

## MINIMUM-COMPLEXITY HELICOPTER SIMULATION MATH MODEL

Rubert K. Heffley
Marc A. Mnich

## Contract NAS2-11665

April 1988

National Aeronautics and
Space Administration


Robert K. Heffley
Marc A. Mnich
Manudyne Systems, Inc.
Los Altos, California

Prepared for
Aeroflightdynamics Directorate
U.S. Army Research and Technology

Activity (AVSCOM)
under Contract NAS2-11665
April 1988

Ames Research Center
Moftett Figid Calitorn. 94035



#### Abstract

An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling. qualities features which are apparent to the simulator pilot The technical approach begins with specification of features which are to be modeled followed by a build-up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinements are discussed. Math model computer programs are defined and listed.


## PORESWORD

This report was prepared by Manudyne Systems, Inc., for the U. S. Army Aeroflightdynamics Laboratory located at Ames Kesearch Certer. The Contract Technical Monitors were Ms. Michelle M. Eshow and Mr. Christopher L. Blanken.

The Manudyne project engineer was Mr. Robert K. Heffley and the math model development effort was conducted by Mr. Marc A.

## TABLE OF CONTENTS

I. Introduction ..... 1
A. Background ..... 1

1. Computational Delays ..... 2
2. Cost of Fesources ..... 3
3. Inflexibility ..... 4
4. Indirectness of Cause and Effect Relationships ..... 4
B. Merits of Considering a Simple Math Model Form ..... 5
5. Cost ..... 5
6. Quality ..... 5
7. Engineering Understanding ..... 5
C. Model Attributes to be Considered ..... 6
8. Simulator Application ..... E
9. Handling Qualities Application ..... 6
10. Full Flight Envelope Operation ..... 6
11. Modularity ..... 7
12. Microcomputer Adaptability ..... $i$
D. Report Organization ..... i
13. Modeling Approach ..... '
14. Matching and Estimating Procedures ..... 7
15. Checkout Procedures ..... 8
16. Model Extensions and Refinements ..... ४
II. Technical Approach ..... y
A. Specification of Desired Math Model Features ..... 9
17. First-Order Flapping ..... 10
18. Main Rotor Induced-Velocity Computation ..... 10
19. Rigid-Body Degrees of Freedom ..... 10
20. Power Requirements Over Flight Envelope ..... 11
21. Rearward and Sideward Flight ..... 11
22. Hover Dynamic Modes ..... 11
23. Forward-Flight Dynamic Modes ..... 11
24. Correct Transition from Hover to Forward Flight ..... 12
25. Effects of Rotor RPM Variation ..... 12
26. Cross Coupling ..... 12
27. Correct Power-Off Glide ..... 12
B. Component Build-Up ..... 13
28. Main rotor ..... 16
29. Fuselage ..... 17
30. Tail Retor ..... 17
31. Horizontal Tail ..... 17
32. Wing ..... 18
33. Vertical Tail ..... 18
C. Definition of Model Equations ..... 18
34. Main Rotor Thrust and Induced Velocjty ..... 18
35. Tail Rotor Thrust and Induced-Velocity ..... 20
36. Fuselage Geometry and Drag ..... 20
37. Horizontal Tail Geometry and Lift ..... 21
38. Wing Geometry and Lift
22
22
39. Vertical Tail Geometry and Lift ..... 23
40. Total Power Required ..... 24
41. Summation of Force and Moment Equations ..... 24
42. Integration and Axis Transformation ..... 85
43. . Jummary of Model Parameters ..... $\% 6$
III. Model Matching and Estimation Procedures ..... 28
A. Mass, Loading, and Geometry Data ..... 28
44. Geometric Data ..... 88
45. Mass and Loading Data ..... 30
B. Propulsion Data ..... 33
C. Rotor Data ..... 36
D. Aerodynamic Features ..... 36
E. Hover Performance ..... 39
F. Forward Flight Data ..... 41
IV. Checkout Procedures ..... 46
A. General
46
46
B. Discussion of Checkout Procedure Elements
46
46
46. Independent Operating Program
46
46
47. Trim Point Verification ..... 47
48. State Transition Verification ..... 48
49. Time History Overlays ..... 51
50. Dominant Response Identification ..... 5.3
V. Model Extensions and Refinements ..... 54
A. Flight Control System ..... 54
B. Engine-Governor ..... 54
C. Ground Effect
54
54
D. Dynamic Inflow
55
55
E. Higher-Order Flapping, Coning, and Lead-Lag Dynamics ..... 55
Keferences ..... bt;
Appendix A. Listing Of Dynamics Subroutine ..... A 1
Appendix B. Definition of Dynamics Subroutine Symbols ..... B. 1
Appendix C. Input Data ..... C-1
Appendix D. Agusta A-109 Math Model Example ..... [) 1

## LIST OF FIGURES

Figure 1. Tradeoff of Math Model Cost with User Utility. ..... 2
Figure 2. Basic Helicopter Math Model Components. ..... 14
Figure 3. Main Rotor Thrust and Induced-Velocity Block Diagram. ..... 18
Figure 4. Basis for Geometric Data. ..... 29
Figure 5. Basis Ior Loading Data. ..... 31
Figure 6. Basis for Torque (Power) Limits. ..... 35
Figure 7. Basis for Initial Estimates of Aerodynamic Parameters. ..... 38
Figure 8. Basis for Hover Power Required. ..... 40
Figure 9. Basis for Forward Flight Speeds and Power Required ..... 42
Figure 10. Basis for Max Rate of Climb Speed and Power Required. ..... 43
Figure 11. Basis for Max Glide Speed and Descent Angle. ..... 44
Figure 12. Sample of Trim Point Printout. ..... 47
Figure 13. Examples of Time Histories to be ['sed for Overiays. ..... 52

## LIST OF TABLES

Table 1. Desired Features ..... 9
Table 2. Single-Rotor Helicopter Coupling Sources. ..... 13
Table 3. Details of Component Build-Up. ..... 15
Table 4. Basis for Inertial Data ..... 32
Table 5. Basis for Propulsion System Data. ..... 34
Table 6. Assumed Breakdown of Power Absorbtion. ..... 34
Table 7. Sample of State Transition Checks. ..... 49

## MINIMUM-COMPLEXITY HELICOPTER SIMULATION MATH MODEL PROGRAM

## I. Introduction

## A. Background

The past decade has seen a trend toward increasingly complex simulator math models. Part of this has been a result of more flight control system sophistication and attention toward a number of aerodynamic factors, including interactive aerodynamics and aeroelastic effects. Another reason is the availablity of large, high speed mainframe and mini-computers. Some simulation uses such as aircraft design or failure analysis do justify attention to detail. Other applications, including may handling qualities evaluations, may be better served with lesser sophistication. Since high complexity also carries the burden of high cost of engineering labor and computer facilities, one should exercise judgment in math model design. Engineering management should be concerned when there is a neglect to determine precisely the degree of complexity really needed for a given application.

The purpose of this report is first to discuss the reasons for striving for minimal math model complexity and second to offer an example of a reasorably useful and credible heiicopter math model form offering real economy in terms of development and computational requirements. Evaluation of handling qualities is the main application unde: consideration here, but the same kinds of factors would apply to other simulation uses.

The question being considered is really one of math model value versus cost. The value must ultimately be expressed as the utility of a math model to provide necessary features which can be perceived and used by the simulator pilot. One should expect that, as a function of complexity, this model utility approaches a fairly flat asymptote with some reasonable level of complexity. The other side of the coin is the cost of math model development and checkout, also a function of complexity. Unfortunately this function can be expected to increase exponentially. These con trasting relationships are sketched in Figure 1. The obvious question for the simulator user is at what level of model com plexity do these two cost/value curves cross. That is, what is the point of diminishing returns on model complexity?


Figure 1. Tradeoff of Math Model Cost with User Utility.

Experience typical of that described in References 1 and 2 has taught that math model complexity alone does not automatically provide effectiveness in handing qualities simulations. Rather, there can be distracting factors which work counter to simulation objectives. Ultimately, limited resources prevent one from realizing the full potential of an overly complex simulator math model. Other limitations can be a lack of flexibility in modeling and restricted clarity in the cause and effect relationships between model parameters and features. These shortcomings raise questions about the value of complexity in helicopter math models and are a motivation to consider simpler models.

The following are some of the undesirable effects of excessive math model complexity.

1. Computational Delays

Computational lag and delay is a particularly important problem resulting from model complexity. As complexity grows. computational delay associated with the math model code increases and, in turn, compounds overall visual system delay. Computer speed is iimited by the hardware and software system being used and cannot be easily changed.

The result of the delays imposed is reduced fidelity. NASA Ames, for example, employs both a Xerox Sigma 8 and CDC 7600 for their Vertical Motion Simulator (VMS). Using the currently implemented ARMCOP helicopter math model (Reference 3) and the faster of the two computers (CDC 7600), the computationaj delay is about 25 milliseconds. The Sigma may require 60 to 75 milliseconds to cycle. The former speed is acceptable for some math model solutions but visual system digital delay of about 100 milliseconds can still remain. Although the impact of this amount of delay has been minimized at Ames (using methods such as those presented in Reference 4), more software complexity has been added to correct a problem originally caused by complexity It would seem that this is not as cheap and effective as preventing the problem by simplifying the model in the first place.

## 2. Cost of Resources

As model complexity and the amount of computer code grows, so do the time and effort required to implement, check, and debug the code. The time available to do these is often limited and can affect overall math model fidelity if neglected. ARMCOP, for example, has several thousand lines of code. In checking and debugging code in large programs, a certain number of errors will go undetected, and the more code there is, the more likely errors will persist.

In addition to checking and debugging code, there is the task of determining model parameters needed to represent a specific aircraft. The time and effort required to thoroughly validate the model against the real aircraft can be an expensive part of any simulation. Math models employjng look-up tables can have hundreds of parameters which need to be set and confirmed. Since some of these values are estimates, an iterative process may be required. Limits on time and manpower may restrict this process and the fidelity of the model.

Validation of the math model equations (as opposed to math model code) is also a process which may require iteration as the model is changed. It is possible that errors in the math model will exist ever as the model is being used in simulation. Again. the number of errors which exist and the time required to fix them is a function of the complexity of the model. Time and manpower restrictions will limit the ability of the users to find and correct these errors and thus degrade the fidelity of the model. In order to guarantee that a model is completely correct, all parts of the model must te exercised. Lookup tables, for example, require that all numbers in the table be verified as well as checked for discontinuities. All equations in the model need to be checked to ensure they are theoretically sound. With complex code, it is unlikely that all of the model will be checked as thoroughly as necessary and erross can persist in actively used models for long periods of time before they are ever noticed or corrected.

ARMCOP, for example, still exhibits a problem affecting maneuvering flight even though the model has seen wide use. This involves a large speed loss during sustained turns. Although detected, this probiem has not been corrected because of insufficent engineering labor resources. Rather problems are "patched up" with flight control system modifications (in this case a turn-coordinator). Again, complexity is added to fix a problem itself arising from model complexity.

## 3. Inflexibility

There is an inherent tradeoff between complexity and flexibility in models of dynamic systems. As more components or features are added to a model, it becomes increasingly difficult and expensive to Ferform other modifications. One measure of the flexibility of a model is its adaptibility to new computer systems and languages or to changes in the cods. Large sets of code are limited to large computer systems. ARMCOF, for example, requires the use of a mainframe system. In order to work with the model, one must have access to such facilities.

Once code has been implemented on a machine, it must be checked and debugged. Modifications for debugging may require recompilation. Most such changes are made before the code is used for actual simulation, but it is possible that they will be made during a simulation. Even simple model changes can consume enough time to hamper simulator productivity. It is not uncommon for a software modification, followed by a graphical check, to require 20 or 30 minutes of simulator occupancy time.

The ability to add, remove, or modify efficiently the dynamic characteristics of a model is another measure of its fiexibility. It may be desirable, for example, to have a helicopter simulation without rotor cross coupling. A model such as ARMCOP, in which cross coupling is inherent, does not allow easy removal of this feature. In fact, coupling might be "removed" by adding control system functions to suppress the coupling, thus further increasing the complexity of the model. The emphasis in modeling should be on efficiency while maintaining adequate fidelity.

## 4. Irdirectness of Cause and Effect Relationships

The ability to see the relationship between model parameters and model response features is decreased with complexity. This relationship is important to handling qualities simulation work for two reasons. First, is the need to easily make changes in model features. Second is the need to trace errors which appear in the response modes of the model. These are fundamental to working effectively with the model. In order to modify response features, one must know what parameters are responsible for those features and how to change them. In any math model, individual parameters tend to become coupled to many
features at once making it difficult to change such features independently. The more complicated that math model, the more impossible is it to manage individual model response features.
B. Merits of Considering a Simple Math Model Form

Turning from the above above list of difficulties issuing from model complexity, consider some of the direct, positive aspects of considering a simple math model form at the outsst.

It would appear that there are compelling benefits for general reductions in the levels of complexity exemplified by math models such as ARMCOP and GENHEL (Reference 5). This leads us to consider ways to find a compromise between math model complexity and simulator utility. At one extreme are the highly complex models which attempt to acheive effectiveness through high computational fidelity. As mentioned, these models encounter practical limits which not only hamper fidelity but also reduce their flexibility and clarity between parameters and features. At the other extreme are models such as the linearized stability derivative form which are easier to manage but which may lack fidelity or be restriced to a small operating envelope.

The merits of a "compromise" model form would thus be cost and quality benefits derived from the achievement of specific fidelity features through minimal software program instructions

1. Cost

The cost benefits will accrue through minimizing labor re quired to quantify and checkout the math model implementation. Developmert of even modest math models typically involve more than ore inan year of labor. If this process can be shortened to less than one man-month, the period envisioned for the proposed form, ther sreat savings clearly can be realized.

Simulator math model software checkout can also require substantial effort. However, this is of ten simply limited by time available and the job might not actually be completed prior to simulator use. Again the aim 1.3 to realize greatly reduced checkout time through software reduction and to make a comprehen sive checkout feasible within a short period of time.
2. Quality

The quality benefits come from confidence that specific features needed for effective simulation are represented and that they are correct. Here quality arises from the fact that implementation and checkout tasks which should be done are, in fact, done. In a real sense, quality follows the degree of manageability afforded by the simulator software.

## 3. Engineering Understanding

One of the most important benefits to be derived from a mimimum-complexity math model is in the potential for more clearly understanding cause and effect relationships. For example, if a particular kind and amount of cross-coupling is desired, then how does one achieve it through adjustment of math model parameters? It is possible by having a close, easy-tofollow connection between the physical component representation and the resulting physical response features.

Ar important value of engineering understanding is the ability to make model adjustments or refinements in a direct, efficient a manner as is possible for a physical helicopter model.
C. Model Attributes to be Considered

1. Simulator Application

It should be stressed that in this case the goal of the math model is to be an effective tool for simulation. Model fidelity alone is not the solution to simulator effectiveness. Rather, it is the ability of the model to produce the desired results and insights for the given application. Besides having adequate fidelity, the model must also be affordable, manageable easily modified and checked, and have a reasonably clear cause and effect relationship between parameters and response features (at least those perceivable by the pilot).

## 2. Handling Qualities Application

Thus we are motivated to turn to a simple model with these qualities for helicopter handling qualitites simulation which can be a more effective tool than existing models. Specifically, the purpose here is to propose a minimum-complexity model format suitable for helicopter handling qualities simulation.

It should be remembered that many handling qualities investigations involve examination of fairly crude and simple parameters such as time constants. damping ratios, or static gains. Furthermore the precision with which evaluation pilots can perceive such changes often can be disappointing to the en gineer. Thus it is not reasonable to expect that high math model resolution is really crucial. If a pilot cannot actually observe or be influenced by certain mat' model effects then those effects should probably be considered as excessive complication. (Unfortunately, there is presentlv little quantification of just how sensitive a pilot is to various effects, and this is a potential application of a minimum-complexity math model.)

