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ABSTRACT

Many of the recently developed high-resolution schemes for hyperbolic conservation

laws are based on upwind differencing. The building block of these schemes is the averaging

of an approximate Godunov solver; its time consuming part involves the field-by-field

decomposition which is required in order to identify the "direction of the wind." Instead,

we propose to use as a building block the more robust Lax-Friedrichs (LxF) solver. The

main advantage is simplicity: no Riemann problems are solved and hence field-by-field

decompositions are avoided. The main disad',_antage is the excessive numerical viscosity

typical to the LxF solver. We compensate for it by using high-resolution MUSCL-type

interpolants. Numerical experiments show that the quality of the results obtained by such

convenient central differencing is comparable with those of the upwind schemes.
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Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
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INTRODUCTION

In this paper we present a family of non-oscillatory, secondorder, central difference

approximations to non-linear systemsof hyperbolic conservation laws. Theseapproxima-
tions can be viewed as natural extensionsof t_e first-order Lax-Friedrichs (LxF) scheme.

In particular, total-variation and entropy estiraates are provided in the scalar case,and
unlike the upwind framework, no Riemann problems needto be solved in the caseof sys-

tems of conservationlaws. The useof second-orderpiecewise-linearapproximants instead

of the first-order piecewise-constantones,compensatesfor the excessiveLxF viscosity, and
results in second-orderresolution Riemann-sol_er-freefamily of central differenceschemes.

The paper is organizedasfollows. In Secticn 2, wederive our family of high resolution
central differencing schemes,usingthe LxF solvertogether with MUSCL-type interpolants.

Thus, at eachtime-level we reconstruct from tie piecewiseconstant numerical data, a non-

oscillatory piecewiselinear approximation of _,;econdorder accuracy. We then follow the

evolving solution to the next time level, and end up by projecting it back to a piecewise
constant solution. The result is a family of schemeswhich takes an easily implemented

predictor-corrector form. The resolution of our method hinges upon the choiceof certain
local numerical derivatives with which one reconstructs the piecewise-linear MUSCL-type

interpolants from the piecewise-constant data

In Section 3, we concentrate on the scala:: conservation law. We discuss a variety of

choices for numerical derivatives, and prove th._t the resulting scalar family of schemes, un-

der the appropriate CFL limitation, satisfies _.,oth the Total Variation Diminishing (TVD)

property and a cell entropy inequality. These properties guarantee the convergence to the

unique entropy solution, at least in the genubmly non-linear scalar case.

In Section 4, we describe several ways to extend our scalar family of central differ-

encing schemes to systems of conservation laws. The main issue lies again in the choice

of vectors of numerical derivatives. First, we describe a component-wise extension for

the definition of these vectors, which share the simplicity of the scalar family of schemes.

Next, we demonstrate the flexibility of our central differencing framework, which enables

us to incorporate characteristic information-whenever available, into the definition of nu-

merical derivatives. We continue, by using :his characteristic-wise framework to isolate

the contact wave where the Artificial Compression Method (ACM) is employed, while

treating the more robust sound waves using :he less expensive component-wise approach.

We end up by presenting a corrective type A.CM, which is implemented in a component-

wise manner. This both improves the contact resolution, and retains the simplicity of the

Riemann-solver-free scalar approach.

Finally, in Section 5 we present numeric_d experiments with our high-resolution non-



oscillatory central difference schemes,and compare the results with the corresponding
upwind-based ones.

Both the quantitative and qualitative results for a representative sample of compress-

ible flow problems governed by the Euler equations, are found to be in complete agreement

with the resolution expected by the scalar analysis. Taking into account the ease of im-

plementation, robustness and time performance, these results compare favorably with the

results obtained by the corresponding upwind-based schemes.



2. A FAMILY OF HIGH-RESOLUTION CE:NTRAL DIFFERENCING METHODS

Many of the recently developed high-resolution schemes, which approximate the one

dimensional system of conservation laws

o_ o (2.1)0W+ Cf(_))= 0,

are based on upwind differencing. The prototype of such upwind approximations is the

Godunov scheme [4]; it computes a piecewise con:_tant approximate solution over cells of

width Ax = xi+ ½ - x_-_ __, which is of the form,2

_(_,t) = v_Ct), _-, < • < _;+½" (2.23

To proceed in time, the Godunov scheme first evolves the piecewise constant solution,

_(x, t), for a sufficiently small time step At. Initi_ted with v(x, t), equation (2.1) consists

of a successive sequence of non-interacting Riemann problems. Their resulting solution at

time level t + At, can be expressed in terms of the Riemann solver, R(_; wt, w,),

x - xj+_; vj(t), ti+,(t)), xj _ 3; _ Xj+I. (2.3)
vCz, t + At) = R( At

This solution is then projected back into the space of piecewise constant gridfunctions, see

Fig. 2-1,

1 ['j+½ At)dy, x i ' < x < xi+ _. (2.4),,iCt+ at) - vC_,t+ At) = _ ,,Cy,t + _ -
As "_i-½
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Fig. 2-1
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Integration of (2.1) over a typical cell [xj__,xi+_] x [t,t + AtJ yields

At
vi(t + At) = vi(t) + )_[f(R(0+; vj-l(t),vi(t)) - f(R(0+; vs(t), vi+l(t))l, _ = -_x" (2.5)

This shows the upwind property of the Godunov scheme. Namely, if the characteristic

speeds throughout the relevant neighbouring cells, [xj_l,xj+ll, are all positive (respec-

tively, negative), then (2.5) is simplified into vj(t + At) = vj(t) -- _[f(vj(t)) -- f(vi_l(t))]

(respectively, vi(t + At) = vj(t) - _[f(vj+l(t) ) _ f(vj(t))l)" However, a more complex situ-

ation occurs when there is a mixture of both rightgoing and leftgoing waves. In this case,

the computation of Godunov's numerical flux in (2.5 7 requires us to identify the "direction

of the wind," i.e., to distinguish between the left- and rightgoing waves inside the Riemann

fan. The exact (or approximate) solution of the Riemann fan may be an intricate task, and

in this context, we mention the field-by-field decomposition proposed by Roe [19], which
intends to simplify this task.

Instead, in this section we propose a high resolution approximation of (2.1), which is

based on the staggered form of the Lax-Friedrichs (LxF) scheme,

vy+½(t + At) = l[v _. + v_'+l] - A[f(vy+l(t) ) _ f(vi(t))i. (2.6)

The LxF scheme, [13], is a prototype of a central difference approximation, which offers

a great simplicity over the upwind Godunov scheme (2.5). We observe that (2.6) can also

be interpreted as a piecewise constant projection of successive non-interacting Riemann

problems, which are integrated over a staggered grid, see Fig. 2-2,

v¢+](t + At) -- V(x,t + At) -- 1 f=;+,R(X- x;+_
Ax,_j At ; vi'vj+l)dx, x_ < x < xj+ 1. (2.7)

__ ,j+½(t+ At)
f

T

Fig. 2-2
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The robustness of the LxF scheme, (2.7), stems from the fact that unlike the Godunov

case, here we integrate over the entire Riemann fan, taking into account both the left-

and rightgoing waves. This enables us to ignore any detailed knowledge about the exact

(or approximate) Riemann solver R(.;.,-). Unfortunately, the LxF staggered solver, (2.7),

which results in the simple recipe (2.6), suffers f::om excessive numerical viscosity, which

is evident from the viscous form I23]

vi(t + At) = vjCt)- {X[f(vi+l(t) - f(vi-lCt:_)]+ (2.8)

+_[Qi+_Av,+½(t ) _ Qi_½Av__½(t)l , Avj+½(t) - vj+lCt) - v_(t).

