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I. INTRODUCTION

The Interest In carbon-phenolic composite materials by NASA Is due to Its use as

the ablative material In the solid rocket motor nozzle of the shuttle system. The shuttle

system is a three component system composed of the Orbiter, External Tank (ET), and

Solid Rocket Boosters (SRB), as shown In Figures 1 and 2. The Orbiter Is the size of a

large commercial airliner and welghs 178,000 pounds as constructed, and Is capable of

carrying 50,000 pounds of cargo, giving a total mass of approximately 228,000 pounds at

lift-off. The Orbiter contains the crew quarters, the flight control systems (Guidance,

Propulsion, Navigation, and Electronic), the cargo bay, and the maln engines. There are

three main engines which utilize liquid oxygen and Ilquld hydrogen as propellant. These

engines furnish about 20% of the thrust during lift-off.

The External Tank contains the propellant used In the Orbiter's main englnes:

143,000 gallons of liquid oxygen and 383,000 gallons of liquid hydrogen, approximately

1,585,000 total pounds of fuel. The tank Is 154 feet long and Is 27.5 feet In diameter

and has a total mass of 1,660,000 pounds at lift-off. The external tank is the load

bearing portion of the shuttle system as the Solid Rocket Boosters and Orbiter are both

structurally attached. Since both the Orbiter and Solid Rocket Boosters generate thrust,

the mechanical loading on the external tank Is complex during the first two minutes of

flight.

The two Solid-propellant Rocket Boosters are 149 feet long and 12.2 feet In

diameter. Each SolId Rocket Booster has a total mass of 1,250,000 pounds at lift-off,

which Includes 1,110,000 pounds of solid propellant. A cut-away view of the Solid Rocket

Booster Is shown In Figure 3 along with the components mass dlstributlon. The Solid

Rocket Boosters furnish about 80% of the thrust at lift-off.

The complete shuttle system has a mass of approximately 4,500,000 pounds at lift-

off which includes 3,805,000 pounds of propellant. The consumption of the fuel results Is



Space Shuttle

Fig. 1 - I - Shuttle



EXTERNAL TANK

MARSHALL SPACE FLIGHT CENTER

i

I:: \

0

SOLID ROCKET BOOSTERS

MARSHALL SPACE FLJGHT CENTER
I

(

ORBITER
JOHNSON SPACE CENTER

SPACE SHUTTLE MAIN ENGINES

MARSHALL SPACE FLIGHT CENTER

Fig. 2 - - Top View Shuttle System

3



about 18,000 pounds/second reduction In the mass of the shuttle system during the first

two minutes after lift-off.

SOLID ROCKET MOTOR (SRM) NOZZLE

A cut-away Isometric view of the solid rocket motor nozzle Is shown In Figure 4.

Note that the exhaust gas flow will be from upper left down through the throat to the

lower right when viewing the nozzle as shown. It can also be seen In Figure 3. The

materials of construction of the nozzle are shown In Figure 5, with the outer layer always

being carbon cloth-phenolic resin composites. The material of Interest In this project.

The nozzles are all made from 380 ° rlng components and assembled into the completed

nozzle as shown In Figure 6. The nomenclature of each ring section Is also given In

Figure 6 along with nominal effects of the completely consumed solid propellant on the

carbon-phenolic material. The ring construction can be vlsuallzed if Figure 5 Is used in

conjunction with Flgure 4, placing Figure 5 on the left side of Figure 4 and rotating

counter clockwise 360 °.

NOTE 1: The extreme heat and erosion of the burning propellant Is controlled by

the carbon-phenolic composite by ablation. Ablation Is a complex process, but basically is

a heat and mass transfer process where a large amount of heat Is utilized to sacrificially

remove material from the surface. Phenolic materials ablate with the Initial formation of a

char. The depth o_ the char Is a function of the heat conduction coefficient of the

composite. The char layer Is a very poor heat conductor so It protects the underlying

phenolic composite from the high heat of the burning propellant.

The solid rocket motors are manufactured by Morton Thlokol, Incorporated at

Wasatch Division, Brigham City, Utah. The nozzle component ablative liners (carbon cloth-

phenolic resin composites) are tape wrapped, hydroclave and/or autoclave cured, machined,

and assembled. The tape that Is utilized Is from a prepreg broadcloth furnished by either

of two cluallfied suppliers. The materials flow sheet for the nozzle ablattve liners are

4



Item

Case

Insulation

Liner

Inhibitor

Nozzle Assembly

Igniter Assembly

System Tunnel

Instrumentation

Assembly Attach Provisions

External Insulation

Controlled Inerts

Uncontrolled Inerts

Total Inerts

Motor Propellant

Igniter Propellant

SRM Assembly

Weight (]b)

98,196

18,670

1,345

1,895

23,317
479

546

12

286

501

145,247
231

145,478

1,110,136
137

1,255,751

Fig. 3 - I - Solid Rocket Booster
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shown In Figure 7. The prepreg Is a three component system:

cloth, and carbon filler.

phenolic resin, carbon

10



11. NOZZLE MANUFACTURE

The resin filler and cloth are combined to form prepreg at the sites of the two

prepreg suppUers. The resin and fllier are mixed In a large heated container and the cloth

Is drawn through thls solution. Impregnation is accomplished by gravity or rolling the cloth

through dual rollers as shown In Figure 1.

The prepreg Is shipped to MTI as rolls of broadgoods, approximately 50" wide. The

broadgoods are bias cut and the resulting parallelograms are sewn together at the ends

to form a new roll. These rolls are slit Into proper widths for tape wrapping, 5 to 8

Inches, and then rolled onto cardboard cores to size of 15 to 18 Inches In diameter. The

bias cut Is necessary for the prepreg to conform to deslred conflguratlon. The tape Is

wrapped on a rotating mandrel which has been machined to generate the desired Inside

shape. The wrapped part Is debulked perlodlcally by applying heat and pressure to the

tape, forcing it against the mandrel. Debulking decreases changes In shape, volume, and

tape movement during curing. The debulked part Is cooled by a blast of cold CO2 to stop

staging of the resin Immediately after the roller passes.

After wrapping Is completed, the billet and mandrel are bagged for further

processing. The bagging material consist of layers of perforated film, bleeder cloth, and

vacuum bag (inside layer to outside layer). A vacuum Is pulled on the system, which is

then placed In an autoclave. A vacuum Is continuously pulled Inside the vacuum bag as

the autoclave Is pressurized to 250 pslg and temperature raised to 310°F. A generalized

autoclave cure cycle Is shown In Figure 2. The vacuum Is used to help pull off the

volatlles as the phenollc resin Is cured.

Upon completion of the autoclave cure, the outside surface of the billet Is

machined to requlred dimensions using proper grlndlng eclulpment.

The billet and mandrel are then prepared for the hydroclave cure by bagging with

layers of perforated film, bleeder cloth and water tlght rubber bags (Inside layer to

outside layer). A vacuum Is then pulled on the system, which Is then placed into the

11
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hydroclave. The hydroclave Is pressurized to 1000 pslg and temperature raised to 310°F

and these conditions maintained for approximately 5 hours. The autoclave/hydroclave cure

may be reversed or left off depending upon the particular part being processed. After

the flnal cure Is completed, the part Is machined to speclflcatlons, examined by

nondestructive evaluation (NDE) for defects, and then placed In storage.

15



IlL PHENOLIC RESIN

Generically, phenolic resin are produced from the reactions of phenols and

formaldehyde.

The polymers derived from the Interaction of formaldehyde and phenols differ tn

one Important respect from other polycondensation products, in that polyfunctional

phenols can commonly form a variety of isomers of varying chain length, with the additional

possibility of cross linkages. The products derNed from polycondensatlon of amines with

acids (polyamides) and of alcohols with acids (polyesters), are certainly mixtures of

various chain length molecules, but for a molecule of a certain chain length, only one type

structure is possible, because the monomers are monofunctlonal. As a result, kinetic and

related studies are feasible, on the assurnptlon that the growth of a chain proceeds from

one polymer length to the next In a smooth and regular manner. But In the case of the

aldehyde-phenol polymers because of the polyfunctional nature of the monomers there are

numerous and varied crosslinks. Each step of the reaction producing a chemical

configuration which may or may not be similar to the preceeding one, its physical

properties may have been altered; for instance, its melting point changes. The only

consistent and regular change for these polyfunctional growth reactions Is that you have

continuous increases in molecular weight.

Polyfunctlonal phenols may react with formaldehyde in positions both ortho and para

to the hydroxyl group which means that the condensation products will exist as numerous

positional Isomers for any chain length. This peculiarity not only makes klnetic studles

extremely difficult, but also makes the organic chemistry of the reaction very complex and

tedtous to unravel. There Is a further problem, In practice the most useful form of the

aldehyde-phenol resins are the hardened, cross-linked type, which are not amenable to

most of the common methods of chemical or physical examinations. At least as early as

1872, it was Known that resinous material could readily be formed by the interaction of

aldehydes and phenols from the work of von 8aeyer etal. The initial experiments resulted

16



In soluble amorphous products whose properties ellcited little Interest. In the late 1880's

Insoluble, cross-llnked products were reported, but attempts to repeat these experiments

were generally not very successful, In that no two reaction products of the same process

had exactly the same properties. O-hydroxybenzylalcohol was formed by a low

temperature, alkaline catalyzed reaction of formaldehyde-phenol In 1894. The first patent

for an aldehyde-phenolic resin product Intended for use as a substltute for hard rubber

was approved In 1889. Ortho- and Para-Methylolphenol patents were Issued In 1894 and

1895 respectively. In the early 1900's, the first commercial product was produced as a

substltute shellac for the Louis Blumer Company, using a ratio of one mole of aldehyde

per mole of phenol. In 1907, Dr. Leo Baekeland (Charter Member AICHE) produced a

product of commercial Importance from the reactlon of formaldehyde and phenol under

laboratory conditions, which became known as bakelite, and sometimes called the first of

the plastics, It was a hard and crystalline material. In 1909, two patents, which were the

basis for Infra-structure of aldehyde-phenolic resin Industrial development, were Issued to

Baekeland describing the difference between acid and alkali catalyzed reactions. In 1909

Baekeland presented a paper In which he described a resin made with acid catalysis using

a formaldehyde to phenol ratio of less than one which came to be known as a "novolac".

The aldehyde-phenolic resins of chemistry began to grow quite rapidly after this and thelr

development can be-divided into four periods of time as follows:

1. From the earliest [nvestlgatlons up to about 1907, was the period when general

information was being accumulated on the types of polymer products obtained by the

condensation of aldehydes and phenols under various conditions, such as time,

temperature, pressure, catalyst, and ratios of the monomers.

2. During the period from 1907 to approximately 1920 was the time during which

speculations on the structure of the resin, as they were commercially developed were

being discussed. During this period the Bakelite Corporation dominated the industry.

There was little or no new experimental work done durlng this period. Through the years

17



there continued to be speculation and studies on the structures of these polymers but

little was accomplished In establishing the molecular configuration of the compounds, during

the time frame of 1907-1920. The polymers during thls time did become divided Into two

classes; one based on the pH of the catalyst and the second based on the ratio of raw

materials, whether the F/P ratio was greater or less than one.

3. Little or no new or different experimental production Investigations, either

chemical or physical, were performed during the years between 1920 and outbreak of

World War II In 1939. During this period, the probable structure of the main features of

novolaks was established. Novalak (present day spelling) is the name applied by Baekeland

to the aldehyde phenol resins formed with acid catalyst and a slight molar excess of

phenols (ratio of less than one F/P). These have stable compositions and do not react,

or polymerlze with other novolaks without heat and hardening agents. Data was

accumulated and hypothesis advanced on the more complex structures of resoles, but

little of definite characterization was accomplished as to their chemical structure. Resoles

are base catalyzed formaldehyde phenol resins made with excess aldehydes, these polymers

were also being Investigated concurrently with the novalaks and produced long chain and

cross-llnked compounds in some respects clulte slmillar to novalaks.

4. Systematic examination of the behavior of aldehyde phenol complexes,

confirmation of the structure of novolaks and resoles as ascertained In the third period,

and a considerable amount of investigative work on the synthesis of complex aldehyde-

phenols and related compounds has been performed between the end of World War II and

the present day. As a result of these later investigations, a much clearer picture has

evolved in regard to resole and novolak Structures, although It would be an exaggeratlon

to suggest that all the details have, even now, been resolved. Modern clay Instrumental

technology along with the "need to know" In these later years has led to the accumulation

of considerable knowledge relating chemical structure to physical and mechanical

properties.

18



Moststudies have been directed at controlling the molecular structure by varying

the ratlo of aldehydes to phenols, heat, pressure, time and catalysis, In order to obtain

desired properties of final polymers. Research performed by varying aldehyde-phenol

ratios developed two classes of polymeric materials called Bakelite resins. Base catalyzed

resins, called resoles prepared with higher than a 1:1 mole ratio of formaldehyde-phenol

ratio, can be used to form crossllnked, Insoluble, and Infusible compositions In a controlled

fashion, whereas, the lower than 1:1 mole ratio of formaldehyde-phenol, the products

remain soluble In many organic solvents. Acid catalysis yield permanently stable

compositions, called novolaks; whereas base-catalyzed materials can be advanced In

molecular weight, becoming more viscous; simply by Increasing temperature.

The pH of a F/P mixture of 1:1 In solution form made with the 37-40._ formaldehyde

solution and pure phenol Is about 3.0, this may be taken as a reference or "neutral point"

In the study of these polymers. An acid catalyst Is added to lower the pH, produces a

change In the rate of reaction that Is proportional to the change in the rate of H ion

concentration. A basic catalyst may either be a mineral or organic base. The pH of 4-7,

an Intermediate range, and 7-11 a more basic one, are the two basic ranges which result

In somewhat different types of reactions.

The resins of Interest In this project, are base-catalyzed resoles. The molecular

structure and physical properties of the resins depend on the specific catalyst and

molecular ratio of the reactants used, as well as the time, temperature, and pressure of

the polymerization process. As phenol Is multi-functional, resole phenolic resins are

produced by a formaldehyde-phenol molar ratio range of 3.0 to 1.0 under basic conditions,

and result In long chain and much cross linking of polymers.

Phenols combine with aldehydes or ketones to form a variety of products. The

nature of the product depends on the choice of the phenol and the aldehyde or ketone

and on the conditions of reaction, as well as the ratio of the monomers. Most of these

reactions take place In solutions of "inert" organic solvents. Inert In the sense that they

19



are simply carders for the polymerization process of the aldehyde and phenol compounds.

The two most common polymer reactions are the addition of methylol groups to the phenol

and the subsequent formation of a methylene derivative of a blphenoL The dlmers

possessing methyloi groups (Eq. 1) are commonly referred to as phenol alcohols; the

short-chain two ring methylene derivatives (Eq. 5) are known as dlhydroxydlphenyl-

methanes. The long-chain resins, whose commercial Importance overshadows all other

aldehyde-phenol products, are polynuclear products derived from the simple methylol and

methylene derivatives mentioned above.

The phenol alcohols occupy a Position of major Importance among the numerous

products derived from phenols and aldehydes or ketones. Besides being Intermediates In

the manufacture of most, If not all, resinous phenollc products, they represent In

themselves an interesting class of highly reactive organic chemicals. It Is possible to

prepare phenol alcohols from nearly all phenols having at least one free, (Free In the

sense that the position has only a reactive hydrogen) position, ortho or para on a ring

carbon atom. Because of their commercial Importance and high reactivity, the phenol

alcohols based on formaldehyde will be considered In greatest detail.

In the synthesis of formaldehyde-phenol resin numerous different types of

reaction have been established. Among these are hydroxymethylatlons of phenol and

varfously substituted, phenolic rings (Ecl. 2-3). This reaction Is called methylolatlon or

hydroxymethylatlon, and exist In complex equilibria with other products and the raw

materials.

OH

.h CH2O

CH2GH

)L C1)

"1- CH2O < _] [ I CH2OCH2GH

), (2)
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In the formation of aldehyde-r_henols there are condensation reactions illustrated

In the equation below (4). Ecluatlon 4 represents the formation of a methylene bridge

structure with the splitting out of a water molecule. This methylene bridge formation Is

usually referred to as cure. The term cure simply refers to the condensation

polymerization step with the splitting out of a molecule of water, and Is applied to the

reactions forming methylene bridges as a resin Increases In molecular weight,

(CH20)r 1 CH2_H

+ CH20 '_ •

+1 CH20H

(3]

C4)

In Equation 5 below a reaction between two molecules of aldehyde-phenols Is

shown, a condensation polymerization reaction resulting In an ether linkage. The methylol

grou_ on a phenol alcohol is very reactive, and may enter Into a variety of other chemical

combinations that can affect the resin properties. For example, this ether linkage may

undergo further condensation reaction to produce a methylene linkage and liberate an

aldehyde as shown In Eq. 6. This ether type linkage Is unstable which causes the

additional step In the reaction.
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OH

2 _CH20 + H20 (5)

+CH20 (6)

The mechanisms and specific rates of many of these reactions are known to be

different and markedly dependent on factors such as pH, catalyst, temperature, and

pressure, and ratio of aldehyde to phenol. Methylolatlon frequently takes place rapidly

upon the mixing of reactants, and the reaction Is reversible. The reaction Is catalyzed by

either acids or bases. The formation of the high molecular weight polymer chains and

networks Is Irreversible under the conditions of use. This curing reaction, the splitting

out of molecules of water and/or aldehydes, may be carried out using either acid or basic

catalysts. The splitting out of the aldehyde simply amounts to providing an additional

aldehyde for further polymerization.

Under acid conditions, the methylolphenol quickly condenses to form a low molecular

weight polymer (hydroxyphenylene methylene) as follows, Eq. 7:

_CH2OH I CH2

"I'H* )_ n
+ . H=O (7)
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stable.

Under basic conditions the monomerlc acid and dtmerlc methylol derivatives are

This aldehyde-phenolic resin formed under acidic conditions (novalac) are generally

Infusible but soluble In some polar organic solvents. Under basic catalytic conditions the

resulting polymers are called resoles. Since the aldehyde-phenolic resin, used as the

matrix In the manufacture of 20 carbon/phenolic composites, Is formed under basic

conditions, the remainder of this discussion will emphasize the chemSstry of the resole

aldehyde-phenolic resins.

Prepolymers of Resole Resins

The phenol-formaldehyde reaction under base-catalyzed conditions Is slmilar to the

Aldol condensation reaction and forms ortho- or para-methylolphenol, (Eq. 8 and 9) as

shown below.

0

[ 2Ql
(Ortho)

• 201

(para)

0:0

H2QH

Ca)

CH2OH

(9)
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The above reaction, Ecl. 8, represents the ortho reaction, a para position reaction, ECl. 9,

Is similar with an equilibrium between the two but shifted toward the ortho side. Organlc

amines, Inorganic hydroxides and cluarternary ammonium compounds are frequently used as

catalysts In these reactions. The above reaction (9) was studied by Martin. In hls

research on this subject, all reactions were carried out at 30°C, and the amount of

formaldehyde used was ecluIvalent to the total number of (three) available reactive

phenolic nuclear positions, the two orthos and the para. This provided for complete

conversion to trlmethylolphenol (Ecl. 10), and In order to preclude possible differences In

Ionization constants for the several reactions, one ecluivalent of NaOH catalyst was used,

In all cases.

In the presence of an excess amount of formaldehyde the monomethylol phenol will

react further to form the three possible ortho-para dimethylol derivatives and will

eventually be converted to 2,4,6,- Tri(hydroxymethyl) phenol, or Trimethylolphenol as

shown in Ecl. 11.

The numerical values of each of the reaction rate constants are given In Table 1

at 3:1 F/P ratio as determined by Freeman and Lewis using a cluantitatlve paper

chromotographlc techniclue. Freeman and Lewis further showed that essentially no

substitution occurs at either of the two meta positions. Presumably because of lack of

necessary spacial arrangement.

