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SYNCHRONOUS RESPONSE MODELLING AND CONTROL OF AN 
ANNULAR MOMENTUM CONTROL DEVICE 

ABSTRACT 

This report documents research into the synchronous response 
modelling and control of an advanced Annular Momentum Control 
Device (AMCD) used to control the attitude of spacecraft. Under 
this contract, SatCon Technology Corporation developed dynamic 
models of the synchronous response caused by mass unbalances and 
developed control algorithms that minimize the synchronous 
bearing forces. These synchronous forces produced by the 
magnetic bearing lead to undesirable vibrations. 

For the flexible rotor AMCD, two sources of synchronous 
vibrations were identified. One source, which corresponds to the 
mass unbalance problem of rigid rotors suspended in conventional 
bearings, is caused by measurement errors of the rotor center of 
mass position. The other source of synchronous vibrations is 
misalignments between the hub and flywheel masses of the AMCD. 

These were 
lead-lag compensators that mimic conventional bearing dynamics, 
tracking notch filters used in the feedback loop, tracking 
differential- notch filters, and model based compensators. The 
first two approaches, lead-lag and tracking notch filters, are 
the conventional approaches for magnetic bearing applications. 
They suffer from a number of disadvantages, however, including 
either poor synchronous performance or poor stability. The third 
approach, tracking differential-notch filters, was developed 
under this program. These controllers combine the best features 
of both the lead-lag and tracking notch filters. The fourth 
approach investigated the use of model based compensators, as 
developed under a previous NASA contract. 

The tracking differential-notch filters developed under this 
contract were shown to have a number of advantages over more 
conventional approaches for both rigid-body rotor applications 
and flexible rotor applications such as the AMCD. Hardware 
implementation schemes for the tracking differential-notch filter 
were investigated. A simple design was developed that can be 
implemented with analog multipliers and low-bandwidth, digital 
hardware. 

Four different control algorithms were examined. 
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1 INTRODUCTION 

I 

This document reports research in,o the mode ing and 

control of an advanced Annular Momentum Control Device (AMCD), 

used to control the attitude of spacecraft. These systems 

consist of an angular momentum storage flywheel supported in 

magnetic bearings. This research was performed by SatCon 

Technology Corporation under contract to NASA Langley Research 

Center (NASA contract NAS1-18322) in support of a specific AMCD 

concept, the AMCD Combined Control Energy Storage System 

(ACCESS). Under this contract, SatCon Technology Corporation was 

tasked to develop dynamic models of the synchronous response 

(mass unbalances) and develop control algorithms that minimize 

the synchronous bearing forces, which are forces that occur at 

the rotational (synchronous) speed. These synchronous forces 

produced by the magnetic bearing lead to undesirable synchronous 

vibrations. 

This synchronous response research is an extension of an 

earlier NASA sponsored SatCon research program (NASA contract 

NAS9-17560) that developed stabilizing controllers for the 

ACCESS. The focus of this earlier research was to control the 

non-synchronous instabilities caused by the high rotational 

speeds and flexible rotor of the ACCESS. 

The first chapter of this report provides background and 

introductory material. The next section, Section 1.1, provides 

background material for the combined energy storage and attitude 

control systems and the angular momentum control device (AMCD) . 
1 



Section 1.2 introduces the specific system analyzed in this 

report, the AMCD Combined Control Energy Storage (ACCESS) 

System. Section 1.3 discusses the background in synchronous 

rotor control that is applicable to the ACCESS system. Section 

1.4 then discusses the specific problems that are addressed in 

this research. 

Chapter 2 develops a synchronous response model for the 

ACCESS system. This model is capable of predicting the response 

to mass unbalances of the rigid-body modes and mass unbalances of 

the flexible rotor modes. The major emphasis of this modelling 

effort is to develop synchronous response attributes that are 

unique to magnetically suspended rotors, such as the effects of 

rotor position measurement errors. 

Chapter 3 reviews existing approaches to the active control 

of synchronous response and presents the new approaches and 

algorithms developed during this research program. The existing 

approaches include simple lead-lag compensation, which mimics 

spring-damper conventional bearings, and the inclusion of a 

tracking notch filter at the synchronous frequency. Advanced 

synchronous filter techniques, developed under this contract, are 

next presented. These advanced algorithms have many advantages, 

in particular better stability properties, compared to simple 

tracking notch filters. The fourth approach presented is model- 

based compensators (MBCs), which combine full-state-feedback, 

linear-quadratic regulators with state estimators. These MBCs 

were developed during the previous NASA sponsored research that 

2 



investigated stabilizing control algorithms for ACCESS. 

Chapter 3 develops these control algorithms and app ies them 

to rigid-body rotors. In Chapter 4 ,  these control algorithms are 

applied to the flexible rotor of ACCESS. Chapter 5 presents a 

summary of the results and conclusions. 

1.1 Background 

The use of flywheels as attitude control actuators for 

orbiting spacecraft began in the early days of the space program 

[Roberson 19581 and has steadily progressed to a state of 

relative maturity [Weinberg 1982; Wertz 19781. Reaction wheels, 

momentum wheels, and control moment gyros are the current 

approaches by which torques are applied to satellites. All of 

these devices effect attitude control by exchanging angular 

momentum between a flywheel and the spacecraft. Reaction and 

momentum wheels contain variable-speed flywheel rotors with a 

fixed orientation relative to the spacecraft. Reaction wheels 

are designed to spin in either direction and are nominally 

non-spinning. Momentum wheels s p i n  in only one direction about a 

nominal bias speed. A control moment gyro (CMG) contains a 

constant-speed flywheel with either a single- or a 

two-degree-of-freedom gimbal system. Angular momentum is 

exchanged between a CMG and a spacecraft through the variation of 

the relative orientation of the flywheel [Kennel 1970; Wertz 

1978 3 .  

The primary cause of torque jitter in these devices is the 

mechanical bearings that are unable fo precisely maintain the 
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orientation of the angular momentum of the flywheel with respect 

to the satellite. This problem is typically solved by demanding 

extremely close manufacturing tolerances in the mechanical 

bearings [Wienberg 19821. 

A magnetic bearing allows the angular momentum of a flywheel 

and its related dynamics to be controlled in a spacecraft 

environment. The earliest attempt at utilizing a magnetically 

suspended flywheel as an attitude control actuator was made at 

NASA/LaRC with the construction of an AMCD that consists of a 

magnetically suspended graphite/epoxy hoop designed to be used as 

a momentum wheel [Anderson 1975; Groom 19781. There has also 

been a great deal of research performed by Sperry Flight Systems 

[Sabnis 1975; 1976; Stocking 19841, the European Space Agency 

[Robinson 19843, and the Japanese National Aerospace Laboratory 

[Murakami 19821 aimed at developing magnetically suspended 

angular momentum exchange effectors. 

The first study of a combined attitude control and energy 

storage system using flywheels was performed by Rockwell 

International for NASA in 1974 [Notti 19741. This system, called 

an Integrated Power and Attitude Control System (IPACS) , 
contained high-speed ball bearings and a permanent-magnet 

motor/generator supporting and driving a titanium rotor. The 

study identified magnetic suspensions, composite rotors, and 

high-efficiency motor/generators as subsystems important for 

improved performance [Anderson 1973; Keckler 1974; Notti 19741. 

These combined energy storage and attitude control systems 
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have been investigated at the Charles Stark Draper Laboratory 

(CSDL) since 1981 [Eisenhaure 1984a; 1984b], growing out of 

earlier work in magnetic bearings for terrestrial energy storage 

flywheels begun in 1975 [Eisenhaure 19771. The first concept 

consisted of a pair of magnetically suspended counter-rotating 

flywheels mounted along the roll axis of a small satellite. This 

system can provide adequate control torques when the energy and 

angular momentum wheels are gimballed through only small angles 

(< 0.7 degrees) [Eisenhaure 1984al. 

1.2 AMCD Combined Control Energy Storage System (ACCESS) 

An advanced ACCESS effector evolved out of a study that 

considered the ACCESS concept for use in Space Station. This 

joint CSDL and Rockwell International study resulted in the 

design of an Attitude Control and Energy Storage System (ACESS) 

based on an advanced ACCESS effector [Oglevie 19851. A unique 

feature of this advanced ACCESS design is the large-angle 

magnetic suspension (LAMS). This suspension allows limited 

gimballing freedom of approximately five degrees. This magnetic 

gimballing eliminates the need for mechanical gimbals. 

A scale model of the advanced ACCESS module is being 

developed at CSDL to prove concept viability. This laboratory 

module is an approximately 1/20th scale model of an Space Station 

ACCESS module. The size of a full-scale module and scaling 

decisions can be found in O'Dea [1985]. The laboratory module 

shown in Figure 1 consists of a central electromechanical hub 

connected to the flywheel by a spoke structure. The 
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Figure 1. Laboratory-model AMCD Combined Control Energy 
Storage System (ACCESS) 
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electromechanical hub contains the large-angle magnetic 

suspension, motor/generator, and sensors. The electromechanical 

hub also contains touchdown bearings in case of magnetic bearing 

failure. An auxiliary lifting electromagnet is shown at the top 

of the figure. This magnet is needed to unload the weight of the 

suspended flywheel system from the large-angle magnetic 

suspension, which is not designed for earth gravity environment. 

The following paragraphs provide a brief description of the 

important ACCESS subsystems. The design size and capabilities of 

the laboratory module are given in Table I. The paper by O'Dea 

[1985] provides a more detailed overview of the system. More 

detailed descriptions of the subsystem designs are found in 

Chapter 2 of the previous NASA report [Johnson 1987133. 

Table I Characteristics of the Laboratory ACCESS Module 

Flywheel Mass (kg) 18 

Flywheel Angular Momentum (kN-m-s) 2.2 

Maximum Gimbal Angle (degrees) f 5  

Power (kW) 1 

Maximum Control Torque (N-m) 5 

Maximum Rotational Speed (rad/sec) 1690 

The large-angle magnetic suspension chosen for the 

laboratory ACCESS module is a Lorentz-force, spherical air-gap 

bearing. The bearing uses Series 2-17 rare-earth-cobalt 

permanent magnets with a 22MGoe maximum energy product to produce 

a spherically radial magnetic field in the spherical air gap. 
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The spherical configuration allows limited gimballing freedom in 

the bearing. The eight stator coils mounted in the spherical 

air-gap are capable of providing translational and axial forces 

and radial torques by appropriate excitation of the coils. This 

type of Lorentz-force bearing has the advantages of linearity, 

high bandwidth, and negligible coupling between bearing force and 

motion. 

The motor/generator transfers power bidirectionally between 

the flywheel and electrical power bus. The motor/generator must 

have high efficiency in both motor and generator modes. Other 

requirements include low side loading on the magnetic suspension 

and gimballing capability. A variety of machine types were 

investigated from which a permanent magnet, ironless 

stator/rotating backiron machine was chosen. This design gives 

high efficiency and low side loads. The machine also features a 

spherical air-gap to allow limited gimballing. 

The ACESS study concluded that a thin-wall annular flywheel 

made of Boron/epoxy was the most suitable for the advanced ACCESS 

module. For a composite flywheel, the method of torque transfer 

and support between the flywheel and hub is a critical area of 

design. This spoke system must accommodate the high radial 

growth that will be seen with a composite flywheel. Because of 

time and cost constraints, the laboratory ACCESS flywheel is 

constructed of AIS1 4340 steel rather than Boron/epoxy. The 

spoke system, however, was designed to meet the flexibility 

requirements imposed by a composite flywheel. 
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Before beginning a more detailed discussion of the 

synchronous modelling of the ACCESS system in Chapter 2, the next 

section briefly reviews previous research into active control of 

magnetic bearing systems, with particular emphasis on synchronous 

response control. 

1.3 Synchronous Response Control: State-of-the-= 

Magnetic bearings are a technology still undergoing rapid 

development. Products that include magnetic bearings are now 

available, however, and some types of magnetic bearings have 

become relatively common. Mature magnetic bearing technology is 

exemplified by systems comprised of biased ferromagnetic, 

attractive bearings with inductive position sensors feeding 

single-loop designed controllers. The bearings.may be permanent- 

magnet biased or electromagnet biased. The controllers are 

usually implemented with analog electronics. The rotating 

structure is modelled as a rigid body, and the magnetic bearings 

are made to behave dynamically as conventional spring/damper 

bearings by the use of Itlocaltt feedback. 

During the last ten years a handful of researchers have 

begun investigating the use of magnetic bearings to support and 

control flexible rotors (rotors running at rotational speeds 

higher than their lowest frequency of free vibration). 

