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Introduction

Since the launching of the first Sputnik in 1957, the use of near-
Earth satellites for scientific, military, and commercial applications has

progressed far beyond the expectations of even the most visionary of the

early satellite pioneers. As a result, many sophisticated numerical and

mathematical techniques have evolved to permit the precise prediction

of the position of a satellite in time and space, and the Earth's external

gravitational field has been determined to high accuracy.

However, for most mission planning purposes, and even in fact for

many operational applications, ultra-high precision is neither warranted
nor desired, as the computational expense generally increases quite

rapidly with increased computational precision. Consequently, there
is still a firm need for simple computational algorithms which produce

results of reasonable accuracy at moderate expense•

Anyone who works in a specialized scientific discipline for any length
of time naturally acquires over the years a computational methodol-

ogy, consisting of large numbers of computational algorithms of many

degrees of complexity and accuracy, other computational procedures,

approximate methods, etc., with which he feels most comfortable and

which have proven to be useful and accurate, even though they may

not always provide the most direct way of making a particular calcu-

lation. The present text is such a compilation of procedures in orbital

mechanics and spherical astronomy which the author has collected over

about a 30-'year period. Many of the formulas presented herein were
included in an attempt to make the text as self-contained as possible,

without requiring the reader to consult almanacs, ephemerides, or other
reference material. Nothing but the material presented in this report is

necessary to carry out any of the computations described; thus, these

procedures are ideal for programming on computers.
It is not the author's intention to derive or otherwise develop all

the equations and/or formulas presented herein--this task is most ade-

quately covered i/a practically any good textbook on Celestial Mechan-

ics or Spherical Astronomy. (See, for example, any of the general texts

cited.) Any equations, however, which are not widely circulated in the
literature, are either specifically referenced or developed to the point
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Compilation of Methods in Orbital Mechanics and Solar Geometry

where a heuristic argument will suffice to convince the reader that the

equation does what it is claimed to do and what its limitations are. All

the comments, opinions, or other commentary are, of course, the au-
thor's own, and perhaps serve to do nothing but illustrate the author's
own prejudices.

The problem of presenting a completely unambiguous and unique

set of symbols is one that has plagued writers of scientific (and pseudo-
scientific) documents for many years, and the present author offers no

relief in this regard. In several instances, the same symbol may stand
for two or more completely unrelated quantities (e.g., z describes a

coordinate axis, also stands for the component of a vector along this

axis, and is used as the symbol for the zenith distance angle). The

philosophy adopted here is that, when discussing a particular area or
discipline, the symbols most commonly used by most writers in that

area are used. These are defined in the text as encountered and the

use of multiply defined symbols should cause no problem as they are

generally used only in the few pages in the neighborhood of where they
are defined.

The layout of the text is as follows: the coordinate systems in

which the remainder of the text is developed and the systems of time

measurement common in the computation of satellite ephemerides are
presented in chapter 1. The mathematical description of the external

gravity field of the Earth is presented and the restriction in the text to

the use of zonal harmonics is defended in chapter 2. Chapter 3 defines

the author's preference for the set of orbital elements used to describe

and advance in time the position and velocity of the spacecraft, while
chapter 4 introduces the Cartesian form of the equations of motion. The

Lagrange Planetary Equations are not used, but their use in theoretical

developments is mentioned briefly, and some of these theoretical results

are used herein. Numerical comparisons between sundry numerical

procedures are presented. Chapter 5 presents numerical algorithms for
accurately determining the right ascension and declination of the Sun.

The word accurately here refers to the precision of computing a given
parameter relative to that usually required by most near-Earth satellite

applications and not generally to the precision available for, say, some
astronomical applications.

The text concludes with a few very brief remarks on the application
of the present methods to other Earth satellite problems and to the
computation of the orbits of the planets and the Moon. vr_ _ w v
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Chapter 1

Coordinate Systems and Time

The primary coordinate system used in the present text is a quasi-

inertial system, defined by the Earth's equator and the apparent orbit
of the Sun around the Earth with the origin at the center of mass of the

Earth. (See fig. 1-1.) The intersection of the Sun's orbital plane, the
ecliptic, with the Earth's equatorial plane defines a line, called the line

of nodes. The direction defined by the center of the Earth and the node

at which the Sun appears to cross the equator from south to north is

called the ascending node, the first point of Aries, or more usually, the

vernal equinox _ and defines the direction of the x-axis. The rotational
axis of the Earth defines the z-axis, and the y-axis is located in the

equatorial plane in such a way that the xyz coordinate system is a

right-handed one. The ecliptic plane is inclined to the equator at about

23.44 °, the obliquity of the ecliptic, and can be accurately computed

from equations presented later in this chapter.

Z

) Earth north po|ar axis

/
x, 2(

Figure 1-1. Definition of qu_i-inertiM x-axis by intersection of equatorial and
ecliptic planes.
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Compilation of Methods in Orbital Mechanics and Solar Geometry

If the Earth and Sun were both perfectly homogeneous spheres so

that their mutual gravitational attraction followed an inverse-square
law and acted along a line joining their centers, if there were neither

Moon nor planets, and if the Sun were either stationary in the universe

or moved through it on a straight line at constant speed, then the
coordinate system described in the previous paragraph would indeed be

an inertial system. However, none of these conditions hold. The Earth's

figure, both geometrically and dynamically, is closely approximated not

by a sphere but by an oblate spheroid--an ellipse rotated about its

minor or shorter axis--the equatorial radius being about 21 km larger

than the polar radius (6378.160 km and 6356.775 km, respectively). As
shown in figure 1-1, the ecliptic plane is inclined to the equator at about

23.44 ° , and thus, the direction of the gravity resultant of the Earth-Sun

does not pass through the center of mass of the Earth but instead passes
through a point on the Sun side of the line joining the centers of the

Earth and Sun. This produces a gravitational couple, or torque, on the
Earth, and since the Earth is spinning, this torque causes the Earth to

wobble, or precess (fig. 1-2(a)) and nutate (fig. 1-2(b)). Likewise, the
Earth has a rather large Moon which also orbits in a plane inclined

to the equator and which also produces a gravitational torque. This

combined lunisolar perturbation causes the Earth to precess and nutate,
much as a spinning top does, and causes the z-axis to rotate about the

ecliptic pole K in a clockwise direction as seen from the North Pole.

This, in turn, results in the vernal equinox moving clockwise in the

plane of the ecliptic at the rate of about 50 arc-sec/yr, the precession of

the equinoxes. This measured value also includes a small term, called
the planetary precession, due to the other planets, which causes the

plane of the ecliptic, assumed to be fixed when computing the lunisolar

precession, to wobble slightly. The combined lunisolar and planetary
precessions are called the general precession.

(a) Precession only. (b) Precession plus nutation.

Figure 1-2. Sketch illustrating precession only and precession plus nutation on

motion of Earth's pole. Motion of "7is called precession of equinox; P is north
pole of Earth; K is north pole of ecliptic; P moves around K.
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Chapter i

When referring to astronomical coordinates, one generally fixes the

vernal equinox (x-axis) and the equator in one of two ways--either by

referring to their positions at a specific date and then requiring that

these positions be frozen for the duration of the computational period,

or by appending the words "of date" to the positions of the vernal

equinox and equator, which means that these directions are slowly

changing while the computations are being made and refer to their
locations at the current time. If only the precessional effect is being

taken into account (usual for much Earth satellite work) one refers to
mean-of-date coordinates. If nutation is also included, then one refers to

true-of-date coordinates. In the present work, mean-of-date coordinates

are used, except where specifically noted, and are assumed synonymous
with "inertial" coordinates. 1

Celestial objects are located in this coordinate system by the use of

two angles--right ascension and declination--analogous to the more

familiar longitude and latitude, respectively (fig. 1-3). The right
ascension a is measured from the vernal equinox along the equator,

positive east, or counterclockwise as seen from the North Pole of

the Earth. The right ascension is frequently measured in time units

(practically always in astronomy), but for computational purposes,

degrees are used herein. The declination _ is measured along a
"meridian," north and south from the equator positive north, and in

the present work, since we will consider the Earth to be geometrically

a sphere but gravitationally an oblate spheroid, the declination is

numerically identical with the latitude.
If R is the distance from the center of the Earth to the celestial

object, then a vector to the body can be written in the right ascension-

declination system as

r = R /cos 6 sin (1-1a)
sin

r

\

1 In chapter 5, which discusses the determination of the position of the Sun,

proper allowance for the motion of the equinox is made in the nonlinear terms of

the sundry time series used in the computations. Thus, the Sun's position in the

mean-of-date coordinates is accurately determined. No such allowance is made in

the earlier chapters which discuss the position computation •of an Earth satellite--

these coordinate systems are assumed to be truly inertial. The only orbital element

that is affected by this assumption is the position angle of the line of modes (defined

in chapter 4). A small linear term could be subtracted from the motion of this

parameter computed in chapter 4, but the error induced in reflecting this effect is

negligible compared with the inherent accuracy of these simplified equations.

5



I IYSf% g IAAA

Compilation of Methods in Orbital Mechanics and Solar Geometry

/ _Celestial body

x, -_,

Figure 1-3. Definitions of right ascension a and declination df of celestial body.

from which the Cartesian coordinates of the body, in our inertial system,
can be computed. Also, as will frequently be done, if the Cartesian

coordinates are known, equation (1-1a) can be used to compute the

right ascension and declination. (Frequently, the distance of the body
from the Earth center is either unknown or one has only a unit vector

defining the direction of the body. Equation (1-1a) can still be used to

determine the right ascension and declination simply by assuming that
[r] and R = 1.)

Measurements made on the Earth's surface are most conveniently

referred to a set of coordinate axes fixed with respect to the rotating

Earth. The x-axis isdefined by the intersectionof the meridian pass-

ing through the Greenwich Observatory in England--known, cleverly

enough, as the Greenwich meridian--with the equator. The rotating z-

axis isagain defined by the Earth's spin axis,and the y-axiscompletes

the right-handed system. Objects are located on the Earth by the fa-

miliar latitude-longitudespherical coordinates. Latitude ismeasured

positive northward from the equator, along a meridian. Longitude is

measured in the equatorial plane, positiveeastward from the Green-

wich meridian. The point labeled P in figure I-4 has latitude ¢c and

longitude A. The Greenwich meridian isalso labeled,as isthe position

of the nonrotating x-axis,which islabeled x, _/.Assuming a spherical

Earth of radius RE, a vector to the surfacepoint P can be written in
the rotating coordinates

[cos ¢c cos A]rE=RE [cos ¢c sin A (1-1b)sin ¢c

" v- •
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Chapter i

" Z_ Z R

y

x, "/ X R

Figure 1-4. Location of Greenwich meridian and definition of geocentric latitude
Xbcand longitude )_E. Greenwich sidereal time is 09.

In order to relate the coordinates of P in the Earth-fixed axes

(eq. (2-15)) to the inertial system (eq. (2-1a)), the location of the
Greenwich meridian at any time relative to the vernal equinox Og is

needed. Then, in the inertial system

r= = m 0g cos 0g rE= RE cos ¢c sin (0g+_)
0 RE sin ¢c

(1-2)

The latitude ¢c, as determined by equation (1-2), is called the

"geocentric" latitude of P (fig. 1-5(a)) and is measured from the

equatorial plane along a meridian to the line joining P and the origin
of coordinates.

The "geodetic" latitude Cg of figure 1-5(b) is another measurement
of latitude, usually but not always confined to measurements made on

the Earth's surface and is the angle between the equatorial plane and

the normal to the geoidal surface which passes through P, line PAC.

The altitude of a spacecraft at P is measured along the direction of

PA, the local vertical or plumb bob direction, rather than along PB. In

orbit mechanics, the point A is called the subsatellite point•

If the point P were on the surface, as in figure 1-5(a), there is a

simple relation between the geocentric and geodetic latitudes, namely,

a2

tan Cg =_-_ tan ¢c (1-3)

r "- -: ..... : 7
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a C

(a) Point P on surface.

*-X

~

Geoid ////_ P(xp, zp)

a C

(b)SpatialpointP above surface.

Figure 1-5. Sketch of geometry and definition of geodetic latitude _bg and
geocentric latitude _bc of point on and above surface of oblate spheroid.
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Chapter 1

where a and b are the equatorial and polar radii of the Earth, 6378.160

and 6356.775 km, respectively.

In the more general case shown in figure 1-5(b), no such simple
relation exists, neither for the latitudes nor for the height hmin, and

more complex methods must be resorted to. Escobal (1965) presents
an iteration technique. The author's own solution is presented here.

In figure 1-5(b), let Q be any point on the surface of the ellipse cross
section. The distance between P and Q is then

h2 = (x - Zp) 2 + (z - Zp) 2 (1-4)

The problem is to minimize h subject to the constraint that the point

Q (z, z) lies on the ellipse

x 2 z 2

a-_ + _-_ = 1 (1-5)

This is a straightforward minimization problem requiring the use of the

Lagrange multiplier technique. We want to form the function
T" "" '- _

x z 2 )¢ = (x - xv)_ + (z - zp)2 + 9 ;_ + _ - 1

where g is the Lagrange multiplier. The three equations

2gx
0¢ _ 2 (z - zp) + = 0Oz -_-

2gz0¢ _ 2 (z - zv) + = 0Oz- -_-

and equation (1-5) are sufficient to determine the three unknowns,

x, z, and g. After a fair amount of elementary algebra we arrive at the
relation

F(_) = A4_ 4 + A3_ 3 + A2_ 2 -t- AlE + A0 (1-6)

9
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Compilation of Methods in Orbital Mechanics and Solar Geometry

where

A4 = a(1 - F) 2

A3 = 2_r(1 - F)

A2 = (1 - F) 2 + Z

A1 = - r)

A0 =

O_F2 -

-2F(1

F 2

and ( = x/xp and 77 = z/zp. Equation (1-6) is a quartic equation

which can be solved exactly using the classical Descartes' method. (See,

for example, Escobal 1965.) However, since the Earth is very nearly
spherical, the author has found that the Newton-Raphson iteration

technique generally converges in one or two iterations and prefers that
method. In either case, once _ is found, then

from which

1

r/= (1-_) (1-7)1-F -

x = _Xp } (l-S)z _Tzp

give the coordinates for point A, the subsatellite point. The height
hmi n is then found by substituting these coordinate values into
equation (1-4). The geocentric latitude is found from

¢c = tan-1 z
x (1-9)

and the geodetic latitude from equation (1-3).