## 3. Full Flight Envelope Operation

The model should be nonlinear and apply to the full operating range of a real helicopter including rearward as well as forward flight, sidewariflight, hover, and transition from hover to forward flight. The model should include at least
first-order flapping degrees of freedom and all rigid body degrees of freedom. The higher-order flapping modes and any structural modes beyond the frequency range of interest for handing qualities should not be included unless high-gain flight control systems are involvede.
4. Modularity

The form of the model will be modular. This will allow the flexibility of adding alternative rotor models, if desired, as well as other lifting surfaces. Any combination of components can be combired including models of pilots and control systems making the model adaptable to a variety of helicopters and subsystems. The full utility of the proposed model format will become apparant as the structure of the model is described in more detail.
5. Microcomputer Adaptability

The math model form will be compatible with microcomputer use, at least on a non-real-time basis. It has been found that math model development and checkout can be done to a large extent on small, inexpensive desktop microcomputers. This of course demands that the software be reasonably compact.
D. Report Organization

The presentation which follows consists of four parts: (i) approach to modeling, (ii) matching and estimation procedures, (iii) checkout procedures, and (iv) extensions and modifications of the model. In addition various detailed i formation is contained in appendices.

## 1. Modeling Approach

In the first section, the modeling approach is described in order to establish the theoretical foundation for the model. This is useful for understanding, modifying or extending the model and for its effective use as a simulator tool. In addition a description of the featires and components of this specific model is given. The model is used to represent a Bell AH-1S Cobra. All varameters and variables from this aircraft are provided here along with the actual code. The sample version shows the extent of the code in terms of number of parameters. number of lines of code, number of computations, etc. and can be compared to an ARMCOP version of the same aircraft.

## 2. Matching anc Estimating Procedures

In the next section, the matching and estimating proce dures used to obtain model parameters are described. The sample version of the AH-1S is used as a specific example. The model is then exercised and the estimated paramsters varied in order to tune the model to fit performance data.

## 3. Checkout Procedures

The third section describes severs methods of checking the math model code. The size of the model and the modular for mat are conducive to efficient checking. Methods are then presented for varifying the math model equations and are illustrated using the sample version.

## 4. Model Extensions and Refinements

Finally, in the last section, possibilities for extending or modifying the model are introduced to demonstrate the flexibility of the model format. The potential for a much rimproved level of simulation effectiveness using these extensions and modifications is revealed and explained in terms of the apbroach taken to the modeling process.

## II. Technical Approach

## A. Specification of Desired Math Model Features

The approach to modeling will begin with a list of desired features. This list. will serve as a specification upon which to formulate a minimum-complexity model containing only those components and equations directly responsible for the desired features. The model will be customized to the problem being studied.

We shall assume that the model is intended for handing qualities simulation and that the features to be included in the model should be features which are observable or needed by a pilot. It should be assumed that the model will be operated over a specified flight envelope and controlled by a given flight control configuration. This sets limits on speed, acceleration, and frequency response. The features to be insluded by the following example are listed in Table 1. Of course these are subject to change depending upon the application.

Table 1. Desired Features

1. First-order flapping dynamics for main rotor (coupled or uncoupied).
2. Main rotor induced velocity computation.
3. All rigid-body degrees of freedom.
4. Realistic power requirements over desired flight envelope.
5. Rearward and sideward flight without computational singularities.
6. Hover dynamic modes:

- longitudinal and lateral hover cubics
-rotor-body coupling with flapping

7. Forward flight dynamic modes:
--short period and phuguoid
--roll mode and Dutch roll
-rotor body coupling with flapping
8. Dihedral effect.
9. Correct transition from hover to forward flight.
10. Potential for rotor RPM variation.
11. Correct power-off glide for $m i n R / D$ and max glide.

## 1. First-Order Flapping

It has been shown in Reference 5 that rotor flapping can couple with rigid-body modes in regions which affect handling qualities. This occurs in the lower frequency or "regressing flapping" modes. However, this effect can be modeled with a first-order flapping equation in the pitch and roll axes.

The time constant involved in the regressing flapping mode is directly proportional to the product of rotor angular velocity and Lock number. Thus only the commonly available rotor mass ard geometric parameters are needed.

The actual flapping response is modified by coupling with the fuselage at the hub restraint. Since this involves the classical rigid body modal reponse, it is discussed further under items 6 and 7 below.

The feature of flapping which is most important to a pilot-in-the-loop simulation is the apparent control lag following cyclic input. This lag is in effect the time required to precess the tip path plane to a new orientation. A typical value for the effective lag is about 0.1 sec--significant because it is comparable to the pilot's own neuromuscular lag.
2. Main Rotor Induced-Velocity Computation

A particularly important feature of a helicopter is the relationship smong thrust, power, and airspeed. This relationship arises from the induced-velocity of air passing through the rotor disc.

There are a number of complicating factors, but, to a first-order approximation, induced-velocity effects can be modeled with a classical momentum theory model wherein thrust and induced-velocity interact in an aerodynamic feedback loop. Computation is complicated, however, because this feedback is highly nonlinear.

Another aspect of the induced-velocity is its effect on adjacent surfaces. The rotor induced-velocity field impinges on the wing, horizontal tail, and fuselage and varies with airspeed and flight path direction.
3. Rigid-Body Degrees of Freedom

Normally, six rigid-body degrees of freedom are needed for useful manned simulation. Pilot workload arises from constant attention to roll, pitch, and yaw as well as translation fore-and-aft, to the side, and vertically. Only under special conditions might one desire to eliminate one of these via. for example, the assumption of perfectly coordinated forward fligit

## 4. Power Requirements Over Flight Envelope

A common source of real aircraft data appropriate for verifying a math model is performance data in terms of power required for various trim conditions. The power or torque required is immediately obvious and imporiant to a pilot and varies substantially from hover through transition and finally in forward flight.

Power requirements can be easily computed once main and tail rotor induced velocities are established.
5. Rearward and Sideward Flight

In a full-flight-envelope model involving circulation lifting surfaces, computational singularities can exist, depending upon the model form used. These singularities come from trigonometric functions for angle of attack, sideslip, etc., but are avoided in this model by using a quadratic lift coefficient method. For this techaique, forces for lifting surfaces are computed using quadratic coefficients multiplied by the squares of velocity components so that negative velocities cannot cause singularities. No explicit computation of angle of attack or sideslip is needed and, indeed, should be completely avoided.
6. Hover Dynamic Modes

Hovering flight is characterized by similar dynamics in each the pitch and roll aces, including sets of high and low frequency response modes. In addition, the yaw axis contains a predominant yaw damping mode. These dynamics can couple with regressing flapping dynamics. All are apparent to the pilot in operating the aircraft whether trimming, maneuvering, or flying unattended.

Pitch and roll are classically described by the "hover cubic," but this generally neglects coupling with the rotor which can be important. This is easily computed, however, through inclusion of the flapping dynamics as described earlier.

The phugoid mode for hover results from the combination of dihedral and gravity force. Effective dihedral is particularly apparent in unaggressive sideward flight because the pilot must continually add lateral control as sideward velocity in reases.
7. Forward-Flight Dynamic Modes

In forward flight, the dominant rigid body dynamics of a helicopter resemble those of a conventional fixed-wing airplane and incilde short-period, phugoid, dutch roll, and spiral modes. There is also likely to be significant coupling with flapping dynamics.

## 8. Correct Transition from Hover to Forward Flight

Transition effects are an important part of the piloting task when accelerating from hover into the forward flight region

These effects are a combined result of a "dihedral effect" in the $x$-axis and the varying rotor downwash effect on the horizontal tail.

## 9. Effects of Rotor RPM Variation

Rotor RPM can affect helicopter dynamics in a number of ways, including thrust, flapping response, and heave damping

The effects of rotor speed ... ation are tied, however, tu the rotor-engine-governor combination. For a number of applications it may be sufficient to assume a constant rotor RPM. This will be done here.
10. Cross Coupling

A variety of cross coupling effects can be present in helicopters. Some of these such as collective-to-yaw coupling are easy-to-see, first-order phenomena. These are generally inherent in the basic dynamics if reasonable first-principles thrust and rotor models are used.

Other coupling effects may be more subtle or less predict able and should be added only where needed or desired by the simulator user. These can be inserted directly in the equations of motion as coupling terms arising from both states and control s. One should distinguish among coupling due to (i) rotor hub moments, (ii) flapping dynamics and (iii) dihedral effects

Cross-couping occurs naturally when coupled rotor and hub-moment expressions are included. However, these may no suffice in matching actual cross-coupling observed in a particular design. One approach is to begin with decoupled equations then systematically add terms which provide a suitable match. (This is demonstrated in the A109 example in Appendix $D$

A useful guide to cross-coupling sources is borrowed from Refereace 7 and shown below in table 2 .

1:. Correct Power-Off Glide
Helicopters, like fixed-wing aircraft, need to exhibit reasonable performance when power is reduced. This can be a highly complex issue if ring vortex rotor states are included However, many hardling qualities investigations can be conducted using only the normal thrust model described above but tajioving the fuli-ciown collective pitch and aerodynamic dras to yieid realistic fomard -

Table 2. Single-Rotor Helicopter Coupling Sources.

(Borrowed from Blake and Alansky, AHS Forum, 1975)
B. Component Build-ljp

With a specification of desired features, essential routed ormponents car then be chosen. These components contain the mechanisms which provide forces and moments, power dissipation. atithility and control, and rotor dynamics.

The six components are considered necessary to provide al $\therefore f$ the above response features are shown in Figure $\because \quad[\quad 1$ I lists these components along with the physical featiarea a sat component and the resulting response features. In efterat this is a is st of qualitative model requirements which form is starting point for detailed model design. The components and their phsyical elements are described and discussed individually
below.


Figure 2. Basic Helicopter Math Model Components.

Tabie 3. Details of Component Build-Up.


1. Main rotor

The primary component of this model is the main rotor. It is the main feature responsible for producing characteristics unique to a helicopter, in particular, a vertical thrust vector and an induced-velocity field. Other key features include rotor torque, dihedral effect, flapping stiffness (rate damping), and flapping dynamics (tip-path-plane lag).

The basis for the model used here is primarily the autogiro theory presented by Glauert in. Reference 8 and extended by Lock in Reference 9. The higher order flapping dynamics as defined by Chen in Reference 6 are simplified according to the first-order model developed by Curtiss and presented in References 1 and 2.

Thrust and induced velocity are computed assuming a uniform flow distribution. As described earlier, the tip-pathplane orientation (flapping angles) are modeled as simple first order lags giving the main rotor the qualities of a force actuator with a lag. The tip-path-plane dynamics can be extended using either a coupled first-order model or a coupled second order mode? based on simplification of Chen's rotor equations in Reference 6 .

The main rotor model contributes largely to the power requirement feature of the model. In hover, nearly $80 \%$ of total power is absorbed by the main rotor, and, in forward flight, it is as much as $60 \%$. In hover, rotor downwash on the fuselage also contributes to power losses.

Tip path plane and hub moment equations were rederived in a body-fixed axis system from the equations in References 3 and 6. This was done in order to avoid the real time hover simulation problems which can arise from large instantaneous changes in the wind-axis angles for small changes in body-axis translational velocities.

It is suggested that two major components of cross conling be avoided until the detailed model matching process is underway. One of these is the of f-axis hub moments due to flap ping ( $L_{a l}$ and $M_{b 1}$ ), and the second is the off-axis coupling in the tip path plane dynamics. It has been found that including these higher order effects in a simple model does not automat ically produce a high quality match to flight data.

The dihedral effect is included through the variables $d b_{1} / d v$ and $d a_{1} / d u$ which appear in the first order flapping aqua. trons. Values can be can be computed using first-principles factors consisting of thrust coefficient and tip velocity. The dihedral feature is responsible for the phugoid-like modes in hover and forward flight.

The portion of $L_{b 1}$ and $M_{a 1}$ due to both hinge offset and rotor spring stiffness are included in a separate parameter, dL.dA1. Thus, the total flapping stiffness can be directly varied through this one parameter.

Pitch and roll mode time constants are a function of both body pitch and roll damping and rotor tip path plane lag. Control over these time constants can thus be exercised through the flapping lag as well as body aerodynamic damping.

## 2. Fuselage

The fuselage is represented as a virtual flat plate drag source having three dimensions. The effective aerodynamic center can be located at any position in the body reference frame. It would normally be expected to be near the geometric center.

The fuselage drag model is based on a quadratic aerodynamic form originally found in the hydrodynamics text by Lamb (Referencel0) and used extensively for airship applications by Monk (Reference 11). Tiis form can be easily extended to account for fuselage assymetries, lifting effects, and lift gradients.

The simple fuselage zerodynamic form presented here provides for drag in forward flight which limits maximum airspeed, cirag in sideward flight, and rotor downwash impinging on the fuselage. All three of these effects are related to power losses.

## 3. Tail Rotor

The tail rotor component is modeled in the same manner as the main rotor except that no flapping degree of freedom is in cluded. In effect, only Glauert's equations apply. However thrust, induced-velocity, and power effects are correctly modeled. Normal directional control is provided through the tail rotor collective pitch variation.
4. Horizontal Tail

The horizontal tail is assumed to be primarily a lift producer, thus only the normal force component is modeled. This still provides for computation of drag resulting from inducedlift if that is desired. Finally, the effects of aerodynamic stall are included. The geometric location of the horizontal tail in the rotor flow field is used to obtain the local apparent wind component. The location of the horizontal tail provides effective static stability and elevator control.

As with the fuselage aerodynamics, a basic quadratic form is used. Two terms model the effects of camber and circulation
lift, One additional term and conditional test is included to model the effect of stall.
5. Wing

The wing component follows the same form as the horizontal tail. In addition, the induced drag is computed in order to obtain the related power-required component which can be significant during sustained-g maneuvering.
6. Vertical fail

The vertical tail is also similar to the horizontal tail except that it experiences the flow field produced by the tail rotor.

## C. Definition of Model Equations

Once the various components of the model are defined, the equations for all the components must be expressed in a way which minimizes code and the number of parameters. The following does so according to the order of the computer program.

1. Main Rotor Thrust and Induced Velocity

The computation of thrust and induced velocity is based on a ciassical momentum theory equation, but with a special recursion scheme which yields a very quick convergence. The block diagram showing the thrust and induced velocity equations is


Figure 3. Main Rotor Thrust and Induced-Velocity Black Diagram.

The recursion relationship is based on breaking the thrust-induced velocity loop at the induced-velocity node and iterating on a solution for thrust followed by induced-velocity. This yields a fast convergence with a fixed number of iterations. -about 5 is sufficient.

$$
\begin{aligned}
& T=\left(W_{b}-v_{i}\right) \cdot \frac{\rho \Omega R a b c R}{4} \\
& v_{i}^{2}=\sqrt{\left(\frac{\hat{v}^{2}}{2}\right)^{2}+\left(\frac{T}{2 \rho A}\right)^{2}}-\frac{\hat{v}^{2}}{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{r}=W_{a}+\left(a_{1}+i_{s}\right) U_{c}-b_{1} v_{a} \\
& W_{b}=W_{r}+\frac{2}{3} R\left[\theta_{c o l}+\frac{3}{4} \theta_{\text {twist }}\right] \\
& \hat{v}^{2}=U_{a}^{2}+v_{a}^{2}+W_{r}\left(W_{r}-2 v_{i}\right) \\
& A=\pi R^{2}
\end{aligned}
$$

Once induced velocity for the main rotor has been computod, one can compute the longitudinal an lateral dihedral effects of the main rotor which are, in turn, dependent on induced velocity:

$$
\mathrm{db}_{1} / \mathrm{dv}=\mathrm{da} \mathrm{a}_{1} / \mathrm{du}=\frac{2}{\Omega R}\left(\frac{B C_{J}}{\sigma \sigma}+\sqrt{\frac{C_{I}}{2}}\right)
$$

The main rotor paraineters needed for these equations are:
$d^{m r}$, horizontal distance of hub from c. g.
$h^{m r}$, hub height above the c.g.
$R$, rotor radius.
abcR, product of lift slope, number of blades, chord, and radius.
$\Theta_{\text {twist }}$, effective blade twist.
$\Omega$, main rotor angular rate.
2. Tail Rotor Thrust and Induced-Velocity

Thrust and induced velocity for the tail rotor is computed in the same manner as for the main rotor except that no flapping effects are included.