Indeed, the class of upwind schemes is characterized by a numerical viscosity coefficient

u "" ,klAj+½1, (here Aj+½ refers to an approximate average of the Jacobian of
matrix Qj+_

f(v(x,t)) over the cell [xi,z_+x] × [t,t +/xt], e.g., 1221). By the CFL limitation, this amount
of numerical viscosity is always less than the amount of numerical viscosity present in the

central LxF scheme, whose non-staggered form corresponds to QLzF -- I. Consequently,

the upwind Godunov-like approximations have better resolution than the central LxF

approximation, though they both belong to the _ame class of first-order accurate schemes.

This is one of the main motivations for using upwind schemes as building blocks for the

modern shock capturing methods of higher (thart first-order) resolution, e.g. [7], I17], [24].

Alternatively, our proposed method will use the simpler central LxF solver as the

building block for a family of high-resolution s¢hemes. In this manner we shall retain the

LxF main advantage of simplicity: no Riemann problems are solved and hence field-by-

field decompositions are avoided. The main di,_advantage of excessive numerical viscosity

will be compensated by using high-resolution MUSCL interpolants, [24], instead of the

first-order piecewise constant ones in (2.2).

To this end, at each time level we first reconstruct from (2.2) a piecewise linear ap-

proximation of the form

Lj(x,t) = v1(t) + (x- xl)-_iv _, xl _ < x < x1+½. (2.9a)

This form retains conservation, i.e., (here the overbar denotes the [xj, Xj+l] - cell average),

T;C ,t) = vC ,t) = vjCt);

second-order accuracy is guaranteed if the so-called vector of numerical derivative, _-;,v_,

which is yet to be determined, satisfies

1___¢= = + oCA ). (2.9b)
Ax J



Next, we continue with a second stage, similar to the construction of the central LxF

recipe: we evolve the piecewise linear interpolant, (2.9), which is governed by the solution

of successive sequences of noninteracting Generalized Riemann (GR) problems, [1], see
Fig. 2-3,

v(z,t + At) = GR(x,t + At; Li(x,t),Li+t(x,t)) ' x i < x < xi. 1.

t

!

,\1 jLAb,t) -_ i ]/

,,At) _J
_-- ,,,+,(t)

(J Li+_(_,t)

zi xi+ ½ xi+l

Fig. 2-3

Finally, the resulting solution is projected back into the space of staggered piecewise-
constant gridfunctions

1 /zi+l
vj+½(t + At) = Y(x,t + At) = Ax.x¢ v(y,t + At)dy,

In view of the conservation law (2.1), the last integral equals

xj _< x < xj+l. (2.10)

; f_. zi+l X 1
v. ,(t + At) -- 1 _i+½ Li(x,t)d x+ Li+'(x,t)d

_+_ Az [_j _i+½

-_XLJ_= t f(v(xi+1,r))dr-j_=t f(v(xj, r))dr .

(2.11)

1

A. max p(A(v(x,t))) < (2.12)

The first two linear integrands on the right of (2.11), Lj(x, t) and Li+a(x , t), are given

by (2.9a) and can be integrated exactly. Moreover, if the CFL condition



is met, then the last two integrands on the righ'_ of (2.11), f(v(xi, r)) and f(v(xj+l,r)),

are smooth functions of T; hence they can be integrated approximately by the midpoint

rule at the expense of O(At) 3 local truncation error. Thus we arrive at

vj+½(t + At) = [vjCt) + Vi+l(t)] + _[vi - %'÷11- ALfCv( xi+l't + _-)) - f(v(xi't + ))l"C2.1a)

By Taylor expansion and the conservation law (2.1),

1 , (2.14)
At vj(t)--_)_fj,+ -T)=

may serve as our approximate midvalue, v(xj,t-- _), within the permissible second-order
1 , approximate numerical derivative of the

accuracy requirement. Here, _-_f_- stands for ar

flu /( C =
1, 02_;__xfi = fCv(x = a:j,t)) + OCAx), (2.15)

which is yet to be specified.

We should emphasize that while using the central type LxF solver, we integrated over

the entire Riemann fan, see v(x,t + At) in (2.10), which consists of both the left- and

rightgoing waves. On the one hand, this enabled us to ignore any detailed knowledge about

the exact (or approximate) generalized Riemann solver GR(.;.,-); on the other hand, this
r t+'t f(v(x,r))dr, whose values are

enables us to accurately compute the numerical flux, J,=t

extracted from the smooth interface of two non-interacting Riemann problems.

In summary, our family of central differencing schemes takes the easily implemented

predictor-corrector form,

At) 1 , (2.16a)vj(t+--

1 , v' At) f(vj(t+--_-))l. (2.16b)
vj+½Ct + At) = l[vj(t) + Vj+lCt)]+ "_[vJ- J+l] - )_[f(vj+l(t +- -

Here the numerical derivatives of both gridfunctions, {vj} and {fi}, should obey the ac-

curacy constraints (2.9b) and (2.15). In this manner the second-order accurate corrector

step (2.16b), augments the first-order accurate predictor step (2.16a), and results in a high-

resolution second-order central difference approximation of (2.1).

Remarks:

1 _ 1 _ (2.16) recovers the original first-order accurate LxF
1. The choice _Tvj _ h-¥f_ _ 0 in

scheme (2.6).
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2. If instead of (2.6) we use the non-staggered version of the LxF scheme,

1 ,_

vj(t + At) = _[vj+l(t) + vj-l(t)]- _[f(vy+l(t)) -- f(vs_l(t))I, (2.17)

and repeat the reconstruction, evolution and projection steps described above, then

the resulting high resolution central differencing approximation amounts to

At 1
vj(t + --_-) = vj(t) -- _)ty;, (2.1Sa)

1 1 ,_ At At

v1(t+At) = _[vi+l(t)+vi_l(t)]+_[V}_l_V_.+x]_5[f(vj+l(t+T)_f(vi_x(t+T))]" (2.18b)

To guarantee the desired nonoscillatory property of these approximations, the two free

ingredients at our disposal - the numerical derivatives 1 v' and 1 ft, should be carefully

chosen. This issue will be discussed in the next two sections.

3. THE SCALAR PROBLEM

In this section, we are concerned with non-oscillatory high- resolution central differenc-

ing approximations of the scalar conservation law

o--i+ (y(u)) = o. (3.1)

Our family of high-resolution central differencing schemes (2.16) can be rewritten in the
form

1

vi+_(t + At) = _[v,(t) + V_+l(t)]- A[g;+I - g_], (3.2a)

where the so-called modified numerical flux, gj, [18], is given by

At 8-_ At 1 A i
at = f(vy(t + T) ) + v}, vi(t + T) = vy(t) - _ f_. (3.2b)

Here, 1 t
_v i is an approximate slope at the grid point xj,

l____vl' = 0
Ax, : xj, t) + o(Ax), (s.3a)

and 1 ,
_Tfj is the numerical derivative of the gridfunction {fj},

1, o"_---_xf;- f(v(x = xy, t)) + O(Ax). (3.3b)

The constraints (3.3) with smooth (= Lipschitz continuous) first order perturbations on

their right, guarantee the second-order accuracy of the central differencing schemes (3.2).