Sidereal Time

The angle 0g in equation (1-2) is a very important quantity in
most Earth orbit applications because it relates the rotating coordinate

system, in which most measurements are made or related, to the inertial

coordinate system, in which most calculations are made. This angle is
10
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Chapter i

variously referred to as the Greenwich hour angle of the vernal equinox
or as the Greenwich sidereal tirn_-the latter is used herein.

An approximate method for estimating the sidereal time for 0 hr

GMT of any date is given as follows (more precise methods will be

given following this short section). The sidereal time at 0 hr GMT is

Oh on approximately September 22 (exactly zero on passage through
the autumnal equinox) and increases at the rate of 3m56s.5554 per

day (see the next section "Time" following the coordinate discussion).

Now, 3m568.5554 is very nearly equal to (4 m - 3s.5). Therefore, if Ns
is the number of days from September 22, then the sidereal time is

approximately

090 _ (N, x 4) min - (N, x 3.5) sec

For example, find the approximate sidereal time at 0 hr GMT on

March 1. September 22 is day 265, and March 1 is day 60. Then,

the number of days from September 22 to March 1 is (365 - 265) +

60 or 160 days. Thus, the sidereal time for 0 hr GMT on March 1 is

approximately
(160 x 4) min - (160 x 4) sec

or 10h30rn40 s. The Astronomical Almanac for 1985 (AA85) gives

10h34m50 s. The reason for most of the difference is that in 1985,

the autumnal equinox occurs at 6 hr GMT on September 21, which

is 0.75 days earlier than assumed here. If we make this correction

(which we usually wouldn't do, as if we knew what correction to make,
we wouldn't have to use this approximate method), we would get

lOh33m37 s, which is _ust a bit more than a minute off.

Incidentally, the day of the year for any given calendar date can be

computed from the equations (Almanac for Computers 1980)

=(_) }
N 27_M _ 2 _ + D - 30 (Nonleap year)

__/275M __/M__+ 9) (1-10)N-\ 9 / \ 12 +D-30 (Leap year)

where M is the month (1-12) and D is the day (1-31). The symbol ( )

means "integer value of."
In order to compute the sidereal time to an accuracy of a few

hundredths of a second, needed for many space applications, we need

to introduce the concept of Julian date.
11
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The Julian date associated with a given calendar date is equal to

the number of days which have elapsed between noon, January 1,

4713 B.C. (November 24, 4713 B.C. in the modern calendar) and
the date in question. This date was selected by astronomers as
preceding the earliest recorded astronomical observations so that all

known observations will have a positive Julian date, making it very easy

to determine the time intervals between events. With all the sundry
calendars which have been in use throughout history, the Julian date is

generally found by referring to tables corrected to the present Gregorian

calendar. However, for the years 1801-2099 A.D., a period probably
inclusive for most of us, the conversion of Gregoric calendar date to

Julian date can be carried out by the following formula (Almanac for
Computers 1980):

JD = 367Y- + + D

where

UT

+ 1721013.5 + _- - 0.5 sgn (100Y + M - 190002.5) + 0.5

(I-11) _T

Y = year (1801 < Y < 2099)

M = month (1 < M _< 12)

D = day (l _< D _< 31)

and UT is the Universal time (Greenwich mean time, see later in

this chapter for discussion). The symbol ( / means "largest inte-

ger" function. The last two terms add up to zero for all dates af-
ter February 28, 1900, so that these terms may be omitted for all

subsequent dates. (There is another algorithm quoted by Blackadar

(1984), which reportedly gives the correct Julian date for any calendar
date from 4713 B.C. to 3500 A.D.--some readers might find this more
useful.)

Therefore, in order to compute the Greenwich sidereal time, GST,
for any date and time T, use the following algorithm:

1. Set UT = 0 in equation (1-11) and find the Julian date for 0 hr
UT of the date in question.

12
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Chapter 1

2. Find the Greenwich sidereal time at 0 hr, Ogo, from the equa-

tion (Eseobal 1965, or the Explanatory Supplement to the Astronomical

Ephemeris 1961, for example)

890 = 99°.6909833 + 36000°.76892Tu + 0°.00038708T 2 (I-12)

(rood(360))

where the units are in degrees, and
JD - 2415020.0

Tu = (1-13)
36525.

is the number of Julian centuries from noon on January 1, 1900.

3. Let T be the number of minutes of mean solar time (usual clock

minutes) from 0 hr UT to the actual time in question. Then, during

this time interval, the Earth has rotated

AOg = 0°.25068447T (1-14a)

and hence the GST is

Og = Ogo + A0g (1-145)

and now the Earth-fixed (rotating) coordinates can be related to the

inertial coordinate system. Note the use of equation (1-12) implies a
mean-of-date coordinate system, as nutational terms are not included

in this equation.

Both the mean sidereal time (precession only) and the apparent

sidereal time (nutation also included) are tabulated in various almanacs,

ephemerides, for example. Sidereal time is generally expressed in

hours-minutes-seconds, even though it is usually used in degree units.

To convert from decimal degrees to decimal hours, simply divide by

15--the Earth rotates 360/24 or 15 deg/hr. To display the accuracy

of equation (1-12), tables 1-1 and 1-2 show the mean sidereal time

computed from equation (1-12) and the seconds only of the mean
sidereal time taken from the AA85. 2 The first of each month is shown.

The maximum error in table 1-1, for the year 1985, is about 0.07

second when comparing the almanac data with those computed from

equation (1-12). The last column in the table shows the mean sidereal
time computed from a set of formulas published in AA85 and given as
follows:

0go = 100 °.4606184 + 36000 °.77005T_u + 0°.000387933T_ 2

- 0°.000000258T_ 3 (1-15)

2 The Astronomical Almanac 1985.

13
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Compilation of Methods in Orbital Mechanics and Solar Geometry

Table 1-1. Comparison of Computed and Published Mean Sidereal Times
for First Day of Each Month for Year 1985

Julian

Date date

Jan. 1

Feb. 1

Mar. 1

Apr. 1

May 1

June 1

July 1

Aug. 1

Sept. 1

Oct. 1

Nov. 1

Dec. 1

where

Mean sidereal time, 8g, from--

Equation (1-12) AA85 Equation (1-15)

h m 5

2446066.5 6 42 21.8975

2446097.5 8 44 35.1139

2448125.5 I0 34 58.6641

2448156.5 12 37 11.8804

2446186.5 14 35 28.5413

2446217.5 18 37 41.7576

2446247.5 18 35 58.4186

2446278.5 20 38 11.6349

2446309.5 22 40 24.8512

2446339.5 0 38 41.5121

2446370.5 2 40 54.7284

2446400.5 4 39 11.3894

21.9674

35.1838

58.7341

11.9505

28.6115

41.8279

58.4889

11.7053

24.9218

41.5827

54.7990

11.4601

21.9674

35.1838

58.7340

11.9504

28.6114

41.8278

58.4888

11.7052

24.9216

41.5826

54.7990

11.4600

7_= JD- 2451545.0
36525.

which is the number of Julian centuries from January 15, 2000 A.D.

Neither equation (1-12) nor equation (1-15) isexact. Equation (1-15)

gives somewhat better resultswhen applied to post-1984 data. The

reason for this is that in 1984 the International Astronomical Union

adopted a new revisedset of physical constants which slightlychanged

some of the numerical constants in the time series---compare the

numerical coefficientsof Tu and T_ in equations (1-12) and (1-15),for

example. These new constants include the effectsof general relativity

and are arguably more precise than the older, pre-1984 constants,
14
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Chapter 1

although the absolute differences between the numerical results are of

the order of hundredths of arc-seconds.

Table 1-2, taken directly from AA85, shows both the mean (pre-

cession only) and apparent (nutation included) sidereal times, and the

differences between them, for the same dates.

Table 1-2. Published Values of Apparent and Mean Sidereal Times for

First Day of Each Month for Year 1985

Apparent sidereal time

Date h m s

Jan. 1 6 42 21.1326

Feb. 1 8 44 34.4222

Mar. 1 10 34 57.9653

Apr. 1 12 37 11.1409

May 1 14 35 27.7665

June 1 16 37 41.0078

July 1 18 35 57.7705

Aug. 1 20 38 11.0803

Sept. 1 22 40 24.2781

Oct. 1 0 38 40.8663

Nov. 1 2 40 54.0502

Dec. 1 4 39 10.7768

Mean sidereal time,

9

21.9674

35.1838

58.7341

11.9505

28.6115

41.8279

58.4889

11.7053

24.9216

41.5827

54.7990

11.4601

Difference,

fl

--0.8348

-0.7616

-0.7688

-0.8096

-0.8450

--0.8201

-0.7184

--0.6250

-0.6435

-0.7164

-0.7488

-0.6833

As seen, the differences are of the order of 1 sec, the mean sidereal

time being about 1 sec later than the apparent sidereal time for this

particular time interval. If the additional accuracy is needed (i.e., if the
apparent sidereal time is needed), the following correction, called the

Equation of the Equinoxes, can be added to the mean sidereal time as

computed either from equation (1-12) or the sequence following it. The

Equation of the Equinoxes is defined as the right ascension of the mean
15
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Compilation of Methods in Orbital Mechanic8 and Solar Geometry

equinox referred to the true equator and equinox. The expression for
the apparent sidereal time is

(Og) apparent = (00) mean + A¢ cos E (1-16)

where A¢, called the nutation in longitude , is given approximately by
(Smart 1977, or Escobal 1968)

A¢ = - (17".233 + O".O17Tu) sin l-/+ 0".209 sin 21_ - 1".273 sin 2L

-0".204 sin 2C (1-17)

where A¢ is in arc-seconds in this correction formula in which (Escobal
1968)

f_ = longitude of mean ascending node of lunar orbit, measured in

ecliptic plane from mean equinox of date, deg

= 259 ° .132750 - 1934 ° .1420083Tu + 0 °.00207778Tu 2

+ 0°'0000022222T_ (1-18)

L = mean longitude of Sun, measured in ecliptic plane from mean

equinox of date, deg

= 279°'6966778 + 36000°.7689250Tu + 0°-000302500T 2 (1-19)

C = geocentric mean longitude of Moon, measured in ecliptic plane

from mean equinox of date to mean ascending node of lunar

orbit, and then along orbit, deg

= 270°.4341639 + 481267°.8831417Tu _ 0°.00113333Tu 2

+ 0°.oooo01sssgT2 (1-20)

= mean obliquity of ecliptic, deg

= 230.4522944 - 0°.0130125Tu - 0°.0000016389T 2

+ 0°'00000050278T3 (1-21)

The correction to mean sidereal time using equations (1-16) to (1-21)
is tabulated in table 1-3.

The nutation corrections computed from equations (1-16) to (1-21)
agree very well with the differences presented in the last column of

table 1-2, the maximum error being about 0.014 sec in November.

Escobal (1968, pp. 252-260 or pp. 304-305) gives another expression
for the nutation in longitude which is reportedly accurate to 0.0001
arc-see,if such accuracy isneeded.

16
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Chapter 1

Table 1-3. Computed Differences Between Mean and Apparent Sidereal Times

for First Day of Each Month for Year 1985, With Intermediate Angular

Values Included

Date

Jail. 1

Feb. 1

Mar. 1

Apr. 1

May 1

June 1

July 1

Aug. 1

Sept. 1

Oct. 1

Nov. 1

Dec. 1

_, deg

55.1508

53.5093

52.0266

50.3850

48.7964

47.1548

45.5662

43.9246

42.2831

40.6944

39.0529

37.4643

L, deg

280.5969

311.1519

C, deg

31.4281

79.8964

e, deg

23.4412

23.4412

A-_ C08 _

ax.c-_c

(corrected)

-0.8367

--0.7360

338.7501

9.3052

38.8746

69.4296

98.9991

129.5541

160.1092

189.6786

220.2337

249.8031

88.8355

137.3038

172.5956

221.0639

256.3558

304.8241

353.2964

28.5843

77.0526

112.3445

23.4412

23.4412

23.4412

23.4412

23.4412

23.4412

23.4412

23.4412

23.4412

23.4412

-0.7671

---0.8125

-0.8539

-0.8243

-0.7222

-0.6309

---0.6443

-0.7115

-0.7344

-0.6710

The Greenwich sidereal time was defined as the hour angle of the

vernal equinox 8g (fig. 1-4). The local sidereal time is defined as the hour
angle of the vernal equinox measured from the observer's meridian H.

Thus, from figure 1-4 it is seen that

H = 0g + AE = LST (1-22)

and, when expressed in time measure, is the number of sidereal hours
since the observer's meridian was on the vernal equinox. Note that this

quantity, 0g + AE, was used in equation (1-2) which related r E in the

rotating system to the vector • in the inertial axis system.
17
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Compilation of Methods in Orbital Mechanics and Solar Geometry

As stated earlier, the Greenwich sidereal time Og allows us to relate

directly quantities calculated in the "inertial coordinate" system with

those in the rotating, Earth-fixed axis system (fig. 1-4).

In figure 1-6 we show the position of the vernal equinox and the
Greenwich meridian, the two "x-axes" of coordinates, as well as the

position of an Earth-fixed observer O and the spatial location of an

Earth satellite. It must be emphasized that this picture is "frozen in

time," as the Earth is rotating about the pole P, and the satellite is

moving. However, at this instant, the satellite has a definite set of

coordinates--right ascension as and declination 6n, as measured in the

inertial coordinate system, and a definite latitude Cs = 68 and longitude

As measured in the Earth-fixed coordinates. The subsatellite point S is
defined to be the point on the surface when the geocentric radius vector

of the spacecraft (S/C), rs, pierces the Earth's surface. The angular
coordinates of S are those of the spacecraft.

