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AN UNCONDITIONALLY STABLE RUNGE-KUTTA METHOD FOR UNSTEADY FLOWS 

Abst rac t  
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Cleveland, OH 44135 

A quasi-three-dimensional analysis has been devel- 
oped for unsteady rotor-stator interaction in turboma- 
chinery. The analysis solves the unsteady Euler or thin- 
layer NavierStokes equations in a body-fitted coordi- 
nate system. It accounts for the effects of rotation, ra- 
dius change, and stream-surface thickness. The Baldwin- 
Lomax eddy-viscosity model is used for turbulent flows. 
The equations are integrated in time using a four-stage 
Runge-Kutta scheme with a constant time step. Im- 
plicit residual smoothing has been employed to acceler- 
ate the solution of the time-accurate computations. The 
scheme is described and stability and accuracy analyses 
are given. Results are shown for a supersonic through- 
flow fan designed at  NASA Lewis Research Center. The 
rotorstator blade ratio was taken as 1:l. Results are also 
shown for the first stage of the Space Shuttle Main Engine 
high pressure fuel turbopump. Here the blade ratio is 2:3. 
Implicit residual smoothing was used to increase the time 
step limit of the unsmoothed scheme by a factor of six 
with negligible differences in the unsteady results. We 
feel that the implicitly smoothed Runge-Kutta scheme 
is easily competitive with implicit schemes for unsteady 
flows while retaining the simplicity of an explicit scheme. 

time steps approaching those used by implicit schemes 
but retains the speed and simplicity of explicit schemes. 

Many of the numerical tools used in the analysis of 
isolated blades can be used for time-accurate rotor-stator 
interaction analysis. Here the quasi-three-dimensional 
Euler or thin-layer NavierStokes equations are solved on 
body fitted C-grids. An explicit four-stage Runge-Kutta 
algorithm is used with a constant time step. An implicit 
residual smoothing procedure is used to increase the time 
step so that a converged periodic solution is reached in 
fewer iterations. Computer time is reduced by vectorita- 
tion. Most turbomachinery analyses assume periodicity 
from blade to blade. This makes it possible to analyze 
one blade only. Turbomachinery is designed with un- 
equal number of blades to avoid forced vibration prob- 
lems. Therefore a full unsteady analysis must include at 
least a few passages on each wheel. 

The numerical method is presented with viscous re- 
sults for a supersonic throughflow (STF) fan designed 
a t  NASA Lewis Research Center. Comparisons are 
made between viscous results with and without residual 
smoothing for a scaled 1:l rotor:stator blade configura- 
tion of the fan. The solution procedure has also been 
applied to the first stage of the Space Shuttle Main En- 
gine (SSME) high pressure turbopump. Results are pre- 
sented on a 2:3 stator:rotor blade configuration of the 
turbopump. 

Introduction 

Governing Equations 

The major thrust of the computational analysis of 
turbomachinery to date has been the steady state so- 
lution of isolated blades using mass-averaged inlet and 
exit conditions. Unsteady flows differ from the steady 
solution due to interaction of pressure waves and wakes 
between blade rows. To predict the actual complex flow 
conditions, one must look a t  the time-accurate solution 
of the entire turbomachine. 

Several solution procedures have been developed to 
solve unsteady flow in turbomachinery(1-6) including our 
use of an explicit Runge-Kutta scheme as described in 
(7). A limitation of an explicit scheme in predicting time 
accurate flows is the small time step necessary to main- 
tain numerical stability. Residual smoothing was intro- 
duced by Lerat(8) for application to the Lax-Wendroff 
scheme. Jameson(9) and others( 10-11) have applied 
a similar techique to Runge-Kutta Schemes for steady 
flows. The residual smoothing technique allows a larger 
time step to be taken without affecting the accuracy of 
the scheme. The motivation behind the present work 
is to use implicit residual smoothing to greatly increase 
the small time step required for stability of the Runge- 
Kutta scheme, while maintaining second order accuracy 
in both time and space. The resulting scheme allows 

The axisymmetric (m, 9) coordinate system used 
for the quasi-three-dimensional analysis is shown in 
Fig. 1. Here the m-coordinate is defined by 

(dm)' = ( d ~ ) ~  + (dr)' 

and the 0-coordinate is defined by: 

9 = 9' - R t  

where 0' is fixed in space and 9 rotates with the blade 
row with angular velocity n. The radius r and the stream 
surface thickness h are taken to be known functions of m. 

