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ABSTRACT 

Title of Dissertation: "An A1 1 Sky Study of Fast X-Ray Transients" 

A1 anna Connors, Doctor of Phi losophy , 1988 
Dissertation directed by: Dr. Elihu Boldt, Adjunct Professor, 

Department of Physics and Astronomy 

In the HEAO 1 A-2 survey of fast X-ray transients, we searched 2- 

20 keV scanning data for brief increases in flux, >4 millicrabs, on 

tinescales -1-lo4 s above a 12 hour average. We divided the search 

into two regions, an "a1 1-sky" survey of the Galaxy, and a survey of 

the Magellanic Clouds. In the Magellanic Clouds survey, we found 37 

events, and identified all with 4 of the 5 brightest sources in the 

LMC, plus 2 as flares from a foreground star. We found no X-ray 

bursts, no y-ray bursts, and no events from the SMC. In the llall-sky" 

survey, after excluding well-known variable sources, out of the 

equivalent of -104 days of data, we found 15 events, falling into two 

broad categories: flares from coronal sources, roughly isotropically 

distributed, with optically thin thermal spectra; and harder fast 

transients apparently distributed near the Galactic plane. We 

identified the first as flares from ubiquitous active cool dwarf 

stars. We hypothesized that the second may have been from distant Be- 

neutron star binaries. However, at least two of the harder, more 

luminous events remain unidentified. Intriguing questions for future 

research include the nature of these rare events, and how they may fit 

into a hierarchy of hard fast transients from y-ray bursts to 

outbursts from pulsar systems; testing the "Be-neutron star" 

hypothesis; and more detailed understanding of the role of flaring 

activity in the atmospheres of main sequence stars. 
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Chapter 1 

Introduction 

A. First Light 

"Le mythe est nb de la science; la science seule 1 'expliquera." 

(Depuis, op. ci t. de Santi 1 lana and von Dechend 1969) 

In a preface to their classic essay on origins of the myth, as a 

vehicle for the preservation and transmission of human knowledge in 

the ages before writing, Santillana writes: 

"Many, many years before, I had questioned myself, in a note, 

about the meaning of fact in the crude empirical sense, as applied to 

the ancients. It represents; I thought, not the intellectual 

surprise, not the direct wonder and astonishment, but first of all an 

immense, steady, minute attention to the seasons. What is a solstice 

or an equinox? It stands for the capacity of coherence, deduction, 

imaginative intention and reconstruction with which we could hardly 

credit our forefathers. And yet there it was. I saw. 
llMathematics was moving up to me from the depth of centuries; 

not after myth, but before it. Not armed with Greek rigor, but with 

the imagination of astrological power, with the understanding of 

astronomy. Number gave the key. Way back in time, before writing was 

invented, it was measures and counting that provided the armature, the 

frame on which the rich texture of myth was to grow. 

"...The earliest social scientist, Oemocritus of Abdera, put it 

in one striking sentence: men's progress was the work not of the mind 



but of the hand. His late successors have taken him too literally, 

and concentrated on artifacts. They have been unaware of the enormous 

intellectual effort involved, from metal lurgy to the arts, but 

especially in astronomy. The effort of sorting out and identifying 

the only presences which totally eluded the action of our hands led to 

those pure objects of contemplation, the stars in their courses." (de 

Santillana and von Dechend 1969, p. ix; the emphasis is their own.) 

Kuhn (1970) has documented the extreme difficulty, in astronomy 

as in any other science, of first correctly recognizing a useful 

underlying pattern from the details of observations; and second, of 

working out how those detai 1 s come to be ordered by the newly 

perceived pattern (or 'paradigm'). Once such a pattern has been 

completely incorporated, it seems obvious. One relies on it, without 

thinking, to sort and comprehend a hierarchy of observational data; 

but the initial understanding required a great struggle of vision. 

Imagine that one glances idly out an off ice window to watch an 

open meadow, an autumn field of grain or seeded grasses, that 

stretches into the distance. One is well aware, having interacted 

directly with grass and breezes for years, that the alternating waves 

of denser brightness and darker color drifting across the brown meadow 

grass indicate the action of the wind; a force which is not directly 

visible to the observer, but whose results one can see. (Further, one 

may have studied the motions of air masses of different temperature 

and so may be aware that the heat of the sun is what powers the wind, 

and so forth.) 

Consider the number of intellectual steps that allow an observer 

to reach just the first conclusion. First, from tramping through 



meadows (that is, direct interaction) one has gained detailed 

knowledge of the physical properties of grass and wind; second, one 

has observed, many times, that the individual stalks of grass one 

views at a distance have properties similar to those one has observed 

close at hand. It then takes no great feat of imagination, when 

seeing a wave of changing brightness ripple across a distant meadow, 

to envision in detail the interactions of individual stalks of grass 

under the combined forces of wind pressure, the resilience or 

stiffness of each stalk, and perhaps the weight of seeds at its head. 

Compare this to the long effort to understand an analogous 

phenomenon among the stars, the density waves forming the spiral 

structure of the Milky Way. Originally, this track burned by the 

impetuous Phaeton across the sky served as something like a benchmark 

for the precession of the equinoxes. Two subtle assumptions provided 

a framework for a deeper understanding: one was that the natural laws 

operating at great distances were essentially the same as those one 

could observed more closely; the second was the idea of being able to 

map the world one observes at all. About the intellectual effort that 

led to the latter, de Santillana and von Dechend (1969) wrote that  in 

classical antiquity, archaic time defined the universe, and space was 

synonymous with absence or emptiness, in contrast to the modern notion 

of three Cartesian dimensions (or four relativistic ones), with space 

delineated in the mind's eye by 'chalky axes' (Minkowski 1908). They 

suggest the first signs of this more modern description of space 

"coincided with the invention of perspective in the 15th century" 

(ibid p. 324). These twin ideas were not applied to astronomy until 

later (perhaps a reflection of the extreme difficulty of investigating 



a domain where no direct experimentation was possible). In the late 

1500s, Copernicus made a step towards extending this new idea of space 

to the cosmos when, to simplify the ever more complicated calculations 

of the Ptolmeic system, he took the Earth out of the center of the 

frame and a1 lowed it to orbit about the Sun (Kuhn 1970). The idea 

that the objects in the heavens were essentially the same in nature -as 

what one observes on Earth may have crystallized in 1611 with 

Galilee's observations (through his telescope, a new 'work of the 

hand') of Earth-like features on celestial objects such as the moon; 

and his calculations of the height of lunar mountains from their 

changing shadows may have extended the idea of mapping, common on the 

surface of the earth, to the heavens (Morrison and Morrison 1987; 

Drake 1978; E. Cavicchi private communication). 

Once these two paradigms had gained general acceptance, their 

practical application to the mapping of even the Mi 1 ky Way was not 

straightforward. There is sti 1 1  some controversy over the proper 

calibration and interpretation of the stars used as distance markers 

(Sandage and Tammann 1985; Wesdelink 1985). The tedious effort of 

making a three-dimensional map of the Milky Way was requisite for 

understanding its structure; Lin and Lau (1979) point out that 

observations and cataloguing of the shapes of distant galaxies also 

provided impetus for perceiving an overall "Grand Design". Once this 

"Grand Design1' had been hypothesized, there was still the difficult 

effort of showing that this was a useful description, and deriving 

some new understanding from it. Early efforts by Lindblad (op. cit. 

Lin, Yuan, and Shu 1969) involving calculations of the orbits of 

individual stars were not convincing because of their incomplete 



accounting; later calculations used a fluid approximation to develop 

the current understanding of the spiral structure as standing gravity 

waves, delineated by bright stars on the 'crest' (in denser star 

formation regions), much as brighter bands of grain delineated the 

invisible force of the wind in the earlier analogy (Lin and Lau 1979 

and references therein). 

De Santillana and von Dechend (1969) suggested that, in human 

history, understanding and communication through numbers was more 

basic than and preceded communication through common languages; we 

turn this on its side to point out that where the common sense of 

direct experience fai 1 s, astronomers have used count1 ng and measure as 

a guide. 

B. Overview of the Problem 

This is a 'counting' thesis,.a work based on gathering and 

sorting, in the earliest traditions of astronomy. Instead of human 

vision, we have observed the heavens with satellites carrying X-ray 

detecting collimated proportional counters (OSO-8 and HEAO I) ,  and 

X-ray telescopes with proportional counters, channel multiplier arrays 

at the focus (HEAO 2 and EXOSAT). Unlike the human eye, for these 

modern 'works of the hand', there was a tradeoff between larger field 

of view and finer spatial resolution, and between the ability to 

record both vari abi 1 i ty and color (energy). For gathering and sorting 

the data, we have used, not human memory (aided in long term storage 

and transmission by the mnemonic of myth), not written records of the 

hand and eye, but the electronic memory and sorting capacities of an 

IBM mainframe, a VAX mainframe, and several smaller VAX and PDP 



machi nes . 
In contrast to works which examine one outstanding object or one 

class of similar objects, this thesis is based on a statistical study 

of- a specific phenomena, variability in -2-20 keV X-rays on time- 

scales of seconds to hours, which can arise from very disparate 

physical situations and correspondingly disparate classes of 

objects. The bulk of this work concerns a complete survey of 

variations in flux greater than about 10-lo ergs-M2-s-l for times of 

-1 s to several hours, over the whole sky, using X-ray data from the 

A-2 experiment of the HEAO 1 satellite. In a compromise between broad 

sky coverage and good spatial resolution, the ~ 1 2  detectors viewed the 

sky through collimators limiting the field of view to -3Ox3' that were 

moved systematical ly across the whole sky. We have assumed throughout 

that the glimpses of the variable sky sampled in thir manner are 

represenat ive of the whole. 

In this thesis, we were interested in investigating types of 

short, transient, events not addressed in detail by other observers, 

which in practice meant considering variable sources with average 

(over a week) luminosities of something less than "3x10- 11 

ergs-cm-*-s-l (2-20 keV). Some types of events which net this 

criteria included faint Type I or Type I1 X-ray bursts from distant or 

obscured sources; faint X-ray counterparts to gamma-ray bursts; 

flares from active cool dwarf stars or active cool subgiants; 

pulsations and outbursts from Be-neutron star systems; and outbursts 

from cataclysmic variables. We compared characteristics such as 

spectra, brightness, and short term variability to sort these events 

into natural classes, and measured their rates of occurence. When 



considered in the larger context of X-ray variability over thc whole 

sky, this work helps illuminate the details of the grand flow of 

energy through the Galaxy. 

We reiterate that the sample studied here is quite small. The 

HEAO 1 A-2 experiment viewed less than 1/1000 of the sky at a time, 

and its total 'oni time (for the purposes of this search) was just 

over 104 days. Because of the low signal to noise ratio inherent in 

the faint, short events studied here, and because of the limited 

amount of previous X-ray data (when compared to archival optical 

data), the classifications we give for our events may not always be 

correct. Therefore the outcome of this project is primarily to 

suggest or confirm trends. If one wants more than a partial 

understanding, it will be necessary to both observe members of the 

various classes of X-ray varying objects across a broader spectrum 

(note that in most X-ray papers 'iidentification" is still synonymous 

with Hoptical identif ication") , and to do more complete X-ray studies 
to fill the gaps in the sparse archival X-ray data. 

C. Brief Overview of the Variable X-ray Sky 

In a recent popular article, Alfven (1986) noted that in the days 

of optical observing, astronomers could observe 'only the surf aces of 

starsi; that is, mainly the photospheres of main-sequence stars. 

There were many states of matter unobservable at optical wave1 engths, 

matter that was too cool or too hot, for example, to radiate primarily 

between 3000-7000 A. New technologies and instrumentation, developed 

primarily after WW 11, enabled astronomers to observe in the radio, 

infrared, ultraviolet, X-ray, and gamma-ray regimes (Longair 1981). 



Radio telescopes mapped out cool clouds of hydrogen.and more complex 

molecules, as well as radiation from extremely energetic particles in 

environments as diverse as quasars and the Sun. Longair (1981) 

remarks that no astronomer would have believed the enormous amount of 

energy radiated in these hitherto invisible wavelengths. 

Boldt (1987) has noted- that data from the earliest rocket 

observations already contained evidence for two of the hallmarks of 

the (extra-solar) X-ray sky: intense, variable emission from point 

sources, and a diffuse overall background 'glow' . These rocket 
observations had the drawback of only being able to observe for a few 

minutes per launch. Mapping of the X-ray sky had to wait for the 

launch of the first X-ray Explorer Satellite, named Uhuru after its 

December 12, 1970 launch from the coast of Kenya. It was followed by 

more than a dozen U.S., European, and Japanese X-ray satellites. Only 

two of these, Ariel 5 and HEAO 1, were specifically sky survey 

missions. (The Vela sate1 lites also surveyed the X-ray sky over a 

number of years, a1 though it was not their primary mission.) 

Data sent back from the first sky survey instruments revealed 

bright, variable X-ray sources superposed on a glowing background that 

covered the whole celestial sphere, 1 i ke very nearby individual seeds 

or more distant colorful berries that stand out, in one's vision, 

against a meadow landscape as it recedes into an unresolved haze in 

the distance. This roughly isotropic, unresolved X-ray bright haze, 

covering the whole celestial sphere, was termed the cosmic X-ray 

background. Contrast this with a view of the night sky at optical 

wavelengths, which appears mostly dark; sprinkled with the numerous 

'constant' stars, that recede in the distance into a standing wave of 



star l ight ,  as one looks towards the denser s ta r  formation regions 

delineating the Galactic plane. I n  the X-ray sky (as observed by 

UHURU, f o r  instance), perhaps one t o  two dozen variable luminous 

sources l ined the Galactic plane; another two t o  three dozen spread 

out i n  a broad halo about the Galactic center; and these were 

superposed on perhaps two dozen extra-Galactic sources, including 

act ive galact ic nuclei  and hot X-ray glowing gases from c lusters and 

supercluster o f  galaxies d is t r ibu ted  iso t rop ica l l y  about the sky. 

Since t h i s  work focuses on va r iab i l i t y ,  we concentrate here on X-ray 

sources found i n  the galaxy. 

 on-degenerate stars (main sequence stars, subgi ants, b r igh t  

giants and super giants), which dominate the night sky a t  op t ica l  

wavelengths, were among the least  prominent i n  X-rays. For most (save 

stars wi th  act ive coronae) an average r a t i o  o f  X-ray luminosity t o  

bolometric luminosity o f  about (with a wide spread) was found t o  

be a reasonable approximation (Bradt and McClintock 1983; Helfand and 

C a i l l a u l t  1982; Pa l lav ic in i  e t  al. 1981). From densi t ies and opt ica l  

luminosit ies i n  A1 len  (1973), we estimate the t o t a l  power released i n  

X-rays i n  our galaxy by these non-degenerate, magnetically inact ive 

stars t o  be on the order o f  ergs-s-l. 

Stars wi th  act ive coronae exhibi ted a much higher r a t i o  o f  X-ray 

t o  opt ica l  luminosity. There are two classes o f  stars which exh ib i t  

such s t e l l a r  ac t i v i t y :  magnetic (or  tiactive", o r  "spotted") cool 

dwarf stars; and act ive cool giants-subgiants. The l a t t e r  occur most 

of ten i n  nearly synchronous binar ies wi th  a fa in t ,  smaller mass 

companion, c a l l  ed RS CVn-type binaries. (The current understanding i s  

t ha t  the smaller companion af fects  the X-ray a c t i v i t y  o f  the sub-giant 



primarily by keeping its rotation rate high; Pallavicini et al. 

1981). The quiescent xiray luminosities of these sources is apt to be 

on the order of loz9 ergs-s-l. These spotted stars are more X-ray 

luminous when they flare, with peak luminosities on the order of lo3' 

ergs-s-l, and the total energy released in a typical flare on the 

order of ergs-s-l. However, the space density of these spotted 

subgiants, though not well measured, is probably at least an order of 

magnitude less than that of the magnetically active cool dwarf stars. 

Active cool dwarf stars (f 1 are stars; dMe-dKe) exhibit lower 

quiescent luminosities (10 26-29 ergs-s-l), but have a space density of 

-0.04 per cubic parsec (see Appendix C). So far no correlation has 

been found between the activity of a flare star and whether or not it 

has a companion; instead, correlations with rotation rate and/or 

quiescent (U-band) luminosity have been measured. From Lacy, Mof f et , 
and Evans (1976) we find the average power radiated in the U-band 

during stellar flares, <L~*>, roughly follows the relation 
* 

<Lu > - 105(qU)o*77, where qU is the quiescent U-band luminosity of 
the star. From Chapters 3 and 5, and Appendix C of this work, we find 

the total expected energy radiated in X-rays during stellar flares is 

roughly one-tenth that radiated in the U-band (with a wide scatter). 

Using estimates of the percentages' of active stars, and their 

luminosities, from Joy and Abt (1974), number densities from A1 len 

(1973), and assuming a uniform disk distribution of scale height 

-300 pc, we estimate the total mean power radiated in X-ray flares 

over the whole galaxy from stars with active coronae to be 

36 -5x10 ergs-s" (2-20 keV). For comparison, the X-ray emission from 

the Galactic ridge is estimated to be ergs-s-l (Worral et al. 



1982; Warwick et al, 1985; Caillaut et al. 1986). (We point out 

that the peak X-ray luminosities of these events are actually quite 

low, less than ergs-s-l, and so would have been indistinguishable 

from an unresolved background glow when Uhuru viewed the sky. It is 

only the high space densities of these cool dwarf stars that allows 

them to contribute a measurable fraction of the overall X-ray 

luminosity of the Milky Way.) 

At the other extreme, one finds luminous X-ray binaries: stars 

with compact companions (accreting neutron stars or black holes) that 

are among the most prominent sources in the X-ray sky, with LX/LOpT as 

high as lo4 (Bradt and McClintock 1983). These dramatically variable 

systems dominate any (-2-20 keV) X-ray map of the sky. (The X-ray 

brightness of these systems containing compact objects is responsible 

for the contention that while one observes the middle age of a star 

with optical radiation, in X-rays one can view the end of a star's 

life.) Following Bradt and McCl intock (1983) we divide these, 

according to their optical counterparts, into systems with low-mass 

and high-mass main sequence companions (although there is some overlap 

at masses of several MO). They point out that the positions of the 

high mass X-ray binaries map out the spiral arms (and star formation 

regions) near the Galactic plane, while the positions of the (on 

average older; Cowley et a1 . 1987) low mass systems spread out in a 
halo around the Galactic center. (See also van Paradi js 1983.) 

Another indication of relative age can be found in the differing 

magnetic field strengths of the neutron stars in the two types of 

systems, as high mass systems more often are pulsars (showing they 

have compact companions with magnetic fields >lo1' gauss). 



Van den Heuvel and Rappaport (1986) divide the high mass binaries 

into three categories, based roughly on their accretion rates. In two 

of their categories, "massive wind driven systems1t and "disk driven 

systems", the systems continuously emit X-rays, with 

LX 2 ergs-s-l. However, others lump these two consistently 

luminous groups together (Stella, White, and Rosner 1986). There are 

about ten such highly luminous high mass systems documented. Cowley 

et a1 . (1984) has suggested that roughly an equal number of a1 1 
classes of bright X-ray sources may be hidden from identification on 

the far side of the Galactic plane by distance and high column 

density. Overall we estimate that -20 of these massive supergiant and 

bright giant binaries contribute - 5 ~ 1 0 ~ ~  ergs-s-l to the total 

galactic luminosity I n  X-rays. 

The less luminous, less massive, sub-category of high mass X-ray 

binaries contains transient X-ray sources such as Be-plus-neutron star 

binaries in wideleccentric orbits. Since from Allen (1973) there are 

roughly two orders of magnitude more early-type subgiants and main- 

sequence stars than more massive systems, if one (naiveiy) assumed an 

equal incidence of binaries containing compact objects in each, one 

might expect -2~10' neutron star binaries with such early-type stars 

as optical counterparts. One would also expect the majority to have 

12 strong magnetic fields, -10 gauss. However, systems that are only 

transient X-ray sources (such as Be-plus-neutron star binaries, which 

apparently only turn 'on' during perSods of optical activity, and even 

then have outbursts that occur mainly at periastron) are apt to be 

difficult to count. We can make a crude estimate based on the 

investigations of small segments of the Galactic plane described in 



Chapter 3. We assume our rough measurement of a time-averaged flux of 

-3~10-l1 ergs-cm'2-s-1 from several apparently hard, variable, sources 

in a 3"x3" field at Galactic coordinates (255",g0) to be represenative 

of the the whole plane. If one assumes these sources are distributed 

isotropically throughout a disk of scale height -100 pc, and that some 

fraction of this emission is due to Be-plus-neutron star binaries, one 

estimates an upper 1 imit to the total X-ray contribution of these 

hard, transient, predominantly pulsar, systems of several times 

ergs-& (2-20 keV) over the whole Galaxy. (For comparison, for 

7 cosmic rays, one estimates, for a 'lleakout" time of -10 years, and a 

total Galactic energy of -10 54-55 ergs (Allen 1973), an average power 

input of -1040 ergs-s-l.) 

