09421	0. 22975	0. 53783	1.00729
	1.00000	0. 07232	0. 07231	0. 07296	0. 07669	0. 20373	0. 56493	1.15860	1. 98477
LIST ALT	Minimum A = 20000.	NEW/ASW UDF Drag	Polar TAE	BLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LE	NGTH 925	PAGE 4
CL/	м	0. 76000							
			0. 78000	0.80000	0. 82000	0. 84000	0.86000		
	9.10000	0. 02593	0. 78000 • 0. 02628	0. 80000	0. 82000	0. 84000 0. 04785	0. 86000 0. 07607		
	0.10000	0. 02593 0. 02624	0. 78000 • 0. 02628 0. 02659	0. 80000 0. 02831 0. 02844	0. 82000 0. 03311 0. 03349	0. 84000 0. 04785 0. 04824	0.86000 0.07607 0.07640		
	0. 10000 0. 15000 0. 20000	0. 02593 0. 02524 0. 02520	0. 78000 0. 02628 0. 02659 0. 02717	0. 80000 0. 02831 0. 02864 0. 02923	0. 82000 0. 03311 0. 03349 0. 03417	0.84000 0.04785 0.04824 0.04914	0.86000 0.07607 0.07640 0.07760		
- -	0. 15000 0. 15000 0. 20000 0. 25000	0. 02593 0. 02524 0. 02520 0. 02520 0. 02754	0. 78000 0. 02628 0. 02559 0. 02717 0. 02804	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554	0.84000 0.04785 0.04824 0.04914 0.05142	0.85000 0.07507 0.07540 0.07760 0.08111		
	0, 10000 0, 15000 0, 20000 0, 25000 0, 50000	0.02593 0.02624 0.02620 0.02764 0.02764	0.78000 0.02628 0.02659 0.02717 0.02804 0.02920	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554 0. 03725	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431	0.85000 0.07607 0.07640 0.07760 0.08111 0.08568		
· · · · · · · · · · · · · · · · · · ·	9, 10000 0, 15000 0, 20000 0, 25000 0, 30000 0, 35000	0.02593 0.02524 0.02520 0.02754 0.02871 0.03002	0.78000 0.02628 0.02659 0.02717 0.02804 0.02920 0.03069	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554 0. 03725 0. 04004	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916	0.84000 0.07407 0.07440 0.07760 0.08111 0.08548 0.09318		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 30000 0. 35000 0. 40000	0.02593 0.02424 0.02420 0.02744 0.02871 0.03002 0.03157	0.78000 0.02628 0.02459 0.02717 0.02804 0.02920 0.03069 0.03244	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03142 0. 03312 0. 03519	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554 0. 03725 0. 04004 0. 04399	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581	0.84000 0.07407 0.07440 0.07760 0.08111 0.08568 0.09318 0.10311		
	9, 10000 0, 15000 0, 20000 0, 25000 0, 30000 0, 35000 0, 40000 0, 45000	0. 02593 0. 02524 0. 02520 0. 02754 0. 02871 0. 03002 0. 03157 0. 03337	0.78000 0.02628 0.02459 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 0312 0. 03312 0. 03519 0. 03845	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.04581	0.84000 0.07407 0.07740 0.08111 0.08548 0.09311 0.10311 0.11773		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 30000 0. 35000 0. 40000 0. 45000 0. 45000	0. 02593 0. 02624 0. 02580 0. 02764 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546	0.78000 0.02628 0.0259 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462 0.03745	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03519 0. 03845 0. 04286	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 06021	0.84000 0.04785 0.04824 0.05142 0.05431 0.05916 0.04581 0.04581 0.07600 0.09133	0.84000 0.07607 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 30000 0. 35000 0. 45000 0. 45000 0. 50000 0. 55000	0. 02593 0. 02524 0. 02520 0. 02754 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939	0.78000 0.02628 0.0259 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462 0.03745 0.03141	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03519 0. 03845 0. 03845 0. 04286 0. 05199	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554 0. 03725 0. 04004 0. 04399 0. 05028 0. 04021 0. 07627	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519	0.84000 0.0740 0.07440 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 35000 0. 35000 0. 45000 0. 45000 0. 55000 0. 55000	0.02593 0.02524 0.02520 0.02754 0.02871 0.03002 0.03157 0.03337 0.03546 0.03939 0.04238	0.78000 0.02628 0.02459 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462 0.03745 0.04141 0.04955	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03319 0. 03845 0. 04286 0. 04286 0. 05199 0. 07093	0. 82000 0. 03311 0. 03349 0. 03417 0. 03554 0. 03725 0. 04004 0. 04399 0. 05028 0. 04021 0. 07627 0. 10706	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945	0.84000 0.0740 0.07440 0.07740 0.08111 0.08548 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 35000 0. 35000 0. 40000 0. 40000 0. 55000 0. 55000 0. 55000	0. 02593 0. 02424 0. 02420 0. 02764 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04993	0.78000 0.02628 0.02459 0.02717 0.02804 0.02920 0.03069 0.03244 0.03745 0.04141 0.04955 0.06810	0.80000 0.02831 0.02923 0.03022 0.03144 0.03312 0.03519 0.03845 0.04284 0.05199 0.05199 0.05199	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 06021 0. 07627 0. 10706 0. 15958	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373	0.86000 0.07607 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33016		
	9, 10000 0, 15000 0, 20000 0, 25000 0, 25000 0, 35000 0, 45000 0, 45000 0, 45000 0, 55000 0, 65000 0, 65000 0, 70000	0. 02593 0. 02424 0. 02420 0. 02744 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04793 0. 04525	0.78000 0.02628 0.0259 0.02717 0.02804 0.02920 0.03069 0.03244 0.03745 0.04141 0.04955 0.06810 0.10647	0.80000 0.02831 0.02923 0.03022 0.03144 0.03312 0.03519 0.03845 0.04286 0.05199 0.07093 0.10487 0.10487	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 04021 0. 07627 0. 10706 0. 15758 0. 25683	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916	0.84000 0.07407 0.07440 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33014 0.50959		
	9. 10000 0. 15000 0. 20000 0. 25000 0. 30000 0. 45000 0. 45000 0. 55000 0. 65000 0. 75000 0. 75000	0. 02593 0. 02624 0. 02620 0. 02764 0. 02871 0. 03002 0. 03157 0. 03546 0. 03939 0. 04238 0. 04238 0. 04238 0. 04238	0.78000 0.02628 0.02579 0.02717 0.02804 0.02920 0.03069 0.03244 0.03745 0.03745 0.04141 0.04955 0.06810 0.18733	0.80000 0.02831 0.02864 0.02923 0.03022 0.03144 0.03312 0.03519 0.03845 0.03845 0.04286 0.05199 0.07093 0.10487 0.16975 0.29840	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 04021 0. 07627 0. 10706 0. 15758 0. 25683 0. 44320	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916 0.62326	0.84000 0.07607 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33016 0.50959 0.84141		
	9, 10000 0, 15000 0, 20000 0, 25000 0, 35000 0, 45000 0, 45000 0, 45000 0, 55000 0, 55000 0, 75000 0, 75000 0, 75000 0, 80000	0. 02593 0. 02524 0. 02520 0. 02754 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04993 0. 05625 0. 10933 0. 20812	0.78000 0.02628 0.0259 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462 0.03745 0.04141 0.04955 0.04141 0.04955 0.06810 0.10647 0.18733 0.35484	0.80000 0.02831 0.02864 0.02923 0.03022 0.03144 0.03312 0.03519 0.03845 0.04286 0.04286 0.05199 0.07093 0.10487 0.16487 0.16487 0.16487 0.29840 0.55072	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 04021 0. 07627 0. 10706 0. 15958 0. 25683 0. 44320 0. 79643	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916 0.62326 1.09348	0.84000 0.07607 0.0760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33016 0.50959 0.84141 1.44470		
	9, 10000 0, 15000 0, 20000 0, 25000 0, 25000 0, 35000 0, 45000 0, 45000 0, 55000 0, 55000 0, 65000 0, 65000 0, 75000 0, 85000 0, 85000 0, 85000 0, 85000 0, 85000	0. 02593 0. 02424 0. 02420 0. 02744 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04993 0. 04495 0. 10933 0. 20612 0. 42030	0.78000 0.02628 0.0259 0.02717 0.02804 0.02920 0.03069 0.03244 0.03462 0.03462 0.03455 0.04141 0.04955 0.04141 0.04955 0.06810 0.10647 0.18733 0.35484 0.68745	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03519 0. 03845 0. 04845 0. 0486 0. 05199 0. 07093 0. 10487 0. 16976 0. 29840 0. 55072 1. 02841	0. 82000 0. 03311 0. 03347 0. 03544 0. 03554 0. 03725 0. 04004 0. 04397 0. 05028 0. 04021 0. 07627 0. 10706 0. 15958 0. 25683 0. 44320 0. 79643 1. 44388	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916 0.62326 1.09348 1.93535	0.86000 0.07607 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33016 0.50959 0.84141 1.44470 2.50367		
	9, 10000 0, 15000 0, 20000 0, 25000 0, 25000 0, 35000 0, 40000 0, 45000 0, 55000 0, 550	0. 02593 0. 02424 0. 02420 0. 02764 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04393 0. 04393 0. 044973 0. 05612 0. 20612 0. 42030 0. 84417	0. 78000 0. 02628 0. 02459 0. 02717 0. 02804 0. 02920 0. 03069 0. 03244 0. 03745 0. 04141 0. 04955 0. 04141 0. 04955 0. 06810 0. 10647 0. 18733 0. 35484 0. 68745 1. 31301	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03317 0. 03845 0. 04286 0. 05199 0. 07093 0. 10487 0. 16975 0. 29840 0. 55072 1. 02841 1. 89194	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04399 0. 05028 0. 05028 0. 05028 0. 05021 0. 07627 0. 10706 0. 15958 0. 25683 0. 44320 0. 79643 1. 44388 2. 58164	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916 0.62326 1.09348 1.93535 3.38362	0.86000 0.07607 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.3016 0.50959 0.84141 1.44470 2.50567 4.30071		·
	9, 10000 0, 15000 0, 20000 0, 25000 0, 25000 0, 35000 0, 45000 0, 45000 0, 45000 0, 55000 0, 55000 0, 55000 0, 55000 0, 85000 0, 85000 0, 95000 0, 95000	0. 02593 0. 02424 0. 02420 0. 02744 0. 02871 0. 03002 0. 03157 0. 03337 0. 03546 0. 03939 0. 04238 0. 04238 0. 04393 0. 04525 0. 10933 0. 20612 0. 42030 0. 84417 1. 63815	0. 78000 0. 02628 0. 02659 0. 02717 0. 02804 0. 02920 0. 03069 0. 03244 0. 03745 0. 04141 0. 04956 0. 04745 0. 06810 0. 18733 0. 35484 0. 68745 1. 31301 2. 43044	0. 80000 0. 02831 0. 02864 0. 02923 0. 03022 0. 03144 0. 03312 0. 03519 0. 03845 0. 04286 0. 05199 0. 07093 0. 10487 0. 10487 0. 10487 0. 10487 0. 10487 0. 29840 0. 55072 1. 02841 1. 89194 3. 38436	0. 82000 0. 03311 0. 03347 0. 03417 0. 03554 0. 03725 0. 04004 0. 04399 0. 05028 0. 06021 0. 07627 0. 10706 0. 15958 0. 25483 0. 44320 0. 79643 1. 44388 2. 58164 4. 50057	0.84000 0.04785 0.04824 0.04914 0.05142 0.05431 0.05916 0.04581 0.07600 0.09133 0.11519 0.15945 0.23373 0.36916 0.62326 1.09348 1.93535 3.38362 5.78058	0.84000 0.07607 0.07440 0.07760 0.08111 0.08568 0.09318 0.10311 0.11773 0.13904 0.17155 0.23094 0.33016 0.50959 0.84141 1.44470 2.50567 4.30071 7.22724		

,

MINIMUM AEW/ASW UDF HIGH SPEED DRAG POLAR, 20000 FT

167

LIST	Minimum	AEW/ASW UDF Drag	Polar TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENG	TH 925	PAGE 5
ALT	= 4000	0. 00000							
<u>د</u> د	7 M	0. 60000	0. 52000	0. 64000	0. 66000	0. 48000	0. 70000	0. 72000	0. 74000
				0.00005	A 02072	0.02861	0 02849	0. 02843	0. 02844
	0. 10000	0.02911	0.02898	0.02883	0.02073	0.02890	0 02878	0. 02873	0. 02874
	0.15000	0.02941	0. 02927	0.02914	0.02702	0.02946	0 02934	0.02929	0.02930
	0. 20000	0. 02996	0. 02983	0.02970	0.02736	0.02029	0 03018	0.03012	0. 03013
	0. 25000	0.03080	0.03086	0.03034	0.03041	0.03136	0 03125	0.03119	0. 03120
	0. 20000	0.03187	0.03174	0.03161	0.03148	0.00100	0.03254	0. 03249	0. 03250
	0. 25000	0. 03317	0. 03303	0.03291	0. 03273	0.03230	0.03408	0.03402	0, 03403
	0.40000	0. 03470	0. 03457	0.03444	0.03431	0.03417	C 03583	0.03578	0. 03578
	0.45000	0. 03646	0. 03633	0.03620	0.03607	0.03373	0.03303	0.03777	0.03782
	0. 30000	0. 03846	0. 03832	0.03819	0.03806	0.03794	0.03/02	0 04002	0.04015
	0. 55000	0, 04071	0. 04057	0.04044	0.04031	0.04019	0.04007	0.04062	0 04304
	0. 60000	0, 04325	0.04311	0.04298	0. 04285	0.04272	0.04201	0.04201	0.04698
	0. 55000	0.04612	0.04598	0.04585	0. 04572	0.04560	0.04349	0.04062	0.05255
	0.70000	0. 04929	0. 04915	0.04901	0.04888	0.04875	0.04876	0.04731	0.06707
	0.75000	-0.05281	0. 05267	0. 0 5253	0. 05239	0. 05233	0.05259	0.03448	0.00707
	0 80000	0 05563	0. 05648	0. 05633	0.05620	0. 05629	0. 05749	0.06817	0.11327
	0 85600	0 06112	0.06096	0.06082	0. 06081	0.06147	0.06507	0.10994	0.22703
	0 90000	0.04582	0.06566	0.06557	0.06577	0.06760	0.10015	0.23934	0.48838
	0.95000	0 07073	0.07057	0.07065	0. 07179	0. 09754	0. 23306	0. 54112	1.01056
	1.00000	0.07586	0. 07583	0. 07645	0.08016	0. 20718	0. 56836	1. 16201	1. 98816
			P-1 7471			(19X 14X 3)	TABLE LENG	TH 923	PAGE 6
LIST	Miniaum	AEW/ASW UDF Drag	Polar TABL	E NO. 1	3-0102031000AC				
ALT	= 4000	5. 00000							
CL	/ M	0. 76000	0. 78000	0.80000	0. 82000	0.84000	0. 84000		
		0.00057	10 00000	0 03091	0 03570	0. 05043	0. 07863		
	0.10000	0.0283/	0. 02070	0.03071	0.03607	0.05081	0.07895		
	0.15000	0.02888	0.02720	0.03124	0.03675	0.05171	0.08015		
	0.20000	0.02942	0.02977	0.03103	0.03813	0.05399	0.08367		
	0. 25000	0.03028	0.03085	0.03251	0.00012	0.05689	0.08825		
	0. 30000	0.03134	0.03181	0.03404	0.03784	0.06174	0 09575		
	0.35000	0. 03265	0. 03330	0.035/3	0.04284	0.04940	0 10569		
	0. 40000	0. 03421	0.03508	0.03/81	0.04000	0.07860	0.12032		
	0. 45000	0,03602	0. 03/27	0.04108	0,03470	0.07000	0 14163		
	0. 50000	0 03813	0. 04010	0.04550	0.06284	0.07374	0 17417		
	0.55000	0.04108	0. 04408	0.03464	0.07871	0.14210	0 23357		
	0.60000	0.04509	0.05225	0.07361	0.10772	0.10210	0 33283		
	0. 55000	0. 05267	0.07083	0.10759	0.16228	0.23074	0.51221		
	0 70000	0 05903	0. 10924	0.17252	0. 25957	0.3/187	O. JIZJI		

MINIMUM AEW/ASW UDF HIGH SPEED DRAG POLAR, 40000 FT

۹

. #

0. 44600

0. 79929

1. 44685

2. 58473

4. 50377

7.61932

0.30121

0.55360

1.03141

1.89504

3. 38758

5.86197

0.84417 1.44753

2, 50861

4. 30377 7. 23041

11.84160

.

.

0. 62605

1.93831

3. 38669 5. 78377 9. 61158

168

0.70000

0. 75000

0. 80000 0. 85000

0.90000

0. 95000

1.00000

.

-

.

0.05903

0. 11218

0. 21103 0. 42332

0.84730

1.64140

3.04682

0. 10924

0.19016

0. 35774

0.69046

1. 31613

2. 43368 4. 33803

LIST	Minimum	AEW/ASW	Turboprop	Drag	TABLE NO	. 1	3-DIMENSIONAL	(19X 14X	3) TABLE	LENGTH 925	PAGE 1
ALT	= (0. 00000									
CL.	/M	(0. 60000	0. 6200	o o	64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0. 10000	(0. 02219	0. 0221	0 0	02201	0 02192	0.02184	0. 02176	0. 02173	0, 02178
	0. 15000	, i i i i i i i i i i i i i i i i i i i	0. 02252	0. 0224	2 0	02234	0.02225	0.02217	0. 02209	0.02206	0.02211
	9. 20000	ć	0.02310	0.0230	1 0	02292	0.02283	0.02275	0 02267	0 02265	0. 02269
	0. 25000	Ċ	0. 02395	0.0238	5 0	02377	0.02368	0.02360	0. 02352	0.02349	0. 02354
	9. 30000	Ċ	0.02503	0. 0249	а а о	02485	0.02476	0.02468	0. 02460	0.02457	0. 02462
	0.35000	č	0. 02633	0. 0262	4 0.	02615	0.02606	0 02598	0.02590	0.02587	0. 02592
	0. 40000	- (0.02787	0. 0277	7 0	02768	0.02760	0.02751	~ 0. 02743	0.02741	0. 02745
	0.45000	č	02962	0.0295	3 0	02944	0.02935	0 02927	0 02919	0 02916	0.02921
	0. 50000	č	0.03161	0.0315	2 0	03143	0.02/00	0.03126	0 03117	0.03115	0.03124
	0. 55000	č	0.3385	0.0337	5 0	03366	0.03358	0 03349	0 03341	0 03338	0. 03356
	0. 50000	ć	0.03636	0.0362	5 0. 5 0	03617	0.03608	0.03600	0 03592	0 03576	0.03645
	0. 65000	ċ	0.03918	0.0390	- <u>0</u> . 7 0.	0.3899	0.03890	0.03882	0.03875	0.03893	0.04038
	0. 70000	č	04228	0 0421	8 0	04209	0.04200	0.04191	0 04197	0 04279	0 04594
	0.75000	č	04571	0.0456	1 0	04551	0.04200	0 04541	0 04573	0.04771	0 06054
	0. 80000	č	04942	0.0493	- 0.	04001	0.04913	0.04927	0.05056	0.06140	0 10687
	0. 95000	č	05372	0.0536	i 0.	05350	0.05756	0.05430	0.05803	0 10321	0 22345
	0. 90000	2	05822	0.05811	· ·	05808	0.05935	0.04028	0.09310	0 23266	0 48208
	0.95000	č	04294	0.06283		04000	0.05833	0.08020	0 22606	0.53451	1 00434
	1 00000	7	04797	0.0679		066677	0.00422	0.10005	0.56143	1 15549	1 98205
LIST ALT	Minimum = 0	AEW/ASW	Turboprop	Drag T	ABLE NO.	1	3-DIMENSIONAL	(19X 14X 0	3) TABLE L	ENGTH 925	PAGE 2
	- U M		74000	0 79000	· •	00000	0 82000	0 94000	0 86000		
	· ·	0	. , 8000	. 0. 78000	, U.	80000	0. 82000	0. 84000	0. 00000		
	0. 10000	0	. 02195	0. 02234	O .	02444	0. 02943	0.04462	0. 07373		
	0.15000	0	. 02228	0. 02268	i 0.	02480	0. 02985	0.04506	0. 07412		
	0.20000	0	. 02286	0. 02327	' 0.	02542	0. 03056	0.04600	0. 07538		
	0. 25000	0	. 02372	0. 02417	' 0.	02642	0. 03197	0. 04833	0.07895		
	0. 30000	0	. 02480	0. 02534	O .	02767	0. 03371	0. 05127	0. 08358		
	0.35000	0	. 02612	0. 02684	O .	02937	0. 03655	0.05617	0. 09115		
	0.40000	0	. 02769	0. 02862	? O.	03147	0. 04056	0.06290	0. 10116		
	0.45000	0	. 02950	0. 03082	0.	03478	0. 04693	0.07318	0. 11589		
	0. 50000	0	. 03161	0. 03367	0.	03928	0. 05697	0. 08863	0. 13733		
	0. 35000	0	. 03457	0. 03768	0.	04853	0.07317	0.11264	0. 17002		
	0. 60000	0	. 03859	0. 04598	0.	06765	0. 10414	0. 15711	0. 22962		
	0. 65000	0	. 04623	0. 06469	· <u>o</u> .	10178	0. 15687	0.23161	0. 32907		
	0. 70000	0	. 06272	0.10324	0.	16687	0. 25433	0.36726	0. 50875		
	0.75000	o	. 10578	0. 18430	0.	29571	0. 44093	0.62161	0. 84081		
	0. 80000	0	. 20496	0.35202	0.	34825	0.79439	1.09207	1.44438		
	0. 85000	0	. 41/32	0.68482	1.	02616	1.44207	1.93419	2, 50560		
9		0	. 54138	1. 31060	1.	88772	2.58008	3.38273	4.30073		
	0. 93000	1	04117	2.42827	3.	38237	4.49927	J. //447	1. 22//6		
	1. 00000	ل ا	. 04113	4.332//	Ξ.	03/13	7.61300	7.60/77	11.03720		

٠.

MINIMUM AEW/ASW TURBOPROP HIGH SPEED DRAG POLAR, SEALEVEL

a and and a second s

169

LIST Minimum AEW/ASW Turboprop Drag TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH 925 PAGE 3 A T

.

n .

AL I	L =	20000	00000

.

.

CL/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
0. 10000	0. 02395	0. 02385	0. 02375	0, 02365	0. 02356	0. 02347	0. 02343	0. 02347
0.15000	0. 02427	0.02417	0.02407	0. 02397	0.02388	0. 02379	0. 02375	0. 02379
0. 20000	0.02485	0. 02475	0.02465	0. 02455	0. 02446	0. 02437	0. 02434	0. 02437
0. 25000	0. 02570	0.02560	0.02550	0. 02540	0. 02531	0. 02522	0.02518	0. 02522
0.30000	0. 02679	0. 02668	0.02558	0.02649	0. 02639	0. 02630	0. 02627	0. 02630
0.35000	0.02810	0.02799	0.02789	0. 02779	0. 02770	0. 02761	0.02757	0.02761
0.40000	0. 02964	0. 02953	0. 02943	0. 02934	0. 02924	- 0. 02915	0.02911	0.02915
Ū. 45000	0.03140	0.03130	0.03120	0.03110	0.03100	0. 03091	0. 03088	0.03091
0. 50000	0.03340	0. 03329	0.03319	0. 03309	0. 03300	0. 03291	0. 03287	0. 03295
0.55000	0. 03555	0. 03554	0.03544	0. 03534	0. 03525	0. 03515	0.03512	0. 03528
0. 60000	0.03817	0.03807	0.03796	0. 03786	0. 03777	0.03767	0. 03771	0.03818
0. ა5000	0.04103	0.04092	0.04081	0.04071	0.04061	0. 04053	0. 04070	0.04214
0.70000	0.04415	0. 04404	0.04394	0. 04383	0. 04374	0.04379	0. 04459	0. 04773
0.75000	0. 04763	0. 04751	0.04740	0. 04730	0. 04727	0. 04759	0. 04956	0. 06238
0. 80000	0. 05138	0. 05127	0.05115	0. 05105	0.05117	0. 05246	0.06329	0. 10875
0. 85000	0.05576	0. 05564	0.05553	0. 05557	0.05630	0.06001	0. 10518	0. 22542
0.90000	0.06035	0.06023	0.06018	0.06044	0.06236	0.09516	0.23471	0.48412
0.95000	0.06515	0.06502	0.06516	0. 06639	0.09231	0. 22821	0. 53664	1.00646
1.00000	0.07017	0. 07019	0.07089	0. 07472	0. 20209	0.56366	1. 15771	1.98425

ALT = 20000.00000	
CL/M 0.75000 0.78000 0.80000 0.82000 0.84000 0.86000	
0. 10000 0. 02352 0. 02401 0. 02510 0. 03108 0. 04527 0. 07537	
0. 15000 0. 02395 0. 02434 0. 02646 0. 03150 0. 04670 0. 07575	
0. 20000 0. 02453 0. 02494 0. 02707 0. 03221 0. 04764 0. 07701	
0. 25000 0. 02537 0. 02583 0. 02808 0. 03361 0. 04997 0. 08058	
0. 20000 0. 02648 0. 02701 0. 02933 0. 03537 0. 05291 0. 08521	
0.35000 0.02781 0.02851 0.03104 0.03821 0.05782 0.09279	
0. 40000 0. 02938 0. 03030 0. 03314 0. 04222 0. 06455 0. 10281	
0. 45000 0. 03120 0. 03251 0. 03645 0. 04860 0. 07484 0. 11754	
0. 50000 0. 03331 0. 03537 0. 04096 0. 05865 0. 07030 0. 13899	
0.55000 0.03628 0.03939 0.05023 0.07486 0.11432 0.17169	
0 50000 0 04032 0 04770 0 06936 0 10584 0 15880 0 23130	
0, 65000 0, 04793 0, 06644 0, 10351 0, 15859 0, 23333 0, 33078	
0.70000 0.04450 0.10503 0.16843 0.25608 0.36901 0.51049	
0 75000 0 10780 0 18612 0 29752 0 44272 0 62340 0 84259	
0.0000 0.0734 1.0201 1.074 2.0000 5.0072 7.00271	

MINIMUM AEW/ASW TURBOPROP HIGH SPEED DRAG POLAR, 20000 FT

•

LIST	Minimum AEW	I/ASW Turboprop	Drag TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 5
ALT	= 40000.00	0000				•			
CL	ZM	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0.70000	0.72000	0, 74000
	0 10000	0 02647	0 02635	0. 02623	0. 02612	0. 02601	0. 02590	0. 02585	0. 02587
	0.10000	0.02678	0 02666	0.02654	0. 02643	0. 02532	0.02622	0. 02616	0. 02619
	0.10000	0.02736	0.02724	0.02712	0.02701	0.02690	0. 02680	0. 02674	0. 02677
	0.20000	0.02738	0.02809	0 02797	0. 02786	0. 02775	0. 02765	0. 02760	0. 02762
	0.20000	0.02021	0.02918	0.02906	0.02875	0.02884	0.02874	0. 02869	0. 02871
	0.30000	0.02730	0.02050	0.03038	0.03026	0.03016	0. 03005	0. 03000	0. 03002
	0.35000	0.03062	0.03000	0.03193	0.03182	0.03171	0. 03160	0. 03155	0. 03157
	0.40000	0.03217	0.03203	0.03370	0.03359	0.03348	0. 03337	0. 03332	0. 03334
	0.45000	0.03374	0.03582	0.03571	0.03559	0.03548	0.03537	0. 03532	0. 03539
	0. 50000	0.03595	0.03363	0.03797	0.03786	0.03775	0.03764	0. 03759	0. 03774
	0.55000	0.03822	0.03007	0.03777	0.04040	0 04029	0.04018	0.04020	0. 04066
	0. 60000	0.04077	0.04084	0.04002	0.04070	0.04317	0 04308	0.04323	Ū. 04465
	0.65000	0.04365	0.04353	0.04340	0.04445	0.04634	0 04637	0.04717	0, 05029
	0.70000	0.04683	0.04870	0.04857	0.04845	0.04094	0.05023	0.05217	0.06499
	0.75000	0.05036	0.05023	0.05010	0.04998	0.04774	0.05518	0 06599	0.11143
	0.80000	0.05419	0.05405	0.05392	0.05380	0.05372	0.05010	0 10799	0.22821
	0. 85000	0.05869	0.05855	0.05841	0.05843	0.03714	0.00204	0 23764	0 48703
	0. 90000	0.06340	0.06325	0.06318	0.06342	0.00002	0.07011	0.53040	1 00949
	0.95000	0. 06832	0.06817	0.06828	0. 06949	0.09539	0.2312/	1 14004	1 98739
	1.00000	0. 07345	0. 07345	0.07412	0. 07794	0.20528	0. 20084	1. 18088	1. 70707

.