The flow equations are written in the (m, 9) system 
(see Refs. 12 and 13) and are then transformed to a 
general body-fitted (e, r]) system using standard meth- 
ods. The thin-layer approximation is used to eliminate 
all viscous derivatives in the streamwise (0 direction. 
The final equations are as follows: 

(2) 

(3) 
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The inviscid flux terms are given by: 

The relative contravariant velocity components We 
and W'J along the [ and r] grid lines are given b y  

W' = [mu, + Eewe; Wv = qmum + Vewe (5 )  

Here we = 
component. The energy and pressure are given by: 

- rR is the relative tangential velocity 

e = p[C,T + 1 / 2 ( 4  + ugZ)] 

p = (7 - 1)le - 1 / 2 ( 4  + u i ) ]  

(6) 

(7) 
The source term Kz arises from the centrifugal force term 
in the r-component of the m-momentum equation. 

K2 = (pu~+p-Re-'~~~)r,/r+(p-Re-~a~~)h,/h (8) 

where 
1 dr 
r dm 

r,/r = -- 

1 dh 
h dm 

h,/h = -- 

Although a similar source term arises from the Coriolis 
force in the 8-momentum equation, the equation has been 
made conservative by multiplying through by r. 

The viscous flux term is 

r o i  

where 

and the shear stress terms are given by: 

Using the thin-layer approximation, the shear stress 
terms are evaluated by replacing a, with qmao and 
(l/r)a, with Teatl. Here a = is the sonic ve- 
locity, and the normalized thermal conductivity k equals 
one. 

The equations are nondimensionahed by arbitrary 
reference quantities (here the inlet total density and crit- 
ical sonic velocity define the reference state), and the 
Reynolds number Re and the Prandtl number Pr must 
be specified in terms of that state. These equations as- 
sume that the specific heats C, and C, and the Prandtl 
number are constant, that Stokes' hypothesis X = -2/3p 
is d i d ,  and that the effective viscosity may be written 
as 

P = Plaminar + PLturbulcnt 

The transformation metrics are found using 

where the Jacobian is given by 

J = (mEt9,, - m,Oe)-' ( 12) 

Overbars in Eqs. (4-9) denote a rescaling of the metrics: 
- 
€0 = €e/r; r e  = Ve/r; 7' = rhJ-' (13) 

For turbulent flows the two-layer eddy-viscosity 
model developed by Baldwin and Lomax (14) is used. 
In the (m,6) coordinate system the wall shear rw and 
vorticity w required by the model are given by 

r w  = ~ 1 2 w  = p(amVe + l/raeum - uerm/r)w 
1 
2 

w = -(amwe - I/raeu, + ugrm/r) 

(14) 
The eddy viscosity is computed based on the current flow 
field, but otherwise does not account for unsteady tur- 
bulence effects. 

Computat ional  Grid 

Body-fitted C-type grids for this work were gen- 
erated using the GRAPE code developed by Sorenson 
(15,16). Figure 2 shows typical grids around the first 
stage stator and rotor of the STF fan. The stator grid 
was modified by adding a single grid line parallel to the 
exit to allow approximately one cell of overlap with the 
rotor grid. The rotor grid was also selectively refined by 
doubling the number of [=constant grid lines in the in- 
let region. Both grids were modified by adding one line 
of dummy points (not shown) corresponding to interior 
points from neighboring passages. These points are used 
for imposing the periodic or overlap boundary conditions. 

Multistage Runge-Kutta Algorithm 

An explicit multistage Runge-Kutta algorithm based 
on the work of Jameson (9,17) is used to advance the flow 
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equations in time. Given the residual R from a central- 
difference representation of Eq. (3), a k-stage scheme 
may be written as follows: 

p) = Q" 
q ( l )  = q ( O )  - alrAt[Rq!o) - D(q(O))] 

q ( k )  = q(0 )  - akrAt[Rq(k-') - D(q(O))] 
q"+l = &k)  

(15) 
where D(q)  contains the physical and artificial dissipa- 
tion terms. 

The time step is given by At = min(Ati,j) where 
A t , j  is calculated from an inviscid stability analysis of 
Eqs. (3-15) to be 

C F L  
At,j = 1 

(16) 
where I, and 10 are reciprocal length scales given by 

In this work we have used a four-stage scheme with the 
standard coefficients ai=(1/4, 1/3, 1/2, 1). The classical 
fourth-order Runge-Kutta scheme may be found in most 
books on numerical methods (see 18 for example) and is 
given by: 

The classical scheme matches a Taylor-series expansion 
of q"+' about q" in time through terms of order (At)', 
and so is fourth-order accurate. It is stable for Courant 
numbers C F L  5 2&, and requires one more level of 
storage than the simplified scheme(l5). The extra stor- 
age is needed to accumulate the right hand side for the 
last stage. 