Table 2 gives the relative reactlvities of the nuclear positions for the reaction of

various phenol alcohols with p-Methylolphenol serving as the reference phenol.

From the data on the relative reactlvities of the various methylolphenols Freeman

and Lewis also have made predictions as to the course of the reactions where less that 3

moles of formaldehyde per mole of phenol is used. It was thought that o-methylolphenol

would be the first product formed in appreciable quantity. The o-methylolphenol

concentration In the reaction mixture, after an early increase, would then remain
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TABLE1

REACTION RATE CONSTANTS FOR PHENOLS AND METHYLOL PHENOLS WITH FORMALDEHYDE

Second Order Rate Constant

Rate Constant (V_mole/sec.)

ko 6.2 x 10 -6

ko' 10.5 x 10 -6

k 1 7.5 x 10 -6

kl' 7.3 x 10 -6

kl" 8.7 x 10 -6

k 2 9.1 x 10 -6

k 2' 41.7 x 10 -6

TABLE 2

REACTIVITY OF INDIVIDUAL NUCLEAR POSITIONS IN METHYLOLPHENOLS

Position Relatlve Relative Reactivity

Compound to Phenollc Hydroxyl (p-HBA 1.0)

p-Methylolphenol ortho 1.0

Phenol ortho 1.4

Phenol para 1.7

{Methylolphenol) para 2.0

(Methylolphenol) ortho 2.3

2.4-Olmethylolphenol ortho 2.4

2.6-Dlmethylolphenol para 11.1
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essentially constant for sometime since Its rate of reverse reaction would be about as

great as its rate of formation. It would be the first phenol alcohol to disappear as the

process continued. The p-methylolphenol would appear later than the ortho Isomer, but It

would Increase In concentration as the reactlon proceeded. 2,4,-dlmethylolphenol would

appear still later and would, owing to its low reactivity, become In time a major constituent

of the reaction mixture. On the other hand, 2,6-dimethylolphenol, because of Its very hlgh

reactivity, would never be found In large quantity. These predictions are In general

agreement with the results obtained by Sprengllng and Freeman by analysis of a reaction

mixture obtained with a 4:1 mole ratio of formaldehyde to phenol.

DeJong et al made a detailed study of the hydroxymethylatlon of phenols In the pH

range 1-11 and between 70 ° and 130°C In dilute aqueous solution. The rate constants

were found by taking the tangent of the conversion plot at zero time. The rate equation

Is-

(dF/dt)t= 0 = kiP]On [F]on

Where [P]o and IF] 0 are the Initial concentrations of phenol and formaldehyde. It was

concluded that the reaction was bimolecular since the Initial rates were nearly proportional

to the ¢oncentratibn of both reactants. The rate of reaction was found to be dlrectly

proportional to the hydroxyl ion concentration above a pH of 5 and up to approximately 1

mole of caustic per mole of phenol. A minimum In the rate was found at a pH around 4;

below this, the reaction shifted to one catalyzed by acids. The pH of 4 here agrees

reasonably well with the earlier suggestion that an equally molar ratio of

formaldehyde/phenol which has a pH of about 3 could be considered a reference or

"neutral" point, for reactlons of this type.
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Orientationof methylolgroupswas studied by Sprengllng and Freeman In 1950.

Assuming that both an ortho and a para position relative to the phenolic hydroxyl group

were available for reaction, the question arose as to where the methylol group would

enter the benzene ring. A study of the reaction at a ratio of 1 to 1.4 F/P, using sodium

hydroxide as catalyst, was made. When the reaction was complete, the phenollc hydroxyl

groups of the phenol alcohols were etherlfled by treatment with oxygen to carboxylic acid

groups according to a scheme by Meyer. The acids were used to estimate the quantity of

each phenol alcohol present In the orlgnal mixture. An Inspection of the data shows that

the p-methylolphenol and the 2,4-methylolphenol were the major products (Table 3).

Martin made a similar study using 2.1:1 mole ratio of formaldehyde to phenol. At

this ratio, the p-methylolphenol and the 2,4-methylolphenol were also found in greatest

quantity. At the hlgher formaldehyde to phenol ratio, a small quantity of the 2,6-

dlmethylolphenol also was detected. A study of the data In Tables 1, 2, and 3 show

reasonable agreement.

These factors have been studied in detail by Freeman and Lewis, and a graph

depicting the formation and disappearance of each phenol alcohol capable of formation and

disappearance from phenol by the addition of one, two, or three methylol groups to sodium

phenate has been plotted. This graph Is shown here as Fig. 1 on next page. The effect

of methylol substitution on the overall rate of formaldehyde consumption also has been

analyzed. As methylol substitution proceeds, the apparent reactivity of the system,

formaldehyde-phenol, clearly Increases. Thls Increased reactlvity of the system Is caused

by the formatlon of methylolphenol and 2,6-dimethylolphenol, both of which are more

reactive with formaldehyde than Is phenol, refer to Table 2. The rate of reaction

eventually levels off and approaches that of 2,4-dimethylolphenol, the last remalnlng

component of the system that Is reactive with formaldehyde.
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Eraet al have studied the effect of the mole ratio of formaldehyde to phenol on

the reaction kinetics using DSC and DTA. They found the activation energy of the

addition polymerization to be about 99 KJ/tool and for the condensation reaction the

activation energy was about 81 KJ/tool. The addition reaction was shown to be second

order, where as the condensation reaction was first order. It was also found that the

higher the F/P ratio, the lower the heat of reaction. F/P of 1.0 gave a heat of reactlon

of 370 J/g, where as a F/P of 1.2 gave a heat of reaction of 150 J/g.

TABLE 3

REACTION PRODUCTS OF THE

FORMALDEHYDE-PHENOL REACTION

Components of Reaction Products Mole % present

Phenol 5-10

o-Methylolphenol 10-15

p-Methylolphenol 35-40

2,4-Dlmethylolphenol 30-35

2,6-Dlmethylolphenol none

2,4,6-Trimethylolphenol 4-8

Dihydroxydiphenolalkanes can be obtained by the direct reaction of aldehydes with

phenols under basic conditions. Although the products may be Identical with those formed

with acldlc catalysts, the mechanism of reaction Is much different. Phenol alcohols are the

first products formed In the reaction when basic catalysts are employed. If the phenol

alcohol Is relatively stable under alkaline conditions the reaction may tend to stop at this

stage. However, most phenol alcohols do not exhibit such stability and may be converted

to dihydroxydiphenylalkanes by continued heating with aqueous caustic. In _eneral, phenol
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alcohols with para methytol cjroups show a cJreater tendency toward conversion to a

methylene derivative than those with an ortho methylol groups. As might be expected,

phenols which are capable of reacting readily with formaldehyde to form a methylol

derivative are usually equally capable of forming a methyl derivative. 2,6-Dlmethylphenol,

2,4,5-trlmethylphenol, 2,4,6-trlmethylphenol, and B-naphthnol are particularly susceptible to

rapid conversion to a methyl derivative under alkallne condltlons.

Dihydroxydlphenylalkanes (methylene bridge) presumably could be formed by either

of two mechanisms under alkaline conditions. The formation of an Intermediate phenol

alcohol could react with free phenol In the system to give a methyl derivative as shown In

Eq. 5, splitting out a molecule of water or the reaction could occur between the two

phenol alcohols with the splitting out of a molecule of formaldehyde and a molecule of

water, Eq. 11, In which case the molecule of formaldehyde Is available for further

polymerization. The methylene bridge being the more stable of the two, would dominate In

an equilibrium situation. Also, the same equations do occur In the ortho position, or even

one molecule having an ortho methylol and the second one having a para methylol group,

as shown In (11A) above.

CH2
CH2QH CH2QH

OH OH

C H2Q

_- H20 _ CH20

OH

r_ _CH

(11)

(11A)
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The condensation of phenol alcohols with each other under alkaline condltlons Is

more likely to give a dlhydroxydlphenylalkanes free of by-products than other reactions,

but the reaction conditions must be carefully controlled. The formation of dlbenzyl ether

does not occur to any significant extent under the strongly alkaline conditions of resole

formation, (Eq. 13) except as a possible Intermediate step.

The average number of methylol groups on a phenol nuclei In a particular resole

mixture will depend upon the formaldehyde-phenol ratio, tlme, temperature, catalyst, and

concentration, which will affect the subsequent crossllnklng (curing) reaction, and thus the

polymer network properties. It Is necessary to dlstlngulsh between the F/P ratio and

concentration since there must be a solvent present, which does not take part In the

reactions.

Typical molecular structures In any given resole are dependent to a great extent

on the F/P ratio used. However, trlethylamine when used as a catalyst tends to favor the

formation of ether bridges, whereas sodium hydroxide favors methylene bridges, as

Indicated earlier the type reactlons differ between low and high baslclty, the ranges of 4-

7 and 7-11.

Reaction temperature plays an Important role In the formation of methylene bridges

and dlbenzyl ether linkages. King's studies indicated methylene brldge formation occurs at

lower temperature fhan the ether bridge formation, whereas Hanus data show that the

reverse Is true. This Is perhaps due to the difference In purlty of reactants, catalyst

used and the materials of the reaction vessels as well as conditions of time, solvents, and

temperature used during their polymerlzatlon periods.
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Brown studied the heat of reaction for various molar ratios of F/P. In his work

resins from 1:1 to 1.5:1.0 ratios were polymerlzed and then evaluated by pressure DSC.

The results are tabulated In Table 4 below:

The peak area Is proportional to heat of reaction. The data here Implies that the

largest amount of heat, and therefore the largest number of reactions occur at a ratio

of 1.3:1.0. This appears to be at variance to some degree with the data of Era et al

shown In Table 3, however, other factors than the F/P ratio may have Influenced the

location of the Deal<. A molar ratio of 1.5:1.0 F/P would theoretically, give a maximum

crosS-Ilnk density in the cured polymer, and hence produce the largest amount of heat.

Cure of Aldehyde Phenolic Resins

One of the most valuable features of the aldehyde phenolic resins Is the ease and

rapidity with which they may be converted to well-knit, highly cross-linked products. The

crosslinklng or curing reaction of resole aldehyde phenolic resins Is carried out by heating

the mixture of mono and polynuclear methylolphenols.

TABLE 4

DSC STUDY OF PEAK AREA/MG SAMPLE SEVERAL

MOLAR RATIO OF FORMALDEHYDE/PHENOL (F/P)

F/P Ratio

1.1 : 1.0

1.1 : 1.0

1.2 : 1.0

1.3 : 1.0

1.4 : 1.0

1.5 : 1.0

Peak area/m_ SamDle

5.19

5.97

6.96

7.53

6.84

6.11
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Unlike many polymeric systems where cure results by repetition of a single

process, the cure of a phenolic resin Is extremely complex, Involving a number of

competing reactions each of which may be profoundly Influenced by reaction condltlons

and the structure of the phenol used to prepare the resins. A further complicating

factor Is Introduced by the possibility of reaction at either or both the ortho and para

positions of the phenol. This leads not only to the formation of a large number of

Isomeric products but also to products of varying reactivity depending on the location of

the functional group, and the sterlc spaclng In which the molecules can Intertwine.

In the purely thermal hardening of phenol alcohol or one-stage resins, the

formation of dibenzylethers (Eel. 13) Is a very important reaction with the substituted

phenols If the hardening temperature Is held below about 160°C. The reaction also occurs

above 160°C but assumes somewhat less Importance If the resins are derived from

trifunctlonal phenols. If the system Is alkaline, methylene derivatives appear to be formed

excluslvely.

The dibenzyl ethers are unstable at hlgh temperatures, above about 140°C, and

may undergo further reactlons. The methylene bridge, on the other hand, Is a very stable

linkage and normally it Is not destroyed below the point of complex decomposltlons of the

resins. Since conditions are seldom neutral the methylene bridge Is probably the most

common linkage fourld In a cured one-stage resin derived from a trlfunctlonal phenol.

At temperatures between approximately 160 ° and 250°C, a second phase of

condensatlon, may occur In a F/P resin, the molecular weight first Increases due to

cross-linking and then declines. During this period the number of dlbenzyl ether linkages

decreases rapldly while the number of methylene bridges usually Increases resulting In

decrease In molecular weight due to splitting out of CH20. Small quantities of raw

materials may be eliminated as volatile products. Slmultaneously reactions Involving the

formation of qulnone methides and their polymerization and oxidation-reaction products

occur. These reactions lead to extremely complex products (Equations 8 and 9).
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Figure 1 outlines a number of thermal reactions that have been discovered as a

result of studies with phenol alcohols. An effort has been made to arrange the reactlons

In the chart so that a separation Into those occurring below about 160-170°C, the first

phase, and those occurring at higher temperatures, the second phase, may be vlsuallzed.

This separation has been made on a more or less arbitrary basis, and some overlapping

obviously occurs. Such a diagram only serves to emphasize why a clearcut description of

the thermal curing processes, applicable to all types of resins cannot be given. The

numbers on the arrows refer to numbered compounds on the same page.

In pyrolysis of formaldehyde/phenol resins, the behavior and the properties of the

final products seldom are affected by the initial composition. Up to about 300°C

additional crossllnkage may occur, along with decomposition of ether linkages. Between

300°C and 450°C decomposition begins in which the methylene brldges on the ends of

chains are destroyed, with a significant wleght loss, but little loss of length of chains. At

this point, there is little if any breaking of the chain. With temperatures 500 ° and higher

the main section of the polymer chain begins to break, destroying methylene bridges and

any remaining ether bonds, this causes significant decreases In polymer lengths, which

causes shrinkage of the final product. As the temperature rises further and approaches

800°C, severe carbonization occurs and the structure fuses. The carbonization process

Is the removal of further amounts of hydrogen and oxygen reducing the amount of

polymer present and raising the percent of elemental carbon in the remaining matrix. As

temperature continues in this high mode virtually all the polymer Is reduced to elemental

carbon In affect destroying the resin or the composite as the case may be. Properties

such as density, pore structure, and other physical and mechanical properties of these

polymers are seldom affected by relatively small differences In the original composition,

but as carbonization occurs, physical and mechanical properties are drastically changed.

34



but as carbonization occurs, physical and mechanical properties are drastically changed.

The most Important of these 2rid phase reactions appears to be the dehydration

of methylol phenols or the ether breakdown to give an alcohol and qulnone methldes as

shown In the following reactions, Eqs. 12 and 13.

2QH

)_

O

O

4- H20

(72]

The unsubtltuted benzoqulnone methldes are unstable and rearrange to form the

ethylene, acetylene and ether structures as shown In the following reactions, EQs. 14-16

The curing of resol phenolic resins occurs when heated for a period of tlme, the

result Is the cross linking of the polymer chains. Two primary reactions take place; one

Is the fomatlon of methylene bridges with the resultlng splitting out of a molecule of

formaldehyde and a molecule of water and the second the splitting out of a molecule of

water. The measurement of the amounts of water and formaldehyde serve as a measure

of the amount of crossllnklng which takes place(Eel. 5 and 6.). The reactlons take place

at temperatures In the range of 150°C or higher.

35



Table 5

MOLE RATIO OF REACTANTS

Reflux RefluJ¢ Time TEA

No. F/P Teml_. °C hrs. Catalyst

1 1.7/1 75 2 0.0186

2 1.7/1 75 2

3 1.3/1 98 0.66 0.0262

4 1.3/1 98 0.50

NaOH

0.0186

0.0262

At temperatures above 150°C some side reactions take place, among these In the

largest quantities are the qulnone methldes shown In Eqs. 12 and 13.

The unstable clulnone methldes rearrange into the three compounds shown In the

above Eqs. 14-16. The existence of the above compounds are thought to be present In

the resol polymers which have been exposed to heats above 150°C.

_$J
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_rst Phase

Phenol Alcohol

1: + Phenol;

3: - Formaldehyde;

5: Oxidation;

_.._..___ OIhyclroxydIl_henyl methane + water
OIhydroxydibenzyl ether + water

"_'-'"__'--_Olhydroxydll_henyl methane + fomal-

dehyde + water

2: + Phenol aIcahol

4: - Water

6: Red_ctIon

Second Phase

/_._Phenol aldehyde + Nuctear methyl-

Dlhydrom/I- _ ated phenol

benzyl ethers _3 _ Olhydroxy.dIl_henyl methane

_. p-Hydrox,/phenyi methylene (luJnone

P

Phenol alcohol 4 ),"Qulnone methldes

Dlmer Phenol aldehyde Dlhyclro_y-

(cyclic o-_ulnol) + Ntlclear dlDhenyl-

ether or methylated ethane

10-OIhydroxy- 13henol

stlbllene)

Fig. 1 - III - Hardening of Phenol Alcohols
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Thework of King et al Is summarized In this report because It resembles to a

great extent the work being done for this project. King et al studied the chemical

structure and cure characteristics of a group of aldehyde-phenol resole resins by means

of NMR, DSC and GPC. In particular, the effects on structure and reactlvlty of F/P ratio

and spec{flc types of reaction catalyst were studied. GPC was used to determine resins

molecular weight distributions, and NMR to determine chemical structure features, and the

DSC curing curves were Interpreted In the light of the structural Information provided by

NMR. All resins were prepared from 90_ pure phenol and 36_ formaldehyde solution with

either trlethylamlne (TEA) or SOdium hydroxide as the catalyst. Table 5 shows the

reactants used in terms of their mole ratios.

Resins 1 and 2 were prepared by refluxing the reactions, under vacuum at 75°C

for 2 hrs., cooling and then vacuum distilling off the bulk of water below 50°C. Resins 3

and 4 were refluxed at normal boiling point (98°C) for different lengths of time: resin 3

for 40 rain. and resin 4 for 30 rain., then vacuum distilling at 50°C to remove the water.

NMR analysis revealed that the ortho/para ratio is higher for the two resins with

F/P of 1.3 (3 and 4) than for those with F/P - 1.7 (1 and 2) and appears to be

Independent of the catalyst. The reaction with the most formaldehyde present (le, 1 and

2, F/P - 1.7) favored production of a resole In which ether bridges outnumber substituted

methanes. Reactions 3 and 4 with a F/P - 1.3 produced fewer ethers and more

substituted methanes.

The number of free methylol groups was more or less the same for all four resins.

For the same F/P ratio, the NaOH catalyst (resins 2 and 4) produces more dlarylmethanes

than does TEA (resins 1 and 3). The overall degree of condensation of benzyl alcohols Is

similar for both resins with F/P - 1.7 and Is less than for the other pair with F/P = 1.3,

especially for resins 4 In combination with NaOH. Thus resins 1 and 2 are similar In nature

and consist predomlnately of methylol groups and ether links and are generally less

condensed than resins 3 and 4. Resin 4 is in the most advanced state of condensation,
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of benzyl alcohol and largely dlarylmethanes. The difference in temperature levels,

pressure and time Intervals probably account for this.

GPC analysis shows that the resin with the higher F/P ratio (1 and 2) clearly have a

much narrower molecular weight distribution than the lower F/P ratio (3 and 4) resins. For

either pair of resins with the same F/P ratio, NaOH tends to lead to a much higher

molecular weight polymer relative to TEA. The cumulative percentage of material by weight

Increases with increasing molecular weight for two resins (2 and 4) with the same catalyst

but different amounts of formaldehyde.

The DSC results show that two separate reactions (two peaks) took place during

resin scanning; the temperature range scanning was 50-200°C at 8°C per minute. The

first peak occurred at 155°C and the second peak at 185°C. King et al found that NaOH

preferentially catalyzes the reactions which correspond to the first peak and trlethylamine

catalyzes the second peak. The function of the catalyst presumably Is to affect the

relative numbers of sites available for the two processes which must have different

activation energies. Lower temperatures and the alkali-earth (NaOH) catalyst tend to

favor the formation of methylene bridge structure; higher temperatures and the organic

base (TEA) tend to favor the formation of the ether structure. Of course the relatlve

amounts of free methylol groups and the number of aromatic protons actually available will

also Influence the frnal number of methane bridges as compared to the number of ether

structures.