The parameters which define the tail rotor effects are:

$$
\begin{aligned}
& d^{t r} \text {, distance of tail rotor from } c . g \text {. } \\
& h^{t r} \text {, height of tail rotor above } c \cdot g \text {. } \\
& R^{t r} \\
& (a b c R)^{t r}, \begin{array}{l}
\text { product of } \\
\text { and radius. }
\end{array} \\
& \Omega^{t r}, \text { tail rotor angular rate. }
\end{aligned}
$$

## 3. Fuselage Geometry and Drag

Profile drag forces are computed for the fuselage in the $x^{--}, y^{-}$, and z-axes. These drag forces can constitute a significant portion of the overall power required and thus must be computed prior to main rotor torque. The forces are computed at the center of pressure located at the point (X.FUS, Y.FUS, Z.FUS) relative to the center of gravity.

Fuselage drag forces are computed using a "quadratic aerodynamic form." In this case forces are expressed as a summalion of terms formed by the product of translational velocity components in each axis. The constants in each term are the of fective flat plate drag.

$$
\begin{aligned}
& W_{0}^{\text {Pus }} \triangleq \\
& W_{0}+V_{1} \\
& \text { local w-velocity } \\
& X_{\text {faro }}^{\text {rus }}=\frac{\mu}{2} X_{u u}^{\text {pus }} U_{0} \cdot U_{0} \quad \text { drag component } \\
& Y_{\text {fro }}^{\text {fuse }}=\frac{\rho}{2} Y_{w}^{f w} V_{0} \cdot V_{0} \quad \text { side-force component } \\
& Z_{\text {moro }}^{\text {!us }}=\frac{\rho}{2} Z_{w}^{\text {fut }} W_{0}^{\text {iv }} \cdot W_{0}^{\text {ide }} \text { downwash component }
\end{aligned}
$$

Moments due to the drag forces relative to the center of gravity are computed.

The parameters required for the fuselage are:
$d^{f u s}$, distance of fuselage a. c. from c. g.
$h^{f u s}$, height of fuselage a. c. from c. g.
$X_{\text {uu }}^{\text {fus }}$, effective flat plate drag in $x$-axis
$Y_{V V}^{f u s}$, effective flat plate drag in $y$-axis
$Z_{\text {WW }}$ fus , effective flat plate drag in $z$-axis

## 4. Horizontal Tail Geometry and Lift

The horizontal tail is modeled in terms of a quadratic afrodynamic form for airfoils.

The first step in computing the lift on the horizontal tail is to determine whether the surface is imnersed in the rotor downwash field. This mill influence the local vertical velocity vector.

The next step is to check fur aerodynamic stall by compar ing the force computed above with the maximum achievable at the same airspeed.

$$
\begin{aligned}
W_{0}^{n t} & \triangleq W_{0}+V_{1} & & \text { local w-veiocity } \\
Z_{\text {ero }}^{n t} & =\frac{\rho}{2}\left(Z_{u u}^{n t} U_{0} U_{0}+Z_{w}^{n t} U_{0} W_{n}^{n}\right) & & \text { normal force } \\
& >\frac{\rho}{2} Z_{m i n}^{n t} U_{0} U_{0} & & \text { stall condition }
\end{aligned}
$$

Pitching moment due to the horizontal tail is computed based on the location of the aerodynamic center relative to the center of gravity.

The parameters required for horizontal tail effects are:

$$
\begin{aligned}
& d^{h t}, \text { distance of horizontal tail from } c . g . \\
& h^{h t}, \text { height of horizontal tail from } c . g . \\
& Z_{u u}^{h t} \text {, aerodynamic camber effect } \\
& Z_{u w}^{h t}, \text { lift slope effect } \\
& Z_{\text {min }}^{h t}, \text { stall effect }
\end{aligned}
$$

5. Wing Geometry and Lift

The wing is treated in the same manner as the horizontal tail. It is first checked for exposure to main rotor downwash and then for stall. For the wing, induced drag is computed in order to determine the power loss due to this effect. Lift and pitching moment for the wing are also computed.

$$
\begin{aligned}
W_{0}^{v n g} & \triangleq W_{0}+V_{i} & & \text { localw-velocity } \\
Z_{m e r 0}^{* n g} & =\frac{\rho}{2}\left(Z_{u u}^{v n} U_{0} U_{0}+Z_{w n}^{v n} U_{0} W_{0}^{v n g}\right) & & \text { normal force } \\
& >\frac{\rho}{2} Z_{m i n}^{v n g} U_{0} U_{0} & & \text { stall condition }
\end{aligned}
$$

The power dis to the induced drag of the wing is computed based on the product of force and velocity in the x-axis.

The parameters required for wing effects are:

$$
\mathrm{d}^{\text {wing }} \text { distance of wing from } \mathrm{c} . \mathrm{g} \text {. }
$$

$\mathrm{h}^{\mathrm{Wng}}$, height of wing from $c \cdot \mathrm{~g}$.
$Z_{\mathrm{uu}}^{\mathrm{Wng}}$, zerodynamic camber effect
$Z_{u w}^{\text {wng }, ~ l i f t ~ s l o p e ~ e f f e c t ~}$
$Z_{\mathrm{min}}^{\text {wng }}$, stall effect

## 6. Vertical Tail Geometry and Lift

The vertical tall is treated the same as the other lifting surfaces except that it is assumed out of main rotor dowrwash.

$$
\begin{array}{rlrl}
V_{0}^{v t} & \triangleq V_{0}+V_{i}^{t r} & & \text { local } v \text {-velocity } \\
Y_{\text {ero }}^{v t} & =\frac{\rho}{2}\left(Y_{u}^{v t} U_{0} U_{0}+Y_{u v}^{v t} U_{0} V_{0}^{v t}\right) & & \text { normal force } \\
& >\frac{\rho}{2} Y_{r . n}^{v t} U_{0} U_{0} & \text { stall condition }
\end{array}
$$

The parameters required for vertical tail effects are:

$$
\begin{aligned}
& d^{v t} \text {, distance of vertical tail from } c \cdot g . \\
& h^{v t} \text {, height of vertical tail from } c \cdot g . \\
& Y_{u u}^{v t} \text {, aerodynamic camber effect } \\
& Y_{u v}^{v t}, \text { lift slope effect } \\
& Y_{m i n}^{v t}, \text { stall effect }
\end{aligned}
$$

Total Power Required
Total power de to the main rotor, tail rotor, wine, and miscellaneous effects are summed giving the total power out, put by the engine.

$$
\text { Total power required }=P^{m r}+P^{t r}+F^{f u s}+P^{w n g}+F^{\text {climb }}
$$

$$
\begin{aligned}
& F^{m r}=F_{\text {induced }}^{m r}+F_{\text {profile }}^{m r}+F_{\text {accessories }}^{m r} \\
& \text { (Note: An estimate of power required for ers } \\
& \text { series can be found in Reference } 12 \\
& F_{\text {induced }}^{m r}=T+v_{i} . \\
& \mathrm{F}_{\text {profile }}^{\mathrm{mr}}=\rho / 2 \frac{C_{D_{0}}{ }^{\mathrm{bcR}}}{4} \Omega \mathrm{R}\left[(\Omega R)^{2}+4.6\left(U_{a}^{2}+V_{a}^{2}\right)\right] \\
& P^{t r}=F_{\text {induced }}^{t r}=T^{t r} \cdot v_{i}^{t r} \\
& \mathrm{p}^{\text {fut }}=\left|\mathrm{X}_{\mathrm{fus}} \cdot U_{a}\right|+\left|Y_{f \text { aus }} \cdot v_{a}\right|+\left|Z_{f u s} \cdot\left(W_{a} \cdot v_{i}\right)\right| \\
& \mathrm{P}^{\text {wing }}=\left|\mathrm{X}^{\text {lng }} \cdot \mathrm{U}_{\mathrm{a}}\right| \\
& p^{\text {climb }}=m \cdot g \cdot h
\end{aligned}
$$

8. Summation of Force and Moment Equations

The first order effects of all components are summed in three force equations and three moments equations. The force die. to gravity rotated through theta and phi are also included here:

$$
\begin{aligned}
& X=m g \sin \theta+X^{m r}+X^{f u s}+X^{w n g} \\
& Y=m g \sin \theta \cos \phi+Y^{m r}+Y^{t r}+Y^{v t} \\
& Z=m g \cos \theta \cos \phi+Z^{m r}+Z^{f u s}+Z^{h t}+Z^{w n g}
\end{aligned}
$$

$$
\begin{aligned}
& L=L^{m r}+L^{f u s}+L^{t r} \\
& M=M^{m r}+M^{f u s}+M^{h t} \\
& N=N^{m r}+N^{t r}+N^{v t}
\end{aligned}
$$

The equations of motion are expressed in terms of body axis accelerations so that they may be directly integrated to

## 9. Integration and Axis Transformation

As discussed in Reference 13 the algorithm used for numerical integration of states should be carefully chosen to minimize digital effects.

The body accelerations are integrated using a second order Adams method in order to account partially for the one-frame hold between cortrol (acceleration) input and the integrated velooity output:

$$
v_{n+1}=v_{n}+\operatorname{DT}\left(1.5 a_{n}-0.5 a_{n-1}\right)
$$

Tinese body velocities are then converted to earth relative velocities using a common Euler angle direction cosine transfor. mation.

Finally, the earth velocities are integrated to uttain earth positions using a trapezoidal integration method in order to account partially for the zero-frame hold between velocity and the in eegrated position output:

$$
x_{n+1}=x_{n}+\operatorname{DT}\left(0.5 v_{n}+0.5 v_{n-1}\right)
$$

10. Summary of Model Parameters

A summary of all the parameters included in this model are given below according to each model component. More detailed definitions are given in Appendix $D$.

1. Main rotor

FS. HUB
WL. HUB
IS
E.MF
I. B
R. MK

RE'M.MR
CDO
A. MR
B. MR
C.MR

TWST.MR
K1
E. Fuselage

FS.FUE
WL. FUS
XUU.FUS
YVV. FUS
2WW. FUS

Fuselage station of hub
Water line location of hub
Forward tilt of rotor shaft w.r.t. fuselage
Effective hinge offset
Blade flapping inertia
Radius of main rotor
RPM of main rotor
Blade profile drag coefficient
Blade lift curve slope
Number of blades
Blade chord
Blade twist
Blade pitch-flap coupling proportion

Fuselage station of fuselage center of pressure Waterline station of fuselage center of pressure Aerodynamic quadratic model constant
3. Tail rotor

FS. TR
WL.TR
R.TR

RFM.TR
A. TE

BuLTE
TWST'.TK
Fuselage station of tail rotor
Waterline station of tail rotor
Radius of tail rotor
RPM of tail rotor
Blade lift curve slope
Tall rotor solidity
Blade twist
4. Horizontal tail

FS. HT
WL. HT
ひU.HT
ZUWW. HT
ZMAX.HT

Fuselage station of horizontal tail
Waterline station of horizontal tail
Quadratic max lift coeff of horizontal tail

## 5. Wing

FS.WN
WL. WN ZUIJ. WN ZUW. WN ZMAX.WN B. WN

Fuselage station of wing
Waterline station of wing

Quadratic max lift coeff of wing Span
E. Vertical tail

FG. TT
WL.VT
YUU.VT
YUV. VT
YMAX.VT
Fuselage station of vertical tail
Waterline station of vertical tail

Quadratic max lift coeff of vertical tail

## III. Model Matching and Estimation Procedures

In order to demonstrate model matching and estimation procedures, a model of the Bell AH-1S Cobra is developed. The actual code for this example version along with a list of symbols and a table of associated input parameters are presented in Appendices $A, B$, and $C$. An example involving the matching of actual flight data is presented in Appendix $D$ for the Augusta Model 109 helicopter.

The primary sources which are used in the Cobra example are the flight manual (Reference 14), a manufacturer's stability and control package (Reference 15), a volume of Jane's (Reference 16), and a flighe dynamics data report (Reference 17). Other useful references include the USAF Stability and Control Datcom (Reference 18), the U. S. Army Engineering Design Handbook (Reference 19) and the previously cited Stepniewski and Keyes reference.

In this section the method is described for determining the the individual components of the AH-1S and its associated parameters. There are 44 total parameters needed for this model. 22 of these are simple geometrical variables which can be easily obtained from scale drawings, from aircraft manuals, or even es. timated from a picture of the aircraft.
A. Mass, Looding, and Geometry Data

A substantial portion of the data required is either directly obtainable geometric data or common mass and loading data.

1. Geometric Data

Geometric parameters are easily obtained from aircraft drawings or reference literature. Figure 4, taken from the flight manual, provides a basis for geometric informatior. Note that positions of all major components are given relative to the manufacturer's reference system (fuselage stations, waterlines. and buttlines)

Explicit positions can be obtained for some features such as main rotor hub position and tail rotor hub. For airfoils it is generally sufficient to estimate and use the positions for une quarter mean aerodynamic chord. The fuselage aerodynamic center is less alearly defined and must be estimated depending upon the shape. Appendages such as tail boom and landing gear can be con sidered i estimating the fuselage aerodynamic center.


209900-9172

Aroure 6-1. Mellecpier Btetion Diegrem

4

| COMPONENT | FS | WL |
| :--- | :---: | ---: |
| Main rotor hub | 200 | 153 |
| Tail rotor hub | 521 | 119 |
| Fuselage | 200 | 65 |
| Wing | 200 | 55 |
| Horizontal tail | 400 | 65 |
| Vertical tail | 490 | 80 |

Figure 4. Basis for Geometric Data.

## 2. Mass and Loading Data

Values for normal operating gross weight and center of gravity are typically obtained from operating manuals. An example is shown in Figure 5. Specific choices will depend upon the general loading condition of interest. Here an intermediate loading is chosen which also corresponds to other available data.

Inertial data from the Reference 15 stability and control report are given in Table 4. While these do not correspond ex actly to the loading chosen above, they can be easily rescaled by assuming a constant radius of gyration in each axis.


Figure 5. Basis for loading Data.

## ORIGINAL PAGE IS OF POOR QUALITY

Table 4. Basis for Inertial Data

TOTAL RELICOPTER MOMENTS OF INERTIA ABOUT RELICOPTER C,G.

| Condition | $\begin{aligned} & \text { Keight } \\ & \text { SiOS. } \end{aligned}$ | $\begin{gathered} \bar{x} \\ (\ln ,) \end{gathered}$ | $\begin{gathered} \bar{\Sigma} \\ \left(\operatorname{lin}_{0}\right) \\ \hline \end{gathered}$ | P011 | ent of Ins Slup - Ft Pitch | Yaw | $\begin{gathered} \text { Principal } \\ \text { Axis } \\ \text { (Nose Down } \\ \text { Angle) } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) Weight Eapty | 5572.4 | 204 | 82 | 1990.4 | 10592.7 | 8878.2 |  |  |
| (2) Basic | 8673.2 | 193 | 72 | 2843.0 | $13125.6{ }^{\circ}$ | 11264.0 | $6^{\circ}$ | $30^{\circ}$ |
| 3) Hog | 9502.1 | 194 | 68 | 4002.5 | 23082.3 | 11930.4 | $6{ }^{\circ}$ | $37^{\prime}$ |
| (1) Scout | 9296.9 | 194 | 70 | 3195.3 | 13233.1 | 11606.7] | $6^{\circ}$ | 29 ${ }^{\circ}$ |
| 5) Most Forward | 6606.2 | 291 | 78 | 2255.3 | 12462.4 | 10499.5 | $7{ }^{\circ}$ | 18: |
| 6) Most Aft | 7476.8 | 200 | -3 | 2265.6 | 11881.0 | 9903.8 ( | $4 *$ | 18. |

## B. Propulsion Data

Required propulsion data include power available fiur giver operating conditions. These data can be found in Jane's lunder the appropriate propulsion system manufacturer as illustrated in Table 5. The specific information of interest here is the max imum continuous power rating for the AVCO Lycoming T53-L-703 gas turoine engine.