For linear problems the simplified scheme with stan- 
dard coefficients (15) corresponds to the classical scheme 
(17). For non-linear problems the simplified scheme (15) 
only matches an expansion of q"+' through terms of or- 
der (At)2,  and is thus only second-order accurate in time. 
Furthermore, as shown in (U), we evaluate the artifi- 
cial and physical viscous terms only at the first stage, so 
that our scheme is formally second-order accurate in time 
for the convective terms but only first-order accurate 
for the viscous terms. Full second-order accuracy can 

be achieved by another evaluation of the viscous terms. 
With our use of the thin-layer approximation and with 
relatively coarse grids between the blades we feel that it 
is probably not worthwhile to use second-order temporal 
accuracy for the viscous terms. However we point out 
that fourth-order accuracy is easily obtained using the 
classical scheme and will be given further attention in 
the future. 

Artificial Dissipation 

Dissipative terms consisting of fourth and second dif- 
ferences are added to prevent odd-even point decoupling 
and to allow shock capturing respectively. The dissipa- 
tive term D in Eq. (15) is given by: 

Dq = (D€  + D,)q (19) 

(20) 

The (-direction operator is given by: 

D€q = C(V2qtc - V'Q€€€O 
where 

1 
C =  7 

JAtij 

is a coefficient that partially cancels similar terms in Eq. 
(15). We have found that using the spatially-varying time 
step Atij (Eq. (16)) as a coefficient in the dissipation is 
much less dissipative than using the minimum time step. 

The terms V2 and V4 are given by: 

where 

and 

P2 = O(1) 
P' = O ( k )  

(23) 
In smooth regions of the flow the dissipative terms 

are of third order and thus do not detract from the for- 
mal second- order accuracy of the scheme. Near shocks 
ui,j is large and the seconddifference dissipation becomes 
locally of first order. 

Implicit Residual Smoothing 

The four-stage Runge-Kutta scheme described above 
has a Courant limit of 2.8, but we typically run the 
unsteady results at  a slightly conservative value of 2.5. 
For a constant At the Courant number is dominated by 
the grid spacing, so that the maximum Courant number 
nearly always occurs in the very fine viscous grid regions 
around the leading or trailing edge of a blade. Courant 
numbers in the inviscid parts of the flow are typically two 
orders of magnitude smaller than the maximum value, 
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i.e. O(0.02). We feel that the Courant numbers in the 
inviscid part of the flow could be increased to O(1) with- 
out loss of accuracy in acoustic wave propogation or wake 
convection between blade rows. In the viscous part of the 
flow the maximum Courant number that gives reasonable 
time-accuracy is questionable, especially with the turbu- 
lence model applied in a quasi-steady sense. Overall we 
suspect that maximum Courant numbers of O(l0-20) in 
viscous regions would give a good balance between accu- 
racy and efficiency. 

Residual smoothing was introduced by Lerat (see for 
example Ref. 8) for use with the Lax-Wendroff scheme 
and was later applied to Runge-Kutta schemes by Jame- 
son (9). The technique involves running the multistage 
scheme at  a Courant number, C F L ,  greater than the sta- 
bility limit of the scheme CFL'. The scheme is stabilised 
by smoothing the residual using an implicit operator af- 
ter each stage. 

If we rewrite stage (k) of the multistage scheme, Eqn. 
(W, as 

then the implicit smoothing step is given by 

(25) 

where 6,, and 6,, are seconddifference operators and e 
is a smoothing parameter. 

Linear stability analysis has shown that the Runge- 
Kutta scheme with implicit residual smoothing may be 
made unconditionaly stable provided that e is sufficiently 
large (9). In one dimension 

f [(m)z-l] C F L  

gives unconditional stabiltiy. In two dimensions different 
values of e are often used in each grid direction. In one 
dimension the implicit smoothing step can be written as 

(27) (1  - eAz26,,)G = Aq = O(At(JP6 + ...)) 
and since At = O(Az) 

= Aq + O(cAz3) (28) 

Thus implicit residual smoothing modifies the unsteady 
solution by a term of order eAz3. As long as e is not 
too large the use of implicit residual smoothing does not 
upset the formal second-order accuracy in space. Since 
the smoothing is done in space it has no effect on the 
temporal accuracy of the scheme. 