٠

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LIST	Minimum	AEW/ASW	Turbaprop	Drag	TABLE	NO.	1	3-DIMENSIONAL	19X	14X	3)	TABLE LENGTH	925	PAGE	6
CL/M 0.76000 0.78000 0.80000 0.82000 0.84000 0.84000 0.10000 0.02602 0.02638 0.02846 0.03344 0.04861 0.07770 0.15000 0.02633 0.02671 0.02881 0.03384 0.04994 0.07807 0.20000 0.02637 0.02770 0.02943 0.03455 0.04997 0.07933 0.25000 0.02777 0.02820 0.03044 0.03596 0.5221 0.08290 0.30000 0.02937 0.02939 0.03149 0.03772 0.05525 0.08754 0.35000 0.03178 0.03290 0.03341 0.04056 0.66017 0.99112 0.40000 0.03372 0.04384 0.05097 0.07720 0.11990 0.45000 0.03372 0.04384 0.05097 0.07720 0.11990 0.50000 0.03372 0.04384 0.05097 0.07720 0.11990 0.55000 0.03372 0.04384 0.05097 0.3720 0.11990	ALT	= 4000	0. 00000													
0. 10000 0. 02602 0. 02638 0. 02846 0. 03344 0. 04861 0. 07770 0. 15000 0. 02533 0. 02671 0. 02681 0. 03384 0. 04904 0. 07807 0. 20000 0. 02691 0. 02730 0. 02943 0. 03596 0. 05231 0. 07933 0. 25000 0. 02777 0. 02820 0. 03044 0. 03596 0. 05231 0. 08290 0. 30000 0. 02937 0. 02939 0. 03169 0. 03772 0. 05525 0. 08754 0. 30000 0. 03200 0. 03269 0. 03341 0. 04056 0. 04017 0. 09512 0. 40000 0. 03178 0. 03269 0. 03552 0. 04459 0. 04691 0. 10515 0. 40000 0. 03341 0. 03491 0. 03884 0. 50977 0. 7720 0. 11990 0. 50000 0. 03372 0. 04182 0. 52244 0. 07726 0. 11471 0. 17407 0. 60000 0. 04273 0. 5015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 66893 0. 10599 0. 16105 0. 23578 0.	CL	/M		0. 75000	0. 780	00	0.	80000	0. 82000	0. E	84000		0. 84000			
0. 15000 0. 02533 0. 02671 0. 02681 0. 03384 0. 04904 0. 07807 0. 20000 0. 02691 0. 02730 0. 02943 0. 03455 0. 04997 0. 07933 0. 25000 0. 02777 0. 02820 0. 03044 0. 03596 0. 05231 0. 08290 0. 30000 0. 02937 0. 02939 0. 03149 0. 03772 0. 05525 0. 08754 0. 30000 0. 03020 0. 03040 0. 03341 0. 04056 0. 04017 0. 09512 0. 40000 0. 03178 0. 03269 0. 03552 0. 04459 0. 04691 0. 10515 0. 45000 0. 03341 0. 04384 0. 05097 0. 07268 0. 11990 0. 50000 0. 03372 0. 04336 0. 06403 0. 07268 0. 11970 0. 50000 0. 03372 0. 04326 0. 07726 0. 11671 0. 17407 0. 60000 0. 04279 0. 05015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 64893 0. 10599 0. 16105 0. 23578 0. 33322 0. 70000 0. 057		0 10000		0 02602	0, 026	38	٥.	02846	0. 03344	o. c	94861		0. 07770			
0.20000 0.02491 0.02730 0.02943 0.03455 0.04997 0.07933 0.25000 0.02777 0.02820 0.03044 0.03594 0.05231 0.08290 0.30000 0.02887 0.02939 0.03149 0.03772 0.05525 0.08754 0.35000 0.03269 0.03249 0.03341 0.04056 0.06017 0.09512 0.40000 0.03178 0.03249 0.03552 0.04459 0.06691 0.10515 0.40000 0.03341 0.03491 0.03884 0.5097 0.07720 0.11990 0.50000 0.03574 0.03778 0.04336 0.64103 0.09268 0.14135 0.50000 0.03572 0.04130 0.07726 0.11671 0.17407 0.50000 0.03572 0.04182 0.05244 0.07726 0.11671 0.17407 0.65000 0.03574 0.05015 0.07180 0.10827 0.16122 0.23370 0.65000 0.05048 0.06893 0.10599 0.16105 0.23578 0.33122 0.70000 0.06704 0.10755		0 15000		0 02533	0.026	71	0.	02681	0. 03384	0.0)4904		0.07807			
0. 25000 0. 02777 0. 02820 0. 03044 0. 03576 0. 05231 0. 08290 0. 30000 0. 02887 0. 02939 0. 03169 0. 03772 0. 05525 0. 08754 0. 35000 0. 03020 0. 03090 0. 03341 0. 04036 0. 04017 0. 09512 0. 40000 0. 03178 0. 03269 0. 03552 0. 04459 0. 06691 0. 10515 0. 45000 0. 03374 0. 03269 0. 03884 0. 05097 0. 07720 0. 11990 0. 50000 0. 03374 0. 03778 0. 04336 0. 66103 0. 09268 0. 14135 0. 55000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 65000 0. 03278 0. 05264 0. 07726 0. 11671 0. 17407 0. 65000 0. 04278 0. 05015 0. 07180 0. 10827 0. 16122 0. 23372 0. 65000 0. 05048 0. 06893 0. 10599 0. 16105 0. 23578 0. 33322 0. 73000 0. 107055 0. 17115 0. 28859 0. 37150 0. 51297 0. 73		0 20000		0 02691	0 027	30	Ō.	02943	0. 03455	0.0	4997		0. 07933			
0. 30000 0. 02937 0. 03169 0. 03772 0. 05525 0. 08754 0. 35000 0. 03020 0. 03090 0. 03341 0. 04056 0. 06017 0. 09512 0. 40000 0. 03178 0. 03269 0. 03552 0. 04459 0. 06491 0. 10515 0. 45000 0. 03341 0. 04459 0. 04459 0. 07720 0. 11990 0. 50000 0. 03374 0. 03778 0. 04336 0. 66103 0. 09268 0. 14135 0. 55000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 40000 0. 04278 0. 05015 0. 07180 0. 10827 0. 14122 0. 23370 0. 45000 0. 05048 0. 04893 0. 10599 0. 14105 0. 23578 0. 33322 0. 45000 0. 06704 0. 10755 0. 17115 0. 25859 0. 31750 0. 51297 0. 75000 0. 11040 0. 18871 0. 30009 0. 44528 0. 42594 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 850		0 25000		0.02777	0 028	20	Ö.	03044	0. 03576	0.0)5231		0.08290			
0. 35000 0. 03020 0. 03070 0. 03341 0. 04056 0. 04017 0. 07512 0. 40000 0. 03178 0. 03267 0. 03552 0. 04457 0. 06671 0. 10515 0. 45000 0. 03341 0. 03491 0. 03884 0. 5097 0. 07720 0. 11970 0. 50000 0. 03574 0. 03778 0. 04336 0. 64103 0. 09268 0. 14135 0. 50000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 60000 0. 04278 0. 05015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 64873 0. 10579 0. 16105 0. 23578 0. 33322 0. 70000 0. 06704 0. 10755 0. 17115 0. 25859 0. 37150 0. 51297 0. 73000 0. 10400 0. 18871 0. 30007 0. 44328 0. 62374 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 855000 0. 42205 0. 68953 1. 03084 1. 44672 1. 93883 2		0.20000		0 02997	0 029	39	ō.	03169	0. 03772	0.0)5525		0. 08754			
0. 40000 0. 03178 0. 03249 0. 03552 0. 04459 0. 04691 0. 10515 0. 45000 0. 03341 0. 03491 0. 03884 0. 05097 0. 07720 0. 11990 0. 50000 0. 03574 0. 03778 0. 04336 0. 64103 0. 09268 0. 14135 0. 50000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 60000 0. 04273 0. 05015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 06893 0. 10599 0. 16105 0. 23578 0. 33322 0. 70000 0. 05704 0. 10755 0. 17115 0. 28599 0. 37150 0. 51297 0. 75000 0. 11040 0. 18871 0. 30009 0. 44528 0. 62594 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 64953 1. 03084 1. 44672 1. 93883 2. 51021 0. 85000 0. 42205 0. 64953 1. 03084 1. 44672 1. 93883 2		0.35000		0.03020	0 030	90	ō.	03341	0.04056	0.0	6017		0.09512			
0.45000 0.03341 0.03491 0.03884 0.05097 0.07720 0.11990 0.50000 0.03574 0.03778 0.04336 0.06103 0.09268 0.14135 0.55000 0.03372 0.04182 0.05264 0.07726 0.11671 0.17407 0.60000 0.04278 0.05015 0.07180 0.10827 0.16112 0.23370 0.65000 0.05048 0.06893 0.10599 0.16105 0.23578 0.33222 0.70000 0.05048 0.06893 0.10599 0.16105 0.23578 0.33222 0.75000 0.11040 0.18871 0.30009 0.44328 0.62594 0.84513 0.80000 0.20949 0.35653 0.55274 0.79886 1.09652 1.44880 0.85000 0.42205 0.64953 1.03084 1.44672 1.93883 2.51021 0.80000 0.42205 0.64953 1.989479 2.58893 3.0573		0 40000		0.03178	0.032	69	Ō.	03552	0. 04459	Ö. C	6691		0. 10515			
0. 50000 0. 03574 0. 03778 0. 04336 0. 06103 0. 09268 0. 14135 0. 55000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 60000 0. 04278 0. 05015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 06893 0. 107180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 06893 0. 107597 0. 14105 0. 23578 0. 33322 0. 70000 0. 05048 0. 06893 0. 17115 0. 25859 0. 37150 0. 51297 0. 75000 0. 11040 0. 18871 0. 30009 0. 44328 0. 62594 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 68953 1. 03084 1. 44672 1. 93883 2. 51021 0. 80000 0. 920749 0. 35453 1. 03084 1. 44672 1. 93883 2. 51021		0.45000		0.03361	0 034	91	ō.	03884	0.05097	0.0	7720		0.11990			
0. 55000 0. 03372 0. 04182 0. 05264 0. 07726 0. 11671 0. 17407 0. 60000 0. 04278 0. 05015 0. 07180 0. 10827 0. 16122 0. 23370 0. 65000 0. 05048 0. 06893 0. 10599 0. 16105 0. 23578 0. 33322 0. 70000 0. 06704 0. 10755 0. 17115 0. 25859 0. 37150 0. 51297 0. 75000 0. 11040 0. 18871 0. 30009 0. 44328 0. 62594 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 68953 1. 03084 1. 44672 1. 93883 2. 51021		0.50000		0 03574	0 037	78	Ō.	04336	0.06103	0.0	9268		0. 14135			
0.0000 0.04278 0.05015 0.07180 0.10827 0.16122 0.23370 0.65000 0.05048 0.06893 0.10599 0.14105 0.23578 0.33322 0.70000 0.06704 0.10755 0.17115 0.25859 0.37150 0.51297 0.75000 0.11040 0.18871 0.30009 0.44528 0.62594 0.84513 0.80000 0.20949 0.35653 0.55274 0.79886 1.09652 1.44880 0.85000 0.42205 0.64953 1.03084 1.44672 1.93883 2.51021 0.00000 0.320749 1.21548 1.89478 2.58893 3.3573		0.55000		0.03372	0.041	82	õ	05264	0.07726	0.1	1671		0. 17407			
0. 65000 0. 05704 0. 06893 0. 10599 0. 16105 0. 23578 0. 33322 0. 70000 0. 06704 0. 10755 0. 17115 0. 25859 0. 37150 0. 51297 0. 75000 0. 11040 0. 18871 0. 30009 0. 44528 0. 62594 0. 84513 0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 64953 1. 03084 1. 44672 1. 93883 2. 51021 0. 00000 0. 7004205 0. 48953 1. 98479 2. 58893 3. 30573		0.60000		0.04279	0.050	15	ō	07180	0.10827	0.1	6122		0. 23370			
0. 30000 0. 06704 0. 10755 0. 17115 0. 25857 0. 37150 0. 51297 0. 75000 0. 11040 0. 18871 0. 30007 0. 44528 0. 62574 0. 84513 0. 80000 0. 20947 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 68953 1. 03084 1. 44672 1. 93883 2. 51021 0. 90000 0. 70000 0. 70000 1. 21548 1. 89479 2. 58893 2. 51021		0.00000		0.05049	0.068		0	10599	0 16105	0.2	23578		0.33322			
0.75000 0.11040 0.18871 0.30007 0.44528 0.62574 0.84513 0.80000 0.20747 0.35653 0.55274 0.79886 1.07652 1.44880 0.85000 0.42205 0.68753 1.03084 1.44672 1.93883 2.51021 0.00000 0.42205 0.68753 1.94672 2.58893 2.51021		0.00000		0.06704	0.107	55	0	17115	0 25859	0. 2	37150		0. 51297			
0. 80000 0. 20949 0. 35653 0. 55274 0. 79886 1. 09652 1. 44880 0. 85000 0. 42205 0. 68953 1. 03084 1. 44672 1. 93883 2. 51021 0. 02003 0. 42205 0. 68953 1. 93084 2. 55882 3. 38755 4. 30573		0.75000		0.11040	0.188	71	0.	30009	0 44528	0. é	2594		0.84513			
0. 85000 0. 42205 0. 48953 1. 03084 1. 44672 1. 93883 2. 51021 0. 85000 0. 42205 0. 48953 1. 03084 1. 44672 1. 93883 2. 51021		0.70000		0.00040	0.100	52	Ā.	55274	0 79886	1.0	9652		1, 44880			
		0.80000		0. 20747	0.000	50	1	03094	1 44472	1 9	3883		2.51021			
		0.83000		0. 42203	1 215	75 AQ		99479	2 58492	3.5	18755		4. 30573			
0.5000 0.6501 1.6107 2.6777 2.5077 0.6101 5.78499 7.23274		0.90000		4 41070	1.313	7, 74	<u>.</u>	39745	4 50431	5.7	8499		7. 23274			
		0.93000			2.433	05		94740	7 42023	0.4	1319		11.84430			

MINIMUM AEW/ASW TURBOPROP HIGH SPEED DRAG POLAR, 40000 FT

LIST	Minimum	AEW/ASW	Turbofan	Drag	TABLE NO). 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 1
ALT	= .	0. 00000									
сL	/H		0. 60000	0, 6200	00 0	. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0. 10000		0. 02209	0, 0219	99 (02191	0. 02182	0. 02174	0. 02166	0. 02163	0. 02168
	0.15000		0. 02241	0, 0223	32 (02223	0.02215	0. 02207	0. 02199	0.02196	0. 02201
	0. 20000		0. 02300	0, 0229	1 0	02282	0, 02273	0. 02265	0. 02257	0. 02255	0. 02259
	0. 25000		0. 02385	0, 0237	'ь C	02367	0. 02358	0. 02350	0. 02342	0. 02339	0. 02344
	0. 30000		0.02493	0.0248	i4 C	02475	0. 02466	0. 02458	0. 02450	0.02447	0. 02452
	J. 35000		0. 02623	0.0261	4 0	02505	0.02597	0.02588	0. 02581	0. 02578	0. 02582
	0. 40000		0.02777	0.0276	a c	02759	0.02750	0. 02742 ~	- 0. 02734	0.02731	0. 02736
	0. 45000	1	0.02953	0.0294	3 0	02935	0.02926	0.02918	0.02910	0. 02907	0.02911
	0. 50000		0 03152	0 0314	2 0	03133	0.03125	0 03116	0 03108	0.03105	0.03115
	0. 55000		0.03376	0 0336	5 0	03357	0.03348	0.03340	0.03332	0. 03329	0. 03347
	0. 60000		0.03627	0.0361	7 0	03608	0.03599	0.03591	0.03583	0.03587	0. 03636
	0. 65000		0.03909	0 0390	o o	03890	0.03881	0 03873	0.03866	0.03884	0.04029
	0. 70000		0 04219	0 0420	9 0	04200	0 04191	0.04182	0 04188	0.04270	0.04586
	0. 75000	,	0.04562	0 0455	2 0	04542	0.04533	0 04532	0.04565	0.04763	0. 06048
	0.80000		0 04933	0 0492	3 0	04913	0 04904	0.04919	0.05048	0.06133	0 10682
	0. 85000		0.05362	0 0535	2 0	05341	0.05347	0 05422	0.05795	0.10315	0 22342
	0. 90000		0.02813	0.0580	2 0	05799	0.05826	0.06020	0.09303	0. 23262	0.48207
	0. 95000		0.06285	0 0627	3 0	06289	0.06413	0.09008	0 22602	0 53449	1 00435
	1. 00000	,	0. 06778	0.0678	2 0	06853	0.07239	0. 19979	0. 56141	1.15550	1. 98208

2

6

- 1

LIST	Minimum A	EW/ASW Turbofan	Drag TA	BLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENGT	H 925	PAGE
ALT	≠ 0.	00000							
CL	./H	0. 75000	0. 78000	0.80000	0. 82000	0. 84000	0. 86000		
	0. 10000	0.02165	0. 02224	0. 02434	0. 02935	0. 04458	0. 07375		
	0.15000	0.02218	0. 02258	0. 02471	0. 02977	0. 04502	0. 07415		
	0. 20000	0. 02277	0. 02318	0. 02533	0, 03049	0. 04597	0.07541		
	0. 25000	0. 02362	0. 02407	0. 02634	0. 03189	0. 04830	0.07898		
	0. 30000	0. 02471	0. 02525	0. 02758	0. 03365	0. 05124	0. 08362		
	0. 35000	0. 02603	0. 02675	0. 02929	0. 03648	0.05615	0.09119		
	0. 40000	0. 02760	0. 02953	0. 03139	0. 04050	0.06288	0. 10121		
	0.45000	0. 02741	0. 03074	0. 03470	0. 04688	0. 07317	0. 11595		
	0. 50000	0. 03152	0. 03359	0. 03921	0, 05693	0. 08863	0. 13740		
	0. 55000	0. 03448	0. 03761	0. 04847	0. 07314	0. 11265	0. 17010		
	0. 00000	0.03851	0.04591	0. 06760	0.10412	0.15714	0. 22972		
	0. 65000	0.04616	0.06464	0. 10175	0, 15687	0. 23165	0.32919		
	0.70000	0.06266	0.10321	0.16686	0. 25434	0.36733	0. 50889		
	0.75000	0. 10594	0. 18429	0. 29572	0. 44097	0. 62169	0.84098		
	0. 80000	0. 20493	0.35202	0. 54828	0. 79445	1.09218	1. 44457		
	0.85000	0. 41731	0. 68484	1. 02621	1.44215	1. 93433	2, 50582		
	0.90000	0.84140	1.31064	1.88999	2, 58018	3, 38288	4. 30117		
	0. 75000	1.63562	2, 42834	3. 38269	4. 49941	5. 78016	7. 22803		
	1.00000	3.04120	4. 33286	5.85727	7.61516	9. 60820	11.83950		

MINIMUM AEW/ASW TURBOFAN HIGH SPEED DRAG POLAR, SEALEVEL

Á

.

8

LIST	Minimum	AEW/ASW Turbofan	Drag 1	TABLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	STH 925	PAGE 3
ALT	= 20000	0. 00000							
CL.	/M-	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0. 10000	0. 02384	0. 02374	0. 02364	0. 02354	0. 02345	0. 02336	0. 02332	0. 02336
	0.15000	0. 02415	0. 02408	6 0, 02396	0. 02386	0.02377	0. 02368	0. 02364	0. 02368
	0. 20000	0. 02474	0. 02464	0. 02454	0. 02445	0. 02435	0. 02427	0. 02423	0. 02426
	0. 25000	0.02560	0. 02549	0, 02539	0. 02530	0. 02520	0.02512	0. 02508	0. 02511
	0. 30000	0. 02668	0. 02658	0. 02648	0. 02638	0.02629	0. 02620	0. 02616	0. 02620
	0. 35000	0. 02799	0. 02789	0.02779	0. 02769	0. 02760	0. 02751	0. 02747	0. 02751
	0.40000	0. 02953	0. 02943	0,02933	0.02723	0.02914	_ 0. 02905	0. 02901	0. 02905
	0.45000	0. 03130	0. 03119	0.03109	0.03100	0.03090	0. 03081	0. 03077	0. 03081
	0. 50000	0.03329	0. 03315	0.03309	0. 03299	0.03290	0. 03281	0. 03277	0. 03285
	0.55000	0. 03555	0. 03544	0.03534	0. 03524	0. 03515	0. 03505	0. 03502	0. 03519
	0.60000	0. 03807	0. 03797	0, 03786	0. 03776	0. 03767	0. 03758	0. 03761	0.03809
	0. 65000	0. 04092	0. 04082	0. 04071	0. 04061	0.04051	0.04044	0. 04061	0. 04205
	0.70000	0. 04405	0. 04394	0.04384	0.04374	0.04364	0.04369	0.04450	0. 04764
	0.75000	0. 04753	0. 04741	0, 04731	0. 04720	0.04718	0. 04749	0.04947	0. 06230
	0.80000	0.05128	0. 05117	0, 05106	0. 05096	0.05109	0. 05237	0. 06321	0, 10870
	0.85000	0. 05566	0. 05554	0.05543	0. 05547	0.05620	0. 05992	0. 10511	0, 22538
	0. 90000	0, 06025	0.06013	80040.0	0.06034	0. 06227	0.09509	0. 23467	0.48410
	0.95000	0.06506	0. 06492	0.06506	0.06630	0.09223	0.22815	0. 53662	1. 00646
	1.00000	0, 07007	0, 07009	0.07079	0.07464	0. 20202	0.56363	1.15770	1, 98428

e - #

.

LIST	Minimum	n AEW/ASW Turbofan	Drag TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENGTH	925	PAGE	4
ALT	= 2000	00000								
CL	/Ħ	0. 76000	0. 78000	0.80000	0. 82000	0. 84000	0. 86000			
	0. 10000	0. 02352	0. 02390	0.02600	0. 03100	0. 04621	0.07538			
	0.15000	0. 02384	0. 02424	0. 02535	0.03141	0.04665	0.07577			
	0. 20000	0. 02443	0. 02483	0. 02698	0.03212	0.04760	0.07703			
	0. 25000	0. 02529	0. 02573	0. 02798	0. 03353	0.04993	0.08061			
	0. 30000	0. 02638	0.02691	0.02924	0.03529	0.05287	0.08525			
	0. 35000	0. 02771	0. 02842	0.03094	0.03813	0.05779	0.09282			
	0.40000	0. 02928	0. 03021	0.03305	0.04215	0.06452	0. 10285			
	0. 45000	0. 03110	0. 03242	0.03637	0.04854	0.07482	0.11760			
	0. 50000	0. 03322	0. 03528	0.04089	0.05859	0.09029	0.13905			
	0. 55000	0.03619	0. 03930	0.05016	0.07482	0.11432	0. 17177			
	0. 60000	0. 04023	0. 04763	0.06931	0.10582	0.15882	0.23140			
	0. 65000	0. 04790	0. 06638	0.10348	0. 15859	0. 23336	0.33090			
	0.70000	0. 06443	0.10498	0.16861	0.25609	0.36907	0. 51062			
	0. 75000	0. 10775	0. 18609	0. 29751	0. 44275	0. 62347	0.84275			
	0. 80000	0. 20680	0. 35388	0.55012	0.79628	1.09401	1. 44638			
	0.85000	0. 41925	0. 68678	1.02813	1. 44406	1. 93623	2. 50771			
	0. 90000	0.84342	1. 31265	1.89199	2, 58218	3. 38487	4. 30314			
	0. 95000	1.63772	2. 43043	3. 38477	4, 50148	5. 78222	7. 23007			
	1. 00000	3. 04338	4. 33503	5.85943	7. 61731	9. 61034	11.84160			

MINIMUM AEW/ASW TURBOFAN HIGH SPEED DRAG POLAR, 20000 FT

.

LIST Minimum AEW/ASW Turbofan Drag TABLE ND. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH 925 PAGE 5

ALT = 40000.00000

CL/M	0. 50000	0. 62000	0.64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
0. 10000	0. 02634	0. 02622	0.02610	0. 02599	0. 02588	0. 02578	0. 02573	0. 02575
0.15000	0. 02666	0. 02653	0.02642	0. 02631	0. 02620	0. 02609	0. 02604	0. 02607
0. 20000	0. 02724	0.02712	0. 02700	0. 02689	0. 02678	0. 02668	0. 02663	0. 02665
0.25000	0.02809	0. 02797	0.02785	0. 02774	0. 02763	0. 02753	0. 02748	0. 02750
0. 30000	0.02918	0.02906	0.02995	0. 02883	0. 02872	0. 02862	0. 02857	0. 02859
0. 35000	0. 03050	0. 03038	0.03026	0. 03015	0. 03004	0. 02994	0. 02988	0. 02991
0. 40000	0. 03205	0. 03193	0.03181	0. 03170	0. 03159	0. 03149	0. 03143	0. 03146
0.45000	0. 03383	0. 03370	0.03359	0. 03347	0. 03336	0. 03326	0. 03321	0. 03323
0. 50000	0. 03583	0. 03571	0.03559	0. 03548	0. 03537	0. 03526	0. 03521	0. 03528
0.55000	0.03810	0. 03798	0.03786	0. 03774	0. 03763	0. 03753	0. 03747	0. 03763
0. 60000	0.04065	0. 04053	0.04041	0. 04029	0. 04018	0. 04007	0.04009	0. 04056
0.65000	0.04354	0. 04341	0.04329	0. 04318	0. 04306	0. 04297	0. 04312	0. 04455
0.70000	0. 04672	0. 04659	0.04646	0. 04634	0. 04623	0.04626	0. 04706	0. 05019
0. 75000	0. 05025	0. 05012	0.04999	0. 04987	0. 04983	0.05013	0. 05209	0.06490
0. 80000	0. 05407	0. 05394	0.05381	0.05369	0. 05381	0.05507	0.06590	0.11136
0. 85000	0. 05858	0. 05843	0.05830	0.05832	0. 05904	0.06274	0. 10791	0. 22816
0. 90000	0.06329	0. 06314	0.05307	0. 06331	0.06522	0.09802	0. 23758	0. 48700
0. 95000	0. 06821	0. 06805	0.06917	0. 06938	0. 09530	0. 23120	0. 53965	1.00948
1.00000	0. 07334	0. 07334	0.07402	0. 07784	0. 20521	0. 56679	1.16085	1. 98740

6

*

..