Let Re be a vector to the observer in the rotating coordinates
(¢o, Ao); Re is the magnitude of the Earth's radius,

¢osin ,_o / (1-23)
sin ¢o J

Z

P

_l_ _ _- _-. _ bl __

v

t

Figure 1-6. Sketch relating position of observer in rotating Earth-fixed axes to
inertial position of celestial body.
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The coordinates of the spacecraft are similar,

L[cosCscosrs = rs /cos ¢;ssin (1-24)
sin Cs

These two vectors form a plane, as shown in figure 1-7. The angle

z is called the zenith distance, where z T is the zenith distance of

the spacecraft as measured at the center of the Earth, and zo is that
measured by the observer O. For near-Earth objects, such as an Earth

satellite, the Moon, and for some purposes the Sun, we have z T ¢ Zo

(parallax effect). For observation of stars, though, as rs approaches oo,

z T approaches Zo, and Zo can easily be found from

Re. l" s

COS Z o _ pi.er8

= sin¢o sin¢_+ cos¢o cos_, cos(As-Ao) (I-25)

Define the radius from the observer to the spacecraft,

and hence

ill _ t'S -- R_

Figure 1-7. Zenith angle ZT measured by an observer at O, and one measured at
center of Earth, zo. Difference is geocentric parallax of celestial object.
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Compilation of Methods in Orbital Mechanic8 and Solar Geometry

which can be put into the form

r s cos z o -R e

cos z T .= (1-26)
+ r2_  Rers cos Zo)1/2

From equation (1-26), it can be seen that, as rs approaches cx_, Zo
approaches z T as expected.

The sine and cosine of the azimuth of the spacecraft, A, can be
found by applying the law of sine and the law of cosine for sides to the
spherical triangle POB of figure 1-6

sin A = cos Cs sin (,_s -Ao) /

sin Zo

cos A = sin ¢_s.--si.___n ¢___ocos Zo (1-27)

cos ¢o sin zo

Don't forget as, 6s, zo, ZT, and A are time-dependent quantities.

Another coordinate system that is very often encountered is a local

axis set fixed in some definable way to the orbiting spacecraft. Mea-

surements with on-board instruments and/or measurement direction

vectors are made in this local system, and one must frequently trans-

form vectoral quantities back and forth between this local system and
either the inertial system or the Earth-fixed system defined earlier.

The most fundamental local system is one which is defined com-

pletely in terms of the dynamic variables r and v, the position and
velocity vectors of the spacecraft given at some time t in the inertial

coordinate system. These can perhaps best be visualized by thinking

of the spacecraft as an airplane flying in the "normal" flight position.
The unit vector

= = e2 (1-28)
r g3

defines a unit vector in the "up" or local vertical direction, positive
when pointing away from the center of the Earth.

A second vector

,r[ml]en Iv × rl rn2 (1-29)
rn 3

is a unit vector pointing out the "right wing" of the spacecraft and
20
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Chapter 1

is opposite in direction to the orbital angular momentum vector. The
third vector

i ]ev =- er × en = n2 (1-30)

n3

is a unit vector pointing "forward." If the orbit were exactly circular,

then _v would be parallel to the velocity vector v.
These three mutually orthogonal unit vectors are sketched in

figure 1-8.
Z

er

Figure 1-8. Sketch showing relation of spacecraft-fixed unit vectors _r, _n, and
_v to inertial axes.

If one has a vector vI in the inertial system, then its components in

the local S/C system are simply

Vn = en " Vl I

Vv = ev " vI

Vr = er "vI

or in matrix form

[vn][,1,2,3]rv, ]v L = Vv = ml m2 m3 |Vly
Vr nl n2 n3 LVlz

(1-31)

(1-32)

The matrix of equation (1-32) is a pure rotation matrix, and hence

transformation from the local S/C axis system to the inertial axes is

readily accomplished by using the matrix transpose. In particular, let

v L be a vector defined in the local S/C system by its magnitude and by
the azimuth angle A L and elevation angle "/L as shown in figure 1-9.

T

r

A

T"

v -

m.
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Compilation of Methods in Orbital Mechanics and Solar Geometry

The localvector components are

vn = v L cos "TL sin AL }
Vv = v L cos "YL cos A L (1-33)

Vr = VL sin _tL

and the components of this vector in the inertial system are then

VLy[ = g2 m2 n2 Vv (1-34)

VLz J g3 m3 n3 Vr

eT

Figure 1-9. Description of orbiting vector VL in local spacecraft axes defining
azimuth A L and elevation angle _/L.

Equation (1-2) then provides the link between the inertial coordi-

nate system and the Earth-fixed coordinate system, and hence, vector
quantities can easily be transformed between the Earth-centered coor-
dinate and the local S/C system.

Other instrument or spacecraft-specific coordinate transformations

can, of course, be readily defined relative to the local dynamic coor-

dinate system defined by equations (1-33). One has merely to chain
the sundry transformation matrices together to provide transformation

links between any of them and the inertial or Earth-fixed systems.

Time

The concept of time is one that most of us take pretty much for
granted. But time is one of the most difficult concepts to resolve in

orbital mechanics and astronomy because of the many very small effects

that creep into its measurement and definition. As precision methods
22
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ChapSer i

were developed, many time concepts have had to be redefined because

parameters which were once thought to be constants or absolutes were
found to be indeed variables. Entire books have been written on

this subject alone. Consequently, the following discussion will treat

only the main features of time and will serve only to permit the

gross features of and differences between sidereal time (or time with

respect to the fixed stars) and solar time (time with respect to the

Sun) to be understood and appreciated. Chapter 10 of Green (1985)
contains a fairly thorough discussion of the various times considered in

modern astronomy. However, these concepts are generally much more

stringent than those required in most Earth orbital applications of orbit

mechanics theory. (See also Smart 1977, chap. VI.)

In figure 1-10 is shown a portion of the Earth's orbit around the

Sun. Suppose that, at point (!), there are two observers on the Earth

located exactly 180 ° apart in longitude. Observer A is watching the
stars and observer B is watching the Sun. Suppose further that they
are in constant communication with each other (relativity effects are

ignored) and that at the exact instant that observer A reports a star on
his meridian, observer B reports that the center of the Sun is exactly on

his meridian. Now, observer A has been watching the stars for years.

He has constructed a clock, based on stellar time, which is extremely

(infinitely) accurate. He has defined 24 hr of sidereal time as the interval
between two successive passages of the same star over his meridian (see

the note at the end of this chapter). Each hour is divided into 60

sidereal rain and each minute into 60 sidereal sec. Observer A has set

and calibrated an identical clock which he has given to B. So, at the

instant _, both A and B start their clocks.

///Earth orbit

A_ aj

B
®

Figure 1-10. Position of Earth relative to Sun on two consecutive days, (_) and

_), and 6 months later, t_).
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Compilation of Methods in Orbital Mechanics and Solar Geometry

At point {_) (fig. 1-10), which occurs one "day" later, observer A
calls out that his star is again on his meridian and that his clock reads

24 hr. Observer B notices that, sure enough, 24 hr has passed on his

clock too, but the Sun has not yet appeared on his meridian. In fact, he
finds that he must wait an additional 3 rain and 56 sec for the Sun to

line up in his instrument. The following day, he finds that he must wait

7 rain 52 sec, etc., with each day being about 3 rain 56 sec longer than
the day before. At the end of one full revolution of the Earth around

the Sun, 1 yr, observer B finds that his observation of the Sun's center
on the meridian is exactly 24 sidereal hr late.

When the Earth arrives again at point (D, 1 yr later, observer B

would find that he has made 365.2422 revolutions with respect to the

Sun. Observer A, of course, would find that he has made 366.2422

revolutions with respect to the fixed stars. (When B makes one daily
rotation with respect to the Sun, A has made one full revolution with

respect to the stars plus a little more--in fact, 3m56 s more, or a in

figure 1-10. These "little mores" add up to exactly 1 full day in 1 yr.
If the Earth were not rotating, the Sun would still make one apparent
revolution around the Earth in 1 yr.

Now, observer B finds that the amount he must wait each day for
the Sun to appear on his meridian is not exactly 3m568 every day. The

interval is somewhat longer in December and shortest in September (see
fig. 1-11), but the mean, averaged over 1 year, is 3 rain 56 sec

1440 rain/day
= 3m56s.5554

365.2422

Observer B correctly attributes these daily variations to two factors--

the apparent orbit of the Sun around the Earth is not a circle but an

ellipse and the ecliptic, the plane in which the Sun appears to move, is
inclined to the equator. Both these factors cause a nonuniform motion
of the Sun about the Earth (fig. 1-11).

Figure 1-11 shows a plot of the difference between the solar day and

86400 mean solar sec for each day of the year. The solar day is longest
in late December for two reasons: (1) the Earth is near perihelion and

has the largest angular velocity in its orbit and (2) the Sun is also near

the winter solstice, and consequently, is moving essentially parallel to

the equator. The solar day is shortest in mid-September (and almost
as short in mid-March) because the Sun is crossing the equator at these

times and hence has the smallest component of its angular velocity
projected onto the equator.
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Figure 1-11. Plot of quantity At = Length of solar day - 86400, in mean solar
seconds, versus day of year.

Observer A now asks the very legitimate question: Why can't B use

A's clock to keep his (B's) time? The answer is, of course, that he can,
but B would not find this aesthetically pleasing and it would, in fact,

cause him considerable "headaches" later on. If B used A's clock, then

at the starting position shown at (D in figure 1-10, B would define his
time as local noon and A's time as local midnight. A new day would

start for A and would start for B 12 hr later. However, 6 months later,

A and B would be at position _ of figure 1-10. Now, keeping A's time,

midnight for B would occur when the Sun is directly overhead on his

meridian, that is, at midday. Also, during the 6 months which have

elapsed, if B retains the notion to start a new day 12 hr after the Sun is
directly overhead for him, he would find that the change from one day
to another would occur at various times of day throughout the year.

This would certainly lead to some confusion if not some real practical

difficulties.

Long before the beginnings of recorded history, man has regulated

his everyday affairs by the Sun--working, hunting, etc., by day and

sleeping at night. Since even now, most people work during the day,
it is convenient to have days change from one to the other during the

hours of darkness, that is, at midnight. Therefore, a time geared to the

Sun would be extremely useful. However, the direct use of the observed
25
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Compilation of Methods in Orbital Mechanics and Solar Geometry

Sun would produce days which vary in length throughout the year for
the reasons mentioned earlier.

In order to construct a clock which keeps uniform solar time of

some sort, B proposes the use of a fictitious Sun, the fictitious mean
Sun, which orbits the Earth in the equatorial plane, rather than the

ecliptic, and moves at a uniform rate such that the fictitious mean Sun

completes one revolution about the Earth in exactly the same time

period as does the true Sun--i.e., in 365.2422 mean solar days. Since
the fictitious Sun moves in the Earth's equatorial plane at a uniform

rate, its right ascension is increasing at a uniform rate. The difference

between the right ascensions of the mean Sun and the true Sun is called

the equation of time (see fig. 1-12):

ET = RAMS - RATS (1-35)

and can readily be computed from simple orbit mechanics (see, for
example, Smart 1977) and, to terms of the second order in the Earth's

eccentricity, is given in units of radians by

ET = y sin 2L- 2ee sin Ms + 4yee sin Ms cos 2L

-_y sin 4L- ee2 sin 2Ms+... (1-36)

where

y = tan 2
2 (1-37)

E = obliquity of ecliptic, equation (1-21)

ee = eccentricity of Earth orbit

= 0.0167514 - 0.0000418Tu - 0.000000126T_ (1-36)

and where the right ascension of the mean Sun, RAMS, and the Sun's

apparent mean anomaly (see chap. 4 for the definition of some of the

orbital element concepts given here) are given by (Escobal 1968)

L --- RAMS (eq. 1-19) or L + A¢ cos e if correction

needed

M8 = 358°.475644 + 35999°.04975Tu _ 0o.00015Tu2

- 0°.00000333Tu 3

(1-39a)

(1-39b)
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Z

y
Mean Sun

:r,-)

Figure 1-12. Sketch showing geometrical relationship between true Sun and mean
Sun.

The nonlinear terms in this equation are due to the easterly motion

of the Earth's perihelion.

See chapter 10 of Green (1985) for a modern definition of E T and

an equation for its calculation. The concept of the equation of time is

no longer used in modern astronomy, although as a computational tool,
it is still quite useful. The fall from grace of this concept came about
when it was discovered that the rotational speed of the Earth about its

axis was not truly a constant. The time definitions we have given are,

therefore, only approximately correct, as they hinge on the constancy of

this quantity. Equation (1-35) is still correct, however, if ephemeris time
• P . .

is used. Ephemeris time is the time used in the differential equations
of motion. It is thus based on a dynamical concept, rather than the

geometrical concepts used up to now.
When B sets his clock to the fictitious mean Sun, he is now

measuring mean solar time, or more commonly, the ordinary clock time,
with which we're all familiar. The international time, universal time,

formerly called Greenwich mean time, is computed as mean solar time,
with Greenwich mean noon being the instant that the mean Sun is on

the Greenwich meridian.

As pointed out, many of the simplified time concepts discussed here

are only approximately true because they depend on the constancy of
the rotational rate of the Earth with respect to the fixed stars. Within

the last half-century or so, it was found that this premise is not strictly

true, and other definitions of time, which do not depend on the Earth's

rotation, have been introduced. These very small differences, however,
27
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Compilation of Methods in Orbital Mechanics and Solar Geometry

are generally of little importance in applications of these equations to
Earth orbit mission design and studies and are generally ignored. These

concepts are quite accurate enough for determining the position of the
Sun, for example, as will be shown in chapter 5. Most of the new texts

on Spherical Astronomy address this question of time most adequately.
(See, for example, Green 1985, Taft 1981, Taft 1985, and the edition of

Smart's classical text revised by Green listed herein as Smart 1977.)

In practice, of course, it would be impractical for every location
on the surface to keep its own mean solar time. To standardize this

somewhat, the Earth was, by international agreement, divided into 24

time zones of approximately 15 ° of longitude. The time zone centered

at 0 ° of longitude, the Greenwich meridian, and extending for 7.5 ° on
either side of the 0 ° meridian keeps Greenwich mean time. The time

zone at 15°+ 7.5 ° west is the first time zone, and so on. For the United

States, eastern standard time is referenced to the 75th meridian, central
time to 90 °, mountain time to 105 °, and Pacific standard time to 120 °

west longitude. Thus, since 75 ° W corresponds to 5 hr of time we can

convert standard times in the four time zones to GMT as follows:

Eastern standard time + 5 hours }

Central standard time + 6 hours

Mountain standard time + 7 hours = GMT

Pacific standard time + 8 hours

(subtract 1 hour from these numbers for daylight savings time).