In order to ensure that these schemes are also non-oscillatory in the sense to be described

1 _ should _ _atisfy for every gridfunction w -- {wi},
below, our numerical derivatives, _-gwj,

o <_w}. sgn(Avi± ½) < Const.. IMinMod{Awi++,Awi-i}l" (3.43)

Here, the MinMod{., "} stands for the usual limiter,

MM{x,y} - MinMod{x,y} = l[sgn(x) + sgn(y)] " Min(Izl, iyl), (3.4b)

and can be similarly extended to include more (than two) variables. The constraint (3.4)

is required in order to guarantee the Total Variition Diminishing (TVD) property for the

family of central differencing schemes (3.2). We recall that TVD is a desirable property

in the current setup, for it implies no spurious oscillations in our approximate solution

v(:_, t), [7].

However, it is well known, e.g. [7[, [18], that one cannot satisfy both the accuracy

requirement, (3.3), and the TVD requirement, (3.4), at the non-sonic critical gridvalues,

vj, where Avi+ ½ "Avi- ½ < 0 :_ a(vi). Therefore, the second-order accuracy requirement,

(3.3), must be given up at these critical gridvalues. Difference schemes with (formal)

second order of accuracy at all but these critical gridvalues may be classified as having

second order resolution in the sense that the l acal truncation error is almost everywhere

O(Ax) 3, and the overall second-order accuracy does not seem to be degraded in such cases,

at least in the LLnorm.

We shall verify the TVD property of the central differencing schemes, (3.2), with the help

of

Lemma 3.1:

the following generalized CFL condition,

AIAgj+} I

The scheme (3.2a) is TVD, if its modified numerical fluz, g1, satisfies

Zxgi+½ -- gi+x - gi.
(3.5)

Indeed, by (3.23), the difference vj+½(t + At) -- vi_½(t + At) equals

Agj_

_ >,ag'.___A)+ a,,;_, (1-+
vi+½(t + At) -- vi_½(t + At) = Avy+½(i.; Av:+½ , 2

Condition (3.5) tells us that the terms inside the parenthesis are positive and TVD follows

along the lines of [7],

TV(v(t + At)) -- Iv+++(t+ At) + At)l < TV(v(t)). (3.6)
J
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Equipped with lemma 3.1 we turn to

Theorem 3.2: Let the numerical derivatives 1 ' and 1 ,
ETvi xYf_ in (3.3) be chosen such

that the TVD requirement (3.4) holds, say,

o <_v}.sgn(hvi+$) <_Const_ .IMM{hvi+$,hvj_½}], Const_ =__, (3.7a)

0 <_ f_.sgn(Av_+}) <_ Constl.]MM{Av_+},Avi_}}[" (3.7b)

Assume that the following CFL condition is satisfied

A.maxla(vi)l< _, Z -- A Constf < 2__(V, 4 + 4o_- a 2 - 2). (3.8)- Const_ -

Then the family of high-resolution central differencing schemes (3.2}, (3.3} is TVD.

Proof: By (3.2b) we have:

)t'Ag¢+----'--_{< )_lf(vi+'(t + _)) -- f(vs(t + _-_))I + 1 Av'_,

IZXvi+½1- Avj+½ _'1_1 _<

(3.9)

< $]f(vi+l(t+ "_!l - f(v'(t ;_)) ,Vi+l(t+ ½At) --vi(t+ -_),+ l Av'-'.,_ ]'r_

vj+l(t + - -v¢(t + I" _v¢+_ _lAv;+_l"

Our CFL condition (3.8) implies that the first term on the right of (3.9) does not exceed

f(Vj+l(t + _)) - f(vi(t + _))
hi vi+,(t + _) vl(t + -_-) < _" (3.10)

Using the midvalue vj(t + -_) in (3.2b), we can estimate the second term on the right of
(3.9),

Ivj+l(t + -_)-vs(t + _)1 < 1 + -_,_-----,,

Avj+½ - z zav_+½

where in view of (3.7b) and (3.8),

" +½= +l-f;, (3.11a)

++) 1I_, < max I_l, I_l < Oonst[ < _a_. (3.11b)

Finally, the TVD requirement, (3.7a), gives us an upper bound for the third term on the

right of (3.9),

'
I_l < maxfl v3. I I) < c_. (3.12)-- _JA I'

_ _v i+ ½ _ -

10



Using (3.10), (3.11) and (3.12), we find that (3.9) boils down to the quadratic inequality

Z(I+ + <

whose solution yields the CFL limitation (3.8).

Remarks_:

1. The values a which permit a positive solution of (3.8),/3 > 0, are 0 <_ a < 4.

, - f_ - 0, which recovers the
2. The TVD constraints (3.7) with a = 0 yields vj 1

staggered LxF scheme (2.6) with the co:responding CFL condition/3 <_ i.

3. The CFL restriction (3.5) is a sufficient but not necessary condition for the TVD
1

property. In practice one may use higher values of/3, up to _ < _.

4. A similar analysis carried out for the non-staggered form, (2.18), yields

< 1(44+4a-a2-2)

instead of (3.8). In practice one may u,;e fl <_ 1 in this case.

We shall now discuss a few examples of numerical derivatives, which retain both the

second order resolution constraint, (3.3), and the TVD constraints, (3.7). As our first

example for the numerical derivative, v_-, we choose

v_ = MM{ Avi+ ½, Avj_½ }. (3.13a)

This choice may oversmear a strong dmcontmmty , where the order of accuracy is less

significant. A preferable second choice, which allows for a steeper slope near such discon-

tinuities and yet retains higher accuracy in smooth regions, is given by

1, (3.13b)
v} = MM{aAvj+½, _Vj+l - vi-1), aAvj__}.

The limiting parameter a can range between the values a = 1, which corresponds to

the basic MinMod limiter in (3.13a), and up to a < 4, which is permitted by the CFL

condition (3.8). Similarly, the flux numericld derivative may be chosen as

f; =. MM{z_.fi+½, A fi_½}, (3.14a)

which is a special case of

:L

f_. = MM{aAfi+_, !_(fj+l -
(3.14b)

11



A simpler alternative for (3.14) is given by

f; = a(vAv_, (3.15)

where v_. is already computed by (3.13). We observe that this choice saves half the com-

putation time of the MinMod operation; yet, it requires the computation of the Jacobian,
A(vi), when dealing with systems of conservation laws.

The numerical derivative chosen in (3.13a), (3.14a) satisfies (3.7) with a = 1, which

implies the TVD property under the CFL limitation (3.8) with/3 = }(v/'__ 2) _ 0.32.

The numerical derivative chosen in (3.13b), (3.14b) clearly satisfies (3.7) and conse-

quently the TVD property, for every permissible a, 0 < a < 4. We summarize the above
by stating

Corollary 3.3: Let the numerical derivative 1 , be chosen byh-_zvi

vj = MM{Avj+},Avj_½};

let the flux numerical derivative be chosen either by

(3.16a)

f_ = a(vj)v_.,

or

f_ = MM{Afl+½'Afl-} }" (3.16e)

Then the ]amily of high resolution central differencing schemes (3.2), C3.16) is TVD under
the CFL condition

_. ma_jla(vi)l < _, Z = _(v_- 2) _ 0.32.