To date implicit residual smoothing has been used in 
conjunction with a spatially varying time step to acceler- 
ate convergence to a steady state. In this case the local 
Courant number, C F L ,  is constant so that the smooth- 
ing parameter e is constant over the grid. 

For unsteady flows At is constant and the Courant 
number varies greatly over the grid, as mentioned pre- 
viously. If a constant value of c is chosen based on the 
largest value of CFLICFL' the scheme remains stable, 
but the inviscid part of the flow, which is well within 
the stability limit, is grossly oversmoothed and much of 
the flow physics is lost. If, however, a local smoothing 
parameter eij  is calculated using 

e i j  = ~ U Z  { 0, [ ('s) - 11 } (29) 

then the residuals are smoothed no more than needed for 
stability. In effect, the viscous part of the flow is calcu- 
lated at  a large Courant number using implicit residual 
smoothing and the inviscid part of the flow is calculated 
a t  a small Courant number without smoothing. 

Martinelli and Jameson (19) have used a spatially 
varying smoothing coefficient to account for highly- 
stretched viscous grids. They use an equation similar to 
(29) in each coordinate direction, with C F L i j  replaced 
by a scaled onedimensional Courant number. For typi- 
cal viscous flows this minimizes the smoothing in the flow 
direction when the stability of the scheme is determined 
by the grid spacing in the normal direction. This type of 
directionally-biased smoothing could easily be applied to 
unsteady flow. 

Implementation of Eqn. (29) results in a scalar tridi- 
agonal matrix equation that must be solved along each 
grid line in each direction, after each stage of the mul- 
tistage scheme. The recursive tridiagonal solutions may 
be vectoriced across one grid direction while solving in 
the other direction. Implicit residual smoothing adds 26 
percent to the CPU time of a solution, but we have used 
it to raise the time step by a factor of 6.52, for a net 
decrease in CPU time of about 460 percent. 

Finally we have a spatially-varying smoothing coef- 
ficient with a large constant At (maximum C F L  FY 15) 
to  accelerate steady calculations. In general we find that 
this scheme converges more slowly than one using a con- 
stant smoothing coefficient with a spatially-varying At 
( C F L  = 5.6 =constant). 

Boundary Conditions 

Inlet 

At the inlet to the stator, total pressure, total tem- 
perature T', and the whirl rvg are specified. At  each 
time step the upstream-running Riemann invariant R -  = 
urn - 2a/(7 - 1) is extrapolated to the inlet. The axial 
velocity component urn is found using 
urn = 

(7 - 1)R- + d(7 + 1)(4C,,T' - 2 4  - 2(7 - l ) (R-)z  
(7-t 1) 

(28) 
Density and energy are found using isentropic relations. 
This is a non-reflective approximation to  the axial mo- 
mentum equation that is first-order accurate in space but 
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sero- order in time. However in the present results we see 
virtually no unsteady behavior at  the inlet boundary. 

Outlet 

At the exit from the rotor, static pressure is speci- 
fied and the other flow quantities are found using second- 
order extrapolation of p, pwm, and pue. The interaction 
between the specified exit pressure and the inlet condi- 
tions sets the mass flow through the machine. This exit 
condition is strictly reflective and may influence the un- 
steady solution. We hope to sort out the effects of this 
condition in future work. 

Solid Wall 

Blade surface pressures are found from the normal 
momentulr equation: 
( € m ~ m  + € e f j e ) a t P +  (T: + V V ~ P  

Surface velocities are found from the tangency or noislip 
conditions for inviscid or viscous flows, and the blade 
temperature is specified. 

Periodic Boundaries 

The periodic boundaries are solved in the same way 
as the interior points. The grid for each blade is over- 
laped one grid cell at its periodic boundary such that 
the grid points are coincident with the grid points of an 
adjacent blade. These overlap dummy grid points are 
updated when an adjacent blade is solved and are then 
used in the next time step integration. For equal pitch 
blade rows the flow variables on the spatially periodic 
boundaries are equal on each blade. This is not true 
for multi-passage calculations. Here, periodic boundary 
conditions are enforced only on boundaries of blades that 
are encompassed by the blade ratio. Flow variables on 
interior boundaries are updated using quantities from ad- 
jacent blade solutions. 