With all the perturbations and undulations which time can take, the
really important thing to remember for our purpose is that a sidereal

year has 366.2422 mean sidereal days, and the mean solar year has
365.2422 mean solar days. Thus,

366.242224 hours of mean solar time = 24 x
365.2422

= 24h3m56s.555 of mean sidereal time
and

24 hours of mean sidereal time = 24 x 365.2422
366.2422

= 23h56m48.091 of mean solar time

The ratio 365.2422/366.2422 is, of course, the ratio of any (mean solar
time interval)/(mean sidereal time interval). This is the source for

the weird-looking constant 0.25068447 in equation (1-14). The Earth
rotates 0.25 ° in 1 sidereal min. Therefore, in 1 mean solar rain it rotates
28
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366.2_t22
0.25 × - 0.25068447 deg/mean solar rain

365.2422

Note: the scenario between the two astronomers was, of course,

highly simplified in many ways, and in fact, one concept used was

intentionally erroneous at that point for clarity. A sidereal day is

actually defined as the time interval between two successive passages

of the vernal equinox over the same meridian, rather than the interval
between two successive passages of a fixed star (one whose proper motion

is essentially zero}. Since, as mentioned earlier, the vernal equinox

is moving westward at nominally 50 arc-sec/yr, the sidereal day is

actually a bit shorter than it would be if the fixed star were used for

time definition. The precessional constant is 50.g564 arc-sec/yr and

is measured along the ecliptic. Its component along the equator is

thus 50.2564 cos e3.44 = 46.1091 arc-sec/yr, or 0.19694 arc-sec/mean
sidereal day, and hence, the day as defined is 0.12624/15 or 0.008416

sidereal seconds shorter than it would be if it were defined relative to

the "fixed" stars. This amounts to about 1/120 sec. (See, for example,

Motz and Duveen 1966.)
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Chapter 2

Gravitational Field of the Earth

The external field of the Earth can be described mathematically

in many ways. Because of its rotation, and its plasticity, especially

during its early formative years, the Earth is very nearly an oblate

spheroid. Hence, for many analytical purposes, it is convenient to ex-

pand the Earth's external gravity field in a series of spherical harmonics

(Heiskanen and Moritz 1967, p. 59):

V = E Anrn rn+l +
n=O m=O

in which t# and A are the latitude and longitude, respectively, and r is

the distance from the origin to the point at which the potential is to be

computed. The constants Anm and Bnm are integrals determined by
the internal mass distribution of the Earth, and

Rnm (¢, A) = Pnm (sin _b) cos mA

Shin(V, A)= Pnm(Sin _) sin mA

(2-2)

(2-3)

in which Pnm are associated Legendre polynomials, are the spherical

harmonics.

The integrals Anm and Bnm are in practice determined from the

precision tracking of large numbers of Earth satellites and then per-

forming statistical fittings to inverted data to determine the values for
these constants, which best fit the observed tracking data. The God-

dard Space Flight Center (GSFC) has done much of this work to high

precision.

Equation (2-1) essentially assumes that the Earth is a distorted
sphere. The n = 0 term is the spherical part of the gravity field (the

inverse square part), and the subsequent terms are needed to describe

the departure of the body from sphericity--the greater this departure,
the more terms are needed to describe the external potential to a specific

accuracy, and the larger are the constants Anm and Bnm.
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Compilation of Methods in Orbital Mechanics and Solar Geometry

The central force part of the gravity field is usually described by the
term

Vcf = P- (2-4)
r

where # is the gravitational constant. If one takes the n = 0 terms out

of equation (2-1) and writes successively

V = A_..._+ E AnmRnm(¢'A) Snrn(¢,A)
r rn+l + Bnrn rn+l

n=l m=O

=-_ I+ [Jnmn,_m(¢,A)+KnrnSnm(¢,A)] 2-5)r

n=l m=O

where

AOO = #

Rne dnm _ Anm
AO0

RnKnm_ Bnm
AO0

and Re is the "equatorial radius" of the body, then equation (2-5), as

written, describes the gravity field as a central force term (the term #/r)
plus a "perturbation potential" (the summation terms of eq. (2-5)).

If the origin of the coordinate system coincides with the center of

the mass of the central body, a usual assumption, then (Heiskanen and
Moritz 1967, p. 63)

J10=Jll =K]I =0

and we write equation (2-5) as

v = _z _+ [J._ R_(¢,_)+K._ S._(¢,_)]r

n=2 m=O
(2-6)

The various types of harmonics in equation (2-6) are sketched in
figure 2-1 and are identified by

m = O, zonal harmonics

m = n ¢ O, sectorial harmonics

m _ n ¢ O, tesseral harmonics
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Zonal Sectorial Tesseral

P,_o Pnn P,_m

(,_,:_o) (,_# m # o)

Figure 2-1. Sketch showing various types of harmonic coefficients. White area
implies elevation above; black, elevation below mean spherical surface.

The zonal harmonics are functions of latitude only and hence can only

reflect north-south variations in the gravity field.

Many of the precision orbit prediction programs used by GSFC,
NOAA, and others use large numbers of terms from equation (2-6).

GSFC, for example, has (at least) two such programs, one of which goes

up to n = m = 8 and the other to m = n = 21. The GEM-8 model is the

one used for SAGE I and II and SAM orbit work (these programs include

other than gravitational effects, e.g., drag, atmosphere models which are

affected by sunspot activity, relativistic effects, other planetary effects).

For many applications it is generally found that the sectorial and

tesseral harmonic terms in equation (2-6) can be neglected and that only
the first few zonals are needed. Thus, if we retain only the m = 0 terms,

then all the Knm terms vanish, and letting Jno = .In, equation (2-6)

can be written as

[ ]Y = _ 1 + _ Jn Pn(sin ¢) (2-7)
r

n=2

where Pn is the nth-order Legendre polynomial. The first few of these

are (Heiskanen and Moritz 1967, p. 23)

P0(x) = 1
Pl(x) = x

1
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and the rest can be generated from the recursion formula

P,(x) - (n- 1) (2n + 1)xPn(x )n Pn-2(x) + -- (2-8)
n

If we go as high as J6, we can write equation (2-7) as (Escobal 1965)

r 2- (1-3 sin 2 ¢)+-_- (3-5 sin 2 qJ)

×sin ¢--_ (3-30 sin 2 ¢+35 sin 4 _p)--_

x (15-70 sin 2 g,÷63 sin 4 g,) sin

+_-_ (5-105 sin 2 ¢+315 sin 4 ¢-231 sin 6 ¢)+...

(2-9)
The constants in equation (2-9), as obtained from GSFC in March 1986,
are

= 398600.64 km3/sec 2

R = 6378.14 km

•12 = +1082.6271E-6

J3 = -2.5358868E-6

J4 = - 1.6246180E-6

J5 = -0.22698599E-6

J6 = +0.54518572E-6

The potential (?q. (2-9)) and these constants are used in some of the

author's orbit programs to generate short-term ephemeris data for use

in the SAGE II and SAM II data reduction. (See chap. 4.)

T
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Chapter 3

Orbital Elements

As will be seen in chapter 4, the equations of motion in Cartesian

coordinates of a satellite orbiting about an oblate central body (zonal

harmonics only) are rather simple to write, and with modern computers,

it is possible to numerically integrate these rapidly and accurately.

However practical for number generation, Cartesian coordinates are
not the most useful coordinates for visualizing or otherwise describing

a spacecraft orbit. A time sequence of spacecraft position and velocity

vectors by itself has little pictorial value and, consequently, conveys
little information about the evolution of the orbit.

There are several sets of "orbital elements" used in astronomy,

astrophysics, space sciences, etc., each of which is most useful in

the specialized application for which it was conceived. It takes six

independent coordinates to completely specify the state of an orbiting

spacecraft and permit the determination of its future (or past) state (for

example, three position and three velocity Cartesian components), and

hence, it also takes six independent orbital elements. For Earth orbit

analysis or "Keplermanship" (Escobal's term for playing games with

the two-body equations), the set described below is the one favored by

this writer, in both its utilitarian and interpretive senses.
From the first of Kepler's laws, we know that (for central body

motion) the orbit of an Earth satellite is an ellipse with the center of
the Earth at one of the foci. The ellipse has two axes--the major axis

AB and the minor axis CD in figure 3-1. The origin is at point O, the

center of the Earth. The spacecraft S is located by the radial position

r and the angle f measured from the major axis and where f = 0 is

defined by the radius OA where the spacecraft is closest to the Earth,

the perigee. The equation of this ellipse is

r -- a(1 - e 2) (3-1)
l+e cos f

..... .- ° .

v ¸
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a

c

A
t

Figure 3-1. Geometry of ellipse in plane.

where the two orbital elements,

a = semimajor axis, km

e = eccentricity

determine the size and shape of the ellipse.

For central force motion, the orbit lies in a fixed plane, passing
through the center of the Earth. Two additional orbital elements

= right ascension of ascending node, deg

i = inclination to equator, deg

locate the position and orientation of this plane in the "inertial"

coordinate system defined earlier. (See fig. 3-2.) Note that by general
agreement, if i < 90 °, the orbit is called a "posigrade" orbit, whereas
for 90 ° < i < 180 °, the orbit is referred to as "retrograde."

The fifth orbital element,

w = argument of perigee, deg

(fig. 3-2), locates the position of the major axis of the orbit in this

plane (more specifically, the position of perigee) and is measured in the
direction of motion from the ascending node of the orbit.

_r _ _ _ _ _ _
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Z

ojection of orbit onto Earth

Figure 3-2. Sketch defining location of orbital plane and perigee point in inertial

coordinate system.

The sixth element must somehow relate the position of the space-

craft in its orbit to some specific time. The angle f, called the true

anomaly, is awkward to use for this purpose. According to the second

of Kepler's laws, the radius vector of the spacecraft sweeps out equal

areas in equal time increments. Since the spacecraft is closer to the

Earth at perigee (f = 0) than it is at apogee (f = 180), the spacecraft

must move faster at perigee than it does at apogee. This means that the

angular rate df/dt is not constant around the orbit. A mean angular
rate of the spacecraft can be shown to be

n = Pe-_-md
(3-2)

and is a constant of the orbit for a central force. Let to be the time the

spacecraft last passed through perigee. Then the angle

M = n(t - to) (3-3)

is an angle which has the desirable property of increasing at a uniform

rate. This angle is called the mean anomaly and is selected here as

the sixth orbital element. In order to relate the mean anomaly to the

true anomaly, we must first introduce a third anomaly, the eccentric

anomaly E, which relates f to M as follows:
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E 1 - e f (3-4)tan_-= _lll---_e tan

and Kepler's equation

M=E-e sin E (3-5)

These transcendental equations are still not directly solvable (i.e., to

find f given t). However, for orbits with small eccentricity (near-circular

orbits) as most near-Earth orbits are, the following series (Smart 1977)
is useful--angles are in radians:

(E=M+ e- sin M+-_- sin 2M

3e 3

+ _ sin 3M+... (3-6)

f=M+ 2e- sin M+T sin 2M

13e 3

+ _-_ sin 3M+... (3-7)

If the eccentricity is large, or if extreme accuracy is needed, the Taylor
expansion of equation (3-5) gives the iteration formula

En+ l + En -= MT- Mn
1- e cos En

in which, given the true value of MT, find En from equation (3-6) and
Mn from equation (3-5). Then equation (3-8) gives a corrected value

En+]. For a second iteration, set En = En+] from the last iteration,

and repeat to convergence. This procedure generally converges to six
or seven decimals in three or four iterations, even for values of e near
unity.

There are two basic advantages for using orbital elements. First, the
orbit is much easier to visualize, as the orbital elements describe the

total geometry of the orbit--its size, shape, and orientation in space.

Second, and perhaps more important, if the Earth were a perfect sphere

(i.e., the gravity field describable by the inverse square law only) and

there were no other external forces acting on the spacecraft, then five of

the six orbital elements--a, e, i, _, and _--would be constants, only

M would change with time, and this change would be a simple linear

one. Even for a spherical Earth, all six of the Cartesian Components

change continually and dramatically with time at each integration step.
38
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It seems reasonable to expect, then, that if the gravitational poten-

tial field of the central body only deviates very slightly from that of a

sphere as does the Earth, the orbital elements a, e, i, 12, and _; would
change very slowly with time, if at all, and these changes would be

predictable to varying orders analytically. This is, of course, precisely
what happens for an Earth satellite. Very detailed and complex analyt-

ical studies (e.g., Kozai 1959, Brouwer 1959, King-Hele 1958, Garfinkel

1959, Merson 1961) show that it is possible to account for practically all

the oblateness perturbative effects of the Earth with a single term (./2),
and to first order it is found that a, e, and i are constants, and f/and w

change linearly and slowly with time (order of a few degrees per day, or

less, depending on the inclination of the orbit). These changes are easy

to compute (Escobal 1965 or McCuskey 1963). After the equations of
motion are introduced in chapter 4, a brief series of numerical exam-

ples will show the effects of various harmonics on both the Cartesian

components and on the orbital elements.
It is, of course, possible, if not imperative, that we be able to transfer

from Cartesian coordinates to orbital elements and vice versa. The

following algorithms, applicable to circular and/or elliptical orbits only,
are used for this purpose (see, e.g., Escobal 1965 or McCuskey 1963).

1. Orbital elements to Cartesian coordinates (CONCAR)

(a) Find E from (M, e) as described earlier (eq. (3-6))

(b) Then

= a(cos E - e)

Z_ = a V/1 - - e2 sin E

5:_ =-a/_ sin E

_ = a/_ vq - e2 cos E

where

1- e cos E

(c) Compute the unit vectors

[cos w cos 12-sin w sin 12 cos ll
/b = /cos ¢z sin f/+ sin _z cos f_ cos

L ]sin _ sin z

-sin w cos f]- cos w sin f_ cos i]J-sin w sin fIcos+ coswsln'Wcosz. f_ cos
39
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(d) Then compute the spacecraft position and velocity vectors
from

r = x_/b + ywQ

2. Cartesian coordinates to orbital elements (CARCON)
(a) From angular momentum vector

h=rx÷= zx z_ = i cos f/

zy yz cos i

Find h, i, and f_

(b) With r = Irl, v = Ivl, find the semimajor axis a from

1 2 v 2

a r D

where for the Earth, p = 398600.64 km3/sec 2.