LIST Minimum	n AEW/ASW Turbofan	Drag TAB	LE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENGTH	925 PAGE
ALT - 4000	00.00000						
CL/M	0. 76000	0. 78000	0. 80000	0. 82000	0. 84000	0. 86000	
0, 10000	0. 02590	0. 02627	0. 02835	0. 03334	0. 04854	0. 07770	
0. 15000	0.02521	0. 02660	0. 02870	0. 03375	0. 04898	0. 07808	
0. 20000	0. 02680	0. 02719	0. 02932	0. 03446	0. 04991	0. 07934	
0. 25000	0. 02766	0. 02809	0.03033	0. 03587	0. 05225	0. 08292	
0, 30000	0.02876	0. 02928	0.03159	0. 03763	0. 05520	0. 08756	
0, 35000	0, 03009	0. 03079	0. 03330	0. 04048	0.06012	0. 07515	
0, 40000	0. 03167	0. 03259	0. 03542	0. 04451	0. 06687	0. 10519	
0. 45000	0, 03350	0. 03481	0.03875	0. 05090	0. 07717	0. 11994	
0. 50000	0, 03553	0. 03768	0.04327	0.06097	0. 07265	0. 14141	
0. 55000	0. 03962	0. 04172	0.05256	0. 07721	0. 11670	0. 17413	
0, 60000	0. 04268	0.05006	0.07173	0. 10823	0.16122	0. 23379	
0. 65000	0. 05039	0. 06885	0.10594	0. 16103	0. 23580	0. 33332	
0. 70000	0. 06697	0. 10749	0.17112	0. 25858	0. 37155	0. 51309	
0. 75000	0, 11034	0.18867	0. 30007	0. 44530	0. 62601	0. 84527	
0. 80000	0, 20945	0. 35651	0. 55275	0. 79889	1.09660	1.44897	
0, 85000	0. 42202	0. 68953	1.03087	1. 44678	1.93894	2. 51041	
0, 90000	0, 84630	1.31552	1.89484	2. 58501	3. 38769	4. 30595	
0. 95000	1.64072	2. 43341	3. 38773	4. 50442	5. 78515	7. 23299	
1.00000	3. 04648	4, 33812	5.86250	7. 62037	9. 61338	11.84460	

MINIMUM AEW/ASW TURBOFAN HIGH SPEED DRAG POLAR, 40000 FT

3 S 👘

.

LIST	Minimum	AEW/ASW	STOVL	DRAG	Polar	TABLE	NO.	1	3-DIMENSIONAL	(19X	14X	3)	TABLE L	ENGTH	925	PAGE	1
ALT	= 0	. 00000															
CL	./M	(0. 60000	c	0. 620	00	0.	64000	0. 66000	0. 6	68000		0. 70000	0.	72000	0	. 74000
	0.10000	,	0.000	,	0.019	202	٥	01985	0.01977	0. (01970		0. 01963	0.	01959	0	. 01961
	0.10000		0.02000	7	0.01	10	<u> </u>	02021	0.02013	0.0	2006		0.01998	0.	01995	0	. 01997
	0.19000		0.0203	, 	0.020		<u> </u>	02082	0 02074	0.0	02067		0. 02060	0.	02056	0	. 02058
•	0.20000		0. 02070	5) L	0.020	77	<u> </u>	02002	0.02162	0 0	02154		0.02147	O .	02144	0	02146
	0.25000		0.02100		0.021	. / /	0.	02107	0.02272	0.0	02265		0 02257	0.	02254	0	. 02256
	0. 30000		0.02270		0.024		<u>,</u>	02200	0.02405	- 0. C	12397		0 02390	0	02387	0	. 02389
	0.35000		J. 0242*	7	0.024		<u>,</u>	02413	0.02561	0.0	12557		0 02546	0	02542	0	. 02545
	0.40000		J. 0238:	5	0.023)///	0.	02307	0.02301	0.0	77731	•	0 02724	Ō.	02720	0	02722
	0.45000		0.0276.	3	0.027	34	0.	02740	0.02737	0.0	17077		0 02924	o.	02921	0	02928
	0. 50000	l l	0.02764	4	0.029	133	<u>,</u>	02747	0.02757	0.0	12157		0.03150	ō	03146	0	03164
	0.55000		0.03190	- -	0.031	.81	Q.	03173	0.03185	0.0	72410		0.03402	0	03407	ō	03458
	0. 50000	<u> </u>	0. 0344	2	0.034	134	<u> </u>	03426	0.03418	0.0	10104		0.03688	õ	03709	ō	03859
	0. 25000	(0.0372	_	0.03/	18	0.	03/10	0.03701	0.0	14005		0.04014	0	04101	ō	04428
	0.70000	(0. 04038	3	0.040	129	0.	04021	0.04013	0.0	34003		0.04395	ő	04604	ō	05921
	0.75000	(0. 0438	3	0. 043	374	0.	04365	0.04357	0.0	34337		0.04997	ă.	05994	ŏ	10595
	0.80000	(0. 0475	5	0.047	46	0.	04/3/	0.04/29	0.0	34/47		0.05647	0	10216	õ	22298
	0.85000		0.0518	6	0. 051	.76	0.	0518/	0.05178	0.0	132.10		0.00109	0	23207	0	48208
	0.90000	0	0.05638	3	0. 054	28	<u>o</u> .	05627	0.05660	0.0			0.07187	ň.	53441	1	00487
	0.95000	(0. 0611	1	0.061	.01	0.	06121	0.08258	0.0	18877		0. 22332	1	15593	1	98315
•	1.00000	(0. 0660	5	0. 066	13	0.	06693	0. 07096	0. 1	19895		0. 38120	•	. 13373	•	. /0010
LIST ALT	Minimum = 0	AEW/ASW	STOVL	DRAG	Polar	TABLE	ND.	1	3-DIMENSIONAL	(19X	14X	3)	TABLE L	ENGTH	925	PAGE	2
21	- /M		0 72000	0	0 780	000	0.	80000	0. 82000	0. E	34000		0. 86000				
	.,		0. 7000.		0.700		•••										
	0. 10000	(0. 01974	4	0. 020	07	0.	02204	0. 02670	0.0	04093		0.06758				
	0.15000	(0. 02010	ο.	0. 020)44	Ο.	02244	0. 02717	0.0	04144		0. 06806				
	0.20000		0. 0207	1	0. 021	07	0.	02309	0.02793	0.0	04245		0.06941				
	0.25000		0. 02154	9	0. 021	.99	0.	02413	0. 02939	0.0	04486		0.07308				
	0, 30000	•	0. 0227.	1	0. 023	819	0.	02542	0. 03120	0.0	04788		0.07782				
	0.35000	(0. 02406	6	0. 024	73	٥.	02716	0. 03413	0. (05290		0.08552				
	0.40000	1	0. 0256	5	0. 026	55	0.	02932	0. 03825	0.0	5976		0.09570				
	0.45000		0. 02744	7	0. 028	579	0.	03271	0. 04478	0.0	07022		0.11063				
	0. 50000	(0. 02964	4	0. 031	.71	0.	03739	0. 05503	0.0	08591		0. 13233				
	0. 55000	(0. 03260	5	0. 035	82	Ο.	04689	0.07150	0.1	11022		0.16534				
	0. 50000	(0. 0367:	7	0.044	41	0.	06636	0. 10284	0.1	15509		0. 22537				
	0. 65000		0. 0446	2	0.063	348	0.	10087	0.15598	0. 🕯	23002		0. 32529				
	0. 70000	•	0. 0614	7	0.102	242	0.	16638	0. 25389	0. 3	36615		0. 50547				
	0. 75000	(0. 10513	3	0. 183	91	0.	29568	0. 44097	0.8	52101		0.83807				
	0. 90000	(0. 2045	5	0, 352	209	0.	54872	0.79496	1.0	09203		1. 44222				
	0.85000		0. 4173	8	0. 685	640	1.	02716	1. 44320	• 1.9	73474		2. 50406				
	0. 90000	(0. 84196	6	1.311	72	1.	89149	2, 58181	3. 3	38391		4. 30005				
	0. 95000	- :	1.63673	2	2. 429	97	З.	38478	4. 50165	5.7	78183		7. 22759				
	1 00000		3 0428/	4	4 335	510	5	85999	7.61807	9.6	51056		11.83970				

. 5 7 6

MINIMUM AEW/ASW STOVL HIGH SPEED DRAG POLAR, SEALEVEL

LIST	Minimum	AEW/ASW	STOVL	DRAG	Polar	TABLE	NO.	1	3-DIMENSIONAL	(19X 14	(с хі	TABLE	LENGTH	925	PAGE	з
ALT	= 2000	0. 00000														
CL/	м		0. 6000	o	0. 620	00	0.	64000	0. 66000	0. 680	000	0. 70000) (. 72000	٥	. 74000
	0. 10000		0. 0216	1	0. 021	51	Q .	02142	0. 02134	0. 021	25	0. 02117	, (0. 02113	0	. 02114
	0, 15000) (0. 0219	5	0. 021	86	0.	02177	0. 02169	0. 021	60	0.02152	2 0	0. 02148	0	. 02149
	0. 20000) 4	0. 0225	7	0. 022	48	Ō.	02238	0. 02230	0. 022	21	0. 02213	3 0	02209	0	02210
	0. 25000) (0. 0234	5	0. 023	35	Ō.	02326	0. 02317	0. 023	307	0. 02301	Ċ	02297	0	02298
	0. 30000		0. 0245	5	0. 024	46	Ō.	02437	0. 02428	0. 024	20	0.02412	2 0	02407	ō	02409
	C. 35000		0. 02584	7	0.025	79	0.	02570	0. 02562	0. 025	53	0. 02545	5 C	02541	ō	02542
	0. 40000		0. 0274	5	0. 027	36	Ő.	02727	0.02718	0. 027	10	-0.02701	. c	02697	ō	02698
	0. 45000		0. 02924	1	0.029	15	Ō.	02905	0. 02895	0. 028	88	0. 02880) 0	. 02875	o	02877
	0. 50000		0. 03124	5	0. 031	16	0.	03107	0. 03098	0. 030	89	0. 03081	c	. 03077	0	03083
	0. 55000		0. 03353	3	0. 033	43	0.	03334	0. 03325	0.033	116	0.03308	0	03303	0	03320
	0. 50000	(0. 03607	7	0. 035	97	0.	03588	0. 03579	0. 035	70	0. 03562	ā	. 03566	0	03616
	0. 65000	(0.03894	1	0.038	84	0.	03875	0.03866	0.039	57	0.03850	0	03870	Ó.	04019
1	0. 70000	Ċ	0. 04209	7	0.041	99	0.	04187	0.04180	0. 041	71	0.04179	ō	. 04266	ō	04591
	0. 75000		0. 04558	3	0.045	47	0.	04537	0.04528	0.045	27	0.04565	ō	. 04772	0	06088
	0. 80000	(0.0493	,	0. 049	24	0.	04914	0. 04705	0. 049	23	0. 05061	ō	06167	Ō.	10767
	0. 85000	Ċ	0. 05374	ļ	0. 053	63	0.	05352	0.05360	0.054	41	0.05829	ō	. 10397	ō	22477
	0. 90000	Ċ	0.05834	L	0.058	23	0.	05820	0.05852	0.060	58	0 09379	Ő	23396	Ō	48396
(0. 95000	Ċ	0.06318		0.063	03	0.	06323	0. 06456	0.090	76	0 22730	ō	53638	1	00683
	1.00000	Ċ	0.06818	3	0.068	24	0.	06903	0.07305	0.200	99	0 56326	1	15798	1	98518
ALT =	11n1mum : 20000	AEW/ASW	STOVL	DRAG	Polar	TABLE	NO.	1	3-DIMENSIONAL	(19X 14)	х з)	TABLE L	ENGTH	925	PAGE	4
CL/M	I	0	. 76000		0. 7800	0	ο. ε	30000	0. 82000	0. 8400	00	0. 86000				
9	. 10000	0	. 02125	•	0.0215	8	0.0	2354	0 02820	0 0424	12	0 04804				
Ö	. 15000	0	02161		0. 0219	4	0.0	2393	0.02844	0.042	22	0.06708				
0	20000	0	02222		0. 0225	7	0.0	2459	0 02942	0.0439	22	0.007099				
0	. 25000	0	02311		0. 0234	9	0.0	2563	0 03088	0 0467	24	0.07456				
0	. 30000	0.	02423		0. 0247	Ó	0.0	2692	0.03270	0 0492	17	0.07930				
0	. 35000	0.	02558		0. 0262	4	0.0	2867	0.03563	0.0543	20	0.08701				
0	40000	0.	02718		0. 0280	7	0.0	3083	0.03975	0.0612	24	0.09719				
0	. 45000	0.	02903		0. 0303	2	0. 0	3423	0 04629	0.0717	 73	0 11213				
0.	50000	0 .	03119		0. 0332	4	0.0	3892	0 05655	0.0974	ເວັ	0 13394				
0.	55000	0.	03421		0.0373	7	0.0	4843	0.07303	0.1117	4	0 16686				
0.	60000	0.	03834		0.0459	7	0.0	6791	0. 10439	0.1564		0 22690				
0.	65000	0.	04621		0.0650	6	0.1	0245	0. 15755	0.2315	a	0 32684				
0.	70000	· 0.	06309		0.1040	3	0.1	6799	0. 25548	0 3677	4	0 50705				
0 .	75000	0.	10679		0. 1855	6	0.2	9732	0. 44261	0. 6224	4	0 83969				
0.	80000	0.	20626		0. 3537	9	0. 5	5041	0. 79664	1.0937	0	1.44388				
0.	85000	0.	41917		0. 6871	7	1.0	2893	1. 44496	1. 9364	9	2, 50581				
0.	90000	0.	84383		1. 3135	7	1.8	9334	2. 58365	3, 3857	à	4. 30187				
0.	95000	1.	63866		2. 4319	i .	3. 3	8670	4. 50357	5. 7837	4	7. 22948				
1.	00000	3.	04489		4. 3371	1	5.8	6199	7. 62007	9.6125	5	11.84170				
											-					

MINIMUM AEW/ASW STOVL HIGH SPEED DRAG POLAR, 20000 FT

-

.

.