Similarly, we can roughly categorize the low mass X-ray binaries 

by their average X-ray luminosities. From the 43 low-mass and 

globular cluster systems listed in Bradt and McCqintock (1983) we 

delineate roughly three classes of sources. The brightest persistent 

sources, with LX - 3x10~'-~* ergs-s-l, constitute -30% of the 

(identified) low-mass X-ray binaries. Fol lowing the suggestion of 

Cowley et al. (1984; 1987), we estimate there are -28 such luminous 

systems, and infer they contribute -3~10~' ergs-s-l to the overall 

X-ray luminosity of the Galaxy. Roughly another 30% (of low mass 

systems with distance determinations) have average luminosities 

-lo3' ergs-s-l. These 'moderate' lumi nos1 ty, moderate accretion rate 

sources exhibit the highest rate of X-ray bursts, -1 per hour when 

bursting (Bradt and McCl intock 1983). We estimate overall that these 

moderate luminosity low mass X-ray binaries add - 3 ~ 1 0 ~ ~  ergs-s-l to 

the X-ray luminosity of the Galaxy, and that X-ray bursts account for 



something like 3% of this total. The remaining 40% of the low mass 

binaries were either soft transient sources (albeit some with peak 

1uminoslties as high as ergs-s'l), or have luminosities less 

than ergs- , and so we estimate they contribute something less 

than ergs-s-l to the time averaged X-ray luminosity of the 

Gal axy . 
We have not yet discussed systems containing white dwarfs (except 

indirectly, as a few RS CVn-types have white dwarf companions; we 

treated them as active-coronae stars). Those that produce the most 

X-ray emission are close binaries in which a low mass star transfers 

matter (through an accretion disk) to its white dwarf companion, and 

are named cataclysmic variables (Patterson 1984). These systems have 

relatively low X-ray luminosities, 10 29-34 ergs-s-l, and their space 

density i s  not we1 1 measured. Using estimates of number densities 

from Patterson (1984), and luminosities from Bradt and McCl intock 

(1983), we estimate a rough combined X-ray luminosity of several times 

ergs-s-l (considerably less than from binaries containing neutron 

stars or black holes). 

Since this work is mainly concerned with 1-lo4 s variability, we 

have not mentioned supernovae remnants, even though a few (such as the 

Crab and Vela) contain lone pulsars (with periods of -33 and 69 ms, 

respectively). Luminosities of the closest supernova remnants are 

something like ergs-s-l (2-20 keV); estimates of their total 

contribution to the X-ray luminosity of the Galaxy range from enough 

to account for most of the luminosity of the Galactic ridge 

1 ( ergs-s- ), to nearly an order of magnitude less (Koyama, 

Ikeuchi , and Tomasaka 1987). 



From this sketchy overview, one sees that the variable part of 

the signal from the X-ray sky carries, in some cases, only a small 

fraction of the total energy (as in Type I or I1 X-ray bursts). Yet 

it can carry with it clues to the underlying physical properties of a 

system. One can think of X-ray variability as falling into two rough 

categories. The first category encompasses a1 1 cases where the 

reception of the radiation is somehow interrupted: that is, where 

radiation from a region is continuously emitted, but no longer reaches 

a detector stationed at Earth because of purely 'geometrical 

considerations. For example, an object, such as the optical 

companion, moves into the line of sight, as in an X-ray eclipse; or 

the emitting region rotates out of the observer's 1 ine of sight (as 

does the pole of a magnetic neutron star, on a pulsar; or an active 

region, on a flare star). Many of these events are strongly 

periodic. They have allowed observers to constrain the sizes and 

masses of binaries, to set constraints on models of magnetic field 

generation in main sequence stars, and in a handful of cases to 

determine the size and mass of both members of an X-ray binary to 

obtain the first measurements bf the mass of a neutron star (Shapiro 

and Teukol sky 1983 and references therein). 

The second category involves the transient release of stored 

energy through a variety of mechanisms. These events are not 

necessarily periodic (although some are quasi-periodic). Many exhibit 

a roughly exponential rise and decay which is often accompanied by 

cooling on roughly the time-scales of the intensity decay (Serlemitsos 

private communication). These time-scales, together with observations 

of the spectra, and of the total energy released, give clues to the 



underlying physical phenomena in very different ways. For example, 

stellar flares, in an electromagnetic release of energy, indicate the 

geometry of portions of the stellar coronae. One indirectly observes 

the dimensions of these hot plasma-filled loops by measuring the rise 

times of stellar flares (Batchelor 1984; also see Chapter 5). Type I 

X-ray bursts, when modeled as black-body radiation released in a 

thermonuclear flash, provided the evidence that low mass X-ray 

binaries which were not pulsars also contained neutron stars (Swank et 
al. 1977; also see Shapiro and Teukolsky 1986 and references - 
therein). X-ray bursts emit only a small fraction of the time- 

averaged power released in X-rays by these systems, but indicate 

dimension, temperature, and may (with better data in the future) 

indicate chemical composition and depth of accreting matter (Ebisuzaki 

1987). The high luminosity and rapid variability of the most luminous 

X-ray binaries provided evidence for both the efficient conversion of 

gravitational potential energy into radiation, and for a compact 

emitting region; the high luminosities of the tclassict X-ray 

transients were considered evidence of deep gravitational we1 Is, while 

the transient nature of the outbursts delineated binary orbits wider 

and/or more eccentric than those of the more persistent X-ray 

sources. In this study of the X-ray sky, we found examples of each 

category. 

D. Overview of the Thesis 

In Chapter 2, we briefly describe the HEAO 1 A-2 experiment, and 

discuss the mechanics of the HEAO 1 A-2 Fast Transient Search, an a1 1 

sky survey of the (-2-20 keV) A-2 data for increases in flux above the 



- 10 
mean of greater than -6a significances (corresponding to 2 10 

2 1 ergs-cm' -s' ) with durations -1 s to -hours. This survey provided 

the foundation for this thesis. We divided the sky into three 

regions, the ttsource-freelt sky, comprising roughly 50% of the data; - 

the 8tsource11 regions, covering an additional -40% (we sti 1 1  excluded 

regions around bright variable sources such as Cyg X-1); and a survey 

of the Magellanic Cloud region, covering about 3% of the total 

database. 

Chapter 3 contains the results of the llsource-free" and 

lisourcel' regions, which we have combined to call the "all-sky" fast 

transient survey. We published initial results of the "source-freet1 

portion in Connors, Serlemitsos, and Swank (1986). In that paper, we 

found six out of the eight fast transient events we reported to be 

consistent with a class of highly luminous hard flares from cool dwarf 

stars. .However, two of the eight fast transients clearly did not 

originate in nearby stellar coronae, as their spectra showed 

indications of quite high intrinsic absorption (NH 2 At 

that time, we found their characteristics did not match those of any 

type of identified X-ray transient. 

To check our original conclusions, we extended our survey closer 

to regions containing sources brighter than -3~10-l1 ergs-cm-2-s-1, 

including the Galactic plane. If our identification of the majority 

of the events as hard flares from dMe-dKe stars were correct, we would 

expect to find an equal rate (-60% more) in the unexplored usourcell 

portions of the data. However, if a significant fraction were from a 

class of events with intrinsic luminosities higher than about 

ergs-s-l, we expected to find a greater proportion of new events as we 



extended the HEAO 1 A-2 fas t  t ransient search t o  l'sourcel' regions such 

as the Galactic plane. 

We discuss the resu l ts  o f  t h i s  second phase o f  the survey i n  the 

l a t t e r  ha l f  o f  Chapter 3. We d id  indeed f i n d  three more events-with 

propert ies consistent wi th  those o f  s t e l l a r  coronal f lares; but we 

also detected four  events (three apparently from the same source), 

w i th  hard spectra, along the Galactic plane. We noted also t h a t  a 

careful  mapping o f  a small swath o f  the Vela region indicated the 

existence o f  a class o f  hard, var iable (-seconds t o  minutes) sources 

i n  tha t  region along the plane, wi th  f luxes on the order o f  

10 ergs-cm-2-s-1, but tha t  lasted f o r  only -3-12 hours. We 

therefore suggested a l i k e l y  i den t i f i ca t i on  f o r  t h i s  class o f  hard 

varying sources t o  be outbursts from dis tant  Be plus neutron s ta r  

systems (although we d id  not r u l e  out classes o f  cataclysmic variables 

- proposed by Hertz and Grind1 ay 1984). These tentat ive i den t i  f i c a t  ions 

appear t o  be supported by the resu l ts  o f  a more extensive map of the 

Galactic plane wi th  the Japanese s a t e l l i t e  GINGA. Koyama e t  a1 1988) 

reported detecting hard, variable, sources on the plane, which they 

suggest may be Be plus neutron s ta r  systems. I n  the l i g h t  of- these 

more recent findings, we suggest i n  Chapter 3 tha t  a t  least  one of the 

or ig ina l  un ident i f ied events may be associated wi th  such a system. We 

suggested tha t  i f  the short term v a r i a b i l i t y  (detected most 

prominently from the source tha t  t r iggered three times) can be shown 

t o  be pulsations, as i s  consistent w i th  what has been observed from 

iden t i f i ed  Be-neutron star systems (van den Heuvel and Rappaport 

1986; Stel la,  White, and Rosner 1986), we would consider i t  strong 

evidence f o r  the proposed Be-neutron s ta r  binary ident i f i ca t ion .  (We 



note, however, t ha t  we cannot r u l e  out an association o f  these hard 

transients wi th  the sources o f  gamma-ray bursts, although i t  i s  not 

the in terpretat ion we prefer, as the one classic gamma-ray burst  

observed through the f r o n t  o f  the A-2 detectors coincided i n  space and 

time wi th  emission from one o f  these hard transient sources.) 

From t h i s  HEAO 1 A-2 a l l  sky survey, we set an upper l i m i t  on the 

gamma-ray burst rate. I f  the gamma-ray burst observed by HEAO 1 A-2 

and A-4 (but not i n  data meeting our search c r i t e r i a )  i s  

represenative, we measure a 90% upper l i m i t  on the gamma-ray burst  

r a t e  o f  < 1300 per year over the whole sky above gamma-ray burst  

f luence 1 i m i  t s  o f  1 0 - ~ - 1 0 - ~  ergs-cm-2. A1 though comparisons w i th  

d i f f e r i n g  detectors i s  fraught w i th  systematic d i f f i c u l t i e s ,  we po in t  

out a t  the end o f  Chapter 3 tha t  the shape o f  the combined HEAO 1 

A-2/A-4 gamma-ray burst  Log-Number versus Log F l  uence funct ion i s  

consistent wi th  a f l a t t en ing  around fluences o f  ergs-cm-', such 

as one might expect i f  gamma-ray bursts are on average no more 

energetic than an unusually long o r  b r i gh t  s t e l l a r  coronal f l a r e  

(although i n  gamma-ray bursts the energy i s  released i n  a dramatical ly 

shorter time), w i th  E - 1035-36 ergs. 

I n  Chapter 4, we describe the resu l t s  o f  the l a s t  section o f  the 

HEAO 1 A-2 fas t  t rans ient  search, the survey o f  the Magellanic Cloud 

region. We iden t i f i ed  a1 1 but two thirty-seven fas t  t rans ient  events 

w i th  four  o f  the f i v e  br ightest X - r a y  sources observed i n  the LMC, 

including two wi th  the low mass binary LMC X-2, f i v e  wi th  the high 

mass binary (and black hole candidate) LMC X-1, e ight wi th  outbursts 

from the eccentric high mass binary A0538-66 (the LMC Transient), and 

the remaining twenty wi th  b r igh t  f l a r e s  (plus one eclipse) from the 



high mass pulsar system LMC X-4. (Two we iden t i f i ed  as f l a r e s  from a 

foreground RS CVn-type system.) We remark tha t  if the distance t o  the 

LMC i s  55 kpc, several o f  the events we iden t i f i ed  wi th  LMC X-4 (and 

one outburst from the LMC Transient) reached luminosit ies o f  up t o  

5x10~' ergs-s-l, about a factor o f  twenty over the (hydrogen) 

Eddington luminosity 1 i m i  t. Ebi suzaki (1987) has proposed using the 

luminosit ies o f  X-ray bursts as "standard candles" f o r  re-measuri ng 

the distance t o  the LMC. However, t h i s  survey found no X-ray bursts 

from the LMC (or SMC). I n  Chapter 4 we f i n d  a 90% upper l i m i t  on the 

average r a t e  o f  X-ray bursts per year from the LMC o f  less than 0.43. 

I n  Chapter 5 we l e f t  the analysis o f  the fas t  t rans ient  search, 

and consider two b r igh t  events i n  deta i l .  The f i r s t  i s  the dMe p a i r  

LDS 131 (with the X-ray name H0449-55), source o f  a f l a r e  which we 

used ( i n  Chapter 3) as a llprototypell o f  a class o f  hard, luminous, 

f l a res  from cool dwarf stars. We discuss the spectra and l i g h t  .curve 

o f  the b r i gh t  HEAO 1 event, and i n f e r  the geometry o f  the f l a r i n g  loop 

system. From f o l  low-up optical, u l t rav io le t ,  and X-ray observations 

o f  the cool dwarf pa i r ,  we ten ta t ive ly  suggest tha t  tha t  the hard, 

luminous, f l a r e  which tr iggered the HEAO 1 search was a ra re  member of 

the t a i l  o f  the f l a r e  size - f l a r e  ra te  d i s t r i b u t i o n  o f  normal s t e l l a r  

f lares, ra ther  than a member o f  a separate class o f  energetic events. 

In the second por t ion o f  Chapter 5, we consider a b r i gh t  (a t  peak 

-50% br ighter  than the Crab Nebula + pulsar), unidentif ied, -12 minute 

event observed w i th  the OSO-8 sa te l l i t e .  We note tha t  the h ighly  

absorbed spectrum probably indicated a distance o f  2 kpc o r  greater, 

suggesting a high luminosity ind icat ive o f  an o r i g i n  on a compact 

object. We consider possible ident i f i ca t ions  f o r  t h i s  event, but f i n d  



the -10 s spikes characterizing the light curve atypical for Be plus 

neutron star systems, and the spectrum too hard to be black-body 

radiation from a Type I X-ray burst, and not sufficiently variable for 

identification with a classic gamma-ray burst. 

In the concluding chapter, we summarize our results, and explore 

what possible underlying patterns fast transient events presumably 

from compact objects could be delineating (X-ray bursts; "classic'' 

gamna-ray bursts; soft gamma-ray repeating bursts; the hard 

transient events described here; and other unidentified fast 

transients observed by other researchers). Unfortunately, events such 

as the OSO-8 event described in Chapter 5 still defy classification, 

demonstrating that our understanding of these events is still 

incomplete. We conclude with a discussion of the prospects for future 

investigations in. each of these areas. 



Chapter 2 

The Mechanics of the HEAO 1 A-2 Fast Burst Search 

A. Introduction 

In August 1977, the first High Energy Astrophysical Observatory, 

HEAO 1, was launched into a low Earth (93 minute) orbit, carrying four 

different experiments (A-1 through A-4) to map the sky in X-rays from 

-0.1-1000 keV. The HEAO 1 satellite spun with a period of 32-35 

minutes, so that the four experiments swept over a circular strip of 

sky 21-23 times in 12 hours. The satellite spin axis was stepped by 

- 0 . 5 ~  per 12 hrs, so that as the Earth moved about the Sun, the HEAO 1 

spin axis was constrained to point toward the Sun. In this manner, 

the instruments on HEAO 1 viewed the whole sky 24-3 times, one thin 

band at a time, before the demise of the sate1 1 ite in January 1979. 

(After about February 1978 the satellite also operated in a Npointed" 

mode, during which one or another of the experiments was pointed 

steadily at a source for -lo4 s.) ks we noted in the introduction, 

data sent back from earlier sky survey satellites had revealed fields 

of discrete X-ray sources on an unresolved isotropic bright X-ray 

haze, the cosmic X-ray background. 

The A-2 experiment, a collaborative effort led by E. Boldt of 

GSFC and G. Garmire of Pennsylvania State University, and with 

collaborators at GSFC, JPL, and the University of California, Berkely, 

was designed to study the properties of this unresolved bright haze. 

To this end, it incorporated features to discriminate signals due to 

X-rays from those due to charged particles or other background events, 



and novel geometries to monitor both the internal detector background 

and the diffuse glow from the X-ray sky. We briefly describe the 

attributes of the HEAO 1 A-2 experiment in §B. In the fast burst 

search described here, we exploited the stability and predictability 

of the A-2 detectors for quite a different project: to search for 

sudden "f lashesM of X-ray flux (2 1 0 - ~ ~ e r ~ - c m - ~ - s - ~  for 1-104s) among 

the discrete sources and diffuse sky glow. 

We performed this search in three phases. The first two (the 

llsource-freeM and llsource-full l1 searches) compri sed the "a1 1 sky" 

survey of the Galaxy, and the third a survey of the Magellanic Clouds 

region. In the all-sky survey, we were primarily interested in 

uncovering new fast transients, and so did not examine events from 

data when known variable sources, such as Cyg X-1, KZ Tra (X1627-673), 

or the Rapid Burster (X1730-333), were in the instrument fields of 

view. In the survey of the Magellanic Clouds region, we used the same 

search algorithms, but kept and scrutinized each of the events, 

whether or not an X-ray source identified as variable was in the 

instrument fields of view at the time. 

For the all-sky survey of fast transients, we divided the sky 

into two (roughly equal) portions. In the first phase of our fast 

burst search, we looked only at regions of sky free of known X-ray 

sources brighter than -1 millicrab, where 1 millicrab is -3.4~10' 11 

erg~-cm-~-s-' (2-20 keV) , assuming a Crab-1 i ke spectrum. In thi s 

"source-free sky" phase, we compared the observed X-ray flux, every 1 

and 5s, with averages of the diffuse-sky plus detector backgrounds. 

The second phase of the fast burst search covered the whole sky, 

including regions containing known sources. For the "source-full" 



phase, we compared the count rate each -5, 15, and 60s with a 12 hr 

average for that swath of sky, taken from the ARK5 database compiled 

by R. Shafer (1983). Any event more than -6a above the expected 

count-rate triggered the search. In Sections 2.C and 2.0 we discuss 

the mechanics of the "source-free" and "source-ful 1 searches, 

respectively, in more detai 1. 

In Chapter 3, we discuss the results from both phases of the 

'a1 1-sky" fast transient survey, and propose identifications. We 

discuss the events from the direction of the Magellanic Clouds in 

Chapter 4. 

B. Description of the Instruments 

In a phenomenological survey such as this one, which was designed 

to approach the faintest detectable 1 imits, it was important to 

understand sources of spurious, time variable signals. In fact, we 

found these systematic effects much more important than the 

statistical uncertainties. Therefore we devote this section to a 

brief description of the A-2 instruments, with an eye toward 

understanding ways of discerning cosmic X-rays from other sources of 

signals. A more complete description is given in Rothschild et al. 

(1979). 

HEAO 1 A-2, called the Cosmic X-ray Experiment, viewed the X-ray 

sky through six multi-wire, multi-layer gas proportional counters that 

were mechanically col1 imated. That is, metal slats (A1 for the argon 

detector, detector 5; and Cu for the xenon detectors, detectors 3, 4, 

and 6), crossed in a rectangular, egg-crate, construction, 

mechanically limited the amount of sky that could be seen to 3Ox6O, 

3Ox3O, and 3O~1.5~. The six detectors covered four energy ranges. 



LED 1 

Figure 2.1 Overview of the HEAO 1 A-2 detectors, and of their 

placement in the HEAO 1 spacecraft. This figure was reproduced 

from from Rothschild et al. (1979). 