Uther information needed consists of an approximate break down of power, including that due to accessories. Data from trie Stepniewski and Keyes source are given in Table 6. These data will be used to estimate power losses from the computed power required by each of the components listed previously.

The basis for torque (power) available under various operating conditions is given in Figure 6. (Percent torque is assumed equal to percent power for the normal operating rpm. 324 in this case.)

Table 5. Basis for Propulsion System Data.

| Manufacturer's and civil designation | Military designation | Type * | T-O Rating kN (lb st) or max kW (bp) | ```SFC Mg/J; & me/Ns (Cb/W/hp; flon/ib at``` | Weight dry less tailpipe ly (lb) | Max dia mm (in) | Length overall mm (ia) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T5313B | - | ACFS | $1,044 \mathrm{~kW}(1,400 \mathrm{shp})$ | 98 (0.58) | 245 (540) |  |  |  |
| TS317A | - | ACFS | $1,119 \mathrm{~kW}(1,500 \mathrm{mp})$ | 99.7 (0.59) | 256 (564) | $\begin{aligned} & 584(23) \\ & 584(23) \end{aligned}$ | $\begin{aligned} & 1.209(47.6) \\ & 1,209(47.6) \end{aligned}$ | Powers Belf 205A Based on T3119A |
| TS311A | T53-138 | ACFS | 820 kW ( $1,100 \mathrm{shp}$ ) | 115 (0-68) | 225 (496) | 584 (23) | 1,209 (47.6) | Bell 204B |
| - | T53-L-13B | ACFS | 1,044 kW (1,400 mp) | 98 (0.58) | 245 (540) | S84 (23) | 1,209 (47.6) | Advanced UH-1H, AH-1G |
| LTCIK-4K | -133-2-703 | ACFS |  | 1014(160) | 249 (545) | 364 (23) | 1,209 (47. ${ }^{1}$ | Bell AH-1ర, AH-15 TOWCObren |
| LTCIK-4K | T53-L.701 | ACFS | $1.157 \mathrm{~kW}(1,550 \mathrm{shp})$ $1,082 \mathrm{~kW}(1,451 \mathrm{ehp})$ | $98.7(0.354)$ | 234 312 (515) | 384 | 1.209 (47.6) | Beil XV.15 |
| - | YTSS-L-9 | ACFP | $1,082 \mathrm{ekW}(1,451 \mathrm{chp})$ $1,887 \mathrm{ekW}(2,529 \mathrm{ehp})$ | $101.4(0.60)$ $102.7(0.608)$ | 312 (688) 363 (799) | 584 (23) | 1.483 (58.4 | Grumman OV-1D |
|  | T5S-L-7C | ACFS | $2,125 \mathrm{~kW}(2,850 \mathrm{shp})$ | $102.7(0.60)$ $101.4(0.60)$ | 363 (199) 267 (590) | $615(24.2)$ $613(24.2)$ | $1,580(62-2)$ 1,118 (44) | Piper Eaforrer Boeing CH-47B, Bell 214A |
| $\begin{aligned} & \text { TS508D } \\ & \text { (LTC4B-8D) } \end{aligned}$ | - | ACFS | $2,186 \mathrm{~kW}(2,930 \mathrm{shp})$ flat-rated to $1,678 \mathrm{~kW}(2,250 \mathrm{shp})$ | $100.1(0.592)$ $106.0(0.628)$ | 274 (605) | 610 (24) | 1,118 (44) | Bell 214A. 214B |
|  | TSS-L-11A $\dagger$ | ACFS | 2,796 kW ( $3,750 \mathrm{shp}$ ) | 89.6 (0.53) | 322 (710) | 615 (24.2) | 1.181 (46.5) | Boeing CH-47 |
| LTC4B-12 <br> ALF 101 | - | ACFS | $3.430 \mathrm{~kW}(4.600 \mathrm{shp})$ | 86.2 (0.51) | 329 (725) | 615 (24-2) | 1,118 (44) | Improved TSS-L-11A |
| ALF 101 <br> ALF S02R-3 | - | ACFF | $7.2 \mathrm{kN}(1,620 \mathrm{lb})$ | \$10.19 ( $\pm 0.36)$ | 156 (343) | 584 (23) | 890 (35) | NASA OCGAT |
| ALF 302 L - 2 | - | ACFF | $29.8 \mathrm{kN}(6,700 \mathrm{lb})$ | \$11.64( $\ddagger 0.411$ ) | 565 ( 1,245 ) | 1,059 (41.7) | 1.443 (56.8) | BAe 146 |
|  | - | ACFF | $33.4 \mathrm{kN}(7,500 \mathrm{lb})$ | \$12.1 ( 10.428 ) | 590 (1.298) | 1.059 (41.7) | 1,487 (58.56) | Canadars Cl. 600 Challenger |

-ACFS - axial plus centrifugal, free-furbine shaft; ACFP = axial plus centrifugal, tree-lurbine propeller; ACFF a and plus ceatrifugal, free-iurbine fa tApplies to TSS-L-11A, C* . D, E* and $712^{\circ}$, those designated * maviag 2 h min contingeocy fating of $3,357 \mathrm{~kW}$ ( 4,500 shp).

Table 6. Assumed Breakdown of Power Absorbtion.
\% Total Power
in Hover
\% Total Power Max Forward

| Main rotor induced power | 65 | 15 |
| :---: | :---: | :---: |
| Main rotor profile fower | 15 | 50 |
| Euselage parasite power | 5 | 25 |
| Tail rotor total power | 10 | 2.5 |
| Misc. and sccessories | 5 | 5 |
| (NOTE: Power losses due sidered where t significant. It ample.) |  | als cte n |

ORIGINAL i $\because ;:$
Of POOR U:U:..:

> ORIGINAL PAGE IS
> OF POOR QUALITY


Figure 6. Basis for Torque (Power) Limits.
C. Rotur Lata

Rotor system characteristics consist of eeometric. sewdynamio, and operating condition features. Most of the gemetric data including size and number of blades and hub center are easily found in fight manuals. Operating conditions, namely the normal operating rpm, are likewise obtained.

The min atrodynamic parameters include the effective sec tion lift ourve slope and profile drag coefficient. Commonly accepted values of 5.7 ard .006 , respectively, are sufficient startines points

The most crucial rotor parameters, however are those relating to the effective flapping stiffness or hinge offset. These data are generally found only in marsfocturers desien reports. Of course in the case of a simple vestering rotor the effective hinge offset is zero. Articulated rotron designs are also fairly easy to represent as long as the seometrio hinge of fset is known. The most difficult variety to model is the hingeless rotor since both an effective hinge offset and flapping syring must be determined.

Useful auxillary information for modeling the rotor systam is respanse data which provides direct indication of the unaug mented pitch and roll damping.

## I. Aerodynamic Features

Aside from the rotor system aerodynamics, parameters must he setimated for the airfoil and fuselage components. The tech niques for doing so are common and require little effort. If manutacturer's stability and control data are available these caiculations are trivial. Otherwise, one can refer to estimetion hatdouns such as the USAF DATCOM (Reference ik).

Airfoil lift parameters involve three main features: cam b. . and incidence oirculation lift, and stail. The farst two are highiy dependent upon geometry and the third on maximum lift ing performance.

Felationships which are reeded for setting parameters in vive the quadratic aerocynamic parameters and the more common non dimensional aerodynamic coefficients. These are given tollw for use in the estimation procedires described in figure? The equations are for the horizontal tail, but the other airfoij surfaces are similar.

Fistimates typical for airfulls:

$$
2_{u u}^{h t}=-S^{h t} C_{L_{0}}^{h t} ; C_{L_{0}} \text { is set by both camber and incidence }
$$

$$
\mathrm{Z}_{\mathrm{uw}}^{\mathrm{ht}}=-S^{\text {ht }} \mathrm{C}_{\mathrm{L}_{\alpha}}^{\text {ht }} ; \operatorname{note} \text { that } \mathrm{C}_{\mathrm{L}_{\alpha}} \approx \frac{2 \pi R}{R+2}
$$

$$
Z_{\min }^{h t}=-S^{\text {ht }} C_{\text {max }}^{h t} ; \text { typical values are } 1.5 \text { to } 3 \text { depending }
$$ upon aspect ratio.

Similarly, fuselage drag estimates can be made for each of the three axes using available drag data.

Estimates typical for fuselage drag:
$X_{\text {Lid }}^{\text {fuss }}=-G^{\text {fuss }} C_{D}$
where $\mathrm{S}^{\text {fus }}$ is the projected frontal area
and $C_{D}$ can be estimated using numerous textbook tabulations of 3-dimensional drag. This will vary for each axis.

WING

| span $=10.75^{\circ}$ | (based on $1=14^{\circ}$, |
| :--- | :--- |
| chord $=3.0^{\circ}$ | $C_{L_{0}} \approx 1.2$. |
| area $=32.25 \mathrm{ft}^{2}$ | assume $\left.C_{L_{\max }} \approx 2\right)$ |
| aspect ratio $=3$ |  |
| $C_{L_{\alpha}} \approx \frac{2 \pi R}{R+2}=5$ |  |



Figure 7. Basis for Initial Estimates of Aerodynamic Parameters.

## E. Hover Performance

The parameters listed above provide a starting point for the math model. Additional flight manual and available flight data will serve to make refinements in model response and performance characteristics.

The first adjustment of model parameters can be made based on the flight manual hover performance as shown in Figure 8. Here the percent maximum torque is given for a specific hover condition.

The factors which can be adjusted to achieve a good match are the power losses due to accessories, downwash on the fuselage and horizontal airfoils, or main rotor induced velocity factor (if included).


Figure 9. Basis for Hover Power Required.

## ?. Friward Flistıt Data

Up to this point model adjustments have centered on the nain rotor system since body drag has been low due to the hovar conijtion. With the consideration of forward flight the fuselage now plays a ma.ior role in limiting maximum speed and climb $\mathfrak{n t}$. formince.

The main set of data useful for adjusting fuselage draw are siven in Figure 9 from the flight manual. Note that the primary information is the torque required as a function if flight condition and loading. The two main features on this plit Fre the maximum speed at continuous operating toraue and the torque and speed for level flight at minimum dower

Additional information is eiven in Figure 10 with the maximum rate of climb corresponding to an increase in tiralde.

Finally in Figure 11 data are eiven for the maximum elide and minimum rate of descent. These are useful for settire lite effective full-down collective pitch stop.


Figure 10 . Basis for Forward Flight Speeds and Power Required.

ORIGiNAI. PAGE IS
OF POOR QUALITY

Qninal FAGE F<br>of buCH qualty



Figure 11. Basis for Max Rate of Climb Speed and Power Required.


Figure 12. Basis for Max Glide Speed and Descent Angle.

As a firal note, the process of turing model piarametrars :hould not be done without careful consideration of all secondiav effects. The best policy is to avoid making anythine other than simple direct first-principles corrections. There is substintial redundancy in some of the data shown here, and it is not posifite to $\dot{H} h i e v e$ perfect matches in all respects. One needs to exercise judgment in the degree of accuracy required as a function of the model application.


## iV. Checkoint Procedures

A. General

As discussed earlier, model complexity can hamper the thorouphress of simulator computer program implementation and wheckine. However, the model presented here can be fully chechiod with reasonable effort. This is due to the small number of model ronstants and degrees of freedom, and minimal program branching. The recommerded checking procedure involves the following inte

- Use of an indeperdent operating program.
- Verification of trim points.
- Verification of state transitions through $n$ steps.
- Overlay of time histories.
- Ideritification of dominant response modes.

Some of these steps aro redundent but nevertheless serve to build confidence in the corrertness of the math model implementation at only minimal added cost. The following is a brief discussion of each element
E. Discussion of Checkout Procedure Elements

1. Independent Operatine Program

As a seneral rule, math model checkout should be ac. Fumplished using an independent implemeritation and check solty e. Fromer indepenot only should an independent proerain be used but aso an independent computer.

This math model iorm enables the user to develop a math model version on a small desktop microcomputer and run eomplete suts of check cases well in advance of using the simulator com

The specific computer system used to develop and run thi.. math model consisted of a Compaq 286 desktop computer with 640 k workine memory runnine Microsoft Basic. Only an interpreter mode was used although a Basic compiler is available. The interpreter permits a highly efficient interaction between the model developer and the computer system.

```
Z. Trim Point Verification
```

A check of static trim points gives an initial indication uf correct model implementation. The full operating envelope oan be covered with just a few cases and possible discrepericies iso. lated to airspeed. vertical velocity, or controls. A cursorv check of suspected parameters or component equations can usurilly lead to simple corrections. Trim solutions should be corront prior to proceding to the next item.

A sample of the trim solution printout is given in Figure
12. This same format is displayed during the trimming process so that one can observe whether there are difficulties in iterat, ine on a solution.

| G1ACAL | CULATIONS | HEFHEL2: FULL UTILITY VERSION CONFIGUKATION: 102 AH-1S 05-25-1987 16:09:55 |
| :---: | :---: | :---: |
| Fiot $=1.05 \mathrm{E}+00$ | $D C=15.7$ |  |
| Wdot $=-1.44 \mathrm{E}-01$ | $\mathrm{al}=1.3$ |  |
| $\mathrm{kdot}=3.285-03$ | b1 $=-2.1$ |  |
| Udot $=-4.88 \mathrm{E}-02$ | DTR $=1,02 \mathrm{E}+01$ |  |
| Voot $=-3.87 \mathrm{E}-02$ | Theta $=-1.3$ |  |
| Wdot $=1.41 \mathrm{E}-03$ | Phi $=-1.20 E+00$ |  |
| aldot $=-6.01 \mathrm{E}-02$ | $B 1=-1.30 E+00$ |  |
| bldat $=9.80 \mathrm{E}-02$ | Al $=-2.055+00$ |  |
| $Q=1.34 E+04$ | $\mathrm{HP}=973$ |  |
| $\mathrm{Vi}=35.8$ | Thrust $=9256$ |  |
| Vi.tr $=47.9$ | T.tr $=618$ |  |
| $V B(1)=0.00 E+00$ | xdot $=0.00 E+00$ |  |
| $V B(2)=0.00 E+00$ | Hotot $=0.0$ |  |
| $V E\|3\|=0.00 E+00$ | Ganad $=0.00 E+00$ |  |
| $V T=0.0$ |  |  |
| Hit (0) to freese | trin anvtine |  |
| Trianed: Hit PFTSC Hat RETUEN to conta | to sake hara copy nue |  |

Figure 13. Sample of Trim Point. Printout.

Given that static solutions are valid, the dyramic eesponse characteristics should be examined next. Correct opera fion is indicated by tracking several discrete state variatie transitions and comparing with independently obtained chock valies. This is made feasible by restricting the rumber of de grees of freedom and levels of numerical integration. For example, only about six transitions for each control variatle aro neenied to excite each term in the model equations.

In order to thoroughly check state transitions, a tatie verlar is recommended. Tris is accomplished by duplicatine the tate transition printout format of the checkout comouter with that of the simulator computer. The original cheoks an he printed on transparencies then directly overlaid with the simulatur printout.