There are a number of other uses for DSC and other Instrumental techniques are

described which may be applicable In studying the properties of aldehyde-phenol resins and

Drepregs; both cured and uncured. No attempt will be made to describe these in detail,

but references are given for those who may find one or more of these of Interest.

Leckenby, J. N. describes several thermal analysis techniques as applied to testing

multilayer printed circuit boards (PCB). The techniques he describes are: (1) DSC, (2)
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Thermo Mechanical Analysis (TMA), (3) Dynamic Mechanical Analysis (DMA), and (4) Thermo

Gravimetrlc Anlysls (TGA).

Taylor, R. E. et al has measured some thermo physical properties of a fairly wide

variety of materials, from ammonium perchlorate to composite materials. The use of ramp

heating for determining dlffusivIty and the heat conduction theory for strip heating, are

described. Software has been developed for pulse heating in measuring dlffuslvlty.

Thermal dlffuslvity and specific heat measurements have been made on carbon/carbon

composites. Heat flow through fibers (both length wise and across) as well as the matrix

material have been measured.

Stenzenberger, H. et al has made use of DSC to study the curing of several

polymers to control the quality of carbon flber prepregs. TMA was used to develop post

cure properties.

Moacanln, J. et al investigated a cure reactivity model for a resin system covering

the temperature range of 153-177°C. DSC and Fourier Transform IR Spectroscopy were

used to study the kinetics of the cure, atteml0tlng a correlation between total conversion,

rates of conversion and disappearance of specific groups. They described the process In

terms of two first order reactions.

May, C. A. et al made use of Dynamic Dielectric Analysis (DDA) and DSC In studying

the cure of various Ibolymers under a range of both temperature and pressures, uD to

the glass transition temperatures. The results indicated that a knowledge of the chemical

structure of the matrix greatly aids In understanding the cure process.

Apicella, A. et al performed a curing process using DSC, hlgh pressure

chromotography, and both steady and dynamic viscosities to determine gelatlon limits, and

the t0redictlon of rheologlcal behavior.

Wenz, S. M. et al used reverse phase liquid and IR chromatogral0hy, DSC, and

rheological measurements to determine reaction enthalpy, viscosity, chemical structure,

glass transition temperature, tensile strength, fracture toughness, fiber volume, and void
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content. Data revealed that slower heat-up rates during curing produce higher reaction

enthalpy, composites with higher resin content (lower voids), and higher glass transition

temperatures.
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IV. DIFFERENTIAL SCANNING CALORIMETRY (DSC)

Fiber reinforced composite materials are of Increasing importance In many

aerospace and aircraft applications as a result of the requirement for lighter weight

structures. Carbon fiber composites are the accepted materials today, for many

applications because they offer a very high strength to weight ratio and stiffness to

weight ratio, as compared with conventional metallic structural materials. The usual

technology required to mold complicated geometrically shaped parts require prepreg

materials as precursors. They consist of the reinforcing fibers arranged either

unldlrectlonally or as a woven fabric impregnated with a thermosetting resin formulation.

The resin Is sometimes B-staged, eg. polymerlzed to some degree to make it nonllcluid, or

semi-solid, at ambient temperature and suitable for further processing In a low pressure

autoclave molding process. As a consequence of the rapid Introduction of advanced resin

composites into the production of structural components In aircrafts and spacecrafts, the

development of advanced cluallty assurance criteria has become extremely Important.

During the early period, acceptance criteria for prepregs were based on performance

tests such as mechanical and physical properties of molded test coupons, gel time, resin

contents, flow properties and tackiness. Presently, it Is accepted by the Industry that

the chemical composition of the resin used must also be part of the quality assurance

control. Chemical analytlcal methods are being used more and more. One important

technique is Differential Scanning Calorimetry (DSC), since this method provides information

which Is related to 1.) glass transition temperature (TG) of uncured prepreg or cured

laminate, 2.) degree of cure of final product, 3.) heat of reaction during prepreg

processing, 4.) resin reactivity kinetics, 5.) rheology studies, and 6.) gelatlon temperature,

all of which have substantial bearing on strength and other mechanical properties.

The Du Pont 910 DSC system with the 1090 programmer/data analyzer was used for

analysis in this work. Sixteen different specimens of Carbon Phenolic Prepreg, supplied by
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Materials and Processes Laboratory, MSFC, NASA, Huntsville, Alabama were available for this

study. Due to the proprietary nature of the resin and prepreg used, only Ilmited data on

the resin and prepreg physical and chemical characteristics were provided to the

Investigators. Resins used In this study were of the base-catalyzed resole types,

supplled by U. S. Polymeric, only two were actually Investlgated 8625-01 and 8626-01.

The objective of this research was to evaluate Differential Scanning Calorimetry

(DSC) as a tool to measure the quality and reproductlblllty of Carbon Phenolic Prepregs.

This was only partially accompllshed however. The heat of reaction under atmospheric

pressure was measured in the curing process.

APPARATUS AND PROCEDURES (DSC)

The system's measuring unit Is the plug-In DSC cell which uses a constantan

(thermoelectric) disc as a primary heat transfer element. Schematic Figure 2 refers to the

DSC cell, its Isometric view and a cross section of the silver heating block, capped with

silver, a vented lid encloses the constantan disc. A selected sample and an Inert

reference are placed In small pans which sit on raised portions of the disc. Heat Is

transferred through the constantan disc to both the sample pan and to the reference

pan. Differential heat flow to the sample and reference Is monitored by the chromel-

constantan disc anti'the chromel wafers which are welded to the underside of the two

raised portions of the disc. Chromel and alumel wires are connected to the chromel

wafers at the thermocouple Junctions to measure sample and reference temperatures. The

alumel wire welded to the reference wafers Is for thermal balance.

Purge gas enters the heating block through an Inlet In the cell's base plate, Is

preheated to block temperature by circulation before entering the sample chamber through

the purge gas Inlet. Gas exits through the vent hole In the silver lid.
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Vacuum and coolant ports on the cell base lead to openings In the cell but not

directly to the sample chamber. A bell Jar, placed over the cell and sealed with an o-ring,

protects the user from evolved gases and permits cell evacuation.

Operating manuals for Du Pont 910 DSC and the Du Pont 1090 TA system and their

interfaces will be needed.

Operatlon

This section describes all controls, Indicators, and connectors normally used by the

operator. It also contains normal operating procedures followed for these tests. (Refer

to Instrument operators manual.)

Control, Indicators, and Connectors

The Operators Manual shows the location of operating controls, Indicators, and

connectors. Refer to operatlons manual for details for operation of both Du Pont 910

Differential Scanning Calorimeter and the Du Pont Thermal Analyzer.

DSC Operatln_l Procedures

Install the DSC on the cell base module. Make sure that the cell switch Is set to

DSC.

CAUTION - Proper operation of the 910 Differential Scanning Calorimeter Is

dependent upon the use of a Du Pont Thermal Analyzer. A thorough knowledge of the

1090 TA programmei" Is essential and it is assumed that the user Is completely familiar with

the operation of the TA programmer before proceeding.

The following example Involving a scan of carbon phenolic prepreg assumes a

specific selection of INITIAL and FINAL TEMP., PROGRAM RATE. However, the steps are

general and may be applied to any DSC scan. To operate 1090 TA/910 DSC system,

proceed according to operating manual.

Error Codes

Numerous error codes are programmed into the 1091 which flash In the upper

right-hand portlon of the display when either an operator error Is committed or the
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Instrument malfunctions. When an error code Is displayed, It continues to flash until one

of the keys Is pressed. Pressing the HELP key causes a display to appear which explains

the error code. If the reason for the error code being displayed Is not corrected, the

error code will again display when the user tries to proceed with the experiment.

NOTE - If all roL_tlne corrective action does not eliminate reoccLu'rlng error codes, press

the RESET switch (as last resort) to restore to normal operation.

Cell Coollncj

if a DSC application requires operation below ambient temperature, programmed

cooling or quench cooling may be used. For this test quench cooling was used as follows:

A. Quench Cooling Between Runs (Cooling Accessary)

.R 90 operation: (ref. Fig. 3.5 in Operators Manual)

1. Set the desired starting temperature by pressing the INITIAL TEMPERATURE button.

2. Press the SET UP button.

3. Place the metal cooling can over the cell and pour In the coolant (ice cubes were

used). Use the open-top bell Jar to minimize frost.

4. When ambient temperature Is reached, remove the open-top bell Jar and the cooling

can and place the sample pan and the reference pan in the cell; then Install the

sliver lid, cell cover, cooling can, and open-top bell Jar.

5. Continue coolincj to the INITIAL TEMPERATURE which Is denoted by the READY light coming

on.

NOTE - to prevent frost from forming on the disc, do not remove the silver lid when

the temperature Is below ambient.

6. Press the START button to start programming to the FINAL TEMPERATURE.

Experimental Details

A total of 16 carbon-phenolic prepregs systems were available from Materials and

Processes Laboratory, MSFC, NASA, Huntsville, Alabama for study. But only two systems

coded, numbered 8625-01 and 8626-01 were chosen for this work. Each sample was of
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four ply and approximately 4 sq. cm In size, each sample was composed of eight sections

Identified as: A-sec. Edge, A-sec. Middle, C-sec. Edge, C-sec. Middle, E-sec. Edge, E-

sec. Middle, G-sec. Edge, and G-sec. Middle. The specimen taken from each section was

10-15 mg. In weight using a single ply only.

After each DSC test, cell cooling Is required. During cooling, normally cell

temperature went below 17°C as ice cubes were used for quenching, hence time had to be

allowed for the Instruments return to amblent temperature. After each DSC test, a

thermogram plot was made.

Table 1 and 2 showed the Peak Integration of 8625-01 and 8626-01 systems.

Figures 1 and 2 showed the group of DSC Thermograms of 8625-01 and 8626-01 systems

at l O°C/mln under 14.7 pslg Nitrogen. Heat of reaction (Delta H, J/gin) on the DSC under

atmospheric pressure was found to be variable when run for eight different sections of

8625-01 systems, with values obtained from 12.1 to 15.5. The varlabillty was attributed

to the volatlzation of reaction products and residual solvent, and natural variability of the

material. This caused an endothermic response which competed with an exothermlc heat of

reaction and contributed to the variability of results. An adclttlonal source of variability

was due to foaming of the resin which resulted in poor and variable contact of the resin

with the sample pan, resulting in inconsistent values for Delta H. The heat of reaction

(Delta H) values foP" the 8626-01 system varied from 12.8 to 14.0.

The higher the amount of heat evolved (i.e. higher Delta H), results from the

Increased crosslinking and polymerization which occurred. It could be concluded that the

specimen 8625-01 Edge-G had the highest crosslink density after complete cure and

therefore offered better high temperature properties. This may or may not be the reason

however.

Considering the nature of the samples it would seem that the spread of the data Is

not particularly wide. In the case of 8625 the spread is 24%, In the case of the 8626
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and the average of the seven points Is 13.7 which agrees well with the average for sample

8626, which was 13.3.

Data for sample 8625 shows 3 data points outside of one Standard Deviation: A-

Sec. Edge, C-Sec. Middle, and G-Sec. Edge, but only one outside of two Standard

Deviations.

Deviation:

Data for sample 8626 shows only one data point outside of one Standard

A-Sec. Edge and none outside of 2 standard Deviations.

TABLE 1 PEAK INTEGRATION OF 8625-01 SAMPLE

Sample No. Heat of Transition Calc. for St. Dev.

Onset Peak Delta, H

temp., °C temp., °C Joules/gin (x-x) (x-x) 2 (x-x) 2

1 A-Sec. Edge 173.4

2 A-Sec. Middle 172.5

3 C-Sec. Edge 171.3

4 C-Sec. Middle 172.6

5 E-Sec. Edge 172.6

6 E-Sec. Middle 171.9

7 G-Sec. Edge 171.5

8 G-Sec. Middle 172.4

Average of Data

Average omitting G-Sec. Edge

Standard Deviation

Standard Deviation (omitting 7)

198.7 12.1 1.6 2.56

198.0 13.4 0.6 0.36

196.2 14.0 0.3 0.09

198.0 12,6 1.1 1,21

198.4 14.0 0.3 0.09

198.2 14.4 0.7 0.49

197,8 15.5 1.8 3.24

197.7 13.8 0.1 0.01

13.7

13.5

1.003

0.945

2.56

0.36

0.09

1.21

0.09

0.49

m

0.01
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It was of Interest to note that all sixteen specimens provide OSC-proflles (heating rate

lO°C/mln) with a single maximum peak temperature In the range of 196.2 to 198.7°C (Table

1 and 2) as can be seen In Fig. 1 and 2. It has to be noted at this point that the

characteristic temperatures of the OSC-proflle can change slightly with variations In the

ratios of the reactants, (F/P) In the resin.

TABLE 2 PEAK INTEGRATION OF 8626-01 SAMPLES

Sample No. Heat of Transition Calc. for St. Dev.

Onset Peak Delta, H

temp., °C temp., °C Joules/gin (x-x) (x-x) 2 (x-x) 2

1 A-Sec. Edge 172.3

2 A-Sec. Middle 173.5

3 C-Sec. Edge 172.4

4 C-Sec. Middle 172.2

5 E-Sec. Edge 173.5

6 E-Sec. Middle 173.1

7 G-Sec. Edge f73.6

8 G-Sec. Middle 173.0

Average of Data

Average omitting A-Sec. Edge

Standard Deviation

Standard Deviation (omitting 1)

196.7 14.0 0.7 0.49 -

197.2 12.8 0.5 0.25 0.25

197.3 13.4 0.1 0.01 0.01

196.9 13.1 0.2 0.04 0.04

197.1 13.2 0.1 0.01 0.01

197.7 13.6 0.3 0.09 0.09

198.2 13.0 0.3 0.09 0.09

197.8 13.0 0.3 0.09 0.09

13.3

13.1

0.3657

0.2878
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study:

The following conclusions are made concerning the research presented In this

1. Heat of reaction determination on the OSC under atmospheric pressure were

found to be variable when run under Identical conditions. The variability of results was

partially attributed to the variability of specimens. Addltlonal sources of variability were

due to foaming of the resin which resulted in poor and variable contact of the resin with

the sample pan, and experimental error. 8625-01 G-Sec. Edge system provided highest

crossllnk density after complete cure and therefore offered best high temperature

properties. If one leaves out the specimen G-Sec. Edge, the spread of the data Is not

bad, and probably lies within acceptable limits when taking into consideration the character

of the specimens and the possible experimental errors.

2. The Differential Scanning Calorimetry (DSC) method can be used as a tool for

research In the early stages of polymerization development, to be followed by and defining

the cure behavior of thermosetting resins and prepregs. OSC data Is applicable as a

clUality control assurance method for both resins and prepregs.
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V. CARBON CLOTH

Thomas Edison was the first to use carbon fibers. In 1880 he used them as

filaments In his first successful Incandescent lamps. He made the carbon fiber by "baking

threads in an oven". Until the late 1950's, however, tl_ere was not much Interest In

carbon fibers research because of the later development of tungsten filament lamps. The

rocket age brought about the increased Interest In carbon fibers because of the need

for an ultra-refractory material which could reinforce certain rocket components.

Composite materials made with carbon fibers have almost unlimited potential because of the

superior physical and mechanical properties of the fibers, imbedded in an approprlate

matrix.

In the early 1960's, the United States Air Force developed the use of boron fibers

as a reinforcement materlal for composites, with a high strength to weight and a high

stiffness to welght ratio. Boron's low density Is derived from Its atomic structure and Its

low atomic number. Its high Young's modulus is derived from its electronic conflguratlon

which produces strong covalent bonds between the boron atoms. Carbon was discovered

to have some characteristics similar to boron, because of its location adjacent to boron

in the Periodic Table. Carbon fibers have almost completely replaced boron fibers In

composite technology because of technological advantages In fabrication and ease of

composite manufacture. In 1959, Union Carbide developed carbon fibers from rayon which

is chemically similar to cellulose, the basic chemical constituent in the material that Thomas

Edison used for the electric lamp filament. Two other precursors were discovered to be

useful in the production of carbon fibers. Polyacrylonitrlle (PAN) discovered by Y.

Tsunoda In 1960 and mesophase pitch (MPP) discovered by S. Otanl in 1965 both Initially

produced carbon fibers with low strengths and low tensile modull, but new manufacturing

techniques developed for these precursors have produced carbon fibers with much higher

strengths and higher tensile modull.
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A fiber should be viewed as a mini-composite In Itself because It Is not a

homogeneous anlsotroplc entity, but a collection of linked anlsotroplc units. Therefore,

the modull depend on the details of axial preferred orientation In each fiber structure, and

the strength is a function of axial and radial textures and gradients as well as both

surface and Internal flaws. The most Important mechanical properties of carbon fibers are

strength, elasticity, and deformability. These properties depend upon the type of

precursor, manufacturing conditions, subsequent processing methods, and other factors.

The main morphological features of carbon flbers are the shape of the cross section and

type of fiber surface, and these features are also dependent upon the precursor and

manufacturing conditions. Fibers with circular cross sections are achieved by spinning

from a melt. Other shapes of cross sections are achieved by dry or wet spinning the

chemical fibers from a polymer solution, through various shaped splnerettes (Fig. 1).

Carbon fibers have other superior properties such as high thermal and chemical stabillty

except In a gaseous and oxidative conditlon. The fiber properties do not change

significantly when wetted by water.

There are three process steps In fiber production- splnntng of precursor fiber,

stabillzatlon (transformation Into non-melting Intermediate products), and carbonization.

PAN and mesophase pitch (MPP) are the precursors most widely used today for carbon

fiber productlon. T'ne rayon precursor Is still In wide use In the aerospace industry

because of its known properties, capabilities, and functionality. Carbon fibers come in

various forms: long and continuous, short, and fragmented, dlrectionally or randomly

oriented. Continuous fiber, dlrectlonally oriented are more useful in composites where the

ultimate in performance and weight reduction is required, and these come In various forms:

yarns (tows), Individual filaments, unidirectional prepreg tapes, and fabrics with different

weights and weaves. The most commonly used woven fabric Is the eight-harness satin

which retains most of the fiber characteristics in the composite and can easily be draped

over complex mold shapes.
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Tr,obd shaps¢l fiber Splnnerette hole for
Traobal _haped flber

0 0

Square fiber ._olnnerette hole for
$qucre fiber

Tdancjular filoer Sp]nnerette hole for
Triangular fiber

Fig. 1 - V - Typical Non-Circular Synthetic Fiber and Corresponding Spinnerette Hole
Shapes
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There Is a difference between "carbon" and "graphite" when retatlng to fibers.

Carbonization, which produces fibers of unusually high tensile strength, Involves heating

the fibers in a furnace to temperatures of 1000 to 1500 degrees C. To graphltize the

material, the fibers must be heated to temperatures of 2000 to 2800 degrees C, and this

Is done when a high tensile modulus Is more Important than high tensile strength. It Is

Important to note that none of the carbon fibers are ever converted Into classic graphite

regardless of the heat treatment, hence the term "graphitlzatlon" may be somewhat

misleading.

With tensile strengths as high as three million psi and Young's modulus values as

high as 148 million psi, graphite whiskers are one of the strongest materials known, but

mass production of graphite In this form Is Impractical. Throughout the remainder of this

paroer, the work modulus refers to Young's modulus, or tensile modulus. A whisker may be

defined as a single crystal with a large but finite length to thickness ratio, and It has a

very smooth surface and possesses high strength and high modulus. The carbon atoms In

a perfect single graphite crystal are arranged In hexagonal arrays, and these atoms In the

basal plane are held together by very strong covalent bonds. The hexagonal layers

themselves are held together by much weaker van der Waal forces and are stacked on top

of each other In a regular ABAB.. pattern. The basal planes have to be aligned parallel to

the axis of the fiber to obtain the highest modulus and greatest strength. The stacking

arrangement in a graphite fiber Is not the same as that of a perfect graphite crystal.