Detectors 1 and 2, named the Low Energy Detectors (LEOS), were thin 

polypropylene window, propane-filled flow counters, sensitive to 

X-rays with energies between 0.15-3 keV (-4-80 A). This search did 

not use them except in a few cases to constrain event spectra at low 

energies . 
Detector 5, the Medium Energy Detector (MED) , was argon-f i 1 led, 

with a front window of thin Beryllium, giving it a spectral window of 

1.6-30 keV (-0.6-8 A). Detectors 3, 4, and 6, the High Energy 

Detectors (HEDs 1, 2, and 3), used xenon as the active gas, giving 

them more quantum efficiency at higher energies. Detectors 3 and 6 

(HEDs 1 and 3) incorporated a front layer of propane sandwiched 

between sheets of aluminized mylar. (Propane responds only weakly to 

X-rays, but strongly to the passage of charged particles, so these 

layers could be used to monitor the flux charged particles incident 

through the front of the detector.) HED 1 and 3 were sensitive to 

X-rays with energies -3-60 keV (-0.2-6 A). Detector 4 (HE0 2) was 

almost identical save that it did not have this front propane layer. 

It therefore had slightly higher response at low energies. The fast 

burst search operated on data from these four detectors. 

Figure 2.1 (reproduced from Rothschi ld et a1 . 1979), i 1 lustrates 

the placement of the detectors on the HEAO 1 sate1 1 ite. If we define 

+Y to be the look-direction of HED2, MED, and HE03 (also LEDl), and +Z 

to be the satellite spin-axis, that points toward the sun, then HED 1 

(also LEDZ) is offset from +Y by a rotation of -6' (6' clockwise) 

about the +Z axis. This gave us two nearly identical but independent 

views of the sky. Two of the other three HEAO 1 experiments are also 

visible in Figure 2.1. HEAO 1 A-1, named the Large Area Sky Survey 



(LASS, 0.5-20 keV, (Wood et a1 . 1984), had one proportional counter 
facing the +Y direction, but six pointing 180' degrees away in the -Y 

direction. When available, we used information from A-1 to constrain 

the time history of events found by our search. The scintillation 

counters comprising HEAO 1 A-4 (15-1500 keV; Matteson 1978) are 

visible below the A-1 and A-3 detectors also facing the +Y 

direction. We occasionally used both A-4 light-curves and A-4 

spectral information to help identify some of the burst-search 

triggers. We have not used information from the Modul at i on 

Collimator, HEAO 1 A-3, although in the future we may be able to use 

it to constrain some of the event source positions. 

Robinson-Saba (1982) has written an excellent description of the 

physics, design, and calibration of gas proportional counters for X- 

ray astrophysics.   ere we sumnarize just those aspects of 
proportional counter design that we shall need to refer to in our 

discussions of sources of spurious temporal variability. Figure 2.2 

shows a schematic diagram of a simple proportional counter. It 

represents the cross-section of a gas-f i 1 led cyl i nder, with a wire 

anode running down the center. A positive voltage is applied between 

the wire and the cylinder wall, so that negatively charged electrons 

will drift toward the anode, in the center, and positively charged 

ions to the grounded outer wall. (Typical dimensions of such an 

instrument are I cm in diameter, and tens of cm in length.) If an 

incoming photon has the right energy, it can be absorbed by the active 

gas via the photo-electric effect, knocking an electron out and 

ionizing the atom. (The absorption cross section is largest for 

incoming photon energies just above the absorption edges of the 



Fiqure 2.2 Schematic diagram of a simple (cyl indrical ) proportional 

counter, with a wire anode in the center, and the grounded outer wall 

serving as the cathode, f m  Rossi (1952), showing the electric field 

is a steep function of the radius. 



innermost shells, eventually falling as roughly the energy to the 

inverse third power as the photon energy increases. For argon, the K 

absorption edge is at -3.2 keV; for xenon, at -35 keV; and three 

xenon L edges are at -4.8 keV, 5.1 keV, and 5.5 keV. See Bethe and 

Salpeter 1977; Weast et ale 1974; Henke - et ale 1982). The freed 

electron then retains sufficient kinetic energy to col 1 i sional ly 

ionize -N-1 more atoms, where N is roughly proportional to the energy 

E of the incoming photon, divided by the gas ionization potential E. 

In a proportional counter, the electric field near the anode wire is 

adjusted to be strong enough to accelerate each of the N initial 

electrons into more ionizing collisions. Through a cascade of 

coll isional ionization, electron reabsorption, photon emission, and 

photo-electric ionization, the total signal will be MxN, or -MxE/e. 

For the A-2 detectors, the multiplication factor M was about 2-4x10~ 

for cylinders of dimension -0.5" with anode wire diameters of 2 mil, 

and voltages of -2000V (Robinson-Saba 1983). 

Note that the detector described above will react to any sort of 

ionizing radiation, including charged particles such as cosmic rays. 

However, X-ray photons, which interact mainly through the photo- 

electric effect, deposit all their energy in a short distance. 

Charged particles (such as those trapped in the Earth's radiation 

belts) ionize through collisions, and so leave a wake of ion pairs 

(the length of which depends on the speed of the charged particle). 

Two methods of distinguishing among photon and charged particle events 

have been used in astrophysical detectors. One is based on the pulse 

shape; The A-2 detectors re1 ied on l'anticoincidence'l (Rossi 1952; 

Evans 1967). 



Figure 2.3.a shows a cut-away view of the multi-wire, multi-layer 

HEAO 1 A-2 proportional counters. Below the rectangular counters, one 

sees that the sensitive volume of the detector has been partitioned 

into an array of 0.48'1x0.4811x21.5" rectangular proportional counter 

cells. The grounded outer cylinder of Figure 2.2 has been replaced, 

in each cell, by thin grounded wires, spaced -0.04" apart. A charged 

particle, laying down its distinctive track of ion pairs, can travel 

freely from one cell into the next. Events that trigger in two or 

more cells simultaneously can then be rejected (ltanticoincidence't). 

In Figure 2.3.b we diagram the A-2 detector grid connections. 

One layer of cells on the sides and bottom of each detector was used 

to reject signals from ionizing radiation that entered through the 

detector walls. In MED and HED2, the signals from the anodes along 

both side walls formed the first veto rate, V1, while those from the 

bottom layer of anodes comprised V2. In HEDl and HED3, counts from 

the front layer of propane formed the second veto rate, V2, while 

those from both sides and bottom were connected to form V1. Within 

the volume used to detect X-rays, every other anode in each of 2 

layers was wired together to form the detector ltleftl' (Ll, LZ), and 

nright'l (Rl, R2) rates. Active on-board electronics rejected any 

event that triggered the veto rates, either both left and right sides, 

or both first and second layers, in each detector. This eliminated 

over 99% of the counts from the continual rain of cosmic rays that 

bathed the satellite (Tennant 1983; see Chapter 4). 

What remained, an internal detector background from the residual 

cosmic ray events, was monitored through differing size collimators on 

the "left1' and "right" sides of the detectors. All were 3' wide FWHM 
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Figure 2.3.11 Cut-aww view o f  a HEAO 1 A-2 proportional counter, also from Rothschild e t  a l .  (1979). - 
Figure 2.3.b Diagram of the detector g r i d  connections ( ibid) .  



perpendicular to the scan direction. The I1left1l side of each was also 

3' FWHM in the scan direction; while the llrightll sides of HEDl and 

HE02 were 6' FWHM, and those of MED and HED3 were 1.5' FWHM in the 

scan direction. From the wiring diagrams in Figure 2.3.b, one sees 

that each side contained background counts from essentially the same 

active volume of each detector, but differing fractions of the diffuse 

X-ray sky glow. In regions that did not contain bright sources, this 

could be used to measure the contributions of each to the total count 

rate. (See Shafer 1983 for a thorough, quantitative, discussion. ) 

However, several times a day the satellite was showered with an 

increased flux of charged particles, and thus an increase in detector 

background count-rate. The detector llanticoincidencetl and "vetot1 

rates were accumulated every 40.96s, as part of the housekeeping rates 

available for software tests of data quality. 

In this search, we used three tests for times of increased 

particle contamination. One was simply a limit on the total 

anticoincidence rate for each detector. One due to F. Marshall 

(unpublished) checks for soft electrons (that might be too slow to 

trigger the anticoincidence) by setting limits on the HED3 propane 

layer veto rate, minus a fraction due to the few counts from X-rays. 

The third is the standard electron contamination flag determined by A. 

Rose (see Tennant 1983). It sets limits on a linear combination of 

the anticoincidence and veto rates from each detector. We also 

considered the geometry of the orbit. We excluded times when the 

spacecraft passed through the South Atlantic and the North Pacific 

Anomalies, regions of particularly high particle flux. For the 

"source-free" search, we a1 so considered the position of the 



spacecraft with respect to the Earth's magnetic field, as parametrized 

by McIlwainl s ' L '  parameter (Tennant 1983 and McIlwain 1961; see also 

Section 2.C). 

The tests for cosmic ray contamination were not the only data 

quality tests. Since HEAO 1 was in a low-Earth orbit, the X-ray sky 

was occulted by the Earth's disk nearly half the time. Also, as the 

detector fields of view swept over the Earth's upper atmosphere, they 

would occasionally register an increase in count-rate from soft X-rays 

from the Sun reflecting off the upper layers of the atmosphere. We 

therefore excluded times from our search when the detectors were 

pointing within 200 km of the Earth's rim. This reduced the "on" time 

of each instrument by about 112. 

We- a1 so required the instruments to pass the standard detector 

status tests, including voltage stability, proper data format, and no 

bit errors. For the Hall-sky'i portion of our search, we also found it 

necessary to check both the magnitude of the position errors, and the 

type of scanning motion the sate1 1 ite was performing at each time. 

When the detectors were not moving as expected, our calculation of the 

12 hr average for that position was not correct. 

When a detector passed all these tests, which were calculated 

every 40.96s, it was designated "on" for the purposes of the fast 

burst search. Typically, each detectors was "on" only 114-1/3 of the 

time. That is, though the instruments spun past each strlp of sky 21- 

23 times in 12 hours, they were apt to be on for only 6-8 passes over 

a source during that time. Of the four instruments, HED 1 and HED 3 

(which both had a propane veto layer in front) were the most reliable; 

while HE0 2 most frequently had contaminated rates. 



C. Phase 1: Gleaning Good Events From I1Source-Free1' Data 

In the early stage of our fast burst search (published in 

Connors, Serlemitsos, and Swank 1986) we considered only the simpler 

problem of finding these flashes of X-rays among regions free of 

sources brighter than -1 millicrab. Our search ran on the XRATES 

database described by R. Shafer (1983), and references therein. This 

contained X-ray rates from all the instruments over the whole lifetime 

of the satellite, ordered by time, and including data quality and 

detector status flags. Among these was a source-in-field-of-view 

flag, which was based on a catalog of X-ray sources known prior to 

1981. All flags were updated every major frame of the spacecraft 

telemetry, or every 40.96 s. Regions of sky as far as 14' from a 

source could therefore have been labeled llsource'l data. For this 

first phase of our search, along with the data quality tests described 

in the previous section, if this flag indicated a source was in a 

detector's field of view, we designated that detector lloffll. This 

last requirement reduced our "on" time by about 112. The HEDl and 

HED3 instruments together were on for the equivalent of 64 continuous 

days (about 55 days each), the MED for 54, and the HED2 for 49. 

As described in the previous section, each instrument measured 

four rates, two from each "sidet1 of its two layers (Ll, R1, L2, and 

R2). For better signal to noise ratio, we used the top layer of each 

of the xenon proportional counters, but both layers of the argon 

proportional counter. Overall, our greatest response was in the 

energy range 2-20 keV. (We could have preferential ly selected against 

extremely hard events, by choosing only the top layer. However, the 



sof ter  rates were less susceptible t o  charged p a r t i c l e  

contamination.) We used a l l  three avai lable f i e l d s  o f  view, adding 

together both sides o f  the three co-a1 igned detectors (3Ox3' and 

3O~1.5~ f o r  MED(Ll+Rl+LL+RE) and HED3(Ll+Rl), o r  3Ox3' and 3Ox6O f o r  

HED2(Ll+Rl)), but keeping separate the l e f t  and r i g h t  sides of the one 

o f f  set detector (3Ox3' f o r  HEDl(L1) and 3Ox6' f o r  HEDl(R1)) .  

I n  t h i s  ear ly  stage of our work, we concentrated on the shortest 

feasible in tegrat ion times, which were 5.12 and 1.28 s f o r  t h i s  form 

o f  "rates" data. We chose the burst search thresholds so t h a t  one 

would expect a t r i gge r  on purely Poisson s t a t i s t i c a l  f luctuat ions t o  

occur about once a decade f o r  the 5.12s data, o r  roughly once i n  three 

years f o r  the 1.28 s data. (Barring non-Poisson effects, t h i s  was 

equivalent t o  - 6 ~ .  A t  t h i s  high confidence level, we found 

systematic e f fec ts  - signals from sources other than cosmic X-rays 

tha t  had not been excluded out by the automatic checks described 

e a r l i e r  - rather  than s t a t i s t i c a l  f luctuat ions, were the major source 

o f  spurious events.) We also required coincidence when more than one 

o f  the three co-aligned instruments (HED2, MED, and HED3) was on. 

That is, ra ther  than summing the rates from the co-aligned detectors, - 

we required them t o  be above t h e i r  respective thresholds 

simultaneously t o  t r i gge r  the burst search: 

2. C. 1 COUNTS(HED2) >THRESHOLD (HED2) and COUNTS (MED )>THRESHOLD (MED) and 

COUNTS(HED3)>THRESHOLD (HED3) ; or COUNTS(HEDl)>THRESHOLD (HED1). 

Our threshold varied i n  accordance w i th  how many o f  the three co- 

aligned detectors was on ( to  keep the probab i l i t y  o f  t r i gge r ing  on 

s t a t i s t i c a l  f luctuat ions a t  -60). If BACK(DET) was the expected 

count-rate from instrument plus d i f fuse  sky glow, we required 



2. C. 2 THRESHOLD (DET,# on) = BACK(DET) + n(# on) -/BACK(DET) . 
We set n(3), n(2), and n(1) at -3, 4 and 6, respectively. The 

background rate was usually 57 counts per 5.12 s for HED3(Ll+Rl) and 

MED(Ll+Rl+LE+RZ), and 136 counts per 5.12 s for HEDZ(Ll+Rl). These 

rates rose with cosmic ray flux. Studies of HEAO 1 A-2 background 

rates (Tennant 1983 and references therein) showed a correl ation with 

the McIlwain (1961) parameter L, where L labels a line of the Earth's 

magnetic field by its height at the magnetic equator, measured in 

Earth radii, and determines the energy of cosmic rays screened by the 

Earth's field. For the HEAO 1 orbit, L ranged between 1 and 2. For 

Ls1.2, when all three of the co-aligned detectors were on, we set the 

computer search threshold at 80 counts per 5.12 s for HED3 and MED, 

and 171 counts per 5.12 s for HED2. This corresponds to a flux level 

of roughly 4 mi 1 1  icrabs, or about 10-lo ergs-cme2-s-I in the 2-20 keV 

range. If only two of the co-aligned detectors were on (usually HED3 

and MED), for L11.2 the search threshold was raised to 87 counts per 

5.12 s for each, or about 5 millicrabs. If only one of the three was 

on, and L11.2, we required the rates to be above 102 counts per 5.12 s 

for HE03 and MED, and 206 counts per 5.12 s for HED2. This was about 

8 mi 1 1  icrabs. The computer search threshold for the (independent) 

offset detector, the HED1, was never set less than this highest level. 

When the McIlwain L parameter was greater than 1.2, the typical 

background rate rose at a rate of about 1 count per second per layer 

times (L-1.2) (Tennant 1983). For periods of high McIlwain L, we 

raised our thresholds accordingly. 

For this source-free search, we processed the data twice: once 

with an integration time of 5.12 s, then with an integration time of 



1.28 s. Since the expected number of background counts in each time 

bin was reduced by 1/4 during this second pass through the data, we 

reduced our effective threshold for events with durations less than 

1.28 s by -1/2. 

Once we had completely processed the data with this burst-search 

algorithm, we sifted through the list of triggers to discard those not 

from cosmic X-rays. We eliminated those that did not come from a 

point source by rejecting times when the rates in each detector were 

high for longer than the -30-60 s it took for an instrument to scan 

past a point source. The majority of these were from the rising or 

fa1 ling edge of an electron storm. Since the data qua1 ity flags were 

calculated every 40.96 (every major frame), we occasionally found the 

last (or first) few 5.12 s rates to be high just before (or after) a 

major frame registered quite high electron contamination rates. We 

also saw the types of events described by Tennant (1983) in his 

Appendix C, including: occasional ref 1 ections of soft solar X-rays 

from the Earth's upper atmosphere; gamma-rays from a massive solar 

flare on July 11, 1978 (D.O.Y. 557); electrons apparently triggering 

a Cu fluorescence line in the ME0 collimators; and what Tennant 

describes as Auroral X-rays. (Also see the description of "trash 

timesa in Shafer 1983.) Another indication of the quality of the data 

was the form of the spectrum from each event, when it was available. 

If an event was near a major frame with high electron rates, but the 

spectrum seen in all available detectors was consistent with that from 

X-rays rather than cosmic rays, we did not reject that event. 

For this source-free search, we also eliminated a few triggers 

that were near UHURU or ARIEL V X-ray sources that had not been 



signaled by the automatic source-i n-f ield-of -view f 1 ag . We a1 so 
considered the effect of the intrinsic fluctuations in the diffuse 

cosmic X-ray background studied by Shafer (1983), but found them to be 

at most 10% of the statistical fluctuations at these integration 

times. We therefore did not take them into account. 

With the procedures described here, one could di st i ngui sh four 

classes of short transients: 

1. Events that lasted for at most one integration interval. For 

the shortest integration time used, this would imply that the event 

had a lifetime of -1 s or less. 

2. Events that lasted more than one integration interval, but 

less than the entire 90 s that a single point source could have been 

in the field of view of both the co-aligned and offset detectors. 

This would imply a lifetime between 1 and 90 s. 

3. Events that lasted at least as long as it took the 

instruments to scan across a point source once, with all four 

detectors, but less than two complete scans. Since the rotation 

period was -32-35 minutes, this would imply an event duration between 

90 and 4x10~ s. 

4. Events that lasted for more than one complete scan. These 

would have had lifetimes comparable to those seen with the ARIEL V 

fast transient sky survey (Pye and McHardy 1983) with durations 

greater than 4x10~ s. 

Our 5.12 s fast burst search algorithm found only six events, 

five of them new, all of type 3, with lifetimes greater than 90 s but 

less than 4x10~ s. We found no new events when we repeated the search 
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wi th  an integrat ion time o f  1.28 s. We discuss these events i n  more 

detai 1 i n  Chapter 3. 

0. Phase 2: Gleaning Good Events From the Whole Sky 

We display a map o f  the regions o f  sky ( i n  E c l i p t i c  coordinates) 

covered by the source-free search i n  Figure 2.4. The contours i n  the 

coverage map represent the t o t a l  number o f  5.12 s in tegrat ion bins, 

per 3"x3", during which the HE03 detector axis pointed towards tha t  

region. We presented t h i s  map i n  rectangular E c l i p t i c  coordinates, 

w i th  no corrections f o r  the unequal areas i n  each 3Ox1.5" bin, t o  

be t te r  represent the experiment's view o f  the sky. Since, whi le i n  

scanning mode, the look-direction o f  the detectors swept out great 

c i r c l e s  on the sky which passed over the E c l i p t i c  poles, a source 

-1.5" from an E c l i p t i c  pole was viewed over 30 times more o f ten  than 

one near the E c l i p t i c  equator. Also, there appears t o  be a s l i g h t  

bias against the Galactic plane, due t o  the exclusion o f  regions 

containing sources. This made i t d i f f i c u l t  t o  conclude anything about 

the d i s t r i bu t i on  o f  the events from the llsource-freell sky search; were 

they isotropic, o r  d i d  they tend toward the Galactic plane? 

To attack t h i s  problem, we undertook, i n  t h i s  second phase o f  our 

f a s t  burst search, t o  look f o r  short X-ray transients over the whole 

sky, including the Galactic plane and Magellanic Clouds. We also 

expected t o  gain about a fac tor  o f  two i n  detector 'Ion1l time by 

re lax ing the "no source i n  f i e l d  of view" res t r i c t ion .  We found we 

could not completely ignore the presence o f  known X-ray sources 

without being swamped wi th l i t e r a l l y  hundreds o f  t r iggers from objects 

such as Cygnus X - 1  o r  Vela X-1. We therefore made a tab le o f  17 



bright variable sources, to exclude data from times when they were in 

the fields of view. We list these sources and their distinguishing 

characteristics in Table 3.1. Since the satellite moved (most of the 

time) in Ecliptic coordinates, scanning in Ecl i ptic latitude and 

precessing in Ecliptic longitude, we found it convenient to list these 

sources by their Ecliptic coordinates, with 23' limits on each 

coordinate. Whenever a detector axis pointed within one of these 

6Ox6' boxes, it was designated "offu for the purposes of this all-sky 

search. 