Similarily we have

Corollary 3.4: Let the numerical derivative 1 v'
i be chosen by

, 1

v1 = MM{2Avi+½, _(vi+1 - vj-1), 2Avj_½};

let the flux numerical derivative be chosen either by

(3.17a)

or

f_ = a(vj)vj.,

i 1

fJ = MM{2Afl+' _(fi+1- fj-1) 2Af i ½}._ , _

(3.17b)

(3.17c)

12



Then the family of high resolution central differencing schemes (3.2), (3.17) is TVD, under

the CFL condition,

A.maxila(vi) I < fl, _ := I(V_- 1) ,-_ 0.21.

Remarks:

1. We note that the CFL limitations in Corollaries 3.3 and 3.4 are not sharp. In the

first case, (3.16), where a limiter parameter a = 1 was used, the reconstruction step

is a TVD operation; replacing the exact I'VD evolution operator by the midpoint

rule in (2.11) together with the final averaging step is also TVD, under the CFL

x Similarly, one can argue that in the second case, (3.17), wherelimitation /_ < _.

a limiter parameter a = 2 was used, the averaging step retains the TVD property 1

(though not necessarily the entropy condition), as long as the CFL condition _ <

is met. Indeed, this CFL condition was ,;erified as the stabilitiy limitation, by the

numerical experiments reported in Sectio:a 5.

2. Recently, non-oscillatory schemes were col_structed, such that by sacrificing the TVD

property, they achieve higher (than second-order) resolution including the critical

gridvalues, e.g., the UNO scheme in [12] and the ENO class of approximations in

[9]. To implement such ideas within our :Tramework, one can borrow their definition

of numerical derivative. For example, instead of the TVD choices (3.4), our central

differencing scheme (3.2) may be augmented by the UNO choice (here A2vj =-- vj+x --

2v i + vj-1),

Theorem 3.2 and its corollaries 3.3 and 3.4 demonstrate high- resolution central differ-

encing methods which satisfy the non- oscillatc ry TVD property, and hence are convergent

to a limit solution u(x, t). To guarantee that this limit solution is the unique entropy so-

lution of the scalar conservation law (3.1), we shall appeal to the following cell entropy

inequality, see [10],

uCv_+½Ct+ _t)) < 2[vCvj)+ vC_,l)l- _[Gj+I- Gjl. (3.19)

Here UCu) is a convex entropy function and G.i - GCvi+_, vi, v/-1) is the numerical entropy

flux which is consistent with the correspondirg differential one

c(_, _,_) = FC_), _ C_)- fu f'C_)V'(_).
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We recall that Lax has verified such cell entropy inequality for the LxF scheme, [14].

Following Lax, we will continuously deform vj into vj+x,

= (1- v(0)= vi+l,v(1)= .;,

and in a similar manner, we will further deform v(s) into Vl+j,

v(r,s) = rv(s) + (1 - r)Vl+l, v(O,s) = vi+l,v(1,s ) = v(s).

In the Appendix we prove

(3.20a)

(3.20b)

Lemma 3.5: Let g(v) be a piecewise differentiable interpolant of the gridfunetion {gl}.
Then the following identity holds,

1 U ;vj+a
U(vi+½(t + At)) -- _[ (oi+1) + V(vi)] _ A U'(v)g'(v)dv- RV.+½(g(v)). (3.21)

•' vj

Here the residual term, Ri+_(g ) = R_+½(g(v)), is given by,

1 1 1 1

R_.+½(g(v)) = (Avi+½)2 fo fo sU"(v(r,s)) . [_ - Ag'(v(r,s))] . [_ + Ag'(v(s))ldsdr. (3.22)

Adding and subtracting

/_+' U'(u)f'(u)du -- F(vi+l) _ F(vi),
Y

then after integration by parts, the right hand side of (3.21) will amount to:

1 U

V(vj+_(t -_- at)) = _[ (Vj+l) -__ V(vj)]- )k[F(vj.t_l) _ F(vi)]_ AV'(v). (g(v) - f(v))l_,+,

+A ;_;+' V"(v) . (g(v) - f(v))dv - R_+½(g(v))
." o]

Consequently, the inequality

A ;"'+'U"(v). (g(v)- f(v))dv- R_+_(g(v)) < 0, (3.23)
,t Iij

provides us with a sufficient condition for the family of central differencing schemes (3.2)

to satisfy the cell entropy inequality, (3.19), with numerical entropy flux Gj. = F(vi) +
U'(vi) . (g(v_) - f(vi) ). This brings us to

Lemma 3.6: Let g(v) be the piecewise h'near interpolant of the modified fluz gridfunc-
tion {Hi),

Zxgi+_ ,
g(v) = _(v - v1 ) + gs, min(vi, vi+1 ) < v < max(vy, v1+1)Av 1+½ - - . (3.24)

14



Assume that the central differencing schemes (Y.e), satisfy the TVD constraint (consult

(s.7)),

0 <_ v_" sgn(Avj±]) <_ Const_. IMM{Av++_,Av;-½}I , Const_ =- c_ < 1, (3.25a)

where

Av;+½ = Avl+}. [1 -- A.Cmaxf"CvCx))" Avj+_)+] +. (3.25b)

The entropy dissipative limiter in (3.25b), is introduced in order to prevent the nonexpansive

entropy violating rarefactions, consult [18, Section 8].

Moreover, assume that the flux numerical derivative satisfies the TVD constraint:

Const! =/_, (3.25c)
0 < f_.sgn(Avj+_) <_ Constf'lMM{Avi-_'AvJ-_}l' A. Const-------_

so that the CFL condition (3.8) holds.

Then the following inequality holds

- f(v))dv- <_0,
J vj

U(u) = lu2. (3.26)

Remarks:

1. We observe that in the Genuinely Non-Linear (GNL) case, where, say, f" > 0, the

entropy entropy (3.25b) becomes effective only in rarefaction cells where Avi+ _ > O,

in agreement with [18]. It retains the se,:ond-order resolution of the central differ-

encing schemes (3.2), except for a finite namber of critical cells which contain strong

rarefactions, (Avj+½) + ~ 1, where it reduces (3.2), (3.3) to the original LxF scheme.

2. Lemma 3.6 applies to choices of numerical derivatives, v_, subject to the TVD con-

straint (3.7a) with 0 < a < 1. In practice, higher values, a > 1, can be used.

Lemma 3.6 - which is proved in the append!x, shows that our central differencing TVD

schemes (3.2), (3.7) fulfill the sufficient condition (3.23) and consequently the cell entropy

inequality (3.19), with respect to the quadrat!c entropy function U(u) = x 2 Thus, the

limit solution of our central TVD schemes, u(:_', t), satisfies

) +
This singles out u(x, t) as the unique entropy solution of (3.1), at least in the GNL case

[2]. We have shown

Theorem 3.7: Consider the GNL scalar conservation law (3.1). It is approximated

by the family of high resolution central differencing schemes (3.2), (3.3} which satisfy the

TVD and entropy constraints, (3.25). Then, if the eEL condition (3.8} holds, we have:



1. Second-order resolution;

2. Total Variation Diminishing property;

3. A consistent quadratic cell-entropy inequality;

and, as a consequence of 2. and 3.:

4. the corresponding central differencing schemes converge to the unique physically rel-

evant solution of the GNL conservation law (8.i).