I Schweitzer was the first to publish research about the active 

control of flexible rotors [Schweitzer 19741. The system he 

investigated consisted of three rotor masses connected by well 

' damped, flexible segments. The multi-mass rotor was supported by 
1 
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conventional bearings with an actively controlled magnetic 

bearing added for use as an active damper. This early work used 

state-space methods to place closed loop system poles. Another 

thrust of their research was optimal placement of the sensors and 

active damper using generalized stabilizability and observability 

criteria over the modes for which active control is desired. 

Using the active damper, Schweitzer, et. al. were able to 

approximately double the range of stable operation, where the 

destabilizing mechanism was the rotor internal damping. They 

also showed improved synchronous response to mass unbalance with 

the active damper. 

In later work they found that non-colocation of the sensors 

and actuator as placed by optimal stabilizability and observa- 

bility criteria can lead to spillover effects, including insta- 

bility [Salm 19841. They designed reduced order controllers to 

provide robust, stable. control when combined with collocated 

sensor/actuators. The design of these integrated sensor/actuator 

sub-systems is discussed in Ulbrich [1984]. The development of 

integrated sensor/actuators has led to interest in localized con- 

trol of the actuator based only on information available from the 

integrated (collocated) sensor. This decentralized control prob- 

lem is addressed by Bleuler [1984] for  rigid-body rotors. His 

thesis also reports the use of a scheduled gain controller with 

two gains schedules, one used at low speeds and the other at high 

speeds. These scheduled gain controllers are needed because of 

the variation in plant dynamics caused by the gyroscopic effects 



that vary with rotational speed. 

Linear-quadratic design methods were used in a study by 

Hubbard [1980] and McDonald [1985]. They considered a 

pendulously supported flywheel system where the magnetic bearing 

was assumed to apply both forces and torques. Their model 

included the effect of quill-shaft flexibility, but neglected 

shaft damping. 

The works mentioned above used numerical techniques to 

design specific controllers while Johnson [1985a; 1985bl examined 

the range of behavior that is possible given a specific 

controller structure. His work analytically examined the lateral 

dynamics of a flexible rotor supported by active bearings. The 

rotor system consisted of a single mass rotor with mass unbalance 

mounted on a symmetrical shaft (Jeffcott rotor) with internal 

damping. The active bearings were assumed to be ideal actuators 

driven by fixed-gain or variable-gain linear controllers. 

Measurements of the position and velocity of the shaft-rotor at 

t h e  rotor and a t  t h e  s h a f t  ends (bearings) w e r e  t h e  contro l l er  

inputs. The goal was a qualitative and quantitative 

understanding of the differences between rotor and bearing 

feedback. 

An interesting flexible rotor, which utilizes the unique 

capabilities of magnetic bearings, is the Annular Momentum 

Control Device (AMCD) [Anderson 19791. This device consists of a 

rotating annular rim suspended by noncontacting magnetic bearings 

mounted along its periphery. The magnetic bearings interact with 
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a low-loss ferrite material, embedded in the graphite-epoxy rim, 

producing radial and axial suspension forces. The 

five-degree-of-freedom control problem associated with this 

system was found to be challenging [Groom 1981, p.1301. The 

early approaches used single-input, single-output (SISO) control 

theory, which was found to be inadequate. Later approaches 

considered the system as a multi-input, multi-output flexible 

system and used digital control with table look-up linearization 

of the magnetic bearing force laws [Groom 1984, p.297; Groom 

19811. 

A number of authors have investigated the use of magnetic 

bearings in conjunction with conventional oil-film bearings to 

control instabilities in flexible shaft systems. The dominant 

instability mechanism in these cases is not shaft internal 

damping, but oil-film bearing instabilities. The use of magnetic 

bearings to add damping to a conventionally supported flexible 

marine power transmission shaft was investigated by Holms and co- 

workers [Nikolajsen 19791. They found that increased stable 

operating speeds were possible with the use of the active dampers 

and that synchronous vibration was also reduced. They included 

magnetic flux feedback to reduce the destabilizing force-gap 

interaction of their actuators. In related work, they determined 

the optimum force versus frequency of an actuator used to 

stabilize these oil-film supported shafts [Kaya 19841. 

Eigenstructure assignment was used in a study by Stanway 

[1984] and O’Reilly. They considered a system consisting of a 

12 



flexible multi-mass rotor supported in conventional, flexibly 

mounted, oil-film bearings. The housings of the oil-film 

bearings were assumed to be controlled by active forces, supplied 

in addition to the forces generated by the flexible mounting 

structure. Damping in the rotor shaft and bearing support 

structure was neglected. They showed that this system can be 

controlled through forces applied to the bearing housing and that 

rotor position and velocity feedback gains are small compared to 

bearing position and velocity feedback gains. 

In summary, the last decade has seen substantial advancement 

of the state-of-the-art in actively controlled flexible rotors. 

This research field, which started during the late 1960's and 

early 19708s, now draws the attention of a handful of 

researchers. Early research viewed the magnetic bearings as a 

source of additional external damping applied to conventionally 

supported flexible rotors. The emphasis in this early work was 

the placement of the actuators (magnetic bearings) and sensors. 

Also,  during this early period state space models of the flexible 

rotor systems that included shaft damping were developed. The 

development of these state space models allowed the tools of 

modern state-space based control techniques to be applied to 

controller design, which is particularly important because of the 

multi-input, multi-output characteristic of magnetic 

bearing/rotor systems. Examples of state-space based controller 

designs include eigenvalue and eigenstructure assignment and 

linear-quadratic optimal regulators. 
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The control of the synchronous response caused by mass 

unbalances, along with system stability, has been a central 

concern of much of this research. During this time, notch 

filtering of the feedback path at the synchronous frequency has 

been used to reduce the effect of mass unbalances. These 

synchronous tracking notch filters have been built and tested 

[Weise 19871; however, a number of problems remain [Beatty 19881. 

These include limited ranges of stable operating speeds for both 

rigid and flexible rotors. 

1.4 Research Focus 

The research reported in this document can be divided into 

two areas: synchronous modelling and advanced synchronous 

controller design. The modelling effort consists of modelling 

the separate subcomponents of the ACCESS system and combining 

these component models into a system model useful for controller 

design. These subcomponent models for the large angle magnetic 

suspension, flywheel and attachment, and motor/generator are 

contained in Chapter 2 of Johnson [1987b]. The synchronous 

system model based on these subcomponent model is presented in 

Chapter 3 .  

The emphasis in the development of the system model is to 

model, in a form suitable for controller analysis and design, the 

unique features of activelv controlled rotor systems. The most 

important of these features is that the measurements of rotor 

position and orientation need not be colocated with actuation. 

Restated, the bearings (actuators) and measurement system 
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(sensors) are not necessarily interacting with the same part of 

the rotor. In conventionally supported rotors, in contrast, the 

force produced at each bearing is a function of the time history 

of the position of the rotor at that bearing. 

The controller design emphasis is placed on developing new 

algorithms for synchronous response control, especially the 

problem of rigid body %ass unbalance". These new algorithms 

overcome the serious limitations of existing approaches such as 

notch filtering. Four classes of controllers are examined. The 

first is the use of lead-lag controllers, which are dynamically 

similar to conventional spring/damper models of bearings. The 

second class of controllers add tracking notch filters at the 

synchronous frequency. These filters eliminate the synchronous 

response to mass unbalance but their usefulness is severely 

limited by stability constraints. The third class of controllers 

are the tracking differential-notch filters (TDNF) developed 

under this contract. These compensators retain the good 

synchronous performance characteristics of notch filters but with 

greatly expanded ranges of stable operating speeds. These 

tracking differential-notch filters can also be used to form the 

basis of a simple adaptive controller. The fourth class of 

controllers are the model based compensators (MBC) that combine 

full-state feedback, linear-quadratic regulators with Kalman 

filter state estimators, giving @loptimal@g output feedback 

compensators. This class of controllers were extensively 

investigated under the previous NASA contract (NAS9-17560) ,  which 

15 



examined their stability properties. 

The synchronous performance of these four classes of 

controllers are compared for the ACCESS, treated both as a rigid- 

body rotor and as a flexible rotor. This report, combined with 

the earlier research into system stability described in Johnson 

[1987bJ, provides an analytical basis for comparing controller 

performance for flexible rotor systems such as ACCESS. 
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2. SYNCHRONOUS RESPONSE DYNAMIC MODELLING 

COIL > 

This chapter develops a dynamic model of the ACCESS capable 

of predicting its synchronous response to I1mass unbalances1!. 

I I  
1 BEARING FORCES 

&TORQUES 
ROTOR ACTUATORS . 

(BEARINGS1 

This derivation relies on subcomponent models, such as the hub 

CONTROL SIGNALS MEASURED . MEASUREMENT 
' 'ONTROLLER 'ROTOR DISPLACEMENTS 
t 

model, bearing model, and flywheel model, that are presented in 

< 

Johnson [1987b]. Based on these subcomponent models, a model of 

DESIRED ROTOR DISPLACEMENTS 

the system dynamics is developed. 

A general block-diagram of the system is shown in Figure 2. 

The rotor is controlled by forces and torques provided by the 

actuator, the Lorentz-force, large angle magnetic bearing 

modelled under the previous contract [Johnson 1987bl. The 

translational positions and tilt angles of the hub and flywheel 

Figure 2. Block Diagram of a Magnetic Bearing System 
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are measured and used as inputs to the controller. The outputs 

of the controller are signals controlling the power amplifiers 

that drive the magnetic bearing. For conventional magnetic 

bearings, the bearing forces and torques would also be a function 

of the displacements of the hub as well as input currents, as 

shown by the dashed lines. For the Lorentz-force bearing such as 

used in ACCESS, however, there is no force-displacement coupling 

to first order. 

The ACCESS hardware is modelled as two rigid body masses, 

the hub and the flywheel, connected by a damped, elastic 

structure, the spoke system. The magnetic suspension forces and 

torques act on the hub, as shown in Figure 3 .  Each of the 

rigid-body masses in Figure 3 has three translational and three 

TOROIDAL ROTOR 1 

BEARING FORCES I 
A N D  TORQUES I 

FLEXIBLE 
CONNECTING 
STRUCTURE 

MASSES 

Figure 3 .  Cut-away of a Toroidal, Multi-body, 
Flexible Rotor System 
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angular degrees of freedom. This research did not address the 

dynamics of two of these degrees of freedom, the translational 

degree of freedom along the axial direction or the angular degree 

of freedom associated with the spin axis. The axial, 

translational degree of freedom is neglected because to first 

order its dynamics are not a function of rotational speed and do 

not couple with the dynamics of the other degrees of freedom. 

Control of these axial dynamics is the subject of work by Downer 

[1980] for an all-active magnetic bearing system. Displacement 

control of the spin axis angular degree of freedom is not usually 

desired, only angular velocity control. Also, these torsional 

dynamics are not usually controllable by the magnetic bearing 

system. They may have, however, important effects on the motor 

controller dynamics. This problem is not addressed in this 

report. 

The following derivation of the synchronous response model 

makes extensive reference to the non-synchronous model developed 

under NASA contract NAS9-17560 and presented in Johnson [1987bJ. 

These derivations may also be found in a recent thesis [Johnson 

1987a). 

2.1 Translational Forces and Measurements 

Consider first the translational forces produced by the 

spoke structure. The pertinent geometry is shown in Figure 4. 

Shown are the projections of the centers of mass and centers of 

force onto the radial (X,Y) inertial plane. The centers of mass, 

which are the origins of the principal inertial axes systems, are 
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Flywheel I- f _ _  

Mh - 

B h  - 
S - Measurement center h 

Eh - Hub elastic center 

Mf - 
Ef - Flywheel elastic center 

Hub center of mass 

Center o f  bearing force 

Flywheel center of  mass 

Figure 4. Translational Model Geometry 
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fixed in each rigid body and are given by Mh for the hub mass and 

Mf for the flywheel mass. The spoke force fs is shown acting on 

the rigid body masses at position Eh on the hub and Ef on the 

flywheel. These centers of force are the origins of the elastic 

axes systems of each rigid-body mass and are fixed in each rigid 

body. The bearing force fb is shown acting on the hub mass at 

position Bh, not generally fixed in either rotor or stator 

reference frames. The measurement system is assumed to measure 

the position of the point sh on the hub. 