Aside from this table of bright varying sources, the all-sky fast 

burst search program referenced a catalog of X-ray sources (of almost 

a1 1 reported X-ray sources brighter than -1 mi1 1 icrab at 2-20 keV), 

a1 so in Ecliptic coordinates, and also 1 isting +3' 1 imi ts. Whenever 

the program triggered on an event, it used a look-up table to find 

what catalog sources were in the field of view of a1 1 the triggering 

detectors at that time. If more than one source satisfied these 

criteria, it chose the one designated in the catalog as more variable, 

or brighter, in that order. If one particular source in the catalog 

was identified by the burst search as the source of more than six 

triggers, it automatically moved that source to the table of bright 

varying sources. Henceforth it would find any time containing that 

source to be HoffU. Sources such as KZ TrA (X1627-673) and the Rapid 

Burster (X1730-333) fell into this category. 

We used the same detector rates (HED1 L1, HEDl R1, HED2 Ll+Rl, 

MED Ll+Rl+LZ+RZ, and HED3 Ll+Rl) as in the earlier form of the search, 

and again required coincidence among co-aligned detectors. We also 

employed the same form for the search trigger threshold: 



2.0.1 THRESHOLD (DET) = BACK(DET) + no /BACK (DET) . 

However, since none of our original events had durations less than 

-80 s, we attempted to lower our effective threshold for these longer 

events by considering 15.36 and 61.44 s intervals, as well as the 

original 5.12 s. 

Consider the response of the detectors to a point source, as they 

scanned across it (Shafer 1983; Rothschild et al. 1979). If we 

designate time bin llill as the one which contains the peak flux, and 

assume triangular response, then one can show that on average, the 

total f l u x  in time bin "i+l" summed with that from bin "i-1" is 

approximately half that from bin I1it1. We calculate this factor more 

explicitly, for the actual detector geometries involved, in the first 

part of Appendix A. So we required, for each 5.12 s interval, that 

either the rates in all co-aligned detectors are above our original 

threshold formula, with n(3), n(2), and n(1) - 3, 4, and 6, as before; 
or that the peak flux in time bin I1 i l f i  (in all co-aligned detectors) is 

above a slightly lower threshold, and that the sum of the flux in time 

bins 'i-1" and 'i+ln is greater than about 1/2 that same lower 

threshold. We list the values of n(# on) we used for this search in 

Table 2.1, for 1, 2, and 3 detectors lion"; and for 5.12 s, 15.36 s, 

and 61.44 s time intervals. For the last case, we required that not 

only did the co-aligned instruments satisfy our 15.36 s search 

criteria, but 6 O  (or -6 5.12 s time bins) later, the offset detectors 

did as well. The Poisson probabilities associated with each type of 

trigger are also discussed in Appendix A. 



Tab1 e 2.1 A1 1 -Sky Search Thresh01 d Values 

Time Interval  Value O f  'nu For: 

For 1 2 3 

Trigger Detector On Detectors On Detectors On 

5.12 s 6.00 3.89 2.98 

15.36 s 4.23 2.68 1.96 

61.44 s 2.68 1.96 1.51 



Obviously we could not use the same calculation for background as 

in the source-free search. Instead, we turned to the ARK5 database of 

R. Shafer (1983). This is a particularly clean, careful ly constructed 

database of 12 hour sums of all the 1.28 s rates of all the A-2 

instruments. It is in the form of great circles on the sky, each 

divided into 1800 0.2' bins. Since the satellite's spin axis was 

stepped -0.5' every 12 hours, each great circle corresponded to about 

12 hours of scans. Shafer (1983) gives a complete description. To 

calculate the expected count rate, the all-sky fast burst search first 

determined which great circle corresponded to that time, and then 

added together all the 0.2' bins corresponding to that position. For 

a 5.12 s integration time, during which a detector look direction 

swept through -0.9~, the procedure which calculated the expected count 

rate would typically add together four 0.2' bins, plus a fraction of a 

fifth. 

Calculating the background from the ARK5 database in this manner 

introduced several problems not associated with our earlier search. 

First, it was possible for the 1.28 s rates to overflow, for sources 

brighter than 200 cts/s (Rothschild et al. 1979; Shafer 1983). The 

5.12 s rates did not have this problem. Second, it was occasionally 

possible for one of the 0.2~ bins used to calculate the expected count 

rate to be empty of data. If either of these was the case, the 

affected detector was designated "off" during that 5.12 s interval. A 

third problem arose from a changing mean in the vicinity of bright 

sources ( > 500 counts per 5.12 s). Not only did the mean HEAO 1 

satellite spin axis move about 0.5' per 12 hrs, but it performed 

apparently random walk motion, "jittering'l in positlon, by at most +lo 



minus the 'source-freen sky coverage). The the map is divided into 3'x1.5' rectangular bins. wi t h  no 

correction for unequal areas. so t h a t  the Ecliptic poles each stretch along an entire side of the map. The 

2 axis (height) represents the total number of good 5.12 s intervals. In each 3'x1.5* bin. i n  the all-sky 

survey. that were not designated *%ource-freeH. 



about the mean spin axis position, on time-scales of several major 

frames. It was therefore possible for a nearby bright source to 

wobble into the edge of the instrument fields of view from the off- 

scan direction. The 12 hour mean might still be quite low, but if the 

source were bright enough, even if it did not intrinsically vary, it 

was possible for the all-sky search algorithm to trigger on it during 

the scans when the source moved more prominently into the field of 

view (due to this movement in the off-scan direction). Steady sources 

that triggered in this manner included CAS A, the Tycho SNR and the 

Crab SNR. We therefore eliminated, after the fact, any triggers for 

which a changing mean was a possible explanation, 

Fourth, this method of comparing 5.12 s rates to the ARKS 12 hour 

average was very sensitive to errors in position. Any deviations from 

normal scanning motion, such as the sate1 1 ite maneuvers for "pointed" 

observations, could cause spurious triggers of this type. We 

therefore designated all detectors I1offl1 whenever the scan rate was 

too slow, too fast, or in the wrong direction; or when the estimated 

Y-axis or Z-axis position uncertainties were greater than 0.05' per 

5.12 s. 

In Figures 2,5, 2.6 and 2.7 we displayed three contour maps of 

the sky covered by this all sky fast burst search. In the first two 

we presented the density of satellite coverage, in the same units used 

for Figure 2.4, of the additional coverage added by the all-sky 

search, and of the total coverage of the all-sky search, 

respectively. (One might think of Figure 2.5, which was made by 

subtracting the "source-free" sky coverage from that of the "all-skyN 

search, as represent i ng the coverage of the llsource-f ul 1 sky. ) 



Figure 2.6 Three dlmensional map representing t he  "a1 1-sky' coverage (i .e. the usource-ful l  coverage p lus  

the  Usource-freeu sky coverage). The the map i s  d iv ided i n t o  3Ox1.5' rectangular bins, w i t h  no correct ion 

f o r  unequal areas, so tha t  the E c l i p t i c  poles each s t re t ch  along an e n t i r e  s ide o f  the  map. The Z ax is  

(height) represents the t o t a l  number o f  good 5.12 s in terva ls .  i n  each 3Ox1.5' bin, i n  the a l l - sky  survey. 



I n  the four th contour map, Figure 2.7, we i l l u s t r a t e d  the 

differences i n  average X-ray f l u x  over the whole sky by displaying the 

mean HED3 5.12 s background-subtracted count-rate i n  each rectangular 

3Ox1.5" bin. (We re i t e ra te  tha t  these are not bins o f  equal area). 

We chose t o  display the HED3 count ra te  because i t was the detector 

t ha t  was on the most often. For Figure 2.7, we chose t o  display the 

sum o f  the 1.5" and 3" f ie lds o f  view i n  the f i r s t  layer o f  HED3 since 

t h i s  was the quant i ty used by the fast t ransient search programs. 

This map therefore could be considered as the X-ray sky as viewed by 

the HEAO 1 A-2 f a s t  t ransient search. Since the al l -sky search 

threshold was a monotonic funct ion o f  the expected count r a t e  i n  each 

time bin, t h i s  f i gu re  i l l u s t r a t e s  the changing search thresholds 

across the sky. We point  out t ha t  the l'source-full1I sky d i d  not 

contain a greater f rac t i on  of the Galactic plane than d id  the  "source- 

f ree"  search, contrary t o  our o r ig ina l  expectations, due t o  the 

exclusion o f  f3Ox3" regions around b r igh t  var iable sources. However, 

the source-ful l  sky d id  contain more regions wi th  higher average count 

rates, and more closer t o  the Galactic center. 

We i 1 lus t ra te  the differences i n  'la1 1-sky" and "source-free" sky 

coverage w i th  f i v e  histograms o f  the number o f  good 5.12 s in te rva ls  

a t  various levels  o f  mean HED3 f lux,  i n  Figure 2.8, a t  the end of t h i s  

chapter. I n  the f i r s t  histogram we presented the "source f ree"  sky 

coverage (corresponding t o  Figures 2.4 and 2.7); i n  the second we 

displayed jus t  the addit ional coverage added by the a1 1-sky search 

(corresponding t o  Figures 2.5 and 2.7); while i n  the t h i r d  we 

presented the t o t a l  coverage (from Figures 2.6 and 2.7) f o r  the a l l -  

sky fas t  t ransient search. Although f o r  a1 1 cases the most probable 



Figure 2.7 A three dimensional map representing the average X-ray f l u x  over the whole sky, i n  3"x1.5" 

rectangular bins (not o f  equal area). The map i s  div ided i n t o  3Ox1.5" rectangular bins, w i t h  no correct ion 

f o r  unequal areas, so tha t  the E c l i p t i c  poles each st retch along an en t i re  side of  the map. The Z ax is  

(height) gives the mean background-subtracted HED3 layer  1 5.12 s count rate, averaged over each 3Ox1.5' 

bin. 



count-rate was zero (effectively blank sky), the addition of "source- 

full" sky changed the mean count-rate from -0.8 HED3 cts per 5.12 s, 

for the source-free portion of the search, to -2.9 HE03 cts per 

5.12 s, for the all sky phase of the search, with the addition of a 

long tail in the high mean flux direction. In the last two plots we 

present similar histograms of the source-free and source-full sky 

coverage, but limited to f15" on either side of the Galactic plane, to 

demonstrate that the "source-full" sky did not contain a greater 

percentage of Galactic plane data than the "source-free" sky. 

For the llall-skyll fast transient search, considering just good 

5.12 s intervals, one finds the HEDl and HED3 instruments were on for 

the equivalent of 104.45 continuous days each (about 86.7 days of that 

overlapping); the MED for 79.6; and HED2 for 47.6. This was about a 

factor of two increase over the first phase, the *source-free* sky 

fast transient search. Recall that the a1 1-sky search algorithm also 

looked at 15.36 s and 61.44 s intervals, to lower the search threshold 

for events longer than -1 minute. We found that three adjacent 5.12 s 

intervals were good (allowing the use of the lower 15.36 s threshold) 

for 100.7 d of the data; and the corresponding three 5.12 s intervals 

in HE01 data, 30 s later, were good (allowing the use of the lower 

61.44 s threshold) for the equivalent of 86.72 days. 

We treated the region around the Magellanic Clouds as a special 

case of the all sky search, since the region was too crowded to 

require eliminating a11 triggers within 23" of known LMC/SMC X-ray 

sources. Instead, we generated 99% confidence position 1 imi ts (in the 

manner described in Chapter 4 and Appendix B) for each event in the 

Magel 1 anic Clouds region. We then scrutinized the spectra, and long 



and short term ( 4 0 0  s) 1 ight curves of the individual events. One 

can see, from Figure 2.5, that since the Magellanic Clouds lie so 

close to the South Ecliptic Pole, there was a wealth of coverage of 

that region. 

We discuss both the triggers from the Magellanic Clouds region, 

and those from the rest o f  the sky, in detail in the following two 

chapters. 



Figure 2.8 Five histograms of coverage per mean HED3 flux. The 

ordinate in each is the number of good 5.12 s intervals that has a 

background-subtracted mean HED3 layer 1 count rate (calculated for the 

3Ox1.5" rectangular bins illustrated in Figures 2.4 and 2.5) falling 

within that bin. The abcissa is the background-subtracted mean HED3 

layer 1 5.12 s count rate, in 100 bins of width 1 ct per 5.12 s. 
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Figure 2.8.a Histogram of the "source-freeu sky coverage per mean 

HED3 flux, for the whole sky. 
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Figure 2.8. b Histogram of the llsource-ful 1 l1 sky coverage (''a1 1 -sky1' 

coverage minus that for the 'lsource-free'l search) per mean HED3 

flux, for the whole sky. 
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Figure 2.8.c Histogram of the "a1 1-sky" coverage (tlsource-free" plus 

Hsource-full ") per mean HED3 flux, for the whole sky. 
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Fiqure 2.8.d Histogram of  the llsource-free" sky coverage per mean 

HED3 f lux,  but l imited to  data +IS0 on ei ther  side o f  the Galactic 

plane. 



Figure 2.8.e Histogram of the nsource-ful 1 * sky coverage ("a1 1 -skyu 

coverage minus that for the "source-freeM search) per mean HE03 

flux, but limited to data 215" on either side of the Galactic 

pi ane. 



Chapter 3 

Results from the HEAO 1 A-2 All Sky Survey 

A. Introduction 

In this chapter, we consider the results of the HEAO 1 A-2 all 

sky survey. As described in the preceding chapter, we divided the 

HEAO 1 A-2 fast transient search into three phases, dictated by the 

type of analysis necessary for each: the "source free" survey, the 

"source" survey, and a survey of the Magellanic Clouds. We expected 

the first two phases to uncover the same types of sources, although we 

used slightly different search algorithms for each. We combined the 

"source-free" and "source" phases of our work into an a1 1 -sky survey, 

which we describe in this chapter. This all-sky survey was designed 

to look for 'new1 fast transients, and so discarded events from 

variable sources that had been studied previously. In consequence, in 

this survey, we'studied stars that were predominantly "X-ray faint" - 
that is, systems with average quiescent fluxes of something less than 

a millicrab, that were only detectable by HEAO 1 A-2 during brief 

episodes of outburst or flare activity. (The third phase, a survey4 of 

a1 1 data when the detectors pointed towards. the Magel lanic Clouds, was 

qualitatively different, as we scrutinized events from highly luminous 

X-ray binaries. We tell of our survey of the Magellanic Clouds in 

Chapter 4). 

In this all-sky survey, out of the equivalent of -123 days of 

data (-2x10~ 5 s intervals, during which at least one out of four 

detectors was on), we found fifteen events. Although these divisions 

became indistinct (particularly for the fainter events) in our 2- 

20 keV energy range, we argued that we observed primarily two 



categories of fast transient events. The first, from isotropically 

distributed sources, with negligible persistent emission, was 

comprised of events with optically thin thermal spectra, that we 

characterized as 'coronal flares . The second category contained 
'hard fast transients', presumably from systems containing compact 

objects, which tended to be highly absorbed (NH - loz3 cm-') and/or to 

have hard power law spectra (photon index - I), to show indications of 

-1 minute variability, and to be distributed near the Galactic plane. 

We began with a brief digression on the kinds of sources we 

excluded from this survey. Partly for completeness, and partly to set 

the stage for the fast transient survey results, we presented in 93.8 

a sumnary of the hundreds of events we discarded. This gave us an 

overview of 1-lo4 s variabi 1 ity throughout our Galaxy , as observed 

through the -3Ox3" collimators of the 2-20 keV HEAO 1 A-2 detectors. 

We found the variable X-ray sky to be dominated by highly luminous 

X-ray binaries, fol lowed by systems (from classical X-ray transients 

to X-ray bursters) that were not always bright, but had outbursts with 

luminosities near the Eddington limit. We also noted a few fainter 

events, such as flares from an RS CVn type system, less luminous 

outbursts from Be-neutron star systems, and variabi 1 i ty from a 

Cataclysmic Variable. These last were somewhat similar to the events 

of the HEAO 1 A-2 all-sky fast transient survey, in that the quiescent 

flux from these systems was faint, although still detectable by 

HEAO 1. The new events from this all-sky survey came from sources 

that were predominantly X-ray dark, and were only rendered visible by 

the sudden illumination of one of these fast transient outbursts. 

In §3.C, we moved to a discussion of the first phase of the all- 



sky fast transient survey, in which we examined only those regions of 

sky designated "source-free" (see Chapter 2). We pub1 i shed the 

results of this initial phase in Connors, Serlemitsos, and Swank 

(1986). Out of the equivalent of -64 days of scanning data (during 

which at least 1 detector was on), we found five new events, and two 

that had been previously identified as coronal flares from active cool 

dwarf stars. (Although not in data satisfying our search criteria, we 

also included an -80 s transient found in a HEAO 1 A-2 blank sky 

point; Tennant and Swank 1983). As we show in Table 3.3, all but two 

of these eight events exhibited spectra consistent with the 'coronal 

transients' defined above. The remaining two exhibited strong 

evidence of high intrinsic absorption. We found a natural explanation 

of these six unabsorbed events to be stellar flares from the coronae 

of active cool dwarf (dMe-dKe) stars. Two of these fast transient 

events had already been identified as such, and we found the spectra 

and light curves of the other four unabsorbed events to be similar. 

We then asked if the rates of these events over the whole sky matched 

what one predicts from such stellar flares, but found this rate had 

not been measured in 2-20 keV X-rays before. Further, while optical 

identifications of dMe-dKe stars were only -2/3 complete even as close 

as 5 pc, we estimated the events detected in this fast transient 

search could have come from cool dwarf stars as distant as 

-60-70 pc. We therefore approached statistical extrapolations of 

flare rates to 2-20 keV X-rays from three different perspectives. 

First, we considered rates of stellar flaring measured in the U-band, 

and extrapolated these rates in a reasonable manner to 2-20 keV 

X-rays. To test this argument, we also predicted the rate of X-ray 



flares seen in Einstein observations of dMe-dKe stars, and then 

extrapolated the Einstein rates to what we observed with HEAO 1 A-2. 

As our third method, we calculated how many flares we predicted should 

have been found by a fast transient search such as this, but only from 

those stars already identified by serendipity and optical survey work 

as flare stars. To increase the small number of events in this 

category, we added to this A-2 survey the results of a similar survey 

performed on A-1  data by Ambruster and Wood (1986). In all cases, we 

found our prediction of event rates matched our results, to within the 

1 arge uncertainties of our measurements. 

After this lengthy statistical argument, at the end of 53.C, we 

returned to the two events from the source-free transient search that 

showed indications of high absorption. They could not have been 

flares from any kind of main sequence coronal source, because of this 

dearth of low energy photons. We noted that their characteristics did 

not match those of any identified X-ray transient, and so left them 

unidentified. 

We then considered the rest of the sky (the Rsource-fullN sky), 

in the second phase of this all-sky survey, and discussed our findings 

in 53.0. We expected, that by almost doubling the amount of data 

surveyed, we would nearly double the number of stellar flares found, 

and that they would be distributed roughly isotropically. If the 

events were more intrinsical ly luminous (perhaps originating on 

compact objects rather than coronae of main sequence stars), they 

should be evident as a handful of new events along the Galactic 

plane. To penetrate the "source" regions, even when using the 

algorithm which compared rates every 5, 15, and 60 s with a 12 hour 



average f o r  t h a t  pos i t ion on the sky, we s t i l l  needed t o  exclude +3" 

regions around the most luminous variable sources (or be swamped w i th  

hundreds o f  t r iggers  t o  investigate). As we noted i n  Chapter 2, t h i s  

excluded a considerable f rac t i on  (-20%) o f  the Galactic plane, so tha t  

even t h i s  81source-ful111 phase o f  the fas t  t ransient survey was 

s l i g h t l y  biased against a disk d i s t r i bu t i on  o f  events. 

