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Abstract--In this paper recent efforts in the modeling of

land mobile satellite systems are reported. These include

descriptions of a simple model for prediction of fading statis-

tics, a propagation simulator, and results from studies using the

simulator. Predictions are compared to available measured data.

I. Introduction

First generation MSS voice channels are being planned with as

little as 3 dB margin. [Rafferty, Dessouky, and Sue, 1988] Small

power margins are common for fixed service applications of satel-

lite links. However, mobile satellite service presents special

problems. In land mobile the line-of-sight path (LOS) is

frequently blocked by trees and structures. For suburban and

rural roads tree shadowing is statistically significant. A

recent review article by several researchers in the MSS research

community summarizes the measurements and modeling work to date

for MSS propagation. [Stutzman, 1988]

In this paper we report on MSS propagation modeling activi-

ties at Virginia Tech. Because of the low signal margin, it is

important to quantify the propagation effects. Experiments offer

a direct or quasi-direct means of quantifying propagation

effects; however, such experiments are costly. Also, there are

many parameters in the MSS environment and not all vehicle travel

situations can be measured. Instead, reliable models allow study

of system performance for controlled propagation conditions. It

is in this context that our modeling program is being developed.

2. Theoretical Background

Model development for MSS propagation is following a course

similar to that for (fixed) satellite-to-earth propagation

through rain at microwave frequencies. (This is not entirely

coincidental because many of the same researchers are also

involved in MSS propagation research.) There are several steps

that must be taken in proper order. First, as complete a theo-

retical model as possible which describes the physics of the

problem is set up. This is more difficult for vegetatively sha-
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dowed propagation in the MSS problem than for microwave propaga-

tion through rain. The theoretical model will have several par-

ameter values that are unknown and that can only be obtained by

measurement. This is where direct measurement results are neces-

sary. Next, simple models for the propagation environment are

developed to drive the theoretical model. Finally, simple models

are built that do not require evaluation of complicated theoreti-

cal expressions but still include the parameter variations. MSS

propagation modeling is developing faster than rain propagation

modeling did because data (required to establish model parameter

values and to verify models) can be collected much faster. In

the rain propagation problem prediction of annual statistics

requires years of data collection, whereas data of statistical

significance can be collected in a matter of hours with a mobile

experimental unit for MSS.

The MSS signal is divided into two components: unshadowed and

vegetatively shadowed. Each is treated separately and then the

results are combined to form a complete model. The total distri-

bution function for fade level F in a mixed shadowed/unshadowed

mobile path is expressed as [Bradley and Stutzman, 1985; Lutz et

al., 1986]

C(F) = Cu(F)*(l-s ) + Cs(F),s (1)

where Cg(F) is the fade distribution for an unshadowed signal,

Cs(F ) is the fade distribution for a shadowed signal, and s is

the fraction of vegetative shadowing along the mobile path. The

unshadowed distribution function, Cu(F), arises from an unob-

structed line-of-sight component with Rayleigh distributed multi-

path, resulting in a Rician distribution with one parameter K,

which is the carrier-to-multipath ratio. The distribution func-

tion associated with pure vegetatively shadowed paths, Cs(F),

results from a lognormally distributed LOS signal component with

Rayleigh distributed multipath. This distribution function [Loo,

1984] is characterized by a mean,_ , and standard deviation, u ,

for the lognormal part and K (ratio of unfaded carrier to multi-

path) for the Rayleigh portion.

The analytical functions (which are not all in closed form)

as described above and combined as in (I) have been coded into a

program referred to as LMSSMOD. Statistics from this program

have been shown to produce results agreeing with experiments.

[Barts and Stutzman, 1987; Barts and Stutzman, 1988]

3. A Simple Empirical Model for Fade Distributions

The rather cumbersome LMSSMOD computer program is required to

evaluate (i) directly. To avoid this a simple empirical model

has been developed. It uses (i) and the following fitted func-

tions. For an unshadowed signal, the probability that a fade
will be greater than F dB is

Cu(F) = e-(F+Ul)/U2 (2a)
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where U1 = 0.01,K 2 + 0.378,K + 3.98
U2 = 331.35,K -2-29
K = carrier-to-multipath ratio [dB]

For a vegetatively shadowed signal, the probability that a fade
will be greater than F dB is

Cs(F ) = [ (50-F)/VI] V2 (2b)

where V1 = -0.275,K + 0.723* _ + 0.336* a + 56.153

_2 =[-0.006*K - 0.008* _ + 0.013, a + 0.103] -1
K = carrier-to-multipath ratio [dB]

= mean of lognormal signal [dB]

a = standard deviation of lognormal signal [dB]

Then the percent of distance of travel for which the fade exceeds

F dB is

P = i00 * C(F) (3)

The empirical model of (i) with (2) and (3) was developed by

first finding parameter values of K,_ ,a , _, and s which lead to

LMSSMOD fade distributions that fit to measured data supplied by

W. Vogel for balloon and helicopter experiments [Stutzman, 1988].

Then the fit coefficients in (2) were adjusted to obtain a fit of

the empirical model to the data. An example is shown in Fig. i.