We shall close this section with some scalar numerical examples. We consider the

approximate solution of the inviscid Burger's equation

ut + (lu2)_ = 0. (3.27)

using several of the previously mentioned central differencing schemes. They include:

1. The first-order LxF scheme in its non-staggered form (2.17).

2. The second-order non-oscillatory central differencing scheme (2.18), (3.13a), (3.15).

This is the ordinary non-staggered version of our central differencing which will be
referred to as ORD.

3. The second-order non-oscillatory central differencing scheme (3.2), (3.13a), (3.15).

This is the staggered version of our central differencing which will be referred to as
STG.

Equation (3.27) is solved with two sets of initial conditions. In the first case, we have the

smooth 1-periodic initial data,

u(x, 0) = sin(_x); (3.2Sa)

in the second case we consider the Rieman initial data:

1 x<Ou(x, 0) = 0 x_> 0. (3.28b)

The well known solution of (3.27), (3.28a), e.g. [15], develops a shock discontinuity at

t¢ _ 0.31. Table 3.1 shows us the L1 norm of the errors at the pre-shock time t = 0.15.

It indicates the first order accuracy of the LxF scheme in contrast to the second order

accuracy of our central differencing, ORD and STG.

Next, in Table 3.2 we recorded the same L1 errors at the post-shock time t = 0.4. The

presence of a shock discontinuity reduces the global L1 error to first order. However, the

16



central differencing STG scheme performs somewhat better than the central differencing

ORD scheme and they both have better resolution than the first-order LxF scheme in

shock-free zones.

This behavior is amplified in the second case of solving the Rieman problem (3.27),

(3.28b), see table 3.3 and Fig. 3.1. Once more, we observe that the STG scheme has

somewhat better resolution then its non-staggered counterpart ORD. Yet, the CFL lim-

itation in the non-staggered form, /3 < 1, results in a better time preformance than the

1 In either case, these easily
STG scheme which is subject to the CFL limitation j3 < _.

implemented non-oscillatory central differencing outperform the first-order LxF one.
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Table 3.1:L1 norm of the errors, Burger Equation, u(x, 0) -- sin(_rx), t = 0.15.

Rel. STG Rel. ORD Rel. LxF NX

.000859 .002620 .023702 40

3.70 3.92 1.93

.000232 .000667 .012249 80

3.80 3.94 1.96

.000061 .000169 .006246 160

3.81 3.93 1.97

.000016 .000043 .003158 320

Table 3.2:L1 norm of the errors, Burger Equation, u(x, 0) -- sin(_rx), t -- 0.4.

Rel. STG Rel. ORD Rel. LxF NX

.000849 .003612 .044449 40

3.06 2.79 1.89

.000277 .001291 .023486 80

2.82 2.59 2.06

.000098 .000498 .011383 160

2.57 2.38 2.17

.000038 .000209 .005235 320

Table 3.3: L_ norm of the errors, Burger Equation, u(x, 0) given in (3.28b), t = 0.3.

Rel. STG Rel. ORD Rel. LxF NX

.010921 .014044 .021956 50

1.99 1.99 1.94

.005461 .007027 .011315 100

2.00 2.00 1.99

.002730 .003513 .005685 200

2.14 2.00 1.99

.001274 .001756 .002843 400
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4. SYSTEMS OF CONSERVATION LAWS

In this section, we describe how to extend our scalar family of central differencing

schemes to the one-dimensional system of conservation laws,

0---[+ (f(u)) : 0. (4.1)

Here u(x, t) is the unknown N-vector of the form

u = (ul(x,t),u2(x,t),...,uN(x,t))r,

and f(u) is the flux vector,

f(_) = (fl(_),f2(_),...,fN(_))T,

with an N × N Jacobian matrix,

Apq(ul,...,UN) = _,i)Uq) p,q= 1,...,N.

Our approximate solution at the gridpoint xj is given by the N-vector

VS" = (VS",I,_)j,2,...,I)j,N) T,

and the corresponding vector of differences, AvS"+½ = vS"+l -- vS", consists of N-components

denoted by Avj+½, k = vi+1, k - vj,k.

Equipped with these notations, our family of high-resolution central differencing schemes

(3.2), (3.3), takes the form,

1

vs.+½(t + At) = {[vs.Ct) + vs.+lCt)]- :,[_S.+1- gS"],

where the modified numerical flux, gj, is given by

At 8-_ At 1 igs. = f(vs.(t + -_-)) + v_, vi(t + -_-') = v_(t) - {AI_.

(4.2a)

(4.2b)

As before, the computation of gS" and vS"(t + ___A)requires the numerical derivatives of the

gridfunctions {vS"} and {fj}. This time we have to choose two N-vectors of numerical

derivatives,

iv:
_x , = (v_,_, ' .. , TvS",2,., vS",N), (4.3a)

1 i

"'',f;,N) • (4.3b)"_xxf;= (f;:,f;,2, , T

In the rest of this section, we shall describe the pros and cons of several choices for these

vectors of numerical derivatives.
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Our first choice is a component-wise extension of the scalar definition in Section 3. To

this end we may use either (4.4a),

, =MM{Avj+},_,Avi-½,e}, k=l,...,N, (4.4a)
'O£k

or the more general (4.4b),

1 - vj-l,k), aAvj_},k}, k = 1,... N, (4.4b)
v}._ = MM{aAvj+½.k, _(vj+l,_

or instead, use the UNO-like numerical derivative in (3.18),

v},k = MM{ Avj__,_ + }MM(A2vj -Li:A2vj'k)' (4.4e)

_ ½MM(A%. ,,x%+IA}, k -- 1,...

A possible choice for the vector of numerical flux derivative may be

fj = A(v;)v}. (4.5)

This approach involves multiplication of the Jacobian matrix by the vector of derivatives,

' This multiplication may be avoided if we use a component-wise definition for the vector
V s •

of numerical flux derivatives, fj, in analogy to 113.14). For example, we may use

f}._ _ MM{ A f I+ _,k, A f j_},k} (4.6a)

or alternatively,

, 1 (4.6b)
fj,k - MM{aAIi+_ ,k' _(fj+l,k- fj-l,_), aAfj_}.k}

We observe that the Jacobian Free Form (JFF',, (4.4), (4.6) avoids the use of the Jacobian

matrix A(v) required by (4.4), (4.5), at the exl: ense of carrying out the MinMod operation

twice.
The resulting central differencing schemes, (4.2), which are based upon the component-

wise definition of the numerical derivatives in 14.4)-(4-6), share the simplicity of the scalar

framework. Namely, no Riemann problems are solved and consequently characteristic

decompositions-required in order to distingt_ish between the left and rightgoing waves

inside the Riemann fan, are avoided. At the same time, our central differencing approach

is flexible enough so that it enables us to inco:porate characteristic information, whenever

available, in order to achieve improved resolution.