The layers are slightly displaced, thus forming "turbostratic" graphite, but the orientation

of the layers Is still more or less parallel to the fiber axis. The degree of perfection of

this alignment determines the strength modulus and it varies with the manufacturing

process and conditions. Transverse properties, shear properties, and flaw properties of

the fibers are affected by the arrangement of the layer planes. Graphite Is weak and

compliant In the direction perpendicular to the basal plan, which makes graphite a good

lubricant and strong and stiff In the two directions of the basal plane. Even a slightly
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misorlented layer plane will cause some amount of shear which will drastically lower the

fiber modulus value, hence the need for correct alignment.

Because the mass production of graphite whiskers Is lmpractlcal, much effort has

been made to develop high strength, high modulus carbon fibers from the various

precursors. There are three main ways to produce graphite fiber from precursors with

proper preferred orientation, and preferred orientation simply means the extent towhich

the carbon-layer planes are oriented parallel to the fiber axis and to each other. The

processes are. orientation of the polymer precursor by stretching, orientation by

spinning, and orientation during graphltlzatlon. In the production of carbon fibers from

rayon, the carbonized fibers are "graphitlzed" by a heat-treatment at approximately 2800

degrees C. The graphltized fibers consist of tangled ribbons of layer planes which must

be strained or oriented properly to produce high modulus fibers, and this orientation Is

done by stretching. To create the preferred orientation in PAN, the flbers are restrained

from shrinking during graphite conversion which Is achieved at temperatures of greater

than 2000 degrees C. There Is a distinct advantage In the graphltlzatlon process applied

to mesophase pitch as compared to the processes using rayon or PAN. In the Pan and

rayon precursor processes, tension Is required to achieve high modulus and high strength

by developing or maintaining the necessary molecular orientation. The MPP process does

not require this tension because the anlsotroplc liquid crystal nature of the pitch allows

the molecular orientation to be achieved In the spinning process, and the tension ls not

needed to preserve or enhance the orientation.

To achieve high Young's modulus values, fibers need to be treated at temperatures

of more than 2500 degrees C; however, maximum tensile strengths and breaking strain

values are obtained with heat treatments between 1200 and 1500 degrees C. All "real"

materials have an imperfect structure to some degree which always reduces physical and

mechanical properties, but the perfect solid has a theoretical tensile strength which Is

approximately one-tenth the value of the theoretical Young's modulus. Because of the
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actual Imperfections, the tensile strengths are lower than that which Is theoretically

possible. During the rayon precursor graphitlzatlon step, a high degree of preferred

orientation Is achieved which results in fibers that have a Young's modulus al_proachlng

the theoretical values of the single graphite crystal. The tensile strengths of these same

fibers, however, are well below those of graphite whiskers. The measured strengths of

the best formed graphite fibers are twenty tlmes less than the theoretical strength of

graphite. It can also be seen that the Young's modulus Increases continuously with heat-

treatment temperature In the PAN precursor process. It Is very Important to note that as

the heat-treatment temperature Increases, the tensile strengths reach a maximum and then

begin to decrease. As a rule of thumb, it is safe to say that as the temperature

increases, the strength reaches a maximum, further Increases In the temperature bring

about decreases In strength while the modull continue to Increase. Higher temperatures

bring about Increases in the moduli, but decreases In strength. Carbon fibers (fibers

which have not been graphitlzed) have a higher strain to failure reflex than high modulus

graphite fibers. These carbon fibers may be chosen over the graphite fibers In some

aircraft applications because composite parts are continually stressed and flexed so a

higher strain to failure value would be needed.

Carbon fibers formed from rayon and PAN precursors are brittle and flaws usually

control the strengthof brittle materials. As gauge length, which is the length of the

sample between clamps, Is decreased In tensile tests of fibers containing flaws, the tensile

strength Increases, because of reduced number of flaws. In cases of low-modulus

"carbon" fibers (heated to approximately 1300 degrees C) which may contain other than

carbon and the carbon may not be completely graphitlzed, and of high modulus "graphite"

fibers (heated to approximately 2800 degrees C), more completely decomposed and almost

all graphite, a distribution of flaws is present along the length of each fiber. These flaws

cause stress concentrations and reduce the fiber strength below the theoretical flaw-

free fiber strength. The deloendence of relative strength on gauge length Is similar in
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both the hlgh-modulus fibers and low-modulus fibers even though the hlgh modulus fibers

are three to four times stronger.

As fibers are treated at higher and higher temperatures for the purpose of

increasing Young's Modulus, the tensile strength also Increases up to some maximum value,

but begins to fall off or decrease as further Increases In temperature are applied. The

modulus continues to rise however.

o3
03
uJ
n-
p-
03

STRAIN

a | I

Fig. 2 - V - Stress-Strain Diagram

Ln the dTagra_above a series of carbon fibers are heated at various

temperatures. A fiber treated at a temperature (T) develops a stress-strain curve as

shown with the end of the line being the point of fracture. Increases In treatment

temperature brings about Increases In modulus, (as Indicated by Increasing slope)

Increases in fracture point, and Increases In strength. Young's modulus being defined as

the ratio of stress to strain. Continued Increases In temperature however will produce

continued Increases In re•dull, some maximum fracture strength Is reached and above that

temperature the fracture point falls off, showing decreases In the tensile strength. From
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abovediagramfracture point Increases from T to T + 200, and decreases from T + 200

to T + 500.

Expressing this another way, as the slope of the above curves Increase (Increasing

modulus and strength) the ductility of the specimen decreases. It will become more brittle,

until such time as brittleness dominates and after this point the specimens break at ever

lower fracture points due to brittle failure rather than ductile failure.

There are several causes for the flaws or defects that limit the strength of the

fiber. One cause for flaws In the carbon fibers Is the use of too high a stretch ratlo

which will cause polymer ribbons (matrix) to pull away from the fiber surface during

spinning. Carbon fibers of low strength may be formed by the Incomplete oxidation of PAN

fibers before carbonization which would cause a sheath/core structure to develop or It

may cause cavities with the fibers. Also, cavities In the precursor fiber may be caused by

gas dissolved In the fiber spinning solution or Irregular flow of the spinning solution

through the splnnerette nozzles. Internal voids or cavities may also be formed by the

evaporation of foreign matter during thermal processing.

Another strength limiting defect Is Interfilament fusing which may occur In th

precursor spinning process or In thermal processing. Contaminants In the orlglnal spun

fiber are the cause of foreign particle inclusions and these may cause the fiber to

fracture. Severe oxidation treatments may cause pits on the surface of the fibers and

other types of fiber surface contaminations will reduce the strength. Radial cracks and

longitudinal splits are defects often noted In carbon fibers. Misallgned crystallltes are

often associated with fiber fractures especially after high-heat treatments. There are

several ways to Improve strengths of carbon fibers by removing or modifying surface

flaws: oxidative etching treatments, appllcatlon of carbon coatings, and neutron radiation.

Process improvements have also decreased the number of fiber defects which have

Improved the strength of the fibers. It Is highly probably that different types of defects

affect high-strength carbon fibers and high-modulus graphite fibers In different ways.
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Internaldefects are more damaging to the high-modulus fibers; whereas, surface defects

are more damaging to the high-strength carbon fibers.

Stress Is uniform over the entire length of the filament In a tensile test so the

strength is determined by the worst flaw, or concentration of flaws, within the gauge

section. For low-modulus carbon fibers made from rayon, the strength Increases fifty

percent for each tenfold decrease In gauge length. For Instance, a decrease from 2

Inches to 0.2 Inches. There Is a corresponding forty percent Increase In strength for

high-modulus graphite fibers with Young's modulus of fifty-five million psi, and a twenty-

five percent Increase In strength for graphite fibers with Young's modulus of seventy-

four million psi. Stretching is the factor which causes the Increased fiber modulus;

therefore, the reduction In fiber strength dispersion Is probably also caused by

stretching. For fibers made from PAN precursor, there Is a thirty percent strength

Increase for a tenfold reduction in gauge length regardless of heat-treatment

temperature. Because there Is no stretching involved In the heat-treatments, no changes

In flaw sizes or shapes occur.

The shape of the cross section of the fibers may or may not be a strength limiting

factor. Figure 1 shows typical non-circular shaped cross sections. Mesophase pitch

fibers are melt spun so different non-circular cross sectional shapes may easily be

produced. Depending upon the rate of evaporation as compared to the rate of diffusion

In the spinning process, PAN-based carbon fibers will either be circular or dogbone-

shaped. The strength and susceptibility to flaws are different for the two shapes. The

circular fibers are used In the production of the high-modulus fibers therefore it Is

probable that these fibers are more susceptible to thermally Induced flaws.

A precursor may be defined as something that precedes another. There have been

several polymeric fibrous materials that have been tested, evaluated, and used as

potential precursors for the production of carbon fibers. Two processes for the

production of carbon fibers are the growing of graphite whiskers In an arc or the chemical
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vapordeposition(CVD)of pyrolyticcarbonon appropriatesubstrates. These processes,

however, are less feasible and more costly than the pyrolysis of organic precursor fibers

Into carbon flber which Is a practical method for producing large quantities of graphite

fibers that have reproducible and desirable properties. Other advantages of the pyrolysis

technique over the other two methods are as follows: long, fine-diameter, flexible carbon

fibers are more easily produced, it is less expensive, the process is faster, and

meticulous control of the system atmosphere and pressure is not as critical. The fine

(small diameter) flexible fibers are necessary for the production of composites.

Rayon, polyacrylonltrlle, and mesophase pitch are the precursors that are most

widely used In the production of carbon and graphite fibers. These three organic

materials have satisfied the requirements for the production of carbon fibers with good

properties. The requirements or criteria for the precursors are listed below:

1) Proper strength

2) Will not melt

3) Must not completely volatilize

4) Inexpensive

The proper strength Is Important so that the fibers will hold together during all stages of

the conversion process to carbon. To prevent melting during the conversion process, a

thermoplastic precu_sor must be thermoset prior to the conversion process or Infusible

precursor materials should be selected. There should be an appreciable amount of carbon

yield of the precursor left after pyrolysis to justify Its use on an economic basis, and

this could not be accomplished If the precursor were to completely volatilize during

pyrolysis. Cost of raw materials are always an Important factor and the less expensive

they are, the less expensive the final product may be, dependent on the process. The

precursor should also possess good mechanical properties which result In the amount of

preferred orientation of the carbon atoms during pyrolysis.
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Since 1959, rayon has been used In the production of hlgh-strength, high modulus

carbon fibers for use In composite materials. Other than its use In the aerospace

Industry, the rayon precursor Is practically obsolete because of the high cost of

stretching and the uncertainty of the continued supply of rayon. Rayon has been

supplanted by other plastics for most commercial uses. The carbon fibers produced from

rayon have a higher strain to failure value than those produced from other pecursors;

therefore, the fibers are still In demand In aerospace applications where the composite

parts are continually stressed and flexed and a high strain to failure value Is necessary.

The schematic diagram for the rayon precursor process for the production of

carbon fibers can be seen In Figure 2, and the steps for the rayon conversion process

are listed below:

1) Spinning of Fiber

2) Stablllzatlon

3) Carbonization

4) Stretch-graphltlzatlon

The rayon fiber Is a thermoset polymer composed of cellulosic chains. The molecular

structure of rayon Is

OH
I

.. CH2
I

OH
I

CH2
I

f. o\
InCH CHmO--CH

\ / \
CH_CH CH_CH
I I I I

OH OH OH OH

o\

During the stabilization step, the rayon Is oxidized to Increase carbon yield by

cross-linking and cycling the cellulosic chains. Stabilization occurs at a low-temperature

heat treatment, at temperatures up to 400 degrees C. Stablllzatlon can be done In an

Inert atmosphere which requires long process times or It Can be conducted In a reactive
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atmosphere which reduces the process time considerably. The carbon yle(d, along with

process time, Is another Important aspect of the stabilization step. Another method which

results In high carbon yield and low processing times is chemical preimpregnatlon.

During the carbonization step, the rayon Is converted to carbon by slowly heating

to 950 degrees C temperature. Other sources cite ranges from 1000 to 1500 degrees C.

This process is conducted In an Inert atmosphere and the process time is fairly short. To

Increase the mechanical properties of the resulting fibers, tension may be applied during

this step to Improve the preferred orientation of the layer planes.

To graphitlze the fibers, they are heat-treated at temperatures greater than 2800

degrees C. Graphitlzed fibers consist of tangled ribbons of layer planes which must be

strained or oriented properly to produce high-modulus fibers. To com[0are the difference

In modull for stretched and nonstretched fibers resulting from the graphitlzation step, one

compares one-hundred million psi for the stretched fibers with ten million psi for

nonstretched fibers. One of the disadvantages of using rayon-base graphite fibers Is the

high cost of stretching during the stretch-graphitlzation step.

Fibers produced from rayon have a relatively disordered mlcro structure of fine

grain, The structure remains intact after heat-treatments up to 3000 degrees C. The

Individual layers have small diameters and are highly cross-linked which results In high

intrinsic strength because there Is very Ilttle room for slippage of the basal planes.

Polyacrylonitrile [PAN) Is one of the most widely used precursors today, and one

source cites that it has been found to be the most suitable precursor for high

performance carbon fibers. This precursor came into existence two decades ago when a

wide range of organic fibrous materials were being examined for use as carbon fiber

reinforcing material. Rayon-based carbon fibers had already been In existence and use.

In regard to carbon fibers, the following characteristics of PAN are important:

1) Structure and ¢rystallinity

2) Orientation of molecular chains
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3) molecular weight and Its distribution

4) Co-monomer type and Its content

These characteristics may play just as an Important a role In the final properties of the

carbon fibers as the processing parameters during pre-oxldatlon and carbonization. The

Young's modulus of the carbon fibers Is greatly affected by the primary Young's modulus

of the precursor PAN.

The structure of an Ideal PAN molecule Is shown below-

CH2 CH2 CH2 CH2
k / \ / \ / \ / _ /

H CH CH CH CHI I r i
C C C C C

\\\ \\\ \\\ \\\
N N N N N

PAN Is a linear, atactlc carbon-hydrogen polymer with polar nltrlle (carbon-nitrogen)

pendant groups attached. The physical properties of the polymer are greatly affected by

the polarity of the nltrile groups. This polarity causes a hlgh glass transition temperature

In PAN; therefore, It Is frequently co-polymerlzed with other monomers so as to reduce

the glass transition temperature. The chemical composltlon (I.e. co-monomer type and ratlo

of each) has a major effect on the process ablllty of PAN-fibers In at least the early

stages of carbon fiber manufacture; therefore, the exact chemical composition Is a

proprietary Item for most PAN-flber producers. The polarity of the nitrlle groups also

affects the solubility characteristics of the polymer so that only highly polar solvents can

be used to solublllze PAN, and the strong Ionic bonds causing this polarity may cause the

fiber to decompose before It melts. The dlssolvlng of PAN Is done prior to the spinning

step shown below.

The schematic diagram for the PAN precursor process for the production of carbon

fibers can be seen In Figure 3. It may be observed that during the stabilization step,
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where oxidation takes place hydrogen is removed and expelled In the form of water.

are five steps In the PAN conversion process, Fig. 3. They are as follows:

1) Spinning precursor

2) Stretching precursor

3) Stabilization

4) Carbonization

5) Graphltlzatlon

There

There are two types of spinning techniques used In the precursor spinning step.

Because of the danger of decomposition of the PAN fiber before it melts, the precursor

ls combined with a solvent (polar) and spun Into filamentary form using either a "wet" or

"dry" solution spinning technique. In dry spinning, the solvent must diffuse through the

filament and then evaporate tnto the spinning chamber; In wet spinning, the solvent must

also diffuse through hthe filament, but it will enter the coagulating bath solution, rather

than evaporating. The shape of the cross section of the filaments Is determined In the

spinning process (Fig. 1). If the solvent evaporates or enters the bath solution slower

than It diffuses through the PAN filament, the filaments will have a circular cross section

because they will dry uniformly. However, if the rate of solvent evaporation Is faster

than the rate of solvent diffusion through the filament, then a dog-bone shaped fiber will

result because the "surface of the filament will harden faster than the core causing

collapsatlon. Wet-spun PAN fibers are the most sLutable for the production of multi-

filament carbon fiber yarn.

The Initial stretching step of the precursor Is done to help increase the axial

alignment of the polymer molecules. This stretching can be accomplished In the coagulating

bath or in boiling water, and It Is done simply to enhance the mechanical properties of the

fiber.

Stablllzatlon of the fibers Is necessary to prevent relaxation of the preferred

orientation achieved in the stretchlng step. Stabilization Is actually an oxidation process
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carried out In air at temperatures of 200 to 220 degrees C. During oxidation, the fibers

are held In tension to matntaln alignment of the polymer as It Is transformed Into a ladder

or cycUc structure.

The fourth step of PAN conversion Is carbonization which Is simply the method of

transforming the PAN-base fibers Into carbon fibers. During this stage, turbostratlc

graphite-llke fibrils are formed and oriented and these determine the high mechanical

property levels of the carbon fibers. The non-carbon elements are driven from the

precursor during oxidation In an Inert atmosphere at temperatures from 1000 to 1500

degrees C. Extended hexagonal ribbon networks are the resulting form of the carbon

atoms after carbonization.

To improve the Young's modulus of the fibers, It Is necessary to heat-treat the

fibers In temperatures In excess of 1800 degrees C. This Is known as graphitlzation, but

often as the modulus Increases In thts process, the tensile strength will decrease.

There are three categories of PAN-base carbon fibers based on modulus values.

The "low" modulus fibers have values from 190-210 GPA and these are the commercial

quality fibers. The "medium" modulus fibers have from 220 to 250 GPA and these are the

fibers with the highest quality and best strength potential. The "high" modulus fibers have

modulus values from 360 to 390 GPA and strength Is usually sacrificed for the high

modulus. The intern_edlate and high-modulus fibers are not widely used In aerospace

applications because of their low strain to failure value.

There are two processes for the production of carbon fibers from pitch. Isotropic

pitch and mesophase pitch are the precursors and they each have distinct properties and

uses.

Isotropic pitch based carbon fibers are used for non-reinforcement purposes such

as thermal Insulation. The schematic diagram for the Isotroplc pitch precursor process for

the production of carbon fibers can be seen in Figure 4. The process consists of four

steps which are listed as follows:
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1) Melt Spinning

2) Thermoset at low temperatLEe

3) Carbonize

4) Stress-graphltize

This process is not very commercially significant due to the cost of the thermoset and

stress-graphitize steps. The need for long time periods In the thermoset step, and the

need for the high-temperature stress-graphitizatlon are drawbacks to this process. The

low-modulus fibers produced when the stress-graphltlzatlon Is not employed do have limited

uses. Carbon fibers produced from Isotropic pitch will not be considered further In this

paper.

Carbon fibers produced from mesophase pitch as the precursor have high modulus,

moderate strength, high density, and can be graphitlzed Into three-dimensional crystal

order at high temperatures. These fibers have been available In continuous filament tow

or yarn since 1974. Compared with rayon and PAN precursors, MPP precursor produces

carbon fibers that are one of the least expensive high modulus types on the market.

Process Improvements have decreased the number of fiber defects which has led to

Increased strength and other properties of the resulting fibers. The schematic diagram

for the MPP precursor process for the production of carbon fibers can be seen in Figure

5. The process is-outlined below:

1) Mesophase transformation

2) Melt Spin

3) Thermoset

4) Carbonize

5) Graphitlze

The advantage of this process over the isotropic pitch process Is that long thermosetting

times and stress-graphltizatlon treatments are not needed.
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In the first step, mesophase pitch which contains both Isotroplc and anlsotroplc

material Is converted from petroleum or coal tar pitch that Is thermally treated to

temperatures above 350 degrees C. Anlsotroplc simply means, liquid crystal phase, having

different property values when measured along different axis. Fig. 5 shows the separation

of the Isotropic material being removed from the mixture In the first step.

The liquid mesophase state Is then melt-spun in a conventional manner. The melt

spinning operation gives excellent orientation In the as-spun filament because of the high

extrusion velocity and fiber draw-down experienced In the process. "Green yarn" Is

produced when the mesophase pitch Is melt spun through a multiple-hole spinnerette.