Examples of the state transition checks are given in Tatol,

ORIGINAL PAGE IS OF．POOR QUALITY

Table 7．Sample of State Transition Checks．

|  | $\begin{aligned} & \dot{\theta} \\ & \hline \end{aligned}$ | \％ | $8$ | － | $\begin{gathered} \mathbf{8} \\ \hline \end{gathered}$ | \％ | 号 | － | $\stackrel{\circ}{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | － | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | O | $\stackrel{\square}{\square}$ | - | O | \％ | 合 | 끙 |
|  | 三 | ¢ | $\underset{\vdots}{\Xi}$ | $\frac{\text { 永 }}{2}$ | $\stackrel{\text { \％}}{\substack{\text { a }}}$ | $\stackrel{7}{7}$ | $\stackrel{\text { ¢ }}{\substack{\text { a }}}$ | $\stackrel{\square}{\square}$ | $\underset{\text { a }}{\text { ® }}$ |
|  | 5 | $\stackrel{\text { \％}}{\square}$ | 80 8 |  |  | 8 | ¢ | ¢ | － |
|  | $\stackrel{\tilde{\Xi}}{3}$ | $\underset{\substack{3 \\ 0}}{ }$ | 88: | \％ | $\stackrel{\vdots}{0}$ | 잉 | oi | $\stackrel{\substack{3 \\=}}{ }$ | ¢ |
|  | 三 | $\stackrel{8}{0}$ | $\begin{aligned} & \check{8} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\stackrel{\text { M }}{\stackrel{\circ}{\circ}}$ | $\hat{0}$ | $\begin{aligned} & \circ \stackrel{O}{4} \\ & \stackrel{9}{4} \end{aligned}$ | ¢ |
|  |  | －8． | ob | $\stackrel{S}{0}_{0}^{0}$ | \％ | $\stackrel{\rightharpoonup}{8}$ | 808 | $\stackrel{3}{¢}$ | $\stackrel{3}{5}$ |
|  | $\stackrel{\rightharpoonup}{\pi}$ | $\stackrel{g}{6}$ | $\underset{\substack{~ \\ \hline}}{ }$ | $\stackrel{\overbrace{}}{0}$ | $\stackrel{0}{0}$ |  | $\stackrel{\text {－}}{\circ}$ | \％ | － |
|  | 三 | 803 | ¢ | $\underset{\sim}{\underset{i}{*}}$ | $\stackrel{8}{8}$ | $\stackrel{\text { ®80 }}{\stackrel{8}{8}}$ | $\stackrel{-}{\square}$ | $\stackrel{\text { a }}{\square}$ | $\stackrel{\rightharpoonup}{\text { a }}$ |
| 靣 | $\frac{5}{x}$ | $\begin{gathered} \stackrel{y y y}{3} \\ 0 \end{gathered}$ | ¢ | O | $\begin{gathered} 8 \\ \hline \end{gathered}$ | $\stackrel{\stackrel{0}{0}}{0}$ | $\stackrel{8}{\text { ¢ }}$ | － | \％ |
| 3 | $\underset{\underline{\dot{x}}}{\underline{a}}$ | $\stackrel{8}{8}$ | ¢ | $\underset{\sim}{8}$ | $\stackrel{\text { O}}{\stackrel{\mathrm{O}}{\circ}}$ | 官 | $\begin{gathered} \text { 品 } \\ 0 \\ \hline 0 \end{gathered}$ | $\stackrel{-}{3}$ | $\stackrel{5}{5}$ |
|  | ＝ | $\stackrel{8}{3}$ | $\stackrel{8}{3}$ | $$ | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ | $\begin{aligned} & \text { ö } \\ & \hline \mathbf{~} \end{aligned}$ | $\stackrel{M}{\underset{i}{i}}$ | － | $\stackrel{\circ}{i}$ |
|  | 安 | $\begin{aligned} & \ddot{\ddot{a}} \\ & \stackrel{y}{\Xi} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \vdots \end{aligned}$ | $\begin{aligned} & \square \\ & \vdots \\ & \vdots \end{aligned}$ | $\stackrel{\ddot{g}}{\stackrel{\rightharpoonup}{\circ}}$ | $\stackrel{\stackrel{\rightharpoonup}{\mathbf{n}}}{\stackrel{1}{\circ}}$ | $\frac{2}{E}$ | $\stackrel{\square}{3}$ | 哭 |
| 藏 | 3 | $\stackrel{F}{\square}$ | $\stackrel{\text { ¢ }}{\substack{\text { a }}}$ | $\stackrel{\rightharpoonup}{6}$ | 安 | 豆 | 吕 | $\stackrel{\square}{9}$ | 雨 |
| $-\frac{\pi}{2}$ | c | $\bigcirc$ | $\div$ | $\stackrel{\square}{7}$ | $\cdots$ | $\div$ | $\div$ | $\because$ | $\div$ |
| ＂ | E | 鲇 | 荌 | 感 | 号 | 答 | 哭 | \％ | S |
|  | 吕 | $\div$ | $\stackrel{-}{-}$ | $\stackrel{-}{-}$ | $\stackrel{-}{-}$ | $\stackrel{-}{-}$ | $\stackrel{-}{\square}$ | $\stackrel{3}{-}$ | $\stackrel{-}{-}$ |
|  | $\cdots$ | 凨 | ${ }_{0}^{6}$ | \％ | \％ | \％ | 欌 | ： | ： |
| …… | ¢ | $\stackrel{\text { i }}{\underline{i}}$ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | $\stackrel{\circ}{\text {－}}$ | $\stackrel{\circ}{\text { ¢ }}$ | $\stackrel{\text {－}}{\text {－}}$ | $\stackrel{\text {－}}{\text {－}}$ | ： | － |
|  | \％ | $\stackrel{3}{3}$ | 울 | 呙 | $\stackrel{R}{8}$ | $\stackrel{8}{9}$ | 8 | \％ | ？ |
|  | ： | $\dot{\sim}$ | $\stackrel{3}{5}$ | $\stackrel{0}{\circ}$ | c | － | $\bigcirc$ | \％ | $\cdots$ |

Table 7, Concluded.


## 4. Time History Overiays

In theory the combination of static and state transition checks should be sufficient to demonstrate agreement with the in dependent model implementation. Howeverg additional confidence is gained by selecting several time history cases to overiay. These can be supplemented by checking dominant response modes tased on transfer fanction solutions from the original independ ent check model.

Useful time histories to consider are angular rates tor both on and off-axes for a given control input. This checke both the dominant response modes and the amount of off-axis evoss coupling. Examples are shown in Figure 13 corresponding to tim previous check information.


Figure 13. Examples of Time Histories to be Used for Overlays.

#  <br> cuality 

5. Dominant lesponse Identification

It is also useful to supplement the above checks with a vomparisor of identified dominant response fertures from the: simulator computer with those features observed or computed $f$ rum the independent checkout version. This is particularly important for hardling qualities investigations.

Dominant modes are examined by exciting an axis with this worespording direct control and scaling the appropriate first, $r$ second-order response features from the respective motion traces. The on-axis traces presented earlier in figure 13 serve this purpose for extracting short-term pitch response informa

The example which has been presented above can be modified
in a number of ways in order to address specific simulatior needs. The above math model can be either simplified or made more sophisticated. The following is a discussion of some possible extensions and refinemerits.

## A. Flight Control System

There is no flight control system included in the above model other than conventional aerodynamic interfaces such as cyclic, collective, and tail rotor controls. Addition of a flight control system requires definition of relationships be tween the cockpit manipulator and the above aerodynamic controus plus any stability and control augmentation systems.

As with the basic airframe math model, definition of flight controls can be done with a wide range of computational umplexity. However the same considerations can be applied in order to match the level of complexity with user utilit.v. The main alestion is to what deeree can the simulator pilot observe or be influenced bv math model intricacies.

## B. Engine Governor

This aspect of the helicopter math model can be important for tasks involving maneuvering or ageressive control of collective pitch.

The above math model is designed to accomodat.e an eneine governor system since rotor speed is explicit in the equations. It is necessary only to add appropriate engine governor equations of motion prior to computation of the main rotor thrust.

In general, only a second-order engine governor response is recuired in order to handle the effective spring-mass-damper action of the main rotor combined with the propulsion system and Eovernor control lavis. An adequate model is described in Fi-ference 20.

## C. Ground Effect

The modeling of ground effect can be important for tasks involvire hover under mareinal performance conditions. Absin. the computational complexity of such models can vary widelv

It is recommended that, as a first. cut. arond offers be mutelel as an induced-velocity efficiency factor which primarily fill:s the thrust and power reanired to hover. This effinienv factir can re adequately modeled as an exporiential function of altitule. The exponential scale height and magnitude is easily quantified from the flight, marual hover verformance shown earlier in Figure ?

## OFicand <br> OF PAR PAGE IS OF POLITY

[. lvamic Inflow

For certain vertical response applications it may fr e in burtant to model the effective lag in thrust due to a collective Fitch change. This is typically a first order lap in the ranee of 10 to 15 rad/sec and varies with the sign of the colberive pitch charge.

This effect can be modeled by setting a first-order lat ur the adulation of thrust and induced velocity. Reference $a l$ ann br e ensulted for gixidance in setting values. Other forces and Reference 22. be affected by dynamic inflow as described in
F. Higter-Order Flapping, Coning, and Lead-Lag Dynamics

Higher order rotor system dynamics may be of interest, whin Examining flight control system schemes or certain vibrational effects. However the modes can easily be outside the oombuta. tical ability of the simulator or highly distorted by the motion syStem. Thus is crucial for the modeler to analyze computations l requirements relative to capabilities.

## REFERENCES

1 Hefflev, R. K. 3. M. Bourne, H. C. Curtiss, Jr.. W. B Hindson, and R. A. Hess, Study of Helicopter Roll Control Fffeotiveness Criteria. NASA CR 117404 (USAAVSCOM TK 85-A 5). April 1986.

2 Heffley. K. K., S. M. Bourne, and M. A. Mnich, Helicopter Roll Control Effectiveness Criteria, Manudyne Report 8: 8 (forthcoming NASA CR/AVSCOM TR), May 1987.
3 Talbot, Peter D., Bruce E. Tinling. William A. Decker, ind Robert $T$. N. Chen, A Mathematical Model of a Sincie Main Rotor Helicopter for Filoted Simulation, NASA TM 84281 , September 1982.

4 MGFarland, R. E. CGI Delay Compensation, NASA TM-84c81,
January 1986.
5 Howlett, J. J. UH-60A Black Hawk Engineering Simulation Fropram: Volume I--Mathematical Model. NAGA CR 166309, Foecember 1981.
© Chen. R. T. N. Fffects of Primary Rotor Parameters on Flabrure Dynamios. NASA TP 1431. January 1980.

7 Blake, B. B. and I. B. Alansky, Stability and Cuntrol withe YUH 61A. AHS Annual Nationial Formum, 1975.

3 Alacert. M. A., A General Theory of the Autogyro. Koyal Aeronautical Establishment R. and M. No. 1111. November 1935.
(a) Lock, C. N. H. Further Development of Autogyro Theory, koyal Aeronautical Establishment K . and M. No. 1127. Miroh.
1927 .
i) i,ant, Horace, "Hydrodynamics," Dover. New York, 194t,

11 Monk, Max M. The Aerodynamic Forces on Airship Hulis. lational Advisory Committee for Aeronautios Fieport N. : 14.
:3 Otepniewski, W. Z. and C. N. Keys, "Rotary-Wire Aerodunamios." Dover. New York. 1984.
Boffay, fi. K. Wayne F. Jeweld. Fichard F. Whitbeck imb Com M Schuman, The Anaiveis wi Delays in immulat r visital Combationg Systemg, Volumm I. NASA CR-153:340. Fetmory 19810.

14 Anon., Operator's Manual Army Model AH-1S (PROD) AH-1S (ECAS) AH-1S (Modernized Cobral Helicopters, Departement of the Army, TM 55-1520-236-10, 11 January 1980.
15 Davis, John M., Stability and Control Data Summaries for the AH-1G and UH-1H Helicopters, Bell Helicopter Report $699-099$

16 Taylor, John W. R, ed., Jane's All the World's Aircraft 1980-81. Jane's Publishing Company Limited. London. 1980.
17 Heffley, Robert K., Wavne F. Jewell. John M. Lehman, and Richard A. Van Winkle, A Compilation and Analysis of Helicopter Handling Qualities Data, NASA CR 3144, Aufust.

18 Anor.. USAF Stability and Control DATCOM, October 1960.
19 Anon.. U. S. Army Engineering Design Handbook, Fart I. AMCF 706-201, August 1974, and Part II, AMCP 706-202. January
1976.

20 Corliss, Lloyd and Chris Blanken, A Simulation Investigation of the Effects of Engine and Thrust Response Characteristics on Helicopter Handling Qualities, NASA TM 85849 , October

21 Cher. R. T. N. and Willıam S. Hindson, Influence of Dynamir. Inflow on Helicopter Vertical Response, NASA TM 88327, June

22 Gaonkar, G. H. and D. A. Peters, "Effectiveness of Current Dynamic-Inflow Models in Hover and Forward Flight." Journal. of the American Helicopter Society, Volume 31 Number 2 ,

## ORIGINAL PAGE IS OF POOR QUALITY

## APPENDIX A <br> BASIC PROGRAM LISTING OF MATH MODEL



$\qquad$

5
Git $\quad C 4=\operatorname{CCC}(X E: 41): 54=\operatorname{SIN}(X E(4)):$ evaluate Euler angle triy fns

$\rightarrow$


TE: $\quad \mathrm{F}(2)=\mathrm{VE}(2):-(\mathrm{VG}(3) \times C 5+V G(1) \times 55)$
$765 \quad 14(4=4 B(4):-46(4)$

$-50 \quad$ リ4 $6=3(6)$
$1 T=\operatorname{Erf}(16 \mathrm{~F}: 11 * \cup A(1)+V A(2) * V A(2)+V A(3)+V A(3))$




5F( 8 ) = - ITEAA. SUK + IT82.OM\&E.SUM -VA (4) : bl.dot
$6 \cup 47=64!7!+5!(A 2 * 6 f(?)+82 * 4 f(7)) \quad:$ al updated

$\left.4^{F} 7\right)=6 F^{\prime}(7): 4 F(8)=6 R(8) \quad: \quad$ save past values
24s
-E
Ste

$W K=V A(3)+(6117)-[E 1+V A(1)-G V(B)+V A(2) \quad: \quad z-a x$ is vel re rotor plane

FSE:=1 Tr $5 \quad: \quad$ iterative solution of thrust and induced vel

VAT. $2=V A!1)^{A 2}+V / B(2)^{A} 2+W R+(W C-2+V I, M R)$

U..MESEF (ABE(UI.MR.2)) : nain rotor induced velocit.

AETT!