Our next choice shows how to incorporate the characteristic information into the

definition of the numerical derivatives. To this end we shall employ a Roe Matrix,

_4j+] = A(vj,vj+l), namely, an averaged Jacobian, Aj+½, satisfying, e.g. [11], [19],

f(vj+x) - f(vj) -- _4j+} " (vj+l - vi), (4.7)



and having complete real eigensystem {hj+½,k,]_j+},k},k = 1,..., N. Let us project the

vector of differences Avi+ _ onto {k_+}}, i.e. we use the characteristic decomposition

Av/+½ : _&j+},k "/_j+},k, k = 1,...,N, (4.8a)k

where

&j+},k = ]-,i+},k " Avj+}, Lj"-_j = 6ij, k --- 1,...,N. (4.8b)

Then the corresponding projection of the flux vector of differences is given by

A f;+} -_-_ &S+},kh.+},,<kj+},k. (4.0)k

Now, a possible characteristic-wise choice for the numerical derivatives in analogy with

(4.4), may be (here/Tj,k is denotes the averaged eigenvector centered at x -- xi),

I

& ^
vi'k = _ Mi{&J+},k, j-½,k}Rj,k, (4.10)k

and the numerical flux derivatives can be calculated as

f; = :l./+}v_.. (4.117

Once again we can use the JFF and avoid the multiplication of Roe's matrix by the vector

of numerical derivatives, if instead of (4.11) we employ, consult (4.9),

f' &_+½,kh_.+½,k,&s- ½,kas- },k1,t = _ MM{ }_f_/,k. (4.12)k

As an example, let us consider the Euler equations,

oi,] o[. ] ,rn +_x PUS =0, P= ('_--17 "(E- _pu 7. (4.13 7"_ E u(E+p)

Here p, u, rn = pu,p and E are respectively the density, velocity, momentum, pressure and

total energy. The corresponding Roe matrix, A(v;., v;.+l), is associated with the eigensystem

{aj+},k,Ri+_,k), where the eigenvalues aj+}, k are given by

a. i ^ ^ 1

J+_,l : ui+ _ - c1+_,

and the right eigenvectors are given by

[1 lG-,, : _-
H-fi_ s+}

^ ^

%.+},u = us+},
^ ^ ^

%+},3 = u_+½+ c_.+},

1] k,,1 ^2 +_,3

4 _-u s+}

(4.14)

,]+ c (4.15)

:/+_e s+½
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The average quantities on the right of (4.14)-(_:.15) given in [19] are,

<V _u> _/= <v/'PH> }=7(" _-1)(_/- 10,2), Hi= El ÷ pj (4.16)
0,-- < v_> ' < v_> ' p_. '

1where < w >= _(wi + wi+x) denotes the usual arithmetic mean. This brings us to the

characteristic decomposition (4.8), where the characteristic projections,

^ i ^ ^ -- ,

o_j+½,1 = _(_/1- r/2), &j+½,2 = Pj+½ .... l/i, o_j+½,3 - 1(r/z + r/=) (4.17a)

are expressed in terms of ,h,'72, which are giw_n by

1 ^ ^2 ^ ^ ^2 (4.175)
_1 = (_ - 1). (Ei+_ + _Pi+_J+_ - _J+½mJ+_)/cs+½'

,7_= (_+_ - ._,+_0,_+:'-)/_s+" (4.17c)

We note that the second contact field as.._ociated with R/+½,2 is independent of the

square root which is required only in the computation of the mean value sound speed

_S+½" Since this field is a linearly degenerate, it lacks the strong entropy enforcement

typical to the other two genuinely non-linear field, and therefore, is usually smeared by

numerical schemes. In our next choice of numerical derivatives, we incorporate only partial

characteristic information. Namely, we isola:e the less expensive (i.e., square root-free)

characteristic projection on the contact field, and use the component-wise approach for

the other two fields.

Thus, we first separate the contact field,

A_S+½

AEs+

A Ps+ ½

= Arns+ _.

A ES+

A

- aj+½,= • {'10,
1^2
_u

(4.18)

and then define the vector of numerical derivative as

Pi a 1}. < 0,>
' =MM{&s+}I2' :-_ 1^2

<_u > j

-- MM

A_s+ ½,A_s- ½
A_i+ ,_., Al"7"l,,____

2 . " 2

AEs+ ½,AEs- ½

(4.19)

Similarly, computing the numerical flux deriCative with a characteristic approach applied

only to the isolated contact wave,

N

Afs+½,_

A fj+½,2

A,fs+ __,3

I Afs+_,l
-- Afs+½,2

Afs+_,3
[']-- &s+½,2"as+½,2" 0,

1^2

s+½

(4.20)
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amounts to

II 1 I
< _-u "> 3" _,3,

(4.21)
The latter approach enables us to use effectively the Artificial Compression Method

(ACM) on the isolated contact field, e.g. [6], [7]. To this end, the contact wave isolated in

(4.19) is modified by

= MM(&i+½,2aj+½,2, :-_,z :-_,2) "{:l. l a. 1

'. = [MM{ &i+½,2, &i-_,_} + 0iri]l " U

1^2

where 85 and r i are given by

- MM AffqS+,, Afn i 1
~ _ ~ -_

AEi+½,AEi_½
, (4.22a)

05= la;+b2 - ai-½,,I
1&i+½,2]+ [&1-½,2[' (4.22b)

ri = MM (1- Afii+½)z. ai+½,2, _-(1- Ai'ti_½)z • &i_½, z . (4.22c)

Finally, we shall mention an alternative approach to the characteristic implementation

of the ACM in (4.22). To this end, the Artificial Compression is implemented as a further

corrector step to the component-wise approach presented in (4.2a)-(4.2b). This corrective

type ACM takes the form,

v;(t + At) =vi(t+At)-e(Wi+ ½ - Wj_½), O < t < 1.

Here, the compression coefficient, e, and W i are given by

w i, A%+½. Avs+ ½ > 0,
WS+' = wj = MM{Avj ½,VRL, Avy+½}, (4.23b)

wi+1, Awi+ _ • Avj+½ < 0,

where VRr: is related to subcell resolution information (Harten, private communication,
Is½),

(4.23a)

VRr. = IVi+l(t+At)-vj_,(t+At)-Axi+½(g_+l+,51_1)l ' 61 = MM{Avi_},Avy+_}. (4.23c)

The result is the central differencing scheme (4.2), appended by the component-wise

definitions of numerical derivatives in (4.10) - (4.12), and complemented by the ACM
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corrector step (4.23). This scheme, unlike the characteristic-wise implementation of the

ACM in (4.22), enjoys the simplicity of the co_nponent-wise approach, and at the same

time, enables us to deal effectively with the delicate contact wave. We remark that one

should be careful not to overcompress discontinuities using such corrective type Artificial

Compression: it should be implemented after tl_e rarefaction waves have evolved using an

appropriately chosen compression coefficient E.

5. NUMERICAL EXAMPLES

In this section, we will present numerical examples which demonstrate the performance

of our family of high resolution central differencing schemes for systems of conservation

laws. We consider the approximate solution ot! the Euler equations of gasdynamics, see

section 4,

-- m +-_x PU2 :0, p:(_l-1)'(E-PU2), m=pu. (5.1)
cOt E u(E + p)

We experiment with the following members from our family of high- resolution central

differencing schemes:

1. The central differencing scheme (4.2), (i.4a), (4.5). This is the component-wise

extension of the scalar STG scheme presented in Section 3 and is therefore referred

to by the same abbreviation.