(c) Find the eccentricity

e=v_ h2
#a

(d) Define u = w + f, then

r cos u=x cos f/+y sin f/
z

r sin u-
sin i

which gives the proper quadrant for u

(e) Find the true anomaly f

e cos f = p -1
r

e sin f =_

where p = a(1 - e 2)

(f) Finally, then,

(g) Find E from equation (3-4) and M from equation (3-5).

lr - r-.
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This completes the orbital element set.

Note that these equations even hold for circular orbits (e = 0), if we

agree to set w = 0 and measure f (or M, E) from the ascending node

of the orbit.

The algorithm, CONCAR, changing from orbital elements to Carte-
sian coordinates, is quite useful in determining time histories of the

Cartesian coordinates, which parameters are frequently used in deter-

mining other geometric parameters and properties in which the mission

design engineers might be interested. Given the set of orbital elements
at time to, the mean anomaly M is found at t + At from equation (3-3)

as

M= Mo+n At

The eccentric anomaly is found from equation (3-6), as described earlier,
and then the Cartesian state vector is found from the algorithmic

equations. This process can be repeated at any time interval At, and
the results hold as long as only a central force field (all ,In = 0) can be

assumed. In actual practice, this time might be of the order of 10 rain

or so, and then the small perturbations begin to make themselves felt,

and another algorithm, to be described in chapter 4, must be used.

This requires using the analytical expressions for _b and _ explained in

chapter 4 to continuously update w and 12, thus enabling the algorithm
CONCAR to be used over extended time periods.

A third algorithm, especially useful if one wants to preserve the

identity of the initial Cartesian coordinates, is the so-called f- and

g-series method. (See, for example, Escobal 1965.) Here, the radius

vector r(t) and vel¢_city vector _(t) at any time t are expressed in terms
of the initial values of the position and velocity vectors, and the f(t, to)

and g(t, to) parameters

i'(t) = f(t, to) ro + g(t, to)i'o (3-8)

= f(t, to) ro + to)to (3-9)

where ro and ro are the initial position and velocity vectors, respectively.

The f and g terms were originally derived as an infinite series involving

the zeroth, first, and second derivatives of the position vector as
constant coefficients and the time as the independent variable. However,

for central force motion, these series can be expressed in analytical form

1t8

f(t, to) = 1 - a [1 - cos (E - Eo)] (3-10)
ro
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g(t, to) = t - [(E - Eo) - sin (E - Eo)] (3-11)

and

f(t, to) = -t _/-_-_asin (E- Eo)
V fro

g(t, to) = 1 - a [1 - cos (E- Eo)]
r

(3-12)

(3-13)

in which

r = a(1 - e cos E) (3-14)

The parameters a, e, and Eo are computed from algorithm 2

(CARCON) at t = 0, and E at any subsequent (or previous) time
can be found from equation (3-6) with the help of the iteration process

described previously. This procedure offers no real computational ad-

vantage over that of algorithm 2 alone. It has, in fact, the disadvantage
of not readily incorporating the oblateness effects through the _ and _b

terms as described earlier. It does, however, retain the identity of the

initial Cartesian state, as mentioned, and is quite useful in studying
the effects of errors in the initial conditions, as the variance-covariance

matrix of errors in the values of future coordinates can be constructed
directly from equations (3-8) and (3-9).

As pointed out earlier, five of the six orbital elements would be

constant if the Earth were a perfect sphere and there were no other

outside perturbations acting on the orbit. The effects of the nonspher-

ical components (in the spherical harmonic sense) of the gravity field,

the perturbation forces, are very small for a typical Earth satellite, and

hence, the orbital elements, instead of being constant, vary very slowly

in time. The most elaborate analyses referenced earlier (Kozai 1959
and the others) indicate that these changes are combinations of the
following:

Secular changes: these are linear, or at best quadratic, changes, which

always proceed in the same direction. The elements _, w, and M
are the only ones which experience secular changes.

Long-period terms: periodic changes of small amplitude whose periods
are of the order of 80-100 days and longer.

Short-period terms: periodic changes of small amplitude whose periods

are small (integer or half-integer) multiples of the orbital period.

These terms are sketched in figure 3-3.
42
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Escobal (1965, chap. 10) discusses perturbations of the orbital
elements thoroughly, as does the classical text by Moulton (1914). A

typical orbital element can be most generally represented by an equation

of the form

q=qo+it(t-to)+K1 cos 2_+K2 sin (2f+2w)+H.O.T.

where

= secular term

qo = mean value of the element

K1 = long-period term

K2 = short-period term

Higher order terms (H.O.T.) in other multiples of w and f are, of course,

also present, and any of the constants can be zero.

In any event, as a result of these perturbations, the orbit of an

Earth satellite is never a true ellipse. However, as seen in the preceding

algorithms, the specification of the spacecraft state vector permits the

computation of a unique set of orbital elements, and thus at each instant

of time, a unique set of orbital elements can be associated with the orbit.

If at a given instant of time all the gravity perturbations were turned

off and only the central force part of the gravity field were allowed to

remain, the spacecraft would then truly be in the elliptical orbit defined

by the orbital elements at that moment. This constantly changing set
of orbital elements is referred to as the set of osculating elements and is

specified at a unique time. Point a at time t in figure 3-3 identifies the

osculating element at this time. It has been found through many sets

of calculations that, if one determines the set of osculating elements at

one time, say T, and then uses that set as described above to advance

the position of the spacecraft along the orbit, then considerable error

in the predicted Cartesian state may develop quite rapidly. The reason
for this is that there may be considerable deviation in the value of a

given element in different points of the orbit. (Compare points a and

b in fig. 3-3.) For example, in a spacecraft orbit of small eccentricity
at an altitude of 600 km and inclination of 57 °, the mean value of the

semimajor axis is 6981 kin. However, the actual value can range from a
minimum value of about 6976 km to a maximum of 6986 km. Table 3-1

shows the differences in mean anomaly that one would compute at

various time intervals using these values of a.
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Element

t=0

Unperturbed

Time

Figure 3-3. Sketch illustrating various orders of perturbations.

Table 3-1. Change in Mean Anomaly for +5-km

Change in Semimajor Axis

a, km n, deg/min Mat t = 100min, deg

6976 / 3.725059 372.5059
6981 3.721058 372.1058

6986 3.717064 371.7064

Since 1 ° represents a down track distance of about 122 km for this

orbit, table 3-1 represents a potential difference of about 97 km in only
100 rain, which is about 1 revolution for this orbit. Even if the first-

order perturbations are included as described in chapter 4, rather large
errors still ensue after only a short time.

Experience has shown that much greater accuracy is maintained

over long time periods if the mean elements are used. Perhaps a better
way of saying this is to say that a more acceptable error results which

allows the simple algorithm to be used over a longer period of time.
Relations for the osculating elements in terms of the mean elements

can be found in the references by Kozai (1959), Brouwer (1959), et al.

cited earlier. These same relations can be used iteratively to compute
the mean elements from the osculating set at any time.

v_
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Chapter 4

Equations of Motion

The development of the general equations of motion for a satellite

of negligible mass orbiting about a massive primary, or central body,
can be found in practically any textbook on Celestial Mechanics. (See,

for example, Escobal 1965, Smart 1977, Dubyago 1961, or the classical

text by Moulton (1914).) In vector form

d2r

dt 2 =vV (4-1)

where r is the radius vector from the center of the primary (the origin of

coordinates for this development) to the spacecraft, t is time, and V is

the gravitational potential of the central body. If we restrict ourselves

to the 6th-degree zonal expansion of equation (2-9) and recall that

Z

sin _-
r

then we can write the three components of equation (4-1) as (see, for

example, Escobal 1965)

d2z c3V

dt 2 Ox

px 3 2

5j z 2

'

} (4-2)
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d2y OV _ {a_

dt 2 - Oz -- -_ 1-_J2 3-5

2J3 6-7 -
9-

,]
-_ 5 105 315(z) 2 4 r- +231(z)

-_ 6 245-220(z)2+4851(z) 4

(4-3)

(4-4)

and according to GSFC, the latest (as of March 1986) values of the
constants are

# = 398600.64 km3/sec 2

Re= 6378.140 km

J2 = +1082.28E-6

J3 = -2.5358868E-6

•14 = -1.6246180E-6

•15 = -0.22698599E-6

J6 = +0.54518572E-6

Equations (4-2) to (4-4) can readily be programmed on a modern

computer and integrated using any number of accurate, rapid numerical
methods. A modified 7th-order Runge-Kutta technique, one of several

available canned routines at the Langley Research Center (LaRC), was
used for the numerical examples of the present text and was also used

in some of the operational versions of the integration routines.

The equations of motion can also be written directly in terms of

the orbital elements (the Lagrange Planetary Equations.) (See, for
46
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example, Escobal 1965, Smart 1977, Dubyago 1961, Moulton 1914.)

The perturbative gravity field, however, becomes very messy when

expressed in terms of the orbital elements. Consequently, this form

of the equations of motion, while occasionally used in numerical work,

is mainly used in theoretical developments, in which usually only the

J2 or the J3 term of the zonal expansion is used in an attempt to
derive purely analytical expressions for the response of the spacecraft

orbit to these terms. (See, for example, Kozai 1959, Brouwer 1959,

Garfinkel 1959, King-Hele 1958.) Escobal (1965) expounds somewhat
on Kozai's method and gives a lucid physical explanation of the effects

of the perturbations on the orbital elements. (To this end, see also the

excellent presentation by Moulton (1914).)

As mentioned earlier, the perturbing potential is difficult to express
in terms of the orbital elements and, with modern computers and

numerical techniques, it is the author's contention that, if one is merely

seeking accurate numbers with which to work, then the integration of

equations (4-2) to (4-4), or in their more complete form equation (2-6)

for the potential, is as good a way as any. Of course, if one is faced

with the problem of predicting the position or orbital characteristics

far in the future--for example, for several weeks or months---obviously

integration of the equations of motion would become quite expensive. In

this case, one would probably be well advised to sacrifice some accuracy

for economy and speed and use one of the theoretical models alluded to

earlier or the simple mean element model shown later in this chapter

which uses only the ,/2 term.
The first numerical examples are shown to illustrate the accuracy

of equations (4-2) to (4-4). An initial state vector

z = 3211.365 km

y = -4680.423 km

z = -4081.154 km

= 2.326315 km/sec

_/= 5.555629 km/sec

,_ = -4.545389 km/sec

was picked from an ephemeris tape prepared by GSFC for the SAGE II

experiment. The GSFC prediction program, as mentioned earlier, uses
an n = m = 8 gravity field (eq. (2-6)) and serves as a standard here

with which other computations are compared.

w_
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The same initial conditions were used in the integration of equa-

tions (4-2) to (4-4) with three runs:

1. All J2-J6 used

2. J2-_ 0, J3-J6=O

3. All J2-J6 = 0

Run 3, of course, corresponds to the purely central force field. The

results of these runs are given in table 4-1 as follows: the first column

lists the GSFC results after 48 hr (2880 min), 96 hr (5760 rain), and

144 hr (8640 rain). Columns 2-4 list the differences

(LaRC results of runs) - (GSFC results)

and the LaRC results were computed from the modified Runge-Kutta

numerical method with a 60-sec time increment for the computation
interval.

Table 4-1. Comparison Between GSFC and LaRC Ephemerides

Run 1 includes all J2-J6; Run 2 uses J2 only; ]Run 3 is spherical Earth result J

48

x, km . . .

y, km . . .

z, km . . .

_, km/sec

y, km/sec

,_, krn/sec

GSFC

-2414.451

-5520.263

3521.274

3.1777850

-4.6332890

-5.0583560

Differences in LaRC mad GSFC resultsfor--

Run 1 Run 2 Run 3

t = 48 hr

-3.087

4.505

4.912

-0.002647

-0.006146

0.003965

-3.686

5.144

4.763

-0.002981

-0.006592

-0.003546

t---- 96 hr

591.649

-57.877

257.880

0.504577

O.140997

0.223293

*, km . .

y, km .

z, krn . .

_, km/sec

y, km/sec

_, km/sec

-2767.378

3806.603

5141.751

-2.997119

-6.258721

3.014856

4.915

10.928

-4.985

-0.005224

0.007867

0.010240

t = 144 br

5.892

12.370

-4.834

-0.006453

0.008922

0.009824

-788.005

-212.267

-341.438

1.376789

-0.183703

0.608086

Z_ knl . .

y, km . .

z, km . .

x, km/sec

_), km/sec

_, km/sec

3164.478

5901.433

-1980.466

-2.952138

3.573608

5.968511

6.164

-7.421

-13.117

0.008289

0.015006

-0.005320

7.876

-6.162

-11.255

0.009102

0.013410

-0.005758

-2011.458

354.769

-694.553

-1.038673

-0.310911

-0.443209
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Chapter

It is seen from table 4-1 that the use of only the J2-J6 terms of the

gravity field expansion is not too shabby when compared with the full-

blown 8 by 8 model of GSFC and is certainly accurate enough for many

satellite applications. Equally obvious from the table is the fact that
this model is probably not accurate for other applications--for example,

long-range prediction (i.e., several months) of the ground or geodetic

position of the spacecraft to be used for ground truth location studies.

However, even for 6 days of integration, the differences between the
standard GSFC model and the truncated model used herein are only

of the order of 10 km or so in position and of the order of 15 m/sec in

velocity.

The J2 term clearly dominates the perturbation effect, a fact which
has been known since the early days of satellite flight. In fact,

examination of the table shows that, at least over the 6-day period

used for the example, the use of the J3-J6 coefficients is not warranted

at all. However, only further study could determine the time span in

which their exclusion should be adopted; for example, their effect would

doubtless show up for an integration span of several weeks.