WA. FUS $=V G(?)-$ VI.MF $:$ include rotor downwash on fuselage

i.FLE = RI - UUL.FUS * ABS(VA(1)) *VA(1) : drag force
i.fis $=32$ - YVV.FUS * AES (VA (2) ) \& VAI2) : ' 5ide-force

-TPUS = YEISHH.FUS

## ORIGINAL PAGE IS OF POOR QUALITY

```
\because!
!0
8:
4 5 0
4.i%
```



```
    4.E*(VA(1)**(1)+VA(2) &VA(2)))
    PGUGS.MF = F.INDUCED.MR + F.CLIMB + P.PARASITE + P.PRDFILE.MR
    OEF,JTRR.MK = E.INDUCED.MR + F.PRDFILE.MR
    O-NEFOUS = F.FARINSIE
    OFG.E.MF = SNEF. MFIOMEGAN. MR
    Comrite mamir rotor force and moment componente.
    T,MF = THFUST.MF * (GV(7)-15)
    YNF=THSUST.MR +GU(8)
    \therefore.FS = -THSLGT.MF
    L.MT}= Y.MRHH.HUE + [L.DE14EV(E) + DL.DA1&(GV(7) +DC(3) - K1&GV(B))
```



```
    N.ME = TOROUE.MR
    ************* Tail Rotor thrust and induced vejocity *************
    FK.TR = - \VA(2) - VA(b)+D.TR + VA(4)*H.TR: :' velocitv relative to rotor plane
    VE,TR = VF.TF +Z/3HMEGG.TR*R.TF*IOC(4)+TWST.TF#.75: :' velocity relative to blade
    50R I=1 T05 :' iterate on thrust and incuced velocity
    THRUST.TR=(UE.TF-VI,TR)&OMEGA.TR*R.TR*FHO*A.TR*SOL.TR*PI*R.TR*R.TR/4
```



```
    V!.TK.2=SER!(WHAT.2/2) (VHAT.2/2) + (THRUST.TR/2!(RHO*PI*R.TRA2))*2) - VHAT.2/2
    VI. Tr=cGR(AES(VI.TR.2!)
    UERT:
    FWEF.TR = THFUST. IN*VI.TS
    B.TR = THRUST.TR
    .TF= Y.TR+H.TR
    N.TE=-V.TG*S.TR
    *4***************** Horizontsl tall ********4*4***************4**
    S.DN=! YAl!:!(VI.MF-VARJ)*(H.HUG-H.HT) )- (D.HT-D.HUE-R.MR):' dnwsh impinges on tall?
    50r.HT=.E+(:4SGN(D.DW)) :' un:form downwash figld
OF D.SWDO AND D.DH:R.MR: THEN EPE.HT= 2F(1-D.OW/F.MR) E!SE EPS.HT=0 : 'trianglr dnwsh
    W4.HT = UA(3) - EFG.HT&VI.AK + D.HT*VA(5) ; !ocal z-vel at n.t.
    OH.HT=SQR (VA(1)&VA(!1+VA(2)+VAII)+NA.HT+WA.HTI
```



```
    IF AES:WH.HTI . J*ABS \MAI!: THEN 2.HT=R?&ZMAY.HT*AB5(VTA.HT)*WA.HT : surface stalled"?
    M.HT = I,HT*D.4T :' Ditching moment
```



```
45%
```

| 40 |  |
| :---: | :---: |
| 4310 |  |
| $\because$ |  |
| 5 |  |
| 46 |  |
| 450 |  |
| 1-6: |  |
| $\therefore$ ! |  |
| $\therefore 3$ |  |
| 48 ct | PCEE = PCWER.ME + FOWER.TR + POWER.WN + HP.LOSS*550 |
| $4 \%$ |  |
| $\cdots$ | H** |
| - |  |
| 30 | Compute aerodinamic forces on vertical tail |
| 4 |  |
| 5 |  |
| 476. |  |
| $4 \%$ |  |
| 4. |  |
| 470 |  |
| \% |  |
| 40 | L.G $=$ Y.VTH.VT |
| 487 |  |
| 4. |  |
| 4 | *************** General forse equations \#\#\#\#\#******************* |
| 45 |  |
| 85. |  |
| 45 |  |
| 6. | $\therefore$ SRAV $=$ M + SRAU4C5+C4 |
| 290 |  |
| 9 |  |
|  |  |
|  |  |
|  | i i i i i i i |
| 474. |  |
| 4.55: |  |
| 49.9 |  |
| 497. |  |
| 429 |  |
| 4590 |  |
| 5 m | : $\quad$ ! $\quad$ i ! |
| 50.0 |  |
| 520 | $5,6)$ SFl $=1$ ITE $\quad$ : roll flap |
| S.0 |  |
| S40 ${ }^{\text {a }}$ |  |
| 55 | IF SHEC: $=0$ THEN GOSJE 7700 : 'fill force conponent array |
| ste: - his forte couponent array |  |
| 50 | Eod: Actalerations |
| 5 |  |
| 50 |  |
| $\because 6$ |  |
| E1! | $A E(3)=(V 8(1)+\cup B(5)-V 8(4)+V B(2)!+F(3) / M$ |
| 512. | A3(4) $=$ E(4):IX |
| 50 |  |


| $=10 \quad 4 B(6)=F(3) / 12+1 \times 2 * A 8 / 4 / 112$ |  |
| :---: | :---: |
| ¢5 |  |
| ミ: | intarats Body fucelerations |
| : |  |
| 5: | 90: $1 \%=100 t$ |
| $\because$ |  |
| :- | iFit\% = AB(!\%) : REM ShUE ACCEL PAST UALUES |
| 514 | 46\% $\%$ |
| -n\% |  |
| 30 | Trarylorn to earth (A/C rel to deck) velocities |
| E-:4 |  |
| \% |  |
| 526 | YE(2) $=$ VE(2) $\mathrm{COS}(\mathrm{XE}(6)+\mathrm{VB}(1) \times \operatorname{SIN}(X E(6))$ |
| 5-0 |  |
| 5200 | VE(4) = VE(4) + WE (5) * $54+\mathrm{VE}(6) *$ C4) * TAN(XE (5) |
| 5200 | $V E(5)=W E(5) * C 4-V E(6) * 54$ |
| 576 | (15 ( $)=5(6) * 54+18(5)+54) /(5$ |
| 5:3. ${ }^{\text {ch }}$ |  |
| 50 | Intasrate garth (4/C relative to deck) velocities |
| E®\%, , |  |
| 545 | Preme T T |
| $\pm \pm$ |  |
| 57. | VI: $(\%)=V E(1 \%) ~$ RE\% SAVE VEL PAST MALUES |
| \% | NET ${ }^{\text {a }}$ |
| Exe |  |
| \% |  |
| 23 |  |
| Elt | If CHES =1 THEN IF CHECK.LITP (CHECK. LDQP. MAX THEN 60 TO 3520 |
|  | I5 CHECK=: THEN COSUE 8890 |
| ¢ち¢ |  |
| 54. | REPM |

## APPENDIX B DEFINITION OF PROGRAN SYIBOLS

| A1 | Numerical integration constant (Adams-two = 1.5). |
| :---: | :---: |
| A2 | Numerical integration constant (trapezoidal $=0.5$ ) |
| $A B$ (i) | Body-axis acceleration vector. |
| AB (1) | Body x-axis acceleration ( $\dot{U}$ ) component ( $\mathrm{ft} / \mathrm{sec}{ }^{2}$ ). |
| AB (2) | Body y-axis acceleration ( $\dot{V}$ ) component ( $f t / \mathrm{sec}^{2}$ ). |
| AB (3) | Body z-axis acceleration ( $\dot{W}$ ) component ( $\mathrm{ft} / \mathrm{sec}^{2}$ ) |
| $\mathrm{AB}(4)$ | Body roll axis acceleration ( $\dot{P}$ ) component ( $f t / \mathrm{sec}^{2}$ ). |
| $\mathrm{AB}(5)$ | Body pitch axis acceleration ( $\dot{Q}$ ) component ( $\mathrm{ft} / \mathrm{sec}^{2}$ ). |
| $\mathrm{AB}(6)$ | Body yaw axis acceleration ( $\dot{\mathrm{R}}$ ) component ( $\mathrm{ft} / \mathrm{sec}^{2}$ ). |
| $\mathrm{AB}(7)$ | Lateral tip-path-plane angular rate ( $\mathrm{b}_{1}$ ) (rad). |
| AB (8) | Longitudinal tip-path-plane angular rate ( $a_{1}$ ) (rad). |
| AP(1) | Past value of $A B(i)$. |
| A.SIGMA | Product of lift-curve-slope and solidity. |
| B1 | Numerical integration constant, 1-Al. |
| B2 | Numerical integration constant, 1-A2. |
| C4 | Cos[ $\mathrm{XE}(4)$ ] or Cos of roll Euler angle. |
| C5 | Cos[ $\mathrm{XE}(5)]$ or Cos of pitch Euler angle. |
| C6 | Cos[ XE (6)] or Cos of yaw Euler angle. |
| CT | Thrust coefficient. |
| DA1DU | Partial of longitudinal flapping to forward velocity (rad/ft/sec). |
| DB1DV | Partial of lateral flapping to side velocity (rad/ft/sec). |
| DC(i) | Control vector. |
| DC(1) | Main rotor collective pitch angle (rad). |
| DC(2) | Pitch control, $\mathrm{B}_{1}$, (rad). |

DC(3) Roll control, $A_{1}$, (rad).
DC(4) Tail rotor collective pitch angle (rad).
DENS.RATIO Density ratio.
D.FUS Fuselage horizontal position of aerodynamic center (ft).
D.FW Position of downwash on fuselage (ft).
D. HT Horizontal tail aerodynamic center relative to c. g. (ft).
D. HUB Hub horizontal position relative to $c$. $g$. (ft).
DL. DB1 Direct flapping stiffness (rad/sec ${ }^{2}$ ).
DL.DA1 Off-axis flapping stiffness (rad/sec ${ }^{2}$ ).
D.TR Tail rotor horizontal position (ft).

EPS.HT Downwash field on horizontal tail relative to induced velocity.
F(i) Force and moment vector.
$F(1) \quad$ Total x-force component (lb).
$F(2) \quad T o t a l y$-force component (lb).
F(3) Total z-force component (lo).
$F(4) \quad$ Total rolling moment component (ft-lb).
$F(5) \quad$ Total pitching moment component (ft-lb).
$F(6) \quad$ Total yawing moment component ( $f t-1 b$ ).
$F(7) \quad$ Pitch axis flapping angle, $a_{1}$, (rad).
$F(8) \quad$ Roll axis flapping angle, $b_{1}$, (rad).
FR.MR Effective frontal area of main rotor (ft ${ }^{2}$ ).
FR.TR Effective frontal area of tail rotor ( $f t^{2}$ ).
GAM.OM. 16 One-sixteenth the product of Lock Number and rotor angular rate (rad/sec).
GV(7) Longitudinal tip-path-plane angular rate (rad/sec).
GV(8) Lateral tip-path-plane angular rate (rad/sec).
H.FUS Fuselage vertical position of aerodynamic center relative to c. g. (ft).
H. HUB Hub vertical position relative to c. g. (ft).
H. TR Tail rotor vertical position relative to $c$. $g$ ( $f(t)$.

| HP.LOSS N | Net power loss due to transmission, accessories, etc. (hp). |
| :---: | :---: |
| IS M | Main rotor shaft incidence (rad). |
| ITB I | Inverse tip-path-plane lag ( $\mathrm{rad} / \mathrm{sec}$ ). |
| ITB2.OM I | ITB squared over OMEGA.MR (rad/sec). |
| KC F | Flapping coupling factor. |
| KIND I | Induced velocity factor. |
| L.FUS Fus | Fuselage aerodynamic rolling moment (ft-lb). |
| L.MR M | Main rotor rolling moment (ft-lb) |
| L.TR T | Tail rotor rolling moment (ft-lb). |
| L.VT V | Vertical tail rolling moment (ft-lb |
| $M \quad \mathrm{~V}$ | Vehicle mass (slug). |
| M.FUS F | Fuselage aerodynamic pitching moment (ft-lb). |
| M.HT Ho | Horizontal tail pitching moment (ft-lb). |
| M.MR M | Main rotor pitching moment (ft-lb) |
| M.WN W | Wing pitching moment (ft-lb). |
| N.FUS F | Fuselage aerodynamic yawing moment (ft-lb). |
| N.MR M | Main rotor yawing moment or torque (ft-lb). |
| N.TR T | Tail rotor yawing moment (ft-lb). |
| N.VT V | Vertical tail yawing moment (ft-lb). |
| OMEGA.MR M | Main rotor angular velocity ( $\mathrm{rad} / \mathrm{sec}$ ) . |
| OMEGA. TR T | Tail rotor angular velocity (rad/sec). |
| $\begin{array}{ll} \text { P.CLIMB } & P \\ & 1 \end{array}$ | Power loss due to change in potential energy (ftlb/sec). |
| P.INDUCED.M | D.MR Power loss due to main rotor induced velocity (ftlb/sec). |
| P. INDUCED. T | D.TR Power loss due to tail rotor induced velocity (ftlb/sec). |
| P. PARASITE | TE Power loss due to fuselage parasite drag (ftlb/sec). |
| P.PROFILE.M | E.MR Power loss due to main rotor profile drag (ftlb/sec). |
| POWER. FUS | S Power loss from fuselage aerodynamic drag (ftlb/sec). |
| POWER.MR | Power loss from main rotor and fuselage (ftlb/sec). |

POWER. TR
Power loss from tall rotor (ft-lb/sec).
POWER. WN
Power loss from wing induced drag (ft-lb/sec).
POWER. ROTOR.MR Power loss from main rotor (ft-lb/sec).
PRESS.RATIO Pressure ratio.
R2 One half RHO.
RHO Air density (slug/ft ${ }^{2}$ ).
R.MR Main rotor radius ( $f t$ ).
R.TR Tail rotor radius ( $f t$ ).

S4 Sin of roll Euler angle.
S5 Sin of pitch Euler angle.
S6 Sin of heading angle.
ST Numerical integration step size (sec).
TEMP. RATIO Temperature ratio.
TWST.MR Main rotor twist (rad).
TWS'T.TR Tail rotor twist (rad).
THRUST.MR Main rotor thrust (lb).
THRUST. TR Tail rotor thrust (lb).
TIME Present time (sec).
TORQUE.MR Main rotor torque ;ft-lb).
VA(1) X-axis velocity relative to airmass (ft/sec).
$\mathrm{VA}(2) \quad Y$-axis velocity relative to airmass (ft/sec).
VA(3) Z-axis velocity relative to airmass (ft/sec).
VA(4) Roll-axis angular velocity relative to airmass (rad/sec).
VA(5) Pitch-axis angular velocity relative to airmass (rad/sec).
$\mathrm{VA}(6)$ Yaw-axis angular velocity relative to airmass (rad/sec).
$\mathrm{VB}(1) \quad \mathrm{X}$-axis inertial velocity (ft/sec).
VB(2) $\quad Y$-axis inertial velocity (ft/sec).
$\mathrm{VB}(3) \quad$ 2-axis inertial velocity (ft/sec).
$\mathrm{VB}(4) \quad$ Roll-axis inertial angular velocity (rad/sec).
VB(5) Pitch-axis inertial angular velocity (rad/sec).
VB(6) Yaw-axis inertial angular velocity (rad/sed).
VE(1) X-axis velocity relative to earth (ft/sec).
$\mathrm{VE}(2) \quad$ Y-axis velocity relative to earth (ft/sec)
$\mathrm{VE}(3) \quad$ Z-axis velocity relative to earth (ft/sec).
VE(4) Roll-axis Euler angle rate (rad/sec).
VE(5) Pitch-axis Euler angle rate (rad/sec).
VE(6) Yaw-axis Euler angle rate (rad/sec).
VG(1) X-gust component (ft/sec).
VG(2) $\quad Y$-gust component (ft/sec).
VG(3) $\quad Z$-gust component (ft/sec).
$V G(4) \quad$ Inertial roll gust (rad/sec).
VG(5) Inertial pitch-gust (rad/sec).
VG(6) Inertial yaw-gust (rad/sec).
VEAT. 2 Intermediate variable in thrust calculations ( $f t \nmid \sec ^{2}$ ).
VI.MR Main rotor induced velocity (ft/sec).
VI.MR. 2 VI.MR squared.
VI.TR Tail rotor induced velocity (ft/sec).
VI.TR. 2 VI.TR squared.

VP(i) Past value of VE(i).
VR.TR Net vertical velocity relative to tail rotor blade (ft/sec).
VB.TR Net vertical velocity through tail rotor actuator disk (ft/sec).
VT Total airspeed (kt).
VT.IN.FPS Total airspeed ( $\mathrm{ft} / \mathrm{sec}$ ).
VTA Total airspeed (ft/sec).
V.TIP Main rotor tip speed (ft/sec).

WA.FUS Apparent vertical velocity on fuselage ( $f t / \mathrm{sec}$ ).
WB
WR
WT
Net vertical velocity relative to rotor blade ( $f t / s e c$ ).
Net vertical velocity through actuator disk (ft/sec).
Gross weight (lb).
XE(1) X-axis position (ft).
XE(2) Y-axis position (ft).
XE(3) Z-axis position (ft).
XE(4) Roll Euler ingle (rad).
XE(5) Pitch Euler angle (rad).
XE(6) Heading Euler angle (rad).
X.FUS Fuselage $x$-force (lb).
X.GRAV Gravity $x$-force (lb).
X.MR Main rotor $x$-force (lb).
X.HT Horizontal tail x-force (lb).
X.WN Wing $x$-force (lb).

XUU.FUS Fuselage parasite drag force (ft ${ }^{2}$ ).
Y.FUS Fuselage y-force (lb).
Y.GRAV Gravity y-force (lb).