2. The central differencing scheme (4.2), (4.4b), (4.5) with a limiter value a-- 2. This

scheme is referred to as STG2.

3. The component-wise VNO-type version of our scheme, (4.2), (4.4c), (4.5). It is

referred to as STGU.

4. The scheme STG with the addition of the corrective type ACM described by (4.23)

is referred to as STGC.

All the above examples use component-wise definitions for the vectors of numerical

derivatives, and are based on the staggered grid formulation. Our last example is

based on non-staggered LxF scheme, naraely,

5. The central differencing scheme (2.18), (4.4a), (4.5). This is the component-wise

extension of the scalar ORD scheme presented in section 3 and is therefore referred

to by the same abbreviation.
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For the purpose of performance comparison we include here the results of several well

known upwind and central schemes as well. These schemes include:

1. The first order central non-staggered LxF scheme, (2.17), [13].

2. The first order accurate Godunov-type scheme of Roe, e.g. [7].

3. Harten's second order accurate upwind ULT1 scheme, [7].

4. Harten's second order accurate upwind ULT1C scheme, [7], where Artificial Com-

pression is added to ULT1 in the linearily degenerate contact field. It is referred to

as ULTC.

We solve the system (5.1) with three sets of initial conditions. Our first example is the

Riemann problem proposed by Sod [21] (abbreviated hereafter as RIM1), which consists

of initial data

= / x < o, = (1,o,2.5)T
v,, x > 0, vr = (0.125,0,0.25) T. (5.2)

Table 5.1 shows the L1 norm of the errors. Though the results are field dependent, the

"quantitative picture" is favourable with the central differencing schemes. Table 5.2 shows

the time performance of the various schemes. All the schemes have time performances

of order O(NX) 2, where NX is the number of spatial cells. Figures 5.1-5.4 include a

comparison between the numerical solution and the exact solution (shown by the solid

line), e.g. [3], [20], at t = 0.1644. As expected, the overall resolution of the first order

schemes is outperformed by the second order schemes.

We observe that our second order staggered schemes, STG, STG2, and STGU, and

similarily, the second order upwind ULT1 scheme, smear the shock discontinuity over two

cells. The contact discontinuity, however, is more delicate: here we observe smearing of

about 5-6 cells by the second order schemes, both in the central and upwind cases. We can

also observe the over- and undershoots generated by both the upwind ULT1 and central

ORD. These unsatisfactory results suggest to introduce ACM in the contact field. For

this purpose we present the upwind ULTC scheme and the central component-wise STGC

scheme in Fig. 5.4. We note that the ACM is applied in STGC only at the last 10% of the

time steps with the compression coefficient ¢ = 0.625. This results in 2 cells resolution of

the contact wave, and somewhat better resolution in the other waves as well. Yet, small

over- and undershoots which are due to overcompression, still remain.

Our second Riemann test problem (abbreviated hereafter as RIM2), is the one proposed

by Lax [5]. It is initiated with,

vt = (0.445,0.311,8.928) T, vr = (0.5,0,1.4275) T, (5.3)
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and the results at t -- 0.16 can be found in Fig. 5.5 - 5.8. The density profile in RIM2 lacks

the monotonicity we had in RIM1, and therefore, it is more difficult for non-oscillatory

numerical schemes to recover the contact wave and the intermediate "plateau" which

follows. Consequently, the upwind schemes pe:rform here somewhat better than the central

schemes: ULTC resolution is better than STGC which has more over- and undershoots

than before. We note that STG2 has better resolution and L1 errors than STGU in all

fields. This is due to the fact that STG2 has steeper slope near discontinuities, consult

Section 2.

Finally, the results of the nonstaggered c_:ntral difference scheme ORD for both RIM1

and RIM2 problems are presented in Figure. _ 5.9. We recall that the CFL limitation in

the staggered case, _ < _, is now doubled to be _ < 1, consult Section 3. Moreover, a

component-wise reconstruction of the vector of numerical derivatives, enabled us to avoid

any Riemann solver in this nonstaggered case. Consequently, the ORD scheme is twice

faster than the staggered central versions based on STG, as well as the upwind scheme

ULT1 which necessitates the (approximate) solution of a Riemann problem at each cell.

However, the resolution of this nonstaggered version, ORD, deteriorates, when compared

to the staggered versions and the upwind methods.

Our third problem, discussed by Woodward-Collela in [25], consists of initial-data,

vl 0__x<0.1,
uCx, O) = v,_ 0.1 _ x < 0.9, (5.4)

vr 0.9<x< 1,

where pl = P,_ = Pr = 1, rnl =mm = mr = 0, Pt -- 100, Pm= 0.01, Pr : 100. A solid wall

boundary conditions (reflection) is applied to both ends. The results are compared with

the fourth order ENO scheme [9], in Fig. 5.10-5.12. 2 The continous line is the result of

the ENO scheme with 800 cells. We present the results of STG2 and ULT1 with 400 cells

in Fig. 5.13-5.15 at t - 0.01, t = 0.03, and t -- 0.038 respectively. We observe that the

upgrade from the first order LxF scheme to the second order STG2, results in a substantial

improvement of resolution, see Fig. 5.10-5.15; moreover, STG2 compares favourably with

the second order upwind ULT1 scheme.

In summary, we may conclude that when strong discontinuities are present, STG2 seems

to offer the best results, STGC can be tuned to obtain sharp resolution at the expense

of overcompression, and ORD version was found to be the most economical. Further

extensive numerical experiments done alorg these lines are reported in [16].

2We thank A. Harten for allowing us to use his ENO results in [9].
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Table 5.1: Computation time of Riemann problems, results at t -- 1.0.

ULT1/C STG ROE ORD LxF STGC STGU STG2
RIM1

NX

RIM2

1.23 1.23 0.74 0.69 0.22 1.43 1.47 1.37 50

4.93 4.75 2.92 2.71 0.85 5.67 5.88 5.43 100

19.81 19.32 11.68 10.71 3.37 22.74 23.49 21.66 200

2.87 2.74 1.72 1.55 0.48 3.24 3.35 3.07 50

11.54 10.93 6.83 6.16 1.90 12.88 13.30 12.22 100

46.34 43.50 27.27 24.40 7.52 51.46 53.20 48.83 200

Remarks:

1. Due to our method of implementation, ULT1 and ULTC have the same computation

time. In fact ULT1 is somewhat faster then ULTC.

2. All the above schemes use a CFL number of 0.95, except for the versions, STG*,
which use a CFL number of 0.475.
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Table 5.2: Riemann problems,/.i norm error:3.