If one now converts the Cartesian components of table 4-1 to

orbital elements using the CARCON algorithm, one finds the results

of table 4-2. Here, the complete values are presented, not merely the
differences between the LaRC and the GSFC results. The actual orbital

elements at t = 0 hr were

a = 6981.471516

e = 0.00141817

i = 570.002219

= 96o.623064

w = 58°.316978

M= 165°.753617

km

First, note the last column of table 4-2, which shows the unper-

turbed elements. The agreement of these elements (except, of course,

M) with the initial conditions illustrates the accuracy and stability of
the numerical integration routine and serves to rule out integration er-
rors as a cause of some of the differences in the Cartesian coordinates

of table 4-1.

Second, the orbital elements appear to be very close in all cases.

The percent differences in all elements except w and the anomalies are

very small (order of 0.001 percent) compared with the percent error
in the Cartesian coordinates (order of 0.2 percent). The maximum

errors are in w and f individually. However, and much more important,
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Compilation of Methods in Orbital Mechanics and Solar Geometry

the errors in the sum w + f are rather small, and it is the sum

which determines the angular distance of the spacecraft from the

ascending node. The error in w is mainly due to the small eccentricity

of this orbit. As the CARCON algorithm of chapter 3 shows, the

computation of u = w + f does not explicitly involve the eccentricity,
but the computation of f does. Therefore, u ought to be determined

with reasonable accuracy, even for small eccentricities. However, when

the eccentricity is small in absolute value, even very small absolute

errors are very large relatively, or percentagewise, and hence the

accuracy to which f, and consequently w, are individually computed is

questionable. If these are used to determine the Cartesian coordinates,
though, the results are still reasonable, as u is the quantity which is
used, and this is determined with some confidence.

If one considers only the J2 part of the perturbed gravity field and

further restricts oneself to first-order theory, then one finds that a, e,
and i are constants in time for a given orbit. The longitude of the

ascending node, l_, and the argument of perigee, w, are found to vary
linearly and are given by the following equations:

= no + - to)
w = Wo+ - to)

M = Mo + fi(t- to)

(4-s)
(4-6)
(4-7)

where

( p_)2fi i (4-8)¢z= cos

_b=_J2 2-_ sin 2 i fi (4-9)

fi----_-3 1+ 5 2(p_-_)_ _sm i (4-10)

and in which

p = a(1 - e2) (4-11)

If equations (4-5) and (4-6) are used to compute I2 and w and equa-
tions (4-7) and (4-10) are used to compute M, it is found that the

element-to-Cartesian coordinate algorithm given earlier will predict the

Cartesian components reasonably accurately for longer periods of time

than can be computed from the central force alone (order of a few
50
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Chapter 4

days), but of Course the acceptable time period depends heavily on the
intended use and accuracy requirements.

Table 4-2. Comparison Between GSFC and LaRC Osculating

Orbital Elements Computed at 48, 96, and 144 hr

Run 1 includes all J2-J6; Run 2 uses J2 only; ]Run 3 is spherical Earth result J

LaRC results for--

GSFC Run 1 Run 2 Run 3

t = 48 hr

a t km .....

e .......

i, deg .....

l-l, deg ....

w, deg ....

M, deg ....

f, deg ....

w+ f, deg . . .

6983.088680

0.00186271

6983.070167 6983.090200

0.00184027 0.00181924

6981.471471

0.00141816

57.006807

88.674902

72.635991

70.179204

70.380168

57.006451

88.675025

72.802224

69.955204

70.153465

57.006509

88.667845

74.944251

67.817778

68.010984

57.002221

96.623060

58.318410

81.313131

81.473819

a, km .....

e .......

i, deg .....

i2, deg ....

w, deg ....

M, deg ....

f, deg ....

w+f, deg . . .

143.016159

6977.549839

0.00116235

56.992038

80.804759

89.510732

332.149893

332.087589

61.598321

142.955684

t =96hr

6977.616167

0.00113651

56.991955

80.806862

91.289731

330.265486

330.200812

61.490543

t = 144 hr

142.955235

6977.629441

0.001140987

56.991988

80.792607

98.225995

323.337990

323.259833

61.485828

139.992229

6981.472607

0.00141831

57.002216

96.623066

58.319535

356.872952

356.864070

55.183605

(7- I km .....

i, deg .....

fl, deg ....

w, deg ....

M, deg ....

f, deg ....

w+f, deg . . •

6986.459458

0.00146659

57.014001

72.866127

50.919996

289.476609

289.318070

340.238066

6986.385047

0.00140939

57.015303

72.869378

52.026907

288.229329

288.075816

340.102753

6986.376400

0.00127645

57.015294

72.847804

58.879086

281.390348

281.246913

340.125999

6981.471158

0.00141834

57.002222

96.623062

58.318779

272.434666

272.272271

330.591050

Equations (4-5) to (4-10) were used to generate the next set of

numerical data, again for t = 48, 96, and 144 hr. The set of orbital

elements given above was assumed at t -- 0. The orbital elements

were updated as prescribed, and the CONCAR algorithm was used

to generate the Cartesian components from the orbital elements. The
results are shown in table 4-3. The first two thirds of the table give the
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Compilation of Methods in Orbital Mechanics and Solar Geometry

results of the appropriate calculations, the top third giving the orbital
elements and the middle third giving the Cartesian coordinates. The

bottom third gives the difference in the Cartesian coordinates between

the above results and the reference GSFC results from column 1 of

table 4-1. The bottom third also displays the difference between the

sum w + f computed from the exact Cartesian coordinates and that
computed from the approximate orbital elements.

The differences shown in table 4-3 are about an order of magnitude
greater than those found using only J2 with the integration routine.
(The integration of the equation of motion includes all orders of effect

and not just the first-order effects predicted by equations (4-5) to (4-
7), with a, e, and i constant.) Comparison between tables 4-2 and 4-3

shows that the nodal point _ is predicted rather well by equation (4-5),

and the quantity w + f is the prime error source. However, we

must remember that the approximate orbital element treatment using
equations (4-5) to (4-10) is expressly to be used with mean orbital

elements, while we are here applying these equations to osculating
elements. There may be some instances where we have no choice as

the only initial conditions available may be in Cartesian form, and

these almost always refer to osculating elements. Proceeding with this

caveat, note that the two orbital planes line up rather well but the

position of the spacecraft in the true orbit is slightly ahead of the
position in the approximate orbit. This is, in turn, traced to the fact

that the first-order theory assumes that a is a constant. However, for

this orbit, a varies between 6975.2 and 6987.6 kin, and hence, the timing

between the true and approximate (through the mean anomaly) orbit

is off somewhat and, as can be seen in the last column of table 4-3,

the true spacecraft position is gaining on the approximate position by
about 0.25 deg/day.

The approximate first-order analysis can thus also be reasonably
accurate for a few days or so. If one starts off with a set of mean

elements, then the spatial position can be predicted reasonably well for

periods of several weeks to several months, depending on the accuracy
constraints imposed on the desired results. This algorithm is rather

simple to program and compute when compared with the integration
routine described earlier.

Table 4-4 demonstrates the application of this modified algorithm.
The mean elements at t = 0 were computed using the method of

Kozai (1959). (These equations are rather lengthy and hence are not

reproduced here. The original reference should be consulted.) The

mean elements a, e, and i were then held constant, and the remaining
52
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Chapter 4

three mean elements updated using the following rates computed from

equations (4-5) to (4-11):

= 223.234095 deg/hr

i_ = -0.16475043 deg/hr

= 0.073098627 deg/hr

Table 4-3. Orbital Elements, Cartesian Coordinates, and Errors in

Cartesian Coordinates Computed With CONCAR Algorithm Using

J2 Term and Starting Conditions as Osculating Elements at t -- 0

e .........

i, deg .......

l-l, deg ......

w, deg ......

M, deg ......

+ jr, deg .....

Z_ km .......

y, km .......

Z_ km .......

5, km/sec .....

y, km/sec .....

_., km/sec .....

Ax, km ......

Ay, km ......

Az, km ......

A_, km/sec ....

Ay, km/sec ....

A_, km/sec ....

A(w-t- f), deg . . .

t=48hr t =96hr t = 144hr

6981.471516

0.00141817

57.002219

88.712177

61.826844

80.515297

142.502536

-2437.812650

-5484.269655

3563.455210

3.157658

-4.681182

-5.023572

23.362

-35.993

-42.181

0.020127

0.047892

-0.034784

-0.513623

6981.471516

0.00141817

57.002219

80.801189

65.336711

355.276977

60.60O278

-2718.177361

3907.133828

5094.024327

-3.050433

-6.184601

3.114084

-49.201

-100.201

-47.717

0.053314

-0.074120

-0.099828

-0.998043

6981.471516

0.00141817

57.002219

72.890102

68.846577

170.038657

338.722663

3232.649280

5811.739703

-2124.784121

-2.863125

3.739829

5.908481

--68.171

89.693

144.318

-0.89013

-0.166221

0.600030

-1.515403

The top third of table 4-4 gives the mean elements at t = 0, 48, 96, and
144 hr. The middle third of the table gives the Cartesian coordinates

computed from the CONCAR algorithm and using the mean elements,

and the bottom third gives the differences between the LaRC and the
GSFC results as was done in tables 4-1 and 4-3. It can be seen that

these differences in table 4-4, using the mean elements at t = 0, are not

substantially different from those of runs 1 and 2 of table 4-1, being
within a factor of 2 or 3 of the integrated results, and certainly much

better than the 1 to 2 orders of magnitude differences displayed in

table 4-3 in which the oscillating elements were used at t -- 0. It
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Compilation of Methods in Orbital Mechanics and Solar Geometry

can perhaps be implied that the perturbation-modified algorithm using

mean elements can be used, with only a slight degradation in accuracy,

over approximately the same span as the numerical integration using

only the zonal harmonics. It may just be a personal prejudice, but
the author believes that the numerical integration algorithm is more

defensible than the modified mean-element approach, especially if the
integration time exceeds a few weeks. However, the mean-deviant

algorithm has been successfully applied to the prediction of both

SAGE II and SAM II ground truth sites with lead times of as much
as 4-6 weeks.

Table 4-4. Orbital Elements, Cartesian Coordinates, mad Errors in

Cartesian Coordinates Computed With CONCAR Algorithm Using

J2 Term and Starting Conditions as Mean Elements at t = 0

£I I km .......

'e .........

i, deg .......

l'l, deg ......

w, deg ......

M, deg ......

Z I km .......

y, km .......

z, km .......

x, km/sec .....

l_, km/sec .....

_, km/sec .....

AX, km ......

Ay, km ......

Az, km ......

A_:, km/sec ....

A j, km/sec ....

A,_, km/sec ....

t =0hr t--48hr t=96hr t = 144hr

6981.26555

0.00254626

56.997801

96.601960

71.220024

152.821231

2215.11242

-4679.87474

-4089.14043

2.32563390

5.55145098

-4.53986239

3.747

0.548

-7.986

-0.0006811

-0.004178

0.0055266

6981.26555

0.00254256

56.997801

88.693939

74.728758

68.057791

-2409.67576

-5520.91264

3515.54137

3.18182136

!-4.63367603

-5.06051117

4.775

0.133

-5.733

0.0040364

-0.003870

-0.0021552

6981.26555

0.00254626

56.997801

80.785919

78.237492

343.294351

-2755.911096

3819.199893

5130.239109

-3.00963556

--6.25485145

3.03212667

11.467

12.597

-11.512

-0.0125166

0.0038695

0.0172707

6981.26555

0.00254626

56.997801

72.877898

81.746226

258.530911

3176.32012

5889.11718

-2004.32760

-2.94169646

2.59164655

5.95682454

11.842

-12.316

-23.868

0.0104415

0.0180386

-0.0116862
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Chapter 5

Where Is the Sun?

Most of the time series relations needed to determine the position

of the Sun have already been given in chapter 1. The remaining

geometrical concepts will be developed in this chapter, as needed.

Perhaps the best way to introduce this material is through numerical

examples. The following problems, typical of those encountered in

spherical astronomical applications, will be addressed in this chapter,
and a complete numerical example will be worked out for each to

illustrate the method. The text procedures are not the only approach,

of course, but are the ones that, for now unknown reasons, appealed
to the writer at the time he first encountered these problems. The

number of significant figures shown in the numerical results is generally

that required for the accuracy given; 0.1 arc-sec is 0°.000028, and
calculations to a few hundredths of an arc-sec are frequently required.

The most fundamental problem which arises concerning any compu-

tation of the Sun's position is the determination of the right ascension
and declination of the center of the Sun, given any date of the year and

time of day. These coordinates, along with the Greenwich sidereal time,
are central to the solution of all the problems listed below. Therefore,

the problems to be considered in the present chapter are the following

(all the problems presented require the day of the year and/or the time

of day to be given; some also require the specification of a particular
location of the Earth's surface--the coordinates of an "observer;" these

are assumed given):

1. Given any calendar date in the year and time of day, what

are the right ascension and declination of the Sun? Note: Only
mean values will be determined as the extra computation will

serve no useful purpose here.

2. What is the Greenwich sidereal time for a given universal time,

and what is the local sidereal time at a specified geographic

location?

3. What are the geographic coordinates of the subsolar point at a

given time of day?
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4. For a given observer, what are the azimuth and elevation

angles of the Sun at a given local (zone) time of day (with and
without refraction)?

5. What is the local zone time when the Sun is directly on the
local meridian (zonal time of local noon)?

6. What is the elevation angle of the Sun at local noon?

7. What are the local zone times of sunrise and sunset?

8. What are the azimuth angles of the Sun at sunrise and
sunset?

Note that if the Cartesian coordinates of a spacecraft are known in

the inertial coordinate system, then its right ascension and declination

can be found from equation (1-1a). Then problems 2-8 can be applied
to satellite motion by substituting the satellite coordinates for those

of the Sun, taking into account, when necessary, the much more rapid
time changes of these coordinates.

As a specific application of some of the concepts discussed here---

given the semimajor axis and eccentricity of a satellite orbit, what must
be the location of the line of nodes of a Sun-synchronous orbit which

crosses the equator at a specific local time? (See, e.g., Brooks 1977.)

The numerical example will be worked out for the time of April 6,
1985, at 2:37 PM EST in Hampton, Virginia, whose latitude and
longitude, respectively, are approximately 37°N and 76°W.