The distances of the centers of force and measurement away 

from the centers of mass are given by €h, cb, c s ,  and cf. With 

the exception of the bearing center of force Bh, the line 

segments connecting these centers are fixed in the rigid bodies, 

and therefore spin with the rigid body. Seen 'from the inertial 

coordinate system, these line segments all have an angular 

velocity of 0, to first order. Note that the time t has been 

chosen such that the line segment MhEh connecting the hub center 

of mass with the hub center of spoke force lies along the X-axis 

at time t = 0. 

as + nt, and af + nt. The relative angles within one rigid body 

mass are constants fixed by geometry, as are the distances €h, 

c s ,  and cf. The relative spin angle between the two rigid bodies 

is given by the angle af, which in general can be a function of 

time. When the system is experiencing steady-state rotation the 

angular velocity B f  must be zero for the assumption of rigid body 

rotation at a constant speed n to hold. Therefore, f o r  

The angles of the line segments are given by nt, 
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steady-state rotation, the angle af must also be a constant. 

The translational force produced by the spoke acts through 

the elastic centers Ef and Eh in the flywheel and hub 

respectively. The elastic force is assumed to be a linear 

function of the distance between these centers. The 

translational force generated by the spoke structure that acts on 

the flywheel is given as before [Johnson 198713, Equation A.1.51 

by 

where now the pertinent relative displacement 

relative displacement of the elastic centers 

is given by the 

and where kr is the spoke spring constant and 

Cr is the spoke damping 

The spoke force acting on the flywheel is then 
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The first two lines of Equation 3 are the same as developed for 

the non-synchronous model [Johnson 1987b, Equation A.1.91. The 

effects of the misalignment of elastic and inertial centers 

(Iwmass unbalancew1) are seen in the last two lines of Equation 3. 

These additional forces caused by the misalignment may be 

considered as disturbance forces acting on the system. Note that 

these disturbance forces are sinusoidal functions of time with a 

frequency of n, the rotational speed of the system, called the 

synchronous frequency. 

Using complex notation, these disturbance forces can be 

elegantly given as 

where the x and y direction disturbance forces are the real and 

imaginary parts of this equation. 

The spoke force given by Equation 3 acts on the flywheel. 

An equal and opposite force generated by the spoke structure acts 

on the hub. Because these forces are equal and opposite, there 

is no net effect on the rigid body motion of the combined 

hub-flywheel system. Therefore, the misalignment between elastic 

and mass centers acts as a disturbance force exciting only the 

flexible modes of the system. 

Another possible source of disturbances is the radial 

misalignment between the center of force of the bearing and the 

hub center of mass. This misalignment produces only axial torque 

disturbances in the system and, therefore, to first order causes 
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no disturbances in the translational dynamics. 

A third source of disturbances is the measurement system. 

The controller is assumed to have access to measurements of hub 

position made by the measurement system. The position sensors 

nominally produce a measurement of the hub center of mass 

position Mh. The position sensors actually measure the distance 

to a machined surface, which may be imperfect, giving a corrupted 

measurement of hub position. An exaggerated view of this is 

shown in Figure 5. In general, the measurement system will 

produce an output that consists of the center of mass position 

and components at harmonics of the rotational speed n. For 

machined surfaces, the dominant error mechanism is the 

misalignment between the geometrical center of the machined 

surface being measured (sh) and the hub center of mass (Mh). 

The position of the measurement center is given by 

sh = xh& + yhi 

= (xh + cscos(nt + C Z ~ ) ) ~  + (yh + cssin(nt + as))i 
(5 1 

using complex notation this becomes 

where Xh and Yh are the x and y positions of the measurement 

center, which are the estimates of the hub center of mass made by 

the measurement system. The effect of the measurement surface 

misalignment, therefore, is to add a sinusoidally varying 

disturbance signal to the measurement of the hub center of mass 
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U Posit ion 
sensors 

Mh - Hub center of mass 

Sh - Center of measurement 

Figure 5. Translational Measurement Geometry 
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position. This corrupted measurement will be used as a feedback 

signal for the magnetic bearing. This misalignment will produce 

a disturbance that will excite both rigid body and flexible modes 

of the hub/flywheel system. 

2.2 ACCESS Translational Model 

The disturbances, plant equations, and bearing 

characteristics can now be combined together to produce a 

input/output model of the ACCESS translational dynamics. This 

model can be put into standard state-space form with input and 

output disturbances as shown in Figure 6. With the state space 

form shown in Figure 6, the variables and matrices are all real. 

The input to the translational model shown in Figure 6 is 

the current vector i containing the two Lorentz bearing 

translational currents as 

- i =  [ix, iyP= (7) 

These currents are combined with the input disturbances di, 

forming the inputs to the translational plant. These input 

disturbances are caused by the misalignment of the rigid body 

mass and elastic centers, as discussed above. The input 

disturbance vector ai is a function of geometrical parameters, 

time, and rotational speed as 
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EQUATIONS O F  MOTION 

- >;(t) = Ax(t)  - + Bi - ( t )  

y ( t )  = C ( s l  - A ) - ' B i ( t )  + C(sl  - A)-'d.(t) + dJt) A 

- i ( t )  = Eearing control currents 

d.(t) = Force disturbance caused by spoke misalignment 

- x ( t )  = System state vector 

y ( t )  

y ( t )  = Measured hub position 

d ( t )  = Measurement disturbance 

= System output,  the hub center of mass position 
h 

--o 

Figure 6. Translational Model: Standard State Space Form 
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-1 d e  - - 

where 

0 

kl t 

kr 

0 

0 

- chsin(nt)) 

- e h s i n ( n t ) )  

klt = Lorentz bearing translational force/input current 

proportionality constant [Johnson 1987bl 

The state vector x of the translational plant is given by 

the x and y positions and velocities of the flywheel and hub 

centers of mass. The output of the plant y is assumed to consist 

of the hub center of mass x and y positions Xh and Yh as 

The plant matrices A, B, and C are given by 
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A =  

B =  

I 
r o  0 

0 0 

0 0 

0 0 

0 0 

1 

c =  [ O  0 0 

0 

0 

0 0 0 0 0 

I 0 0 0 0 

0 0 0 I 0 

0 0 0 0 I 

0 " 1  0 0 0 0 

0 0 1 0 
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The measurement of the hub center of mass position is corrupted 

by misalignment between the center of measurement and the hub 

center of mass, as discussed above. This misalignment can be 

expressed as an output disturbance do, as shown in Figure 6, 

where 

The measurement of hub position available to the controller y is 

the combination of the actual hub center of mass position y and 

the disturbance do, as shown in Figure 6. 

The state-space equations shown in Figure 6 provide a model 

of the translational dynamics using a real, time domain 

formulation. The frequency domain block diagram of the model is 

shown in Figure 7 .  The plant transfer function relating the 

input currents i to the hub center of mass position y is 

The input disturbances are related to the hub center of mass 

position by the same transfer function. The measurement of hub 

position available to the controller is 

Y ( s )  = Y ( s )  + Do(s) = G ( S ) I ( S )  + C(S1 - A)-lDi(S) + & ( s )  

(16) 

where the various Laplace transforms are defined in Figure 7 .  

Complex notation can be used to express the translational 

dynamics, giving a more compact notation. The complex, time 

domain block diagram is shown in Figure 8 .  The input is the 
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A 
y(s) = Laplace transform of measured hub position y ( t )  

- Y ( s )  

D.  ( s )  = Laplace transform of force (spoke misalignment) 

= Laplace transform of  the hub center of mass position y ( t )  

I 

disturbance d . ( t )  

= Laplace transform of input (Lorentz bearing) currents - i ( t )  
-I 

- I(s) 

D ( s )  = Laplace transform of output (measurement) disturbance dJ t )  
-0 

Figure 7. Translational Model: Standard Transfer Function Form 
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EQUATIONS OF MOTION 

;(t) = A z ( t )  + s i c ( t )  - C- 

i c ( t )  

%i(t)  = Complex force disturbance vector, caused by  spoke 

= Complex bearing control current 

misalignment 

- z ( t )  = Complex system state 

zh(t)  = System output, complex postion o f  the hub center of  mass 

d o (  t )  = Complex measurement disturbance 

zh(t)  = Measured hub position h 

Figure 8. Translational Model: Complex State Space Form 

32 



complex Lorentz bearing current ic containing the two Lorentz 

translational currents as 

ic - - ix + ji,. (17) 

This scalar, complex current is combined with the complex input 

disturbances dci to form the complex input to the translational 

plant. The complex input disturbance is given as 

The complex state vector g of the translational plant is given b 

- z = [zfr zhr 2fr  2hIT (19) 

where zf and Zh are the complex scalars describing the position 

of the flywheel and hub centers of mass. The output of the 

plant, consisting of the hub center of mass x and y positions Xh 
and Yh is expressed as a complex scalar 

The plant is now described by complex coefficient matrices +, 
bc, and cc that are given by 
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% =  

-c bT - - 

- cc - 

- 
0 

0 

c o  

0 1 

0 0 

The output disturbance dco is now a complex scalar given by 

dco 

The measurement of hub position available to the controller is 

now a complex scalar yc that is the sum of the complex scalar 

disturbance dco and the actual hub center of mass position, given 

by the complex scalar yc. 

This complex, time domain representation of Figure 8 is 

similar to the real formulation given in Figure 6, but the size 

of all vectors have been halved. In particular, the two-vectors 

of the real formulation describing current i, output disturbance 

do, hub position y, and measured hub position y have all become 

complex scalars when the complex representation is used. 
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This complex time domain representation has a frequency 

counterpart, shown in Figure 9. The special properties of these 

complex coefficient transfer functions are presented in detail in 

Chapter 4 of Johnson [1987a]. 

These real and complex equations of motion for the 

translational dynamics of the ACCESS system provide models 

capable of predicting both the non-synchronous and synchronous 

response. With the input and output disturbances neglected, the 

above models are appropriate for the analysis of the synchronous 

response of the ACCESS translational dynamics, including the 

important consideration of stability. With the addition of the 

disturbances, these models are capable of predicting the forced, 

synchronous response caused by misalignments between the 

inertial, measurement, and elastic components, which are the mass 

unbalances of conventional rotor dynamics. 

2.3 Radial Toraues and Ansular Measurements 

In the same manner as for the translational dynamics, the 

forced, synchronous model for the angular dynamics is found by 

incorporating the potential misalignments between the centers of 

force of the spoke structure, centers of mass of the rigid 

bodies, and center of force of the Lorentz bearings into the 

model. In this angular case, however, the differences in 

orientation of the elastic axes of the rigid bodies, the 

principal inertial axes of the rigid-body masses, and the 

reference axes of the measurement system must also be 

considered. Since the rigid bodies and spoke structure are 
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Ic(s) = scalar Laplace transform of the complex input current 

ic( t> 

Dci(s> = vector Laplace transform of the complex force disturbance - 
-ci d (t> 

zh(s) = scalar Laplace transform of the complex scalar Zh(t) 

describing the hub center of mass position 

Dco(s) = scalar Laplace transform of the complex output disturbance 

6 

Zh(s> = scalar Laplace transform of the measured hub position 

T -C c (SI - Ac>-'&, the scalar (SISO) complex coefficient, 

translational transfer function. 

Figure 9. Translational Model: Complex Coefficient 
Transfer Function Form 
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assumed axisymmetric, only the axial elastic or inertial axes are 

uniquely defined. Therefore, only the orientations of the axial 

axes, both inertial and elastic, need be specified for each rigid 

body. 

For each rigid-body mass, an elastic axes set has been 

defined such that when the elastic axes set of each rigid body 

has the same orientation, no elastic torques are produced by the 

spoke structure. In other words, if these two sets of elastic 

axes have the same orientation over any period of time, the spoke 

structure produces no elastic or damping torques over that time 

period. As noted above, the orientation of these elastic axes is 

determined by specifying the orientation of only the axial 

elastic axis. 

For small differences in orientation, the orientation of the 

axes can be described by Bryant angles 4 and B considered as 

vector quantities, as developed in Johnson [1987b]. For example, 

the orientation of the axial, elastic axis and axial inertial 

axis of a single rigid body is shown in Figure 10. The 

orientation of these axes is shown relative to the fixed 

reference frame given by the X-Y-S axes. The axial inertial axis 

is shown intersecting the radial (X-Y) plane at center of mass Mh 

and the axial elastic axis intersecting the radial plane at the 

center of elastic force Eh. These points, of course, are the 

origins of the principal axes of inertia and the elastic axes. 

The orientations of the two axial axes, I,, and E,,, are given by 

the two sets of Bryant angles, d i  and 8 i  for the axial inertial 
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axis and 4e and Be for the axial elastic axis. The plane 

containing these two axial axes is fixed in the rigid body. 

Also, importantly, the orientation of these two axes is fixed 

relative to one another. 

The relative orientation of the two axes can be more readily 

seen if the two axes are plotted with a common origin as shown in 

Figure 11. Also shown in Figure 11 are projections onto the 

radial (X-Y) plane of unit magnitude vectors aligned with the 

axial elastic axis and the axial inertial axis. These 

projections are given by the line segment OPi for the inertial 

axis and Ope for the elastic axis. Note that these line 

segments, as well as the line segment Pipe are fixed in the rigid 

body and, to first order, spin about the S-axis with rotational 

speed 0 and fixed orientation relative to one another. 