÷

ч. а.,

$T = 40000 00000$ $EL/M = 0.60000 = 0.62000 = 0.64000 = 0.66000 = 0.66000 = 0.70000 = 0.72000 = 0.7 \\ 0.10000 = 0.02388 = 0.02377 = 0.02347 = 0.02347 = 0.02347 = 0.02337 = 0.023211 = 0.0 \\ 0.02000 = 0.02472 = 0.02412 = 0.02442 = 0.02530 = 0.02531 = 0.02573 = 0.02573 = 0.02573 = 0.02573 = 0.02573 = 0.02573 = 0.02573 = 0.02573 = 0.02374 = 0.03325 = 0.03324 = 0.03424 = 0.03324 = 0.03324 = 0.03324 = 0.03324 = 0.03324 = 0.03324 = 0.03324 = 0.03334 = 0.03332 = 0.04044 = 0.04497 = 0.03330 = 0.04449 = 0.07298 = 0.35000 = 0.0237$	ST Minimum AE	W/ASW STOVL DR	AG Polar TAI	BLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LE	NGTH 925	PAGE 5
CL/H 0,60000 0.62000 0.64000 0.66000 0.70000 0.72000 0.72000 0.7 0.10000 0.02377 0.02376 0.02377 0.02376 0.02377 <th>LT = 40000. 0</th> <th>00000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	LT = 40000. 0	00000							
0. 10000 0. 02238 0. 02377 0. 02367 0. 02357 0. 02347 0. 02337 0. 02337 0. 02337 0. 02341 0. 0237 0. 02402 0. 02483 0. 02472 0. 02462 0. 02452 0. 02442 0. 02432 0. 02427 0. 02 0. 02000 0. 02483 0. 02472 0. 02364 0. 02350 0. 02350 0. 02250 0. 022515 0. 0 0. 02000 0. 02683 0. 02672 0. 02664 0. 02651 0. 02641 0. 02632 0. 02625 0. 02515 0. 0 0. 03000 0. 02683 0. 02672 0. 02664 0. 02651 0. 02641 0. 02623 0. 02676 0. 0 0. 04000 0. 0217 0. 02666 0. 02795 0. 02785 0. 02775 0. 0276 0. 0 0. 40000 0. 0314 0. 02963 0. 02793 0. 02793 0. 02793 0. 02723 0. 02672 0. 02617 0. 0 0. 40000 0. 03154 0. 03344 0. 03132 0. 03132 0. 03114 0. 03305 0. 03277 0. 0 0. 55000 0. 03354 0. 03344 0. 03353 0. 03532 0. 03344 0. 03333 0. 03557 0. 0 0. 55000 0. 03354 0. 03344 0. 03354 0. 03324 0. 03314 0. 03305 0. 03778 0. 0 0. 55000 0. 03442 0. 03374 0. 03460 0. 04467 0. 04469 0. 05178 0. 04781 0. 04781 0. 04781 0. 04782 0. 03528 0. 03542 0. 035178 0. 04783 0. 04572 0. 04780 0. 04866 0. 02012 0. 00 0. 70000 0. 05442 0. 05529 0. 05642 0. 055702 0. 06460 0. 02012 0. 07 0. 70000 0. 05442 0. 05529 0. 05641 0. 05152 0. 05320 0. 05300 0. 06460 0. 03918 0. 03518 0. 03578 0. 04555 0. 47 0. 95000 0. 05542 0. 05529 0. 05641 0. 05621 0. 05173 0. 04866 0. 03012 0. 07 0. 70000 0. 0542 0. 05269 0. 05621 0. 05178 0. 04772 0. 04866 0. 03012 0. 07 0. 95000 0. 05542 0. 05529 0. 05641 0. 05165 0. 05173 0. 04860 0. 05165 0. 32 0. 95000 0. 0542 0. 05269 0. 05621 0. 05170 0. 05309 0. 05413 0. 11 0. 85000 0. 05542 0. 05269 0. 02607 0. 03033 0. 04453 0. 07117 0. 15000 0. 02342 0. 02375 0. 02607 0. 03033 0. 04453 0. 07117 0. 15000 0. 02342 0. 02374 0. 02677 0. 03033 0. 04453 0. 07114 0. 40000 0. 02342 0. 02349 0. 02607 0. 03033 0. 04453 0. 07114 0. 40000 0. 02342 0. 02349 0. 02607 0. 03033 0. 04453 0. 07114 0. 40000 0. 02340 0. 02349 0. 02607 0. 03033 0. 04453 0. 0	CL/M	0. 60000	0. 62000	0.64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74
0. 15900 0. 02423 0. 02412 0. 02401 0. 02391 0. 02391 0. 02392 0. 02342 0. 02427 0. 0 0. 25000 0. 02463 0. 02472 0. 02452 0. 022451 0. 022542 0. 02432 0. 02427 0. 0 0. 25000 0. 02633 0. 02571 0. 02560 0. 02550 0. 02540 0. 02630 0. 02520 0. 02515 0. 0 0. 02000 0. 02633 0. 02277 0. 02660 0. 02795 0. 02795 0. 02775 0. 02766 0. 02760 0. 0 0. 40000 0. 02643 0. 02472 0. 02963 0. 02975 0. 02783 0. 02973 0. 02963 0. 02924 0. 0 0. 5000 0. 02134 0. 03144 0. 03132 0. 03122 0. 03114 0. 03105 0. 03297 0. 0 0. 55000 0. 03156 0. 03574 0. 03553 0. 03354 0. 03344 0. 03350 0. 03297 0. 0 0. 55000 0. 03156 0. 03574 0. 03553 0. 03354 0. 03343 0. 03329 0. 03329 0. 0 0. 55000 0. 04452 0. 04441 0. 04429 0. 04418 0. 044097 0. 04401 0. 04497 0. 0 0. 75000 0. 04452 0. 04441 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 05191 0. 05128 0. 05156 0. 05156 0. 05173 0. 05309 0. 03012 0. 0 0. 05000 0. 05191 0. 05128 0. 05156 0. 05154 0. 05173 0. 05309 0. 04413 0. 10455 0. 2 0. 95000 0. 0542 0. 0542 0. 05416 0. 05156 0. 05173 0. 05309 0. 04413 0. 10555 0. 2 0. 95000 0. 06542 0. 05429 0. 05416 0. 05156 0. 05173 0. 05309 0. 04643 0. 10555 0. 2 0. 95000 0. 0541 0. 05429 0. 05416 0. 05422 0. 05773 0. 05400 0. 02468 0. 10455 0. 2 0. 95000 0. 0542 0. 05429 0. 05416 0. 05429 0. 05173 0. 05309 0. 04413 0. 1 0. 95000 0. 0541 0. 06407 0. 04129 0. 04419 0. 04429 0. 05156 0. 05173 0. 05309 0. 04413 0. 1 0. 95000 0. 0542 0. 02542 0. 02574 0. 02546 0. 02037 0. 04453 0. 07117 0. 05450 0. 23645 0. 12 0. 95000 0. 02412 0. 02277 0. 02546 0. 02037 0. 04453 0. 07114 0. 0555 0. 12 0. 95000 0. 02438 0. 02471 0. 02699 0. 02407 0. 04403 0. 07142 0. 09306 0. 02348 0. 02464 0. 07298 0. 04454 0. 07264 0. 02394 0. 02464 0. 07298 0. 04454 0. 07264 0. 02394 0. 02464 0. 02395 0. 05444 0. 07397 0. 11426 0. 05444 0. 07397 0. 11426 0. 05000 0. 02438 0. 02471 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 02409 0. 03408 0. 094453 0. 07144 0. 05400 0. 03338 0. 03543 0. 04109 0. 05637	0. 10000	0. 02388	0. 02377	0. 02367	0. 02357	0. 02347	0. 02337	0. 02331	0. 02
0. 20000 0. 02483 0. 02472 0. 02462 0. 02452 0. 02442 0. 02442 0. 02427 0. 0 0. 25000 0. 02571 0. 02560 0. 02550 0. 02551 0. 02250 0. 02520 0. 02515 0. 0 0. 35000 0. 02683 0. 02572 0. 02661 0. 02551 0. 02273 0. 022760 0. 02760 0. 02 0. 40000 0. 02774 0. 02963 0. 02795 0. 02795 0. 02795 0. 02775 0. 02776 0. 02776 0. 02760 0. 02170 0. 02 0. 40000 0. 02134 0. 02143 0. 03143 0. 03132 0. 03122 0. 03112 0. 03102 0. 03096 0. 02 0. 55000 0. 03154 0. 03574 0. 03553 0. 03324 0. 03314 0. 03305 0. 03297 0. 02 0. 55000 0. 03154 0. 03157 0. 03346 0. 03325 0. 03353 0. 03354 0. 03353 0. 03297 0. 02 0. 55000 0. 03164 0. 03163 0. 03182 0. 03324 0. 03314 0. 03305 0. 03297 0. 02 0. 55000 0. 04123 0. 04121 0. 04110 0. 04100 0. 04407 0. 04461 0. 04100 0. 0 0. 65000 0. 04452 0. 04440 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 04452 0. 04440 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 04452 0. 04440 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 05191 0. 05178 0. 05156 0. 05154 0. 05173 0. 05370 0. 05308 0. 10455 0. 22 0. 90000 0. 05191 0. 05429 0. 05616 0. 056154 0. 05170 0. 06300 0. 05608 0. 10455 0. 22 0. 90000 0. 05611 0. 06499 0. 06417 0. 064300 0. 05008 0. 10455 0. 22 0. 90000 0. 06511 0. 06499 0. 06417 0. 064300 0. 05058 0. 10455 0. 22 0. 90000 0. 06511 0. 06499 0. 06411 0. 06472 0. 06330 0. 07163 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23048 0. 23049 0. 23049 0. 02507 0. 03033 0. 04453 0. 07113 0. 05451 0. 05294 0. 02504 0. 03033 0. 04453 0. 07114 0. 05451 0. 02548 0. 02395 0. 56419 1. 16090 1. 9 0. 100000 0. 02342 0. 02374 0. 02507 0. 03038 0. 04453 0. 07116 0. 04604 0. 07298 0. 23049 0. 02504 0. 03048 0. 07464 0. 07298 0. 23040 0. 02348 0. 02776 0. 03048 0. 07464 0. 07398 0. 03144 0. 07398 0. 23049 0. 02544 0. 02397 0. 03483 0. 04453 0. 07144 0. 04444 0. 03398 0. 03144 0. 03348 0. 03144 0. 03348 0. 03444 0. 03348 0. 03444 0. 03348 0. 03444 0.	0.15000	0. 02423	0.02412	0. 02401	0. 02391	0. 02381	0. 02372	0. 02366	0, 02
0.25000 0.02571 0.02560 0.02570 0.02540 0.02530 0.02530 0.02520 0.02515 0.02 0.35000 0.02683 0.02672 0.02661 0.02675 0.02775 0.02775 0.02776 0.02766 0.02760 0.02 0.44000 0.02774 0.02806 0.02795 0.02785 0.02775 0.02776 0.02766 0.02760 0.02 0.45000 0.02357 0.02345 0.02342 0.02353 0.02342 0.02312 0.02305 0.03289 0.05 0.55000 0.03356 0.03354 0.03354 0.03353 0.03533 0.03533 0.03527 0.02 0.55000 0.03356 0.03574 0.03553 0.02353 0.02349 0.03578 0.03792 0.02 0.55000 0.0442 0.03831 0.03831 0.0380 0.03369 0.03749 0.03792 0.02 0.55000 0.0442 0.04420 0.04410 0.04429 0.04418 0.04409 0.04081 0.04409 0.0 0.70000 0.04452 0.04440 0.04427 0.04418 0.04407 0.04414 0.04409 0.04 0.75000 0.05171 0.05178 0.05164 0.05516 0.05172 0.06370 0.04770 0.04806 0.05012 0.0 0.85000 0.05191 0.05178 0.05164 0.05516 0.05170 0.05502 0.05502 0.04605 0.02309 0.04413 0.11 0.85000 0.0542 0.05178 0.04773 0.04772 0.06470 0.04414 0.04439 0.04 0.75000 0.05442 0.05178 0.04783 0.06472 0.06370 0.06500 0.23645 0.10655 0.22 0.70000 0.06114 0.06101 0.06096 0.05172 0.06370 0.06500 0.23645 0.23645 0.44 0.75000 0.06407 0.04593 0.06611 0.06742 0.09360 0.23012 0.56419 1.16090 1.96 1.00000 0.07121 0.07125 0.07202 0.7662 0.20395 0.56619 1.16090 1.96 1.00000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07113 0.4000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07114 0.35000 0.02346 0.02469 0.02607 0.03033 0.04453 0.07114 0.35000 0.02346 0.02469 0.02474 0.03153 0.04604 0.07298 0.35000 0.02348 0.02474 0.02568 0.03033 0.04453 0.07114 0.35000 0.02348 0.02474 0.02576 0.03033 0.04453 0.07114 0.35000 0.02348 0.02474 0.02568 0.03033 0.04453 0.07114 0.35000 0.02348 0.02474 0.02568 0.03033 0.04453 0.07148 0.35000 0.02348 0.02474 0.02568 0.03033 0.04453 0.07148 0.35000 0.02348 0.02474 0.02568 0.03033 0.04453 0.07464 0.35000 0.02438 0.02474 0.02568 0.03033 0.04453 0.07148 0.35000 0.02438 0.02474	0. 20000	0. 02483	0. 02472	0. 02462	0. 02452	0. 02442	0. 02432	0. 02427	0. 02
0.30000 0.02683 0.02672 0.02661 0.02753 0.02641 0.02641 0.02642 0.02766 0.02766 0.35000 0.02874 0.02963 0.02753 0.02755 0.02775 0.02776 0.02766 0.03760 0.44000 0.03154 0.03143 0.03132 0.03122 0.03112 0.03102 0.0396 0.02 0.55000 0.03356 0.03574 0.03543 0.03355 0.03324 0.03314 0.03305 0.03297 0.03 0.55000 0.03864 0.03574 0.03520 0.03800 0.03807 0.03789 0.03789 0.03787 0.03 0.65000 0.03184 0.03584 0.03574 0.03820 0.03809 0.03779 0.03789 0.03787 0.03 0.65000 0.04133 0.04121 0.04110 0.04100 0.04067 0.044014 0.04407 0.0 0.75000 0.04452 0.04475 0.04725 0.04783 0.04772 0.04418 0.04407 0.04414 0.04409 0.0 0.75000 0.04152 0.04475 0.04729 0.04418 0.04407 0.04414 0.04409 0.0 0.75000 0.04452 0.04775 0.04783 0.04772 0.04470 0.04414 0.04409 0.0 0.75000 0.05191 0.05178 0.05164 0.05154 0.05152 0.05173 0.05309 0.04413 0.16 0.85000 0.05191 0.05178 0.05164 0.05154 0.05152 0.05170 0.064806 0.05012 0.0 0.85000 0.05191 0.05128 0.05164 0.05154 0.05154 0.05150 0.05100 0.04605 0.22663 0.4 0.80000 0.05191 0.05128 0.05629 0.05164 0.05154 0.05152 0.05102 0.06008 0.22663 0.4 0.95000 0.0542 0.0529 0.05644 0.06154 0.05154 0.05154 0.05170 0.04806 0.22012 0.59118 1.00 1.95000 0.05642 0.0529 0.05648 0.0000 0.82000 0.84000 0.86000 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.96 1.00000 0.02376 0.02409 0.02558 0.02033 0.04453 0.07117 0.15000 0.02376 0.02407 0.02672 0.0353 0.07462 0.20395 0.56619 1.16090 1.96 0.10000 0.02242 0.02373 0.02568 0.02033 0.04453 0.07116 1.00 0.10000 0.02242 0.02373 0.02568 0.02033 0.04453 0.07116 1.00 0.20000 0.02438 0.02471 0.02672 0.03163 0.04453 0.07116 1.00 0.20000 0.02438 0.02471 0.02672 0.03153 0.04454 0.07764 0.33000 0.02775 0.02840 0.02396 0.03493 0.04453 0.07143 1.00 0.30000 0.02342 0.02374 0.02267 0.03031 0.04454 0.07764 1.00314 1.00909 1.426 0.30000 0.02438 0.02471 0.02672 0.03149 0.03141 1.00909 1.426 0.30000 0.02438 0.02471 0.02574 0.03149 0.05149 0.05149 0.05149 1.01426 1.0000 1.02908 0.03991 1.0000 0.02936 0.02399 0.02549 0.02549 0.02549 0.03493 0.05149 0.051	0. 25000	0.02571	0.02560	0. 02550	0.02540	0. 02530	0. 02520	0. 02515	0. 02
0. 35000 0. 02217 0. 02260 0. 02795 0. 02785 0. 02775 0. 02775 0. 02764 0. 02776 0. 027 0. 40000 0. 02154 0. 02963 0. 02795 0. 02942 0. 02973 0. 029723 0. 02972 0. 02102 0. 02096 0. 02 0. 55000 0. 02154 0. 02143 0. 02132 0. 02132 0. 02112 0. 02102 0. 02096 0. 02 0. 55000 0. 02357 0. 02346 0. 02353 0. 02353 0. 02354 0. 02331 0. 02327 0. 02 0. 55000 0. 023842 0. 02357 0. 02363 0. 02350 0. 02379 0. 02779 0. 02769 0. 02779 0. 02769 0. 02779 0. 02769 0. 02789 0. 02779 0. 02769 0. 02789 0. 02779 0. 02769 0. 02789 0. 02779 0. 02769 0. 02789 0. 02410 0. 0. 04100 0. 0. 04000 0. 05191 0. 05178 0. 05156 0. 05157 0. 05309 0. 06411 0. 0409 0. 05164 0. 05512 0. 05309 0. 06413 0. 10 000 0. 05142 0. 05642 0. 05614 0. 05612 0. 06720 0. 05502 0. 06408 0. 10655 0. 22 0. 90000 0. 05144 0. 06610 0. 0609 0. 06762 0. 05300 0. 02950 0. 23645 0. 23645 0. 14 0. 05720 0. 07662 0. 02395 0. 56619 1. 16090 1. 97 1. 00000 0. 07121 0. 07125 0. 07202 0. 07602 0. 09360 0. 084000 0. 86000 0. 100000 0. 02376 0. 02409 0. 02807 0. 03033 0. 04453 0. 07117 0. 05748 0. 02343 0. 02774 0. 02374 0. 02374 0. 02374 0. 02374 0. 02374 0. 02374 0. 02374 0. 02374 0. 03033 0. 04454 0. 07298 0. 23012 0. 02348 0. 02471 0. 022472 0. 03133 1. 0. 04454 0. 07748 0. 03149 0. 04141 0. 02438 0. 02471 0. 02249 0. 02348 0. 02474 0. 03343 0. 03443 0. 03443 0. 07464 0. 07289 0. 03443 0. 03443 0. 07464 0. 07289 0. 03444 0. 07387 0. 11428 0. 03444 0. 07387 0. 11428 0. 03444 0. 07387 0. 11428 0. 03000 0. 02438 0. 04347 0. 03447 0. 03447 0. 03445 0. 07464 0. 07387 0. 11428 0. 03449 0. 03447 0. 03445 0.	0. 30000	0. 02693	0.02572	0. 02661	0. 02651	0. 02641	0. 02632	0. 02626	0.02
C. 40000 0. 02974 0. 02973 0. 02953 0. 02942 0. 02973 0. 02973 0. 02977 0. 02 0. 45000 0. 03154 0. 03143 0. 03335 0. 03322 0. 03112 0. 03102 0. 03060 0. 02999 0. 02 0. 55000 0. 03354 0. 03574 0. 03533 0. 03324 0. 03314 0. 03305 0. 03299 0. 02 0. 55000 0. 03364 0. 03574 0. 03520 0. 03809 0. 03799 0. 03799 0. 03797 0. 0 0. 65000 0. 04133 0. 04121 0. 04110 0. 04100 0. 04069 0. 04081 0. 04100 0. 0 0. 75000 0. 04132 0. 04474 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 05191 0. 05178 0. 05164 0. 05154 0. 05173 0. 05309 0. 06413 0. 10 0. 85000 0. 05191 0. 05178 0. 05164 0. 05154 0. 05173 0. 05309 0. 06413 0. 10 0. 85000 0. 05191 0. 05529 0. 05614 0. 05164 0. 05154 0. 05170 0. 064086 0. 10655 0. 22 0. 97000 0. 06114 0. 06593 0. 06697 0. 06427 0. 064330 0. 09455 0. 23645 0. 42 0. 97000 0. 06514 0. 06597 0. 06696 0. 06127 0. 06330 0. 09455 0. 23645 0. 42 0. 97000 0. 06114 0. 06593 0. 07602 0. 06608 0. 02012 0. 05366 0. 23012 0. 53918 1. 00 1. 00000 0. 07121 0. 07125 0. 07202 0. 07602 0. 20395 0. 56619 1. 16090 1. 96 1. 00000 0. 02376 0. 02407 0. 02807 0. 02078 0. 04453 0. 07117 0. 15000 0. 0242 0. 02373 0. 02607 0. 03078 0. 04503 0. 07163 0. 20000 0. 02376 0. 02409 0. 02607 0. 03078 0. 04503 0. 07163 0. 20000 0. 02348 0. 02471 0. 02572 0. 03013 0. 04453 0. 07163 0. 20000 0. 02348 0. 023774 0. 02407 0. 03078 0. 04503 0. 07164 0. 35000 0. 02242 0. 02373 0. 02607 0. 03078 0. 04503 0. 07164 0. 35000 0. 02242 0. 02373 0. 02607 0. 03078 0. 04503 0. 07164 0. 35000 0. 02238 0. 02474 0. 02776 0. 03078 0. 04503 0. 07164 0. 35000 0. 022348 0. 02376 0. 02407 0. 03078 0. 04503 0. 07164 0. 35000 0. 02238 0. 02494 0. 02307 0. 03078 0. 04503 0. 07164 0. 35000 0. 02438 0. 02471 0. 02677 0. 03082 0. 03714 0. 04645 0. 07566 0. 40000 0. 02936 0. 02497 0. 03082 0. 03776 0. 05439 0. 09931 0. 45000 0. 02438 0. 03543 0. 04197 0. 05439 0. 09514 1. 0. 35000 0. 02442 0. 03957 0. 05662 0. 03776 0. 05639 0. 09931 0. 45000 0. 02442 0. 03957 0. 05662 0. 03769 0. 07560 1. 13978 0. 55000 0. 03464 0. 03543 0.	0. 35000	0. 02817	0. 02806	0. 02795	0. 02785	0. 02775	0.02766	0.02760	0. 02
0. 45000 0. 03154 0. 03143 0. 03132 0. 03122 0. 03112 0. 03102 0. 03076 0. 00 0. 55000 0. 03357 0. 03344 0. 03353 0. 03324 0. 03314 0. 03305 0. 03297 0. 00 0. 55000 0. 03842 0. 03874 0. 03553 0. 03553 0. 03533 0. 03527 0. 00 0. 55000 0. 03842 0. 038374 0. 03553 0. 03523 0. 03533 0. 03527 0. 00 0. 55000 0. 04133 0. 04121 0. 04110 0. 04100 0. 04087 0. 04081 0. 04100 0. 04 0. 70000 0. 04452 0. 04440 0. 04427 0. 04418 0. 04407 0. 044014 0. 04497 0. 04 0. 75000 0. 04452 0. 04440 0. 04427 0. 04418 0. 04407 0. 04404 0. 04497 0. 04 0. 75000 0. 04452 0. 04475 0. 04783 0. 04772 0. 04770 0. 04804 0. 04047 0. 04 0. 80000 0. 05191 0. 05174 0. 05156 0. 05156 0. 05173 0. 05309 0. 06413 0. 11 0. 80000 0. 05414 0. 06407 0. 04607 0. 04608 0. 10555 0. 42 0. 95000 0. 06407 0. 04592 0. 05516 0. 05427 0. 06502 0. 05508 0. 10655 0. 42 0. 95000 0. 06407 0. 04591 0. 04696 0. 06127 0. 06300 0. 02301 0. 02301 0. 05391 1. 06 1. 06000 0. 07121 0. 07125 0. 07202 0. 07202 0. 20395 0. 54419 1. 16090 1. 92 1. 00000 0. 02342 0. 02373 0. 02568 0. 03033 0. 04453 0. 07117 0. 15000 0. 02343 0. 02471 0. 02607 0. 03003 0. 04453 0. 07117 0. 15000 0. 02343 0. 02471 0. 02607 0. 03003 0. 04453 0. 071163 0. 20000 0. 02348 0. 02471 0. 02607 0. 03003 0. 04453 0. 071163 0. 20000 0. 02328 0. 02244 0. 022776 0. 03033 0. 04453 0. 07117 0. 15000 0. 02328 0. 02241 0. 02277 0. 03013 0. 04453 0. 07114 0. 33000 0. 02328 0. 02471 0. 02607 0. 03031 0. 04453 0. 07114 0. 33000 0. 02324 0. 03237 0. 02469 0. 02607 0. 03031 0. 04453 0. 07114 0. 35000 0. 02324 0. 03237 0. 02469 0. 02607 0. 03031 0. 04453 0. 07114 0. 35000 0. 02324 0. 03937 0. 03640 0. 05490 0. 06141 0. 35000 0. 02324 0. 03237 0. 02645 0. 03776 0. 03031 0. 04453 0. 07145 0. 40000 0. 02324 0. 03237 0. 02647 0. 03051 0. 06453 0. 07145 0. 40000 0. 02348 0. 03440 0. 04189 0. 06339 0. 09131 0. 45000 0. 03338 0. 03542 0. 03040 0. 04418 0. 07387 0. 11426 0. 35000 0. 03338 0. 03542 0. 03040 0. 04457 0. 05452 0. 08973 0. 55000 0. 03348 0. 03542 0. 03044 0. 04697 0. 05639 0. 05930 0. 40000	J. 40000	0. 02974	0. 02963	0. 02953	0. 02942	0. 02933	0, 02923	0. 02917	0. 02
0. 50000 0. 03357 0. 03344 0. 03335 0. 03351 0. 03343 0. 03351 0. 03357 0. 00 0. 55000 0. 03364 0. 03364 0. 03553 0. 03553 0. 03353 0. 03537 0. 00 0. 63000 0. 03342 0. 03831 0. 03820 0. 03809 0. 03799 0. 03789 0. 03792 0. 00 0. 63000 0. 04432 0. 04421 0. 04410 0. 04400 0. 044069 0. 044081 0. 04410 0. 0 0. 75000 0. 04432 0. 04440 0. 04429 0. 04418 0. 04407 0. 04414 0. 04499 0. 0 0. 75000 0. 05191 0. 05178 0. 05156 0. 05156 0. 05173 0. 05309 0. 06481 0. 11 0. 85000 0. 05142 0. 05629 0. 05629 0. 05623 0. 05702 0. 06068 0. 10655 0. 22 0. 97000 0. 06607 0. 06593 0. 06592 0. 05623 0. 05702 0. 06068 0. 10655 0. 22 0. 97000 0. 06607 0. 06593 0. 06592 0. 05623 0. 05702 0. 06068 0. 10655 0. 22 0. 97000 0. 06607 0. 05593 0. 06611 0. 06096 0. 06127 0. 06530 0. 09650 0. 23045 0. 44 0. 95000 0. 05614 0. 06592 0. 07202 0. 07602 0. 20395 0. 56419 1. 16090 1. 96 Hinimum AEW/ASH STOVL DRAG Polar TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 925 PAGE 6 Hinimum AEW/ASH STOVL DRAG Polar TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 925 PAGE 6 Hinimum AEW/ASH STOVL DRAG Polar TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 925 PAGE 6 Hinimum AEW/ASH STOVL DRAG Polar TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 925 PAGE 6 0. 10000 0. 02342 0. 02373 0. 02545 0. 02033 0. 04453 0. 07117 0. 15000 0. 02342 0. 02373 0. 02546 0. 02303 0. 04453 0. 07117 0. 15000 0. 02342 0. 02374 0. 02607 0. 03033 0. 04453 0. 071163 0. 20000 0. 02348 0. 02471 0. 02672 0. 03051 0. 046040 0. 07298 0. 23000 0. 02348 0. 02471 0. 02672 0. 03051 0. 04653 0. 071163 0. 30000 0. 02324 0. 02364 0. 02776 0. 03031 0. 04453 0. 075140 0. 30000 0. 02342 0. 02374 0. 02697 0. 03048 0. 03149 0. 08141 0. 33000 0. 02374 0. 02649 0. 03028 0. 03714 0. 06404 0. 07298 0. 40000 0. 06974 0. 03028 0. 03748 0. 04169 0. 05639 0. 09931 0. 45000 0. 03482 0. 03957 0. 03648 0. 04169 0. 05639 0. 05957 0. 13598 0. 55000 0. 03484 0. 04732 0. 10469 0. 05671 0. 05639 0. 05951 0. 55000 0. 03642 0. 03957 0. 03646 0. 03645 0. 05639 0. 05930 0. 5	0.45000	0. 03154	0. 03143	0, 03132	0.03122	0.03112	0,03102	0. 03096	0, 03
0. 55000 0. 03586 0. 03574 0. 03553 0. 03533 0. 03523 0. 03523 0. 03527 0. 00 0. 65000 0. 0342 0. 03831 0. 04121 0. 04110 0. 04100 0. 04089 0. 04089 0. 04799 0. 03789 0. 03789 0. 03789 0. 03789 0. 04150 0. 70000 0. 04132 0. 04421 0. 04110 0. 04100 0. 04089 0. 04081 0. 04410 0. 040 0. 70000 0. 04452 0. 04440 0. 04427 0. 04418 0. 04467 0. 04414 0. 04499 0. 04 0. 75000 0. 04452 0. 04775 0. 04783 0. 04772 0. 04770 0. 04804 0. 03012 0. 00 0. 85000 0. 05191 0. 05174 0. 05156 0. 05156 0. 05173 0. 05309 0. 06413 0. 11 0. 85000 0. 05422 0. 05542 0. 05516 0. 05452 0. 055702 0. 05088 0. 10655 0. 42 0. 95000 0. 06647 0. 06593 0. 06611 0. 06076 0. 06127 0. 06320 0. 07450 0. 23065 0. 42 0. 95000 0. 06647 0. 06593 0. 06611 0. 067422 0. 07360 0. 23012 0. 23918 1. 00 1. 00000 0. 07121 0. 07125 0. 07202 0. 07262 0. 20395 0. 56419 1. 16090 1. 96 1. 00000 0. 02342 0. 02373 0. 02667 0. 03033 0. 04453 0. 07117 0. 15000 0. 02348 0. 02471 0. 02607 0. 03003 0. 04453 0. 07117 0. 15000 0. 02348 0. 02471 0. 02672 0. 03033 0. 04453 0. 071163 0. 20000 0. 02328 0. 02471 0. 02667 0. 03003 0. 04453 0. 071163 0. 20000 0. 02328 0. 02471 0. 02672 0. 03033 0. 04453 0. 07116 0. 20000 0. 02328 0. 02474 0. 02677 0. 03031 0. 04453 0. 07117 0. 15000 0. 02328 0. 02471 0. 02672 0. 03031 0. 04453 0. 071163 0. 30000 0. 02328 0. 02471 0. 02672 0. 03031 0. 04453 0. 071163 0. 30000 0. 02328 0. 02474 0. 03082 0. 03776 0. 03031 0. 04454 0. 07269 0. 23000 0. 02328 0. 02274 0. 03062 0. 03776 0. 03031 0. 04454 0. 07268 0. 33000 0. 02329 0. 02269 0. 02669 0. 03078 0. 04604 0. 07298 0. 40000 0. 02324 0. 03028 0. 03776 0. 03031 0. 04453 0. 07117 0. 15000 0. 02324 0. 03247 0. 03640 0. 0484 0. 07387 0. 11428 0. 33000 0. 02324 0. 03254 0. 03052 0. 03776 0. 03031 0. 04453 0. 07143 0. 45030 0. 03122 0. 03244 0. 03052 0. 03776 0. 03039 0. 04159 0. 06339 0. 09311 0. 45030 0. 03122 0. 03244 0. 03057 0. 03642 0. 03957 0. 113991 0. 45030 0. 03142 0. 03957 0. 05652 0. 07520 0. 11391 0. 16902 0. 65000 0. 04848 0. 06732 0. 10469 0. 05637 0. 03930 0. 054	0. 50000	0. 03357	0.03346	0.03335	0. 03324	0.03314	0.03305	0.03299	0. 03
0.3000 0.0382 0.03831 0.03820 0.03801 0.03807 0.04100 0.04089 0.04088 0.04410 0.00 0.4500 0.04132 0.04421 0.0410 0.0410 0.04089 0.04088 0.04414 0.04499 0.0 0.75000 0.041807 0.04778 0.04783 0.04772 0.04770 0.04816 0.05012 0.0 0.80000 0.05141 0.05178 0.05166 0.05156 0.05173 0.05309 0.06413 0.11 0.80000 0.0542 0.02629 0.05616 0.05623 0.05722 0.06309 0.06413 0.11 0.80000 0.0542 0.02629 0.05616 0.05623 0.05722 0.06309 0.06413 0.11 0.9000 0.066114 0.06101 0.06096 0.06127 0.06330 0.09550 0.23665 0.24 0.90000 0.06614 0.06593 0.06611 0.06762 0.02360 0.29360 0.29050 0.23665 0.44 0.95000 0.066407 0.06593 0.06611 0.06762 0.02360 0.23012 0.53918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.20360 0.23012 0.53918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.9 L/M 0.76000 0.78000 0.80000 0.82000 0.84000 0.86000 0.10000 0.02376 0.02439 0.02568 0.02033 0.04453 0.07117 0.15000 0.02376 0.02471 0.02572 0.02153 0.04543 0.07115 0.20000 0.02376 0.02439 0.02564 0.02776 0.03033 0.04453 0.07115 0.20000 0.02376 0.02439 0.02568 0.02037 0.04503 0.07163 0.20000 0.02376 0.02572 0.02706 0.03153 0.04645 0.07666 0.30000 0.02324 0.02374 0.02672 0.03153 0.04645 0.07666 0.30000 0.02342 0.02574 0.02706 0.03483 0.07117 0.5500 0.02376 0.02499 0.02647 0.02378 0.03149 0.08141 0.35000 0.02374 0.02572 0.03789 0.04189 0.05149 0.08141 0.35000 0.02324 0.02574 0.03078 0.03149 0.05144 0.07789 0.4500 0.02324 0.02574 0.02706 0.03483 0.07116 0.3000 0.02324 0.02574 0.02706 0.03483 0.07145 0.35000 0.02338 0.03543 0.02498 0.04189 0.06337 0.04545 0.07646 0.3000 0.02342 0.03298 0.04189 0.05437 0.03142 0.03144 0.07387 0.4500 0.02338 0.03543 0.03462 0.03776 0.03483 0.05149 0.05144 0.07387 0.4500 0.02344 0.03957 0.05622 0.07576 0.3360 0.07464 0.55000 0.03482 0.03249 0.03640 0.04844 0.07387 0.113298 0.55000 0.03482 0.03540 0.04649 0.05774 0.3381 0.32905 0.45000 0.04848 0.06732 0.10467 0.15577 0.3381 0.32905 0.45000 0.04849 0.06732 0.10467 0.15577 0.3381 0.32905 0.75000 0.04849 0.06732 0.10465 0.15577 0.3381 0.329	0.55000	0. 03586	0.03574	0.03563	0.03553	0. 03543	0.03533	0. 03527	0,00
0. 63500 0. 04152 0. 04452 0. 04472 0. 04418 0. 04407 0. 04408 0. 04499 0. 04 0. 75000 0. 04452 0. 04479 0. 04479 0. 04418 0. 04407 0. 04406 0. 05012 0. 07 0. 75000 0. 04152 0. 04775 0. 04772 0. 04772 0. 04770 0. 04806 0. 05012 0. 07 0. 80000 0. 05191 0. 05178 0. 05164 0. 05154 0. 05173 0. 05702 0. 06088 0. 10555 0. 12 0. 97000 0. 0614 0. 06501 0. 06696 0. 06127 0. 06320 0. 09450 0. 23665 0. 4 0. 95000 0. 06607 0. 06573 0. 06641 0. 06742 0. 09360 0. 23012 0. 53918 1. 40 0. 97000 0. 06607 0. 06553 0. 06641 0. 06742 0. 09360 0. 23012 0. 53918 1. 40 1. 00000 0. 07121 0. 07125 0. 07202 0. 07602 0. 20395 0. 56619 1. 16090 1. 96 1. 00000 0. 02376 0. 02373 0. 02568 0. 03033 0. 04453 0. 07117 0. 15000 0. 02376 0. 02438 0. 02276 0. 03033 0. 04453 0. 07117 0. 15000 0. 02376 0. 02438 0. 02276 0. 03033 0. 04453 0. 071163 0. 23000 0. 02376 0. 02438 0. 02277 0. 02301 0. 04453 0. 07117 0. 15000 0. 02326 0. 02568 0. 03033 0. 04453 0. 07116 0. 23000 0. 02376 0. 02409 0. 02607 0. 03031 0. 04453 0. 07116 0. 23000 0. 02376 0. 02409 0. 02607 0. 03031 0. 04453 0. 07116 0. 23000 0. 022326 0. 02568 0. 02906 0. 05464 0. 07298 0. 23500 0. 022326 0. 02568 0. 02906 0. 05464 0. 07298 0. 23500 0. 022326 0. 02564 0. 02776 0. 03031 0. 04645 0. 07666 0. 30000 0. 02438 0. 022471 0. 02672 0. 03153 0. 04604 0. 07298 0. 23500 0. 022326 0. 02544 0. 02776 0. 03031 0. 04645 0. 07566 0. 33000 0. 022326 0. 03543 0. 02776 0. 03021 0. 04845 0. 07566 0. 33000 0. 022326 0. 03543 0. 02408 0. 02908 0. 05149 0. 08141 0. 33000 0. 02936 0. 03937 0. 04644 0. 07397 0. 11426 0. 40000 0. 002936 0. 03938 0. 02776 0. 03039 0. 09451 0. 07566 0. 33000 0. 02938 0. 03543 0. 04109 0. 05871 0. 06557 0. 13598 0. 55000 0. 03328 0. 03543 0. 04109 0. 05871 0. 06557 0. 13598 0. 55000 0. 03328 0. 03543 0. 04109 0. 05871 0. 03592 0. 11391 0. 45000 0. 03048 0. 04732 0. 10469 0. 15378 0. 23381 0. 32905 0. 55000 0. 03484 0. 06732 0. 10469 0. 15378 0. 23381 0. 32905 0. 70000 0. 05409 0. 10633 0. 17028 0. 25776 0. 23381 0. 32905 0. 73000 0. 05409 0. 10532 0. 104697 1. 103145 1. 44746	0. 50000	0.03842	0.03831	0.03820	0.03809	0.03799	0.03789	0. 03792	0, 03
0.70000 0.04432 0.04430 0.04429 0.04427 0.04477 0.04414 0.04499 0.0 0.75000 0.04907 0.04795 0.04783 0.04772 0.04707 0.04906 0.05012 0.0 0.8000 0.05191 0.05178 0.05146 0.05153 0.05173 0.05309 0.06413 0.11 0.85000 0.05142 0.05629 0.05616 0.05127 0.06330 0.07650 0.23645 0.2 0.70000 0.06114 0.06101 0.06076 0.06127 0.06330 0.07650 0.23645 0.41 0.75000 0.06414 0.06101 0.06076 0.06127 0.06330 0.07650 0.23645 0.41 0.75000 0.06417 0.06593 0.06611 0.06742 0.09360 0.23012 0.53918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.23395 0.56619 1.16090 1.99 1.00000 0.02376 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02373 0.02568 0.03033 0.04453 0.07163 0.25000 0.02374 0.02374 0.02572 0.03153 0.04645 0.07163 0.25000 0.02325 0.02471 0.02572 0.03153 0.04645 0.07163 0.25000 0.02326 0.02247 0.02576 0.03078 0.04503 0.07163 0.25000 0.02328 0.02247 0.02277 0.03153 0.04644 0.07298 0.25000 0.02328 0.02247 0.02376 0.03078 0.04532 0.07163 0.25000 0.02328 0.02241 0.022776 0.03078 0.04503 0.07163 0.20000 0.02328 0.02241 0.022776 0.03078 0.04503 0.07163 0.25000 0.02328 0.02249 0.02269 0.02405 0.03483 0.07145 0.35000 0.02438 0.02471 0.02672 0.03153 0.04644 0.07298 0.25000 0.02328 0.02249 0.02906 0.03978 0.04532 0.07163 0.25000 0.02328 0.02249 0.02906 0.03483 0.05149 0.08141 0.35000 0.02438 0.02471 0.02976 0.03483 0.05149 0.08141 0.35000 0.02342 0.02323 0.02998 0.04189 0.05349 0.07464 0.30000 0.02438 0.02441 0.02906 0.03483 0.05149 0.08141 0.35000 0.02439 0.02485 0.02906 0.03483 0.05149 0.08141 0.35000 0.02430 0.03928 0.03471 0.08957 0.11598 0.55000 0.03388 0.03443 0.04199 0.05871 0.08957 0.11598 0.55000 0.03388 0.03441 0.05871 0.08957 0.11598 0.55000 0.03488 0.04819 0.07128 0.25776 0.23381 0.32905 0.44090 0.08448 0.06732 0.10459 0.15878 0.23381 0.32905 0.57000 0.08449 0.06532 0.10469 0.15978 0.13598 0.55000 0.03484 0.046732 0.10459 0.15878 0.23381 0.32905 0.57000 0.04448 0.06572 0.29767 0.44494 0.62896 0.44450 0.70000 0.08449 0.05732 0.10459 0.15977 0.13598 0.55000 0.044450 0.10532 0.10469 0.15977 0.13645 0.75000 0.044450 0.104	0. 65000	0.04133	0.04121	0.04110	0 04100	0.04089	0.04081	0.04100	0.04
0.75000 0.04807 0.04795 0.04785 0.04785 0.04787 0.04806 0.05012 0.0 0.80000 0.05191 0.05178 0.05166 0.05175 0.04970 0.04806 0.05012 0.0 0.80000 0.0542 0.05642 0.05647 0.0516 0.0523 0.05702 0.06088 0.10655 0.22 0.70000 0.06607 0.06593 0.06611 0.06742 0.06330 0.09650 0.23665 0.4 0.95000 0.06607 0.06593 0.06611 0.06742 0.09360 0.23012 0.33918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.96 Minimum AEW/ASW STOVL DRAG Polar TABLE ND. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 923 PAGE 6 2 = 40000.00000 L/M 0.76000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02342 0.02373 0.02607 0.03078 0.04503 0.07163 0.23000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.23000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.25000 0.02326 0.02374 0.022672 0.0313 0.04453 0.07144 0.35000 0.02376 0.02268 0.03021 0.0453 0.07164 0.35000 0.02376 0.02485 0.02776 0.0301 0.04453 0.07164 0.35000 0.02376 0.02268 0.03021 0.04453 0.07164 0.35000 0.02376 0.02268 0.03021 0.04453 0.07164 0.35000 0.02378 0.02268 0.03021 0.04453 0.07164 0.35000 0.02473 0.02485 0.02776 0.0301 0.04453 0.07164 0.35000 0.02374 0.02268 0.02776 0.03021 0.04453 0.07164 0.35000 0.02538 0.02776 0.03021 0.04539 0.09912 0.4000 0.02975 0.02868 0.02906 0.03978 0.04804 0.07298 0.4000 0.02975 0.02868 0.02906 0.03978 0.04804 0.07289 0.4000 0.02975 0.02868 0.02906 0.03976 0.13519 0.4400 0.05970 0.1328 0.03029 0.03249 0.03640 0.03978 0.13519 0.44000 0.02975 0.13598 0.5500 0.03248 0.03957 0.13598 0.5500 0.03543 0.0419 0.05971 0.13978 0.5500 0.03542 0.03957 0.13598 0.5500 0.03642 0.03957 0.13598 0.5500 0.03642 0.03957 0.13598 0.5500 0.03642 0.03957 0.0562 0.07520 0.11391 0.16902 0.44000 0.04848 0.06732 0.10459 0.15891 0.22908 0.55000 0.04848 0.06732 0.10459 0.15897 0.13598 0.55000 0.04849 0.06732 0.10459 0.15897 0.13598 0.55000 0.04849 0.06732 0.10459 0.23784 0.23790 0.55000 0.04849 0.05732 0.10459 0.15897 0.2381 0.32905 0.57000 0.64449 0.16473 0.29767 0.44494 0.62496 0.44450 0.50000 0.84497 0.35427 0.3	0. 70000	0 04452	0 04440	0 04429	0 04418	0 04407	0 04414	0.04499	0 04
0.80000 0.05191 0.05178 0.05145 0.05157 0.05173 0.05309 0.04413 0.11 0.85000 0.05442 0.05429 0.05445 0.05152 0.05702 0.06088 0.10655 0.22 0.70000 0.06114 0.06101 0.06096 0.06127 0.06330 0.09650 0.23645 0.44 0.95000 0.06407 0.06593 0.06411 0.06742 0.09360 0.23012 0.53918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56419 1.16090 1.96 Minimum AEW/ASW STOVL DRAG Polar TABLE NO. 1 D-DIMENSIONAL (19X 14X D) TABLE LENGTH. 925 PAGE 6 2 = 40000.0000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.20000 0.02326 0.02471 0.02568 0.03039 0.04453 0.07117 0.15000 0.02326 0.02564 0.02776 0.03078 0.04503 0.07164 0.25000 0.02326 0.02564 0.02776 0.03301 0.04845 0.07666 0.25000 0.02326 0.02564 0.02776 0.03301 0.04845 0.07666 0.3000 0.02326 0.02564 0.02776 0.03301 0.04845 0.07666 0.3000 0.02326 0.02564 0.02776 0.03301 0.04845 0.07666 0.3000 0.02735 0.02669 0.03267 0.03301 0.04845 0.07666 0.3000 0.02326 0.02564 0.02776 0.03301 0.04845 0.07666 0.3000 0.02775 0.02669 0.03260 0.03776 0.03519 0.08141 0.35000 0.02736 0.02669 0.03298 0.04189 0.06339 0.09931 0.4000 0.02338 0.03543 0.02776 0.03627 0.03776 0.13598 0.55000 0.03328 0.03543 0.04109 0.06337 0.11426 0.4000 0.02338 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.03328 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.03328 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.0338 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.03428 0.0419 0.05627 0.3700 0.15998 0.55000 0.03428 0.0419 0.05627 0.03208 0.01199 0.16902 0.65000 0.04848 0.06732 0.10469 0.15891 0.22905 0.7000 0.04848 0.06732 0.70528 0.27776 0.3301 0.50930 0.7000 0.04848 0.06732 0.70528 0.27776 0.3301 0.50930 0.7000 0.04849 0.06732 0.70449 0.15978 0.23381 0.32905 0.7000 0.04849 0.06732 0.70494 1.19659 0.15891 0.22905 0.7000 0.04849 0.06732 0.7729 0.47494 1.92998 2.50829 0.7000 0.04849 0.06732 0.77494 1.19679 0.15891 0.32905 0.7000 0.04849 0.06732 0.77494 4.1973999 2.50829 0.7000 0.048449 0.06732 0.77494 4.199399 4.250	0.75000	0.04807	0.04795	0 04783	0 04772	0 04770	0 04806	0.05012	0.04
0.85000 0.0542 0.0542 0.0542 0.0542 0.0546 0.0550 0.05702 0.04088 0.10455 0.22 0.70000 0.04114 0.04101 0.04076 0.04127 0.04330 0.09455 0.23045 0.44 0.70000 0.04607 0.04573 0.04411 0.04742 0.07340 0.23012 0.53918 1.0 0.07000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56419 1.14090 1.9 0.0000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56419 1.14090 1.9 0.10000 0.02342 0.02373 0.02548 0.03033 0.04453 0.07117 0.15000 0.02342 0.02373 0.02548 0.03033 0.04453 0.07117 0.15000 0.02342 0.02374 0.02672 0.03153 0.04502 0.07453 0.20000 0.02348 0.02409 0.02607 0.03078 0.04503 0.07143 0.3000 0.02324 0.02544 0.02776 0.03018 0.04512 0.07298 0.35000 0.02524 0.02544 0.02776 0.03010 0.04845 0.07464 0.3000 0.02326 0.02544 0.02776 0.03010 0.04845 0.07464 0.3000 0.02328 0.02544 0.02776 0.03019 0.04183 0.05141 0.35000 0.02396 0.02897 0.03082 0.03776 0.03522 0.08912 0.45000 0.02396 0.03023 0.03483 0.05149 0.08141 0.35000 0.02396 0.03023 0.03483 0.05149 0.08141 0.35000 0.02396 0.03023 0.03298 0.04189 0.04397 0.11426 0.40000 0.02936 0.03023 0.03298 0.04189 0.04339 0.09931 0.45000 0.03338 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.03348 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.04848 0.06732 0.10449 0.05871 0.08957 0.13598 0.55000 0.04848 0.06732 0.10449 0.05627 0.13998 0.23905 0.70000 0.04848 0.06732 0.10449 0.05974 0.23905 0.70000 0.04848 0.06732 0.10449 0.05871 0.08957 0.13598 0.55000 0.04848 0.06732 0.10449 0.05974 0.23905 0.70000 0.04848 0.06732 0.10449 0.05974 0.23905 0.70000 0.04848 0.06732 0.10449 0.05974 0.23905 0.70000 0.04848 0.06732 0.10449 0.55976 0.23381 0.32905 0.70000 0.04848 0.06732 0.10449 0.55976 0.23381 0.32905 0.70000 0.04849 0.06593 0.19414 0.97012 0.10659 0.113918 0.25905 0.70000 0.04849 0.06732 0.17028 0.25774 0.37001 0.50930 0.70000 0.04849 0.06497 0.35621 0.55620 0.7500 0.113918 0.25905 0.70000 0.04849 0.06590 0.4417 0.44590 0.4477 0.9	0. 80000	0.05191	0.05178	0.05166	0.05156	0.05173	0.05309	0.06413	0.11
0.70000 0.02432 0.0254 0.0256 0.0257 0.02530 0.07455 0.23245 0.44 0.75000 0.06607 0.06573 0.06611 0.06742 0.07360 0.23012 0.53918 1.00 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.96 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.96 1.00000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56619 1.16090 1.96 1.00000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02409 0.02607 0.03078 0.04503 0.071163 0.20000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.20000 0.02236 0.02544 0.02776 0.03031 0.04453 0.07116 0.15000 0.02236 0.02544 0.02776 0.03031 0.04845 0.07268 0.25000 0.02236 0.02544 0.02776 0.03301 0.04845 0.07268 0.35000 0.02275 0.02849 0.02697 0.03078 0.05149 0.08141 0.35000 0.02376 0.02849 0.02697 0.03031 0.04845 0.07464 0.30000 0.02324 0.02234 0.02776 0.03301 0.04845 0.07464 0.3000 0.02376 0.02849 0.02998 0.048189 0.05149 0.08912 0.45000 0.02324 0.03234 0.02249 0.03640 0.04843 0.05149 0.08914 0.35000 0.02338 0.03543 0.02249 0.048189 0.06339 0.07464 0.55000 0.02338 0.03543 0.04109 0.05871 0.06957 0.13598 0.55000 0.03328 0.03543 0.04109 0.05871 0.06957 0.13598 0.55000 0.03328 0.03543 0.04109 0.05871 0.08957 0.13598 0.55000 0.04848 0.06732 0.10449 0.15978 0.23381 0.22908 0.45000 0.04848 0.06732 0.10449 0.15978 0.23381 0.32905 0.7000 0.8449 0.06732 0.10449 0.15978 0.23381 0.32905 0.7000 0.8449 0.06732 0.70904 1.09609 1.44426 0.80000 0.20669 0.35521 0.55282 0.79904 1.09609 1.44426 0.80000 0.20669 0.35521 0.55282 0.79904 1.09609 1.44450 0.80000 0.20669 0.35621 0.55282 0.79904 1.09609 1.44450 0.80000 0.04648 0.66732 0.70520 0.79904 1.09609 1.44450 0.80000 0.04649 0.10633 0.	0.85000	0.05642	0 05629	0.05616	0.05623	0.05702	0 04088	0. 10655	0.2:
0.95000 0.02407 0.02593 0.02407 0.07121 0.07125 0.07202 0.07602 0.07602 0.07305 0.07305 0.07202 0.07602 0.07305 0.07205 0.07407 0.09360 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.23012 0.2409 0.02375 0.02409 0.02407 0.02568 0.03033 0.04453 0.07143 0.07143 0.07143 0.02471 0.02572 0.03153 0.04604 0.07298 0.04604 0.07298 0.04604 0.02278 0.02409 0.02438 0.02438 0.02438 0.02454 0.02277 0.02568 0.03013 0.04453 0.07143 0.07143 0.07143 0.02478 0.02471 0.02477 0.02301 0.04604 0.07298 0.04604 0.07298 0.04604 0.07298 0.04604 0.07288 0.04604 0.07288 0.04604 0.07288 0.04604 0.07288 0.04604 0.07288 0.04604 0.07288 0.04604 0.07288 0.04604 0.02275 0.02453 0.02458 0.02409 0.02458 0.02459 0.02458 0.02468 0.02476 0.03481 0.04844 0.07387 0.11426 0.09301 0.04844 0.07387 0.11426 0.0000 0.02312 0.02497 0.02468 0.02408 0.04844 0.07387 0.11426 0.09931 0.04844 0.07387 0.11426 0.09931 0.04844 0.07387 0.11426 0.0000 0.02429 0.02468 0.02409 0.02400 0.02409 0.0240	0 90000	0.06114	0.06101	0.06096	0.06127	0.06330	0 09650	0.23665	0 46
1.0000 0.07121 0.07125 0.07202 0.07602 0.20395 0.56419 1.16090 1.96 Minimum AEW/ASW STOVL DRAG Polar TABLE ND. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 925 PAGE 6 ! = 40000.0000 . . 0.75600 0.80000 0.82000 0.84000 0.86000 0.10000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.10000 0.02342 0.02373 0.02568 0.03033 0.04453 0.071163 0.20000 0.02342 0.02373 0.02568 0.03033 0.04453 0.071163 0.20000 0.02342 0.02373 0.02567 0.03031 0.04453 0.071163 0.20000 0.02342 0.02247 0.02467 0.03031 0.04453 0.071163 0.20000 0.02438 0.0276 0.03078 0.04604 0.07298 0.30000 0.02439 0.02467 0.03082 0.03776 0.04184 0.07284 0.30000 0.02775 0.02840 0.03483 0.05149 0.08141 0.35971 0.05	0 95000	0.06607	0 06593	0.06611	0 04742	0.09360	0 23012	0 53918	1 00
Hinimum AEH/ASW STOVL DRAG Polar TABLE NO. 1 D-DIMENSIONAL (19X 14X 3) TABLE LENGTH. 923 PAGE 6	1 00000	0.07121	0.07125	0.00011	0.00/42	0.20295	0 54419	1 14090	1 99
= 40000 L/M 0.76000 0.78000 0.80000 0.82000 0.84000 0.86000 0.10000 0.02372 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.20000 0.02438 0.02471 0.02672 0.03301 0.04845 0.07298 0.25000 0.02526 0.02564 0.02776 0.03301 0.04845 0.07466 0.30000 0.02467 0.02682 0.03776 0.05422 0.08141 0.35000 0.02775 0.02865 0.02796 0.03483 0.05147 0.08141 0.35000 0.02736 0.03023 0.03298 0.04189 0.06339 0.09931 0.45000 0.03338 0.03443 0.04189 0.06337 0.14726 0.55000 0.03338 0.03442 0.07012 0.1391 0.14702 0.55000 0.04848 0.06732 0.10469 0.15978 0.23381 0.32905 0.70000 0.06540 0.16732 <t< th=""><th>Minimum AEV</th><th>VASW STOVL DRA</th><th>G Polar TABI</th><th>_E NO. 1</th><th>3-DIMENSIONAL</th><th>(17X 14X 3)</th><th>TABLE LEN</th><th>GTH. 925</th><th>PAGE 6</th></t<>	Minimum AEV	VASW STOVL DRA	G Polar TABI	_E NO. 1	3-DIMENSIONAL	(17X 14X 3)	TABLE LEN	GTH. 925	PAGE 6
0.76000 0.78000 0.80000 0.82000 0.84000 0.86000 0.10000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02409 0.02607 0.03078 0.04453 0.071163 0.20000 0.02438 0.02471 0.02672 0.03153 0.04604 0.07298 0.25000 0.02526 0.02564 0.02776 0.03301 0.04845 0.07466 0.30000 0.02439 0.2685 0.02982 0.03776 0.05452 0.08141 0.35000 0.02775 0.02840 0.03082 0.03776 0.14252 0.08912 0.40000 0.02736 0.03023 0.03298 0.04189 0.06339 0.09931 0.45000 0.03338 0.3543 0.4109 0.5871 0.08957 0.13598 0.55000 0.03422 0.03957 0.05062 0.07520 0.11391 0.16902 0.40000 0.04458 0.06732 0.10467 0.15978 <th>T = 40000.00</th> <th>0000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	T = 40000.00	0000							
0.10000 0.02342 0.02373 0.02568 0.03033 0.04453 0.07117 0.15000 0.02376 0.02409 0.02607 0.03078 0.04503 0.07163 0.20000 0.02438 0.02471 0.02672 0.03153 0.04604 0.07298 0.25000 0.02526 0.02564 0.02776 0.03301 0.04845 0.07666 0.30000 0.02537 0.02685 0.02766 0.03483 0.05149 0.08141 0.35000 0.02775 0.02840 0.03082 0.03776 0.05652 0.08912 0.40000 0.02936 0.0323 0.02989 0.04189 0.06339 0.09931 0.45000 0.03338 0.03543 0.04199 0.06377 0.13598 0.55000 0.03484 0.07387 0.1426 0.3957 0.13598 0.55000 0.03484 0.07520 0.11391 0.16902 0.65000 0.04848 0.06732 0.10659 0.13881 0.2905 0.70000 0.04540 0.10633 0.17028 0.25776 0.37001 0.50930	L/M	0. 76000	0. 78000	0.80000	0. 82000	0. 84000	0. 86000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 10000	0. 02342	0. 02373	0. 02568	0. 03033	0. 04453	0.07117		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15000	0. 02376	0.02409	0.02607	0.03078	0.04503	0.07163		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 20000	0. 02438	Ū. 02471	0.02672	0. 03153	0. 04604	0.07298		
0. 30000 0. 02639 0. 02685 0. 02906 0. 03483 0. 05149 0. 08141 0. 35000 0. 02775 0. 02840 0. 03082 0. 03776 0. 05652 0. 08912 0. 40000 0. 02936 0. 03023 0. 03082 0. 04189 0. 06339 0. 09931 0. 45000 0. 03122 0. 03249 0. 02640 0. 04844 0. 07387 0. 11426 0. 50000 0. 03338 0. 03543 0. 04109 0. 05871 0. 08957 0. 13598 0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16702 0. 60000 0. 04058 0. 04819 0. 07012 0. 10659 0. 15881 0. 22908 0. 70000 0. 04540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 70000 0. 04540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 -0. 10716 0. 18772 0. 29767 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35621 0. 55282 0. 79904 1. 09609	0. 25000	0. 02526	0. 02564	0. 02776	0.03301	0. 04845	0.07666		
0. 35000 0. 02775 0. 02840 0. 03082 0. 03776 0. 05652 0. 08912 0. 40000 0. 02936 0. 03023 0. 03298 0. 04189 0. 06339 0. 09931 0. 45000 0. 03122 0. 03249 0. 03640 0. 04844 0. 07387 0. 11426 0. 50000 0. 03338 0. 03543 0. 04109 0. 05871 0. 08957 0. 13598 0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16702 0. 60000 0. 04058 0. 04819 0. 07012 0. 10659 0. 15881 0. 22908 0. 65000 0. 04848 0. 06732 0. 104467 0. 15978 0. 23381 0. 32905 0. 75000 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29767 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35521 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829	0. 30000	0. 02639	0. 02685	0. 02906	0. 03483	0.05149	0.08141		
0. 40000 0. 02936 0. 03023 0. 03298 0. 04189 0. 06339 0. 09931 0. 45000 0. 03122 0. 03249 0. 03640 0. 04844 0. 07387 0. 11426 0. 50000 0. 03338 0. 03543 0. 04109 0. 05871 0. 09957 0. 13598 0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16702 0. 60000 0. 04848 0. 06732 0. 10469 0. 15978 0. 23381 0. 32905 0. 65000 0. 04848 0. 06732 0. 10449 0. 15978 0. 23381 0. 32905 0. 70000 0. 04540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29767 0. 44494 0. 62496 0. 84200 0. 85000 0. 20869 0. 35521 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 90000 0. 84649 1. 31622 1. 89597 2. 58627 3. 38834 4	0.35000	0. 02775	0. 02840	0.03082	0. 03776	0. 05652	0.08912		
0. 45000 0. 03122 0. 03249 0. 03640 0. 04844 0. 07387 0. 11426 0. 50000 0. 03338 0. 03543 0. 04109 0. 05871 0. 08957 0. 13598 0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16702 0. 60000 0. 04848 0. 06732 0. 10467 0. 15978 0. 23381 0. 22908 0. 65000 0. 04848 0. 06732 0. 10467 0. 15978 0. 23381 0. 32905 0. 70000 0. 06540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29767 0. 44494 0. 62496 0. 84200 0. 85000 0. 20869 0. 35521 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 90000 0. 84649 1. 31622 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7	0.40000	0. 02936	0. 03023	0. 03298	0.04189	0.06339	0, 09931		
0. 50000 0. 03338 0. 03543 0. 04109 0. 05871 0. 08957 0. 13598 0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16902 0. 60000 0. 04058 0. 04819 0. 07012 0. 10659 0. 15881 0. 22908 0. 65000 0. 04848 0. 06732 0. 10469 0. 15978 0. 23381 0. 32905 0. 70000 0. 06540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 04848 0. 10632 0. 29967 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35621 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 90000 0. 84649 1. 31422 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33989 5. 8485 7. 42391 8. 4550 <	0. 45000	0.03122	0.03249	0.03640	0. 04844	0.07387	0.11426		
0. 55000 0. 03642 0. 03957 0. 05062 0. 07520 0. 11391 0. 16902 0. 60000 0. 04058 0. 04819 0. 07012 0. 10659 0. 15881 0. 22908 0. 65000 0. 04848 0. 06732 0. 10467 0. 15978 0. 23381 0. 32905 0. 70000 0. 06540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29967 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35621 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 70000 0. 84649 1. 31422 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33989 5. 8485 7. 42291 8. 4550	0. 50000	0. 03338	0. 03543	0.04109	0. 05871	0.08957	0, 13598		
0. 60000 0. 04058 0. 04814 0. 07012 0. 10659 0. 15881 0. 22908 0. 65000 0. 04848 0. 06732 0. 10469 0. 15978 0. 23381 0. 32905 0. 70000 0. 04540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29767 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35521 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 90000 0. 84649 1. 31622 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33988 5. 86485 7. 42291 8. 41550	0.55000	0.03642	0, 03957	0.05062	0.07520	0.11391	0.16902		
0. 65000 0. 04848 0. 06732 0. 10469 0. 15978 0. 23381 0. 32905 0. 70000 0. 06540 0. 10633 0. 17028 0. 25776 0. 37001 0. 50930 0. 75000 0. 10916 0. 18792 0. 29767 0. 44494 0. 62496 0. 84200 0. 80000 0. 20869 0. 35521 0. 55282 0. 79904 1. 09609 1. 44626 0. 85000 0. 42171 0. 68971 1. 03145 1. 44746 1. 93898 2. 50829 0. 90000 0. 84649 1. 31622 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33989 5. 86485 7. 42399 8. 41537 11. 44450	0. 60000	0. 04058	0.04819	0.07012	0.10659	0.15881	0.22908		
0.70000 0.06540 0.10633 0.17028 0.25776 0.37001 0.50930 0.75000 0.10916 0.18792 0.29967 0.44494 0.62496 0.84200 0.80000 0.20869 0.35621 0.55282 0.79904 1.09609 1.44626 0.85000 0.42171 0.68971 1.03145 1.44746 1.93898 2.50829 0.90000 0.84649 1.31622 1.89597 2.58627 3.38834 4.30447 0.95000 1.64143 2.43467 3.38944 4.50630 5.78645 7.23219 1.00000 3.04777 4.33988 5.86485 7.42281 9.4537 1.44450	0. 65000	0.04848	0.06732	0.10467	0.15978	0.23381	0.32905		
0.75000 0.10916 0.18792 0.29967 0.44494 0.62496 0.84200 0.80000 0.20869 0.35621 0.55282 0.79904 1.09609 1.44626 0.85000 0.42171 0.68971 1.03145 1.44746 1.93898 2.50829 0.90000 0.84649 1.31622 1.89597 2.58627 3.38834 4.30447 0.95000 1.64143 2.43467 3.38944 4.50630 5.78645 7.23219 1.00000 3.04777 4.3398 5.86485 7.42291 9.41537 11.64450	0.70000	0.06540	0.10633	0.17028	0. 25776	0. 37001	0.50930		
0.80000 0.20849 0.35421 0.55282 0.79904 1.09609 1.44426 0.85000 0.42171 0.68971 1.03145 1.44746 1.93898 2.50829 0.90000 0.84649 1.31622 1.89597 2.58627 3.38834 4.30447 0.95000 1.64143 2.43467 3.38944 4.50630 5.78645 7.23219 1.00000 3.04777 4.33998 5.86485 7.42281 8.4550	0. 75000	0, 10916	0. 18792	0. 29967	0. 44494	0. 62496	0.84200		
0.85000 0.42171 0.68971 1.03145 1.44744 1.93898 2.50829 0.90000 0.84649 1.31622 1.89597 2.58627 3.38834 4.30447 0.95000 1.64143 2.43467 3.38944 4.50630 5.78645 7.23219 1.00000 3.04777 4.33988 5.86485 7.4239 8.4550	0. 80000	0. 20869	0.35621	0.55282	0.79904	1 09409	1. 44626		
0. 90000 0. 84649 1. 31622 1. 89597 2. 58627 3. 38834 4. 30447 0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33998 5. 86485 7. 43291 8. 41537 11. 84450	0.85000					1.07007			
0. 95000 1. 64143 2. 43467 3. 38944 4. 50630 5. 78645 7. 23219 1. 00000 3. 04777 4. 33998 5. 86455 7. 43291 8. 41537 11. 84450	0. 90000	0. 42171	0.68971	1.03145	1. 44746	1.93898	2, 50829		
1,00000 3,04777 4,33998 5,86485 7,63291 9,61537 11,8450		0. 42171 0. 84649	0.68971 1.31622	1.03145	1.44746	1. 93898	2, 50829 4, 30447		
	0. 95000	0. 42171 0. 84649 1. 64143	0.68971 1.31622 2.43467	1.03145 1.89597 3.38944	1.44746 2.58627 4.50630	1. 93898 3. 38834 5. 78645	2, 50829 4, 30447 7, 23219		