In the thermosetting step, the aromatic compounds have already been formed so

the yarn must be oxidized at temperatures below its softening point to keep the filaments

from fusing together.

The MPP ls converted to coke, then carbon, and, ultimately, graphite. The fibers

are carbonized at temperatures between 1500 to 3000 degrees C, usually around 2000

degrees C. Pitch results with around an eighty percent carbon yield as compared to a

fifty percent yield for PAN and a theoretical carbon yield of fifty-five percent of rayon.

However, tests show that the char yield for rayon Is actually around ten to thirty percent

which Is quite low.

The graphitlz'atlon step Is conducted at the higher temperatures to provide the high

modulus value graphite fibers. One advantage of this process step over the same

process steps for PAN and rayon is that no tension Is required to Obtain the preferred

orientation because the proper orientation Is achieved during the spinning step.

MPP-base carbon fibers have high shear sensitivity and a low strain to failure

value and these fibers are most advantageous In carbon-carbon composites.

Surface defects can be detrimental to the strength of a carbon fiber. There are

many types of surface flaws which may affect this strength, a few of which are listed as

follows: cavities, contaminants, cracks, and inclusions. The surface of both CCA-3 rayon
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precursor fibers and SWB-8 PAN precursor fibers are shown In Figures 6-12. These

photographs are taken at various magnifications by a JEOL JSM-35CF Scanning Electron

Microscope (SEM).

The surfaces of different rayon-based carbon fibers can be seen In Figures 6, 7,

and 8. The outer surface of the rayon fibers Is marked by longitudinal grooves or

striations. This Is clearly shown In all three of the rayon photographs and In the cross

sectlon photograph, Figure 11.

A major surface defect can be seen In Figure 6 at a magnification of 1200 times

the normal size of the fiber. The fiber appears to be torn on the surface which could

have been caused by any number of things. Separating the fiber from the fiber bundle,

touching the fiber with metal forceps, or damage caused during processing could be among

the possible causes for the fiber damage. Figure 7 shows a rayon fiber at a magnification

of 1527 times its normal size. Several particle Inclusions can be seen In the longitudinal

striations along the fiber. The rayon fiber shown In Figure 8 Is magnified at 5100 times

its normal size and a flaw can be seen in the right-hand portion of the photograph.

Something, possibly a portion of another fiber, has fused or bonded to the fiber; also,

several particles can be seen on the fiber.

Figures 9 and 10 are photographs of SWB-8 polyacrylonitrile-base carbon fibers

shown at magniflcatibns of 5100. The surfaces of the PAN fibers are smoother than the

rayon fibers; however, these fibers also have shallow longitudinal striations on their

surfaces. The fiber shown In Figure 10 has a rectangular pit in the upper right-hand

portion of the photograph. Other than the pit and a few particles In the striations, this

fiber is relatively flaw-free. The PAN fiber In Flgure 9 has several contaminants within the

striations and a small cavity can be seen on the right-hand side of the photograph.

The cross sections of both types of precursor fibers are shown In Figures 11 and

12 at magnifications of 5100. The rayon cross section ts shown In Figure 11, and It is

easily noted that the fiber cross section and the surface of the fiber appears to be
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Fig.6 - V - SEM Photogragh of Surface of CCA-3 Rayon Precursor Fiber (x1200)

Flg. 7 - V - SEM Photogral_h of Surface of CCA-3 Rayon Precursor Fiber (x1527)
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Fig. 8 - V - SEM Photogral0h of Surface of CCA-3 Rayon Precursor Fiber (x5100)
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Fig. 9 - SEM PhotograDh of Surface of SWB-8 PAN Precursor Fiber (x5100)

Flg. 10 - V - SEM Photogral0h of Surface of SWB-8 PAN Precursor Fiber (x5100)
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Fig. 11 - V - SEM PhotograDh of Cross Section of CCA-3 Rayon Precursor Fiber (x5100)

Fig. 12 - V - SEM Photograph of Cross Section of SW-8 PAN Precursor Fiber (x5100)
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wrinkled. A few contaminants or particles are located on the fiber surface. The cracks

are more than likely the result of mishandling during preparation of specimens for the SEM.

Figure 12 shows the cross section of the PAN precursor. It can easily be seen that this

fiber has a circular cross section and Its surface Is smoother than that of the rayon

fiber. Cracks can be seen on the upper portion of the cross section and a particle Is

Included on the surface of the fiber. All fiber samples shown in Figure 6-12 show several

defects which may cause a decrease In tensile strength. These surface defects may be

the result of spinerette surface Imperfections or they may be due to resin solids that

were not homogenically blended, or other reasons. If they are not too numerous the

decreases In physical and mechanical properties are not severe.
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Vl. BREAKING LOAD AND DEFLECTION TESTING EQUIPMENT

The Chatlllon Model UTSE-2 tension/compression tester Is located In the second

floor laboratory In the Etheredge Chemical Engineering building. Drawings of the

tenslon/compresssion tester and necessary external equipment are shown In Flgures 1, 2,

and 3.

The test stand shown in Figure 1 Is designed to test the resiliency, yield points,

and breaking strengths of various materials. The Model UTSE-2 Is motor driven and can

test materials up to strengths of 550 Ib-f. The stand has a DC gearmotor which drives

the tester at constant speeds and varying loads, the crossarm which maintains a constant

speed at varying loads as it moves vertically Is vertically adjustable, Is attached to two

one Inch diameter stainless steel columns, and a steel strain gauge Ioadcell Is mounted on

the crossarm and has a capacity of 550 Ib-f.

The power requirements of the test stand are 105-125 Vac, 50-60 Hz, and 5A.

The force measurement of the low range Is 0.0-110.0 Ib x 0.01 Ib, and the hlgh range Is

0.0-550.0 Ib x 0.05 with an accuracy of + 0.2 _ F.S. and each range + one count.

The ON-OFF switch is Illuminated when turned on. The MIN-VAR-MAX switch operates

the speed of the ram. The MtN speed Is one inch per minute, the MAX speed Is 12 Inches

per minute, and the VAR speed adjusts the speed of the ram between the MAX and MIN

speeds. The direcf[on of travel of the ram and crossheacl is controlled by the UP-DOWN

switch, which provides for either tensile or compression testing.

Shown In Figure 2 Is the circular grips assembly used tO secure the fiber bundles

during testing. The upper grip Is attached to the Ioadcell of the test stand, and the

lower grip is attached to the lower platform. The grtps each contain a clamp for securing

the end of the fiber and a circular head containing threads around which the fiber bundle

may be wrapped.

Adjacent to the tensile testing equipment Is a remote display cabinet shown In

Figure 3, on which the breaking load and deflection measurements are recorded. This
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Fig. 2 - Vl - Circular Grips for Holding Fibers
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Fig. 3 - VI - Digital Recorder for Breaking Apparatus
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recorder Is connected to the test stand by an electrical cable. Contained within the

display cabinet Is an electronic signa conditioner, a microcomputer with associated digital

displays, and a twenty-column thermal printer.

The signals from the Ioadcell and test stand are filtered and further amplified by

the signal conditioner, and these amplified signals are then converted to digital

equivalents. The microcomputer Is basically a 6502 microprocessor governed by an E-

PROM based program which can convert units. The microcomputer does the necessary

digital manipulations of the amplified signals, and It also compensates for the deflection of

the Ioadcell and the test stand frame.

The display console has many features which will be described. Two flve-dlglt 9/16

Inch LED displays continuously the test results of force and deflection. There are

pushbuttons incorporated to zero force and deflection and to establish zero references.

There Is a MAX-HOLD button which allows the user to "freeze" the force display, or hold

both the force and deflection together, at the maximum value. This Is valuable when the

yield or breaking points of the material need to be determined. The High Range (0-550 Ib-

f) or Low Range (0-110 Ib-f) may be selected by pushbuttons on the cabinet. The units

desired (Ib, kg, or N) may be selected by the UNITS button on the display console.

Operating Procedure for the Tension/Compression Tester

The clrcular'grlps are mounted onto the test stand. The upper grip Is attached to

the Ioadcell and the lower grip Is attached to the lower platform.

The Low Range (0-110 Ib-f) and Ib units selected by depressing the appropriate

buttons on the display cabinet. The Inch units are selected for the deflection

measurements In the same manner. The test speed is set at minimum.

The test specimen Is attached to the clamp of the uDDer circular grid and Is then

wrapped around the threaded circular head two times. Before the fiber bundle Is attached

to the lower grip, the weight of the fixture and test specimen must be tared out by

depressing the ZERO button on the display cabinet. The fiber bundle Is next connected to
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the lowergrip by wrapping It around the lower threaded circular head two times and then

securing It In the clamp. The deflection ZERO button Is then depressed to zero the

deflection display, The MAX HOLD buttons for force and deflection are depressed to

record the maximum force required to break the specimen.

The test Is begun by depressing the travel switch In the down poisitlon with the

speed set at MIN. The DOWN button must be continually held In the depressed position

until the sample Is broken. The force and deflection are then recorded from the display

cabinet. The MAX HOLD buttons are then released, and the same procedure Is repeated

for each sample tested. The gauge length which Is the distance between the upper and

lower circular heads Is measured by a ruler.

Test specimens are taken from two different types of materials, and fiber bundles

are tested from five locations from each type of material. Ten samples are tested from

each location In both the fill and warp dlrectlons at four different gauge lengths of 0.5,

1.0, 1.5, and 2.0 Inches for a total of 800 test samples. The fibers in the warp direction

are those fibers which run lengthwise with the fabric, and the fibers In the fill direction

are those which run across the fabric and are perpendicular to the warp fibers.
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VII. DETERMINATION OF BREAKING LOAD OF TEXTILE FABRICS USING THE RAVELED STRIP AND CUT

STRIP METHODS.

SAMPLE PREPARATION

Take samples that extend the width of the fabric and 1\2 yd. along the selvage

(i.e. along the warp). Cut each specimen 1 inch wide; length shall be about 6 inches.

Raveled Strip Test - a strip test In which the specified specimen width Is secured

by raveling away yarns.

Cut Strip Test - a strip test In which the specimen width Is secured by cutting the

fabric.

PROCEDURE

Use clamps provided with Jaws having smooth, flat, metallic faces (If the faces are

not smooth, rubber pads may be used). Select the load range of the testing machine such

that the break occurs between 10 and 90 percent of full scale load. Speed should be

adjusted to 2 (high gear).

Secure the specimen centrally In the clamps of the testing machine, taking care

that the long dimension Is as nearly as possible parallel to the direction of application of

the load. Be sure that the tension In the specimen Is uniform across the clamped width.

Operate the machine and read the breaking load from the recording chart.

Calculate tl'Ie average of the breaking load observed, that Is, the maximum load to

cause a specimen to rupture as read directly from the testing machine.

REFERENCE

ASTM - D1682 (1973).

84



VIII. CARBON FABRIC STUDIES

A large variation of fiber strength across a precursor fabric section will possibly

cause variation In the final product. Two sample precursor fabrics are examined and

tested In this report. Both the CCA-3 rayon-base and SWB-8 PAN-base carbon fiber

samples are eight-harness satin weave fabrics. To find the breaking load variability at

different fabric locations, data Is taken from five sections of each precursor fabric

sample. The locations are as follows: top left, top right, center, bottom left, and bottom

right. Both fill and warp direction samples are tested at each location. The fill direction

fibers are the fiber bundles or tows that run across the width of the fabric, and the warp

direction runs down the length of the fabric. The tows from the flll direction are more

crimped than the warp direction tows, and they usually contain less fibers per bundle than

do the warp bundles.

Ten tows were tested for breaking load and deflection in both the fill and warp

directions at the five locations on each fabric sample, and the raw experimental data Is

located In Appendix A in Tables 18-21. Ten tows of each gauge length of 0.5, 1.0, 1.5,

and 2.0 Inches were also tested at each of the above fabric-direction-location

combination for a total of 800 different samples.

The results for the average breaking load of CCA-3 and SWB-8 in both the fill and

ward directions at a gauge length of 0.5 Inches can be seen in Table 1. The breaking

load of CCA-3 in the fill direction ranges from 0.81 Ib/tow at bottom right to 0.88 Ib/tow

at the center of the fabric. The average breaking Ioacl of these samples Is 0.85 lb/tow

with a standard deviation of 0.02. The breaking load of CCA-3 In the warp direction

ranges from 1.16 Ib/tow at bottom left to 1.46 Ib/tow at the center. The average

breaking load Is 1.28 Ib/tow with a standard deviation of 0.1. Both directions show that

the fibers are strongest In the center of the fabric, and the strength distribution can be

seen on the bar graph in Figure 1. For the fill direction of the SWB-8 PAN base fibers,

85



TABLE1: Results for Average Breaking Load of 0.5" Gauge Length

BREAKING LOAD (LB/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.85 1.28 1.37 1.89
TOP RIGHT 0.85 1.22 1.76 1.27
CENTER 0.88 1.46 1.54 2.07
BOTTOM LEFT 0.87 1.1 6 2.26 1.65

BOTTOM RIGHT 0.81 1.28 1.55 1.74

AVERAGE 0.85 1.28 1.70 1.72

(STD) (0.02) (0.1 O) (0.31) (0.27)

TABLE 2: Results for Average Breaking Loacl of 1.0" Gauge Length

BREAKING LOAD (LB/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.85 1.16 1.35 1.66
TOP RIGHT 0.78 1.59 1.61 1.52

CENTER 0.92 1.15 1.27 1.97
BOTTOM LEFT 0.74 1.18 2.29 1.38
BOTTOM RIGHT 0.80 1.29 1.74 1.97

AVERAGE 0.82 1.27 1.65 1.70
(STD) (0.06) (0.17) (0.36) (0.24)
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the values range from 1.37 Ib/tow at top left to 2.26 Ib/tow at bottom left with an

average breaking load of 1.70 Ib/tow and a standard deviation of 0.31. For the warp

direction, the largest value Is 2.07 Ib/tow at the center, and the smallest value Is 1.27

lb/tow at top right. With a standard deviation of 0.27, the average breaking load Is 1.72

Ib/tow. It can easily be seen In Figure 1 that the SWB-8 samples are stronger than the

CCA-3 samples at every IocatIon. The fill direction fibers of CCA-3 are the most uniform

across the fabric as compared to the other three groups.

The results for the average breaking load of 1.0 inch gauge length for CCA-3 and

SWB-8 at the different locations are tabulated In Table 2 and shown In Figure 2. The

CCA-3 fibers In the fill direction range from 0.74 Ib/tow at bottom left to 0.92 Ib/tow at

the center with an average breaking load of 0.82 Ib/tow across the fabric. The warp

direction fibers range from 1.15 Ib/tow at the center to 1.59 Ib/tow at top right with an

average breaking load of 1.27 Ib/tow across the fabric. The average breaking loads of

the 5WB-8 fibers in the fill and warp direction are 1.65 and 1.70 Ib/tow, respectively, The

fill direction values range from 1.27 Ib/tow at the center to 2.29 lb/tow at bottom left,

and the ward values range from 1.38 Ib/tow at bottom left to 1.97 Ib/tow at the center

and bottom right. The fill direction of CCA-3 has the most uniform breaking load

distribution across the fabric with a standard deviation of 0.06; whereas, CCA-3 - ward

and SWB-8 - ward and fill have standard deviation of 0.17, 0.24, and 0.36, respectively.

Table 3 and Figure 3 show the results for the average breaking load of CCA-3 and

SWB-8 fibers at a gauge length of 1.5 Inches. The fill direction of CCA-3 ranges from

0.81 Ib/tow at bottom left to 0.91 lb/tow at the center, and the warp direction ranges

from 1.10 lb/tow at the center to 1.31 Ib/tow at top left. The average breaking loads of

these two direction are 0.83 and 1,19 Ib/tow for the fill and warp, respectively. The

values for SWB-8 In the fill direction range from 1.37 Ib/tow at the center to 2.22 Ib/tow

at bottom left, with an average of 1.66 Ib/tow. The values of the warp direction range
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TABLE 3: Results for Average Breaking Load of 1.5" Gauge Length

BREAKING LOAD (LB/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.84 1.20 1,41 1.44

TOP RIGHT 0.77 1.17 1.55 1.45
CENTER 0.91 1.10 1.37 1.83
BOTTOM LEFT 0.81 1.15 2.22 1.19
BOTTOM RIGHT 0.84 1.31 1.77 2.16

AVERAGE 0.83 1.19 1.68 1.61
(STD) (0.05) (0.07) (0.31 ) (0.34)

TABLE 4: Results for Average Breaking Load of 2.0" Gauge Length

BREAKING LOAD (LB/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.81 1.1 4 1.29 1.78

TOP RIGHT 0.89 1.12 1.83 1.38
CENTER 0.86 1.05 1.19 2.02
BOTTOM LEFT 0.78 1.15 1.99 1.21
BOTTOM RIGHT 0.78 1.04 1.61 2.11

AVERAGE 0.82 1.10 1.58 1.70

(STD) (0.04) (0.05) (0.31 ) (0.35)
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from 1.37 Ib/tow at the center to 2.22 Ib/tow at bottom left, with an average of 1.66

Ib/tow. The values of the ward direction range from 1.19 Ib/tow at bottom to 2.16 Ib/tow

at bottom right. For the fill and warp directions, the average breaking loads are 1.66 and

1.61 Ib/tow, respectively. Once again, the fill direction of CCA-3 has the most uniform

breaking load distribution across the fabric with a standard deviation of only 0.05. The

warp direction of CCA-3 has a standard deviation of 0.07 so It also has a fairly uniform

breaking load distribution across the fabric. The standard deviations of SWB-8 In the fill

and warp directions are 0.31 and 0.34, respectively.

The 2.0 Inch gauge length breaking load distribution results are tabulated In Table

4 and shown In Figure 4. The values for CCA-3 In the fill direction range from 0.78

Ib/tow at bottom left and bottom right to 0.89 Ib/tow at top right. The average breaking

load distribution is 0.82 Ib/tow with a standard deviation of 0.04. The warp direction

values of CCA-3 range from 1.04 lb/tow at bottom right to 1.15 Ib/tow at bottom left with

an average breaking load of 1.10 Ib/tow and a standard deviation of 0.05. The average

breaking load of SWB-8 In the fill direction Is 1.58 Ib/tow and the standard deviation Is

0.31. The values range from 1.19 Ib/tow at the center to 1.99 Ib/tow at bottom left.

The values for SWB-8 in the warp direction range from 1.21 Ib/tow at bottom left to 2.11

Ib/tow at bottom right with an average breaking load of 1.70 Ib/tow and a standard

deviation of 0.35. The CCA-3 samples In the fill and warp directions have even breaking

load distributions across the fabric.

The results for the deflection of CCA-3 and SWB-8 at a 0.5 Inch gauge length are

located in Table 5 and Figure 5. The values for CCA-3 in the fill direction range from

0.49 in/tow at bottom right to 0.77 In/tow at bottom left with an average deflection of

0.65 in/tow acrss the sample. The ward direction values of CCA-3 range from 0.26 in/tow

at top right to 0.43 In/tow at bottom right with an average deflection of 0.35 In/tow. The

average deflections for the fill and ward direction of SWB-8 are both 0.89 in/tow, The fill
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TABLE 5: Results for Average Deflection of 0.5" Gauge Length

DEFLECTION (IN/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.55 0.36 0.94 0.95

TOP RIGHT 0.71 0.26 0.88 0.85
CENTER 0.75 0.39 0.86 0.82
BOTTOM LEFT 0.77 0.31 0.95 0.95
BOTTOM RIGHT 0.49 0.43 0.81 0.89

AVERAGE 0.65 0.35 0.89 0.89

(STD) (0.11) (0.06) (0.05) (0.05)

TABLE 6: Results for Average Deflection of 1.0" Gauge Length

DEFLECTION (IN/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.64 0.37 1.01 1.01
TOP RIGHT 0.65 0.36 0.94 1.05

CENTER 0.68 0.36 0.96 0.84
BOTTOM LEFT 0.58 0.39 1.00 0.93
BOTTOM RIGHT 0.58 0.30 0.90 0.93

AVERAGE 0.63 0.36 0.96 0.95
(STD) (0.04) (0.03) (0.04) (0.07)
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direction values range from 0.81 In/tow at bottom right to 0.95 In/tow at bottom left, and

the ward direction values range from 0.82 In/tow at the center of 0.95 In/tow at top and

bottom left. The standard deviations of the fill and ward directions of CCA-3 are 0.11

and 0.06, respectively, and the values for fill and ward of SWB-8 are both 0.05. All

samples have uniform deflection distributions across the fabric.