The relative orientation of the axial elastic and inertial 

axes has been shown to be fixed in the rigid body and spinning 

with the rigid body angular velocity n. These results were 

obtained by considering the projection of these axial elastic and 

inertial axes into the radial (X-Y) axes. These results can be 

expressed in the ( $ - e )  coordinates as shown in Figure 12(a) and 

12(b). Figure 12(a) is the radial (X-Y) plane of Figure 11. 

Shown are the body fixed line segments OPi and Ope that describe 

the orientation of the axial inertial axis and the axial elastic 

axis, as discussed above. In the 4-e coordinate system the 

orientations are given by points labelled qb for the inertial and 

x for the elastic axes. The line segment Xqb in Figure 12(b) is 
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E,, - Hub elastic center 

I - Axial principal axis of inertia 

I - Elastic axial principal axis  

Hub center of mass 
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Figure 10. Angular Orientation of a Single Rigid Body 
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Figure 11. Relative Orientation of Inertial and Elastic Axes 
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Figure 12. Projection of the Relative Orientation of 
Inertial and Elastic Axes 
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analogous to the line segment PePi in Figure 12(a). The line 

segment PePi was shown to rotate relative to the inertial X-Y 

axes with angular velocity n. Similarly, the line segment 

rotates with angular velocity n in the 4-8  plane with the 

direction of rotation shown in Figure 12(b). This, then, is the 

desired result: the 4-8 coordinate pairs that describe the 

orientation of the axial inertial and elastic axes are fixed 

relative to one another in the 4 - 8  plane and rotate with angular 

velocity n. 

The angular orientation of both rigid bodies, the elastic 

structure, and the measurement axes can be expressed in the ,$-e 

plane as shown in Figure 13. The axial inertial axis of the hub 

rigid body has angular orientation given by $he The axial 

elastic axis of the hub has angular orientation given by xh. 

measurement system is assumed to measure the orientation of a 

third axis fixed in the hub rigid body given by ah. These three 

axes are fixed in the hub rigid body, and in lieu of the above 

developments, the line segments $hXh and Xh@h rotate in the 4-6 

plane with angular velocity n in the direction shown. Their 

relative orientations are fixed, as discussed above, and given by 

angular vector magnitudes <h and t S  with relative angles ph and 

p s  as shown in Figure 13. For the flywheel, the orientation of 

the axial inertial axis is given by $f and the orientation of the 

axial elastic axis is given by Xf. These axes are fixed in the 

flywheel rigid body and the coordinates that denote their 

orientation rotate with angular velocity n when seen in the 4-8 

The 
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Yh - Orientation of hub axial principal axis of inertia 

xh - Orientation of  the hub elastic axial principal axis 

ah - Orientation of  the measurement axis 
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Xf - Orientation of the flywheel elastic axial principal axis 

- Orientation of the flywheel axial principal axis of inertia 

Figure 13. Angular Model Geometry 
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plane. Their relative orientation is given by the magnitude (f 

and the angle pf, similar to the hub notation. In general, the 

relative orientation of the hub and flywheel are functions of 

nominal spin speed and time. If the system is spinning in 

steady state, however, the relative orientations between all the 

elastic and inertial axes are fixed and (h, e S ,  (f, ph, p s ,  and 

pf are all constants. 

The framework is now in place to analyze the torque produced 

by the spoke structure. The torque produced by the spoke 

structure is given, as developed in Johnson [1987b] (Equation 

A.1.8), by 

where now the relative angular orientation is given by the 

relative orientation of the elastic axes 

- A x  = xf - xh = [#f - #h + (fcos(nt + pf) - (hCOS(nt + ph)]i 
+ [ef - Oh + (fsin(nt + pf) - <hsin(nt + p h ) ] j .  

(26) 

and where 

ka is the spoke angular spring constant and 

Ca is the spoke angular damping constant 

The torque produced by the spoke structure and acting about the 

elastic center of the hub is now 
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- ka[EfcOS(nt + pf) - Ehcos(nt + ph)]i 

- ka[(hSin(nt + pf) - <hSin(nt + ph)]i 

(27) 

The first two lines of Equation 27 are the same as developed for 

the non-synchronous model [Johnson 1987bl. The effects of the 

misalignment of elastic and inertial axes are seen in the last 

two lines of Equation 27. These additional torques caused by the 

misalignment may be considered as disturbance torques acting on 

the system. Note that these disturbance torques are sinusoidal 

functions of time with a frequency of 0, the rotational speed of 

the system. 

The disturbance torque given by Equation 27 acts about the 

elastic center of the hub rigid body. An equal and opposite 

torque acts about the elastic center of the flywheel. Because 

these torques are equal and opposite, they produce no net torque 

acting to disturb the rigid body motion of the combined 

hub-flywheel system. Therefore, the misalignment of the inertial 

and elastic axes of the hub and flywheel produces a disturbance 

torque that excites only the flexible modes of the angular 

dynamics. These results are similar to the results derived 

earlier for the disturbance force caused by misalignment of the 

elastic and inertial centers of the hub and flywheel. 

The disturbance torque derived above acts about the elastic 

In addition to this disturbance centers of the hub and flywheel. 
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torque, there is another torque, a coupling torque, that acts 

about the centers of mass of the hub and flywheel. This coupling 

torque is caused by the translational forces produced by the 

spoke structure or bearing. The translational force produced by 

the spoke structure acts through the elastic centers of the hub 

and flywheel, as discussed above. The bearing force acts through 

a point not generally fixed in either stator or rotor 

coordinates. These forces can produce radial coupling torques 

about the hub and flywheel centers of mass if the elastic, mass, 

and bearing force centers are not aligned in the axial direction. 

If the hub and flywheel centers of mass are displaced in 

the axial direction from the their respective elastic centers or 

the hub center of mass is displaced axially from the bearing 

center of force, there will be a disturbance torque that couples 

the translational dynamics, through the magnitude of the force, 

and the axial dynamics, through the relative axial displacements 

of the various mass, elastic, and bearing centers, to the angular 

(tilt) dynamics. Although these axial misalignments provide a 

mechanism to couple the angular and translational dynamics, they 

are small effects since they depend on small scale geometric 

imperfections. In the interest of model simplicity, they were 

neglected in this investigation. 

Another source of disturbance is possible misalignment of 

the angular sensors. The controller is assumed to have access to 

a measurement of the orientation of the axial direction of the 

hub. These angular sensors nominally produce a measurement of 
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the orientation of the axial inertial axis of the hub. These 

sensors, however, actually measure the orientation of some 

machined surfaces on the hub. The output of the measurement 

system is the orientation of a ttmeasurementtt axis, which is 

defined by the sensed surfaces on the hub. This measurement axis 

is assumed fixed in the hub rigid body but will not in general 

coincide with either the axial inertial or elastic axes. 

The orientation of the measurement axis was shown in Figure 

13. The orientation of the measurement axis relative to the 

axial principal inertial axis is defined by the magnitude t S  and 
the angle as in the 4-0 plane. The output of the measurement 

system, which is the orientation of the measurement axis, is 

therefore a corrupted measurement of the orientation of the axial 

inertial axis of the hub as 

4si + esi = (4h + fScos(nt + p s ) ) i  + (Oh - essin(nt + p s ) i  

( 2 8 )  

Using complex notation the orientation of the measurement axis is 

given as 

4s 

The effect of the measurement error, therefore, is to add a 

sinusoidally varying signal to the measurement of the axial 

principal inertial axis of the hub. This corrupted measurement 

signal will be used as a feedback signal for the magnetic 

bearing. This measurement error will produce a disturbance that 

will excite both rigid-body and flexible modes of the hub/ 
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EQUATIONS OF MOTION 

- >;(t) = Ax(t)  + Bi ( t )  

y ( t )  = C(s l  - AI - lBL( t l  + C(sl  - A) d.(t) + $( t )  - 1  

- i ( t )  = Bearing control currents 

d.(t) 

- x ( t )  = System state 

y ( t )  

= Torque disturbance vector caused by  spoke misalignment 

= System output, orientation o f  the hub axial principal 

axis o f  inertia 

d (t) = Measurement error  

g ( t )  = Measured hub orientation 

-0 

Figure 14. Angular Model: Standard State Space Form 
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flywheel system. In conventional rotor dynamics, these 

disturbances are expressed as products of inertia of the rigid 

bodies relative to the elastic axes. 

2.4 ACCESS Anaular Dynamics Model 

The disturbances, plant equations, and bearing 

characteristics can now be combined together to produce a 

input/output model of the ACCESS angular dynamics. In standard 

state space form, where all variables and matrices are real, the 

model is given by Figure 14. Note that this model has the same 

form as the translational dynamics model. 

The input to the angular model is the current vector i 
containing the two Lorentz bearing angular currents as 

- i 

These currents are combined with the input disturbances ai to 

form the inputs to the translational plant. These disturbances 

are caused by the misalignment of the inertial and elastic axes, 

as discussed above. The input disturbance vector ai is. a 

function of geometrical parameters, time, and rotational speed as 
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- d *  - -1 

0 

0 

0 

The state vector x of the angular plant is given by 

the rotations and angular velocities about the X and Y axes that 

describe the orientation of the axial inertial axes of the hub 

and flywheel. The rotations about the X-axis are given by the 

4 ‘s  and the rotations about the Y-axis are given by the 0 ’ s .  

The output of the plant y is assumed to consist of the 

orientation of the axial principal axis of the hub given by the 4 

and e angles as 

The plant matrices A, B, and C are given by 
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A =  

B =  

L 

1 

c = [ o  0 0 0 "1 0 0 0 0 0 

0 0 0 1 0 
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The measurement of the hub center of mass position is corrupted 

by misalignment between the axial inertial axis of the hub and 

the b@measurementbb axis, as discussed above. This misalignment 

can be expressed as an output disturbance do, as shown in Figure 

14, where 

The measurement of hub orientation y available to the controller 

is the combination of the orientation of the axial principal 

inertial axis of the hub y and the disturbance do, as shown in 

Figure 14. 

The state-space equations shown in Figure 14 provide a model 

of the translational dynamics using a real, time domain 

formulation. The frequency domain block diagram of the model is 

shown in Figure 15. The plant transfer function matrix relating 

the input currents i to the hub orientation y is 

The input disturbances are related to the hub center of mass 

position by the same transfer function. The measurement of hub 

orientation available to the controller is 

where the various Laplace transforms are defined in Figure 15. 

Complex notation can be used to express the translational 

dynamics giving a more compact notation. The complex, time 
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1 I 

A 1 

:(SI = Laplace transform of measured hub orientation y(t) 

- Y(s> = Laplace transform of the actual hub orientation 

(orientation of axial inertial axis of the hub) y(t) 

-II D.(s) = Laplace transform of torque disturbance &(t) 

- I(s) = Laplace transform of input (Lorentz bearing) currents - i(t) 
%(s) = Laplace transform of output (measurement) disturbance 

-4 d (t) 

Figure 15. Angular Model: Standard Transfer Function Form 
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domain block diagram is shown in Figure 16. The input is the 

complex Lorentz bearing current ic containing the two Lorentz 

translational currents as 

This scalar, complex current is combined with the complex input 

disturbances &i to form the complex input to the translational 

plant. The complex input disturbance is given as - 
0 

0 

The complex state vector z of the translational plant is given by 
- z = [$f, $hi $f, $hjT, ( 4 2 )  

where $f and $h are the complex scalars describing the 

orientation of the flywheel and hub principal axes of inertia. 

The output of the plant, consisting of the orientation of the hub 

principal axis of inertia given by the 4 and d angles dh and oh 

is expressed as a complex scalar 

The plant is now described by complex coefficient matrices ?+, 

-c b 1 and c, that are given by 
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I 

EQUAT 

t 

, 

ONS OF MOTION 

- ; ( t )  = A C- z ( t )  + %ic(t) 

Y h ( t )  = %(SI - A l - ' ~ i c ( t l  + 5 ( S I  - A)"d -3 . ( t )  + dco(t)  T T A 

i , (t)  = Complex bearing control current 

d . ( t )  = Complex vector of disturbance torques caused by spoke 

mi sa l i  gnmen t 

-1 

- z ( t )  = Complex system state 

*,,(t) = System output, complex orientation of the hub axial 

principal axis of inertia 
A 

q h ( t )  

d ( t )  = Measurement error 

= Measured complex hub orientation 

co 

Figure 16. Angular Model: Complex State Space Form 
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A c =  

-c bT - - 

0 

0 

0 

0 

L o  - cc - 

0 

1 

1 

- 
0 

0 1 

0 

0 
0 1  (46) 

The output disturbance dco is now a complex scalar given by 

The measurement of hub position available to the controller is 

now a complex scalar yc that is the sum of the complex scalar 

disturbance dco and the actual hub center of mass position, given 

by the complex scalar yc. 