1 3 1

.

٠

۴.

MINIMUM AEW/ASW STOVL HIGH SPEED DRAG POLAR, 40000 FT

.

177

.

. .

LIST	Multimissio	n UDF Drag Pola	ar TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	IGTH 925	PAGE 1
ALT	≖	000							
CL	./M	0. 60000	0. 62000	0.64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0. 10000	0. 02432	0. 02424	0. 02416	0. 02415	0. 02421	0. 02433	0. 02459	0. 02503
	0.15000	0. 02457	0. 02448	0.02440	0. 02439	0.02446	0. 02458	0. 02484	0. 02527
	0.20000	0.02510	0.02502	0.02494	0. 02493	0. 02499	0.02511	0. 02538	0. 02581
	0. 25000	0. 02593	0. 02584	0.02577	0. 02576	0.02582	0. 02595	0. 02622	0. 02666
	J. 3000J	0. 02702	0. 02693	0.02686	0. 02686	0. 02692	0. 02705	0. 02732	0. 02777
	0.35000	0. 02836	0. 02828	0.02820	0. 02821	0, 02828	0. 02842	0. 02871	0. 02917
	0.40000	0. 02997	0. 02989	0, 02981	0, 02984	0. 02992	0. 03007	0. 03038	0. 03086
	0.45000	0. 03183	0.03174	0. 03170	0. 03174	0.03184	0. 03202	0. 03235	0, 03287
	0.50000	0. 03395	0. 03386	0.03385	0. 03391	0. 03404	0. 03425	0. 03464	0. 03524
	0.55000	0.03635	0. 03628	0.03631	0.03640	0.03656	0. 03683	0. 03727	0. 03802
	0.60000	0. 03905	0. 03905	0.03911	0. 03723	0.03946	0. 03981	0. 04040	0. 04153
	0. 55000	0.04214	0.04218	0.04228	0.04246	0.04276	0.04321	0. 04401	0. 04618
	0, 70000	0.04555	0.04562	0.04577	0.04602	0.04641	0.04705	0.04856	0, 05251
	0.75000	0.04935	0.04946	0.04967	0.05001	0.05053	0.05152	0.05427	0. 06788
	0. 50000	0.05348	0.05355	0.05393	0.05435	0 05511	0.05713	0. 06878	0.11505
	0. 65000	0.05824	0.05847	0.05883	0.05746	0.06089	0.06541	0. 11135	0. 23254
	0. 90000	0.06329	0.06360	0.06410	0.06502	0.06772	0.10130	0.24171	0, 49222
	0.95000	0.06863	0.06702	0.06977	0.07173	0.09847	0.23513	0. 54457	1.01553
	1.00000	0.07425	0.07485	0.07624	0 08087	0 20896	0.57144	1.16663	1, 99430
								-	
LIST	Multimission	UDF Drag Pola	r TABLE	E NO. 1	3-DIMENSIONAL (19X 14X 3)	TABLE LEN	GTH 925	PAGE 2
ΔΤΤ									

ALT	3	0. 00000						
CL	./ M	0. 76000	0. 78000	0. B0000	0. 82000	0. 84000	0. 86000	
	0. 1000	0 0.02567	0, 02663	0, 02937	0, 03482	0, 04985	0. 07735	
	0, 1500	0 0.02592	0. 02689	0.02965	0.03515	0.05018	0.07762	
	0. 2000	0 0.02646	0.02744	0.03021	0.03580	0.05104	0. 07878	
	0. 2500	0 0.02732	0.02834	0.03123	0.03721	0.05338	0. 08236	
	0. 3000	0 0,02844	0. 02956	0.03252	0.03900	0.05635	0. 08702	
	0.3500	0 0.02987	0.03118	0.03436	0.04197	0.06141	0. 09475	
	0.4000	0 0.03162	0.03317	0. 03668	0.04620	0.06838	0. 10503	
	0 4500	0.03372	0. 03570	0.04034	0.05294	0.07909	0. 12017	
	3 5000	0 0.03622	0.03898	0.04527	0.06349	0.09512	0. 14217	
	0.5500	0 0.03968	0. 04355	0.05510	0. 08036	0.11986	0. 17557	
	0.6000	0.04441	0. 05256	0.07505	0. 11231	0. 16529	0. 23611	
	0. 5500	0.05282	0. 07208	0.11013	0.16602	0. 24075	0. 33651	
	0. 7000	0,07005	0.11153	0.17623	0. 26446	0. 37737	0. 51713	
	0.7500	0 0.11419	0. 19351	0.30607	0. 45205	0. 63268	0.85014	
	0. 8000	0 0.21416	0.36235	0. 55962	0.80649	1. 10411	1. 45465	
	0. 8500	0 0, 42754	0.69616	1.03851	1.45514	1.94718	2. 51681	
	0. 9000	0 0.85264	1. 32294	1.90326	2, 59412	3. 39667	4. 31307	
	0. 9500	0 1, 64787	2. 44163	3. 39693	4. 51429	5.79486	7. 24083	
	1.0000	J 3. 05446	4.34714	5. 87248	7. 63099	9. 62383	11.85320	

MULTIMISSION UDF HIGH SPEED DRAG POLAR, SEALEVEL

н з **н**

۱.