The deflection values for 1.0 inch gauge length of CCA-3 and SWB-3 are located

in Table 6 and are shown In Figure 6. The values of CCA-3 In the fill direction range from

0.58 In/tow at bottom left and right to 0.68 in/tow at the center. The average deflection

distribution across the fabric Is 0.63 In/tow with a standard deviation of 0.04. The CCA-3

warp direction values range from 0.30 In/tow at bottom right to 0.39 in/tow at bottom left

with an average deflection of 0.36 In/tow and standard deviation of 0.03. The fill

direction values of SWB-8 range from 0.90 In/tow at bottom right to 1.01 In/tow at top

left. The average deflection distribution across the fabric Is 0.96 In/tow with a standard

deviation of 0.04. For the warp direction of SWB-8, the values range from 0.84 in/tow at

the center to 1.05 in/tow at top right with an average deflection of 0.95 in/tow and a

standard deviation of 0.07. All samples have a uniform distribution of deflection across

the fabric.

The results for the deflection of CCA-3 and SWB-8 at a 1.5 inch gauge length are

located in Table 7 and-are shown In Figure 7. The average deflection values for CCA-3 in

the fill and warp directions are 0.77 and 0.40 in/tow, respectively, and the average values

for the fill and warp directions of SWB-8 are 1.01 and 1.03 in/tow, respectively. For the

fill direction of CCA-3, the values range from 0.70 In/tow at top right to 0.84 In/tow at

the center with a standard deviation of 0.05 from the average. The values of CCA-3 in

the warp direction range from 0.36 In/tow at top left to 0.45 in/tow at top right with a

standard deviation of 0.03 from the average deflection. The fill direction values of SWB-8

range from 0.95 In/tow at top right to 1.06 In/tow at top and bottom left with a standard
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TABLE 7: Results for Average Deflection of 1.5" Gauge Length

DEFLECTION (IN/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.77 0.36 1.06 1.11

TOP RIGHT 0.70 0.45 0.95 1.21
CENTER 0.84 0.40 1.01 0.88
BOTTOM LEFT 0.80 0.41 1.06 1.02

BOTTOM RIGHT 0.72 0.39 0.98 0.95

AVERAGE 0.77 0.40 1.01 1.03

(STD) (0.05) (0.03) (0.04) (0.12)

TABLE 8: Results for Average Deflection of 2.0" Gauge Length

DEFLECTION (IN/TOW)

CCA-3 SWB-8

FILL WARP FILL WARP

TOP LEFT 0.74 0.39 1.21 1.06
TOP RIGHT 0.78 0.45 1.05 1.23
CENTER 0.77 0.49 1.08 1.07
BOTTOM LEFT 0.87 0.41 1.11 1.00
BOTTOM RIGHT 0.79 0.35 1.00 1.04

AVERAGE 0.79 0.42 1.09 1.08
(STD) (0.04) (0.05) (0.07) (0.08)

97



Z
0

0
0_,

?

L_

C3 °
I_

o

v_((((((((((((((((((,_
• ///

_,,,,,,,,_(((((((""• \\

Vz'/_///,///////////////@
_\\\\\\\\\\\\\\\\\\_ \\',

I/ /I//
k\\'\\X\\\((('x\\X

__////////////.//.,
_\\\\\\\\\\\\\\\\\\\ "'

" I / ////
O,,\ \\kXX((\(',\\\

0

Ill

0
IZI

d

-l-

n-

__.,(/,(.4Lfi444

r((((,,,',',
kXkkkX\ k\\\l oI I I I I I I I I I

,,..- al ¢3 I_ 10 _ ".f I_! Ol _ 0
d d d d d d d d o

o

0.

I
(J

0

.c-
I

(Mo_/Ul) NO LLO3-Ld3(_

I
co

Ill.

98



Z
0
F-
<
0
O_
_g

w
C3 °

L

_"//////2////////////////////////////, w
I,,\\\\\\\\\\\XXXXX\\\\XX\\N\\NNN\N\\\\_

K///,////
I\\\NXX\XX\XXXX

F>/_/ /////A///I//////_
N\\\\\\\ "'_"_\\\\\\_X_ _\\\\XXX_X\\'\\\N"

b," / /,4./ /./ /
k ,_\\\\\\ ,,. ,. ,, \ ,. ,,. ,.x,

Y//////////////// /////////////////',
X, \ ,Ix\NX_X_X.X\\\\\\\\\\\\\\\\\\'_ _X.\\N\\\

v/ /IIIII

t
g/////_////// ////////////_

.. k\\ \ _ _\\\. N\\\\\\\\X,_\",,,\\\"
y ///

0

0
El

(3
El

KZ////_/A//////////I////,4 _'
_XX\\\\\\\\\\\\\\\\X_ \\S _I

- I///////l a_
\ \.\\ \\\\\\\X,\x\J

I I I l I • I I I I I

n

I
(/I

q

_J

Ig

0
_I

"I-

n

0

q
c"
I

(ao_,/Ul) NOI.Lg_'L_'_C]

I

f-.

U.

99



deviation of 0.04 from the average of 1.01 In/tow. The SWB-8 values In the warp

direction range from 0.88 in/tow at the center to 1.21 In/tow at top right with a standard

deviation of 0.12 from the average. The $WB-8 ward values have the most uneven

distribution across the fabric.

The 2.0 Inch gauge length results for the deflection of CCA-3 and SWB-8 fibers

can be seen in Table 8 and Figure 8. The CCA-3 fill values range from 0.74 In/tow_at top

left to 0.87 In/tow at bottom left with an average of 0.79 In/tow and a standard deviation

of 0.04. The warp direction values of CCA-3 range from 0.35 In/tow at bottom right to

0.49 In/tow at the center with an average deflection of 0.42 in/tow and a standard

deviation of 0.05. The average values for deflection of SWB-8 In the fill and warp

directions are 1.09 and 1.08 In/tow, respectively with standard deviations of 0.07 and

0.08, respectively. The SWB-8 fill values range from 1.00 In/tow at bottom right to 1.21

in/tow at top left, and the SWB-8 warp values range from 1.00 In/tow at bottom left to

1.23 In/tow at top right. All samples show a uniform deflection distribution across the

fabric.

The results of breaking load vs gauge length for CCA-3 in the fill and warp

directions are tabulated in Tables 9 and 10. These tables show the actual experimental

results and the results calculated by linear regression. The actual results vs linear

results are plotted]n Figures 9 and 10. The actual values of breaking load for CCA-3 In

the fill direction decreased from 0.85 lb/tow at 0.5 Inch gauge length to 0.82 Ib/tow at

2.0 Inch gauge length. The linear results decrease from 0.842 Ib/tow at 0.5 inch gauge

length to 0.818 Ib/tow at the 2.0 inch gauge length. The R squared value in the

regression output is the degree of fit of the Ilnear results to the actual results, and In

this case, the value Is 0.533333 which Is not a good fit. This can clearly be seen In

Figure 9 which compares the actual points to the linear regression results. The CCA-3

warp values for breaking load also decrease as gauge length Increases. The actual

1OO



TABLE9: Linear Regression Results for Breaking Load of CCA-3
Fill Direction

GAUGE LENGTH
(In)

BREAKING LOAD (LB/TOW)

ACTUAL LINEAR

0.5 0.85 0.842

1.0 0.82 0.834
1.5 0.83 0.826
2.0 0.82 0.818

Regression Output:
Constant 0.85
Std Err of Y Est 0.011832

R Squared 0.533333
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s)

Std Err of Coef.

-0.016

0.010583

y Int

slope

TABLE 10: Linear Regression Results for Breaking Load of CCA-3
Warp Direction

GAUGE LENGTH

(in)

BREAKING LOAD (LB/TOW)

ACTUAL LINEAR

0.5 1.28 1.303
1.0 1.27 1.241

1.5 1.19 1.179
"2.0 1.10 1.117

Regression Output:
Constant 1.365
Std Err of Y Est 0.029832

R Squared 0.915238
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s)
Std Err of Coef.

-0.124
0.026683

y int

slope
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values decrease from 1.28 Ib/tow at the 0.5 Inch gauge length to 1.10 Ib/tow at the 2.0

Inch gauge length. The degree of fit of the linear results to the actual results Is good In

this case with a value of 0.915238. The linear results decrease from 1.303 Ib/tow at the

0.5 Inch gauge length to 1.117 Ib/tow at the 2.0 Inch gauge length. The comparison of

actual to linear values can be seen In Figure 10.

The results for the comparison of breaking load vs gauge length for SWB-8 In the

fill and ward directions are located In Tables 11 and 12. Both directions decrease In

breaking load with an Increase In gauge length. The actual values for the fill direction

decrease from 1.70 Ib/tow at the 0.5 Inch gauge length to 1.58 lb/tow at the 2.0 Inch

gauge length, and the linear results decrease from 1.700 Ib/tow to 1.585 lb/tow at the

same gauge lengths. The degree of fit of the linear results to the actual results Is

0.819397 which Is a fair fit, and the plot can be viewed In Figure 11. The warp direction

actual results decrease from 1.72 Ib/tow at 0.5 Inch gauge length to 1.70 Ib/tow at 2.0

inch gauge length; however, the breaking load at 1.5 Inches is 1.61 Ib/tow which causes

major error when linear regression Is applied to the actual points. The linear results

decrease from 1.705 lb/tow at 0.5 Inches to 1.660 Ib/tow at 2.0 Inches. The degree of

fit is very poor in this case with a value of 0.154639, and this can be seen in Figure 12.

The poor fit is due to the abnormal actual value at 1.5 inches.

These resul{s agree in all cases with the theory that strength decreases with an

increase in gauge length. The longer the gauge length, the more flaws are present along

the fiber; therefore, the strength weakens with an Increase in gauge length.

The results for deflection vs gauge length for CCA-3 in the fill and warp

directions are tabulated In Tables 13 and 14. For both directions, deflection Increases as

gauge length Increases. The deflection values for CCA-3 fill Increase from 0.65 in/tow at

a gauge length of 0.5 Inches to 0.79 In/tow at a gauge length of 2.0 Inches. The

linearlzed values increase from 0.626 in/tow at 0.5 inches to 0.794 in/tow at 2.0 inches.
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TABLE11: Linear Regression Results for Breaking Load of SWB-8
Fill Direction

GAUGE LENGTH
(In)

BREAKING LOAD (LB/TOW)

ACTUAL LINEAR

0.5 1.70 1.700
1.0 1.65 1.665

1.5 1.66 1.630
2.0 1.58 1.595

Regression Output:
Constant 1.735

Std Err of Y Est 0.025980

R Squared 0.819397
No. of Observations 4
Degrees of Freedom 2

X Coefficients(s)
Std Err of Coef.

-0.07

0.023237

y Int

slope

TABLE 12: Llnear Regression Results for BreaKing Load of SWB-8
Ward Direction

GAUGE LENGTH
(In)

BREAKING LOAD (LB/TOW)

ACTUAL LINEAR

0.5 1.72 1.705

1.0 1.70 1.690
1.5 1.61 1.675
2.0 1.70 1.660

Regression Output:
Constant

Std Err of Y Est
R Squared
No. of Observations

Degrees of Freedom

X Coefficients(s)
Std Err of Coef.

1.72
0.055452

0.154639
4
2

-0.03

0.049598

y int

slope
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TABLE 13: Linear Regression Results for Deflection of CCA-3
Fill Direction

GAUGE LENGTH

(In)
DEFLECTION (LB/TOW)

ACTUAL LINEAR

0.5 0.65 0.626

1.0 0.63 0.682
1.5 0.77 0.738
2.0 0.79 0.794

Regression OutDut-
Constant 0.57
Std Err of Y Est 0.046475

R Squared 0.784
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s)
Std Err of Coef.

0.112

0.041569

y Int

slope

TABLE 14: Linear Regression Results for Deflection of CCA-3

Warp Direction

GAUGE LENGTH

(in)
DEFLECTION (LB/TOW)

ACTUAL LINEAR

0.5 0.35 0.435
1.0 0.36 0.370

1.5 0.40 0.395
2.0 0.42 0.420

Regression Output:
Constant 0.32

Std Err of Y Est 0.008660
R Squared 0,954198
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s) 0.05

Std Err of Coef. 0.007745

y int

slope
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The actual value at 1.0 Inches Is lower than the value at 0.5 Inches so the degree of fit

of the linear values to the actual values Is not as good as it should be. The R squared

value for CCA-3 fill Is 0.784, and the comparison of actual values to linear values Is

shown In Figure 13. The values for deflection of CCA-3 In the ward direction Increase

from 0.35 In/tow at 0.5 Inches to 0.42 In/tow at 2.0 inches, and the linear values Increase

from 0.345 in/tow at the 0.5 Inch gauge length to 0.420 In/tow at the 2.0 Inch gauge

length. The degree of fit In this case Is 0.954198 which Is a fairly close fit, and the

comparison can be seen In Figure 14.

The results for the deflection vs gauge length for the fill and ward directions of

SWB-8 can be seen In Tables 15 and 16. The degree of flt of the linear values to the

actual values is very good for both directions. In both cases, the R squared term Is

0.992949, and the comparisons of actual and linear values can be seen In Figures 15 and

16. The actual values Increase from 0.89 in/tow at a gauge length of 0.5 Inches to 1.09

in/tow at a gauge length of 2.0 inches for the fill direction, and they Increase to 1.08

in/tow at 2.0 Inches for the ward direction. For both directions, the Iinearlzed values

Increase from 0.89 In/tow at 0.5 inches to 1.085 In/tow at 2.0 inches.

AS gauge length increases, the deflection Increases In all cases because the

fibers have longer to stretch.

The breaking load vs gauge length Is !3totted in Figure 17 for CCA-3 and SW8-8 In

both the fill and ward directions. For CCA-3, the war0 direction breaking load values are

higher than the fill direction values. At a gauge length of 0.5 inches, the wart0 value is

1.28 Ib/tow; whereas, the fill value is 0.85 Ib/tow. The ward values decrease to 1.10

Ib/tow, but they are still greater than the fill values which only decrease to 0.82 lb/tow.

The ward fiber bundles usually contain more individual fibers than the fill fiber bundles;

therefore, the ward tOwS are usually stronger than the fill tows.

112



TABLE 15: Linear Regression Results for Deflection of SWB-8
Fill Direction

GAUGE LENGTH

(In)

DEFLECTION (IN/TOW)

ACTUAL LINEAR

0.5 0.89 0.890
1.0 0.96 0.955

1.5 1.01 1.020
2.0 1.09 1.085

Regression Output:
Constant 0.825
Std Err of Y Est 0.008660

R Squared 0.992949
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s) 0.13
Std Err of Coef. 0.007745

y Int

slope

TABLE 16: Linear Regression Results for Deflection of SWB-8
Warp Direction

GAUGE LENGTH

(In)
DEFLECTION (IN/TOW)

ACTUAL LINEAR

0.5 0.89 0.890

1.0 0.95 0.955
1.5 1.03 1.020
2.0 1.08 1.085

Regression Output:
Constant 0.825
Std Err of Y Est 0.008660

R Squared 0.992949
No. of Observations 4

Degrees of Freedom 2

X Coefficients(s)
Std Err of Coef.

0.13
0.007745

y int

slope
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For the SWB-8 samples, the warp values are also greater than the fill values, but

the difference Is not nearly as great as the difference between the warp and fill breaking

loads Of CCA-3. The SWB-8 fibers do not differ as much In their visual characteristics as

do the CCA-3 fibers; therefore, It Is not easy to distinguish between the fill and warp

direction fiber bundles. At a gauge length of 0.5 Inches, the warp value Is 1.72 Ib/tow

and the fill value Is 1.70 Ib/tow. These values decrease to 1.70 and 1.58 Ib/tow,

respectively for the warp and fill directions.

The deflection vs gauge length for CCA-3 and SWB-8 In both the fill and warp

directions Is plotted In Figure 18. In all cases, the deflection Increases as gauge

Increases. For the CCA-3 carbon fibers, the fill direction values are greater than the

warp direction values. The values for flU Increase from 0.65 In/tow at 0.5 Inches to 0.79

in/tow at 2.0 Inches; whereas, the warp values Increase from 0.35 in/tow at 0.5 Inches to

0.42 In/tow at 2.0 Inches. The fill direction fibers are noticeably more crimped or wrinkled

than the warp direction fibers; therefore, the fill fibers stretch more than the warp fibers

before breaking. Another cause for the greater deflection In the fill fibers Is that the

warp fibers are stronger so they do not stretch as much as the weaker fill fibers.

The pattern for the SWB-8 fibers in the fill and warp directions Is nearly Identical.

They both Increase from 0.89 in/tow at a gauge length of 0.5 inches; however, the fill is

slightly larger becaLLse it Increases to 1.09 in/tow as compared to 1.08 In/tow for the

warp direction at a gauge length of 2.0 Inches. The fiber directions appear to be

identical when looked at with the eye so one type Is not more wrinkled than the other;

therefore, the deflection patterns are very similar for the two directlons. However, it can

easily be seen from Figure 18 that the SWB-8 fibers have higher deflection values than

the CCA-3 fibers, and this Is because they are more crimped than the CCA-3 fibers so

they stretch more at each gauge length.
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Table 17 and Figure 19 show the results for the Raveled and Cut Strip tests

performed on the SWB-8 and CCA-3. For both tests and for both types of materials, nine

different locations on the fabrics were tested for breaking load. The samples tested

were one Inch by six inch rectangles cut from the appropriate locations on the fabrics.

The tests were performed at Redstone Arsenal In Huntsville, Alabama, and the procedure

follows at the end of this section. For the CCA-3 carbon fiber samples In the Raveled

Strip Test method, the values range from 31.0 Ib/In at center right to 42.0 Ib/in at bottom

right with an average breaking load of 35.4 Ib/In and a variance of 3.4. The values for

CCA-3 In the Cut Strip Test method range from 30.0 Ib/In at top right to 43.8 Ib/in at top

left with an average breaking load of 35.38 Ib/in and a variance of 4.63. The values for

SWB-8 In the Raveled Strip Test method range from 39.8 Ib/in at center right to 47.4 Ib/in

at top right, and the values for the Cut Strip Test method range from 25.0 Ib/In at center

left to 45.2 Ib/In at bottom right. The average breaking load values for the raveled and

cut tests are 43.18 and 36.16 Ib/in, respectively. The variances are 2.57 for the Raveled

Strip Test method and 6.27 for the Cut Strip Test method. In both the CCA-3 and SWB-8

samples, the Raveled tests show higher breaking loads than do the Cut tests, and the

SWB-8 fiber samples are stronger than the CCA-3 fiber samples.

The following conclusions are made concerning the research presented in this

study.

1. The CCA-3 rayon-base carbon fibers and the SWB-8 PAN-base fibers contain

surface defects which decrease the strength of the fibers. The CCA-3

fibers are non-circular in cross section; whereas, the SWB-8 fibers are

circular In cross section.