This complex, time domain representation of Figure 16 is 

similar to the real formulation given in Figure 14, but the size 

of all vectors have been halved. As for the translational model, 

the two-vectors of the real formulation describing current i, 
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output disturbance do, hub position y, measured hub position y 

have all become complex scalars when the complex representation 

is used. 

This complex time domain representation has a frequency 

counterpart, given by the complex coefficient transfer function 

(CCTF), shown in Figure 17. 

As for the translational model, these real and complex 

equations of motion for the angular dynamics of ACCESS provide 

models capable of predicting both the non-synchronous and 

synchronous response. With the input and output disturbances 

neglected, the above models are appropriate for the analysis of 

the homogeneous or non-synchronous response of the ACCESS angular 

dynamics, including the important consideration of stability. 

With the addition of the disturbances, these models are capable 

of predicting the forced, synchronous response caused by 

misalignments between the inertial, measurement, and elastic 

components. 
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Ic(s) = scalar Laplace transform of the complex input current lc(t) 

-ci D ( s )  = vector Laplace transform of the complex torque 

disturbance dci(t) - 
vh(s) = scalar Laplace transform of the complex scalar $h(t) 

describing the hub principal inertial axis orientation 

Dco(s) = scalar Laplace transform of the complex output 

disturbance dco(t) 
A 

y,(s) = scalar Laplace transform of the measured hub orientation 

'uh(t) 

T = cc(sI - Ac)-'&, the scalar (SISO) complex Coefficient, 

Figure 17. Angular Model: Complex Coefficient Transfer 
Function Form 
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3. SYNCHRONOUS RESPONSE CONTROL OF R I G I D  ROTORS 

This chapter introduces the four synchronous control 

approaches that were examined under this research program. These 

will be investigated for control of the translational dynamics of 

the ACCES system treated as a rigid-body. Control of a rigid- 

body rotor simplifies this introductory treatment and allows the 

important features of each approach to be easily identified. 

The four controller design approaches that have been 

investigated are 

1) Mimic conventional bearings with lead-lag compensators 

2) Tracking notch filters 

3) Tracking differential-notch filters 

4) Model based compensators. 

These approaches will be presented in the next four sections. 

3.1 Lead-Laa Compensation 

Lead-lag compensation of the rotor position measurement is 

The the underlying controller f o r  the notch filter compensators. 

block diagram of the lead-lag compensator is shown in Figure 18. 

Shown is the complex single input, single output control loop 

which describes the dynamics of the two perpendicular, radial 

axes. For a detailed discussion of complex SISO systems, see 

Johnson [1987a] or Johnson [1987b]. Alternatively, this loop can 

be interpreted in a more conventional manner as a single axis of 

the two identical radial axes. The plant is shown as a simple 
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I C '  I I 

Bearing 
Force 

c Lead-Lag c 
Compensator 

Plant 

Mass 
I Posltlon 

2 
ms + 

Measured Center of Mass Posltlon I 

Figure 18. Lead-lag Block Diagram 

rigid body, double integrator with the radial force as the input 

and rotor center of mass position as the output. The measured 

center of mass position is corrupted by the measurement error, as 

was shown in Figure 5. The measurement error is an additive, 

synchronous error at the rotational frequency (n) .  The measured 

rotor position is subtracted from the commanded position and used 

as input to the lead-lag compensator. Note that the measurement 

error or 9nass unbalance" manifests itself as an additive output 

error. 

Bode plots of the lead-lag compensator are shown in Figure 

19 along with the transfer function gain of a similar spring- 

damper bearing. ,Note that the lead-lag compensator models the 

spring-damper bearing well except at high frequencies past where 

the system is crossed over. The one decade of lead shown in 

Figure 19 will be used for all the examples presented in this 

report. 
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Figure 19. Lead-lag and Spring-damper Compensator Gain 

61 



The loop gain of the lead-lag compensator and plant are 

shown in Figure 20. The rigid-body cross-over frequency is 

chosen to be 300 rad/sec. Until past cross-over frequencies, the 

lead-lag and spring-damper are the same, yielding the same 

closed-loop dynamics inside the closed-loop bandwidth. Because 

of this, the lead-lag compensator is often used to mimic the 

behavior of a conventional spring-damper bearing. 

In all the results presented in this report, the decade of 

lead will be centered about the cross-over frequency, as shown in 

Figure 20. This gives about 60 degrees of phase margin at cross- 

over, resulting in well damped eigenvalues. Because of the good 

eigenvalue damping, the synchronous response of the system is 

well damped. This can be seen in Figure 21, a plot of the 

normalized center of mass amplitude versus normalized rotational 

speed. The center of mass amplitude has been normalized by the 

measurement error distance (ch) , which in conventional rotor 

systems corresponds to the mass unbalance distance. The 

rotational speed has been normalized by the loop cross-over 

frequency (ac), which is approximately the critical frequency of 

the system. 

At low subcritical speeds, the system spins about the 

measurement center sh with the center of mass whirling about sh 

with an amplitude equal to the measurement error distance €h (see 

Figures 4 and 5). As the system goes through the critical speed, 

the center of mass position shows only slight peaking because of 

the good damping. At higher supercritical speeds the system 
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Figure 20. Lead-lag and Spring-damper Loop Gain 
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spins about the rotor center of mass. 

Boarlng 
Input + Force Notch Fllter Lead-Lag -. 

Compensator 

3.2 Lead-Laa ComDensator with Trackina Notch 

This controller adds a notch filter at the synchronous 

frequency (rotational speed) into the feedback loop as shown in 

Figure 22. The notch frequency of this filter tracks the 

synchronous frequency (rotational speed), hence the name 

synchronous tracking filter. The tracking notch filter will 

eliminate all signals at the synchronous frequency from the 

control loop, including the measurement error (%ass unbalancevu). 

In removing all signals at the synchronous frequency, however, 

closed-loop instability can result, limiting the usefulness of 

this approach. 

Mass 
Position - I 

2 
mr + 

Measurement Erorr 

Commanded I 

Figure 22. Notch Filter Block Diagram 
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The notch used in this investigation is a ideal two pole 

transfer function with infinite notch depth. The notch transfer 

function N(s,n) is a function of both frequency (Laplace variable 

s) and rotational speed (n). It is given by 

The steepness of the notch is determined by the parameter Q. A 

larger Q makes a steeper notch1. 

Figure 23 is a Bode plot of the loop transfer function for a 

subcritical rotational speed of 100 rad/sec and a notch Q of 10. 

The dashed lines indicate zero gain and -180 degree phase. Note 

that the phase of the loop transfer function is dramatically 

different than without the notch. The negative phase that the 

notch filter adds when the loop gain is greater than unity leads 

to instability in this case. The Nyquist plot for this case is 

shown in Figure 2 4 .  The complex coefficient transfer function2 

encircles the -1 point twice, giving four closed-loop unstable 

poles3. At higher rotational speeds, however, the phase loss 

The use of a more general finite depth notch filter has 
been investigated by Beatty [1988]. 

For a detailed development of the Nyquist criteria for 
complex coefficient transfer functions (CCTF) see Johnson [1987a]. 

The Nyquist plots shown in this report have been 
modified for easier presentation. Outside of the unit circle, 
which is shown by the dotted line, the log of the magnitude of 
the transfer function has been added to one and used as the 
magnitude on the Nyquist plots. This allows the large peaks to 
be more clearly seen. 
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Figure 23. Notch Filter Loop Gain at Subcritical Speeds 
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caused by the notch filter occurs at frequencies past cross-over 

and does not affect system stability. This can be seen in 

Figures 25 and 26, the Bode plot of the loop gain and the Nyquist 

plot. For these two graphs, the rotational speed is 1000 

rad/sec, a supercritical speed, and the notch Q is 10 as before. 

The stability results can be more easily seen in Figure 27. 

This is plot of closed-loop eigenvalue damping versus rotational 

speed for a notch Q of 10. The system is closed-loop unstable 

until a rotational speed of 150 rad/sec, approximately the cross- 

over frequency of the system. The effect of Q on stability can 

be seen in Figure 28, a plot of the rotational speed at zero 

closed-loop damping versus the Q of the notch. This rotational 

speed curve is a stability boundary, therefore, versus the notch 

Q. Note that the stability boundary is lowered for higher notch 

Q. 
The performance results for the synchronous notch filter are 

summarized in Figure 29. Shown is the normalized attenuation of 

the measurement error at the synchronous frequency. This is 

analogous to the conventional synchronous response plots. The 

center of mass displacement is normalized by the measurement 

error distance Q h  (mass unbalance distance). The synchronous 

response of the tracking notch filter system is zero in its 

stable range of rotational speeds. For comparison, the 

synchronous response of the lead-lag compensator by itself is 

also shown. The important result is that the tracking notch 

filter can only be used at supercritical rotational speeds. 

t 

In 
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this supercritical speed range the notch filter will perform 

better than the simple lead-lag compensator. 

3 . 3  Lead-Lau Compensator with Trackinu Differential-Notch F i l m  

As was shown in the last section, a tracking notch filter 

perfectly rejects the measurement error (mass unbalance) of a 

rigid-body rotor. It suffers, however, from a limited rotational 

speed range where it is stable. The tracking differential-notch 

filter developed under this contract retains the good synchronous 

response performance of the notch filter but with vastly improved 

stability properties. 

The stability problems of the tracking notch filter arise 

because the notch filter, while eliminating the synchronous 

measurement error, eliminates any desirable control signals at 

the synchronous frequency. The tracking differential-notch 

filter alleviates this problem by re-injecting the desirable 

control signals into the feedback control loop. A block diagram 

of the system with the tracking differential-notch filter is 

shown in Figure 30. If the path through the plant model were 

eliminated, this system shown in Figure 30 would be the same as 

the tracking notch filter presented in the last section. Note, 

however, that the tracking notch filter has been implemented in a 

special way. The measured center of mass position of the rotor 

is notch filtered by subtracting from the signal a synchronous 

tracking bandpass filtered version of itself. This results in a 
jnt synchronous tracking notch filter. The measurement error ehe 

is therefore perfectly filtered from the feedback signal used to 
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zh(s) = Z ( s )  + ( 1  - P(s,O)).Acjnt - P(s,O).(Z(S) - Z , ( S ) )  
A 
Z(s) = (1 - P(S,O))*Z(S) + P(S,O).Z, 

NOTCHES THE MEASUREMENT ERROR (GOOD) 

ALSO NOTCHES THE CENTER OF MASS POSITION Z(s) 

ADD ESTIMATED CENTER OF MASS POSITION TO IMPROVE 
STAB I L ITY 

Figure 30. Tracking Differential-Notch Filter Block Diagram 
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drive the compensator. The output of the compensator, which is 

assumed to be a simple lead-lag as before, is used produce the 

input force driving the plant. 

The difference between the tracking differential-notch 

filter of Figure 30 and the tracking notch filter of the previous 

section is the addition in Figure 30 of a feedforward path 

utilizing a model of the plant. The purpose of this loop is to 

re-inject the synchronous component of the plant input signal 

that is lost because of the notch filtering of the plant output. 

This component is formed by routing the input signal to the plant 

through the plant model followed by the synchronous bandbass 

filter. This route provides an estimate of the desirable 

synchronous component that has been eliminated by the notch 

filtering of the actual plant output. 

The estimated hub center of mass position z ( s )  is given by 

where 

z ( s )  = 

z ( s )  = 

p(s,n) = 

€ h  = 

( 4 9 )  

Estimated hub center of mass position 

Hub center of mass position 

Tracking bandpass filter 

Measurement error distance (mass unbalance 
distance) 

Rotational speed 

Output of plant model (modelled hub center of 
mass position. 

The bandpass filter P ( s , n )  is a function of the rotational speed 

n, with the passband tracking the rotational speed. The transfer 
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function of this synchronous tracking bandpass filter is 

where, as before, Q is a parameter of the filter that determines 

the steepness of the passband. The parameter nf is the center 
frequency of the passband. It is nominally set equal to the 

actual rotational speed n. Note that at the synchronous 

frequency n, the bandpass filter has unity gain if the 

synchronous frequency n is equal to the passband center frequency 

nf 

The hub estimated center of mass position (Equation 4 9 )  can 

be rearranged to give 

Z ( S )  = (1 - P(s,n))*z(s) + P(S,n)mZm(s) (51) 

where the bandpass filter P(s,n) is assumed to have unity gain at 

the synchronous frequency n. The important result here is that 

the estimated hub center of mass position z ( s )  is not a function 

of the measurement error. In other words, this system perfectly 

rejects the measurement error (mass unbalance) . Furthermore, if 

the plant model perfectly models the plant, the estimated hub 

center of mass position is a perfect estimate of the actual hub 

center of mass position. 