.#

-

t

à

LIST Multimissio	in UDF Drag Pol	ar TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 3
ALT = 20000.00	0000						•	
CL/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 7400
0. 10000	0. 02590	0. 02581	0. 02572	0. 02570	0. 02575	0. 02586	0. 02612	0. 0265
0. 15000	0.02614	0.02605	0. 02596	0. 02594	0. 02599	0.02610	0. 02636	0. 0267
0. 20000	0.02667	0.02659	0. 02649	0. 02647	0. 02652	0.02664	0. 02689	0. 0273
0. 25000	0. 02750	0, 02741	0. 02732	0. 02730	0. 02736	0. 02748	0. 02774	0. 0281
0. 30000	0. 02860	0.02850	0.02841	0. 02840	0. 02846	0. 02858	0. 02884	0. 0292
0. 35000	0. 02994	0. 02985	0. 02976	0.02976	0.02983	0. 02996	0. 03023	0. 0306
J. 40000	0.03156	0.03146	0.03138	0.03140	0.03147	0.03161	0. 03191	0. 0323
J. 45000	0. 03342	0. 03333	0. 03327	0. 03330	0. 03339	0. 03356	0. 03389	0. 0344
0. 50000	0. 03555	0. 03546	0.03544	0. 03548	0.03560	0. 03581	0. 03618	0. 0367
0. 55000	0.03796	0. 03789	0. 03790	0. 03798	0.03813	0. 03839	0.03863	0. 0395
0. 60000	0.04058	0.04066	0.04071	0. 04083	0.04105	0.04139	0. 04197	0. 0430
0.55000	0.04379	0.04382	0. 04391	0. 04408	0. 04438	0. 04481	0. 04560	0. 0477
0. 70000	0. 04724	0.04730	0. 04743	0. 04768	0.04805	0.04868	0.05019	0. 0541
0.75000	0.05107	0.05117	0.05137	0. 05170	0.05221	0.05319	0. 05593	0.0695
0.80000	0.05525	0. 05541	0. 05568	0. 05609	0. 05684	0.05885	0. 07049	0. 1167
0.85000	0.06007	0. 06031	0.06066	0.06127	0.06269	0.06720	0. 11314	0. 2343
0.90000	0.06522	0.06552	0. 06601	0. 06691	0.06960	0. 10317	0. 24357	0. 4940
0. 95000	0.07064	0.07101	0.07176	0. 07370	0.10042	0. 23707	0. 54651	1.0174
1. 00000	0. 07634	0. 07693	0. 07830	0. 08292	0.21100	0. 57346	1. 16864	1. 9963
.IST Multimission	UDF Drag Pola	ar TABLE	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENG	TH 925	PAGE 4
ALT = 20000.000	000							
CL/M	0. 76000	0. 78000	0. 80000	0. 82000	0. 84000	0. 86000		
0, 10000	0.02718	0. 02813	0.03086	0. 03631	0.05132	0. 07882		

4 X F

.

_

	0.70000	0.70000	0.00000	0. 02000	0.04000	0.00000
0. 10000	0.02718	0 02813	0.03086	0.03631	0.05132	0.07882
0.15000	0 02742	0.02839	0.03113	0.03442	0.05165	0 07908
0 20000	0 02796	0.02993	0.03169	0.00002	0.05251	0 08024
0.25000	0.02882	0.02984	0.03272	0.03949	0.05485	0.08382
0.30000	0.02002	0.02104	0.03401	0.03087	0.05703	0.00002
0.35000	0.02179	0.03740	0.03505	0.04046	0.05785	0.00047
0.30000	0.03138	0.03207	0.03585	0.04345	0.00287	U. U7022
0.40000	0.03313	0.0346/	0.03818	0.04769	0.06986	0. 10850
0.45000	0. 03524	0. 03721	0. 04185	0. 05444	0.08058	0.12165
0. 50000	0. 03775	0.04050	0. 04679	0.06500	0.09662	0.14366
0.55000	0.04122	0.04508	0.05562	0, 08188	0. 12137	0.17707
0. 60000	0. 04597	0.05410	0.07658	0.11384	0.16681	0. 23763
0. 65000	0.05439	0.07365	0.11170	0. 16757	0.24230	0, 33805
0.70000	0.07166	0.11312	0.17782	0.26604	0. 37894	0.51870
0.75000	0.11583	0.19524	0.30770	0. 45366	0.63429	0.85175
0. 80000	0.21584	0.36402	0.56129	0.80815	1. 10576	1.45630
0.85000	0. 42931	0 69791	1.04025	1.45688	1.94891	2 51853
0. 90000	0.85448	1. 32477	1,90508	2 59593	3. 39847	4. 31486
0.95000	1 64979	2 44353	3 39882	4 51618	5 79674	7 24269
1.00000	3. 05645	4. 34912	5.87445	7. 63295	9. 62578	11.85510

MULTIMISSION UDF HIGH SPEED DRAG POLAR, 20000 FT

. , .

LIST Multimission UDF Drag Polar

TABLE NO. 1 3-

_

.

۰.

.

ALT = 40000.00000

CL/M		0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	10000 15000 25000 35000 35000 40000 40000 45000 55000 55000 70000 75000 30000 85000 90000 95000	0. 02815 0. 02938 0. 02974 0. 02974 0. 03084 0. 03220 0. 03382 0. 03570 0. 03783 0. 04025 0. 04025 0. 04015 0. 04954 0. 05353 0. 05777 0. 05272 0. 06797 0. 07351	0. 02804 0. 02827 0. 02880 0. 02964 0. 03073 0. 03209 0. 03371 0. 03359 0. 03772 0. 04377 0. 04297 0. 04416 0. 04968 0. 03361 0. 05791 0. 06292 0. 06825 0. 07386 0. 07889	0. 02793 0. 02870 0. 02870 0. 02953 0. 03063 0. 03361 0. 03351 0. 03351 0. 03354 0. 04379 0. 04300 0. 04623 0. 044623 0. 044623 0. 044623 0. 044623 0. 045817 0. 06326 0. 05817 0. 06472 0. 07452 0. 07452	0. 02790 0. 02813 0. 02964 0. 02950 0. 03061 0. 03197 0. 03342 0. 03353 0. 03772 0. 04023 0. 05854	- 0. 02794 0. 02817 0. 02870 0. 02954 0. 03045 0. 03202 0. 03367 0. 03367 0. 03761 0. 03782 0. 04037 0. 04331 0. 04037 0. 04331 0. 04667 0. 05929 0. 05426 0. 05929 0. 05526 0. 07228 0. 10321 0. 21390	0. 02804 0. 02827 0. 02980 0. 02965 0. 03076 0. 03214 0. 03380 0. 03376 0. 03376 0. 04062 0. 04062 0. 04364 0. 04709 0. 05100 0. 05557 0. 06129 0. 06976 0. 10583 0. 23984 0. 57635	0. 02828 0. 02951 0. 02905 0. 03989 0. 03101 0. 03240 0. 03409 0. 03608 0. 03638 0. 04104 0. 04420 0. 04787 0. 05250 0. 05830 0. 05830 0. 07292 0. 11547 0. 24622 0. 54926 1. 17151	0. 02849 0. 02843 0. 02746 0. 03031 0. 03143 0. 03284 0. 03455 0. 03896 0. 04176 0. 04531 0. 05502 0. 05542 0. 07188 0. 11916 0. 23684 0. 49670 1. 02020 1. 99915
¥.	~~~~								

LIST	Multimission U	DF Drag Polar	TABLE	NO. 1	3-DIMENSIONAL (19X 14X 3)	TABLE LENGTH	925	PAGE	6
ALT	= 40000.00000									
C∟	/M	0. 76000	0. 78000	0. 80000	0. 82000	0. 84000	0. 86000			
. L	0. 10000 0. 15000 0. 25000 0. 25000 0. 35000 0. 35000 0. 40000 0. 55000 0. 55000 0. 60000 0. 65000 0. 75000	0. 02932 0. 02955 0. 03009 0. 03095 0. 03209 0. 03353 0. 03528 0. 03740 0. 03992 0. 04341 0. 04818 0. 05664 0. 07394 0. 11817	0. 03026 0. 03051 0. 03105 0. 03196 0. 03319 0. 03482 0. 03681 0. 03936 0. 04726 0. 04726 0. 04726 0. 05630 0. 07588 0. 11539 0. 19737	0. 03297 0. 03324 0. 03380 0. 03483 0. 03483 0. 03483 0. 03498 0. 04031 0. 04398 0. 04894 0. 05878 0. 07877 0. 11391 0. 118008 0. 31001	0. 03841 0. 03872 0. 03937 0. 04079 0. 04259 0. 04557 0. 04981 0. 05657 0. 06713 0. 08403 0. 11602 0. 16978 0. 26829 0. 45397	0.05342 0.05460 0.05460 0.05694 0.05992 0.04499 0.07197 0.08270 0.09875 0.12351 0.12857 0.14897 0.24449 0.38118 0.63658	0.08090 0.08116 0.08232 0.08590 0.09057 0.09832 0.10860 0.12376 0.14578 0.14578 0.17920 0.23978 0.34023 0.52092 0.85403			
	0. 80000 0. 85000 0. 90000 0. 95000 1. 00000	0.21824 0.43181 0.85710 1.65251 3.05928	0.36641 0.70040 1.32737 2.44624 4.35194	0.56366 1.04274 1.90767 3.40152 5.87725	0.81052 1.45934 2.59851 4.51886 7.63574	1. 10811 1. 95136 3. 40103 5. 79941 9. 62855	1. 43684 2. 52097 4. 31741 7. 24535 11. 85790			

MULTIMISSION UDF HIGH SPEED DRAG POLAR, 40000 FT

. . .

.

1 I A

LIST	Multimis	sion Turboprop Drag		BLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENG	TH 925	PAGE 1
ALT	= 0	. 00000			-				
CL	/m	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0.10000	0 02425	0. 02417	0. 02409	0. 02409	0.02416	0. 02429	0. 02454	0. 02495
	0 15000	0 02450	0.02442	0. 02434	0. 02434	0. 02441	0. 02454	0. 02479	0. 02520
	0 20000	0 02504	0.02496	0, 02488	0. 02488	0.02475	0. 02508	0. 02533	0. 02574
	0.25000	0 02587	0.02579	0. 02571	0. 02571	0.02579	0. 02592	0. 02618	0. 02659
	0.30000	0.02697	0.02688	0. 02681	0. 02681	0.02689	0.02702	0. 02729	0. 02770
	0.35000	0.02832	0. 02823	0. 02815	0.02817	0. 02826	0. 02840	0. 02867	0. 02910
	0.40000	0 02993	0.02984	0.02977	0. 02981	0.02990	0.03005	0. 03034	0. 03079
	0.45000	0.03179	0.03170	0.03166	0.03171	0.03192	0.03199	0. 03231	0. 03281
	0. 50000	0 03391	0.03383	0.03382	0. 03390	0. 03402	0. 03423	0. 03459	0. 0351B
	0 55000	0.03631	0.03625	0.03629	0. 03639	0.03654	0. 03680	0. 03721	0. 03796
	0.60000	0 03902	0.03902	0.03910	0. 03722	0.03944	0. 03976	0.04034	0. 04149
	0 65000	0 04211	0.04216	0.04227	0.04245	0.04273	0.04315	0.04396	0. 04617
	0 70000	0 04554	0.04562	0.04576	0.04600	0.04636	0.04699	0. 04854	0. 05253
	0 75000	0 04934	0.04946	0.04966	0.04997	0.05048	0.05148	0.05428	0. 06796
	0 80000	0.05348	0 05364	0.05391	0.05430	0.05507	0.05712	0.06884	0.11518
	0 85000	0 05823	0.05845	0.05879	0.05941	0.06087	0.06544	0. 11147	0. 23272
	0 90000	0.06328	0.06357	0.06406	0.06499	0.06773	0. 10138	0. 24187	0. 49244
	0 95000	0.06861	0.06897	0.06973	0.07173	0.09852	0. 23527	0. 54478	1.01582
	1. 00000	0. 07421	0. 07481	0.07622	0. 08090	0. 20908	0. 57163	1.16689	1. 99464

4 3 4

· 、

-

. .

· · · · •

LIST	Multimission	Turboprop	Drag	TABLE	NO.	.1	3-DIMENSIONAL	(19X	14X	3)	TABLE LENGTH	925	PAGE	2
ALT	= 0.0000	00												
CL	/m ⁻	0.75000	0.7	8000	0.	80000	0. 82000	0.	84000		0.86000			
	0. 10000	0, 02558	· 0.0	2655	0.	02932	0. 03485	٥.	04995		0.07756			
	0.15000	0, 02593	0.0	2682	Ο.	02961	0.03518	Ο.	05029		0. 07783			
•	0. 20000	0.02637	Ó. C	2737	0.	03018	0. 03583	0.	05116		0.07901			
	0. 25000	0.02724	0. 0	2828	Ο.	03121	0. 03726	0.	05350		0.08259			
	0. 30000	0.02836	0. 0	2950	0.	03251	0. 03906	Ō.	05648		0. 08727			
	0. 35000	0. 02980	0. 0	3113	0.	03435	0. 04204	Ο.	06155		0. 09501			
	0, 40000	0.03154	0 . d	3312	0.	03668	0. 04628	0.	06853		0. 10531			
	0. 45000	0.03366	0.0	3567	0.	04037	0. 05305	0.	07927		0. 12047			
	0. 50000	0.03617	0.0	3897	0.	04534	0.06362	0.	09534		0. 14251			
	0. 55000	0.03965	0, 0	4357	Ο.	03519	0. 08052	Ο.	12011		0.17594			
	0. 60000	0.04442	0. 0	5263	Ο.	07518	0. 11252	0.	16559		0.23654			
	0. 65000	0.05287	Ó. C	7220	Ο.	11032	0.16628	٥.	24110		0. 33699			
	0. 70000	0.07015	0. 1	1169	Ο.	17646	0. 26477	0.	37778		0. 51767			
	0. 75000	0.11433	0. 1	9382	0.	30636	0.45241	0.	63314		0.85074			
	0. 80000	0.21435	0.3	86261	0.	55996	0.80691	1.	10463		1.45531			
	0.85000	0.42779	0. 6	9648	1.	03891	1.45562	1.	94776		2. 51752			
	0. 90000	0.85294	1.3	2332	1.	90372	2. 59466	З.	39731		4. 31385			
	0. 95000	1.64824	2.4	4207	3.	39745	4. 51490	5.	79557		7. 24167			
	1.00000	3.05488	4. 3	4764	5.	87306	7. 63166	9.	62460		11.85410			

MULTIMISSION TURBOPROP HIGH SPEED DRAG POLAR, SEALEVEL

•

.

. . .

ALT -	20000.0000	0							
CL/M		0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
ð.	10000	0. 02582	0. 02573	0, 02564	0. 02562	0. 02569	0. 02580	0. 02605	0. 02645
0.	15000	0.02505	0. 02597	0.02588	0. 02587	0. 02593	0. 02605	0. 02630	0. 02670
0.	20000	0.02550	0. 02651	0. 02642	0. 02641	0. 02647	0. 02659	0. 02683	0. 02723
Ο.	25000	0.02744	0. 02734	0. 02725	0. 02725	0. 02731	0. 02743	0. 02768	0. 02809
Ο.	30000	0. 02953	0.02844	0. 02835	0. 02835	0. 02842	0. 02854	0. 02880	0. 02921
0.	35000	0.02939	0.02979	0. 02970	0. 02972	0. 02979	0. 02992	0. 03019	0. 03061
0.	40000	0.03150	0.03141	0. 03133	0. 03135	0.03144	- 0. 03158	0. 03186	0. 03230
0.	45000	0.03337	0.03328	0.03323	0. 03327	0. 03336	0. 03353	0. 03384	0. 03432
0.	50000 .	0.03550	0. 03541	0. 03540	0. 03546	0. 03557	0. 03577	0. 03612	0. 03670
0.	55000	0. 03792	0. 03784	0. 03787	0. 03796	0.03810	0. 03835	0.03876	0. 03949
0.	60000	0.04063	0. 04063	0.04069	0. 04081	0.04102	0.04133	0. 04190	0. 04304
0.	65000	0.04376	0. 04379	0. 04389	0. 04405	0. 04433	0. 04475	0. 04554	0. 04774
0.	70000	0.04721	0. 04728	0. 04741	0. 04764	0. 04799	0. 04862	0. 05015	0. 05414
0.	75000	0.05106	0.05116	0. 05135	0. 05165	0. 05215	0.05314	0. 05593	0.06960
0.	50000	0.05524	0.05539	0.05564	0. 05603	0. 05678	0. 05883	0. 07053	0. 11687
0.	85000	0.06007	0. 06028	0.06060	0.06121	0. 06256	0.06722	0.11324	0. 23448
0.	90000	0.06520	0. 06547	0.06595	0. 06687	0.06960	0. 10324	0. 24372	0. 49428
0.	95000	0.07061	0. 07096	0.07170	0. 07369	0. 10047	0. 23720	0. 54670	1.01773
	00000	0.07629	0.07587	0.07827	0. 08294	0.21111	0. 57364	1.16889	1.99663

LIST	Multimission	Turboprop	Drag	TABL	E NO.	1	3-DIMENSIONAL	(19X 14X	3)	TABLE LENGTH	925	PAGE	4
ALT	= 20000 0000	00											
C∟	/m	0. 76000	a	. 78000	0.	80000	0. 82000	0. 84000) (0. 86000			
	0. 10000	0. 02707		. 02804	0.	03080	0. 03632	0. 05141		0. 07902			
	0.15000	0. 02732	0	. 02830	0.	03108	0. 03664	0. 05175		0. 07929			
	0. 20000	0. 02785	0	. 02895	0.	03165	0. 03730	0. 05262	! !	0. 08046			
	0. 25000	0. 02873	0	. 02976	0.	03268	0. 03873	0. 05496	, (0. 08405			
	0. 30000	0. 02986	0	03099	0.	03398	ð. 04053	0. 05795	i 1	0. 08973			
	0. 35000	0. 03130	0	. 03262	0.	03584	0.04351	0. 06302		0. 09648			
	0.40000	0. 03305	0	. 03462	0.	03817	0. 04776	0. 07001	(0. 10677			
	0. 45000	0. 03517	· 0	. 03717	0.	04186	0. 03454	0. 08075		0. 12195			
	0. 50000	0. 03759	0	. 04048	0.	04684	0. 06511	0. 09682		0. 14399			
	0. 55000	0.04118	0	. 04509	0.	05671	0. 08202	0. 12161		0. 17743			
	0. 60000	0. 04596	0	. 05417	0.	07671	0. 11404	0.16710		0. 23804			
	0. 65000	0.05443	0	. 07376	0.	11187	0. 16782	0.24264	(0. 33852			
	0 70000	0.07175	0	11327	0.	17804	0.26634	0. 37934		0. 51923			
	J. 73000	0 11597	Ó	19545	0.	30797	0. 45402	0. 63474		0. 85233			
	0. 80000	0.21603	0	. 36428	0.	56162	0.80856	1.10627		1. 45694			
	0. 85000	0. 42954	0	. 69822	1.	04065	1. 45735	1. 94947		2. 51923			
	0.90000	0.85477	1	32514	1.	90553	2. 59646	3, 39910		4. 31563			
	0. 95000	1.65014	2	44396	3.	39933	4. 51677	5. 79743		7. 24353			
	1. 00000	3. 05686	4	34961	5.	87502	7. 63361	9. 62654	1	1.85600			

MULTIMISSION TURBOPROP HIGH SPEED DRAG POLAR, 20000 FT

N 2 A

- i - 🖝

LIST Multinis	sion Turboprop Di	rag TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	NGTH 925	PAGE 5
ALT = 40000.	00000							
CL/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 48000	0. 70000	0. 72000	0. 74000
0. 10000	0. 02805	0. 02794	0. 02784	0. 02781	0. 02786	0. 02796	0. 02820	0. 02858
0.15000	0. 02829	0. 02818	0.02808	0. 02805	0. 02810	0. 02920	0. 02844	0. 02882
0. 20000	0. 02882	0.02872	0.02861	0. 02859	0.02864	0.02874	0. 02897	0. 02936
0. 25000	0.02966	0.02955	0.02945	0. 02943	0. 02948	0.02959	0. 02982	0. 03022
0. 30000	0. 03076	0.03066	0. 03055	0. 03054	0. 03059	0.03070	0.03094	0. 03134
0. 35000	0.03212	0.03202	0.03191	0. 03191	0. 03197	0.03209	0. 03234	0. 03275
0. 40000	0. 03375	0.03364	0.03354	0. 03356	0. 03363	0. 03375	0.03402	0. 03445
0. 45000	0. 03563	0. 03552	0. 03545	0. 03548	0.03556	0. 03571	0. 03601	0, 03648
0. 50000	0.03777	0.03766	0. 03763	0.03768	0. 03778	0.03797	0. 03830	0, 03887
0. 55000	0.04020	0.04011	0.04012	0.04019	0.04033	0.04056	0.04095	0.04167
0. 60000	0.04294	0.04292	0.04297	0.04307	0.04326	0.04356	0.04412	0.04525
0. 65000	0.04610	0.04612	0.04620	0.04635	0.04661	0.04701	0.04780	0.04998
0.70000	0,04959	0.04965	0.04976	0.04998	0.05031	0.05092	0.05245	0.05642
0. 75000	0. 05350	0.05358	0.05376	0.05404	0.05453	0.05550	0. 05828	0.07194
0. 80000	0. 05774	0.05788	0.05811	0.05849	0.05922	0.06126	0.07295	0.11926
0. 85000	0.06269	0.06288	0.06319	0.06378	0.06521	0.06976	0.11576	0, 23698
0. 90000	0.05793	0.06817	0.06864	0.06955	0.07226	0.10589	0. 24635	0. 49690
0. 95000	0.07345	0.07378	0.07451	0. 07648	0.10324	0.23996	0. 54944	1.02046
1. 00000	0. 07925	0.07981	0.08119	0. 08584	0.21399	0. 57650	1. 17174	1. 99946

4 Y #

٠

.

. .

.

.

LIST	Multimission	Turboprop	Drag	TABLE NO.	1	3-DIMENSIONAL	(19X 14X	3) TA	BLE LENGTH	925	PAGE	6
ALT	= 40000.0000	00										
CL.	/M	0. 76000	0. 780	oo o. :	80000	0. 82000	0. 84000	0. E	6000			
	0. 10000	0. 02919	• 0. 030	15 0.	03290	0. 03841	0. 05349	0. 0	8109			
	0.15000	0. 02944	0, 030	40 0.4	03318	0.03873	0.05382	0.0	8135			
	0. 20000	0.02997	0, 030	95 Ū. (03374	0.03938	0.05469	0.0	8252			
	0.25000	0.03084	0.031	87 0.0	03478	0.04081	0.05703	0.0	8611			
	0. 30000	0.03198	0. 033	10 0.0	03608	0.04262	0.06003	0.0	9079			
	0. 35000	0.03343	0.034	74 0.	03794	0.04561	0.06510	0.0	9855			
	ō. 40000	0.03519	0. 036	74 0.0	04029	0 04987	0.07210	0.1	0886			
	0.45000	0.02731	0.039	30 0.0	04399	0.05665	0.08285	0.1	2404			
	0. 50000	0.03984	0.042	63 0.0	04897	0.06723	0.09893	0.1	4609			
	0. 55000	0.04335	0.047	25 0.0	05885	0 08416	0. 12373	0.1	7955			
	0. 60000	0.04815	0.056	35 0.0	07888	0 11620	0.16925	0.2	4018			
	0. 65000	0.05666	0.075	98 0.	11407	0 17001	0.24482	0.3	4069			
	0.70000	0.07402	0.115	53 0.	18028	0 26857	0.38154	0.5	2143			
	0.75000	0.11829	0 197	75 0.3	31027	0 45630	0.63701	0.8	5459			
	0. 80000	0.21841	0.366	45 0.5	56398	0 81091	1 10861	1 4	5926			
	0.85000	0.43204	0 700	70 1.0	04311	1 45990	1 95191	25	2166			
	0.90000	0 85737	1 327	72 1 9	20910	5 50007	3 40144	4 3	1914			
	0. 95000	1 65285	2. UZ/ 2 446	45 34	10201	4 51042	5 80009	7.0	4617			
	1. 00000	3. 05967	4. 352	41 5.8	37780	7. 63638	9. 62930	11.8	5880			

MULTIMISSION TURBOPROP HIGH SPEED DRAG POLAR, 40000 FT

.

x 3 +

LIST Multimission Turbofan Drag Polar TABLE NO. 1 3-DIMENSIONAL (19X 14X 3) TABLE LENGTH 925

s - - - - -

ALT = 0. 00000

-

£ 3 #

LT = 0.	00000							
CL/M	, 0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
	0.00501	0 00500	0.02514	0 02518	0 02533	0. 02559	0. 02603	0. 02671
0.10000	0.02531	0.02522	0.02514	0.02578	0.02553	0 02579	0. 02623	0. 02691
0.15000	0.02551	0.02542	0.02534	0.02000	0.02400	0.02425	0.02669	0. 02737
0. 20000	0. 02597	0. 02588	0.02580	0. 02584	0.02800	0.02700	0 02745	0.02814
0. 25000	0. 02670	0. 02651	0. 02653	0. 02658	0.02674	0.02700	0.02946	0.02914
0. 30000	0.02766	0. 02757	0. 02749	0. 02755	0. 02771	0.02/98	0.02044	0.02714
0 35000	0. 02885	0. 02877	0. 02868	0. 02876	0. 02893	0.02921	0. 02969	0.03041
0.40000	0.03028	0.03019	0.03012	0. 03022	0.03041	0.03071	0.03122	0.03198
0.35000	0.02193	0.03184	0 03182	0. 03194	0.03216	0.03250	0. 03307	0. 03389
0.40000	0.03175	0.03273	0.03377	0 03392	0.03418	0. 03458	0. 03522	0.03616
0. 50000	0.03381	0.03573	0.03401	0.03620	0.03652	0.03700	0.03774	0. 03887
0. 55000	0.03545	0.03540	0.00000	0.00020	0.00002	0.03988	0.04082	0.04241
0, 60000	0. 03836	0.03842	0.03858	0.03665	0.03727	0.04319	0 04441	0.04713
0.55000	0.04118	0.04130	0.04153	0.04189	0.04242	0.04317	0.04994	0.05353
0.70000	0.04430	J. 04449	0.04478	0.04525	0.04592	0.04874	0.04070	A A48A1
0.75000	0. 04731	0. 04805	0.04845	0. 04904	0.04992	0.05136	0.03470	0.00701
0 80000	0 05163	0.05197	0.05249	0. 05322	0. 05440	0.05696	0.06927	0.11833
0.85000	0.05608	0.05652	0.05716	0.05817	0.06009	0.06523	0.11192	0.23399
0.00000	0.05000	0.06139	0 06224	0.06361	0.06688	0.10116	0. 24240	0. 49389
0.90000	0.00083	0.06157	0.06773	0 07022	0.09761	0. 23505	0. 54542	1.01741
0.95000	0.06587		0.00//0	0.07022	0.20909	0 57143	1, 16765	.1.99635
1,00000	0.07118	0.0/215	0.07403	0.0/72/	0. 20007			