The typical ranges of parameter values over which the model is

valid are:

13 dB < K < 22 dB

12 dB < K < 18 dB

-I dB < _ < -i0 dB

0.5 dB < a < 3.5 dB

(4)

4. The Propagation Simulator

A software propagation simulator originally developed by

Schmier [1986] simulates MSS signals and predicts primary and

secondary fade statistics. A block diagram of the simulator is

shown in Fig. 2. This simulator is unique because instead of

generating the simulated signal from random number generators, it

is generated using universal data sets, derived from experimental

data supplied by Vogel, with known statistical properties. By

processing Vogel's experimental data, data sets for each signal

component having the proper statistical properties can be

created. These data sets are scaled to have the proper statisti-

cal distribution and recombined to form a composite signal. The

output of the simulator simulates a time sequence signal that can

be used to produce secondary statistics of average fade duration

and of level crossing rate. The simulator output is normalized

to produce samples every 0.i wavelength traveled in order to
remove the effect of vehicle speed from the simulation.

The data sets are generated by first separating the exper-

imental data into shadowed and unshadowed data points using a 2
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dB below LOS criterion for shadowing. Then the running mean of
the data is calculated using a 20 wavelength sliding window. For
the shadowed data, this running mean has been found to be lognor-
mally distributed. Subtracting the running mean from the sha-
dowed data on a point by point basis generates a database which
has been found to be Rayleigh distributed.

In Schmier's original simulator the unshadowed Rayleigh data
set had a uniform phase distribution while the shadowed Rayleigh
data set had a bimodal phase distribution centered around 0 and
180 degrees. The current version uses a shadowed Rayleigh data
set with a uniform phase. Figure 3 shows that the fade distribu-
tions predicted by the analytical model and the simulator are in
good agreement.

5. Using the Propagation Simulator

A major aspect associated with theoretical, empirical, or

simulation modeling is knowledge of the input parameters. The

only known work on this portion of the modeling problem is the

deterministic path model (DPM) of Smith and Stutzman [1986]. The

DPM uses the CCIR Modified Exponential Decay Model (MED) for cal-

culating the attenuation of a signal propagating through foliage.

For MSS modeling, roadside foliage is modeled as a semi-infinite

block of a known height and setback from the vehicle. Given the

elevation angle to the satellite and the bearing angle with

respect to the vehicle, simple geometry can be used to calculate

the path length through foliage. From the path length, the atte-

nuation of the signal is calculated using the MED. The Determin-

istic Path Model assumes that the vegetation height and setback

are uniformly distributed variables with a minimum and maximum

value. The DPM yields the mean and standard deviation of the

attenuation, which are estimates of the log normal mean, u and
I

standard deviation, _ . These values can be used as inputs to

drive the simulator. Results of using the DPM to estimate the

lognormal mean and standard deviation have shown good agreement

with experimental data. Figure 4 shows a fade distribution for

data measured by Vogel and Goldhirsh on RT 295 between Baltimore

and Washington and the output of the propagation simulator using
the DPM to estimate the lognormal mean and standard deviation.

Measurements were made for elevation angles of 30, 45, and 60

degrees along the same section of road on both UHF and L-Band.

The DPM was used to estimate the lognormal mean and standard

deviation for each case with the results used to drive the simu-

lator. The results of the simulator showed good agreement in all
cases.

The propagation simulator (as indicated in Fig. 2) also is

used to drive the channel simulator developed at Virginia Tech.

The channel simulator is used to determine bit error rates of MSS

channels for various modulation and coding formats in the pres-
ence of propagation effects.
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Figure i. Fade distributions Vogel's 1985 helicopter data

[Schmier and Bostian, 1985] (solid curve) compared to
predictions of LMSSMOD using (i) (triangles) and to the

simple empirical model of (2) (diamonds).
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Figure 2. A block diagram of the propagation simulator.
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Figure 4. Comparisons between measured helicopter data at
L-band [Goldhirsh and Vogel, 1988] (solid curve) and pre-

dictions for 30 degrees elevation angle from the propaga-

tion simulator using the Deterministic Path Model

(crosses).
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