An obvious choice for the plant model is the same as the 

plant, with a transfer function 
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1 

ms2 
G ( s )  ----- 

This plant model, however, does not work because the resulting 

system is uncontrollable through the input u(s) . This happens 

because the input u(s) sees two identical, parallel paths. Only 

one of these can be stabilized by the input. A relatively simple 

solution to this problem exists. The output of the plant model 

is only used at the synchronous frequency n. At lower 

frequencies, the plant model need not be an accurate 

representation of the plant. Therefore the plant model can be 

made open-loop stable with 

where 

= 

m =  

wo = 

c =  

plant model 

plant mass 

natural frequency of model 

model damping 

The natural frequency of the model ( w o )  is chosen to be below the 

range for which synchronous response control is important. The 

model damping ( r )  is chosen to give a well damped model. For the 

examples in this section, w o  is set to 5 rad/sec and to 0.707. 

The Bode plot of the loop transfer function for this 

79 



controller, with the loop broken at the compensator input, is 

shown in Figure 31. For this case, the rotational speed n is 100 

rad/sec, the filter Q is 10 and the crossover frequency (oC) of 

the system, as determined by the lead-lag compensator, is 300 

rad/sec. Since the rotational speed is less than the crossover 

frequency, this is a subcritical speed. The loop transfer 

function for the tracking differential-notch filter (Figure 31) 

is essentially the same as for the simple lead-lag compensator 

(Figure 20). Importantly, the tracking differential-notch filter 

does not distort the loop gain as the simple notch filter does, 

as can be seen by comparing Figures 31 and 23. 

The stability of the tracking differential-notch filter can 

be found from the Nyquist plot. Figure 32 is the Nyquist plot of 

the loop transfer function of Figure 31. The Nyquist plot does 

not encircle the minus one point and the system is stable, as 

expected. As can be seen in Figures 31 and 32, the tracking 

differential-notch filter retains the good stability properties 

of the simple lead-lag compensator on which it is based. 

The tracking differential-notch filter, however, also has 

the good synchronous response characteristics of the tracking 

notch filter. This can be seen in Figure 32, a plot of closed- 

loop transfer function from measurement error to hub center of 

mass position for the same conditions as Figures 30 and 31. The 

important result is that the closed-loop gain at the synchronous 

frequency of 100 rad/sec is zero. This system, therefore, 

perfectly rejects the measurement error (mass unbalance). This 
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Figure 31. Tracking Differential-Notch Filter Loop Bode Plot 

contrasts with the performance of the simple lead-lag compensator 

as can be seen in Figure 21. 

The important result of this section is that the tracking 

differential-notch filter nominally provides perfect rejection of 

the measurement error (mass unbalance) with the good stability 

properties of the simple lead-lag compensator. Because the 

measurement error is rejected, the rotor spins about its center 

i of mass at all speeds above the natural frequency of the plant 

model, which can be made arbitrarily small. Since the rotor 
I 
I 
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Stable Nyquist Plot (Rotational Speed = 100 rad/sec) 
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Figure 32. Nyquist Plot of the Tracking Differential-Notch 
Filter 

spins about its center of mass, no synchronous forces are 

produced by the measurement error (mass unbalance). This means 

that the rotor spins as if it were perfectly balanced, for 

subcritical, critical, and supercritical speed ranges. 

The remainder of this section will examine the performance 

of the tracking differential-notch filter in the presence of 

modelling and filtering errors as well as practical methods to 

implement the proposed controller. 

An important potential error source is mismatching of the 

actual rotational speed from the bandpass center frequency. If 



these frequencies are mismatched, the measurement error signal 

will not be totally notched out of the estimated hub center of 

mass position. Figure 33 is a plot of closed-loop synchronous 

response versus bandpass Q for various levels of frequency mis- 

matching. Shown is the closed-loop synchronous response of the 

center of mass position normalized by the mass unbalance distance 

ch. The measurement error is perfectly rejected when the normal- 

ized center of mass position is zero. The curves, from top to 

bottom, are for frequency mismatches of 1%, 0.5%, O.l%, and 0.05% 

between the passband center frequency nf and the actual rotation- 

al speed n. The curves in Figure 33 are for the same parameter 

values ( w 0  = 5 rad/sec, r = 0.707, n = 100 rad/sec) as in Figures 

30 through 32. As can be seen in Figure 33, the synchronous 

response performance is more robust to frequency mismatching if 

the Q of the bandpass filter is lower. A lower Q results in a 

wider notch filter. On the other hand, decreasing the Q of the 

filter reduces the stability margin and command following 

performance of the system. This can be seen in Figure 34, a plot 

of phase margin versus modelling error for various values of Q. 

The vertical axis is the phase margin, and the horizontal axis is 

modelling error (error between mass used in model and actual 

rotor mass). As can be seen, low values of Q have smaller phase 

margins. There is a tradeoff, therefore, between robustness to 

frequency mismatching and robustness to modelling error. 
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Figure 33. Closed-loop Measurement Error Transfer Function 
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The remainder of this section will discuss implementation of 

the tracking differential-notch filter. A block diagram of the 

proposed implementation is shown in Figure 35. The top of the 

diagram contains the lead-lag compensator and the plant, which 

consists of the double integration of input force to hub center 

of mass position and the additive measurement error. The bottom 

part of the diagram shows the implementation of the plant model 

and tracking bandpass filter. There are three inputs to this 

part of the system; the output of the compensator, the measured 

hub position, and the output of a tachometer. The output is the 

estimated measurement error. 

The tracking bandpass filter works by heterodyning the input 

signals by the synchronous frequency, reducing the synchronous 

frequency to baseband. This is done by the multipliers labelled 

A and B. These signals are then lowpass filtered ( L ( s ) )  to 

achieve a bandpass filter when the baseband signals are 

heterodyned back to synchronous frequency. This is done by the 

multiplier labelled C. The choice of cutoff frequency in the 

lowpass filter L ( s )  determines the Q of the resulting notch 

filter. The synchronous frequency sinusoid (cos(0t)) used in the 

multipliers is supplied by a phase locked loop that has as its 

primary input the measured hub position. The output of a 

tachometer can also be used to help stabilize the phase locked 

loop. 

The plant model is implemented as a scheduled gain in the 

baseband frequency. When heterodyned back to synchronous 
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frequency, this yields the desired frequency domain plant model. 

The scheduled gain needed to model the plant is m-10-2, where r2 

is the rotational speed. The rotational speed signal necessary 

to implement this is obtained from the tachometer through a 

frequency to voltage converter. The scheduled gain and the 

lowpass filter L ( s )  can be implemented with low bandwidth digital 

hardware. This portion of the controller, labelled digital in 

Figure 35, requires only low bandwidth because the processing is 

being done at baseband frequencies. 

Also shown in Figure 35 are three antialiasing filters 

F1(s), F2 (s) , and Fg (s) . These filters, as well as the three 

multipliers, would most likely be analog implementations. The 

two input filters Fl(s) and F2(s) are highpass filters. The 

output filter F3(s) is a lowpass filter. 

The performance of this system can be seen in Figures 36 and 

37. These are frequency response plots of the plant, plant 

model, and tracking bandpass filter. Since this is a nonlinear 

system, these plots must be given careful interpretation. Shown 

is the normalized root mean square (nns) spectral response of the 

estimated hub center of mass position (the output z )  to a white 

noise input (u) to the plant and tracking differential-notch 

filter. The response has been normalized by the rms magnitude of 

the white noise input and plotted in db. The abscissa is the 

frequency normalized by the rotational speed n. If this were a 

linear system, these plots would simply be the transfer function 

between input and output. The ideal plot is one with slope of -2 
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passing through the (Odb, w / n  = 1) point. 

Figures 36 and 37 both show four curves for different 

lowpass filter cutoff frequencies wn. These lowpass filter 

cutoff frequencies are normalized by the rotational speed such 

that wn = k-0, where k = 10, 1, 0.1, and 0.01. Note that for 

high cutoff frequencies (k = 10 and 1) the response show 

significant aliasing at twice the synchronous frequency, as can 

be seen in Figure 36. From this figure the lowpass cutoff 

frequency wn = 0.01-0 is seen to give the best performance. 

Figure 37 shows the same curves in more detail near the 

synchronous frequency. Also shown is the heavy curve indicating 

the I1ideallt response. Again, the k = 0.01 curve is seen to be 

the best. Note also that its maximum gain error is less 0.25 db. 

In summary, the tracking differential notch filter (TDNF) 

developed in this section has been shown to provide the good 

stability of a simple lead-lag compensator combined with the good 

synchronous response performance gained by the addition of a 

notch filter. In addition, a relatively simple implementation 

has been developed comprised mainly of chip-level subcomponents 

and a low bandwidth digital section. 

3.4 Hodel Based Compensators 

The fourth class of control algorithms that was investigated 

under this program is the model based compensators (MBC).  These 

output feedback compensators combine full-state-feedback, linear- 

quadratic regulators with state estimators. These MBCs were 

developed during the previous NASA sponsored research that 
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investigated stabilizing control algorithms for ACCESS. These 

compensators are designed using linear quadratic Gaussian 

synthesis with loop transfer recovery (LQG/LTR). 

The MBC designed using the LQG/LTR procedure consists of a 

Kalman filter combined with a linear quadratic regulator. The 

Kalman filter is used as a full-state observer to estimate the 

state of the system. This estimated state is used by the LQR to 

produce the controller output. This configuration is shown in 

Figure 38. The transfer function of the model based compensator 

is given by Kmbc(s) and of the plant by % ( s ) .  The system output 

y(s) is comprised of the plant output corrupted by the spoke 

disturbance Qi (s) . For the rigid-body model under consideration 

in this chapter, the spoke disturbance Qi(S) is zero. The 

compensator has as its input the system output corrupted by the 

measurement error Do(s). 

The internal structure of the model based compensator and 

plant are shown in Figure 39. As can be seen in this figure, the 

compensator structure mimics the plant structure, hence the name 

Itmodel based compensator.Il The A, B, and C matrices of the 

compensator are all determined by the plant model. The matrix K 

comes from the solution to the LQR problem. The Kalman filter 

matrix H formally comes from the solution of the steady state 

Kalman filter problem. 

This control approach was developed in detail for this 

application during the previous NASA research program. Details 

of its derivation and rational can be found in Johnson [1987b]. 
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For the rigid-body model under consideration in this 

chapter, the application of the LQG/LTR technique results in 

simple lead-lag compensator. The synchronous response of the MBC 

used to control the simple rigid-body model are the same, 

therefore, as the lead-lag results presented earlier in Section 

3.1. For the flexible models used in the next chapter, however, 

the LQG/LTR approach will result in MBCs that are different from 

the lead-lag compensators. 
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4.  SYNCHRONOUS RESPONSE CONTROL OF ACCESS 

This chapter examines the performance of the four control 

approaches introduced in the last chapter used to control the 

flexible model of ACCESS. Again, the four approaches are: 

(1) 

(2) Tracking notch filters 

(3) Tracking differential-notch filters 

(4) Model based compensators. 

For the rigid-body rotor used in the last chapter, the 

synchronous response was caused by measurement error of the 

center of mass position. For the flexible rotor, a variety of 

synchronous response mechanisms are possible. In this chapter, 

the synchronous response of the closed-loop system will be il- 

luminated by examining two specific misalignment configurations, 

one forcing the plant and the other forcing the controller. 

Mimic conventional bearings with lead-lag compensators 

Recalling the modelling presentation of Chapter 2, the 

synchronous disturbances are modelled as misalignments of the 

centers of mass, centers of spoke force, and center of 

measurement. The first specific disturbance that will be 

examined is caused by misalignment of the flywheel elastic center 

(center of spoke force) and flywheel mass center. As shown in 

Figure 40(a), the hub elastic, mass, and measurement centers are 

all assumed to coincide. The flywheel elastic center, however, 

is assumed offset from its mass center. This situation, which 

will be called IIspoke misalignrnent1I or "input error1#, could be 

achieved if an additional unbalance mass was added to the 
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flywheel of an otherwise geometrically perfect rotor. The 

geometrically perfect rotor consists of a perfectly balanced 

rotor (elastic and mass centers of the hub and flywheel coincide) 

with a perfect measurement system (measures perfectly the 

position of the center of mass of the hub). 