The chapter will terminate with the solution of a problem arising

in connection with Sun-viewing satellites (e.g., SAM, SAGE) and
specifically the problem of reducing the data from these satellites--

namely, what is the minimum altitude of a ray from the center of the

Sun (or indeed any other specific celestial location) to the spacecraft
above the oblate Earth, and what are the geographic coordinates of the

"subtangent" point on the surface of the Earth? (See Brooks 1980.)

Problems and Examples

Problem 1:

Figure 5-1(a) shows the inertial coordinates defined earlier in chap-
ter 1. The coordinates of the Sun are the right ascension a and decli-

nation 6. Figure 5-1(b) shows the spherical triangle "),SQ.

For the given date, find the Julian date as outlined in chapter 1.
Then proceed by the following steps:

(a) Compute the mean longitude of the Sun, L = M + &, from
equation (1-19)
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Z

  c ipticy
x, "3

(a) Sun in inertial coordinate system and its relation to Greenwich meridian.

(b) Blowup of spherical triangle _SQ of figure 5-1(a).

Figure 5-1. Location of Sun in both inertial and Earth-fixed coordinate systems.
p

(b) Find the mean anomaly of the Sun, M, from equation (1-39)

and the eccentricity of the solar orbit from equation (1-38)

(c) Compute the quantity f - M from equation (3-7) and convert

to degrees

(d) Then, (_5 + f) = (_ + M) + (f - M)

(e) Compute the obliquity of the ecliptic, e, from equation (1-21)

Then from figure 5-1(b), the mean right ascension is

tan _ = cos _ tan (C,+ f) (5-1)

and the mean declination

sin 8=sin e sin (5+f) (5-2)
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Compilation of Methods in Orbital Mechanics and Solar Geometry

The quadrant of a is always the quadrant of (_ + f).

Example:

(1-11) 3 JDO = 728495 - 3475 + 122 + 6 + 1721013.5

= 2446161.5 at 0 hr GMT on April 6, 1985

Hampton, Virginia, is 5 time zones from Greenwich--< 76/15 >--and

therefore 2:37 PM EST is 2:37 + 12 + 5 = 19:37 GMT. Then,

JD = 2446161.5 + 19.6167/24 = 2446162.31761

(1-13) Tu = 0.852630181

Note on accuracy: Tu can be accurately computed from equation (1-13)
if one groups the terms as

Tu = [(JDO - 2415020.) + UT/24]
36525.

Continuing

(1-19) L = 15°.0390181

(1-39) M= 92°.35203707

(1-38) e = 0.0167156694

(1-21) E = 230.44119896

(3-7) f - M = 1°.911865208

(Step (d)) f + & = 16°.95088331

(5-1) a = 15°.62304219 = lh02m29s.5

(5-2) 6 = 6°.660242901 = 6°39t36".87

The procedure described here gives the right ascension and dec-

lination relative to the mean equator and equinox of date. The ap-
parent right ascension and declination (referred to the true equator

and equinox of date) may be obtained from the mean values by ap-

plying the proper corrections for nutation and planetary aberration.
(See, for example, Smart 1977, chaps. 8 and 10.) The numerical values

tabulated in the Astronomical Almanac are apparent values. Linear

interpolation in AA85 gives _ = lh02m27s.5 and _ = 6°39t25".56;

thus, for this example, As = (29.5 - 27.5) × 15 = 30 arc-sec, and
A6 = 36.87 - 25.36 = 11.51 arc-sec.

Planetary aberration (correction for the finite speed of light) gives

a correction of about -20" 4- 2" on the right ascension, where the

3 The number in parentheses at the left of the equation is the number of the

equation used to calculate the quantity.
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Chapter 5

correction of 2" is sinusoidal with a period of 1 year. The aberration

correction to declination is also a yearly sinusoid with an amplitude of

about 8u. The nutation in right ascension is a sinusoid with a period

of just over 18 yr with an amplitude of about 20 n. The nutation in

declination is a multiple-frequency sinusoidal sum, but its maximum

magnitude is about 9".5. Using the formal equations (e.g., Smart 1977,

chap. 8), these data for the present example are

Nutation Aberration Sum

Act . . . -12 u.74 -18 u.92 -31 It.66

A_ . . . -4tt.06 -8u.02 -12Pt.08

If these are added to the mean values computed above, we get

o_= lho2m27s39

= 6°39124".29

which are very close to the tabulated AA85 values.

For most Earth orbital applications, it is probably not necessary to
add the nutation and aberration corrections; the mean values should

suflCice.

Problem 2:

Recall that the sidereal time is the hour angle of the vernal equinox.

If it is measured from the Greenwich meridian, it is known as Greenwich

sidereal time, and if it is measured from any other location, it is known

as local sidereal time. Figure 5-2 shows the Greenwich meridian, with

the Greenwich sidereal time 09. The observer at O has an east longitude

Ao and latitude _o.

(a) Find the sidereal time at 0 hr GMT from equation (1-12)

or (1-15) using the appropriate Tu

(b) Correct for time of day using equation (1-14a,b)

(c) From figure 5-2, the local sidereal time is

LST = 0g + Ao (Ao + East) (5-3)

Example:
JDO -- 2446161.5

(1-13) Tu = 0.8526078029

(1-12) 09o = 194°.2277554 = 12h56m54*.6613 (AA85 gets

12h56m54s.7273)

= 19h37mGMT = 1177 min

v - r -

r ¸ v -

w •
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(1-14a)

(1-14b)

(5-3)

A09 = 295°.0556212

09 = 129°.2833766

LST = 53°.28337659 = 3h33m08s.0100

g

x, -),

P

J

Figure 5-2. Diagram similar to figure 5-1 but including observing meridian.
Defines azimuth A and zenith distances z of celestial body S relations to
observer O.

T

Problem 3:

From figure 5-2, the east longitude of the subsolar point, As, is found
from

a = Og + A, (5-4)

The geocentric latitude of the subsolar point is identical to the decli-

nation, and the geographic latitude is found from equation (1-3) with
a = 6378.160 km and b = 6356.775 kin.

Example:

(5-4) As = 246°.3396656

¢c = 6 °.660242901

(1-3) = 60.704796079

As a rough check, note that the Sun is (360 ° - 76 °) - 246°.3 or about

38 ° west of Hampton at this time. If we assume that the Sun is directly

overhead at 1200 hr local time, which is not exactly true, then in 2h37 m,
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the Sun will move to the west, at 15 deg/hr, a distance of about 39 °.25,
which is close to the 38 ° above.

Problem 4:

In figure 5-2 at the observer's meridian O, the azimuth angle A is

measured clockwise from geographic north. The solar zenith angle z,

arc OS in the figure, is the complement of the altitude angle, and hence,

= 90° - z (5-5)

The zenith angle z is found by applying the law of cosines for sides to

the spherical triangle POS (the quadrant of z is no problem, since if

cos z < 0., the object (Sun) is below the horizon):

cos z = sin ¢o sin _ + cos ¢o cos _cos (As- _o) (5-6)

Both sine and cosine of the azimuth angle must be used to determine

the quadrant of A from the triangle,

cos _ sin (As- _o)
sin A = (5-7)

sin z

and also

sin _-cos z sin ¢o
cos A = (5-8)

sin z cos ¢o

Note: Some users prefer to measure azimuth east or west o/ due south-
most spherical astronomy texts define it this way. This azimuth A I is
found from the above as

A' = A - 180 ° (5-9)

and is west if A' is positive, east if A' is negative.

Example:

(5-6) z = 45°.7516467

(5-5) A = 44°.2483533

(5-7) sin A =-0.8471830565

(5-8) cos A = -0.5313011094
A = 237o.9065922

(5-9) A' = 57°.90659223 W

To correct for the effects of refraction, the following law, derived for

a spherical atmosphere (Smart 1977, Green 1985, for example),

z-z R=R=A tan z R÷B tan 3 z R (5-10)
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is used, where the constants A and B, while defined by analytic

expressions, are usually found empirically. Smart (1977) gives
A = 58".16

B = -0".067

whereas Green (1985) gives
A = 60".29

B = -0".06688

The above constants assume standard atmospheric conditions at the

surface. Green (1985) gives the following expressions for A and B,

in which the temperature and pressure profiles of the atmosphere are
allowed to vary. Define

f0 _
polio = p dh

where p is the density at altitude h. The parameter Ho is thus the

density scale height of the atmosphere. Then Green gives the correction
equations

 (no - 1)1 (5-12)

where the units of A and B are radians, and no is the index of refraction

of air at the surface. This can be computed with acceptable accuracy
from the well-known Edlen formula (Edlen 1953)

( 0459 e(no-l) × 106--- 77.46+--_/

0.347
PH20 (43"49 - -_ -_-)1013 (5-13)

where

P = atmospheric pressure, mb

T = atmospheric temperature, K

PH_O = partial pressure of water vapor, mb

A = wavelength, _m

Given R, then the observed zenith as seen at the surface of the Earth
is

z R = z - R (5-14)
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It is seen that if extreme accuracy is required, an iteration is required.

Assume zR = z, then compute z from equation (5-6). Use this

in equation (5-10) to get an estimate of R; if further accuracy is

needed (seldom), use z R computed from equation (5-14) to go back

to equation (5-10) and recompute R.
The refraction correction described above (equally applicable, of

course, to the moon, stars, satellites, or any other celestial body) is

sufficiently accurate whenever z R <_ 75 °. For zenith angles greater than

this, tables of refraction correction are generally used. The following

equation (see any Astronomical Almanac, Section B) has been quoted

as being reliable for zR >_ 75 °. Let "7equal 90 - z, the altitude. Then,

R = P (0.1594 + 0.0196-_ + 0.00002"_ 2) (5-15)
(273 + T)(1 + 0.505q + 0.0845_ 2)

where

P = surface pressure, mb

T = surface temperature, K

= altitude, deg

and in this formula, R is in degrees. For z = 75 ° , and at STP

(P = 1013 rob, T = 0°), the above formula gives R = 0°.06159 or

221".724. Equation (5-10) gives 213".573 using Smart's constants and

221".529 using Green's.

Example: Use Smart's constants.

Assume z R = 45.7516467
then

(5-10) R = 59".633854

(5-14) z R = 45°.735081 = 45°44106".29
The new R would be 59".599454 and the iterated z R = 45°.735091 or

45°44106".33, or a change in zenith distance of 0".04.

Problem 5:

In figure 5-2, the observer's meridian is rotating from west to east

at the rate of 15 deg/mean sidereal hr. From the figure it is obvious
that the condition

Og +Ao =

or

ego+ btmin + = a (5-16)

is the condition for the Sun to be on the local meridian. We know that,

within a maximum error of 7°.5 or 30 min in time, the mean Sun is

directly overhead at 12 hr LMT. Thus for EST, for example, local noon

63

r-

r - v -

f*



Compilation of Methods m Orbital Mechanics and Solar Geometry

will occur near 17 hr GMT. Let us first find the right ascension of the

Sun at 17 hr GMT and assume that it is fixed at this position for this

calculation. Proceeding exactly as in the first example, for 17 hr GMT,

a = 15°.52331572

= 60.619146553

From equation (5-16),

194°.2277554 + 0.25068447tmi n + 284°.0=15°.52331572

Solve for tmi n (using arithmetic rood 360), we find that tmi n =

1026.3725 rain after 0 hr GMT, or 17h06m22 s GMT. Since our ob-

server is in an Eastern Standard Time zone, the local time of the Sun's

meridian passage is 12h06m228. Interpolation in the tables given in

AA85 gives 12h06m298, and our approximate method here is only 6 sec

in error (or else AA85 is 6 see in error).

Problem 6:

From equation (5-6), at local noon, A8 = Ao, and

cos Znoon = COS ¢o COS _ + sin ¢o sin /_ = cos (¢o- 6)

Znoon = ¢o --

Example:

(5-11) Znoon = 370.0 - 6o.660242901 = 300.3397571

(5-5) _/noon = 590.6602429

Problem 7:

The angle measured clockwise (looking down at the north pole)
between the observer's meridian and the meridian of any celestial body

is called the local hour angle of that body--for example, in figure 5-2,

the angle OP'-/is the local hour angle of the vernal equinox, H._, and
the angle OPS is (360 - Hs), where//8 is the hour angle of the Sun;
that is,

360 -/-/8 = A, - Ao (5-17)

in figure 5-2. In terms of the hour angle of the Sun, we can write
equation (5-6) as

cos z = sin ¢o sin _ 4-cos ¢o cos _ cos /-/8 (5-18)

If the Earth had no atmosphere, the z = 0° would put the center of

the Sun right on the horizon, and thus from figure 5-2
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\

cos Hr/s =- tan ¢o tan 5 (5-19)

would give the rise/set value of the hour angle, from which the rise/set
times from the time of local noon could be determined.

The Earth does have an atmosphere, however, and there is refraction

to be considered. Consequently, there are three different ranges of

twilight generally computed in the almanacs:

(a) Civil twilight begins when the top of the Sun just touches the

horizon; this requires z = 90050 ' (i.e., 16' for the half-angle of the Sun

plus 341 refraction correction)

(b) Nautical twilight begins when z = 96 °

(c) Astronomical twilight begins when z = 102 ° and ends when
z = 108 °

To calculate the various times, put the appropriate values of z into

equation (5-12) to compute the hour angle,divide the hour angle by 15

to get the number of hours from localnoon, and add or subtract this

time intervalfrom the local time of meridian passage (problem 5) to

get the respectivetime of sunrise/sunset.

Example:

We know that sunrise/sunset will occur at about 6 hr before and

6 hr afterlocalnoon, respectively.For the EST time zone, these will

occur at about II hr GMT and 23 hr GMT. These times are used as in

problem 1 to get the declinationsof the sun at sunrise/sunset,

_rise

_set

These are used in equation

= 60.524818313

= 60.713346807

(5-18) to give the values in table 5-1.

(The numbers in parentheses are the minutes determined by a double

interpolation in AA85 for the example latitude and times.)