LIST	Multimission	Turbofan Drag	pPolar T	ABLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENGTH	925	PAGE	2
ALT	= 0.0000	00								
CL.	/M	0. 76000	0. 78000	0. 80000	0. 82000	0. 84000	0.86000			
	0. 10000	0. 02770	0. 02912	0. 03244	0. 03867	0. 05473	0. 08368			
	0.15000	0.02790	0. 02933	0. 03267	0. 03895	0.05501	0. 08390			
	0. 20000	0. 02837	0. 02981	0. 03317	0. 03952	0. 05580	0. 08499			
	0.25000	0.02915	0. 03064	0.03412	0. 04087	0. 05808	0. 08851			
	0. 30000	0.03016	0. 03175	0. 03531	0. 04257	0.06097	0. 09310			
	0. 35000	0.03149	0. 03328	0. 03707	0. 04548	0. 06598	0. 10080			
	0.40000	0.03312	0. 03518	0. 03932	J. 04966	0. 07293	0. 11108			
	0. 45000	0.03515	0. 03766	0.04299	0. 05644	0. 08372	0. 12630			
	0. 50000	0.03760	0. 04094	0. 04796	0.06708	0. 09991	0. 14845			
	0. 55000	0.04105	0. 04557	0. 05790	0. 08414	0. 12488	0. 18208			
	0. 60000	0.04589	0. 05476	0. 07813	0. 11648	0.17069	0. 24300			
	0. 65000	0.05444	0. 07452	0.11355	0. 17055	0. 24651	0. 34376			
	0.70000	0.07183	0. 11421	0.17998	0. 26932	0. 38346	0. 52472			
	0.75000	0.11617	0. 19660	0.31013	0. 45721	0. 63907	0. 85803			
	0. 80000	0.21639	0. 36562	0. 56395	0. 81193	1.11078	1. 46281			
	0.85000	0 43003	0.69969	1.04311	1.46083	1.95410	2. 52521			
	0.90000	0.85536	1. 32670	1.90808	2. 60004	3. 40381	4. 32169			
	0.95000	1.65079	2. 44559	3. 40174	4. 52041	5. 80220	7. 24965			
	1.00000	3. 05755	4. 35127	5. 87756	7. 63727	9. 63133	11.86210			

MULTIMISSION TURBOFAN HIGH SPEED DRAG POLAR, SEALEVEL

× 2 #

LISI MULTIMISSI	ion lurbofan Dra	g Polar TABL	LE NU. I	3-DIMENSIUNAL	(19X 14X 3)	TABLE LEN	GIR 923	PAGE 3
ALT = 20000.0	00000							
CL/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0. 70000	0. 72000	0. 74000
0. 10000	0.02692	0. 02683	0. 02674	0. 02676	0. 02691	0. 02716	0. 02759	0. 02826
0 15000	0.02712	0. 02702	0. 02593	0. 02676	0.02711	0. 02735	0. 02779	0.02846
0.20000	0.02758	0. 02748	0. 02739	0. 02742	0.02757	0. 02781	0. 02825	0. 02892
0. 25000	0. 02831	0. 02821	0. 02812	0. 02815	0. 02831	0.02856	0. 02900	0, 02968
0. 30000	0. 02928	0. 02919	0.02909	0.02913	0.02929	0. 02954	0.02999	0. 03069
0, 25000	0. 03047	0. 03038	0.03028	0. 03035	0. 03052	0. 03078	0.03125	0. 03197
0.40000	0. 03191	0.03181	0.03173	0. 03182	0.03200	0.03229	0. 03279	0. 03354
0.45000	0. 03356	0.03347	0.03343	0. 03355	0. 03376	0. 03409	0.03464	0. 03545
0. 50000	0. 03546	0. 03536	0.03539	0.03554	0. 03578	0.03617	0. 03680	0. 03774
0.55000	0. 03761	0. ŭ3754	0.03764	0. 03783	0.03813	0,03861	0. 03933	0. 04046
0. 60000	0. 04003	0. 04008	0.04023	0.04049	0.04089	0. 04149	0.04243	0, 04402
0.65000	0. 04287	0.04299	0.04320	0. 04355	0.04408	0. 04483	0.04604	0.04875
0.70000	0.04603	0.04520	0.04649	0. 04694	0. 04760	0. 04862	0.05062	0.05518
0.75000	0. 04957	0.04981	0.05020	0.05078	0.05164	0.05308	0.05640	0.07071
0. 80000	⁻ 0.05345 ⁻	0. 05377	0. 05428	0. 03500	0.05617	0.05871	0.07102	0.11807
0. 85000	0. 05798	0. 05840	0.05903	0.06003	0.06194	0.06707	0.11374	0, 23580
0. 90000	0.06291	0. 06335	0. 06419	0.06555	0. 06881	0. 10307	0. 24430	0.49579
0.95000	0.06792	0.06861	0.06976	0. 07224	0.09961	0. 23704	0. 54740	1. 01939
1. 00000	0. 07331	0.07428	0.07614	0.08136	0.21017	0. 57351	1.16971	1. 99840

¥ 6

LIST	Multimission	Turbofan Drag	Polar TABL	ENO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LENGTH	925	PAGE	4
ALT	= 20000.0000	00								
ՇԷ	/ M	0.76000	0. 78000	0. 80000	0. 82000	0. 84000	0. 86000			
	0. 10000	0. 02924	0. 03065	0.03397	0.04019	0.05624	0. 08519			
	0.15000	0.02944	0. 03086	0.03420	0. 04046	0. 05652	0. 08540			
	0. 20000	0.02990	0. 03133	0. 03469	0.04104	0. 05731	0. 08648			
	0. 25000	0.03068	0.03217	0. 03564	0.04239	0. 05959	0.09001			
	0. 30000	0.03170	0.03329	0.03684	0.04409	0.06248	0. 09460			
	0.35000	0. 03303	0, 03482	0.03860	0.04700	0.06749	0. 10231			
	0.40000	0.03467	0. 03672	0.04086	0.05119	0.07445	0. 11259			
	0. 45000	0.03671	0.03921	0.04453	0.05778	0.08524	0. 12781			
	0.50000	0.03916	0.04250	0.04951	0.06863	0.10144	0. 14998			
	0. 55000	0.04263	0.04713	0.05946	0.08569	0. 12642	0. 18362			
	0. 50000	0.04748	0.05635	0.07970	0.11805	0. 17225	0. 24455			
	0. 55000	0.05606	0.07613	0.11515	0. 17214	0.24810	0. 34534			
	0. 70000	0.07348	0.11585	0. 18161	0.27094	0. 38507	0. 52632			
	0.75000	0. 11785	0.17828	0.31180	0.45887	0. 64072	0.85967			
	0. 80000	0.21811	0. 36734	0.56567	0.81363	1. 11247	1. 46449			
	0.85000	0. 43194	0.70149	1.04490	1.46261	1. 95587	2. 52698			
	0. 90000	0.85724	1. 32858	1.90995	2, 60190	3. 40566	4. 32353			
	0.95000	1.65275	2.44754	3, 40388	4. 52234	5.80412	7. 25156			
	1.00000	3. 05959	4. 35330	5. 87968	7. 63928	9. 63333	11.86410			

MULTIMISSION TURBOFAN HIGH SPEED DRAG POLAR, 20000 FT

. . .

LIST Multimission Turbofan Drag Polar TABLE NO. 1

3-DIMENSIONAL (19X 14X 3)

ALT - 10000 00000 0.74000 0.72000 0.70000 0.68000 0.64000 0. 66000 0. 50000 0. 52000 CL/M 0.03047 0.02981 0.02939 0.02916 0. 02902 0. 02912 0.02901 0. 10000 0.02923 0.03066 0. 03000 0. 02958 0. 02934 0. 02920 0. 02921 0. 02942 ò. 02931 0.03111 0. 15000 0.03045 0.03003 0.02980 0. 02966 0. 02967 0. 02976 0. 02987 0. 03188 0. 20000 0.03121 0.03078 0.03055 0. 03039 0.03041 0. 03050 0. 25000 0.03061 0. 03289 0.03221 0.03178 0. 03153 0.03139 0.03136 0. 03147 0.03158 0.03418 0. 00000 0. 03348 0. 03302 0. 03262 0.03277 0. 03256 0. 03267 0.03278 0.35000 0.03502 0.03576 0.03453 0.03409 0.03426 0.03402 0. 03423 0. 03411 0. 03768 0. 40000 0. 03688 ~ 0. 03634 0. 03602 0.03583 0.03573 0. 03578 0.45000 0.03589 0. 03998 0.03905 0.03806 0. 03844 0. 03783 0. 03770 0. 03768 0. 50000 0.03780 0.04271 0.04160 0.04089 0.04043 0.03996 0.04014 0.03988 0. 03996 0.04629 0. 55000 0.04472 0.04380 0.04282 0.04321 0.04258 0.04241 0.04244 0. 50000 0.05106 0. 04837 0.04717 0.04643 0.04592 0.04558 0.04539 0. 65000 0.04529 0.05754 0.05299 0.05100 0. 05000 0.04871 0.04935 0.04865 0.04849 0.70000 0.07312 0. 05551 0.05882 0.05410 0. 05325 0. 05231 0.05268 0.05209 0.75000 0. 12054 0.06122 0. 07351 0.05869 0.05754 0. 05634 0.05683 0.05603 0. 23839 0, 20000 0.11634 0.06968 0.06268 0.06457 0.06170 0.06109 0.05068 0.85000 0.49849 0.24702 0. 07155 0.10580 0.06697 0.06831 0.05562 0.06615 0. 90000 1.02219 0. 55023 0.23988 0. 10247 0.07266 0.07512 0.07152 0.07086 2.00132 0.95000 1.17265 0. 57646 0.08435 0.21314 0. 07731 0.07915 0.07637 1.00000

LIST Mult	imission Turbofan Drag	Polar TABLE NO.	1 3-DIM	ENSIONAL (1	19X 14X 3)	TABLE LENGTH	725	PAGE	6
ALT = 4	0000. 00000								
C⊑/M	0.76000	0. 78000 0.	80000 0.	82000	0. 84000	0.86000			
0. 10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 45 0. 55 0. 55 0. 60 0. 65 0. 70 0. 75	000 0.03143 000 0.03143 000 0.03207 000 0.03287 000 0.03370 000 0.03370 000 0.03523 000 0.03892 000 0.03488 000 0.04137 000 0.04487 000 0.05836 000 0.05836 000 0.05836 000 0.12025	 ▶ 0. 03284 0. 03304 0. 03351 0. 03434 0. 03547 0. 03701 0. 03892 0. 04471 0. 04937 0. 05860 0. 07842 0. 11818 0. 20066 0. 	03614 0. 03636 0. 03635 0. 03780 0. 03901 0. 04078 0. 04304 0. 05172 0. 06168 0. 08194 0. 11743 0. 18392 0. 31417 0.	04235 04261 04318 04454 04455 04917 05336 06016 07082 08790 12028 17440 27325 46123	0.05839 0.05866 0.05944 0.06173 0.06463 0.06463 0.06465 0.07661 0.08741 0.10362 0.12862 0.17447 0.25035 0.38737 0.64307	0.08732 0.08753 0.08861 0.09214 0.09474 0.10446 0.11474 0.12998 0.15215 0.18580 0.24677 0.34758 0.52860 0.86200			
0.80 0.85 0.90 0.95 1.00	000 0. 22057 000 0. 43441 030 0. 85992 000 1. 65555 000 3. 06249	0. 36979 0. 0. 70404 1. 1. 33124 1. 2. 45032 3. 4. 35618 5.	56810 0 04744 1 91260 2 40664 4 88255 7	. 81606 . 46514 . 60454 . 52508 . 64214	1. 11488 1. 95839 3. 40828 5. 80686 9. 63617	2. 52948 4. 32614 7. 25429 11. 86700			

MILTIMISSION TURBOFAN HIGH SPEED DRAG POLAR, 40000 FT

e (1

× * *

LIST	Multimissio	n STOVE Drag I	Polar TAD	LE NO. I	3-DIMENSIONAL	(19X 14X 3)	TABLE LENG	этн 925	PAGE 1
ALT	≠ 0.00	0000							
c'-	7H	0. 50000	0. 62000	0. 64000	0. 46000	0. 48000	0. 70000	0. 72000	0, 74000
	0 10000	0. 02159	0.02150	0. 02143	0, 02143	0.02149	0. 02159	0. 02181	0. 02217
	0.15000	0. 02189	0.02182	0. 02175	0. 02174	0.02180	0. 02191	0. 02212	0. 02249
	0. 20000	0.02249	0, 02242	0. 02235	0, 02234	0. 02240	0.02251	0. 02272	0. 02309
	0. 25000	0,02338	0.02331	0. 02323	0. 02323	0.02330	0.02340	0. 02362	0. 02400
	0.00000	0.02453	0. 02445	0. 02438	0.02439	0. 02445	0. 02456	0. 02479	0.02516
	0, 35000	0. 02593	0. 02585	0, 02578	0,02580	0. 02587	0. 0259B	0. 02622	0. 02660
	0, 40000	0. 02759	0. 02751	0. 02745	0. 02747	0.02755 -	0. 02769	0. 02793	0, 02833
	0.45000	0. 02950	0.02942	0. 02938	0. 02942	0. 02951	0.02966	0.02993	0. 03037
	0. 50000	0.03166	0.03159	0.03158	0.03164	0.03174	0. 03192	0. 03223	0. 03276
	0, 55000	0.03411	0.03405	0.03408	0.03416	0.03429	0. 03451	0. 03487	0, 03556
	0, 60000	0. 03685	0.03685	0.03671	0.03701	0.03720	0. 03748	0. 03799	0.03910
	0, 65000	0. 03997	0.04001	0.04010	0.04025	0.04049	0. 04086	0.04162	0. 04380
	0, 70000	0, 04342	0.04349	0.04360	0.04381	0.04411	0.04471	0.04521	0. 05022
	0.75000	0.04724	0.04734	0. 04751	0. 04777	0.04823	0, 04920	0.05178	0. 06587
	0. 80000	0,05139	0.05152	0. 05175	0.05209	0.05282	0.05486	0.06667	0.11339
	0.85000	0.05615	0.05634	0. 05662	0. 05720	0.05864	0.06324	0.10960	0. 23124
	0. 90000	0.06120	0.06144	0. 06188	0. 05278	0.06553	0, 07943	0.24034	0. 49130
	0, 95000	0.06652	0. 05583	0.06756	0.06955	0. 09646	0. 23366	0. 54360	1.01505
	1. 00000	0.07210	0. 07266	0.07406	0. 07879	0. 20737	0. 57039	1.16609	1. 99427

. . .

. . .

.

LIST Multi	mission STOVL Drag	Polar TABL	.E.NO. 1	3-DIMENSIONAL	(19% 14% 3)	TABLE LENGTH	925	PAGE	2
ALT =	0. 00000								
CL/H	0. 76000	0.76000	0. 80000	0. 82000	0. 84000	0. 86000			
0, 100	00 0.02276	0. 02369	0. 02644	0. 03209	0.04766	0. 07631			
0. 150	00 0. 02308	0.02402	0.02680	0, 03251	0.04810	0. 07670			
0. 200	00 0.02368	0. 02464	0. 02743	0. 03324	0.04907	0,07800			
9, 250	00 0.02460	0. 02560	0. 02852	0. 03474	0.05151	0. 08170			
0. 200	00 0.02578	0. 02498	0. 02988	0.03662	0.05460	0. 08650			
0, 350	0.02726	0. 02856	0. 03178	0.03970	0.05978	0. 09438			
Ö. 4004	00 0.02904	0. 03059	0.03417	0.04405	0.06688	0, 10481			
0. 450	00 0.03118	0. 03317	0. 03792	0.05094	0.07776	0. 12014			
0. 500	00 0.03372	0. 03651	0.04302	0.06166	0.09399	0.14236			
0. 550	00 0. 03723	0.04117	0. 05306	0.07876	0.11897	0. 17602			
0. 6000	00 0.04202	0.05043	0.07329	0.11079	0, 16471	0, 23690			
0. 650(00 0.05059	0. 07025	0.10867	0.16502	0.24052	0. 33768			
0, 700(0.06814	0.11000	0.17509	0. 25382	0. 37752	0.51971			
0, 750(00 0.11260	0.19242	0. 30530	0.45179	0. 63324	0.95217			
0.8000	00 0.21292	0.36153	0. 55925	0.80667	1, 10513	1. 45716			
0. 8500	00 0.42668	0.69575	1, 03858	1.45578	1. 94970	2. 51984			
0, 9000	0 0, 95220	1. 32298	1, 90381	2, 59527	3. 39872	4. 31667			
0. 9500	00 L.64789	2. 44215	3. 39799	4 51598	5. 79749	7. 24503			
1. 0000	3. 05497	4. 34819	5. B7409	7. 63327	9. 62708	11.85800			

MULTIMISSION STOVL HIGH SPEED DRAG POLAR, SEALEVEL

e ()

-

LISI	Multimiss:	ion STOVL Drag	Polar T/	ABLE NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LE	NGTH 925	PAGE 3
ALT	= 20000.0	00000							
CL	/M	0. 60000	0. 62000	0. 64000	0. 66000	0. 68000	0, 70000	0, 72000	0. 74000
	0 10000	0. 02301	0. 02292	0. 02284	0. 02283	0. 02288	0. 02298	0.02318	0. 02354
	0.15000	0. 02332	0. 02323	0. 02315	0. 02314	0. 02319	0. 02329	0.02349	0. 02385
	0.20000	0.02391	0. 02383	0.02375	0. 02373	0. 02378	0.02388	0.02409	0. 02445
	0.25000	0.02480	0.02472	0.02464	0. 02463	0.02468	0.024/8	0.02500	0.02036
	0.30000	0.02396	0.02387	0.025/9	0.02578	0.02584	0.02394	0.02616	0.02033
	0. 40000	0.02/36	0.02/2/	0.02/19	0.02720	0.02726	0.02/3/	0.02760	0.02797
	0.45000	0.02903	0. 02874	0.02886	0.02888	0.02873	0.02907	0.02931	0.02771
	0.50000	0.03074	0.03085	0.03080	0.03064	0.03316	0.03333	0.03363	0.03415
	0.55000	0.03517	0.03550	0.03552	0.00000	0.03571	0.03592	0.03697	0.03696
	0. 60000	0.03832	0.03832	0.03837	0.03846	0.03864	0.03891	0.03942	0.04052
	0. 65000	0.04147	0.04150	0.04158	0.04172	0.04196	0.04232	0.04306	0.04524
	0. 70000	0. 04495	0.04501	0.04512	0.04531	0.04561	0.04619	0.04769	0.05169
	0.75000	0.04881	0.04890	0.04906	0. 04931	0.04976	0.05072	0.05350	0.06738
	0. 80000	0. 05300	0. 05313	0.05335	0. 05368	0.05440	0.05643	0.04823	0. 11494
	0. 85000	0.05785	0. 05802	0.05829	0. 05886	0.06029	0. 06488	0.11124	0. 23287
	0. 90000	0.06297	0. 06320	0. 06363	0. 06452	0. 06726	0. 10115	0. 24205	0. 49300
	0. 95000	0.06837	0. 06867	0. 06938	0. 07136	0.09827	0. 23545	0. 54538	1.01682
	1.00000	0. 07403	0. 07458	0. 07597	0. 08069	0. 20925	0. 57226	1.16795	1.99613
	Multimissi	on STOVL_Drag	Polar TA	BLE ND. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 4
LIST ALT	Multimissi = 20000.0	on STOVL_Drag 0000	Polar TA	BLE ND. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE 4
LIST ALT CL/	Multimissi = 20000.0 M	on STOVL, Drag 0000 0, 76000	Polar TA 0. 78000	BLE ND. 1 0. 80000	3-DIMENSIONAL 0. 82000	(19X 14X 3) 0. 84000	TABLE LEN 0. 86000	GTH 925	PAGE 4
LIST ALT CL/	flultimissi = 20000.0 M	on STOVL, Drag 0000 0. 76000 0. 05412	Polar TA 0. 78000 0. 02505	BLE ND. 1 0. B0000 0. 02779	3-DIMENSIONAL 0. 82000 0. 03343	(19X 14X 3) 0. 84000 0. 04899	TABLE LEN 0. 86000 0. 07763	GTH 925	PAGE 4
LIST ALT CL/	riultimissi = 20000.0 M 0.10000 0.15000	on STOVL, Drag 0000 0. 76000 0. 02412 0. 02443	Polar TA 0. 78000 0. 02505 0. 02537	BLE ND. 1 0. 80000 0. 02779 0. 02814	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384	(19X 14X 3) 0. 84000 0. 04899 0. 04943	TABLE LEN 0. 86000 0. 07763 0. 07803	GTH 925	PAGE 4
LIST ALT CL/	flultimissi = 20000.0 M 0.10000 0.15000 0.2000	on STOVL_Drag 0000 0.76000 0.02412 0.02443 0.02503	Polar TA 0. 78000 <u>0</u> . 02505 0. 02537 0. 02598	BLE ND. 1 0. B0000 0. 02779 0. 02814 0. 02877	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457	 (19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932	GTH 925	PAGE 4
LIST ALT CL/	flultimissi = 20000.0 M 0.10900 0.15000 0.20000 0.25000	on STOVL, Drag 0000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595	Polar TA 0. 78000 0. 02505 0. 02578 0. 02598 0. 02595	BLE ND. 1 0. 80000 0. 02779 0. 02817 0. 02857	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03408	 (19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.25000 0.25000	on STOVL, Drag 0000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714	Polar TA 0. 78000 0. 02505 0. 02598 0. 02598 0. 02598 0. 02593	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02985 0. 03122	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03408 0. 03794	(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 	TABLE LEN 0. 86000 0. 07763 0. 07932 0. 08302 0. 08302 0. 08783	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.20000 0.25000 0.25000 0.35000	on STOVL, Drag 0000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595 0. 02714 0. 02862	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02823 0. 02823 0. 02823	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02964 0. 03122 0. 03313	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03408 0. 03794 0. 04104	(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08783 0. 09571	GTH 925	PAGE 4
LIST ALT CL/	rlultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.35000 0.35000 0.35000 0.40000	on STOVL, Drag 00000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595 0. 02714 0. 02842 0. 03041	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02823 0. 02591 0. 02591 0. 02591	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02985 0. 03123 0. 03152	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03468 0. 03794 0. 04104 0. 04540	<pre>(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822</pre>	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08302 0. 08783 0. 09571 0. 10614	GTH 925	PAGE 4
LIST ALT CL/	rlultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.30000 0.30000 0.40000 0.45000	on STOVL, Drag 00000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595 0. 02714 0. 02862 0. 03041 0. 03256	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02591 0. 03195 0. 03195 0. 03434	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03122 0. 03122 0. 03122 0. 03552	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03408 0. 03796 0. 04104 0. 04540 0. 05229	<pre>(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910</pre>	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148	GTH 925	PAGE 4
LIST ALT CL/	flultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.30000 0.35000 0.45000 0.45000 0.50000	on STOVL, Drag 00000 0. 76000 0. 02412 0. 02443 0. 02543 0. 02595 0. 02714 0. 02862 0. 03041 0. 03256 0. 03510	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02595 0. 02595 0. 02454 0. 03789	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03122 0. 0313 0. 03552 0. 03528 0. 03528 0. 03528	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03408 0. 03796 0. 04104 0. 04540 0. 05229 0. 04303	<pre>(19X 14X 3) 0.84000 0.04899 0.04943 0.05040 0.05284 0.05593 0.06111 0.06822 0.07910 0.09534</pre>	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08383 0. 09571 0. 10614 0. 12148 0. 12148	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.35000 0.35000 0.45000 0.55000 0.55000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03510 0.03510 0.03862	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02595 0. 02595 0. 02595 0. 02595 0. 02591 0. 03454 0. 03789 0. 04256	BLE NO. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03122 0. 03123 0. 03522 0. 03728 0. 04439 0. 04439 0. 04439	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03408 0. 03796 0. 04104 0. 04540 0. 05229 0. 06303 0. 08013	(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 07934 0. 12033 	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148 0. 14371 0. 17738	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.20000 0.20000 0.35000 0.35000 0.40000 0.45000 0.55000 0.55000 0.55000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03510 0.03510 0.03862 0.04343	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02823 0. 02591 0. 02823 0. 02591 0. 03195 0. 03434 0. 03789 0. 04256 0. 04256 0. 05183	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03123 0. 03552 0. 03728 0. 03728 0. 03744 0. 05444 0. 07468	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03457 0. 04104 0. 04540 0. 05229 0. 04303 0. 68013 0. 11238	(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 09534 0. 12033 0. 16609	TABLE LEN 0. 86000 0. 07763 0. 07903 0. 07932 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148 0. 12148 0. 123828 0. 14371 0. 17738 0. 23828	GTH 925	PAGE 4
LIST ALT CL/	rlultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.35000 0.35000 0.45000 0.45000 0.55000 0.60000 0.65000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03862 0.03862 0.03862 0.04343 0.05202	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02455 0. 02823 0. 02591 0. 03195 0. 03195 0. 03454 0. 03789 0. 64256 0. 05183 0. 07167	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02985 0. 03123 0. 03552 0. 03552 0. 03728 0. 03444 0. 05444 0. 07468 0. 11009	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03457 0. 03457 0. 04104 0. 04540 0. 05229 0. 04303 0. 08013 0. 11238 0. 116443	<pre>(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 09534 0. 12033 0. 16609 0. 24192 0. 07905</pre>	TABLE LEN 0. 86000 0. 07763 0. 07932 0. 08302 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148 0. 14371 0. 17738 0. 23828 0. 33907 0. 5314	GTH 925	PAGE 4
LIST ALT CL/	rlultimissi = 20000.0 M 0.10000 0.15000 0.20000 0.25000 0.35000 0.40000 0.40000 0.40000 0.50000 0.50000 0.60000 0.60000 0.70000	on STOVL, Drag 00000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595 0. 02714 0. 02862 0. 03041 0. 03256 0. 03510 0. 03862 0. 04343 0. 05202 0. 06960	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02598 0. 02595 0. 02823 0. 02591 0. 03195 0. 03195 0. 03195 0. 03195 0. 03789 0. 04256 0. 05183 0. 07167 0. 11146	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02985 0. 03122 0. 03122 0. 03152 0. 03152 0. 03552 0. 03928 0. 04439 0. 05444 0. 07468 0. 11009 0. 17654 0. 20(75)	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03457 0. 03457 0. 04104 0. 04540 0. 05227 0. 06303 0. 11238 0. 126526 0. 45527	<pre>(19X 14X 3) 0.84000 0.04899 0.04943 0.05040 0.05284 0.05593 0.06111 0.06822 0.07910 0.09534 0.12033 0.16609 0.24192 0.37895 0.2471</pre>	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08793 0. 08783 0. 10614 0. 12148 0. 14371 0. 17738 0. 33907 0. 52014	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.35000 0.45000 0.55000 0.55000 0.65000 0.65000 0.70000 0.75000	on STOVL, Drag 00000 0. 76000 0. 02412 0. 02443 0. 02503 0. 02595 0. 02714 0. 02862 0. 03041 0. 03256 0. 03510 0. 03862 0. 04343 0. 05202 0. 06960 0. 11410	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02598 0. 02595 0. 02595 0. 02823 0. 02991 0. 03195 0. 03789 0. 04254 0. 051853 0. 07167 0. 11146 0. 19391 0. 24205	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03122 0. 0313 0. 03552 0. 03552 0. 03528 0. 04439 0. 05444 0. 07468 0. 11009 0. 17654 0. 30678 0. 54077	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03408 0. 03796 0. 04104 0. 04540 0. 05229 0. 06303 0. 08013 0. 11238 0. 16643 0. 26524 0. 45327 0. 90919	 (19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 07954 0. 12033 0. 16609 0. 24192 0. 37895 0. 63471 1. 10444 	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08302 0. 09571 0. 10614 0. 12148 0. 14371 0. 23828 0. 33907 0. 52014 0. 85363 1. 45867	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.25000 0.25000 0.35000 0.35000 0.45000 0.55000 0.55000 0.65000 0.65000 0.75000 0.75000 0.80000 0.75000 0.80000 0.85000 0.880000 0.880000 0.880000 0.880000 0.880000 0.880000 0.880000 0.880000 0.880000 0.8800000 0.880000 0.880000 0.880000 0.880000000000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03510 0.03862 0.04343 0.05202 0.05202 0.05202 0.11410 0.21446 0.021446	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02598 0. 02595 0. 02595 0. 02595 0. 02595 0. 02595 0. 02591 0. 03175 0. 03454 0. 03789 0. 04256 0. 05183 0. 07167 0. 11146 0. 19391 0. 36306 0. 69235	BLE NO. 1 0. 80000 0. 02779 0. 02814 0. 02986 0. 03122 0. 03122 0. 03123 0. 03522 0. 03728 0. 04439 0. 05444 0. 07468 0. 11009 0. 17654 0. 30678 0. 30678 0. 56077 1. 04015	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03408 0. 03796 0. 04104 0. 04540 0. 05229 0. 06303 0. 08013 0. 11238 0. 18643 0. 26526 0. 45327 0. 80818 1. 45737	<pre>(19X 14X 3) 0.84000 0.04899 0.05040 0.05284 0.05593 0.06111 0.06822 0.07910 0.09534 0.12033 0.16609 0.24192 0.37895 0.63471 1.10664 1.95028 </pre>	TABLE LEN 0. 86000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148 0. 14371 0. 12148 0. 14371 0. 12738 0. 23828 0. 33907 0. 52014 0. 85363 1. 45867 2. 52142	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.20000 0.20000 0.35000 0.40000 0.40000 0.50000 0.50000 0.50000 0.75000 0.75000 0.75000 0.800000 0.800000 0.800000 0.800000 0.800000 0.800000 0.80000000000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03510 0.03510 0.03862 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02599 0. 03789 0. 03789 0. 04556 0. 07167 0. 11146 0. 19391 0. 36306 0. 69733 1. 72649 1. 72649 1. 72649 1. 72749 1. 72649 1. 72749 1. 727	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02946 0. 03122 0. 03122 0. 03123 0. 03552 0. 03552 0. 03552 0. 03552 0. 03552 0. 03552 0. 03552 0. 03544 0. 05444 0. 07468 0. 11009 0. 17654 0. 30678 0. 30678 1. 90548 1. 90548	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03457 0. 04104 0. 04540 0. 05229 0. 04303 0. 08013 0. 11238 0. 14643 0. 24524 0. 45327 0. 80818 1. 45737 2. 59693	<pre>(19X 14X 3) 0. 84000 0. 04899 0. 04943 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 09534 0. 12033 0. 16609 0. 24192 0. 37895 0. 63471 1. 10664 1. 95028 3. 40038</pre>	TABLE LEN 0. 860000 0. 07763 0. 07803 0. 07932 0. 08303 0. 09571 0. 10614 0. 12148 0. 14371 0. 17738 0. 23828 0. 33907 0. 52014 0. 85363 1. 45867 2. 32142 4. 31832	GTH 925	PAGE 4
LIST ALT CL/	Hultimissi = 20000.0 M 0.10000 0.15000 0.20000 0.20000 0.35000 0.40000 0.45000 0.45000 0.55000 0.55000 0.55000 0.75000 0.75000 0.85000 0.90000 0.95000	on STOVL, Drag 00000 0.76000 0.02412 0.02443 0.02503 0.02595 0.02714 0.02862 0.03041 0.03256 0.03510 0.03862 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04343 0.05202 0.04443 0.05202 0.03510 0.03520 0.03510 0.03510 0.03520 0.03510 0.03520 0.03510 0.03540 0.03510 0.03520 0.03530 0.03520 0.03530 0.03520 0.03530 0.03520 0.03530 0.03530 0.03540 0.03530 0.03540000000000000000000000000000000000	Polar TA 0. 78000 0. 02505 0. 02537 0. 02598 0. 02595 0. 02823 0. 02823 0. 02891 0. 03195 0. 03195 0. 03454 0. 03789 0. 04256 0. 05183 0. 07167 0. 11146 0. 19391 0. 36306 0. 69733 1. 32466 2. 44391	BLE ND. 1 0. 80000 0. 02779 0. 02814 0. 02877 0. 02986 0. 03122 0. 03123 0. 03552 0. 03928 0. 04439 0. 05444 0. 07468 0. 11009 0. 17654 0. 30678 0. 30678 0. 56077 1. 04018 1. 90548 3. 39973	3-DIMENSIONAL 0. 82000 0. 03343 0. 03384 0. 03457 0. 03457 0. 03457 0. 034540 0. 04104 0. 04540 0. 05229 0. 04303 0. 11238 0. 16433 0. 126524 0. 45327 0. 80818 1. 45737 2. 59693 4. 51772	(19X 14X 3) 0. 64000 0. 04899 0. 05040 0. 05284 0. 05593 0. 06111 0. 06822 0. 07910 0. 07910 0. 07934 0. 12033 0. 16609 0. 24192 0. 37895 0. 63471 1. 10664 1. 95028 3. 40038 5. 79922 	TABLE LEN 0. 860000 0. 07763 0. 07803 0. 07932 0. 08302 0. 08783 0. 09571 0. 10614 0. 12148 0. 14371 0. 17738 0. 23828 0. 33907 0. 52014 0. 85363 1. 45867 2. 32142 4. 31832 7. 24476	GTH 925	PAGE 4