The other specific disturbance that will be examined is an 

output disturbance caused by a misalignment of the hub 

measurement center and will be called Itmeasurement error" or 

"output error". The rotor is otherwise perfectly balanced with 

coincident hub elastic and mass centers and coincident flywheel 

elastic and mass centers. This configuration is shown in Figure 

40(b). This configuration would arise if the measurement system 

measured the position of some other point in the hub, besides the 

hub center of mass, of a perfectly balanced rotor. 

The closed-loop synchronous response of the four control 

approaches to these two synchronous disturbances, spoke 

misalignment and measurement error, will be developed in the 

following sections. 

4.1 Lead-Laq ComDensation 

Lead-Laa Svnchronous ResDonse to Measurement Error 

The synchronous response to measurement error is shown in 

Figures 41through 43. Figure 41 is a plot of the normalized hub 

center of mass (solid curve) and flywheel center of mass (dashed 

curve) synchronous whirl amplitudes (Figure 41(a)) and phases 

(Figure 41(b)). Two critical speeds can be seen. The critical 

speeds associated with the flexible-mode transmission zero at 497 
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rad/sec and eigenvalue at 680  rad/sec are seen in this exanple to 

exhibit only moderate whirl amplitudes of the hub and flywheel 

centers of mass. The largest amplitude whirls are found near the 

cross-over frequency of the system, approximately 200 rad/sec. 

Even these maximum whirl amplitudes are small, however. 

Figure 42 shows the synchronous bearing force caused by this 

measurement error. Figure 42(a) shows the magnitude of the 

bearing force and Figure 42(b) the direction at which the bearing 

force acts on the hub. The magnitude of the bearing force is 

normalized by the spoke misalignment distance and has units of 

Newtons per meter of spoke misalignment. The synchronous bearing 

force remains large at high speeds. This is due to the high- 

frequency roll-off of -2 for this 'lead-lag compensator. The 

high-frequency synchronous bearing force could be reduced by the 

addition of more poles in the compensator. 

The orientations of the various hub centers, flywheel 

centers, and bearing force are given by the phase plots of Figure 

41(b) and 42(b). These can be more easily interpreted by 

plotting in the radial plane the relative locations of the hub 

centers and flywheel centers and relative direction of the 

bearing force. This is done for sub-critical, critical, and 

super-critical rotational speeds in Figure 43. The locations of 

the hub and flywheel centers of mass are given by Mh and Mf and 

the locations of the elastic centers by Eh and Ef. The location 

of the hub center of measurement is given by sh. 

At sub-critical speeds, the rotor spins about the 
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1 

measurement center sh as shown in Figure 43(a). At these low 

speeds, both centers of mass exhibit normalized unit r-gnitude 

whirls. At the flexible-mode resonant frequency of 680 rad/sec, 

the hub and flywheel centers of mass both have approximately 

unity magnitude and are 180 degrees out of phase, as shown in 

Figure 43(b). At this critical speed the hub center of 

measurement is close to the origin, consistent with the small 

bearing forces that are generated. At super-critical speeds, the 

whirl magnitudes become small, indicating that both the hub and 

flywheel are spinning about their centers of mass, as indicated 

in Figure 43(c). 

Lead-Laa Svnchronous Response to SDoke Misalisnment 

The synchronous response to spoke misalignment is shown in 

Figures 44 through 46. Figure 44 shows the hub center of mass 

(solid curve) and flywheel center of mass (dashed curve) whirl 

amplitudes and phase. This synchronous response exhibits one 

major critical speed occurring at the flexible-mode resonant 

frequency of 680 rad/sec. The bearing force, Figure 45, also 

exhibits a single maximum at this rotational speed. 

The relative orientation of the hub, flywheel, and bearing 

force are shown in Figure 46 for sub-critical, critical, and 

super-critical rotational speeds. At sub-critical speeds, Figure 

46(a), the flywheel center of mass Mf is seen to whirl about the 

flywheel elastic center Sf. At the critical speed of 680 rad/sec, 

the flywheel center of mass leads the flywheel elastic center by 

90" degrees, as shown in Figure 46(b). This is the classic 
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attribute of the critical speed of a single mass, flexible rotor 

[Johnson 1987al. At this critical speed, the hub mass is also 

undergoing significant whirl. At super-critical rotational 

speeds, Figure 46(c), the hub and flywheel again spin about their 

centers of mass. Note that the bearing force caused by the spoke 

misalignment approaches zero at high speeds, in contrast to the 

synchronous response to the measurement error. 

4.2 Lead-Laq Compensator with Trackina Notch Filter 

Recall from the previous chapter that the stable operating 

speeds of the tracking notch filter were limited to speeds 

greater than the rigid-body cross-over. With the ACCESS flexible 

rotor, this remains true, as can be seen in Figures 47(a) and 

47(b). Shown are closed-loop eigenvalue damping ratios of 

ACCESS under control of the tracking notch filter and lead-lag 

compensator. The rigid-body cross-over frequency is again chosen 

to be 300 rad/sec with the compensator lead and lag placed one- 

half decade below and above cross-over as before. The Q of the 

tracking notch filter is 10 as before. Figure 47(a) shows all 

the closed-loop eigenvalues plotted versus rotational speed. The 

eigenvalues are shown as crosses. The solid line indicates the 

stability boundary at zero damping ratio. Eigenvalues below this 

line are unstable. 

Figure 47(b) shows the lightly damped eigenvalues more 

clearly. Note that as for the rigid-body rotor, the flexible 

ACCESS rotor is unstable at rotational speeds below approximately 

the rigid-body cross-over frequency at 300 rad/sec. The flexible 
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rotor system also becomes unstable at rotational speeds near the 

rotor natural frequency around 700 rad/sec. In these two speed 

ranges, therefore, the synchronous notch filter can not be used. 

Trackina Notch Filter Synchronous ResDonse 

Recall that the tracking notch filter removes all 

synchronous signals from the feedback path. Because of this, no 

bearing force can be produced at the synchronous speed. In the 

stable operating speed ranges, therefore, the rotor spins about 

its center of mass and transmits no vibratory forces through the 

bearing. For the measurement or output error this system works 

perfectly - that is, both the flywheel and hub masses spin about 
their centers of mass - in its stable operating speed range. 

The response to the spoke misalignment or input error is 

more complicated. Again, no bearing forces are produced at the 

synchronous speed and, therefore, no vibratory forces are 

produced by the bearing in its stable operating speed ranges. 

Since no synchronous forces are produced, the total center of 

mass of the combined hub and flywheel are stationary, as was true 

for the measurement or output error. The individual hub and 

flywheel masses do not spin about their centers of mass, however, 

as shown in Figure 48(a) and 48(b). 

Shown are the whirl magnitudes and phases of the hub (solid 

line) and flywheel centers (dashed line) of mass versus 

rotational speed. As before, the hub and flywheel displacements 

are plotted normalized by the spoke misalignment distance. As 

shown in Figure 48(b), the hub and flywheel centers of mass are 
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always 180 degrees out of phase. The ratio of their whirl 

magnitudes is determined by the ratio of their masses such that 

the total center of mass of the combined hub and flywheel is 

stationary. Note that the magnitude of the whirls becomes large 

near the rotor natural frequency at about 700 rad/sec. Since no 

synchronous bearing forces are produced, the magnitude of these 

whirls is determined only by the internal damping in the rotor. 

Remember, of course, that the system is also unstable in this 

region. 

4.3 Lead-Las ComDensator with Trackina Differential-Notch Filter 

The closed-loop stability of the tracking differential notch 

filter (TDNF) useti to control the ACCESS rotor is shown in 

Figures 49(a) and 49(b). Shown are the closed-loop damping 

ratios versus rotational speed. The lower figure, Figure 49(b), 

shows the behavior of the lightly damped poles more clearly. 

Again, the underlying lead-lag compensator crosses the rigid-body 

plant over at 300 rad/sec with the lead and lag centered on this 

frequency and separated by one decade in frequency. The Q of the 

TDNF is 10 as before. 

As with the simple notch filter of the last section, the 

system effectively becomes unstable near the flexible rotational 

speed at about 700 rad/sec. Unlike the simple notch filter, 

however, the tracking differential-notch filter is stable at all 

other speeds. This result is consistent with the comparative 

stability of the two approaches used to control a rigid-body 

rotor, as presented in the last chapter. 
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This instability can be cured by using a hybrid controller 

that behaves as a lead-lag compensator near the flexible mode 

frequencies and as a tracking differential-notch filter at all 

other frequencies. This can be simply done by inserting a fixed 

frequency bandpass filter in parrallel with the tracking bandpass 

filter shown in Figure 30. The total bandpass filter shown in 

50. The second term is a fixed frequency (stationary) bandpass 

filter with its bandpass frequency ns nominally set to be equal 

to the flexible mode frequency of the system. The Q of this term 

(Qs) is generally set to be low relative to the Q of the tracking 

term. Near the flexible mode frequency, these two terms cancel 

and the net compensation is essentially the lead-lag compensator. 

This can be seen in Figure 30 if the bandpass filter is set 

zero. 

Using this hybrid compensator, the system stability 

to 

is 

vastly improved. This can be seen in Figure 50, a plot of -he 

minimum closed-loop eigenvalue damping versus rotational speed 

for the tracking notch filter (solid line), differential tracking 

notch filter (dot-dashed line), and hybrid compensators (dashed 

line). Note that the hybrid compensator remains stable through 
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the flexible mode critical speed, unlike either the tracking 

notch filter or the tracking differential-notch filter. 

Trackina Differential-Notch Filter Synchronous ResDonse 

In their stable operating speed ranges, the synchronous 

response results for the tracking differential-notch filter are 

the same as for the simple notch filter, which were presented in 

the last section. Both systems produce no synchronous forces in 

the bearings. As before, for the spoke misalignment or input 

error, this requires that the hub and flywheel centers of mass 

spin about each other, as shown in Figure 4 8 .  The advantage of 

the TDNF over the simpler tracking notch filter is its vastly 

increased range of stable operating speeds. 

Because the hybrid compensator behaves. as a lead-lag 

compensator near the flexible mode frequencies, it uses 

synchronous forces near these frequencies. Its response to 

measurement error, therefore, is not perfect as can be seen in 

Figure 51. Its response to spoke misalignment is also different 

from the simple tracking differential-notch filter, as can be 

seen in Figure 5 2 .  

4 . 4  Model Based ComDensators 

The synchronous response results for the medium-bandwidth, 

high-frequency loop recovery, 1000 rad/sec design rotational 

speed model based compensator will be presented in this section. 

For details of this compensators structure and stability results, 

see the earlier final report [Johnson 1987bl. 
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Model Based Compensator Svnchronous Response to Measurement Error 

The synchronous response to measurement error is shown in 

Figures 53 through 55. Figure 53 is a plot of the normalized hub 

center of mass (solid curve) and flywheel center of mass (dashed 

curve) synchronous whirl amplitudes (Figure 53 (a) ) and phases 

(Figure 53(b)). Two critical speeds can be seen. The first 

critical speed, corresponding to the transmission zero frequency 

of 497 rad/sec, features large flywheel whirl amplitudes but 

negligible hub amplitudes. The second critical speed, at the 

flexible-mode resonant frequency of 680  rad/sec, involves only 

moderate amplitude whirls of both the hub and flywheel. 

The synchronous bearing force caused by this measurement 

error is shown in Figure 54. Figure 54(a) shows the magnitude of 

the bearing force and Figure 54(b) the direction at which the 

bearing force acts on the hub. The magnitude of the bearing 

force is normalized by the spoke misalignment distance and has 

units of Newtons per meter of spoke misalignment. Note that the 

magnitude of the bearing force is a maximum at the first critical 

speed and a local minimum at the second critical speed. 

The orientations of the various hub centers, flywheel 

centers, and bearing force are given by the phase plots of Figure 

53(b) and 54(b). These can be more easily interpreted by 

plotting in the radial plane the relative locations of the hub 

centers and flywheel centers and relative direction of the 

bearing force. This is done for sub-critical, first critical, 

second critical, and super-critical rotational speeds in Figure 
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55. The locations of the of hub and flywheel centers of mass are 

given by Mh and Mf and the locations of the elastic centers by Eh 

and Ef. The location of the hub center of measurement is given 

by sh* 

At sub-critical speeds, the rotor spins about the 

measurement center sh as shown in Figure 55(a). At these low 

speeds, both centers of mass exhibit normalized unit magnitude 

whirls. At the first critical speed, which corresponds to the 

transmission zero frequency, the hub and flywheel centers of mass 

are 180 degrees out of phase, as shown in Figure 55(b). At this 

transmission zero frequency, the flywheel mass is acting as a 

dynamic vibration absorber [Harris 1976, p.6-11 leading to large 

flywheel whirl amplitudes. The amplitude of the hub whirl is 

negligible, however, as expected from viewing the phenomenon 

either as a dynamic vibration absorber or transmission zero. 