2. The breaktng loads of the carbon fibers from CCA-3 and 5W8-8 do vary across

the fabric; however, the distributions of breaking loads are fairly even in

most cases.
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TABLE 17

Results of Raveled and Cut Strip Test Methods for
CCA-3 and SWB-8

BREAKING LOAD (LB/INCH)

CCA-3 SWB-8

LOCATION
RAVELED CUT RAVELED CUT

TOP LEFT

CENTER LEFT

BOTTOM LEFT

TOP CENTER

CENTER

BOTTOM CENTER

TOP RIGHT

CENTER RIGHT

BOTTOM RIGHT

35.6 43.8 43.4 38.8

35.6 32.2 44.8 25.0

32.0 37.0 41.0 40.2

32.0 31.0 44.0 41.4

36.0 31.6 40.6 36.4

38.0 37.6 41.8 27.2

36.0 30.0 47.4 33.2

31.0 41.6 39.8 38.2

42.0 33.6 45.0 45.2

AVERAGE

VARIANCE

35.4 35.4 43.2 36.2

(3.42) (4.63) (2.57) (6.27)
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3. The SWB-8 PAN-base carbon fibers have greater breaking load variability

across the fabric locations than do the CCA-3 rayon-base carbon fibers.

4. The deflections of the carbon fibers from CCA-3 and SWB-8 do vary across

the fabric; however, the deflection distributions are extremely uniform with

very small standard clevlatlons.

5. The breaking loads for both the CCA-3 and SWB-8 fibers decrease as gauge

length Increases.

6. The deflections for both the CCA-3 and SWB-8 fibers Increase as gauge length

Increases.

7. For both CCA-3 and SWB-8, the breaking loads of the ward direction fibers are

greater than that of the fill direction fibers at the various gauge lengths.

8. The deflections of the fill direction fibers Is greater than that of the ward

direction fibers for both CCA-3 and SWB-8 at the various gauge lengths.

9. The SWB-8 carbon fibers have greater breaking loads and deflection values

than do the CCA-3 carbon fibers at the various gauge lengths. The circular

cross section of the SWB-8 fibers shown In the SEM photographs may

account for the greater strength of the SWB-8 fibers as opposed to the

non-circular cross section of the CCA-3 fibers.
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IX. CARBON BLACK REINFORCING FILLER

Introduction

Carbon black Is widely used as a filler agent In several resin formulations In

prepreg materials. The term filler Is misleading In that for this particular appllcatlon, the

filler Is more than just an Inert matertal which Is added to the mixture to extend the resin

and reduce costs. In this case, as with many carbon black applications, the filler has a

great deal of surface activity which, when finely dispersed throughout the resin matrix,

allows the carbon black to enhance certain physical properties of the matrix. Thus,

carbon black filler Is added to resin mixtures for {ts favorable contribution to the

suitability and serviceability of the overall product.

The exact type of carbon black to perform a desired task can only be made

through judicious selection and testtng procedures. This section Is not intended to serve

as a guide to that selection procedure, but rather to present a condensed overview of

theory relative to carbon black applications and carbon black nomenclature.

Background

Carbon black has been used ever since the early cave dwellers discovered that

they could draw figures on their cave wall using recovered soot or charcoal. Every since

then, scientists and engineers have been making efforts to change the manufacturing and

use of carbon black" from a pure art form to a profession with a sclentiflc basis (Gould,

1976). These efforts have been in part successful, however, there still remain many

unknowns relative to carbon black applications.

The use of carbon black that the cave dwellers discovered was that of

pigmentation. Indeed, we still use this discovery today In the form of pigmentation in inks,

paints, and even in black colored mortar mixes. Inspection of a paint container may reveal

that even brightly colored paints contain some amounts of carbon black which are used to

adjust hue and tone of the color. Carbon black has become a major Industrial chemical

with many uses extending well beyond pigmentation applications (Gould, 1976). On a volume
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basis, some of the largest uses Include the use of carbon black as a filler to enhance

the properties of rubber products or other resin based products. About 95% of the

carbon black made is used In tire manufacture (Stokes, 1976).

Manufacture and Classification

To utUlze carbon black In a product, we no longer have to scrape soot from a wall

above an oil lamp, but rather, the carbon black Is purchased from a vendor who

specializes in the manufacture of carbon black. After a brief review of the vendor's

literature, one may wonder if It would not be easier to go back to the cave. Modern

technology has developed a myriad of hundreds of different types of carbon blacks.

Each type of carbon black has advantages for a specific application.

Carbon blacks are classified Into grades according to the particular method used

for their manufacture and their specific physical prooertles. Almost all of today's

commercial grades of carbon black are 99% pure carbon. The classifications by

manufacturing methods are as follows (Mantell, 1976):

Type

Channel

Process Features

Impingement of flame
on cool surfaces

Furnace Controlled combustion Natural gas
inside a specially Hydrocarbons

Raw Material Used

Natural gas
Hydrocarbons

Thermal Natural gas

designed furnace

Regenerative cracking
at +1100°C In refractory
brick work with no

oxygen present

Confined partial
combustion

Confined exothermlc

cracking with no
oxygen present

Lampblack Hydrocarbon
liquids

Acetylene Acetylene

Within each method of manufacture, the exact conditions of temperature, oxygen feed

rate, combustor residence time, and combustor turbulence all have a direct effect on the

128



final physical propertles of the carbon black, Even the amount of aromatic compounds In

the feedstock for some of the processes can have a dramatic effect on the final product

which means that the source of hydrocarbon feedstock Is important In carbon black

manufacture. Hence, a plant making channel black In the far west could produce a

different grade channel black than a plant In the southeast If they were using feedstocks

from different crude oll fields even though both plants were using Identical equipment.

The west coast U.S. feedstock may contain considerable aromatic chemicals, while

southeast U.S. feedstocks are more likely to be mostly paraflnlc.

The classical classification system for Identifying carbon blacks Is a system which

alludes to the characteristics which they Impart to a final product In which they are

Incorporated as a filler. The Industrial area of greatest interest has historically been the

rubber industry, hence, the classical emphasis has been on properties relating to tire

wear, skid resistance, and effects of the filler on cure (rubber vulcanization) rates. Some

of these classifications are as follows:

Classification by Abrasion resistance

HAF high abrasion furnace
ISAF Intermediate super abrasion furnace
SAF super abrasion furnace

Classification by Level of reinforcement

SRF - sire(reinforcing furnace

Classification by Vulcanization property

HMF high modulus furnace

Classification by rubber processing property

FEF fast extruding furnace

Classification by utility

APF all r_urr_ose furnace

GPF general purpose furnace
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Classification by particle size

FF fine furnace

LPF large parttcle furnace
FT fine furnace
MT medium furnace

Or any group could also have subgroups

HAF-HS high aggregate subgrade

HAF-LS low aggregate subgrade

Even though this method of classification can quickly get out of hand for the hundreds of

different carbon blacks, many vendors and users alike still use this classical system to

some extent even today. To make some order out of chaos, the ASTM has developed a

classification system (ASTM D1765). The first character of the classification relates to

the effect the carbon black has on rubber cure rate

N normal cure rate

Furnace blacks which have had no special

modifications will fall In this category
slow cure rate

Channel blacks which have had no special
modifications will fall in this category

The next character relates to the group number relating to the carbon black Individual

particle size. The groups are as follows:

Typical average
Grou.o No. Particle Size, nm

0 1 to 10

1 11 to 19
2 20 to 25
3 26 to 30

4 31 to 39
5 40 to 48

6 49 to 60
7 61 to 100
8 101 to 200

9 201 to 500

The third and fourth digits are arbitrarily assigned digits.

By this method, thermal blacks have the designation (xxxx):

N880
N990
N907

Fine thermal

Medium thermal

Medium thermal nonstaining (MT-NS)
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In addition to these classifications, one may often see a carbon black designated

with an IRB number. IRB numbered carbon blacks are International Reference Blacks which

are used to designate standard carbon blacks that are used In the laboratory for

research or product development work. This classification Is not used for general

Industry application.

After the carbon black has been produced, there Is a certain amount of post

production processing which Is carried on. The carbon black Is usually cooled with a water

spray from its manufacturing temperatures to reasonable handling temperatures. After

cooling, the carbon black, which at this point Is a very fluffy powder, must be pelletized

to some degree to Increase its bulk density and to facilitate ease of handling. The two

pelletizing processes used are the dry process and the wet process.

The dry process pelletlzer agglomerates the carbon black particles without the

addition of water whereas the wet process uses a small amount of water to assist the

fine particles to stick together in a small clump. The dry process Is used only In a few

applications while the wet process Is by far the most common form of pelletltlzlng.

AppUcatlon of Carbon Black as a Filler

The end user of the carbon black will select the particular grade dependent on the

results of tests made to determine the enhancement (or degradation) of the physical

properties. Thus, the purpose for the carbon black in a formulation Is more than just

being used as a filler. It will have an effect on the shear strength, tensile strength,

flexural strength, and modulus of the finished product. In addition, the type of carbon

black can have a dramatic effect on the viscosity and processibility of the resin mixture

in which it IS added, as well as the cure rate of the resin system.

To illustrate this point, a series of tests were done by Fiberite Incorporated to

identify a replacement carbon black In MX-4926 prepreg. The carbon black that had been

used was a carbon black designated as P-33 and the proposed replacement carbon black

was F-1069. Both of these carbon blacks are thermal blacks and the numbers used are
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designationsassignedby the carbon black supplier.

the replacement carbon blaclc F-1069.

Table 1

Carbon Black Properties

Table 1 shows the P-33 compared to

P-33 F-1069

Feed Stock Natural Gas Natur_al Gas

Surface area, M2/g 13 10

Particle size, nm 180 399

011 Absorption, cc/gm 0.4 0.5

pH 9.0 9.0

Carbon Content, _ 99.5 99.3

Volatile Content, _ 0.5 0.7

Represented here are the most Important physical properties of any carbon black.

Beside feed stock source and particle size, a measurement of surface area, oil

absorption, pH, carbon content, and volatile content are given In order that a comparison

of the two carbon blacks can be made. Other possible characteristics can be mineral

analysis for the elements sodium, potassium, or Iron. These minerals can be introduced

into the carbon black from the water that Is used for cooling and pelletization during the

manufacturing step, "as well as from the raw material. For additional possible comparison,

see details In ASTM D1765.

The two carbon black samples seem to be close In all physical properties except

particle size. The P-33 might be classified as a FT whereas the F-1069 may be a MT.

Subsequent applications testing proved that the F-1069 carbon black was

unsuitable as a replacement black In SRM nozzle filler service. Some of the Investigative

work which detailed reasons for the failure Is as follows.

Table 2 shows the results of a series of tests made with the MX-4926 prepreg

formulation by Fiberite. In this case, each of the Important parameters were tested so
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that a comparison could be made between the carbon black grades. The grades tested

were the P-33, F-1069, two grades of SRF, and two additional kiT grades. The results of

Table 2 show variations of the effects of carbon black grade with the advantage going to

the F-1069 replacement.

An additional consideration to be given for any resin formulation is the ease of

handling or processibility of the resin as it Is applied to the carbon cloth. No matter how

good the physical properties, the resin will be of no value unless It can be applied to the

cloth In such a way that It flows evenly Into the pores of the fiber. Thus, viscosity and

consistency become important. In the case of the Fiberlte tests, the SRF black created

resin mixtures which were too viscous to treat the fabric, whereas the F-1069 had a

viscosity and consistency which allowed for good treatment of the carbon fiber cloth.

Even with the advantage In some physical properties and processing ease, the F-

1069 failed when the cured matrix was tested In service conditions. A contributing cause

may be seen when electron photo mlcrographs of the F-1069 carbon black and two other

carbon 15lacks which became eventually successful replacements were studied. Figure 1 Is

the F-1069 carbon black and Figures 2 and 3 are the successful replacements. A

comparison can be made in the photographs to determine similarities or differences

between the unsuccessful F-1069 and the two replacements that did successfully replace

P-33.

The two replacements shown In Fig. 2 and 3 are very similar and both materials

have a very uniform texture. By comparison, the F-1069 carbon black of Figure 1 has an

appearance that is much different. It seems to be agglomerated In lumps and have uneven

particle slze distribution.

In order to try to further quantify differences in the performance of a successful

carbon blacK, an additional analysis was made of the F-1069 and a successful

replacement. The results are shown in Table 3.
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Lot. No.

Fabric

Filler

Resin Solids,

Volatile,

Flow, _@150
psi

Filler Con-
tent,

Sp. Gravity

Cured Ply,
In.

Barcol

Residual Vol,

Shear, psi

Tensile, psi

Ten. Mod,
106 psi

Ten. Elong, _;

Flexural, psi

Flex. Mod.
106 psi

Compression,
psi

Thermal Con-

ductlvity,
BTV/hr-OF.

Thermal Exp.
xl 06 in/in

Parallel

2488

CSA

P-33

35.5

5.3

20.5

10.5

1.46

0.0134

66

1.58

4,690

24,740

3.18

1.24

36.140

2.43

35,640

0.67

3.82

TABLE 2

MX-4926 PROPERTIES

2489 2501 2502 2500

CSA CSA CSA CSA

-SRF-1 SRF-2 MT-1 MT-2

34.4 34.2 35.5 34.6

4.8 5.0 5.5 4.7

4.5 15.7 19.0 17.4

12.1 7.5 11.3 10.7

1.46 1.45 1.46 1.46

0.0149 0.0140 0.0133 0.0141

71 71 74 69

1.49 1.47 1.52

4,430 3,690 3,150

23,120 24,200 24,330

1.55

2,640

23,430

2.76 2.78 2.95 2.51

1.39 1.45 1.35 1.39

36.110 39,740 39,900 36,360

2.08 2.67 2.14 2.55

48,530 43,580 41,620

...... mm_

43,280

2566

CSA

F-1069

35.4

4.8

15.9

10.9

1.43

0.01 34

74

1.64

3,803

24,300

2.77

1.42

40,330

2.54

41,520

0.69

3.85
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ORIGINAL PAGE IS

OF pOOR QUALITY

Fig. 1 - IX - Past Filler, Vendor B
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ORIGINAL PAGE IS

OF POOR QUALITY

Flg. 2 - IX - Present Filler, Vendor A

Fig. 3 - tX - Present Filler, Vendor B
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F-1069

Alternate

TABLE 3

Analytical Analysis of Carbon Blacks F-1069 Compared to Successful Replacement

C S DH Moisture Na K Ash

wt_ wt_ ppm ppm ppm wt_

98.81 0.258 8.2 757 498 27 0.17

99.43 0.170 5.6 158 12 2 .005

Unlike the comparisons of Tables 1 and 2, there ls a very large difference In the

analysis of trace elements (Na + K), pH, moisture, and ash content.

Other Processing Considerations

Even the best filler material will not be effective unless It Is processed In an

acceptable manner and evenly dispersed throughout the resin matrlx with each particle of

carbon black In contact with the resin. If the carbon black Is not stored properly before

use, It may become wet with moisture and agglomerate to the point where It will not

disperse In the resin. If proper mixing procedures are not followed, then even a good

carbon black material will not be dispersed In the resin and small agglomerates or "chunks"

of the carbon black can be found In the cured product.

Uneven carbon black distribution can lead to a dramatic decrease In physical

properties of prepregs as well as premature failure of the part. Even carbon black

distribution is not always easy to come by. In order to overcome these carbon black

dispersion problems In the rubber Industry, a technique was developed after World War I1

which Incorporated carbon black Into synthetic rubber while the rubber was still In the

process of being manufactured. This technique, which is known as carbon black

masterbatch, Incorporates the carbon black Into the rubber while the rubber Is In a water

emulsion. When the rubber Is coagulated Into solid partlcles and dried, the carbon black Is

finely dlspersed around each Individual molecule which Is very desirable. Thls degree of
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dispersion Is Impossible to achieve by any mixing method without degrading the physical

properties after the rubber has been shipped to the end user.

To prevent the carbon black clumps In the final product, the carbon black Is

ground to the original manufactured degree of fineness with the use of fluid high energy

mills or mechanical grinders. Without the additional grinding, the possibilities of

agglomerated carbon black particles being present In the product Is very high.
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XI. EXPERIMENTAL STUDIES

Various studies were undertaken to Investigate specific test methods. The test

methods which were looked at first were methods that were utilized to measure specification

properties.

A. PERCENT RESIDUAL VOLATILES: The major difficulty with the original residual

volat[les test method was the variance In results between the two prepreg suppliers, U. S.

Polymeric and Fiberlte, and the user of the prepreg, Thiokol. The problem was compounded

when one lab obtained results that were high but still within specs, and the other lab

obtained results that were too high, I.e., out of specification. During a meeting at MSFC with

U. S. Polymeric, FIberite, Thiokol and MSFC represented, the original test method was rewritten

to tlghten the test procedure. The reason the test method was tightened was because of

concerns that the time required for various steps was different at each lab, as Indicated In

Figure 1. Although each laboratory was following the same test procedure, there were

significant difference In the actual time-temperature-pressure sequence In the preparation of

the test specimen. This would give different amounts of staging and resin flow yielding

significantly different results, in an attempt to solve this problem, the test procedure was

modified to tighten up the test method. The agreed upon new test method Is shown

graphically in Figure 1 as the compromise, and the written version of each test procedure Is

at the end of this'section. The four labs then agreed to a round robin testing of the same

prepreg rolls to evaluate the precision and the ability of each lab to duplicate each others

results. The four labs, U. S. Polymeric, Thiokol, Fiberlte, and MSFC then tested the same

seven rolls of preoreg utilizing the rewritten test method. The results of the tests are

given below In Table 1.

Data from MSFC testing Is shown In Figure 2, Indicating that the precision was

excellent, but as shown In the above data, the abIl{ty of the labs to reproduce the same

results did not improve. It Is the opinion of the author that the major reason for this

differences In lab agreement is due to differences in personnel and the equipment utilized
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In the testing. Different presses, drying ovens, and bleeder cloth could result In different

amounts of resin left In the specimen. In addition, the last time any of the presses and/or

ovens were calibrated Is also an unknown.

TABLE 1

Round Robin Testing of Residual Volatiles

In Selected Materials

Material A _ Residual Volatlles

Roll 40 Roll 46 Roll 56

Lab A 1.21 1.35 1.52

Lab B 2.23 1.85 1.89

Lab C 2.47 2.08 2.21

Lab D 2.50 2.14 2.63

Material B _ Residual Volatlles

Roll 4A Roll 19A Roll 22A Roll 26A

Lab A 0.99 1.43 1.04 1.44

Lab B 1.31 1.76 1.52 1.51

Lab C 1.79 2.29 1.88 2.21

Lab D 1.44 1.69 1.90 1.94

After the rdund robin tests were completed, the general consensus was that It

appeared that It was not possible under the current laboratory procedures to obtain

reproducible results utilizing the residual volatiles test procedure. Therefore, since the first

objective of the basic policy was not met, the second overall objective was not addressed.

It Is the author's oplnion that the second basic policy objective was also not met. The

minimum additional Information needed to meet the second objective would be to

identify and quantify the residual volatiles.
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B. ORIGINAL RESIDUAL VOLATILES TEST PROCEDURE

Residual Volatile Content: The residual volatile content of the cured materlal shall be

determined In accordance with the following:

a. Cut sufficient plies to produce a test panel 0.250 + 0.050 thickness by 4 x 4

+ 0.125 Inches. Cure the panel as follows:

1. Place the stack of piles Into a Dress preset at 325 + 10 degrees F.

2. Apply contact pressure for 30 + 5 seconds and dump pressure for 2

cycles before slowly applying maximum pressure. (The material shall not be

prestaged.)

3. Increase the pressure slowly to 1000 + 50 psi, allowing the resin to stage

to minimize flash at ply edges.

4. Hold the pressure and temperature for 120 + 15 minutes.

5. Decrease the temperature and pressure to ambient.

b. The outer 1/2 Inch of the test panel shall not be used for preparation of

specimens.

c. Cut a specimen 1.000 + 0.050 inch by 1.000 + 0.050 inch panel thickness from

the center 2 Inch by 2 Inch section of the test panel. Top and Bottom molded

surfaces shall not be machined. Wipe the specimen clean using MEK and allow to

air dr_ 20 minutes minimum before testing.

d. Place the specimen In a desiccator and desiccate for 18 hours minimum.

e. Weigh the specimen to the nearest 0.01 gram and record as Wl.

f. Place the specimen In an air circulating oven, preheated and stabilized at 325 +

10 degrees F for approximately 30 minutes; condltlon the specimen at a

temperature of 325 + 10 degrees F for 24 hours minimum.

g. Remove the specimen from the oven and cool In the desiccator for approximately

30 minutes or until the specimen reaches room temperature.

h. Rewelgh the specimen to the nearest 0.01 gram. Record as W2.
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J.