YMIN. VT Vertical tall stall factor (ft ${ }^{2}$ ).
Y.MR Main rotor y-force (lb).
Y.TRT Tail rotor y-force (lb).

YUU.VT Vertical tail profile drag factor (ft ${ }^{2}$ ).
YUV.VT Vertical tail circulation lift factor ( $\mathrm{ft}^{2}$ ).
Y.VT Vertical tail y-force (lb).

YVV.FUS Fuselage sideward drag factor ( $f t^{2}$ ).
ZMIN.HT Horizontal tail stall factor (ft ${ }^{2}$ ).
ZMIN.WN Wing stall factor ( $f t^{2}$ ).
Z.FUS Fuselage 2 -force (lb).
2. GRAV Gravity z-force (lb).
Z.HT Horizontal tail z-force (lb).

ZUU. HT Horizontal tail profile drag factor (ft ${ }^{2}$ ).
ZUU.WN Wing profile drag factor ( $\mathrm{ft}^{2}$ ).
ZUW. HT Horizontal tail circulation lift factor (ft ${ }^{2}$ ).
ZUW.WN Wing circulation lift factor ( $\mathrm{ft}^{2}$ ).
ZWW.FUS Fuselage quadratic drag coefficient along $z$-axis ( $f t^{2}$ ).

## APPENDIX C DEFINITION OF PROGRAM INPUT FILE

The following describes the input format needed to define the math model for a specific helicopter. The specific values given correspond to the AH-1S example. Individual entries are discussed in detail in Appendix $D$.


```
* dATA fILE FOR the ah-S HELICOPtER PaRameters
(CONFIGURATION, AIRCRAFT NAME, FS.CG, WL.CG, WT, IX, IY, IZ, IXZ)
    102, "AH-15", 196, 75, 9000, 2593,14320,12330, 0
(FS.HUB, WL.HUB, IS, E.MR, I.B, R.MR, A.MR, RFM,MR, CDO, B.MR, C.MF,TWST.MF, K1)
    200, 153, 0, 0, 1382, 22, 6, 324, 0.010, 2, 2.25, -.175, K, 0
(FS.FIJS, WL.FUS, XUU.FUS, YUV.FUS, ZWW.FUS)
    200, 65, -30, -275, -41
\begin{array} { c } { ( F S . W N , ~ W L . W N , ~ I U U . W N , ~ Z U W . W N , ~ Z M A X . W N , ~ B . W N ) } \\ { 2 0 0 , ~ 6 5 , ~ - 3 9 , ~ - 1 6 1 , ~ - 6 5 , ~ 1 0 . 7 5 } \end{array}
(FS.HT, WL.HT, ZUU.HT, ZUW.HT, ZMAx.HT)
    400, 65, 0, -80, -32
(FS.VT, WL.VT, YUU.VT, YUV.VT, YMAX,VY)
    490, 80, 0, -62, -50
(FS.TR, WL.TR, R.TR, A.TR, SOL.TR, RPM.TR, TWST.TR)
    521.5, 119, 4.25, 6, .105, 1660, 0
```


## APPENDIX D <br> MATH MODEL MATCHING PROCESS FOR AUGUSTA A109 II HELICOPTER

This apperdix describes a minimum-complexity math model version of the Augusta A109 II helicopter based on available flight data and flight manual information. The data were furnished by the Army Aeroflightdynamics Directorate in order tü provide an illustration of the parameter matching procedure and verification of the resulting math model.

It is believed that the results of this modeling process are sufficiently good to be used as the basis of a lateral control handling qualities experiment such as that performed under this contract.

The general procedure followed was first to quantify the basic math model form using engineering data provided by the helicopter manufacturer. The second step was to adjust parameters in order to match trim data from flight and to add certain nonlinear characteristics such as downwash on tail and fuselage. The final step was to match dynamic response cases adjusting rotor model parameters. Details of the matching procedure are presented below.

1. Initial Quantification of Model Farameters

The first step was to set up the main data file for the math model using all available engineering data. In this case a fairly complete array of these data were supplied by the manufacturer. The following paragraphs present the initial quantification of parameters for each of the model components ard a short discussion of the basis for quantification.

Loading Farameters

$$
\begin{array}{ccc}
\text { FS.CG, } & \text { WL.CG, } & \text { WT } \\
132.7 \text { in , } 38.5 \text { in }, & 5401 \mathrm{lb}
\end{array}
$$

FE.CG" is the location of the center of gravity in the fuselafe reference system in inches from the zero fuselage station. For the Al09 this can be found in the flight manual but must be converted from millimeters.
"WL.CG" is the vertical center of gravity location in inches above the zero waterline. Without a specific value, this car be estimated as approximately at the level of the engine. However it is important to determine this quantity as accurately as possible since a significant portion of flapping stiffness (thus
pitch and roll damping) results from the vertical offset of the rotor hub from the vertical center of gravity.
"WT" is the eross weight of the aircraft in pounds. A representative value can be picked from the flight manual loading envelope diagram, however a fairly accurate weight should be available for any given set of flight data.

$$
\begin{array}{ccc}
\text { IX, } & I Y, & I Z,
\end{array}
$$

"IX," "IY," "IZ," and "IXZ" are the moments of inertia about the center of gravity in the "body" or fuselage reference line axis system. The first three are essential to the math model. IXZ can be neglected but an effect can be seen in yaw respose due to roll axis inputs. It should be recognized that moments of inertia often cannot be measured accurately and can therefore be subject to modification in order to match flight data. For the A109 the value of IX was reduced from that shown above in order to match the primary roll damping mode.

Main Rotor Farameters

| FS. HUB, | WL. HUB, | , | E.MR, | I.B. |
| :---: | :---: | :---: | :---: | :---: |
| 132.4 in , | 98.2 in, | r | 0 |  |

"FS.HUB" is the fuselage reference system location of the main rotor hub measured aft of the zero fuselage station.
"WL.HUB" is the corresponding waterlire location of the main rotor hub.
"IS" is the main rotor shaft tilt forward of vertical in the fuselage reference system and measured in radians.
"E.MR" is the geometric main rotor flapping hinge offset for an articulated rotor or the effective hinge offset for a rigid rotor. Any empirical adjustment of this parameter should be done with care. In general, for teetering and articulated hubs. variation of the roll moment of inertia is probably easier to justify than the seometric flapping hinge offset.
"I.B" is the flapping inertia of a single blade about the flapping hinge.

$$
D-2
$$

| R. MR, | A. MR, | RPM. MR, | CDC, | B. MR, |
| :--- | :---: | :---: | :---: | :---: |
| 18 ft, | $6 / \mathrm{rad}$, | 385 rpm, | 0.010, | 4 blades |

" $\mathrm{R} . \mathrm{MR}^{\prime}$ is the actual main rotor diameter in ft.
"A.MR" is the effective lift-curve-slope of the main rotor in units of non-dimensional lift coefficient per unit radian of angle of attack. Values of 5.7 or 6 are commonly used.
"RFM.MR" is the nominal angular velocity of the main rotor in a flight manual. "CDO" is the effective profile cross section. Values of 0.010 drag for the main rotor blade this can be adjusted in order 0.012 are commonly used, but especially in hovering flight.
"B .MR" is the number of blades in the main rotor array.
C. MR,

TWAT. MR, KI
$1.10 \mathrm{ft},-.105 \mathrm{rad}, .096$
"C .MR" is the blade chord in ft.
"TWST .MR" is the effective blade twist in radians.
"K1" is the tangent of delta-3, the effective pitch-flap coupling based on flapping hinge geometry. Although the above value was given for the A109, the effect was ultimately neglected in matching pitch and roll cross-coupling effects.

## Fuselage Fiarameters

FF. PUS,

> WD. PUS,

132 in,
38 in,
XUU.FUS,
$-10.8 \mathrm{ft}^{2}$,
MV. FUG,

CW. FUG
$-167 \mathrm{ft}^{2}$,
$-85 \mathrm{ft}^{2}$
"FS.FUS" is the fuselage station corresponding to the effective set equal pressure in the vertical axis. Here is was nominally set equal to the main rotor hub position. "WL.FUS" is the waterline for the center longtudinal axis. It can be adjust enter of pressure in the well as that of the fuselage itself the vertical center of gravity. In this case it was set at
"XUU.FUS" is the effective frontal area corresponding to profile drag in the x-axis. The value used here was provided by the manufacturer.
"YVV.FUS" is the effective side area for sideward flight, that is, sideslip equal to 90 deg. Again it was provided by the manufacturer.
"ZWW.FUS" is the effective planview area for vertical flight, i. r., angle of attack equal to 90 deg. It affects the power required to hover and is used in conjuntion with pitching momerit due to airspeed changes.

## Wing Parameters

FS.WN, WL.WN, ZUU.WN, ZUW.WN, ZMAX.WN, B.WN

$$
000 \mathrm{in}, \quad 00 \mathrm{in}, \quad 000 \mathrm{ft}^{2}, \quad 0000 \mathrm{ft}^{2}, \quad 000 \mathrm{ft}^{2}, \quad 1 \mathrm{ft}
$$

The Al09 does not have a wing, thus zeros were set for all values except the span which needs any arbitrary non-zero value to avoid division by zero. All the individual values can however be found or estimated similarly to those for the horizontal tail.

## Horizontal Tail Parameters

$$
\begin{array}{lllll}
\text { FS. HT, } & \text { WL.HT, } & \text { ZUU.HT, } & \text { ZUW.HT, } & \text { ZMAX.HT } \\
330 \mathrm{in}, & 54 \mathrm{in}, & .4 \mathrm{ft}^{2}, & -34 \mathrm{ft}^{2}, & -22 \mathrm{ft}^{2}
\end{array}
$$

"FS.HT" is the effective aerodynamic center of the horizontal tail in inches from the reference fuselage station. It can be estimated as the quarter mean aerodynamic chord based on engineering data or on a planview of the aircraft.

WL.HT" is the effective vertical location of the horizontal tail. The value used is important in computing the position of the main rotor downwash field as airspeed is varied.

ZUU.HT" is the effective lift per unit dynamic pressure at zeru angle of attack relative to the fuselage reference system. The value used is important in establishing the trim pitch angle at high forward velocities.
"ZUW.HT" is the effective variation in circulation lifi and can be estimated as the negative product of lift-curve-slope and
surface area.

## Verticel Ein Parameters

FS.VT, WL.VT, YUU.VT, YUV.VT, YMAX.VT

$$
380 \mathrm{in}, \quad 80 \mathrm{in}, \quad 3.3 \mathrm{ft}^{2}, \quad-47 \mathrm{ft}^{2}, \quad-17 \mathrm{ft}^{2}
$$

"FS.VT" is the fuselage station for the effective aerodynami: center of the vertical fin.
"WL.VT" is the vertical position of the vertical fin aerodyramic center.
"YUU.VT" is the net $y$-force per unit dynamic pressure for zero sideslip. This arises either from vertical fin camber or incidence.
"YUV.VT" is the sideforce arising from a side-velocity component and is approximately equal to the lift-curve slope time the net fin area.
"YMAX.VT" sets the maximum sideforce generated by the vertical tail at stall.

## Tail Rotor Parameters

FS.TR, WL.TR, R.TR, A.TR, SOL.TR, RPM.TR, TWST.TR
$391 \mathrm{in}, 70 \mathrm{in}, 3.1 \mathrm{ft}, 3 / \mathrm{rad}, .134,2080 \mathrm{rpm},-.137 \mathrm{rad}$
"FS.TR" and "WL.TR" represent the center of the tail rotor ruld in the fuselage reference system.
" $\mathrm{F} . \mathrm{TR}$ " is the radius of the tail rotor in ft .
"A.TR" is the effective lift-curve-slope of the tail rotor and can be set equal to that of the main rotor. It can be adjusted downward in order to account for interference effects with the vertical fin. In this case it was reduced by one half in order to match pedal trim data as discussed below.
"SOL.TR" is the solidity of the tail rotor, i. e., the ratio of actual blade area to disk area.
"RPM. TR" is the angular velocity of the tail rotor in terms of revolutions pex minute.
"TWST.TR" is the effective twist of the tail rotor blade.

## 2. Model Adjustments Needed to Mz'ch Static Trim Data

Several model parameters and functions were adjusted in order to produce good static trim matches. This was important in establishing realistic attitudes, control deflections, and power requirements.

For the A109 those adjustments found necessary included:
0 A tall rotor efficiency factor of 0.5 in order to account for vertical fin interference effects.

- A triangular main rotor downwash field superimposed on the horizontal tail vertical velocity and displaced 1 ft rearward.
- A magnification of the dihedral effect at low speeds individually set for the lateral and longitudinal axes.
- A shift in the planview center of pressure such that the downwash on the fuselage provides a pitching moment proportional to airspeed.


## Tail Rotor Effectiveness

The first adjustment was made by changing "A.TR" from a nominal value of $6 / \mathrm{rad}$ to $3 / \mathrm{rad}$. This was done or the basis of matching the pedal deflection (i. e., tail rotor collective pitch), especially at low speed and hover. The effect was applied directly in the tail rotor thrust equation wherein "A.TF" appears.

THRUST.TR = (VB.TR - VI.TR)
*OMEGA. TR*R. TR*RHO*A. TR*SOL . TR*PI*R. TR*R. TR/4

## Triangular Induced-Velocity Field

The second adjustment consisted of assuming a triangular induced velocity field with a magnitude of 2 at the rotor tip and zero at the hub. This can be justified by observing measured downwash field data such as presented by Heyson and Katzoff in NACA Report 1319. This effect is crucial to portraying the large change in pitch attituce between zero airspeed and 20 kt rearward. The program instructions affected are given below:
D. DW=( VA(1)/(VI.MR-VA*3)*(H.HUB-H.HT) )-( D.HT-D.HUB-R.MR ) (position where edge of downwash passes through plane of
D-6

## D. $D W=D . D W+1$

(shift of $D$.DW by one foot in order to match speed where downwash on tail effect is seen in trim data)

IF (D.DW>0 AND D.DW<R.MR) THEN EPS.HT= $2 *(1-D . D W / R . M R)$
ELSE EPS.HT=0
(triangular downwash if $D . D W$ is negative)
WA.HT $=$ VA(3) - EPS.HT*VI.MR + D.HT*VA(5) : ' local z-vel at h.t. (appearance of downwash effect in computation of relative $z$. velocity component at horizontal tail)

## Dihedral Magnification at Low Speed

The third adjustment consisted of magnifying the effective dihedral effect at very low speeds when the rotor wake interacts with the fuselage. This enhanced dihedral effect could be seen directly in the cyclic control gradient with respect to forward speed and side velocity.

The model equations affected are limited to the rotor flapping equations. Below a speed of VTRANS the computed parameters daldu and dbidv are multiplied by 3 and 2 , respectively. The values are empirical and based on cyclic trim data. VTRANS was set at 30 kt based on the large change in stick trim observed at that point. The program statments involved are shown below:

IF VA(1) < VTRANS THEN WAKE. FN = 1 ELSE WAKE. FN $=0$
(rotor wake effects are added to the effective tip-path-plane dihedral when WAKE.FN $=1$, i. e., below and airspeed equal to VTRANS)

```
A.SUM = GV(8)-DC(2)+KC*GV(7)+DB1DV*VA(2)*(1+WAKE.FN)
(i. e., bl - A1 + e.al + db1/dv .V )
B.SUM = GV(7)+DC(3)-KC*GV(8)+DA1DU*VA(1)*(1+2*WAKE.FN)
(i. e., al + B1 - e.bl + dal/du .U)
GR(7) = - ITB*B.SUM .. ITB2.OM*A.SUM - VA(5)
( i. e., al.dot = ... )
GR(8)= - ITB*A.SUM + ITB2.OM*B.SUM - VA(4)
(i. e., b1.dot = ...)
```


## Downwash Center of Pressure on Fuselage

The fourth and final adjustment needed to match trim data is the shift of downwash center of pressure on the fuselage as speed varies. This affects not only the longitudinal cyclic to trim but also the trim pitch attitude.