Although the hub center .of mass is close to the origin, the hub 

center of measurement undergoes unity whirl, consistent with the 

large bearing forces seen at this first critical speed. 

At the second critical speed, corresponding to the 

flexible-mode resonance, the hub and flywheel both have 

approximately unity magnitude and are still out of phase by 180 

degrees, as shown in Figure 55(c). At this second critical 

speed, however, the hub center of measurement is close to the 

origin, consistent with the small bearing forces that are 

generated. At super-critical speeds, the whirl magnitudes become 

small, indicating that both the hub and flywheel are spinning 
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about their centers of mass (see Figure 55(d)). 

The nature of this synchronous response to output 

disturbance results from the general characteristics of the 

systems controlled by linear quadratic regulators [Kwakernaak 

1972, p.3121 with loop transfer recovery (LQR/LTR) and the 

specific design choices made for this compensator. Four specific 

features of this controlled rotor system must be acknowledged 

when interpreting these general disturbance rejection properties 

of LQR/LTR systems to this rotor system. These four features 

The state weighting matrix used in the LQR design did 

not place any cost on flywheel states. 

The controller design is fixed and the plant is varying 

with rotational speed. 

The plant is non-minimum phase at high speeds. 

This is an output disturbance, not an input 

disturbance. 

The following paragraphs discuss the ramifications of these four 

features. 

Because no cost was placed on flywheel states in the LQR 

design, large amplitude whirls of the flywheel are acceptable, 

even desirable, if they help keep hub whirl amplitudes small. 

This is exactly what happens at the first critical speed, where 

the flywheel whirl amplitude is large and the hub amplitude 

small. If the amplitudes of flywheel synchronous whirls are 

important, they can be reduced by appropriately choosing the 
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state weighting matrix in the LQR design procedure. 

The synchronous response of this rotor system cannot be cast 

exactly into the mold of a LQR/LTR system because the plant var- 

ies with rotational speed. When looked at as a LQR/LTR distur- 

bance rejection problem, the plant varies with frequency, invali- 

dating the fixed plant assumptions implicit in LQR/LTR proper- 

ties. The synchronous response of the controlled rotor system, 

however, does closely approximate the disturbance rejection 

properties of the system at fixed speed. Because of these 

similar responses, the amplitude of the synchronous response of 

the hub to measurement error, Figure 56, is very nearly the same 

as the disturbance rejection properties of the underlying LQR at 

fixed speed, which is shown in Figure 7.1.6a of [Johnson 1987al. 

The good properties of the LQR, including disturbance 

rejection, can only be recovered if the system is non-minimum 

phase [Kwakernaak 1972, p.423; Stein 19871. At sub-flexible 

rotational speeds, the system is minimum phase. At rotational 

speeds up to the second critical speed, therefore, good recovery 

of the underlying LQR disturbance rejection properties is 

expected. This speed range is where the disturbance rejection 

properties are important, because of the flexible dynamics. At 

higher rotational speeds, past the flexible resonance and where 

the system is non-minimum phase, the disturbance rejection 

problem is less difficult. 

For a multi-input, multi-output system the loop transfer 

function matrix depends on whether the loop is broken at the 
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input to the plant or the output from the plant. The input and 

output disturbance rejection properties of the closed-loop system 

are not, therefore, identical. For the LQR/LTR the good proper- 

ties of the underlying LQR will be reflected in input disturbance 

rejection properties. For two-input, two-output, block-symmetric 

systems such as the CARES translational model, however, the loop 

transfer function broken at the input to the plant is the same as 

the loop transfer function broken at the output to the plant. In 

Section 6.2 of Johnson [1987a] this result is derived and dis- 

cussed. The good input disturbance rejection properties of the 

LQR loop also exist for output disturbances for this system, as 

was seen in the hub response to measurement error presented 

above. 

Because of the good disturbance rejection properties of the 

LQR/LTR method and the special properties of this system, the 

synchronous response to measurement error is good. The maximum 

hub whirl amplitude, normalized by the measurement error distance 

es, is less than 1.2. The maximum flywheel amplitude is much 

greater, approximately 10, because no costs were placed on 

flywheel states in the LQR design. 

Svnchronous ResDonse to SDoke Misalisnment 

The synchronous response to the spoke misalignment is shown 

in Figures 56 through 58. Figure 56 is a plot of hub (solid 

curve) and flywheel (dashed curve) synchronous whirl amplitudes 

and phase. The whirl amplitudes plotted in Figure 56 are 

normalized by the spoke misalignment distance and are again, 
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therefore, non-dimensional. There are two critical speeds where 

large hub and/or flywheel whirl amplitudes are found. The first 

again corresponds to the system transmission zero frequency of 

approximately 497 rad/sec and the second again corresponds to the 

flexible-mode eigenvalue frequency of approximately 680 rad/sec. 

The synchronous bearing force that results from the spoke 

misalignment is shown in Figure 57. Again, the bearing magnitude 

is normalized by the measurement error distance. 

Again, the results can be best interpreted by examining the 

relative orientation in the radial plane of the hub, flywheel, 

and bearing force. These orientations are shown in Figure 58 for 

sub-critical, first critical, second critical, and super-critical 

speeds where the notation from Figure 5 5  is used. For this spoke 

misalignment, the hub measurement center sh is not explicitly 

shown since it is assumed coincident with the hub mass center Mh. 

At sub-critical rotational speeds the rotor spins about its 

elastic axis and only small bearing forces are used. The center 

of mass of the flywheel is then whirling about the its elastic 

center, as shown in Figure 58(a). The first critical speed, at a 

frequency of 497 rad/sec, corresponds to the transmission zero of 

the system. Again, at this first critical speed the hub whirl 

amplitude is relatively small compared to the flywheel whirl 

amplitude. Note that the bearing force is essentially 

conservative for this whirl. 

The second critical speed, at a frequency of 680 rad/sec, 

corresponds to the flexible-mode resonant frequency. At this 
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rotational speed both the hub and flywheel experience large 

amplitude whirls. The hub and flywheel are out of phase by 180 

degrees, as can be seen in Figure 58 (c) . The flywheel center of 

mass leads the flywheel elastic center by 90 degrees, similar to 

the synchronous response of a single mass rotor at its critical 

speed [Gunter 1966, p.123. Note that the bearing force is 

removing energy from this whirl. At super-critical speeds, both 

rotor masses, hub, and flywheel spin about their mass centers as 

shown in Figure 58(d). The synchronous bearing forces drop 

continuously in this super-critical speed range. 

The synchronous response to the spoke misalignment, just 

presented, is much worse than the synchronous response to the 

measurement error. The maximum flywheel and hub normalized whirl 

amplitudes are both approximately equal to 10. The reason for 

this poor result is that the synchronous response to spoke mis- 

alignment is not the beneficiary of the good disturbance rejec- 

tion properties of the LQR/LTR method. The spoke misalignment 

forces the plant directly, with disturbance forces acting on both 

the flywheel and hub. These disturbances cannot be reflected as 

input disturbances because the plant input is the bearing force, 

which acts only on the hub. The effect of the spoke misalignment 

therefore cannot be modelled as a simple additive disturbance to 

the loop, as was done for the measurement error to the system 

output. Even if cost were placed on the flywheel state in the 

LQR design, the resulting LQR/LTR loop would not necessarily 

adequately reject the disturbance caused by spoke misalignment. 

130 



5 .  SUMMARY AND CONCLUSIONS 

This report has presented the results of an investigation 

into the control of an advanced Annular Momentum Control Device 

(AMCD), the AMCD Combined Control Energy Storage System (ACCESS). 

This system, which consists of high-speed, magnetically suspended 

flywheels, presents a variety of control problems because of the 

open-loop unstable nature of its operation at high rotational 

speeds and the variation of its dynamics as the rotational speed 

is changed. This synchronous response research is an extension 

of an earlier NASA sponsored SatCon research program (NASA 

contract NAS1-17560) that developed stabilizing control 

algorithms for the ACCESS. This synchronous response phase of 

the research has included the development of a dynamic model of 

the system capable of modelling its synchronous response to 

geometric imperfections (@@mass unbalances'@) and the design of 

innovative controllers that minimize the synchronous vibrations. 

This research effort required the development of synchronous 

response models of the ACCESS. These models, presented and 

developed in Chapter 2, are capable of predicting the response of 

the system to both errors in measurement of the center of mass 

and misalignments between the hub and flywheel masses. The 

measurement error corresponds to the rigid-body mass unbalance 

problem of conventional rotor dynamics. This error mechanism can 

be modelled as an additive, synchronous output disturbance. The 

spoke misalignment error is unique to flexible rotors and 

corresponds to the individual mass unbalances in a conventional 
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multi-mass, flexible rotor system. The spoke misalignment error 

cannot be modelled as either a simple input or output additive, 

synchronous disturbance. 

After development of the synchronous models, four different 

control algorithms were examined. These were lead-lag 

compensators that mimic conventional bearing dynamics, tracking 

notch filters used in the feedback loop, tracking differential- 

notch filters, and model based compensators. The first two 

approaches, lead-lag and tracking notch filters, are the 

conventional approaches for magnetic bearing applications. They 

suffer from a number of disadvantages, however, including either 

poor synchronous performance or poor stability. The third 

approach, tracking differential-notch filters, was developed 

under this program. These controllers combine the best features 

of both the lead-lag and tracking notch filters. The fourth 

approach investigated the use of model based compensators, as 

developed under the previous NASA contract. 

For use in rigid-body control, the tracking differential- 

notch filter (TDNF) developed under this contract was the best. 

It eliminated synchronous vibrations produced by measurement 

error and was stable over the entire speed range. The simple 

notch filter had equally good synchronous response performance 

but was stable only at speeds greater than the cross-over 

frequency (super-critical speeds). In contrast, the lead-lag 

compensator was stable at all speeds, including sub-critical, but 

had relatively poor synchronous response at sub-critical speeds. 
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For the rigid-body rotor, the model-based compensator algorithm 

produces a simple lead-lag compensator. 

Hardware implementation schemes for the tracking 

differential notch filter (TDNF) were investigated. A simple 

design was developed that can be implemented with analog 

multipliers and low-bandwidth digital hardware. An additional 

advantage of this design is that it can be made into an adaptive 

controller with relatively simple modifications in the low- 

bandwidth, digital section of the control hardware. 

For the flexible rotor of the ACCESS, the advantage of the 

TDNF approach over the simple tracking notch filter was the same 

as for the rigid-body rotor. Both had good synchronous response 

performance in their stable operating ranges. Again, the 

tracking notch filter was unstable at sub-critical rotational 

speeds, whereas the TDNF was stable in this range. Both notch 

filter approaches had stability problems near the flexible mode 

critical speed, however. The lead-lag compensator again had 

poorer synchronous response, but was stable over the whole speed 

range. A trade-off between the good synchronous response of the 

tracking differential-notch filter and the good stability 

response of the lead-lag compensator was acheived with the hybrid 

compensator that behaves as a lead-lag compensator near the 

flexible mode frequency and behaves as a TDNF at all other 

frequencies. This hybrid compensator is also easily implemented. 

Both the tracking notch and tracking differential-notch 

filter approaches eliminate all feedback from the plant at the 
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synchronous frequency, thus eliminating all bearing forces caused 

by measurement errors or spoke misalignments. These filtering 

approaches, therefore, work well at eliminating any synchronous 

vibrations produced by the bearing, but suffer from stability and 

synchronous displacement problems. The synchronous feedback sig- 

nal is needed for stability in many speed ranges. The TDNF adds 

back into the feedback loop a synchronous component based on a 

model of the plant. This greatly improves its stable speed 

ranges compared to a simple notch filter. The hybrid compensator 

additionally adds the lead-lag compenstor forces near the 

flexible mode frequency to further improve stability. 

In addition, synchronous bearing forces may also be desired 

to limit the synchronous whirl amplitudes of the rotor. This is 

a problem only for the flexible rotor where the two individual 

masses can exhibit large whirl amplitudes while their combined 

center of mass does not’move. If these large amplitude whirls 

cause problems, such as clearance or rotor strain, the use of 

synchronous bearing forces to control them may be desirable. The 

use of these forces, of course, will cause synchronous vibrations 

to be passed to the spacecraft. 

Based on this research, the best synchronous response 

approach now available is to use the tracking differential-notch 

filter except near the critical speed where the underlying lead- 

lag compensators should be used, as in the hybrid compensator. 

This can be simply implemented based on the hardware design 

developed under this contract. 
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