Density Velocity Pressure

Nx 50 I00 200 50 100 200 50 i00 200

Scheme Rieman Problem - RIM1, t = 0.1644

LxF .03121 .02460 .01769 .06651 .04583 .02814 .03602 .02458 .01582

ROE .01918 .01308 .00836 .03224 .02090 .01145 .01762 .01109 .00666

ORD .01868 .01026 .00578 .03315 .01807 .00959 .01630 .00861 .00460

STG .01495 .00741 .00409 .02812 .01105 .00550 .01232 .00581 .00294

ULT1 .01338 .00806 .00437 .02933 .01177 .00820 .01285 .00736 .00362

STG2 .01241 .00619 .00297 .02449 .01132 .00494 .01019 .00487 .00228

STGU .01146 .00544 .00291 .02300 .00816 .0040._____3.0__0961 .0043____22.00216

STGC .00982 .00322 .00172 .01994 .0__0481 .0027_____66.0070______55.00270 .00153

ULTC .01269 .00715 .00361 .02923 .01761 .00804 .01283 .00735 .00362

Rieman Problem .. RIM2, t = 0.16

LxF .12162 .09044 .06165 .13523 .09294 .05557 .15860 .10767

ROE .06630 .04334 .02827 .07397 .04144 .02192 .08399 .04826

ORD .06791 .03824 .02231 .07158 .03623 .01709 .07836 .04056

STG .04972 .02903 .01776 .04392 .02416 .01307 .05118 .02669

ULT1 .04518 .03572 .01477 .05570 .02603 .01094 .06075 .02841

STG2 .03473 .02129 .01151 .03369 .01655 .00849 .03956 .02037

STGU .03668 .02152 .01302 .03323 .01657 .01046 .03907 .02031

STGC .0276____44.0129____1_1.0__0647 .02285 _01356 .00836 .02355 .01409

ULTC .03001 .01566 .00872 .05504 .02545 .01074 .05997 .02784

.06537

.02655

.01995

.01426

.01206

.00988

.01121

.00873

.01183

Remarks:

1. All the above schemes use CFL number of 0.95, except for the staggered versions,

STG*, which use a CFL number of 0. i75.

2. The underlined results indicate the smallest L1 norm errors in every column.
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APPENDIX: ON A CELL ENTROPY IN]!,QUALITY

In this section, we provide the promised proofs for Lemmatta 3.7 and 3.8, which ver-

ify the cell entropy inequality for our scalar family of high-resolution central difference

methods.

We begin with a proof of Lemma 3.7.

Let Ri+_(g) denote the difference,

Jvj

We now continuously deform vi(s) - vCs) == svi + (1 - s)vj+,, between v i = v(0) and

vj+_ = v(1), see (3.20a). With this in mind, J_j+½(9) may be rewritten in the form

=]o' IR sld . CA.2)

From (3.2a) we may find the dependence of vj+½(t + At) on the continuation parameter s

(for simplicity we omit the explicit depender, ce on time):

_j+_(_)= _-[,(4 + _;+_l- _[_+, - 9(_(_))1, (A.3)

which in view of d

_v(s) = -Avi+½,

yields 1

d-_U(,_+½C4) = -U'Cvi+_(s))[i + A¢CvCs))] " av;+½.

In a similar manner, we have

duc_(_)) = -u'C'C_)) •A_+_,

(A.4)

(A.5)

(A.6)

and Leibnitz rule gives us

d foi+, u,Cv)a,Cv)dv] := _xv,CvCs))a,(v(s)). Av;+_. CA.7)

Substitution of (A.5), (A.6), and (A.7) intc (A.2) yields

Rj+_(_)= -A,j+½/0'[_ + _¢,:,C_))1"[u'(_(_)) - _'(,,½(_))ld_. (A.S)

Next, we use the continuation v(r,s) - rye:s) + (1 - r)vi+l in (3.20b) in order to express

the last difference on the right as

U'(v(s)) - U'(vj+_(s)) -- fo 1 du'(vi+_Cr, s)) dr" (A.9)
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This equality comes about as follows: in view of (3.20b), (3.2a), vj+}(r,s) is given by

hence, vj+½(1, s) = v(s), vi+½(O,s ) = vi+½(s ) and (A.9) follows.
Noting that

_r v(r'8) = --Avi+½"s, (A.11)

then by carrying out the differentiaton on the RHS of (A.9) we obtain,

1
du'(vi+}(r's)) = -U"(vi+½(r's)) " [: - Ag'(v(r,s))] " sAvi+ }. (A.12)

Substituting (A.9), (A.11) and (A.12) into (A.8), we will end up with the desired identity
(3.22)[-7.

(A.IO)

We close this section with the proof of Lemma 3.8.

The piecewise linear interpolant of the gridfunction, {gj), chosen in (3.24),

g(")= ag;+---A("-,;) + gi
Avi+½

has a fixed slope at each cell:

(A.13)

o'(,(r,_)) : o'(_(_))= ag;+½.
Avi+ ½ (A.14)

From (h.14) and (3.22) we obtain that in the case of quadratic entropy function where
U" = 1,

1 (4_ (AAgi+½1 2]Ri+} (g) = 2(Avi+½)2 _, _] • (A.18)

Moreover, the difference g(v) - f(v) between two neighboring values v i and vj+l, covers
an area of size,

• A _ :v¢+, f(v)dv.

Thus, in view of (A.15) and (A.16), the desired inequality, (3.26), boils down to

_[g;+, /_;+' 1._ag;+½,, 1
+ gi] ' Avi+ ½ - A f(v)dv + 5(_) _ _(Av.¢+½)2 < 0.•, v i

To verify the inequality (A.17), we recall that by (3.2a), (3.2b) we have

At 1 I _ 1 ig_ = f(v,,,(t+ T) ) + -_-_v,,, = f(v,,,(t)- f') + -_-_v,,,, m = j,j + 1,

(A.16)

(A.17)
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and Taylor's expansion yields

g_= f_+82;v.Cl_4/3_)+oCa_i+_) 2, /3-_aC_i+½Ct)). (A.tg)

This enables us to write the first two terms on the left of CA.17) as

• ' - "_i " 2Avi+] " (A.20)

Consider now the third term on the left of (A.17): by (A.19) we have

_Agi+ ½ ,kAfy+½ + 1(1 -- 4/32) . (Av_+--'-'_½) (A.21a)= Avj+½ " Avi+½;

inserting AAfi+ ½ =/3Avi+ ½+ O(Avi+ ½)2 into [A.21a), squaring the result and rearranging

we obtain
/X- _)t.. 1

2 /32ra" ,_2 -_C:t 4/3').C '+-----_).Ca,,_+½)'+

1 Av'.+, _ (A.21b)

+ t-_(1 - 4/32)2• C=-Z:-z)".Ca_i+½)2+ oCA,_+_)_.
zavi+½

We note that the cubic term on the right of (A.20), (A.21b), consists of the error in the

trapezodial rule

f°'+
[f(vy+: ) _4_f(vi)lAvj+ _ -- ;k,,j,

as well as additional contributions which are of the same order of magnitude

OCAvj+}) s < ,k. [f"(v(_))]" (Avi+}) s. (A.22)

Inserting (A.20), (A.21b), and (A.22) into tLe inequality (A.17) gives us

l+/3Avf+½ + 16 _hvj+})C2a_+}

+

t and )drFinally, since v i _'+1 agree in sign with Avj+_,

_. max[f"(,(_))]" Ca_+{)3< 0.
" (A.23)

the expression inside the left brackets

can be upper bounded by

- av., 1-4/32_a¢.+, 1t_41 '+_] +
Vi+l-V_ I --l+(fl-- 2"'Avi+} 16 hv/+{ ]

[" "] <- Av./+{ (A.24)
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By the CFL limitation, _ < 1, the sum of the last two terms is nonpositive, and we are
left with the inequality

tA,,;÷½, A,,j÷½] - 1 + a. _ax[f"(,,(x))l. A,,_÷__<0,

which is met by the choice of entropy satisfying limiter in (3.25a), (3.25b).
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