MULTIMISSION STOVL HIGH SPEED DRAG POLAR, 20000 FT

۰. F

.

.

4 8 4

٠

· -

a 1 g

LIST Hultimissio	n STOVL Drag P	olar TABL	E NO. 1	3-DIMENSIONAL	(19X 14X 3)	TABLE LEN	GTH 925	PAGE
ALT = 40000.00	0000						0 70000	0
CL/M	0. 60000	0. 62000	0.64000	0. 66000	0. 68000	0. 70000	0.72000	Ψ.
	0.00504	0 00494	0 02484	0.02482	0 02486	0. 02494	0. 02514	O .
0. 10000	0. 02504	0.02474	0.02515	0.02512	0.02516	0. 02524	0. 02544	Ο.
0.15000	0. 02534	0.02324	0.02574	0.02571	0.02575	0.02584	0. 02604	٥.
0.20000	0.02593	0.02384	0.025/4	0.02661	0.02665	0.02674	0. 02694	٥.
0. 25000	0.02583	0.020/3	0.02004	0.02001	0.02782	0.02791	0.02811	0.
0.30000	0.02799	0.02789	0.02777	0.02920	0.02925	0.02934	0. 02956	0.
0.35000	0.02940	0.02930	0.02720	0.02/20	0.03095	0.03105	0. 03128	0.
0. 40000	0.03107	0.03097	0.03088	0.03285	0.03292	0. 03305	0. 03330	0.
0.45000	0.03299	0.03267	0.03263	0.03509	0.03517	0.03533	0. 03562	0.
0.50000	0.03518	0.03308	0.03303	0.03367	0.03774	0.03794	0. 03828	0.
0.55000	0.03765	0.03757	0.03757	0.03753	0.04069	0.04094	0. 04144	0.
0. 60000	0.04043	0.04040	0.04044	0.04392	0.04404	0.04439	0. 04512	0.
0.65000	0.04361	0.04363	0.04367	0.04345	0.04773	0.04830	0. 04978	0
0. 70000	0.04713	0.04/17	0.04/27	0.04740	0.05194	0.05289	0. 03565	0
0. 75000	0.05105	0.05112	0.05542	0.05100	0.05664	0.05866	0. 07044	0
0.80000	0.00001	0.05042	0.05052	0.06123	0.06264	0.06722	0.11356	0.
0.85000	0.06020	0.04571	0.06612	0.06700	0.06972	0. 10360	0.24448	0.
0.90000	0.05330	0.00071	0.00012	0 07395	0.10084	0. 23801	0. 54792	1.
J. 75000	0.0/101	0.0/127	0.07177	5. 57 57 5	0.000	A 57400	1 17060	1

. . .

LIST	Multimission	STOVL Drag	Polar	TABLE NO.	1	3-DIMENSIONAL	(19X 14X	3)	TABLE LENGTH	923	PAGE	6
ALT	= 40000.0000	00										
CL/	M	0. 76000	0. 7800	D 0.6	00000	0. 82000	0. 84000	٥	86000			
	0. 10000	0. 02505	0 . 0269	7 0.0	2970	0. 03534	0. 05088	0	. 07952			
	0.15000	0.02636	0. 0272	9 0.0	3004	0. 03573	0. 05132	0	. 07990			
	0.20000	0. 02696	0. 0279	0.0	3067	0. 03647	0.05228	0	. 08119			
	0. 25000	0.02788	0, 0288	7 0.0	3177	0.03798	0. 05473	0	. 08490			
	0. 30000	0.02907	0.0301	5 0.0	3314	0.03986	0.05782	0	. 08971			
	0. 35000	0.03056	0.0318	4 0.0	3505	0.04295	0.06301	0	. 09760			
	0. 40000	0.03236	0. 0338	9 0.0	3745	0.04731	0.07013	0	. 10904			
	0. 45000	0.03452	0.0364	a 0.0	4122	0.05422	0.08102	0	12338			
	0.50000	0 03707	0.0398	4 0.0	4634	0.06496	0.09727	ō	14563			
	0. 55000	0 04060	0 0445	3 0 0	5640	0.08208	0.12227	ō	17931			
	0 60006 0	0 04543	0.0538		7646	0.11435	0.16805	ō	24023			
	0 65000	0.05406	0.0737	0 0 1	1210	0 16843	0 24391	ō	34106			
	0 70000	0.07168	0 1135		7859	0.26730	0 38098	ō	52216			
	0 75000	0 11623	0 1960	3 0.7	10889	0.45537	0.63680	ō	85571			
	0 80000	0.21645	0.3652		60007	0.81034	1 10879	1	46080			
	0 85000	0.42040	0.0002		4045	1 45947	1 05253		52366			
	0.00000	0.95400	1 3270		00704	2 59930	3 40273	· 2	32066			
	0. 95000	1 15217	2. 3270		0,00	A 50000	5 00140	7	24920			
	0. 70000	1.0321/	£. 4404	1 J. 4	Veee	4. J2020	J. 60107					

MULTIMISSION STOVL HIGH SPEED DRAG POLAR, 40000 FT

.

•

1 1 1

THIS PAGE LEFT INTENTIONALLY BLANK

•

APPENDIX B

CALCULATION OF RELIABILITY EFFECTS ON AIRCRAFT DEPLOYED

Section 8.1.1.2 calculates the number of aircraft required to support the mission neglecting the reliability of the aircraft. When the aircraft reliability is not equal to one, more aircraft must be available than the number of required mission capable aircraft. The average number of aircraft required is equal to the number of mission capable aircraft divided by the aircraft reliability; however, this satisfies the mission requirements only 50% of the time. In order to estimate the number required for other levels of confidence, a more sophisticated approach is required. The Binomial probability distribution is appropriate for this estimation.

The Binomial probability distribution is expressed as:

$$P(n,i) = {n \choose i} * p^{i} * q^{(n-i)}$$

where:

P(n,i) is the probability of i successes out of n trials.

is the number of combinations of n things taken i at a time.

This is calculated as
$$\frac{(n)!}{(i)!(n-i)!}$$

where ()! represents the factorial function.

```
p is the probability of a success on each trial.
```

q is the probability of a failure on each trial and is equal to
 (1-p).

In our calculations we will assign:

p as the reliability of an aircraft, the probability that it is mission capable.

i as the number of mission capable aircraft assumed.

n as the number of aircraft available to provide i number of aircraft.

This leads to:

For our purpose, we wish to calculate $P_2(n,m)$; the probability that <u>at least</u> m aircraft selected from the n available will be mission capable. This can be calculated as:

$$P_2(n,m) = \sum_{i=m}^{n} P(n,i)$$

191

Fully expanding the expression, we get:

$$P_2(n,m) = \sum_{i=m}^{n} \frac{(n)!}{(i)!(n-i)!} * p^i * (1-p)^{(n-i)}$$

As an example, let us assume an aircraft reliability of 85%, that five aircraft are required, and that seven aircraft are available. This gives:

$$P_{2}(7,5) = P(7,5) + P(7,6) + P(7,7)$$

$$= \frac{(7)!}{(5)!(2)!} (.85)^{5} (.15)^{2} + \frac{(7)!}{(6)!(1)!} (.85)^{6} (.15)^{1} + \frac{(7)!}{(7)!(0)!} (.85)^{7} (.15)^{0}$$

$$= .2097 + .3960 + .3206$$

= .9262

This can be interpreted as meaning that seven aircraft will be able to provide five mission capable aircraft with a 93% confidence level.

By repeating the above calculations for many combinations of aircraft required (m) and aircraft available (n), Table B-I was created. This Table was then used in Section 8.1.1.2 to determine that nine aircraft with 85% reliability will provide the six mission capable aircraft required with at least a 90% confidence level. This entry is shown on Table B-I as the example.

TABLE B-1 NUMBER OF AVAILABLE AIRCRAFT REQUIRED

UNIT RELIABILITY = 0.850

1 1 H

MISSION	CAPABIE	MISSION CONFIDENCE LEVEL										
AIRCRAFT	REQUIRED	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	
1		1	1	1	1	1	1	1	2	2	2	
2		2	2	2	2	2	3	3	3	3	4	
3		3	3	4	4	4	4	4	4	5	5	
4		4	5	5	5	5	5	5	6	6	. 6	
5		6	6	6	6.	6	6	7	7	7	8	
6		7	7	7	7	7	8	8	8	9	9	
7		8	8	8	8	9	9	9	10	10	11	
8		9	9	10	10	10	10	10	11	11	12	
9		10	11	11	11	11	11	12	12	12	13	
10		12	12	12	12	12	13	13	13	14	15	
11		13	13	13	13	14	14	14	14	15	16	
12		14	14	14	14	15	15	15	16	16	17	
13		15	15	15	16	16	16	17	17	18	18	
14		16	16	17	17	17	17	18	18	19	20	
15		17	18	18	18	18	19	19	19	20	21	
16		19	19	19	19	20	20	20	21	21	22	
17		20	20	20	21	21	21	22	22	23	24	
18		21	21	21	22	22	22	23	23	24	25	
19		22	22	23	23	23	24	24	24	25	26	
20		23	24	24	24	24	25	25	26	26	27	
21		24	25	25	25	26	26	26	27	28	29	
22		26	26	26	26	27	27	28	28	29	30	
23		27	27	27	28	28	28	29	29	30	31	
24		28	28	29	29	29	30	30	31	31	32	
25		29	30	30	30	31	31	31	32	33	34	

Example: Six mission capable aircraft are required. A 90% confidence level is desired. Looking in the "6" row and "0.90" column gives "9" aircraft with 0.85 reliability required.

e 3 +

4 14 4

THIS PAGE LEFT INTENTIONALLY BLANK
BIBLIOGRAPHY

- "GE36/UDF1 Studies A16 and A17 Installed Performance," Advanced Propulsion Systems Coordination Memo #GE-84-008, General Electric Company, 25 July 1984.
- "Users Manual for Steady State Performance STS 742/743 Study Engine" PWA INST 1194/1193, Pratt and Whitney Engineering Division, United Technologies, 21 December 1984.
- 3. "Users Manual for Steady State Performance, STF 686 Study Engine," PWA INST 1145, Pratt and Whitney Engineering Division, United Technologies, 22 November 1982.
- 4. "Users Manual for Steady State Performance, STS 678/STS 679 Study Engine," PWA INST 1139, Pratt and Whitney Engineering Division, United Technologies, 1 May 1983.
- 5. "GE36/UDF2 Study B22 Unducted Fair Engine Steady State Performance Computer Program Users Manual," R85AEB474, Advanced Engineering Technologies Dept., General Electric Co., 16 Sept. 1985.

Carrier Suitability Specifications:

SD-24L, Vol. I General Specification for Design and Construction of Aircraft Weapon Systems

MIL-L-22589C(AS) Launching System, Nose Gear Type, Aircraft

MIL-B-85110(AS) Bar, Repeatable Holdback, Aircraft Launching

MIL-A-18717B(AS) Arresting Hook Installations, Aircraft

MIL-T-81259A(AS) Tie Downs, Airframe Design

MIL-STD-850B Aircrew Station Vision Requirements

MIL-STD-805A Towing Fittings and Provisions for Fixed Wing Aircraft

MIL-STD-2066(AS) Catapult and Arresting Gear Forcing Functions for Aircraft Structural Design

NAEC MISC. OA136 Catapult Minimum Performance and Load Factors for Aircraft Design

NAEC MISC. 08744 MK 7 Mod 3 Arresting Gear Performance

NAEC MISC. 08784 MK 7 Mod 2 Barricade Performance

NAEC MISC. 0A114 C7 Minimum Performance

NAEC 06900 Aircraft Carrier Reference Manual

6. Pierkins, C.D. and Hage, RE., "Airplane Performance Stability and Control," John Wiley and Sons, Inc., New York, 1949.

DT/86-234 1.1/P2

DISTRIBUTION LIST

NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135	
	No. of Copies
Attn: Report Control Office, MS 60-1 Library, MS 60-3 L. J. Bober, MS 86-7 L. H. Fishbach, MS 6-12 E. J. Graber, MS 86-7 J. F. Groeneweg, MS 86-7 S. M. Johnson, MS 100-5	1 2 1 1 1 1 1
D. C. Mikkelson, MS 6-12 J. E. Rohde, MS 86-7 J. B. Whitlow, MS 86-7 G. K. Sievers, MS 86-7 W. C. Strack, MS 6-12 J. A. Ziemianski, MS 86-1 R. P. Dengler, MS 86-7	1 1 1 1 1 25
NASA Scientific and Technical Information Facility P.O. Box 8757 Baltimore Washington International Airport, MD 21240	
Attn: Accessioning Department	20
NASA Headquarters Washington, DC 20546	
Attn: RP/J. R. Facey RJ/C. C. Rosen	1 1
NASA Ames Research Center Moffett Field, CA 94035	
Attn: D. P. Bencze, MS 227-6 R. C. Smith, MS 227-6	1 1

s

NASA Dryden Flight Research Center P.O. Box 273 Edwards, CA 93523 1 Attn: R. S. Baron, MS D-FP NASA Langley Research Center Hampton, VA 23665 C. Driver, MS 249A Attn: 1 1 W. P. Henderson, MS 280 R. W. Koenig, MS 352 1 L. J. Williams, MS 286 1 1 Research Information Center, MS 151A Air Force Aero Propulsion Lab Wright Patterson, AFB, OH 45433 Attn: J. Chuprin, ASD/XRH 1 R. Haas 1 3 H. F. Jones, AFWAL/POSL R. V. Wible, AFWAL/FIAC 1 Naval Air Systems Command Jefferson Plaza #1 Arlington, VA 20360 Attn: G. Derderian, AIR 310-E 3 D. Donatelli, AIR 5223-B2 1 1 J. Klapper, AIR 532C-1 Naval Air Propulsion Center P.O. Box 7176 Trenton, NJ 08628 Attn: P. J. Mangione, MS PE-32 2 1 R. Valori Code PE 34 Allison Gas Turbine Division General Motors Corporation P.O. Box 420 Indianapolis, IN 46206-0894 Attn: D. H. Quick, MS U-3 1 Ronald Riffel 1

Allison Gas Turbine Operations General Motors Corporation P.O. Box 894 Indianapolis, IN 46206-0894 1 Attn: R. D. Anderson, MS T-18 1 A. S. Novick, MS T-18 1 D. A. Wagner, MS T-18 Beech Aircraft Corporation Wichita, KS 67201 3 Attn: R. W. Awker, E8 Boeing Commercial Airplane Company P.O. Box 3707 Seattle, WA 98124 Attn: G.P. Evelyn, MS 72-27 3 1 Franklin Davenport MS 9W-61 Cessna Aircraft Company P.O. Box 154 Wichita, KS 67201 Attn: Dave Ellis, Dept. 178 2 1 John H. Wells Douglas Aircraft Co. 3855 Lakewood Blvd. Long Beach, CA 90801 Attn: R. F. Chapier, MS 36-41 1 1 S. S. Harutunian, MS 36-41 1 E. S. Johnson, MS 36-41 R. H. Liebeck, MS 36-81 1 G. H. Mitchell, MS 36-41 1 1 A. Mooiweer, MS 36-81 1 F. C. Newton, MS 35-84 R. A. Wright, MS 35-74 1

The Garret Corporation One First National Plaza Suite 1900 Dayton, OH 45402 Attn: A.E. Hause 1 General Electric Company Aircraft Engine Business Group 1000 Western Avenue Lynn, MA 01905 2 Attn: R. J. Willis, Jr., MS WL 345 General Electric Company Aircraft Engine Group One Neumann Way Cincinnati, OH 45215 J. E. Johnson, MS H6, Bldg. 305 4 Attn: General Electric P.O. Box 81186 Cleveland, OH 44181 Attn: M. H. Rudasill 1 Grumman Aerospace Corporation Bethpage, NY 11714 N. F. Dannenhoffer, MS C32-05 1 Attn: C. Hoelzer 1 J. Karanik, MS C32-05 1 1 C. L. Mahoney, MS C42-05 Gulfstream Aerospace Corporation P.O. Box 2206 Savannah, GA 31402-2206 R. J. Stewart, MS D-04 Attn: 1 1 Gary McKay Ronald Wodkowski 1

Hamilton Windsor L	Standard Div., UTC ocks, CT 06096	
Attn:	J. A. Baum, MS 1-2-11 S. H. Cohen, MS 1-2-11 B. S. Gatzen, MS 1-2-11 M. G. Mayo, MS 1A-3-2	1 1 2 2
Hartzell P.O. Box 1800 Covi Piqua, OH	Propeller Products 1458 ngton Avenue 45356	
Attn:	A. R. Disbrow Farzin Satari Mark Spoltman	1 1 1
Lockheed- P.O. Box Burbank,	California Company 551 CA 91503	
Attn:	A. R. Yackle, Bldg. 90-1, Dept. 69-05	2
Lockheed- 86 south Marietta,	Georgia Company Cobb Drive GA 30063	
Attn:	W. E. Arndt, MS D/72-17, Zone 418 R. H. Lange, MS D/72-79, Zone 419 D. M. Winkeljohn, MS D/72-79, Zone 419 J. R. Sears, MS D/72-09, Zone 419	4 1 2 1
Pratt & W United Te Commercia 400 Main East Hart	hitney Aircraft chnologies Corporation 1 Products Division Street ford, CT 06108	
Attn:	J. Godston, MS 162-25 A. McKibben, MS 163-05 C. Reynolds, MS 162-25 N. Sundt, MS 162-26 Leonard Aceto, MS 162-26 Jack Johnson, MS 162-26	1 1 1 1 1

Pratt & Whitney Aircraft United Technologies Corporation Engineering Division 24500 Center Ridge Road Westlake, OH 44145 Attn: G. L. Kosboth, Suite 280 Pratt & Whitney Aircraft United Technologies Corporation Military Products Division P.O. Box 2691 West Palm Beach, FL 33402 L. Coons, MS 711-69 Attn: W. King, MS 702-05 H. D. Snyder, MS 711-67 S. Spoleer, MS 702-50 H. D. Stetson, MS 713-09 Sikorsky Aircraft Transmission Engineering North Main Street Stratford, CN 06601 Attn: R. Stone, MS S-318A Williams International 2280 West Maple Road P.O. Box 200 Walled Lake, MI 48088 Attn: Edward Lays, MS 4-9 Garrett Turbine Engine Company P.O. Box 5217 111 S. 34th Street Phoenix, AZ 85010 Michael L. Early, Dept. 93-280, Attn: MS 503/3AS Walter Blackmore

1

2

1

1

1

1 1

3

1

1

1

Air Transport Association 1709 New York Avenue, NW Washington, DC 20006 1 Attn: D. J. Collier Delta Air Lines Inc. Hartsfield Atlanta International Airport Atlanta, GA 30320 2 Attn: J. T. Davis, Engineering Department Federal Express P.O. Box 727-4021 Memphis, TN 38194 1 Attn: B. M. Dotson, MS 4021 Ozark Air Lines Inc. P.O. Box 10007 Lambert St. Louis Airport St. Louis, MO 63145 1 Attn: Phil Rogers - Engineering Dept. Trans World Airlines Inc. 605 Third Avenue New York, NY 10016 1 Attn: Engineering Department United Air Lines San Francisco International Airport Attn: Aircraft Development Manager San Francisco, CA 94128 2 Attn: Engineering Department

Teledyne CAE 1330 Laskey Road P.O. Box 6971 Toledo, OH 43612-0971 Michael D. Rudy Attn: Brijendra Singh Northrup Aircraft Company One Northrup Hawthorne, CA 90250 Attn: Robert Kelly, MC 3221/52 Eustis Directorate U.S. Army Air Mobility R & D Laboratory Fort Eustis, VA 23604 Attn: James Gomez, Jr., Aviation Applied Technology Avco Lycoming Textron 550 S. Main Street Stratford, CT 06497 Attn: Ambrose Hoffman Heinz Moellman R. R. Ossi William Schneider Cessna Aircraft Company McCauley Accessory Division 3535 McCauley Drive Vandalia, OH 45377 Attn: Harry Starnes

2 1

1

1

1 1 1

1

1

4

.-

1. Report No.	··	2. Government Accession	No.	3. Recipient's Catalog N	0.
CR 175104					
4. Title and Subtitle				5. Report Date	
	Multiple Purpos	e Subsonic Naval	Aircraft	Santombor 108	26
	(MPSNA) -		. (September 190	
	Multiple Applic	ation Proptan Stu	dy (MAPS)	6. Performing Organizati	on Code
7. Author(s)	R.M. Engelbeck	M.A. Paige		8. Performing Organizati	on Report No.
	C.T. Havey	-		0500-11313-1	
	A. Klamka			10. Work Unit No.	
	C.L. McNeil				
9. Performing Organi	ization Name and Address	·, ₹, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
	Boeing Military	Airplane Company		11. Contract or Grant No.	,
	P.O. Box 7730			NAS3-24529	
	Wichita, Kansas	67277-7730		13. Type of Report and P	eriod Covered
12. Sponsoring Agenc	y Name and Address	···· •			
	National Aerona	utics and Space A	dministration	Contractor Fir	al Report
	Lewis Research	Center		14. Sponsoring Agency C	ode
	21000 Brookpark	Road	,		
·	Cleveland, Ohio	44135	·	535-03-01	- <u></u>
15. Supplementary No	otes		•		4
16. Abstract Study requir suitability, Conceptual c a minimum mi Fan (UDF), t	ements, assumpti , aircraft missic designs were exec ission aircraft u the Propfan and a	ons and guideline ons, technology av cuted for two miss using three differ an advanced Turbos	es were identi vailability, a sions, a full rent propulsio fan. Detaileo	fied regardin and propulsion of multimission a on systems, the d aircraft opti	g carrier considerations ircraft and <u>UnDucted</u> mization
was complete spot factors effects of S plan was ger airframe cor a comparison against a tu	a on those confi s. Propfan STOVL STOVL on gross with nerated to idention ntractors standpo n of the UDF and urbofan with equi	conceptual designs, spot factor and fy additional in bint. Life cycle propfan configurativalent state of	ng gross werg gns were exerc d cost. An ac vestigation op cost analysis ations agains the art turbo	ised also to s dvanced technol oportunities fr was accomplis t each other as -machinery.	how the ogy research om an hed yielding well as
17.Key Words (Sugg Propfan, mu AEW, ASW, C Aircraft	ested by Author(s)) lti-Mission, Adv arrier-Based, Mu	anced Turboprops, lti-Mission Navy	18. Distribution Statem Limited This docum distributi September	ent Stribution ent will remain on limitation u 1988	n under until
19. Security Classif.	(of this report)	20. Security Classif. (of this	page) ·	21. No. of pages	22. Price*
Unclassifi	ed	Unclassified		204	

.

ی بر بر

*For sale by the National Technical Information Service, Springfield, Virginia 22161