Interface Formulation 

For a given displacement between stator and rotor 
blade rows, the solution on the interface must be deter- 
mined. Figure 3 shows an enlargement of the interface 
geometry of the stator and rotor grids. The upstream 
boundary of the rotor is coincident with the ( = 2 and < = M - 1 grid lines in the stator grid. The stator grid 
extends into the rotor grid such that the exit boundary 
grid points of the stator lie within the first cell of the 
rotor domain. 

The solution is updated at  the interface by inter- 
polating the flux variables in the stator computational 
domain to obtain rotor quantities and interpolating the 
flux variables in the rotor computational domain to ob- 
tain stator quantities. The interface is updated in this 
way after every Runge-Kutta integration sweep of the 
stator and rotor domains. 

Solution Procedure 

Given a desired leading edge velocity triangle and 
exit flow angle for each blade, the initial conditions 
are calculated using an analytic solution of the one- 
dimensional flow equations (see Ref. 7). These initial 
conditions do not especially speed the convergence to a 
periodic unsteady solution, but they do provide a smooth 
transition betmen the inlet and exit boundary condi- 
tions. 

From the initial analytic flow conditione, the solu- 
tion is integrated using a local time step. This allows 
the mass flow to stabilice and the wake region to develop 
quickly. A constant minimum time step is then used to 
compute the time accurate solution. 

The solution for each blade row is updated a full 
time step (four Runge-Kutta stages), then the inflow, 
exit, blade, and interface boundaries are updated. The 
solution is considered converged when the loading on the 
blades becomes periodic in time. 

The solution for each passage is stored as a sepa- 
rate array in core and accessed as the solver alternates 
from one blade to the next. The flow solver is rela- 
tively unaffected by the number of passages so that the 
multi-passage problem becomes a problem of data man- 
agement. 

Results 

In 1985 Rai published Euler calculations of the un- 
steady interaction between a model rotor and stator with 
supersonic throughflow. The calculations were meant to 
demonstrate the capabilities of his numerical scheme and 
did not represent a real Supersonic throughflow machine. 
Interest has recently increased a t  NASA Lewis Research 
Center in a supersonic throughflow (STF) fan as a key 
component in an engine designed for sustained supersonic 
cruise. Such a fan has been designed at Lewis and is now 
being built for subsequent testing (20,21). 

The solution procedure has been applied to the STF 
fan. The actual STF fan rotor:stator blade count ratio is 
44:52, but the numerical procedure was applied to a sin- 
gle passage blade row configuration where the upstream 
rotor was scaled to the stator pitch. The scaling was 
done such that the blade angles and pitch-to-chord ratio 
remained unchanged. 

The grids generated using the GRAPE code have 
viscous spacings of 0.0008 in. away from the blade. The 
rotor grid has 153x31 points. The stator grid has 179x31 
grid points. It was necessary to cluster grid points at 
the inlet of the stator to get the necessary resolution to 
capture the wake from the upstream rotor. The grids are 
shown in Fig. 2 with every other point deleted for clarity. 

The absolute Mach number at  the inlet to the ro- 
tor is 2.00. The code was run a t  a maximum Courant 
number of 2.3 without residual smoothing. With this 
time step it takes 2780 steps to move one rotor pitch. A 
solution is considered converged when the unsteady lift 
on each blade becomes periodic. For supersonic flow the 
downstream stator has no effect on the upstream rotor, 
so that the rotor lift becomes constant after about four 
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blade passings, as shown in Fig. 4. There is however an 
unsteady effect on the stator as the rotor wakes pass by, 
and the stator lift becomes periodic in time after eight 
blade passings. This requires 55 minutes of computer 
time on the Cray X-MP. 

The code was also run at  a maximum Courant num- 
ber of 15 with residual smoothing. With this time step 
it takes 425 steps to move one rotor pitch. The number 
of blade passings required to obtain a converged solution 
remained unchanged from the solution without residual 
smoothing. However, the computer time was reduced to 
12 minutes. 

Figure 5 shows the static pressure distribution on the 
rotor. Since the flow is supersonic, the rotor is unaffected 
by the passing stator and the maximum, minimum, and 
time-averaged pressures are identical. As shown in Fig- 
ure 6, the stator does see fluctuations in static pressure as 
it passes through the wakes and the weak fishtail shocks 
that form off the trailing edge of the upstream rotor. In 
Figure 6 the solid line represents the time-averaged pres- 
sure distribution and the dashed lines indicate the max- 
imum and minimum pressures at  each point. On both 
blades the static pressure envelopes are identical whether 
computed with or without implicit residual smoothing. 