Out o f  the equivalent of -59 additional days o f  scanning data 

(during which a t  least  one out o f  four detectors was on) from the 

llsource-ful l8I sky, we found e ight  more fas t  t ransient events, seven of 

them new. One had been iden t i f i ed  by Hueter (1987) as an energetic 

gamma-ray burst  tha t  penetrated the A-2 detectors through the sides. 

Three of the new events we iden t i f i ed  as coronal f l a res  from act ive 

cool dwarf stars. This number was consistent wi th  what we predicted 

based on our "source-free1' survey. The remaining four  events were 

more puzzling. Three occurred w i th in  3% days o f  each other,. and from 

approximately the same direct ion. One was spa t i a l l y  coincident w i th  a 

Cygnus OB association, and had 58 early-type emission-1 ine  objects i n  

i t s  er ror  box. A l l  four  exhibited hard (power law photon index -0.8- 

1.6); a l l  occurred w i th in  10" o f  the plane o f  the Galaxy; and two 

(of  the repeating events) showed evidence f o r  4 0 0  s v a r i a b i l i t y .  We 

considered but rejected ident i f i ca t ions  wi th  d is tan t  gamma-ray 

bursters, X-ray bursters, 18dippers11, or  luminous f l a r e s  from 

consistently b r i gh t  X-ray binar ies (such as KZ Tra o r  LMC X-4). 

To the consideration o f  these events, we added recent p re l  iminary 

f indings from invest igat ions o f  a small swath o f  the Galactic plane. 

I 1  bII _ We o r ig ina l l y  mapped out the region around Galactic 1 , 
26O0,-10" i n  order t o  understand the low level  persistent emission 



around the time of a gamma-ray burst observed with HEAO 1 A-2 and A-4 

(Connors, Hueter, and Serlemi tsos 1988). Our data indicated there 

were probably three hard, -few hour,'few millicrab transients near 

this section of the Galactic plane. (One has tentatively been 

identified as a Be-neutron star transient by Buckley et a1 . 1988.) 
We hypothesize these hard variable sources near the Galactic 

plane, plus the hard transients of the HEAO 1 A-2 survey of the 

Nsource-fullN sky, may be evidence of a class of hard, -few hour 

transients lining the Galactic plane. The most plausible source 

population would be outbursts from -100-1000 Be-neutron star systems 

(>50% of which are expected to be pulsars). Observations by the 

Japanese satellite Ginga have provided strong independent evidence for 

the existence of such a class (Koyama et al. 1988). In light of this 

hypothesis, we re-examined the two unidentified and highly absorbed 

events from the' l'source-freell survey, and found it possible that one, 

near the Galactic plane, could belong to this class of hard Galactic 

plane transients, but the other, at high Galactic latitude, and with 

more stringent constraints on quiescent flux, probably did not. This 

last event remains a puzzle. 

In the final section of Chapter 3, §3.E, we consider a number of 

Wodd-balll' unidentified fast X-ray transients from other experiments, 

to see if we can find traces of some sort of underlying pattern. We 

concluded these events were too rare and too poorly defined for us to 

make a strong case for one or another proposed hierarchy of events. 

However, by comparison with the A-2/A-4 observations of 68780506, we 

find we clearly can identify none of our fast transients with X-ray 

counterparts to gamma-ray bursts, and so find a 90% upper 1 imit on the 



event rate (above gamma-ray fluences of ergs-cm-') of less than 

1300 per year over the whole sky. Even a conservative comparison with 

the event rate measured above higher fluences by the A-4 experiment 

shows this to be a stringent upper limit and a very marked departure 

from an isotropic distribution, suggesting we are seeing all the way 

across the Galaxy at fluences of around ergs-cm-'. By using an 

upper 1 imit on gamma-ray burst recurrence times of -8 years (Schaefer 

and Cline 1985), we estimated the total number of gamma-ray burst 

sources throughout the Galaxy to be <lo4. 

B. An Aside: A Galactic Overview of Fast X-ray Variability 

One of the most telling representations of the Galaxy in X-rays 

is a seven minute movie, "The X-ray Sky: 1969-1977", made from seven 

years of 3-12 keV observations by the a1 1-sky monitor niounted on the 

Vela '5B sate1 1 ite (Terrell et a1 . 1982). The detectors had a small 

area (26 an2) and low spatial resolution (-6Ox6' FWHM), but monitored 

the X-ray sky for nearly a decade. The data were processed in 10 day 

skymaps, with color indicating the intensity, and put in the form of a 

time-lapse movie. The movie displays persistently luminous X-ray 

binaries of all types changing in brightness (by factors of 2-10) on 

timescales of weeks to months, with high mass binaries dotting the 

Galactic plane, and low mass binaries (or "Galactic bulge sources") 

clustered about the Galactic center (Priedhorsky private 

communication). More dramatic than these bright persistent sources, 

the movie representation of the X-ray sky exhibits the classical X-ray 

transients becoming among the brightest sources in the X-ray sky as 

they turned on (on timescal es of days to weeks), then decaying in 



intensity on timescales of weeks to months. Not all transients fpded 

in that manner: two prominent transients near' the Galactic center (QV 

Nor, a hard eclipsing pulsar, and QX Nor, a soft transient that is now 

a persistent X-ray burst source) have remained luminous since their 

turn-on. 

Persistently luminous binaries containing accreti ng neutron stars 

with high magnetic fields (identified by their pulsations and 

generally harder spectra) more often have younger, high mass 

companions found along the plane of the Galaxy; while binaries 

containing neutron stars with magnetic fields less than gauss 

(which tended to exhibit soft spectra and X-ray bursts) most often 

have older, late-type companions, or are found in Globular Clusters, 

and are spread in a 'Pop 11' halo about the Galactic center (Cowley g& 

al. 1987; White, Kaluzienski, and Swank 1984; White and Marshall . - 
1983; Lewin and Joss 1981). -Rapid, irregular variability (no 

pulsations or X-ray bursts), and an Hultra-softtl spectrum when the 

intensity was high, were two suggested X-ray hallmarks of both high 

and low mass systems containing black holes. White, Kaluzienski, and 

Swank (1984) have argued that the dramat ical ly variable (on time- 

scales of weeks to months) classical X-ray transient systems fall into 

similar categories as the persistently bright sytems, save that the 

average accretion rate is probably lower. 

As prominent as these classical X-ray transients appeared when 

viewed with an integration time of 10 days, their rise and decay were 

not events which stood out when one viewed the X-ray sky at fast 

transient time-scales, such as through the 1-lo4 s filter of the 

HEAO 1 A-2 all-sky fast transient survey. With this l'filterIt, one 



Table 3.1: Sources Excluded From the All-Sky Survey 

Source Gal act i c Type Comments on Variabi 1 i ty 
Coordinates (a) 

X0155+634 125.9, 1.0 TBe Transient, pulsar 

X0900-403, Vela X-1 263.1, 3.9 PBHM Eclipsing, flares, pulsar 
X1119-603, Cen X-3 292.1, 0.3 PBHM Eclipsing, pulsar 

X1258-613, ~ ~ 3 0 4 - l b  304.1, -1.2 PBe Transient , pu 1 sar 
X1455-314, Cen X-qb 332.2, 23.9 XNova Transient, burster 

X1516-569, Cir X-1 322.1, 0.0 PBHM ~ransient~, rapid irregular 

X1538-522, QV Nor 327.4, 2.1 TBe, Transient, eclipsing 

PBHM pulsar 
X1608-522, QX Nor 330.9, -0.9 XNova, Transient, burster 

PBLM 
X1617-155, Sco X-1 359.1, 23.8 PBLM Irregular 
X1642-455, GX340+0 339.6, -0.1 PBLM Irregular 

X1656+354, Her X-1 58.2, 37.5 P B ~  Eclipsing, pulsar 

X1702-43 343.9, -1.3 PBLM Burster 
~1705-4ae 343.3, -2.3 PBLM Irregular, dipper, burster 

X1705-250, Nova Oph. 358.6, 9.1 XNova Transient 
X1813-140, GX17+2 16.4, 1.3 PBLM Irregular, burster 

X1908+005, Aquila X-1 35.7, -4.1 XNova Transient, burster 
X1956+350, Cyg X-1 71.3, 3.1 PBHM Rapid irregular 

X2030+407, Cyg X-3 79.9, 0.7 PBLM 4.8h eclipsing(?), irregular 

a) All are thought to be binaries. We have not distinguished between 
neutron star systems and those thought to contain black holes. We 
used PBHM (persistently bright high mass X-ray binary) to designate 
X-ray binaries with3gigh mas~~companions, where the compact object is 
X-ray bright, L,>10 ergs-s- , due to continuous accretion from 
either a strong wind (for massive supergiants) or Roche-lobe 
overflow; and PBLM (persistently bright low mass X-ray binary) for 
low mass binaries persistently bright in X-rays due to continuous 
accretion onto the compact object. "Xnova" designates the 'soft 
transients', low mass X-ray binaries observed to give X-ray nova 
(often accompanied by optical or radio outbursts), with rise and decay 
times on the order of tens to hundreds of days (White, Kaluzienski, 
and Swank 1984; White and Mason 1985; Bradt and McClintock 1983). 
"TBe" designates ' hard transients' , high mass (0-8 11-Ve) transient 
systems that havs6been observed to give irregular outbursts, with peak 
luminosities >10 ergs-s' , and rise and decay times of tens of days; 



Tab1 e 3.1: Sources Excluded From the A1 1 -Sky Survey, Continued 

o r  equally b r igh t  quasi-periodic outbursts wi th  durations on the order 
o f  a day (Bradt and McCl intock 1983; Van den Heuvel and Rappaport 
1986; Stel  la,#hite, anf Rosner 1986) ; whi l e  'PBe" designates 
fa in te r  (L 4 0  ergs-s' ), persistent high mass systems tha t  are less 
dramatical f y  variable (LMA /LM ,,,-lo). 
b) These sources were incfudea i n  the or ig ina l  tab le because they 
were l i s t e d  as br ight  and var iable i n  Bradt and McClintock (1983), but 
were probably not act ive when HEAO 1 could observe them. 
c) This system exhibi ts i r regu lar  16 d outbursts, presumably due t o  
binary changes (see Robi nson-Saba 1982). 
d) Her X-1, w i th  a -2 solar mass companion, can be categorized as 
e i ther  a high- or  low-mass X-ray binary (Bradt and McClintock 1983). 
e) These sources were confused (-4" apart). Both can be -100 
m i l l i c rabs  i n  intensi ty,  and both have been observed t o  give X-ray 
bursts. 



viewed not absolute flux levels, but fast variations (r 6. r 10-lo 

2 1 ergs-cm' -s' ) above an average flux (calculated over 12 hours). As 

we discussed in Chapter 2, this study focused on new fast transients, 

and so discarded any event that that could be attributed to known, 

variable, X-ray sources. In the l'source-freell phase of the survey, we 

accomplished this by searching only portions of the data free of 

sources brighter than about 1 mi 1 1 icrab. For the llsource-f ul 1 l1 data, 

we needed to have a method for identifying and discarding events from 

known varying sources. As a side benefit, from this second phase of 

the all-sky survey, we accumulated a sumnary of short time-scale X-ray 

variability throughout the Galaxy. 

After a preliminary data run netted nearly 100 triggers from the 

Cygnus region alone, it became clear that we also needed to exclude 

the brightest,' most variable sources before the data were processed 

through our survey 'trigger1 algorithms. We compiled a (somewhat 

arbitrary) list of eighteen bright sources that varied on our fast 

transient time-scales. We have displayed these eighteen sources in 

Table 3.1, and noted the characteristics of each that could cause them 

to trigger our search (Bradt and McCl intock 1983). We chose to use a 

simple algorithm, which excluded all data when the instrument look- 

directions were within 23" (in scan latitude and longitude) of any of 

these sources. Further, whenever an event triggered while the 

instruments pointed to within 23" of a known, variable source (stored 

in an on-line catalog), we discarded that event. Whenever a source 

(as identified by this simple algorithm) triggered the fast transient 

survey six or more times in one 20 day data run, it was automatically 

added to the table of bright, variable, sources, so that a 36 square 



degree region around that source was excluded from processing for the 

remainder of that run. A1 though computational ly inexpensive, this 

algorithm could clearly have misidentified events from crowded 

regions. (For example, all but a handful of the thirty-seven events 

found in the Magellanic Clouds survey were misidentified, until the 

.more sophisticated position fitting programs of Appendix B were 

brought to bear.) 

Therefore, this summary of discarded events serves not only as a 

rough overview of Galactic X-ray variability, but as a record of which 

regions of sky were excluded. (Some future researcher with idle 

computer time on their hands may find it a worthwhile project to more 

accurately identify triggers from interesting regions of the sky. 

However, we decided such a project to be outside the focus of this 

work. ) 

In Table 3.2, we have given a rough (and incomplete) measure of 

14 years of 2-20 keV X-ray variability over the whole sky by listing 

all 155 (out of 170) good events that we attributed to previously 

studied variable X-ray sources, along with brief indications of the 

type of source and the type of variable X-ray behavior each source has 

been seen to exhibit. We found the X-ray sky to be dominated by 

irregular 'If 1 ickeringtt from the persistent, high flux sources, when 

viewed on 1-lo4 s time-scales. We noted flickering from high mass 

X-ray binaries, from low mass binaries, from systems containing 

neutron stars, and from systems thought to contain black holes. 

Though a matter of active research for each type of source, the 

irregular flickering is thought to reflect a turbulent or grainy flow 

of matter through an accretion disk onto the compact object. These 



Table.3.2: Sources That Triggered the All-Sky Survey 

Source Galactic No. of Type Comments on Vari abi 1 i ty 
Coordinates ~rigqers~ (b) 

H0125+07, H08357 136.5O,-54.6O 1 RSCVn Flares 

4U0352+30, X Per 163.1 ,-17.1 >1 PBe Pulsar 
A0535+26 181.4 , -2.6 2 TBe Transient, pulsar, 

4U0614+09 200.9 , -3.4 4 PBLM Irregular, burster 

4U1145-61 295.6 , -0.2 >8 TBe Transient, pulsar 

4111223-62 300.1 , -0.0 7 PBHM Eclipsing, pulsar 

A1524-61, KY TrA 320.3 , -4.4 1 Xnova Transient 

4U1626-67, KZ TrA 321.8 ,-13.1 >12 PBLM Irregular, flares, 
pu 1 sar 

4U 1630-47 336.9 , 0.3 6 Xnova Transient 

2S1636-536 332.9 , -4.8 >8 PBLM Burster 
4U1658-48, 6x339-4 338.9 , -4.3 2 PBLM Rapid irregular 

4U1702-36, Sco X-2 349.1 , 2.7 >8 PBLM Irregular 

X1724-30, Terzan 2 356.3 , 2.3 1 GlCl Burster 
4~1728-33,~rindla~l 354.3 , -0.2 1 GlCl Burster 

4U1728-24, GX1+4 1.9 , 4.8 >8 PBLM Pulsar 
(also confused with 4U1735-28 and 4U1730-22) 

4U1728-16, GX9+9 8.5 , 9.0 >9 PBLM Irregular 

MXB1730-33 354.8 , -0.2 >5 GlCl Burster 

(Rapid Burster) 
251735-444 346.1 , -7.0 >9 PBLM Burster 
A1742-289 ' 359.6 , -0.4 >7 Xnova Transient 

4U1744-26, Terzan5 2.3 , 0.8 1 G1C1 Burster 

A1745-36, 76 trans 354.1 , -4.2 1 ? Transient 

4U1755-33 357.2 , -4.9 2 PBLM Irregular 
4U1758-25, GX5-1 ' 5.1 , -1.0 1 ? Irregular 

4U1758-20, GX9+1 9.1 , 1.2 >8 ? I rregu 1 ar 
4U1811-17, GX13+1 13.5 , 0.1 3 ? Irregul ar 

4U1813+50, AM Her 77.9 , 25.9 1 CV Eclipsing, flickers 

4U1820-30 2.8 , -7.9 >6 GlCl Burster 

4111822-37 356.9 ,-11.3 2 PBLM Eclipsing 



Table 3.2: Sources That Triggered the A1 1 -Sky Survey (continued) 

Source Galactic No. of Type Comments on Variability 
Coordinates ~ r i g g e r s ~  (b) 

4U1829-06, Sct X-1 24.5 , -0.2 4 ? Irregu 1 ar 

(A1 so confused with 1833-076) 
231837449, Ser X-1 36.1 , 4.8 >8 PBLM Burster 
A1847-05, 1850-087 25.4 , -4.3 1 ? Flares, burster 

(confused region) 
4U190749 43.7 , 0.5 >7 PBe Eclipsing, flares, pulsar 

231916-053 31.4 , -8.5 2 ? Dipper, burster 
4U1954+31 67.6 , 1.4 5 PB~' Flares, flickers 

4U2129+47 V1727 Cyg 108.2 ,-32.6 1 PBLM Eclipsing 
4U2142+38, Cyg X-2 87.3 ,-11.3 >12 PBLM Irregular 

a) If the software iniicgted a source was responsible for more than 6 
triggers in a row, a 6 x6 box around it was excluded from future 
processing. Therefore some of these numbers are only upper 1 imi ts. 
On some occasions a single fast transient event was so bright that the 
burst search program recorded it as several triggers. The program, 
might then exclude that source from future processing after less than 
6 actual bursts or flares. 
b) All are thought to be binaries. Sources with only a question mark 
were unidentified. We have not distinguished between neutron star 
systems and those thought to contain black holes. We used PBHM 
(persistently bright high mass X-ray binary) to designate X-ray 
binaries with&igh ma~s~companions, where the compact object is X-ray 
bright, Lx>10 ergs-s' , due to continuous accretion from eSther a 
strong wind (for massive supergiants) or Roche-lobe overflow; and 
PBLM (persistently bright low mass X-ray binary) for low mass binaries 
persistently bright in X-rays due to continuous accretion onto the 
compact object. UXnova" designates the 'soft transients', low mass 
X-ray binaries observed to give X-ray nova (often accompanied by 
optical or radio outbursts), with rise and decay times on the order of 
tens to hundreds of days (White, Kaluzienski, and Swank 1984; White 
and Mason 1985; Bradt and McClintock 1983). ItTBe" designates ' hard 
transientst, high mass (0-B 11-Ve) transient systems that have been 
obs5gved to give irregular outbursts, with peak luminosities 
>I0 ergs-s' , and rise and decay times of tens of days; or equally 
bright quasi-periodic outbursts with durations on the order of a day 
(Bradt and McClintock 1983; Van den Huevel and Rappaport 1986; 
Stel laj6White, apd Rosner 1986) ; while "PBe" designates fainter 
(Lx<10 ergs-s' ) , persistent high mass (0-B 11-Ve) systems that are 
less dramatical ly variable (LMX/LMir-10). ''GlC1 'I designates a source 
in a globular cluster (X-ray proper es indicate these are low mass 



Table 3.2: Sources That Triggered the All-Sky Survey (continued) 

X-ray binaries; see Bradt and McCl intock 1983; White, Kaluzienski , 
and Swank 1984; White and Mason 1985;); I1CV1l indicates a cataclysmic 
variable, a close binary composed of a low mass main sequence star 
plus a white dwarf rather than a neutron star or black hole (Patterson 
1984); I1RSCVnt1 indicates an RS CVn-1 ike binary, a cool sub-giant with 
an active corona locked in a close synchronous orbit with a white 
dwarf star (Hall 1984; Bradt and McClintock 1983). 
c) Although the X-ray properties of this system seem to indicate 
identification as a Be-transient system, it has not yet been optically 
identified (Swank 1987 private communication). 



persistently luminous sources also have states of high and low (2-20 

keV) intensity; when a transition between these two states occurred 

abruptly (<3 hours), the fast transient survey could have registered 

it as a rapid variation. 

Other types of vari abi 1 i ty capable of triggering the fast 

transient survey included eclipse ingresses, eclipse egresses, and 

slower intensity variations known as I1dipsl1 (which have been we1 1 

modeled as eclipses by a thickened portion of the accretion disk); 

highly 1 umi nous (occasional ly super-Eddi ngton) f 1 ares from these 

accreting systems; pulsations from compact objects with strong 

(-10'' gauss) magnetic fields; and, most prominent (because of their 

high luminosity and high ratio of peak-f lux-to-average-f lux), X-ray 

bursts from neutron stars with weak (40-lo gauss) magnetic fields. 

The persistently bright (i.e. high accretion rate) low and high 

mass X-ray binaries were not the only systems to show these types of 

variability, As Tables 3.1 and 3.2 illustrate, the classical X-ray 

transients also exhibited these same kinds of variable behavior. 