Calculate the percent residual volatlles as follows:

Percent volatlles - W1 - W? x 100

W1

Where: W1 - orlgtnal weight of specimen In grams

W2 - devolatillzed weight of specimen In grams

Report residual volatlles to the nearest 0.01 percent.

C. PROPOSED RESIDUAL VOLATILES TEST PROCEDURE

Residual Volatile Content: The residual volatile content of the cured material shall be

determined In accordance with the following:

a. Cut 18 plies to produce a test panel 4 + 0.125 by 4 + 0.125 inches.

panel as follows:

1. Cover top and bottom of lay-up with one layer of non-porous release

.

3.

film.

.

5.

6.

7.

8.

,

10.

11.

Cure the

Place the stack of plies Into a press preset at 325 + 10 degrees F.
i

Insert into the press and Immediately close to contact pressure (closing

time ten seconds or less).

Hold for 30 + 5 seconds (at "contact" pressure).

(3pen the press to 1-2 Inches and allow to "dwell" for 20 + 5 seconds.

Immediately close to contact pressure and hold for 30 + 5 seconds.

Open the press to 1-2 Inches and allow to dwell for 20 + 5 seconds.

Immediately close to contact pressure and slowly Increase the pressure to

1000-1200 psi over a period of 180 + 30 seconds.

Total prep time Is approximately 300 seconds (assuming 10 seconds close

times)

Cure time will be 120-135 minutes at 325 ° + 10F and 1000 - 1200 psi.

Decrease the temperature and pressure to ambient.
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b. Theouter 1/2 Inch of the test panel shall not be used for preparation of

specimens.

c. Cut a specimen 1.000 + 0.050 Inch by 1.000 + 0.050 Inch by panel thickness
m

from the center 2 Inch by 2 Inch section of the test panel. Top and bottom

molded surfaces shall not be machined.

d. Place the specimen In a desiccator and desiccate for 18 hours minimum.

e. Weigh the specimen to the nearest 0.01 gram and record as Wl.

f. Place the specimen In an air circulating oven, which has been preheated and

stabilized at 325 + 10 degrees F for approximately 30 minutes; condition the

specimen at a temperature of 325 + 10 degrees F for 4 hours minimum.

g. Remove the specimen from the oven and cool In the desiccator for approximately

30 minutes or until the specimen reaches room temperature.

h. Rewelgh the specimen to the nearest 0.01 gram. Record as W2.

I. Calculate the percent residual volatlles as follows:

Percent Residual Volatiles - W1 - W? x 100

W1

where: W1 - original wt. spec(men In grams

W2 - devolat[llzed wt. of specimen In grams

J. Report residual volatlles to the nearest 0.01 percent.

D. VOLATILE CONTENT

Volatile Content refers to the volatlles that come off during the testing of uncured

prepeg and should not be confused with residual volatiles which come off during the testing

of cured parts. The same four labs conducted another round robin on volatile content, and

to circumvent previous errors, a new volatile content test method was established, and the

new test method Is at the end of this section. One change In the procedure was to change

the phase "place specimen In oven" to "suspend specimen In oven" since laying the specimen
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on racks at 325 degrees F causes sticking and excessive resin loss. A round robin

evaluatlon between the same four labs for one roll of prepreg gave the following results

shown In Table 2 below.

TABLE 2

Round Robin Testing for Percent Volatlles

Lab Percent Volatlles Variance

(Average of 12 Specimens)

Lab A 4.3

Lab 0 4.8

Lab C 4.8

Lab B 4.9

The data Is also shown graphically In Figure 3.

the lowest value as it was with all the rolls evaluated In the percent resldual volatlles round

robin, eight out of eight rolls tested. This would Indicate some constant function, such as

lower than Indicated temperature or other causing the difference In values between Lab A

and the other labs. The other three labs were extremely close so It does appear that the

percent volatlles test can be duplicated in the various labs. It Is still considered necessary,

for the second objective or the basic policy for this study to be satisfied, to Identify and

quantify the volatrles coming from the specimen.

0.20

0.21

0.41

0.30

It Is noted that Lab A was the lab with

E. PROPOSED VOLATILE CONTENT TEST

The volatile content of 12 specimens taken randomly from the uncured material shall

be determined In accordance with the following:

a. Cut a 16 + 2 square Inch specimen.
m

b. Weigh the st0eclmen to the nearest 0.01 gram (Wl).
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Suspend the specimen in a reclrculatlng oven, preheated and stabllzed to 325 +

10 degrees F, for 60 + 1 minutes. SPecimen should be suspended to get

adequate air circulation.

Remove specimen and place In a desiccator and cool to room temperature.

Remove from the desiccator and weigh the specimen to the nearest 0.01 gram

(W2).

Calculate percent volatlles as follows:

Percent Volatlles - W1 - W2 x 100

Wl

where: W1 - uncured weight of specimen, gin.

W2 - final weight of specimen, gin.

Report volatile content of specimen to the nearest 0.1 percent.

F. HUMIDITY EXPOSURE STUDIES

It is known that carbon-phenolic composites pick up moisture when exposed to humid

conditlons. Both cured and uncured (prepreg) samples were exposed to 100 percent relative

humidity for 30 days. The weight gain versus exposure time curves for both of these

materials are shown In Figure 4 (uncured) and Figure 5 (cured). The uncured curve Is

interesting In that rt seems to Indicate a weight gain for the first week followed by a weight

loss the second week and then another gradual weight gain. The high value specimen on the

21st day Is not the same high value specimen on the 29th day. This curve Indicates varying

reactivitles and could be the area of a more complete study. The curve for the cured

specimen Indicates a gradual Increase In weight for the entire exposure time of 30 days. The

values remain approximately the same for the 36 day exposure time, so It would appear that

a constant weight was achieved at 29-30 days of exposure tlme to 100 percent relative

humidity conditions. The normal testing for residual volatlles that had picked up extra

moisture was to desiccate for a minimum of 24 hours or a minimum of 72 hours on retest.
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The weight loss versus time In desiccator Is shown In Figure 6 and Indicates an Increase In

weight loss continuing up to the 72 hours. Therefore, time in the desiccator should be

specified In a plus or minus frame Instead of a minimum value. The weight loss when placed In

a desiccator versus exposure time In humidity chamber Is shown in Figure 7 Indicating fairly

constant loss of weight In the desiccator regardless of the time in the humidity chamber.

After the 72 hours In the desiccator, percent residual volatlles were determined for

the exposed specimens. The results of this study Is shown in Figure 8, Indicating a sllght

Increase In percent restdual volatlles with an Increase In exposure time In the humidity

chamber. This was expected since Figure 5 Indicates Increase In weight versus exposure time

while Figure 7 Indlcates essentially constant weight loss In the desiccator.

G. EFFECT OF PERMEABILITY ON RESIDUAL VOLATILES

The removing of volatile material from the Interior of a solid requires two different

processes. First the volatiles must be transported to the surface, and then removed from

the surface. The driving force for the movement of the volatlles Is the difference In

concentration of the volatiles In the Interior and that on the surface. The volatlles on the

surface must then be removed to maintain the effective driving force (movement). The

removal Is normally accomplished by flowing air unsaturated with the expected volatlles. A

vacuum would normally accelerate the removal thereby requiring less time to completely

remove the volatlles. The rate of transporting the material to the surface Is a function of

temperature, concentration difference, and permeability. Temperature furnishes the energy

for heat of vaporization, dlffuslon and surface activity. Permeability is a measure of the

lengths of the paths to the surface for the volatlles. Figure 9 shows the percent residual

volatlles for an oven curing time up to 48 hours while Figure 10 extends the curing time up

to 360 hours. These tlmes are for the standard 1" x 1" x 0.25" (thick) specimen. These

tests were on 4 replications and notice the precision results. Plnoli of Lockheed Research
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Facilities In Palo Alto, CA did some permeability studies on Carbon-Phenolic specimens varying

the temperature and vapor removal system. Figure 11 shows the percent volatlles loss

versus time on the different size cubes. It can be seen that the time to reach equillbrlLu_

(I.e., not further weight loss) increases with cube size. Since temperature and original

concentration gradient can be assumed to be constant then permeability Is the remaining

variable, and the experimental results follow the predicted results. Figure 12 has the same

size cubes, but the temperature Is lower and the volatlles removal system was changed from

circulating air to a vacuum. Again the experimental results follow the predicted results.

However, because of the lower temperature, the rate of diffusion was so low that after over

50 hours, equll[brlum had not been achieved in any of the cubes. The results of residual

volatlles testing Is dependent on several variables besides composition, therefore, It Is very

difficult for results from lab to lab to be comparable.

PERCENT RESIN FLOW: The test procedure for percent resin flow is given at the end of this

section. This test is important because it assures that the prepreg can be tape wrapped

and properly cured. The percent resin flow not only Is a measure of staging of the resin,

but of total resin content. The content Is a function of the cloth itself in that the amount

retained Is a functlon of several characteristics of the cloth and the filler/resin mixture.

However, there Is a wide variance In the percent resin flow data, especially when tested In

different laboratories. The initial explanation for this variance was the delay in closing the

press, as the test method Just specifies Immediately. Closing time versus percent resin

flow was determined for three different rolls of prepreg with the following results as shown

in Table 3.
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TABLE 3

Percent Resin Flow

Delay In Closure Roll Roll Roll

1 2 3

0 sec. 29.6 18.7 31.5

20 sec. 31.1 19.1 30.0

40 sec. 30.0 20.1

60 sec. 29.3 22.1 30.7

120 sec. 29.9 1.4 24.8

The closure time with 0 seconds delay was 15 seconds, so the total closure time was delay

time plus 15 seconds. It can be seen that total closure time of 75 seconds and less had a

negligible effect on the percent resin flow.

It should be noted that this test really measures weight loss, a combination of resin flow

and volatile content. It should be rewritten to subtract volatile content with the remainder

shown as resin flow. This would require some adjustment In the specifications.

H. PERCENT RESIN FLOW TEST PROCEDURE

Resin Flow: Resin flow of each sample of the uncured material shall be determined In

accordance with the following:

a.

b.

Cut a 4-inch by 4-inch + 1/8-inch squares across the width of the fabric. All
!

squares shall be bias cut to ellmlnate fiber loss In testing. Stack the squares

uniformly on each other to make a specimen. Where the width of "the tape Is

less than 4-inches wide, cut the tape In 4-Inch lengths and place side by side

to fabricate a 4-Inch by 4-Inch specimen ply. Stack four plies alternately

placed 90 degrees to the previous ply roll direction. Place each ply uniformly

on each other to make up a specimen.

Weigh the specimen of 4 piles to the nearest 0.01 gram and record as Wl.
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C,

d,

e.

f,

g.

hJ

Place the specimen between release film. Preheat the Dress to 325 + 10

degrees F, position the specimen In the middle of the press plate and apply the

press load of 150 + 10 pslg Immediately. Press load the specimen for a mlnlmum

of 10 minutes at 325 + 10 degrees F.

Remove the specimen from the press and cool to ambient temperature.

Using a knife, scrape off the resin flash to the original size of the specimen.

Do not remove any reinforcement from the original dimensions.

NOTE: Any fibers which may be displaced and scraped off during the process

shall be Included In the weighed back specimen weight (W2).

Rewelgh the specimen to the nearest 0.01 gram and record as W2.

Calculate the percent resin flow as follows:

Percent Flow - Wi - W_ x 100

Wl

where: W1 - uncured weight of specimen, gin.

W2 - final weight of specimen, gm.

Report resin flow to the nearest 0.1 percent.

L PREPREG STORAGE CONDITIONS/LIFE

The effect "of storage of prepreg on percent volatlles and percent resin flow was

Investigated. The prepreg was stored within the guidelines established. These being:

prepreg sealed in a plastic bag which must contain one-unit of desiccant (minimum) and

temperature not to exceed 50°F.

Prepreg: _olatiles

As received 5.2

After 17 weeks In storage 6.9

After 27 weeks In storage 7.3

The results of the Initial study were:

_;Resin Flow

18.4

20.0

23.7
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Flkesat MarshallSpace Flight Center continued the study by evaluating the effect on

percent volatiles and percent resin flow due to the following bagging conditions at room

temperature.

9 samples unbagged for 0 days (Note- Tested on the day they were cut). UO

9 samples unbagged for 15 days, U15

9 samples unbagged for 30 days, U30

9 samples bagged In polyethylene bags for 15 days, 215

9 samples bagged In polyethylene bags for 30 days, 230

9 samples bagged In alumnlnlzed polyethylene bags for 15 days, AL 15

9 samples bagged In aluminized polyethylene bags for 30 days, AL 30

The results of the resin flow test are given below In Table 4.

Sample No. UO

1 20.8

2 18.5

3 17.2

4 21.3

5 18.1

6 18.5

7 21.3

8 19.1

9 18.5

Avg. 19.3

Stan.Dev. 1.50

TABLE 4

Results of Resin Flow Tests

Carbon Cloth Phenolic Prepreg Out-Time Study

Percent Volatlles

U15 U30 Z15 Z30 ALl 5 AL30

25.6 24.3 21.2 21.8 21.5 15.5

24.7 23.1 17.7 20.4 20.1 16.7

23.5 23.2 20.2 19.9 19.1 16.8

22.8 24.5 21.7 15.0 21.2 19.9

22.9 23.7 20.1 20.0 18.8 22.7

22.3 19.7 20.0 19.5 17.3 17.3

23.6 24.3 21.2 20.7 20.2 19.6

23.4 23.9 19.5 20.0 18.3 18.9

22.6 23.2 19.4 19.9 18.1 19.3

23.5 23.3 20.1 19.7 19.6 18.5

1.59 1.46 1.21 1.88 1.20 2.18

165



These results are what would be expected when considering that resin flow results are a

weight loss test. The unbagged material picked up more than enough moisture to over ride

the slight decrease In resin flow due to staging. The polyethylene and aluminumlzed-

polyethylene bags, however, had essentially no moisture pickup, therefore, staging Just about

balanced out this slight moisture pick up for no overall change.

These tests again point out that the resin flow test should be modified.

The results of the volatile content test are shown below In Table 5.

TABLE 5

Results of Volatile Content Tests

Carbon Cloth Phenolic Prepreg Out-Time Study

Percent Volatlles

Sample No. UO U15 U30 Z15 Z30 ALl 5 AL30

1 5.77 9.05 8.60 5.37 6.50 5.60 6.10

2 5.50 8.87 8.52 5.30 6.40 5.50 6.00

3 5.76 8.50 8.25 5.13 6.20 5.40 5.80

4 5.64 8.97 8.60 5.21 6.50 5.60 6.70

5 5.47 8.79 8.63 5.16 6.30 5.40 6.00

6 5.33 8.69 8.42 4.97 6.30 5.30 5.90

7 5.48 8.78 8.54 5.19 6.60 5.50 3.50

8 8.64 8.56 5.10 6.80 5.60 8.40

9 5.20 8.52 8.27 5.27 6.80 5.50 6.00

Avg. 5.52 8.76 8.49 5.19 6.49 5.49 6.04

Stan.Dev. 0.19 0.19 0.14 0.12 0.21 0.10 1.25

u - unbagged, z - polyethylene bag, AL - aluminized polyethylene bag

The percent volatlles Increased with time in each of the bagging conditions with the most

significant Increase In the unbagged condition. It would appear from this data the equilibrium

conditions are achieved at or before fifteen days for the unbagged prepreg. Since 30 days
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of out of storage time Is permitted, without specified bagging conditions, It would appear

that bagging and storage would have little effect on final volatile content of the prepreg at

the time of tape wrapping.
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XlI. TRAVEL

Since extensive travel was considered to be an important part of this project a report on

project travel will be Included in each report. For the period October 1985 through

August 1988, the following travel was performed:

TRIPS

101

5

2

1

2

1

1

2

3

COMPANY

NASA, MSFC; Huntsville, AL

U. S. Polymeric; Santa Aria, CA

Aerojet Strategic Corp.; Sacramento, CA

Flberite; Winona, MN

Morton Thlokol; Brigham City, UT

Hitco; Gardena, CA

AF Wright Aero Lab; Wright Patterson AFB, OH

ASTM Composite Testing; Charleston, SC

JANNAF Nozzle Tech

Washington, D.C.

Patrick AFB Florida

Marshall Space Flight Center

Lockheed Missiles and Space Company, Inc.; Pale Alto, CA

Southern Research Institute; Birmingham, AL

Avtex Fibers Inc.; Front Royal, VA

Highlands Industries; Cheraw, SC

Polycarbon Inc.; Valencia, CA

Fiberlte; Laguna Hills, CA

Borden Inc.; Louisville, KY
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Xlll. CONCLUSIONS

1. The nozzle of the solid rocket motor utilized In the space shuttle system has

performed adequately for the 25 flights (50 nozzles) of the shuttle system.

2. Pocketing (uneven ablation/erosion) has occurred In most nozzles but potentially

catastrophic pocketing only in Flight STS-8, with frequency and severity decreasing

since Flight 51-F.

3. The manufacturers/suppliers of the materials and fabricated nozzle are open and

helpful, and are desirous of putting out the best nozzle possible under the free

enterprise system.

4. In general, the test methods and specifications utilized In the $RM nozzle program

were designed to assure repeatibillty of a proven system, not to accurately

measure some physical/chemical property of the nozzle system.

5. Engineering test and data are not available on the effects of varying materials and

processes In the manufacture of the SRM, so changing specifications and/or test

methods Is most difficult.

6. Most of the test methods used to obtain data on materials and processes utilized

in the SRM system are quite satisfactory, yielding acceptable values within

specifications with good precision.

7. Carbon cloth, especially when underfired, Is very reactive and has a hlgh affinity

for moisture which is a source of variability for some material properties of

carbon-phenolic prepreg and cured composites.

8. No specifications exist for the filler material used in the manufacture of the

carbon-phenolic prepreg which Is the starting material for nozzle fabrication.

9. Variability of materials/suppliers and test methods causes wide fluctuations In a

few measured properties of the nozzle system which in some Instances exceeds

three sigmas. The effects of these variations on the nozzle performance Is an

unknown, per conclusions 1 and 5.
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10.

11.

12.

13.

14.

Results of some measured proDertles of materials and Darts of the nozzle system

are eClulpment, personnel, and laboratory dependent, yielding nonreproducible data.

The test method for percent resin flow measures weight loss, not resin flow, as

written.

The test method for residual volatlles measures permeability, not residual volatlles,

as written.

The three test methods utilized to measure percent resin, cloth, and filler In

prepregs yield different results when testing the same prepreg at the same

laboratory.

The problems outlined above should not negate the 50 successful firings of the

shuttle nozzles, but Is an Indication that a more homogeneous, less variable, nozzle

system might be manufactured.
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XIV.

1°

.

1

4.

.

.

.

RECOMMENDATIONS

Rewrite resin flow test method to eliminate the effect of volatlles coming off at

the same time, collect data base, and then change speclflcatlons appropriately.

Rewrite residual volatile content test method to eliminate permeability effects,

collect data base, and then change specifications appropriately.

Select one of the three currently used resin, filler, cloth content test methods,

collect data base, and then change specifications appropriately.

Complete writing specifications and test methods for the filler utilized In the

carbon-phenolic prepreg.

NASA should maintain quality control authority at all supplier sites that produce

materials/parts of the solid rocket motor of the shuttle system.

Increase the required carbon content of the carbon cloth to a minimum of 98 per

cent.

Establish a procedure for changing the test methods utilized In the carbon-phenolic

composite system and accompanying specification limits.
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