Mach contours relative to the rotor frame of refer- 
ence are shown in Fig. 7. Weak shocks form on the 
leading edge of both blades. The wake from the rotor 
convects downstream and interacts with the leading edge 
shock of the stator. The wake that forms off the trailing 
edge of the stator is distorted by rotor wakes as they are 
convected through the downstream boundary. 

The rotor wakes are more distinguishable in the sta- 
tor passage when entropy contours are plotted in Fig. 8. 
The distortion of the stator wake is shown to coincide 
with the passing rotor wakes. 

The solution procedure has also been applied to the 
firststage of the Space Shuttle Main Engine fuel tu rbop  
ump. The blade ratio of the actual machine is 41:63. The 
stator was rescaled to produce the 2:3 blade ratio shown 
in Fig. 9. The pitch-to-chord ratio remained unchanged. 

The grids generated using the GRAPE code have 
viscous spacings of 0.0002 in. away from the blade. The 
stator grid has 115x31 points. The rotor grid has 197x41 
grid points. The grid was clustered around the rotor inlet 
to capture the wake from the upstream stator. 

The code runs at a maximum Courant number of 
2.5 without residual smoothing. With this Courant num- 
ber it takes 15510 time steps to move one periodic pitch 
(three passing rotor blades). A converged solution was 
reached in about seven rotor blade passings. This took 
about six hours of computer time. Details of results from 
this calculation were published in (7). 

A solution was also computed with the use of resid- 
ual smoothing. A maximum Courant number of 15 was 
used which decreased the number of interations for the 
solution to move one periodic pitch to 2585. The solu- 
tion with residual smoothing was identical to the solution 
without residual smoothing. The computer time was re- 
duced to about 80 minutes. 

The unsteady lift diagrams for the scaled first stage 
of the SSME fuel turbopump is shown in Fig. 10. The 
stator blade sees small fluctuations in lift due to devi- 
ations in static pressure near the trailing edge on the 

suction surface. Over one periodic pitch the stator lift 
shows three flucuations as it is influenced by three rotors 
passing downstream. The rotor sees larger fluctuations 
in its lift, with the minimum lift occuring when the ro- 
tor’s leading edge encounters the wake of the upstream 
stator. The rotor passes through two stator wakes so 
two minimums are apparent during its rotation over a 
periodic pitch. 

Figure 11 shows the Mach contours for the multi- 
passage solution on the SSME. The absolute flow Mach 
number varies from .148 at the stator inlet through about 
.472 between the blade rows to .201 at the rotor exit. The 
inlet absolute flow angle to the stator is 0.0 degrees and 
the relative inlet flow angle to the rotor is 31.0 degrees. 
The asymmetry of the flow is apparent in the rotor pas- 
sages. Here the stator wakes can be seen at  different 
locations in the flow domain. Entropy contours in Fig. 
12 show the migration of the stator wakes toward the 
rotor suction surface as they convect downstream. 

Concluding Remarks 

The quasi-threedimensional Euler or the thin-layer, 
Navier-Stokes equations are solved for unsteady turbo- 
machinery flows. These equations are written in general 
coordinates for an axisymmetric stream surface, and ac- 
count for the effects of blade row rotation, radius change 
and stream- surface thickness. 

A four-stage Runge-Kutta scheme based on the work 
of Jameson is used to predict time-accurate results. Im- 
plicit residual smoothing is used to increase the stability 
limit of the Runge-Kutta scheme and thus allow a larger 
time step to be used in time-accurate flows. A nonconser- 
vative interface formulation and other data management 
techniques allow the solution of rotor-stator interaction 
problems in both single and multi-passage machines. 

Viscous results on the supersonic throughflow fan 
and Space Shuttle Main Engine fuel turbopump have 
shown the application of implicit residual smoothing to 
be viable. The results that have been computed indi- 
cate that residual smoothing greatly enhance the Runge- 
Kutta scheme and does not affect the time or space ac- 
curacy of the solution. 
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Figure 1. - Quasi-three-dimensional stream surface and coordinate 
system for a centrifugal compressor. 
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Figure 7. - Mach number contours. 
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Figure 8. - Entropy contours. 
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Figure 11. - Mach number contours. Figure 12. - Entropy contours. 
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