Problem 8:

From equations (5-7) and (5-8), we can now set z = 90 °, since here
we're concerned with the Sun center and refraction can be neglected,

sin A = cos 6 sin H (5-20)

cos A = sin 6- sin ')o (5-21)
COS _o

in which, of course, the appropriate rise/set values are used for H and 6.

r ......... _-: :
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Table 5-1. Hour Angles and Rise/Set Times Measured

From the Time of Local Meridian Passage for Example 7

90 ° 50 t

96 °

102 °

108 °

AM

Hrise, deg trise, hr

95.99935 6.38248

102.58716 6.82047

110.37838 7.33847

118.40111 7.87186

PM

/'/let, deg tset, hr

96.144453

102.73768

110.53816

118.57461

6.39213

6.83048

7.34909

7.88339

z Sunrise Sunset

90°50 t 5h43 m *(38 m) 18h30 m *(28 m)

96 ° 5h17 m (11 m) 18h56 m (53 m)

102 ° 4h46 m (41 m) 19h21 m (24 m)

108 ° 4h 14rn (10rn) 19h59 m (57 m )

*Numbers in parentheses are the minutes determined by double interpolation m

AA85 for the example latitude and times. The present technique appears to be accurate

to within 5 or 6 rain when compared with AA85.

Example:

Sunrise

= 60.524818313

H= 940.9443029

sin A = 0.9898252808

cos A = -0.6112693926

A= 127°.681345

Sunset

= 6°.713346807

H= -950.08883614

A = 232o.6143557

As one example for the application of this material to an orbit

problem, consider the following frequently posed problem: a satellite

is to be placed in a circular (e = 0) orbit at some given altitude (a is
thus known), such that it is Sun synchronous and the ascending node

crosses the equator at some specified local time, t hr, either before or
after local noon. What must be the inclination of the orbit and where
should the ascending node be placed at orbit insertion?

Recall that the mean daily angular travel of the Sun about the

Earth is 360/365.2422, or 0.98564733 deg/mean solar day, and that this
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motion is west to east in the inertial coordinate system. Equation (4-8)

gives the angular rate of the ascending node of the orbit: l_ must thus

be +0.98564733 deg/mean solar day in order for the orbit to be Sun

synchronous. Equation (4-8) then defines the inclination of the orbit,
which must be greater than 90 ° in this case--i.e., retrograde--in order

to be Sun synchronous. (See Brooks 1977, for example.)

Finally, for a PM crossing, the node must be located to the east

of the solar meridian (15 x t, where t is the time from local noon in

hours), whereas for an AM crossing, the node must be located the same

angular distance to the west of the solar meridian.

For instance, suppose we want to put a satellite into a circular Sun-

synchronous orbit with a semimajor axis of 6978 km. We want to have

the ascending node cross the equator at 2 PM local time. What are

the inclination and the right ascension of the ascending node at orbit
insertion for this case? Assume the insertion date is the same date as

we've used so far for numerical examples.

At a first guess, assume that _ = n = V/hL/a 3 in equation (4-8).

This gives n = 5361.7792 deg/day and, with l_ = 0.98564 deg/day,

equation (4-8) yields i = 97°.789976. To improve on this slightly, use

this value of i in equation (4-10) and compute fi = 5358.3436 deg/day

(this is only a 0.6-percent decrease in mean angular rate). Using this
value for fi in equation (4-8) gives i -- 97.795001 deg/day, and obviously

further iteration is unwarranted, as the inclination at orbit insertion

cannot be achieved with this accuracy.

On April 6, 1985, at 0 hr GMT, the right ascension of the Sun is

15°2161669. For a 2 PM local time of crossing, the ascending node must

be 2 x 15 or 30 ° to the east of the Sun's meridian, or the right ascension

of the ascending node must be at 45.216 ° . Due to the nonuniform

motion of the Sun throughout the year, the 2 PM crossing cannot

be maintained exactly, but neglecting the effects of the higher order

perturbations, this orbit is the best that can be done. Just as the

differences in right ascension between the mean and true Sun are given

by the equation of time, the same equation will predict the differences

between the actual nodal crossing time and 2 PM. These differences

will vary from -14 to +16 min throughout the year. Figure 5-3 shows

a rough sketch of the resulting orbital geometry.

Omnipresent/3 Angle

The/_ angle is a parameter that comes up again and again in mission
design literature, as many mission parameters are directly related to

this angle or functionally dependent on it (see, e.g., Buglia 1986). The
67
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Z

Ly

Figure 5-3. Sketch of geometry of retrograde Sun-synchronous orbit, with
equatorial crossing time t hr PM.

angle is defined (see fig. 5-4) as the angle between the Sun vector

and the orbital plane, and as can easily be seen, many problems related

to temperature or cooling, Sun viewing or the prevention of solar energy
entering the optics of an instrument, and many other such mission

parameters are closely related to this quantity.

N

Sun
Orbit plane __- - -

Figure 5-4. Definition of _3angle.

If the spacecraft Cartesian coordinates are given in the inertial

coordinate system, the unit vector normal to the plane of the orbit
(along the angular momentum vector) is given by

__ rx÷
I,"x el (5-22)

r-

\\
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If _s is a unit vector to the center of the Sun, then

r¢°s ¢°s:]_s= |cos 6 sin

L sin 6

and thus

(5-23)

sin/3 = (5-24)

In terms of the elements 9t and i of the orbit, the normal to the orbit can

be written in the alternate form from equation (5-14) (Escobal 1965)

as

[ sin 12 sin i ]

= i-cos12sin i i (5-25)
k cos i j

Equations (5-23) and (5-25) then permit equation (5-24) to be written
in the form

sin /3 = cos i sin 6 +sin i cos 6 sin (12-a) (5-26)

As stated above, many mission parameters are directly related to the

B angle. For example, solar panels require that they view the Sun,

whereas some measurement instruments may require that they never

view the Sun because direct sunlight may either permanently damage

the instrument or saturate it so that it may become inoperable for a

short time. If the orbit insertion date is specified, the position angles

of the Sun are known. Thus, if the /3 angle is specified by mission

constraints, the right ascension of the orbit can be determined from

equation (5-26).

How Long Is the Solar Day?

The solar day and its variable length were discussed briefly in

chapter 1, and figure 1-11 shows a plot of the difference between the

length of the solar day and 86400 sec, the length of the mean solar day.
We are now able to do the calculations which led to that figure.

At local noon of some day, the Sun is at position (D of figure 5-5

on the observer's meridian. The next day at noon, the Sun is again

in the observer's meridian at position _. Thus, during the solar day,

the Earth has turned through the angle (t_2 - al) A- 360 °, where t_2

and or1 are the respective values of the right ascension of the Sun. The
angular rotation rate of the Earth is 0.25068447 deg/mean solar rain
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(see chap. 1), or 4.178074622 x 10 -3 deg/mean solar see. Thus, the
length of the solar day is

(a2 -- al) -t- 360 °

4.178074622 x 10 -a mean solar sec

Y

x, _/

Figure 5-5. Location of Sun on observer's meridian on two consecutive days at
local noon.

Example:

From figure 1-11 the longest solar day occurs on about December 23

and the shortest on about September 17. From the methods discussed

earlier in this chapter we find that from noon on December 23 to noon on

December 24, the right ascension of the Sun changes by 1°. 1098751, and
hence the length of the solar day at this time is 86429.733 mean solar

sec. Similarly, from September 17 to 18, the right ascension changes
by only 0°.8967917, and the length of this solar day is 86378.733 mean

solar sec. The solar day on December 23 is thus about 51 sec longer
than the solar day on September 17.

Minimum Height of Ray Above Oblate Spheroid

The Earth can, for most space applications, be adequately repre-

sented by an oblate spheroid, with equatorial radius a and polar radius

b. Suppose we are given a spacecraft position vector rp, and an arbi-
trary direction from the spacecraft represented by the unit vector &

This vector could be, for example, a unit vector to the center of the

Sun, to another satellite, or to any other celestial body. The question
we address here is, then, what is the minimum distance between the

ray defined by _ and the surface of the spheroid, hmin, and what are

the geographic coordinates of the subtangent point A. (See fig. 5-6.)
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For a spherical Earth, this problem is almost trivial. (See fig. 5-7.)

The angle p is given by

P =c°s- 1 rp. _ (5-27)
rp

and the distance c from the spacecraft to the normal to _ is given by

e = rv cos (180 - p)

Hence, the tangent point vector r T is

(5-28)

and thus hmi n is simply

r T = rp + c_ (5-29)

hmi n = r T -- Re (5-30)

where Re is the mean radius of the Earth.

In terms of the right ascension and declination of point A, we can
write

x T =r T cos _T cos a T)

yT=rT cos _T sin aT i (5-31)z T = rT sin _T

from which the right ascension a T and declination _fT of the subtangent
point can readily be found. The longitude of A is then found from (see

problem 2)

2A = aT -- 8g (5-32)

where 09 is the Greenwich sidereal time.
For an oblate spheroid, the problem is still directly solvable, but

somewhat more cumbersome in form. The author's solution is presented
below.

The vectors rp and _ define a plane. In this plane, define new axes
and _9,where _ is parallel to _ and _ is normal to _. This plane intersects

the ellipsoidal surface in a curve given by

f(2, _) = 0

and the position of the subtangent point (and hence the minimum

altitude) is defined by the condition

d___Y= 0
d_
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as can be seen from figure 5-6. The coordinates of A in the "barred"

coordinate axis system, _A and YA, are then rotated back into the

"unbarred" coordinate axes (the original axis system), and hence A is
located in this system.

Compute r T in exactly the same way as required by equation (5-29),

using p from equation (5-27) and c from equation (5-28). Then,
construct the unit vectors

is given and

[,1]_--- g2 (5-33)
e3

_ rT [rnlJ
=--= m2 (5-34)

rT m3

The unit vector _ normal to the x-_9 plane is

_i=_ex_= n2 (5-35)
n3

Now, any vector r(x, y, z) in the unbarred axis system has components
in the barred axis system given by

_=r._

_--r._

(5-36)

or, in matrix form,

= ml m2 m3 (5-37)
nl n2 n3

In the present application, we're interested in the inverse transformation
to equation (5-37)

= t2 m2 n2 (5-38)
t3 m3 n3
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A

y 'P e c Y

b

_ a

=X

Figure 5-6. Geometry of unrefracted ray from celestial body to spacecraft.

Reciprocal direction is defined by unit vector _; minimum altitude of ray

(subtangent point) above oblate spheroid is defined along with its geodetic

and geocentric latitude, Cg and ¢c, respectively.

T"

y

PX

Figure 5-7. Geometry of unrefracted ray from celestial body to spacecraft.

Reciprocal direction is defined by unit vector _; minimum altitude of ray

(subtangent point) along the extension of geocentric radius OA is defined.
r

v_ y •
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and, since we're interested only in the _-9 plane, _ = 0, and

x = gl_ + ml_ /
Y = g2_ + m2_ (5-39)

z = g3_ + m3_

In the unbarred axis system, the equation of the ellipsoid represent-
ing the Earth is

or

x 2 y2 z 2

x 2+y2+ _22z 2 =a 2 (5-4o)

If we substitute equations (5-39) into equation (5-40) we get the

equation of the curve defined by the intersection of the rp-_ plane with
the ellipsoid; that is, f(_, Y) = 0, or

a 2

(5-41)

The coordinates XA, YA of the subtangent point are defined by the

condition __- = 0. Differentiate equation (5-41) with respect to _, set

_= 0, and collect terms to get

_A t_ + t_ + _ 3] + _A llml + e2rn2 + _--_13rr¢ 3 : 0 (5-42)

or

where

xA = CYA (5-43)

a2g
= -- (glml + g2m2 q- _r 3m3)

a s _2 _ (5-44)+ +
Use equation (5-43) to eliminate XA in equation (5-42) and solve for

YA,
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and then XA follows from equation (5-43), and the coordinates of the

subtangent point A in the barred coordinates are known.

Reference to figure 5-6 shows that the minimum altitude hmi n is

given simply by

hmin = trTI- YA (5-46)

Finally, the coordinates of A in the unbarred coordinate axis system are

found by putting _A and _gA (with _" = 0) into equation (5-38), giving

[XA] ['1 roll [ ]-_A
YA = _2 m2 YA (5-47)

ZA _3 m3

The right ascension and declination are then found from equation (5-31)

and the longitude from equation (5-32).

Of course, the declination is identical with geocentric latitude, and

finally the geodetic latitude is found from equation (1-3).

Final Remarks

It goes without saying that there are myriad other problems, not

mentioned herein, that are solvable by the methods and equations of

the present text. With regard to Earth satellites, for example, these

include such diverse problems as

1. Rise/set times of a satellite with respect to a given ground
station

2. Range, range-rate, and angular data of a satellite with respect

to a given ground station

3. Rise/set times of one satellite with respect to another satellite

4. Range, range-rate, and angular data of one satellite with

respect to another

5. Computation of ground tracks of satellites

6. Area coverage of satellite borne sensors

7. Entry/exit with regard to sunlight conditions (Escobal (1965

and 1968) and Green (1985) discuss these and other problems
in "Keplermanship;" see also Buglia 1986 and Brooks 1977)

The planets move in essentially elliptic orbits about the Sun. A
consistent set of the time-varying orbital elements for all the planets is

given by Escobal (1968). These orbital elements can be used with the

present equations to determine the heliocentric position of any planet.

If the orbit of the Earth is also computed, then a few elementary
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coordinate transformations are all that is necessary to yield the right

ascension and declination of the planet with respect to the standard

Earth-centered coordinates described in chapters 1 and 4, and hence the

positions of the planets with respect to either a fixed ground station or

a satellite orbiting the Earth can be readily computed by the methods
of chapter 5, with the planet's position being substituted for that of the
Sun.

The Moon is the Earth's nearest natural celestial body, and except
for the musings of poets, lovers, and other eccentrics, the motion

of our nearest neighbor is quite complex due to the rather large
perturbations imposed on its motion by the oblate Earth and the Sun.

However, Escobal (1968) presents an algorithm, based on earlier work

by G.W. Hill and E.W. Brown, which is reported to yield an accuracy
of about 30 arc-sec. The Moon subtends an angle of about 1/2° as seen

from the Earth, or a radial displacement of 900 arc-sec. The Escobal

algorithm is thus accurate to about 1/3o of the angular radius of the

Moon. This is not too shabby and is certainly close enough to find the
Moon.

NASA Langley Research Center

Hampton, Virginia 23665-5225

June 29, 1988
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