X-ray novae were apt to have soft (kT<15 keV) spectra, X-ray bursts 

(from binaries with neutron stars, rather than ones though to contain 

black holes), and were more likely to be associated with an older 

population of late-type stars. Those with harder spectra (kT>15 keV) 

tended to show evidence of pulsations, and were more 1 i kely to have 

younger, more massive (0-Be I I-V) companions (White, Kaluzienski , and 
Swank 1984). The classical "soft" X-ray transients had peak 

luminosities of 10 37-38 ergs-s-l, as luminous at peak as their 

persistent counterparts. Outbursts from transient Be-systems had peak 

luminosities ranging from 10 36-39 ergs+-', and lasted from hundreds 



of days to considerably less than a day (Van den Heuvel and Rappaport 

1986; Stella, White, and Rosner 1986; see also the LMC Transient in 

Chapter 4). The I1persi stent" Be binaries exhibited lower luminosities 

( ~ ~ ~ 1 0 ~ ~  ergs-s-l), f lare-1 i ke increases by an order of magnitude on 

time-scales as short as an hour, and larger intensity modulations on 

time-scales of -days-months. 

There were two more types of systems represented in Table 3.2 

that exhibited shorter, less luminous, fast transient events. One 

event was identified with the eclipsing Cataclysmic Variable, AM Her, 

a close binary composed of a cool (main sequence) dwarf star plus an 

accreting white dwarf. (Interestingly, the optical and X-ray light- 

curves of these dramatically optically variable systems also often 

exhibited irregular I1f 1 ickering" on fast transient time-scales. ) 

Another event was identified as a 10 31-32 erg-s-l flare from the 

RS CVn-type system HD8357, a cool subgiant plus white dwarf binary, 

with the flare activity arising from magnetic activity in the corona 

of the coo? subgiant (Garcia et al. 1980). Historically, these 

fainter types of events were labeled "high latitude transients", and 

were probably the origi na1 I1f ast transients" (Bradt and McCl i ntock 

1983; Pye and McHardy 1983). 

Almost all of the sources described in this section were 

sufficiently bright for HEAO 1 to detect even in quiescence. The new 

events we describe in the following two sections were fainter, and for 

the most part the sources were undetectable in quiescence. 

C. Results From the Source-Free Sky 

We turn to the results of the first phase of the HEAO 1 A-2 all- 



sky fast transient survey, covering the llsource-free" sky (i .e. 

regions of sky free from X-ray sources brighter than about a 

millicrab). In this phase, we compared event rates every -1 and 5 s, 

looking for variations of more than -60 significance above the average 

diffuse sky plus internal detector background counting rate. We 

pub1 ished the results from this initial phase in Connors, Serlemitsos, 

and Swank (1986). Out of the equivalent of -64 continuous days (-lo6 

5.12 s intervals) of scanning data, during which at least one out of 

four detectors was on (54.6 days each of HEDl and HED3 data, which 

viewed adjacent but independent sections of the sky; 41.6 days of 

data from MED, and 24.9 days from HED2, which were co-a1 igned with 

HED3), we discovered seven fast transient events, five of them new. 

In this section, we have also included an -80 s event found 

serendipitously in HEAO 1 A-2 pointed data by Tennant and Swank 

(1983), in a region free from sources brighter than -1 millicrab. 

(This survey encompassed only scanning data.) The events had 

durations ranging from -1 minute to over two hours, and peak fluxes 

ranging from -6 to 150 millfcrabs. In what follows, we have detailed 

the event properties, then discussed possible identifications. We 

argued that a1 1 but two were probably hard flares from the active 

coronae of cool dwarf stars, but that the remaining two, which showed 

evidence of hard spectra and anomalously high intrinsic absorption, 

could not be identified as any known type of variable X-ray source. 
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f i t s  o f  the l i g h t  curves i n  Figures 3.1 and 3.2, assuming a constant Intensi t#.  For the events f o r  which a 
constant i n tens i t y  was a bad fit, which we defined t o  be when the value f o r  x was more than twice the 
number of degrees of freedom, we used the highest in tens i ty  5.12 s data point  ( that  was a t  least  4a above 
zero). We have indicated these events w i th  a ' Y '  under the label  " V a r i e ~ ? ~ .  To measure the quiescent f lux,  
we summed HEAO 1 A-2 scanning MED+HED3 1.5' rates from the s i x  month pass i n  which the event was detected 
(although for  0728.14 we looked a t  data from the f i r s t  two s i x  month passes, as i t was detected i n  ppint ing 
data and near the end of the mission). Typically, t h i s  meant about s i x  days o f  scanning data. I f  x 
dropped by a t  least  t h i r t y  when two f i  t parameters ( in tens i ty  and scan angle) were introducef, we deemed 
tha t  source t o  be signif icant. (Note tha t  the un i t s  are "new R15' units, o r  MED+HED3 cts-s' , which are 
d i f f e ren t  from the un i t s  f o r  the peak intensi t ies.)  
d) In t h i s  column, 'PL' stands f o r  the photon index o f  a power law model; 'TTB1 indicates a t h i n  thermal 
bremmstrahlung ( i . e. exponent1 a1 plus Gaunt factor)  temperature i n  keV; and BB indicates the temperature 
f o r  a black body ~ ~ d e l ~ ~ i n  keV. The top row i n  each t r i p l e  pa i r  corresponds t o  f i t s  assyging gegl ig ib le  
absorption (NH-10 cm ) The second row i n  each p a i r  rsquires a column density o f  -10 c C  . When the 
number o f  degrees o f  freedom was ten o r  greater, and i f  x f o r  a par t i cu la r  model was greater than twice the 

V 
number of degrees o f  freedom, we deemed the model unacceptable and l e f t  that entry blank. For events w i  t h  
fewer than ten degrees o f  freedom, a model was deemed unacceptable when x exceeded the number o f  degrees of 
freedom plus ten. Those events marked w i th  an $ may require a changing spectrum and are discussed i n  more 
de ta i l  i n  the text.  
e) I n  the footnotes, we l i s t e d  objects found i n  the 99% confidence posi t ion 1 im i t s  (of  Figure 3.1) tha t  
belonged t o  classes o f  objects associated w i th  var iable X-ray emission, and discussed possible 
ident i f icat ions.  
f) The posi t ion er ro r  box o f  t h i s  source intersects tha t  o f  a gamma-ray burst source, 1973 Mar 2 a t  an 
R.A., Decl. o f  5g0,5g0 w i th  r=5O. Ambwster (pr ivate comnunication) noted a "de f i n i t e  f a i n t  sourcen i n  A - 1  
data 16 minutes a f t e r  t h i s  event was observed i n  A-2 data. 
g) Found i n  HEAO 1 A-2 LED data by Kahn e t  al. (1979). and at t r ibuted t o  AT Mic. Kahn e t  al .  (1979) showed 
the LED+MED spectrum t o  be best f i t  by a t h i n  thermal bremsstrahlung model, wi th  kT-2.7 keV, plus an i r o n  
l ine.  The Ar ie l  V f a s t  t ransient source AT2030c30 also l i e s  across the center o f  the er ro r  box. Quoted 
upper l i m i t s  are consistent wi th  Tsi koudi (1982,1983). 
h) Ambruster (pr ivate communication) noted weak emission i n  the A-1 data 16 minutes before and 48 minutes 
a f t e r  t h i s  event was observed i n  A-2 data. 
i) The posi t ion l i m i t s  in tersect  that o f  gamna-ray burst source 1973 Jun 10 a t  R.A., Decl. o f  127.,-64., 
wi th  r=5". Contains HD 73834, a 7.9 mag Be s ta r  (Wackerling 1970), and one ecl ipsing Algol-type system, 
TX Vol (Kukarkin e t  a1 . 1974). 
j) This event was found i n  A-2 data by Kaluzienski e t  al .  (1978a,b). We l i s t  here the posi t ion o f  the only 
I P C  source (also an EXOSAT CMA source) t o  f a l l  w i th in  our 99% confidence pos i t ion  l im i ts .  G r i f f  i t h s  e t  al .  



(1979) i d e n t i f i e d  t h i s  source, on the basis o f  A-3 and A-4 data, w i t h  two dMe stars. Their  pos i t i on  i s  
consistent w i t h  t h a t  o f  the E inste in  I P C  source. 
k) The spectral  paraneters f o r  t h i s  event come from f i t s  t o  10.24 s o f  MED and #EDJ PHA data containing the 
event peak. A gamma-ray burs t  e r r o r  box, 1972 Jan 17 a t  an R.A, and Decl. o f  21 28 ,+50 w i t h  r=5", overlaps 
the A-2 posi t ion,  as does a weak A-2 steady source, and a COS B e r r o r  box which contains an I P C  source 
(Caraveo 1983). Tennant and Swank (1983) noted a weak pers is tent  source i n  scanning data, a year before 
t h i s  event, We l i s t e d  the i n t e n s i t y  o f  t h i s  f a i n t  source under "quiescent f l ux " .  
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,I i f d l l ?  !IY% C O N t  I U t N L  t CONTfllJAS FOR r1298.62+HT.  R U M I C + R T Z L j O  

I . 11 1 / 7 , I r 1 , - , , - , - l - ~ ~ - r , ~ - r - ~ ~ r r  - 1 ~ ~ 7 1 -  r- rT7 

-.05 0 
0 20 40 60 80 

TIME IN SECONDS 
2 

= 19.7 FOR 16 DOF 
P1= #.J08~-01 SIG = 0.1 13E-02 

= 16.0 FOR 15 DOF 
PZ=-5.1 10~-03  P3= 0.148E-01 

b) Found i n  HEAO 1 A-2 LED data by Kahn e t  a1 . (1979). and a t t r ibu ted  t o  AT Mic. We p lo t ted  the 99% 
confidence p f s i t l o n  l i m i t s  ( I n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute event l i g h t  curve ( i n  
HE03 cts-cm' -s- versus time i n  seconds) on the r igh t ,  f o r  the event on D.O.Y. f98.ff.  Time zero f o r  the 
l i g h t  curve i s  a t  14:57:44.402 UT. The center o f  the er ro r  box i s  a t  Galactic 1 ,b - 10.2". 49.2". The 
HEAO 1 A-2 99% confidence posi t ion error box contains both AT Mic and the 230 m i l l i c r a b  repeating A r i e l  V 
t rans ient  AT2030-330 (Pye and McHardy 1983). We have also indicated the pos i t ion  o f  the nearby f l a r e  s tar  
AU Mic. 
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TIME IN SECONDS 
= 23.8 FOR 17 DOF 

PI= &33~-02 SIG = 0.957E-03 
= 23.1 FOR 16 DOF 

~2=-5.445~-04 P3= 0.935E-02 

d) We p lot ted the 99% confidence gosi t ion l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 cts-cm- -s- versus time i n  seconds) on the r i gh t ,  f o r  the event on D.O.Y. 

Time zero f o r  the l i g h t  curve i s  a t  19:40:36.297 UT. The center o f  the er ro r  box i s  a t  Galactic :'';;" - 279.8'. -15.4'. We found no i d e n t i f  led X-ray sources, and no A-1 catalog sources i n  the f i e l d  o f  
view. However the error  box contains HD 73834, a 7.9 mag Be s ta r  (Wackerl ing 1970), one ec l ips ing Algol- 
type system, TX Vol (Kukarkin e t  al .  1974). and overlapped a large er ro r  box f o r  a gamma-ray burst, 1973 Jun 
10 a t  an R.A., Dec o f  127' ,-64" with r=5'. 



I S F l N O P  99% CONFIUCNLE CONTOUR FOR O q 0 5 . 8 5  LO5 131 

0 2000 4000 6000 
TIME IN SECONDS 

= 7423.2 FOR 47 DOF 
Pi= 8@82~-01 SIC = 0.1343-02 

= 1894.1 FOR 46 DOF 
~2=-s .529~-04  P3= 0.32 1E+00 

a G 
0 7 e) This event was discovered i n  HEAO 1 A-2 data by Kaluzienski e t  a l .  (1978a,b), and i d e n t i f i e d  by 
0 .m 

f -  
G r i f f i t h s  e t  a l .  (1979) w i t h  a 10 mag dMe pair ,  LDS 131. It was detectable f o r  four  scans. We p lo t t ed  the 
99% confidence p o s i t i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) together w i t h  the posi t i o n  o f  thl; supgested 

a? source, fol lowed by the -2 hour l i g h t  curve of the event on D.O.Y. 405.85 ( i n  HED3 cts-cm' -s' versus t ime g 
v. 

i n  seconds), r equ i r i ng  the p o s i t i o n  t o  bfIf:ffd a t  t h a t  o f  LDS 131. Time zero i s  a t  20:24:17.781 UT. The 
center of the e r ro r  box i s  a t  Galact ic 1 , - 264.3". -38.6'. We found no other i d e n t i f i e d  X-ray 

2: sources, no A - 1  catalog sources, and no known o p t i c a l l y  var iable s ta rs  o r  emission l i n e  s ta rs  i n  the f i e l d  
o f  view. 



- . 0 5 t 1 1 1 1 1 1 ' I I I I 1 1 1 1 1 1 1 1 d  
0 20 40 60 80 100 

TIME IN SECONDS 
2 

= 14.9 FOR 18 DOF 
P1= #*77~-01 SIG = 0.1753-02 

= 14.8 FOR 17 DOF 
~2=-%.380~-04 P3= 0.300E-01 

f) We p lo t ted  the 99% confidence gosir ion l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 cts-cm- -s- versus time i n  seconds) on the r i gh t ,  f o r  the event on D.O.Y. 

Time zero f o r  the 1 i gh t  curve i s  a t  20:10:33.516 UT. The center o f  the e r ro r  box i s  a t  Galactic :1P:E41 - 75.2'. 30.8". We found no i d e n t i f  led X-ray sources, no A - l  catalog sources, no known op t i ca l l y  
var iable s tars  o r  emission l i n e  stars (Wackerling 1970; Kukarkin e t  al.  1969; 1971; 1974; 1976), and no 
gamna-ray source er ro r  boxes i n  the f i e l d  of  view. 



- 
TME IN SECONDS 

= 13.7 FOR 15 DOF 
P1= 8@35~-02 SIG = 0.116E-02 

'b = 11.8 FOR 14DOF 
P2=- .814E-04 P3= 0.949E-02 

g) We p l o t t e d  the 99% confidence os i  i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HE03 cts-~in- ' -s-~ versus t ime i n  seconds) on the r i g h t ,  f o r  the event on D.O.Y. 

Time zero f o r  the l i g h t  curve i s  a t  11:21:19.582 UT. The center o f  the  e r ro r  box i s  a t  Galact ic  YTt;:' I - 41.6', 24.6'. We found no i d e n t i f  l ed  X-ray sources, no A - l  catalog sources, no known gama-ray 
source ~ o s i t i o n s ,  and no known o p t i c a l l y  va r iab le  s ta rs  o r  emission l i n e  s ta r s  (Wackerling 1970; Kukarkin 
e t  a l .  i969; 197i; 1974; 1976) i n  the f i e l d  o f  view. 



lNOP 99% CONFIDENCE CONTOURS FOR 0728.1'4 
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TIME IN SECONDS 
= 1498.1 FOR 58 DOF 

325. OC 315.00 P1= )6.362~-02 SIG = 0.178E-03 
= 1232.4 FOR 57 DOF 

~2=%.344~-04 P3= 0.88 13-02 

h) We p lo t t ed  the 99% confidence osi  i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 ct~-cm-' -s-~ versus t ime i n  seconds) on the r i g h t ,  f o r  the event on D.O.Y. 
728.15. Time z e r o f o r  the l i g h t  curve i s  a t  3:36:40.000 UT. Since t h i s  was a pointed observationIyebffn 
display a complete -100 s l i g h t  curve f o r  the event. The center o f  the e r ro r  box i s  a t  Galact ic 1 , .w 

95.5", 3.6". We found no i den t i f i ed  X-ray sources, no A-1 catalog sources, and no known o p t i c a l l y  var iab le  
s ta rs  o r  emission l i n e  s tars  (Wackerling 1970; Kukarkin e t  a l .  1969; 1971; 1974; 1976) i n  the  f i e l d  o f  
view. However t h i s  A-2 pos i t ion  er ror  box overlaps a large gamna-ray burs t  e r ro r  box, 1972 Jan 17 a t  an 
R.A., Dec o f  322", 50" w i th  r=5', as we1 1 as t ha t  o f  a weak A-2 steady source, and a COS B (gamma-ray) e r ro r  
box which contains an IPC source ( j us t  outside the 99% confidence pos i t i on  l im i t s ) .  



i. Description of the Events 

We have 1 isted the times, positions, intensities, and spectral 

characteristics of the seven events from the "source-free" survey, 

plus the one in pointed data from Tennant and Swank (1983), in Table 

3.3.a. We calculated the best-fit positions, intensities, and 

indications of <1 minute variability using the position finding 

program described in Appendix B. (Essentially, we have compared the 

count rate minus the background among the overlapping instrument 

fields of view, each 5 s interval, to constrain the position in an 

i ntensi ty-i ndependent fashion. The event 1 i ght curves were by- 

products of this process.) We have presented the corresponding 1 ight 

curves and 99% confidence position error boxes in Figure 3 , l .  When a 

fit of a light curve to a constant intensity produced a value for x 2 

- that was more than twice the number of degrees of freedom, we 

indicated that source to be variable in the eighth column of Table 

3.3.a. For this source-free phase, only two events showed indications 

of 4 0 0  s variability. One was the event on D405.85, which was also 

distinguished by its high peak flux (-150 millicrabs), and long 

duration (exponential decay time -40 minutes). During the first and 

brightest pass over the source, the flux was increasing, with an 

exponential rise time of 7-10 minutes. The only other event in Table 

3.3.a showing evidence of 400 s variability was the event on D728.15, 

the fast transient discovered serendipitously by Tennant and Swank 

(1983). Since it was observed in pointed data, it was the only event 

for which we have a complete, uninterrupted light curve, When the 

satellite was in scanning mode, the detectors spun past each source 

position at best every -32 minutes; interruptions of the data, due 



primarily to Earth occultations and occasional electron contamination, 

constrained the mean time between viewings to be closer to twice this 

value. Occasionally, data from the A-1 experiment on the opposite 

side of the spacecraft could be used to help constrain the durations 

of the events found in scanning data (C. Ambruster private 

communication; Ambruster and Wood 1986). Only the event on 0298.62 

was clearly visible in A-1 data, although there may have been weak 

indications around the time of the events on 0249.36 and 0343.97. 

(The A-1 detectors were turned off during the bright event on 

0405.85; K. Wood and P. Hertz, private communication.) 

Not surprisingly, we found no evidence for associated persistent 

emission around the time of the event for any of the events found in 

the source-free transient survey. However Tennant and Swank (1983) 

noted a weak persistent source consistent in position with the event 

on 0728.15, but occurring a year before that outburst. We have 1 i sted 

90% upper limits on quiescent flux during roughly a week around the 

time of each transient in the ninth column of Table 3.3.a. (Note that 

these values are not in the same units as the peak flux). We found, 

for all events, the ratio of peak flux to quiescent flux ranges from 

220 (for 0249.36) to -600 (for the brightest event, on 0405.85). This 

already set strong constraints on possible sources for these events. 

Aside from sources in the Magel 1 anic Clouds, extragalactic objects 

which flare by over a factor of twenty in less than an hour are very 

rare, for example. 

Further constraints were provided by fits to spectral data. We 

have listed parameters from fits to three simple models in columns ten 

through twelve of Table 3.3.a. For most events, we detected 



insufficient photons to unambiguously deconvol ve the measurements of 

any possible low energy turnover from those of the temperature (for 

the black body or thin thermal bremsstrahlung models) or photon index 

(for a power law model). We therefore reported the best-fit 

temperatures and power law photon indexes for two different assumed 

column densities, ~ ~ ~ 1 0 1 9  cm-2 and N~-1023 cm-2. 

In four cases, we found evidence for negl i gi bl e absorption. 

Using HEAO 1 A-2 LED (0.15-3 keV) and MED (2-20 keV) data, Kahn et al. 

(1979) demonstrated the spectrum of the event on 0298.62 (identified 

as a - 4 ~ 1 0 ~ ~  erg-s-l flare from the dM4e star AT Mic) to be we1 1 fit 

by an optically thin thermal bremsstrahlung spectrum (kT-2.7 keV) plus 

an iron line. Our best fit MED+HED3 spectra were consistent with 

their results. In Chapter 5, we presented the spectrum of the 

brightest event, on D405.85 (Kaluzienski et al. 1978a,b), and noted 

that it was also well described by a cooling, optically thin, thermal 

bremsstrahlung plus iron line model, but with a temperature of 

-12.6 keV. This event had also been identified by Griffiths et al. 