The approach was to compute an effective wake postion in the plane of the fuselage similar to that computed for the horizontal tail. This position was then used in the pitching moment equation along with an empirical magnification factor. The net effect is a change in fuselage pitching moment with forward speed.

The program instructions affected are:

WA.FUS $=$ VA(3) - VI.MR
(computed net downwash on fuselage, i. e., $W$ - $\mathrm{V}_{\mathrm{i}}$ )
D. FW=( VA(1)/(-WA.FUS)*(H.HUB-H.FUS) )-( D.FUS-D.HUB )
(computed position of downwash at fuselage waterline as airspeed varies)
D. FW=3*D. FW
(empirical magnification of a.c. shift used to match trim data)
Z.FUS $=$ R2 * ZWW.FUS * ABS(WA.FUS) * WA.FUS
(z-force resulting from downwash on fuselage)
M.FUS = Z.FUS * D.FW - X.FUS * H.FUS (pitching moment due to $x$ - and $z$-forces acting at their respective aerodynamic centers)

The resulting math model trim characteristics are compared with the A109 flight data in the following pages.




## CONTROLLABILITY AND CONTROL MARGIN

Configuration:

Helicopter: Al09K
Flight N* :

S/N : 7310
Dete:




## ORIGINAL PAGE IS OF POOR QUALITY




## COMTROLLABILITY AND COMTROL MARGIN

Helicopter: Al09K S/N: 7310 G.W.(Kg): 2450

Flight N• :
Configuration:
Presc.Alt. (Ft):
C.c. Sta. (m) : © 3.370

| Fitted Model $\quad \Delta 3.295$ |
| :--- |
|  |




## 3. Model Adjustments Needed to Match Dynamic Response Data.

The final step in the model matching process was the adjustment in the model to account for features seen in botli the primary on-axis response as well as cross-coupling effects.

The adjustment of dynamic response features was limited only to pitch and roll response in hover. Other axes and flight conditions would be addressed in a similar manner

In the case of the A109 it was found that by removing cross-coupling in flapping and hub moment equations a reasonably good match could be achieved for the pitch and roll axes with only minor adjustment of moments of intertia.

## Roll Inertia Reduction

The dominant roll-damping mode was matched closely by varying the lateral flapping stiffness via a reduction in the roll moment of intertia. This was considered preferable to increasing the flapping hinge offset since the latter would also affect the pitch response.

The value of IX in the data input file was reduced from 1590 to 1300 slug-ft ${ }^{2}$.

## Removal of Rotor Flap Cross-Coupling

One element of pitch response due to a roll input can be attributed to the cross-coupling in the rotor flapping equations. In this case it was found that decoupled flapping provided $a$ better match to flight data thus the simplification was made.

The coupled first-order flap equations were decoupled by simply by recomputing the values of "ITB" and "ITE2.OM." Thus the primary flapping response consists only of a first-order lag as described in Reference 1.

This change is accomplished by setting:
ITB $=$ GAM. OM. 16
and
ITB2.OM $=0$

Elimination of Hub-Moment Cross-Coupling

The aerodynamic cross-coupling represented by DL. DA1 was also set equal to zero in order to further suppress pitch crosscoupling due to roll as seen in flight data.

## Removal of Delta-3 Effect

In order to maintain consistency of model complexity following the above simplifications, the Delta-3 effect as represented by the parameter "K1" was also set to zero.

## Adjustment of Cross-Axis Inertia

The effect of an inclined principal axis of inertia could be seen readily in the short-term yaw response following a roll input. An increase in $I_{x z}$ from 598 to 800 slug-ft ${ }^{2}$ provided a slightly better match to flight data.

## Adjustment of Cyclic Control Phasing

There was some evidence of cyclic control phasing in the A109 although control system geometry indicated none. First, inspection of swashplate angle records for pitch and roll inputs showed minor off-axis inputs which were generally consistent with the cross-coupling response which followed. Also there was a direct measurement of a nearly 10 deg steady lead-lag component which, depending upon the hub pitch control geometry, could contribute to a cyclic control phase effect.

The results of the dynamic response adjustments for pitch and roll inputs in hover are shown in the following pages.






## 4. Revised Program Listings for the A109 Math Model <br> The following listings show the revisions made to the data file, preliminary calculations, and the dynamics subroutine.

## Input Data File



| $\begin{aligned} & 1490 \\ & 1500 \end{aligned}$ |  |
| :---: | :---: |
| 1510 | Preliainary Calculations |
| 1520 |  |
| 1530 |  |
| 1540 |  |
| 1550 | VT.IN.FPS = ABS(XDOT/COS [GAMMA.RAD) ) |
| 1560 | VT = VT.IN.FPS/FPS.PER.KNOT |
| 1570 | VT.IN.FPS.SQUARED = VT.IN.FPS ^ 2 |
| 1580 | $n=$ WT/GRAV |
| 1590 | OMEGA. MR = RPM. MR $22 \pm$ PI/ 60 |
| 1600 | OHEGA. TR = RPM. TR $42 \pm$ PI/ 60 |
| 1605 | $V .11 P=R$. MREOMEGA.MR |
| 1610 | FR.MR $=$ CDO + R. MR + B. MRIC. $M R$ |
| 1620 | FR.TK = CDOAR. TRaP, TRAC. TR |
| 1630 | HP.LOSS $=90$ |
| 1640 | VTRANS $=50$ : ' speed for transition fron dihedral make function |
| 1660 | TEMP.RATIO=1! - LAPSE.RTEH |
| 1670 | PRESS. RATIO = TEMP. RATIO^TEMF. EXP |
| 1680 | DENS. RATIO = PRESS. RATIO/TEMP. RATIO |
| 1685 | RO $=$ DENS. RATIO*RHD.SEA.LEVEL : R2=R0/2 |
| 1688 |  |
| 1690 |  |
| 1691 |  |
| 1692 |  |
| 1693 | ITE2.OM $=0$ : $178=$ GAM. OH. 16 : ' teap sod for A109 |
| 1694 |  |
| 1696 |  |
| 1697 |  |
| 1698 |  |
| 1699 |  |
| 1700 | DAIDU=-DBIDV : ' IFP pitchup with speed |
| 1702 |  |
| 1730 |  |
| 1740 |  |
| 1750 |  |
| 1760 | H. HT $=$ (WL.HT -WL.C6)/12 : D.HT $=$ (FS.HT -FS.C6)/12: ( horizontal tail re cg |
| 1770 | H.VT = (HL.VT -WL.CGI/12 : D.VT = (FS.VT -FS.C6)/12 : vertical fin reeg |
| 1780 |  |
| 1790 |  |
| 1800 | RETURN |

## ORIGINAL PAGE IS OF POOR QUALITY

## 

6010
6020 ' DYMAMICS: Dynamics subroutine
6030

6070 .
6080 . IF CHECK $=1$ THEN EOSUB 11940 : ${ }^{\circ}$ print state variable to screen
$60 \% 0^{\circ}$
$6100^{\circ}$
$6120^{\circ}$
$6130 \quad C 4=\operatorname{COS}(X E(4)): S 4=\operatorname{SIM}(X E(4)):$ ' evaluate Euler angle trig fins
6140
$6160^{\circ}$
6170
6180
6190
6200
6210
6220
$6230^{\circ}$
6290
$6320^{\circ}$
$6330^{\circ}$
$6340^{\circ}$
6341
6345
6346
6347 .
6350
-360
6370 .
5380

- 390

6400 .
6410
6420
6430
$6 V(7)=6 V(7)+5 T+(A 2+6 R(7)+82+A P(7)) \quad: '$ al updated
$6 V(8)=6 Y(8)+S T(A 2+6 R(8)+82+A P(B)) \quad: \quad$ of updated
$A P(7)=6 R(7): A P(8)=6 R(8) \quad:^{\prime}$ save past values

$M R=W A(3)+16 V(7)-1 S)+V A(1)-G V(9)+V A(2): \quad 2$-axis vel re rotor plane

FOR Ia l TO $5 \quad i^{-}$iterative solution of thrust and induced vel



VI. Minseralabsivi.mi.21) $:^{\circ}$ gain rotor induced velocity

MRI 1
$6620^{\circ}$

be?


MA.FUS $=$ VA (3) - VI.MR $\quad:^{\prime}$ include rotor domamash on fuselage
 D.FM=34D.FW : : mapirical correction for fus a.c. shift agnification

Y.FUS $=R 2 *$ YW.FUS $\operatorname{ABS}(V A(2))$ VA(2) $:$ side-force
$2 . F U S=R 2+2 \mathrm{WW} . F U S ;$ ABS (MA.FUS) WA.FUS : ${ }^{\circ}$ heave force
L.FUS $=$ Y.FUSth.FUS


P.CLIAE $=$ HTEHBOT
P.PARASITE $=-$ R. FUSs VA $^{2}(1)-$ Y.FUSAVA(2) - Z.FUS\&MA.FUS

PONER. MA = P.INDUCED. HR + P.CLIMB + P. PARASITE + P. PKOFILE. MR
POUER. ROTOR.MR $=P$. INDUCED.KR + P.PRSFILE.MR
POMER,FUS = P.FARASITE
TORRUE.MF = POWER.MR/OMEGA.MR
Coapute asin rotor force and mosent cospocients.
K.MR = -THRUST.MR : (6V(7)-1S)
Y. Mr = THRUST.MR * GV(B)
2.MF = -THKUSI.HR
$L . M K=Y . M R+H . K U B+D L . D E 1+6 V(8)+D L . D A 1+(6 V(7)+D C(3)-K 1+6 V(8!)$

N.MR = TORQUE.MK

UR.TR $=-\left(V A(2)-V A(6)+D . T R+V A(4)+H_{1} T R\right) \quad:$ velocity relative to rotor plane

FDF $1=1$ TO $5 \quad: \cdot$ iterate on thrust and induced velocity
THRUST. TR = (VB. TK-VI. TR $)+$ OHEGA. TR + R. TRARHO\&A. TR\&SOL. TR $\triangle P I+R$. TR $F R$. TK/4
VHAT. $2=(V A(3)+V A(5) \& D . T R)^{\wedge} 2+V A(1)^{\wedge} 2+V R . T R I(V R . T R-2 \approx V I$. TR)
V1.TR.2-SPR((VHAT.2/2) \& (VHAT. 2/2) + (TMRUST. TR/2/(RHOAP1*R.TR^2)/^2) - VHAT. $2 / 2$
V1. $\mathrm{TR}_{2}=5 \mathrm{SRF}$ (ABS (V). TR. 27 )
NEX! !
FOMER. TR = THRUST.TREVI.TR
Y. TR = THRUST.TR
L.TR = Y.TFAH.TR
N. TE $=-Y$ TROD. TR


D. OW=D. WH + ! : shifis transition posation for eapirical correction

EPS. $\mathrm{HT}=.5 \mathrm{~F}(1+56 \mathrm{~N}$ (D.DW)) : unifore downash field




IF ABS(WA.HT) ). JAADS(VA(I)) THEN Z. HTaR2AIMAX.MTEAES(VTA.HTIAMA.HT:' surface stalled?
M.KT = Z.HTED.KT : pitchang eosent


## ORIGINAL PAEE is

 OF. POOR QUALITYMA. WH = VA(j) -VI.MF : local z-vel at wing VTA. Wh $=$ SQR(VA(1) IVA (1) +MA. MMEMA. WN




POUEK $=$ POMER.HR + POWER.TR + POWER.WN + HP.LOSS\&550

Coapute aerodynagic forces on vertical tajl

VA.VT=VA (2) +VI. TR-D. VT\&VA(6)
VTA.VT $=$ SOR (VA (1) $F$ VA (1) +VA.VTIVA.VT)
$Y . V T=R 2 \pm(Y W W . V T+A B S(V A(1)) \& V A(1)+Y W V . V T+A B S(V A(1)) \neq V A . V T)$

L.VT $=$ Y.VT\&H.VT
N.VT $=-Y . V T+D . V T$

X. GRAL $=-$ Ms 6RAV455 $\quad:$ gravity forces
Y. $6 F A V=\operatorname{HabRAV}+54+C 5$
2.6RAV $=$ Ma $6 R A V+C 5+C 4$


IF CHECK=f THEN GOSUE $1104($ : fill force component array
Body Accelerations
$A B(1)=-(V B(3)+V B(3)-V B(6)+V(2))+F(1) / M$
$A B(2)=(V E(4): \operatorname{VB}(3)-V B(1) \& V B(6))+F(2) / A$
$A B(3)=(V B(1) \& V B(5)-V(4)=V B(2)) \& F(3) / M$
$A B(4)=F(4) / I X$

$A B(6)=F(6) / 12+[120 A E(4) / 12$

Integrate Body Accelerations
FCR $12=150$

NP(IZ) $=$ MB(IX) : REM SAVE ACCEL PAST MOLLES
WEXTIX
Iransfore to earth (A/C rel to deck) velocities

$V E(2)=V B(2)+\operatorname{COS}(\operatorname{IE}(6) 1+V)(1)$ SIM (IE(6))
$V(3)=(V)(1)+55-W(3) \div(5)+C 4$

$V E(5)=V E(5) * C 4-V B(6)+54$
$V E(6)=14 B(6)+C 4+V A(5)-54) / C 5$
Integrate earth (A/C relative to deck) velocities
COF $12=1106$

UP $(I X)=$ VE (IZ) : REM SAUE VEL PAST VALUES
MEXT IT
TIME =TIME + ST
15 CHECK=1 THEN IF CHECK.LOOP CHECK. LOOP. MAX THEN $60 T 06020$
IF CHECK=1 THEN GOSUE 12140
RETURN

ORIGINAL PAGE IS
OF POOR QUALTTY

| Nat Report Documentation Page |  |  |  |
| :---: | :---: | :---: | :---: |
| 1. Report No. USA AVSCOM TR-87-A-7 NASA CR 177476 | 2. Govennmem Accerion No. | 3. Recipiont's Catalog No. |  |
| 4. Trite and Subride <br> Minimum-Complexity Helicopter Simulation Math Model |  | 5. Report Dove April 1988 |  |
|  |  | 6. Perorming Orgenization Code |  |
| 7. Author(s) <br> Robert K. Heffley <br> Marc A. Mnich |  | 8. Peforming Orgenization Report No. |  |
|  |  | 10. Work Unit No.$992-21-01$ |  |
| 9. Performing Organization Neme and Addrees <br> Manudyne Systems, Inc. <br> 349 First Street <br> Los Altos, California 94022 |  |  |  |
|  |  | 11. Contract or Grent No. NAS 2-1 1665 |  |
|  |  | 13. Tipe of Report and Period Covered <br> Final Contractor Report <br> $7 / 85$ to $7 / 87$ <br> 14. Sponeoring Agency Code |  |
| 12. Spermoring Agency Name and Addraes <br> National Aeronautics and Space Administration, Washington, D.C. 20546-0001, and US Army Aviation Systems Command, St. Louis, MO 63120-1798 |  |  |  |
|  |  |  |  |
| 15. Supplementary Notes |  |  |  |
| Point of Contact: <br> Michelle M. Eshow (Contract Technical Monitor) <br> Aeroflightdynamics Directorate <br> M/S 211-2, Ames Research Center, Moffett Field, CA 94035 <br> (415) 694-5272 FTS 464-5272 |  |  |  |
| 16. Abstrect <br> An example of a minimal complexity simulation helicopter math model is presented Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handing qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features wh are to be modeled followed by a build-up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinements are discussed. Math model computer programs are defined and listed. |  |  |  |
| 17. Key Worde (Suggested by Authoris)) helicopter, helicopter simulation, mathematical modeling, real-time simulation, handing qualities, helicopter dynamics |  | 18. Distribution Statement <br> Unclassified-Unlimited <br> Subject Category 08 |  |
| 19. Security Clewen. (of this report) Unclassified | 20. Security Clever. Iof this pegel Unclaseified | $\begin{array}{\|c} \text { 21. No. of peges } \\ 100 \end{array}$ | 22. Price |

MAEA FORM 1CP OCT ©