(1979) as a flare from a dM3e pair, LDS 131 (in Luyten 1963a; a1 so BPM 

17964/17965, in Luyten 1963b; and U98, in Upgren et al. 1972). The 

spectrum of the event found in pointed data on D728.15 was also well- 

described by a cooling, optically thin thermal bremsstrahlung model 

with a temperature at peak of -9 keV. The column density was 

constrained to be <loz2 cm2 by the MED data. The event on 0343.97, 

though fainter than the events on D405.85 and D728.15, and without low 

energy information from the LED detectors, was bright enough in ME0 

and HED3 data to constrain the column density to under lo2* cmm2. 

For two other events, those on D249.36 and 0436.85, the spectra 



indicated a low energy turnover equivalent t o  ~ ~ 2 1 0 ~ ~  During 

the event on D249.36, the LEOS (0.15-3 keV) were on but showed no 

appreciable f l u x  increase. This implied a column density cm-2 

(Nugent e t  a1 . 1983). I n  marked contrast, Kahn e t  a1 . (1979) found 

the AT Mic f l a r e  emitted the bulk o f  i t s  photons i n  the LED range. 

I n  Figure 3.2, we show the HED2 and (of fset )  H E D l  pulse height 

spectra w i th  thermal bremsstrahlung f i t s ,  f o r  the event on 0436.84. 

The best f i t  thermal bremsstrahlung models f o r  the three co-aligned 

detectors a l l  had kT>16 keV and negl ig ib le  absorption; the best f i t  

power law models had photon indices o f  1.320.4. The best f i t  kT f o r  

H E D l  (which t r a i l e d  the others by 30 s) was 8 keV (and the photon 

index -2.7). wi th  nH-1oZ3 The data are thus consistent wi th  a 

softening spectrum, but, on the other hand, the 90% confidence 

contours shown i n  Figure 3.3 are consistent w i th  a.constant 

22 2 temperature o f  -15 keV f o r  NH-2x10 cm' . Upper 1 i m i t s  on the f l u x  

from t h i s  event i n  the 20-120 keV, 0.1-1.1 MeV, and 1.1-6 MeV energy 

ranges from the A-4 instruments were k ind ly  provided by Geoff Hueter 

a t  the Universi ty o f  Cali fornia, San Diego. They were consistent w i th  

our b e s t - f i t  spectra but d id  not constrain them beyond requi r ing a 

power law photon index o f  more than 1. 

During two o f  the four f a in tes t  events i n  Table 3.3.a (on 0370.82 

and 0623.47), the LED detectors were o f f .  Evidence on NH from the 

higher energy A-2 detectors was ambiguous, but  consistent w i th  

negl ig ib le  absorption. 

Although f o r  a few events we could exclude black body or  power 

law models, a l l  events had spectra tha t  could be adequately described 

by t h i n  thermal bremsstrahlung models. The b e s t - f i t  temperatures o f  



HEAO I A-2 HED 2 HI742 + 49 

ENERGY (keV) 

HEAO I A-2 HED 1 H I  742 t 49 
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a) The HE02 raw spectrum o f  H1742+49 (event on 0436.84 7 i s  compared t o  a thermal bremsstrahlung model w i t h  
kT = lOOkeV and neg l i g i b l e  absorption. 

b) The analogous raw spectrum from the o f f s e t  detector, HEDl, w l th  kT = 8 keV and N f 2 x cm-2. (The 'I two detectors have s im i l a r  response save below a few keV, where HEDl  has a smal e r  e f fec t i ve  area.) 



H1742+49 THERMAL BREMSSTRAHLUNG 

90% x 2  CONTOURS 

Figure 3.3 90% confidence contours in thermal br ss rahlung 
temperature (in keV) versus column density (in 105'a'j for HEDP, 
HED3+MED, and HEDl data from the H1742-49 flare. 
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the events ranged from greater than 16 keV (for the event on 0436.84), 

to on the order of 10 keV (0249.36, D343.97, 0405.85, 0728.15), or 

less than 5 keV (0298.62, D370.82, and 0623.47). 

In the last column of Table 3.3.a, we proffered notes on nearby 

X-ray sources (Bradt and McClintock 1983; Kahn et al. 1979; 

Griffiths et al. 1979; Ambruster and Wood 1986) and types of optical 

objects that may vary in X-rays. For the latter, we used an on-line 

1 computer catalog (Mead and Hi1 1 1983). We found the two flare star 

systems mentioned previously (AT Mic and LDS 131); and one early type 

emission-1 ine object plus one ecl ipsing Algol-type system (probably 

too distant to be the source of the event), within the 99% position 

1 contours f o r  the event D370.82, (which had the largest  e r ror  box due 

to its low flux). We also listed any gma-ray burst position error 

boxes, kindly provided by J. Norris, U. Desai, and T. Cline (private 

communication), that may have overlapped the position limits of our 

events. 

i i . General Remarks on Identifications 
We have limited-our discussion to objects within the Galaxy, as 

extra-galactic objects which flare by over an order of magnitude in 

less than an hour are quite rare, and we found no such objects within 

the event (99% confidence) position limits. We have by definition 

excluded any possible variable objects in the Magel lanic Clouds. 

In this discussion, we compared the HEAO 1 A-2 fast transient 

events with well-known types of variable X-ray sources. There is 

always the possibility that one or more events may represent classes 

of rare and poorly understood events. That such events do occur is 



illustrated in Chapter 5 by the discussion of a singular bright event 

observed in OSO-8 data (Serlemitsos, Bunner, and Swank 1979), and by 

puzzling events from other fast transient surveys (Helfand and Vrti lek 

1983; Ambruster and Wood 1986; Pye and McHardy 1983). 

i i i . Luminous Events from Compact Objects 
We consider it unlikely that any of these A-2 source-free fast 

transients were from luminous compact X-ray binaries of the types 

displayed in Tables 3.1 and 3.2, since both the events and their 

quiescent counterparts were so faint. One might at first have 

thought, for example, of distant X-ray burst sources, as an ' 

explanation for the events with large turn-overs at low energies. 

However, in order to have a luminosity near the Eddington limit, as is 

typical for Type I and I1 X-ray bursts (Lewin and Joss 1981), a 

7x10-lo ergs-cm-2-s-2 source would have to be more distant than 50 

kpc, placing it well outside the Galaxy. For most of the events in 

Table 3.3 that had acceptable black body fits, if we assumed a source 

the size of a neutron star, we again inferred distances outside the 

Galaxy. The exceptions required column dens1 ties of -loz3 ern-', which 

were incompatible with measured interstellar values. Local column 

densities of this magnitude are atypical for X-ray bursts. For the 

event on 0436.84, at (1 ,b) of (75',31°), the total 1 ine of sight 

absorption was - 4 ~ 1 0 ~ ~  (Burstein and Heiles 1982), an order of 

magnitude less than that required by the 90% lower 1 imit on NH from 

the offset detector. For the event on 0249.36, the average E(B-V) in 

the direction (1,b) of (141°,8.60) was -0.4 mag kpc-' (Lucke 1978); 

one expects an interstellar column density of less than 3 x 1 0 ~ ~  cm-'. 



(A more plausible model might involve black body emission from a 

f rac t ion  o f  a neutron star  surface, wi th  some i n t r i n s i c  absorption, 

implying a distance o f  less than 2 kpc; see 53.D) Therefore i n  what 

fol lows we concentrated on outbursts from the types o f  objects we have 

described i n  the overview as more X-ray fa in t ,  such as coronal flares. 

iv.  The Case f o r  I den t i f i ca t i on  wi th  Flare Stars 

We suggest t ha t  5 o f  the 7 source f ree  f a s t  t ransient events, 

plus the event on 0728.15 found i n  pointed data, may have been s t e l l a r  

f l a res  from ubiquitous (roughly one per 25 pc3) dMe-dKe stars. Haisch 

(1983), reviewing the X-ray propert ies o f  s t e l  l a r  f 1 ares (from nearby 

stars), noted peak X-ray luminosit ies from t o  lo3' ergs-s-l, 

temperatures from -1 t o  9 keV, and durations from a minute t o  an 

'hour. Five o f  the events i n  Table 3.3.a (on D298.62, a t t r ibu ted  t o  

AT Mic; D343.97; D370.82; D623.47; and D728.15) f i t  t h i s  

description. As i l l u s t r a t e d  i n  Chapter 5, the event on D405.85 was 

s l i g h t l y  hot ter  and an order o f  magnitude more luminous. However, i n  

t h e i r  discussion o f  a I1superflareu from EV Lac ( ~ ~ - 1 0 ~ ~  ergs-s-l, 

~ 2 1 0 ~ ~  ergs), Ro inan and Shevchenko (1982) suggested tha t  a l l  nearby 

dMe-dKe stars may be capable o f  extremely energetic outbursts upon 

occasion. Ambruster e t  al. (1983) also made t h i s  suggestion when 

discussing a b r i gh t  A-1  f as t  transient, H0547-14 ( f l u x  - 177 

mi l l icrabs, kT - 25 keV, quiescent t o  peak f l u x  r a t i o  o f  23x10'~). 

Two o f  the events i n  Table 3.3.a have been a t t r ibu ted  t o  the 

f l a r e  stars AT Mic and LDS 131. A search s imi lar  t o  t h i s  one, but 

using the f i r s t  s i x  months o f  HEAO 1 A - 1  data found 10 events, three 

wi th  f l a r e  stars i n  t h e i r  pos i t ion er ro r  boxes, including the r i s e  and 



fa1 1 of the event on D298.62 from AT Mic (Ambruster and Wood 1986). 

An energetic flare from EV Lac had a peak luminosity of -5x10 30 

ergs-s-' (2-20 keV), a total energy o f  ergs, and a quiescent-to- 

peak-flux ratio of -2x10-' (Ambruster, Snyder, and Wood 1984). An 

event attributed to EQ Vir would have had a peak luminosity of -7x1030 

ergs-s-' (2-20 keV) (Ambruster and Wood 1984). 

It is improbable that all four systems fell within the event 

position error boxes by chance. The one object that was identified by 

optical observations, 0405.85, had combined A-3 and A-4 error boxes of 

-0.24 deg2; the expected number of dMe-dKe stars within 20 pc that 

would fall in this error box by chance is less than 8xl0-~. For the 

1 arger error boxes we searched pu bl i shed catalogs of nearby stars 

(Gliese 1969; Woolley et al. 1970; Joy and Abt 1974; Petterson 

1976; Gliese and Jahreiss 1979; Gurzadyan 1980; Upgren et al. 

1972), as did Ambruster and Wood (1986). Out of. 90 dM-dK stars 1 isted 

in the literature as having either Ha emission or to have flared, four 

(LDS 131= U98, AT Mic, EV Lac, and EQ Vir) were found in the A-1 and 

A-2 error boxes, with combined area -200 deg2. The expected number if 

they are serendipitous is 0.4, so that the probability of finding four 

or more in combined HEAO 1 A-1 and A-2 position error boxes is less 

than 0.1%. 

These lists of active dM-dK stars published in the literature are 

not complete. A comparison with Joy and Abt (1974), Allen (1973), and 

Bahcall and Soneira (1980) demonstrates that -70% of the dMe-dKe stars 

closer than 5 pc, and less than 4% of those within 25 pc, are 

listed. Taking the maximum X-ray flare luminosity to be 

ergs-s-l, consistent with that measured from the bright flare 



from LDS 131 on 0405.85, we find that this fast transient survey could . 
have detected flares from dMe-dKe stars as distant as 60-70 pc. 

Therefore it seems reasonable that uncatalogued active dwarf stars may 

have been the source of most of the unidentified fast transients. 

We compared event rates found in this search with those one 

expects from all dMe-dKe stars, by extrapolating optical flare rates 

to X-rays (see Appendix C). Our flare star model predicted an event 

rate above a flux S to be R(S)S~O~(S/S~)-~*~ events-yr-' per sky, with 

So our lowest search threshold of - 4 ail 1 icrabs 
2 -1 ergs-cm' -s ) , and assuming that the frequency of flares goes as 

L ,  and that the maximum flare luminosi ty in our energy band is 
1 ergs-s-l. The normalization, which goes as T- ha,&, where T is 

the event duration, is uncertain (la) by a factor of -3 in either 

direction. From Einstein Observatory results we found an average 

duration T of 200-1300 s (Haisch 19833 see Appendix C), implying that 

decay times of X-ray flares are several times longer than their U-band 

counterparts (Kahler et a1 1982). By analogy with the sun, we 

speculate that these very energetic X-ray stellar flares may be 

analogous to solar gradual flares, which originate on quite large 

(24x10~ km) magnetic loops (Tsuneta 1984; Sturrock 1985) . We 
consider this further in the discussion of the flares from LDS 131 in 

Chapter 5. 

Next we considered whether this 'calculated flare rate matches 

that seen in our data. In this "source-free" phase of our search, out 

of the equivalent of -64 days of 'on1 time (54.6 days each from HED3 

and HED1, which viewed adjacent but independent sections o f  the sky; 

41.6 days of data from MED, and 24.9 days from HED2, which were co- 



aligned wi th  HED3), we found f i v e  events wi th  spectra consistent w i th  

tha t  o f  s te l  l a r  f l a res  (D298.62, D343.97, 0370.82, 0405.85, and 

D623.47), plus the event from pointed data (on 0728.15), o r  about one 

per 13 days o f  good data above our search threshold. Using the 

expressions f o r  the probab i l i t y  o f  detecting events developed i n  

Appendix A, f o r  the I1source-freet1 search (which had a constant set o f  

thresholds), the maximum l ike l ihood f i t  t o  these s i x  (unabsorbed) 

events was R(S) . ~ X ~ O ~ ( S / S ~ ) - ~ . ~  eventsyr- '  over the who1 e sky, 

d i f f e r i n g  only by a factor  o f  two from our predict ions based on 

op t ica l  studies and f l a r e  rates observed wi th  the Einstein 

Observatory. The n o h a l i z a t i o n  was uncertain ( lo)  by about a factor 

of three. We inferred tha t  these s i x  events from the llsource-freetl 

sky could have been f l a res  from dMe-dKe stars. 

We performed a s imi la r  ca lcu lat ion f o r  the expected number o f  

f lares from act ive dM-dK stars found i n  the l i te ra tu re ,  using the 

propert ies l i s t e d  there (Gliese 1969; Woolley e t  a l e  1970; Joy and 

Abt 1974; Petterson 1976; Gliese and Jahreiss 1979; Upgren e t  al .  

1972). We predicted an average r a t e  o f  about 1 event found i n  both 

the A-1 search and the A-2 al l -sky survey, wi th  an uncertainty o f  an 

order o f  magnitude, due ch ie f l y  t o  the uncertainty o f  the average 

r a t i o  o f  X-ray t o  U-band luminosity, which was assumed t o  be about 10 

(Haisch 1983 and Appendix C). For LU/LX o f  about 2, as suggested by 

the A-2 'Isource-freem1 survey event rates, we predicted -4 events i n  

the combined A-1  and A-2 al l -sky surveys. These estimates were 

consistent wi th  the observed number o f  4 events from f l a r e  stars found 

i n  the l i te ra tu re .  

These event rates raised a re lated question: could any of the 



Ariel V fast transients (Pye and McHardy 1983) have come from the 

luminous tail of the stellar flare distribution apparently seen by 

HEAO l? The mean duration of stellar flares is much briefer than the 

Ariel V 100 minute integration time, implying that their effective 

limiting threshold was -25-100 times that of the HEAO 1 A-2 search. 

If one compares our maximum 1 i kel ihood flare star model with the 

Ariel V logN-logs distribution, one finds that between 1 and 9 of the 

29 Ariel v events should have been due to bright stellar flares. As 

shown in the panel for 0298.62 in Figure 3.1, the Ariel V transient 

source AT2030-330 1 ies across the center of the 0298.62 99% confidence 

position 1-imits. However, the Ariel V error box is the intersection 

of four 20" long 95% confidence "lines of position". Ambruster (1984) 

notes that two of these, from Ariel V events on 1975 December 23 and 

1979 November 14, contained AT ~ i c ,  while the other two, from a -200 

mi 1 1  lcrab event on 1979 November 11, marginally excluded AT Mic but 

contained the active flare star AU Mic (Petterson 1976; Helfand and 

Calllault 1982). This suggests that AU Mic may have produced a >lo3' 

erg-s-' (2-20 keV) flare, and Ariel V may have detected events from 

two flare stars. This is consistent with our prediction above. 

v. Other Stel 1 ar (Coronal) Candidates 

Pye and McHardy (1983) suggested that RS CVn-type systems were 

the source of seven (out of 29) of the Ariel V fast transients. The 

durations listed range from 310 to 3600 minutes, which is considerably 

longer than that for the A-2 all-sky events. A typical RS CVn light 

curve is sharply peaked, with a fast rise time and a slower decay. 

Could some of the A-2 events have been just the peaks of more distant 



RS CVn-type systems? We calculated the event rate expected above the 

A-2 survey threshold (of -4 mi 1 1  icrabs), for an isotropic 

distribution, and assuming the highest normalization a1 lowed by Pye 

and McHardy's (1983) 90% contour, to have been less than 0.1 flares 

from RS CVn-1 ike systems in the A-2 a1 1-sky search. We therefore 

found it unlikely that any of our events came from these sources. 

This conclusion is further supported by the lack of known RS CVn-like 

objects in any of our error boxes (Garcia et a1 . 1980; Scwartz 

al. 1981; Walter, Charles, and Bowyer 1978; Hall 1986). (However, - 
as we noted in Chapter 4, we did apparently detect two flares from a 

nearby RS CVn-type system in our survey of the Magellanic Clouds 

region.) 

Algol (6  Persei) and Algol-1 ike systems have been observed giving 

off flares with total X-ray luminosity as high. as 2x10~' ergs-s-l 

(Schnopper et al. 1976; White and Marshall 1983). We noted a total 

of one Algol-type system in the largest error box. This system was at 

a distance of greater than 600 pc (A1 len 1973; Kukarkin et a1 . 
1969; 1976). implying an X-ray luminosity of more than 

ergs-s-l. This is roughly three orders of magnitude brighter than the 

highest previously observed luminosity. We also note that since there 

are almost 2000 catalogued eclipsing Algol-type systems, there is over 

a 90% chance of finding one or more in the position error boxes of the 

8 events in Table 3.3.a. We therefore considered it unlikely that any 

of the fast transient events were from Algol-like systems. 

EXOSAT observations of contact binary systems (such as W Uma-type 

stars) showed evidence of coronal X-ray emission, plus soft X-rays 

from a connecting 'neck' of accreting matter (Vil hua and Heise 



1985). However, ratios of X-ray. to bol ometri c 1 umi nosi ties show them 

to be not much more active than dMe-dKe stars in general. Like the 

RS CVn-type systems and Algol-type binaries, the number density of 

such contact binaries i s  so much lower than that of dMe-dKe stars that 

we find them unlikely to have been sources of the A-2 fast transient 

events. - 

Not much is known about intense optical flares which have been 

reported from normal early-type stars (Kunkel 1975b; Schaefer 

1988). Although these rare events can be quite intense, their spectra 

and rates of occurence are very poorly measured. From Einstein 

Observatory measurements of X-rays from every type of normal star, 

Pallavicini et al. (1981) have suggested there may be something 

similar to coronal activity on nearly every type of normal star, 

including the more massive early-type ones. We therefore cannot 

completely dismiss coronal flares from early-type stars as sources of 

these events, chiefly because they are so poorly understood. 

vie Cataclysmic Variables 

HEAO 1 data established that cataclysmic variables, systems in 

which a late-type star interacts in a close binary with a white dwarf, 

were a class of X-ray sources with luminosities in the range 

1029-34 ergs-s-l, with several previously unrecognized CVs discovered 

on the basis of their 2-10 keV X-ray emission (Steiner et al. 1981 and 

references therein). Mason (1985) classifies these systems roughly by 

the strength of the magnetic field of the white dwarf, including 

systems with weak fields (such as SS Cyg), with very soft (-400 eV 

black body temperatures) X-ray emission plus harder X-rays (possibly 



from transient regions of strong magnetic fields analogous to active 

regions on cool stars); rotating magnetic stars with stronger 2-20 

keV X-ray emission (presumably from the magnetic poles) showing 

modulation from the rotation period of the star; and phase locked 

magnetic CVs, such as AM Her, with more complicated 1 ight curves 

featuring several eclipses per cycle. However CVs are often more 

prominent in soft X-rays than they are above 2 keV; during optical 

outbursts (novae and dwarf novae outbursts), although one sees an 

increase in the <0.5 keV X-rays, the harder emission drops in 

intensity. In general, we find it unlikely that any of the events 

from this 2-20 keV survey of the sky were from cataclysmic 

variables. In this energy band, although the flux often varies by 

factors of 2-5 in irregular flickering and flaring on time-scales of 

-1-100 minutes, and although it is possible to observe quite dramatic 

intensity variations due to eclipses from systems such as AM Her -(see . 

§3.B), we note that CV systems with 2-20 keV variations bright enough 

to have triggered our search also would have been bright enough to 

have been found as quiescent sources by previous researchers. 

vi i . Non-Coronal Events: Outbursts from Compact Objects? 

We were left with two events, 0249.36 and D436.84, which we could 

not attribute to any coronal source because of the low energy turnover 

(equivalent to ~ ~ ~ 1 0 ' ~  cK2) which was not due to interstellar 

extinction. From fits to our data, we infered an event frequency 

above our threshold (of -4 millicrabs - 10-lo ergs-cm-2-s-1) of 3x10~- 
6x10~ similar events per year over the whole sky, with durations of 

less than an hour but greater than about 15 minutes. If these events 



are distributed like stellar flares, which originate on nearby 

(400 pc) Galactic sources, with peak X-ray luminosities less than 

ergs-s-l, one expects an isotropic distribution and therefore a 

couple more similar events as the HEAO 1 A-2 fast transient survey is 

extended to 81source-ful181 regions of sky. If they originate on 

Galactic sources containing compact objects, with have peak X-ray 

luminosities greater than about ergs-s-l, one may find a disk 

distribution in the unexplored "source-full" sections of the data. . 

D. Results From the llSource-Full" Sky" 

In this section we describe fast transient activity from the rest 

of the sky, excepting regions around those sources listed in Tables 

3.1 and 3.2. For this second phase, rather than comparing -1 and 5 s 

rates with counting rates from the diffuse sky plus internal detector 

background, we compared the rates in -5, 15, and 61 s intervals with 

12 hour averages of the corresponding positions on the Sky. -Although, 

as described in Chapter 2, we surveyed the entire database using this 

second algorithm, in this section we consider only the additional 

events from major frames of data designated as containing sources 

brighter than about one mi 1 licrab. That is, we have considered only 

data not covered by the I1source-free" survey, and so have called this 

second phase a survey of the llsource-fullll sky. From Chapter 2, we 

noted that the inclusion of source-full regions almost doubled the 

amount of data surveyed, but that the llsource-full'l data incorporated 

a greater proportion of data with higher average count-rates, so that 

on average the search threshold was slightly higher. In this second 

pass through all the scanning data, using the "all-sky" search 

algorithm, we did not trigger on two of the faintest events from the 



survey o f  the Itsource-freeu sky (on 0370.82 and D623.47), although we 

d id  again t r i gge r  on a l l  f i v e  other events. 

Out o f  the equivalent o f  an addit ional  -59 days o f  scanning data 

(- lo6 5.12 s in terva ls)  during which a t  l e s t  one out o f  four  detectors 

was on (50.3 days each o f  H E D l  and HED3 data, which viewed adjacent 

but independent sections o f  the sky; plus 38.4 and 22.9 days of data 

from MED and HED2, respectively, which were co-a1 igned w i th  HED3), we 

uncovered e ight  more f a s t  t ransient events, seven o f  them new. The 

eighth was i den t i f i ed  by Hueter (1987) as a 1.3x10-~ e r g - c i 2  gamma- 

ray burst incident through the sides o f  the detectors. The events 

ranged i n  peak f l u x  from -5 t o  15 mi l l icrabs. Three o f  the events, 

occurring w i th in  34 days o f  each other, probably originated from the 

same source. The two br ighter  o f  these three events showed 

indicat ions o f  4 0 0  s v a r i a b i l i t y  and may have lasted less than 

30 s. Below, we have described the character ist ics o f  these events i n  

deta i  1, and then discussed possible ident i f icat ions.  We have argued 

tha t  three events have l i g h t  curves and spectra consistent w i th  those 

o f  s t e l l a r  coronal f lares, which i s  consistent wi th  the number 

predicted based on resu l ts  from the "source-free" survey. The other 

four  events were found near the Galactic plane and exhibited harder 

spectra. We have suggested they may be representatives o f  a proposed 

new class o f  f a i n t  hard var iable sources along the Galactic plane, and 

suggested tha t  one event from the llsource-freell survey may also have 

been from t h i s  class. We f i n d  - 1 0 ~ - ~  Be-neutron s ta r  b inar ies 

scattered throughout the Galactic plane t o  be a plausible 

i d e n t i f i c a t i o n  f o r  these events. 



Table 3.3.b: Events From The "Source-FullI1 Search 

TIMES (a) POSITIONS (b) INTENSITIES (c) SPECTRA NOTES 
D.O.Y. U.T. R.A., DEC Galactic Peak Varies? Quiescent 
1977 Duration (1950.0) 1 ( I I ) ,  b(I1) Flux Flux PL TTB BB (e) 

( d l  

268.67 1 6 ~ 0 3  90.0 ,-48.6 255.9 ,-28.0 6.8 N <O. 43 2.121.6 7.+20/-4 1.520.8 (f) 
11~<176 4.321.6 >7.0 1.120.5 

C 
0 
OI 

343.23 05:34 134.7 ,-54.4 273.4 , -5.6 6.3 Y <O. 56 1*6M05 >9.5 2.320.7 (h) 
451~<35 2.2fl.7 11+35/-6.4 2.0+0.6 

454.44 10:41 . .. ... ... ... 9.6 Y ... ... ... ... (i) 

586.70 16:48 75.7 ,-57.1 265.5 ,-37.0 5.6 N <O. 33 1.9M.5 10+34/-5 1.5k0.5 (k) 
1 ~ ~ < 1 4 1  3.421.1 2.7+5/-1.4 0.9k0.4 

a) Times are i n  D.O.Y. (1977) fol lowed by hours and minutes ( i n  U.T.), f o r  the s t a r t  time of each event. 
The constraints on durat ion are given i n  minutes. 
b) We l i s t e d  the best f i t  posit ions, i n  both 1950.0 R.A. and Declination, and Galact ic 111, brl, calculated 
using the pos i t ion  f ind ing  program described i n  Appendix B. For these events, from the "source-ful ln 
search, we f i r s t  subtracted a 12 hour average f lux fo r  each posit ion, and then proceeded w i th  the f i t s  f o r  
posit ions. For the event on D454.44, a gamna-ray burst  incident through the sides o f  the detector (Heuter 



1987), t h i s  procedure was not appropriate, and no pos i t i on  was 1 isted. 
c) The i n t e n s i t i e s  are i n  u n i t s  o f  excess HED3 cts-s- above the approprhate 12 h!yrsgerages. The 
i n t e n s i t y  of the Crab (pulsar + nebula) i s  about 660 HED3 cts /s  (-3.4~10' ergs-an from 2-20 keV), To 
ca lcu la te  these values we performed least-squares f i t s  o f  the  l i g h t  curves i n  Figures 3.1 and 3.2, assuming 
a constant in tens i t y2  For the events f o r  which h constant i n t e n s i t y  was a bad fit, which we defined t o  be 
when the  value for  x was more than twice the number o f  degrees o f  freedom, we used the highest i n tens i t y  
5.12 s data po in t  ( tha t  was a t  leas t  40 above zero), We have indicated these events w i t h  a I Y  under the 
labe l  "Varies?". To measure the quiescent f lux ,  we sumned HEAO 1 A-2 scanning MED+HED3 1.5" ra tes  from the 
s x month pass i n  which the event was detected. Typical ly ,  t h i s  meant about s i x  days o f  scanning data. I f  ) dropped by a t  l eas t  twenty when two f i t  parameters ( i n tens i t y  and scan angle) were introduced, we deemed 
t h a t  source t o  be s igni f icant .  The exception was 0494.15, which was very close t o  9 b r i g h t  source, which 
can cause systematic errors: we l i s t e d  only upper l i m i t s ,  even though, formally, x dropped by over t t i r t y  
when two f i t  parameters were introduced. (Note t h a t  the u n i t s  are "new R I S U  un i ts ,  o r  MED+HED3 cts-s' , 
which are d i f f e r e n t  from the u n i t s  f o r  the peak in tens i t ies . )  
d) Unl ike f o r  most o f  the 'source-free" events, f o r  these spectra, we f i r s t  subtracted a 12 hour average 
appropriate f o r  t ha t  pos i t i on  on the sky. We then- used ucolorH ra tes  (avai lable every 5.12 s) r a the r  than 
the more re l iab le ,  more ca re fu l l y  ca l ibra ted PHA spectra (o f ten  ava i lab le  on ly  every 41 s). See Chapters 2 
and 4 f o r  discussions o f  the systematic uncer ta in t ies  t h i s  method may introduce. I n  t h i s  column, IPL1 
stands f o r  the photon index o f  a power law model; 'TTB1 ind icates a t h i n  thermal bremmstrahlung (i .e. 
exponential p lus Gaunt fac to r )  temperature i n  keV; and BB ind icates the temperature f o r  a black body model, 
i n  keVlg Theptop row i n  each t r i p l e  p a i r  corresponds t o  f i t s  assuming neg l i g i b j e  ab3orption 
(NH-10 cm- ) . The second row i n  each p a i r  r e p i r e s  a column densi ty o f  -10 cm- . When the number of 
degrees o f  freedom was ten  o r  greater, and i f  x f o r  a p a r t i c u l a r  model was greater than twice the number of 
degrees o f  freedom, we deemed the model unacceptable and l e f t  $hat ent ry  blank. For events w i th  fewer than 
t en  degrees o f  freedom, a model was deemed unacceptable when x exceeded the number o f  degrees o f  freedom 
plus ten. Those events marked w i t h  an $ may requ i re  a changing spectrum and are discussed i n  more d e t a i l  i n  
the text .  We d i d  not  attempt any spectral f i t s  of D454.44. 
e) I n  the footnotes, we l i s t e d  objects found i n  the 99% confidence pos i t i on  l i m i t s  (o f  Figure 3.1) t h a t  
belonged t o  classes o f  objects associated w i t h  var iab le  X-ray emission, and discussed possible 
iden t i f i ca t ions .  We a lso mentioned X-ray sources from the A-1 catalog (Wood e t  al.  1984) i f  they were very 
nearby but  formal ly  excluded, because v a r i  abi 1 i t y  could have introduced systematic e r ro rs  i n  the ca lcu la t ion  
o f  the A-1  posi t ions,  which were calculated under the assumption o f  constant in tens i t y .  
f) The A 1  Catalog source 1H0553-480 l i e s  j u s t  outside the 99% confidence pos i t i on  e r ro r  box. 
g) The A - 1  Catalog source lH013+498 i s  nearby, but formal ly  excluded. 
h) These three events probably come from the same source. There are two i n te res t i ng  s tars  t h a t  are i n  a l l  3 
99% confidence e r ro r  boxes: CQ Vel, a c lass isca l  GK Per type nova ( i n  1940, m=9-16; Kukarkin e t  a1 . 1969) ; 



and HD299794, an 8.6 m early-type emission-line s ta r  o f  "unknown spectral type" (Wackerling 1970). A l l  
three events are near 1-40 away) the unident i f ied variable source HO845-53. However, the formal A-1  Catalog 
1H0846-534 pos l t ion  er ro r  box i s  outside a l l  three event e r ro r  boxes i n  thg scan d i r fc t ion.  
i) Heuter (1987) i d e n t i f i e s  t h i s  as a moderately intense (fluence-1.5~10' ergs-cm' ) gamma-ray burst, 
which came through the sides o f  the detector a t  roughly an angle o f  31' t o  the main detector axis. 
j) The posi t ion o f  t h i s  event f a l l s  squarely on one o f  the more crowded regions o f  the sky, the Cygnus 
region. The 99% confidence pos i t ion  contours contain 58 early-type emission-1 ine objects (Wackerl ing 
1970); 7 ecl ipsing Algol types tha t  are probably too d is tant  to  give a f l a r e  o f  t h i s  f lux;  4 ec l ips ing 
beta Lyrae type variables w i th  m >8, probably ind icat ing tha t  they are too distant; and 1 U Gem type dwarf 

=15-18; probably also top far; Kukarkin e t  al. 1969; 1971; 1974). The pos i t ion  er ro r  box f o r  t h i s  
erlaps the A-1  e r ro r  box f o r  the X-ray source H2018+37. The close proximity o f  the br igh t  source 

Cyg X - 1  made the measurement o f  persistent f l u x  h igh ly  uncertain. 
k) One corner o f  the A-1  Catalog source 1H0524-552 intersects the northeast edge o f  the event e r ro r  box. 





a) We p l o t t e d  the 99% confidence os i  i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 c t~ -cm-~-s - '  versus t ime i n  seconds) on the r i g h t ,  f o r  the event on D.O.Y. 
:ff.fjft Time zero f o r  the l i g h t  curve i s  a t  16:03:21.648 UT. The center o f  the  e r r o r  box i s  a t  Galact ic  - 225. 1" ,-29.0". We found no i d e n t i f i e d  X-ray sources and no known o p t i c a l l y  var iab le  s ta rs  o r  9 

emission l i n e  s ta rs  (Wackerling 1970; Kukarkin e t  a l .  1969; 1971; 1974; 1976) i n  the f i e l d  o f  view. 
However the A-1 catalog source 1H0553-480 l i e s  j u s t  outside (unident i f ied;  Wood e t  a l .  1984). 
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C) We p lo t t ed  the 99% confidence os i  i o n  l i m i t s  ( in  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 cts-cm-'-s-', above a 12 hour average, versus t ime i n  seconds) on the r i g h t ,  fo r  
the event on D.O.Y. jf2.tf. Time zero f o r  the l i g h t  curve i s  a t  2:55:08.305 UT. The center o f  the e r r o r  
box i s  a t  Galact ic 1 ,b - 271.6',-6.3" . This i s  the f i r s t  o f  three events, occurr ing w i t h i n  34 days, 
w i t h  overlapping p o s i t i o n  l i m i t s .  We found two o p t i c a l l y  var iable s tars  w i t h i n  the in te rsec t ion  o f  a1 1 
three 99% contours: CQ Vel, a c l ass i ca l  DQ Her-type nova; and HD299794, an 8.6 ea r l y  type emission l i n e  
s ta r  of "unknown spect ra l  type" (Wackerling 1970; Kukarkin e t  a1 1969; 1971; 19%; 1976). The formal A - 1  
catalog source 1H0845-53 i s  very close but formal ly  excluded. 



- 

TIME IN SECONDS 
"--= 53.1 FOR 14 DOF 

P1= 8q35~-02 SIG= 0.1 13E-02 
= 23.3 FOR 13 DOF 

P2= 5.3413-03 P3=-0.181E-02 

d) We p lo t t ed  the 99% confidence ~ o s i ~ i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HED3 cts-cm- -s- , above a 12 hour average, versus t ime i n  seconds) on the r i g h t ,  f o r  
theeventonD.0.Y. 343.23. T i m e z e r o f o r t h e l i g h t c u r v e i s a t 5 : 3 4 : 2 7 . 3 4 2 U T . T h i s e v e n t v a r i e s  11 bII 
appreciably as the A-2 instruments scan over the source. The center o f  the e r ro r  box i s  a t  Galact ic 1 , - 271.6",-6.3". This i s  the second o f  three events, occurr ing w i t h i n  % days, w i t h  overlapping pos i t i on  
l i m i t s .  We found two o p t i c a l l y  var iable s tars  w i t h i n  the in te rsec t ion  o f  a l l  three 99% contours: CQ Vel, a 
c lass ica l  DQ Her-type nova; and HD299794, an 8.6 mv ear l y  type emission l i n e  s t a r  o f  I1unknown spectral  type1' 
(Wackerling 1970; Kukarkin e t  a1 1969; 1971; 1974; 1976). The formal A-1  catalog source 1H0845-53 i s  very 
c lose but formal ly  excluded. 
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e) We p lo t t ed  the 99% confidence os i  i o n  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the  -1 minute 
event l i g h t  curve ( i n  HED3 cts-cm"-s-I, above a 12 hour average, versus t ime i n  seconds) on the  r i g h t ,  f o r  
the  event on D.O.Y. 345.62. Time zero f o r  the l i g h t  curve i s  a t  14:51:05.117 UT. The event c l e a r l y  var ies  
dur ing theIllb7fnute the source i s  i n  the A-2 detector f i e l d s  o f  view. The center o f  the e r ro r  box i s  a t  
Galact ic 1 , - 271.6',-6.3'. This i s  the t h i r d  o f  three events, occurring w i t h i n  & days, w i t h  
overlapping pos i t i on  l im i t s .  We found two o p t i c a l l y  var iab le  s tars  w i t h i n  the in te rsec t ion  o f  a l l  three 99% 
contours: CQ Vel, a c lass ica l  DQ Her-type nova; and HD299794, an 8.6 ea r l y  type emission l i n e  s ta r  o f  

1H0845-53 i s  very c lose but formal ly  excluded, 
"21 "unknown spectral  type1' (Wackerling 1970; Kukarkin e t  a1 1969; 1971; 1 74; 1976). The A-1  catalog source 
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the sides o f  the detector. We display here both the A-2 1 i g h t  curve ( i n  HED3+HEO1 cts-s- ), and the A-1  
count rate,  k i nd l y  provided by P. Hertz o f  NRL. Time zero f o r  the l i g h t  curves i s  a t  10:41:00 U.T. 
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g) We p lo t ted  the 99% confidence os i  ion  l i m i t s  ( i n  1950.0 R.A. and Decl.) on the l e f t ,  and the -1 minute 
event l i g h t  curve ( i n  HE03 ~ t s - c m - ~ s - ~ ,  above a 12 hour average, versus time i n  seconds) on the r i gh t ,  f o r  

- Z  the event on D.O.Y. fq4b17. Time zero fo r  the l i g h t  curve i s  at  3:34:48.300 UT. The center of the er ro r  
w 9  box i s  a t  Galactic 1 , - 73.7", 1.6". The pos i t ion  of t h i s  event f a l l s  squarely on one o f  the more 
O crowded regions o f  the sky. We have p lo t ted  the pos i t ion  of the luminous, highly variable, high mass X-ray 0 D 
3 binary Cyg X - 1  which f e l l  jus t  outside the A-2 detector c o l l  irnators during t h i s  event. The posi t ion e r ro r  
0-0  box f o r  t h i s  event overlaps tha t  of an A-1 catalog source, H2018+366, a (disputed?) SNR (Wood e t  al .  1984). 

which we have also plot ted. Also i n  the f i e l d  of view, but excluded as a source o f  the transient, i s  the B a 
E m  
--I 

A-1  e r ro r  box f o r  the Be-star X-ray source X1950+37. However we deemed the region too crowded t o  p l o t  a l l  
4 Z the in terest ing op t ica l  sources. Within the A-2 99% confidence pos i t ion  l i m i t s  we found 58 early-type 

emission l i n e  objects (Wackerling 1970), 7 ecl ipsing Algol type systems that  are probably too d is tan t  t o  
give a f l a r e  o f  t h i s  i n tens i t y  (Kukarkin e t  a1 1969; 1971; 1974; 1976; White and Marshall 1983), 4 
ec l ips ing B Lyrae type variables w i th  mp>8, and 1 U Gem type dwarf nova wi th  mp=15-18, probably ind icat ing 
they are also too distant. 
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i. Description of the Events 

We have 1 isted the eight events from the HEAO 1 A-2 survey of the 

l'source-fulll' sky in Table 3.3.b. We calculated the best-f it 

positions, intensities, and indications of <I minute variability using 

the position fitting program described in Appendix 0, as in Table 

3.3.a, save that we first subtracted the 12 hour mean flux at each 

position on the sky. (For extremely variable sources, it was possible 

for this to produce apparently negative count-rates. As mentioned in 

Chapter 2, this does not affect the accuracy of the position limits, 

but it can skew an event 1 ight curve, and eventually the inferred 

spectrum, when the spectrum is measured from rough 'color rates' that 

were also calculated by first subtracting a time-averaged mean for 

each position. ) We have presented the correspondi ng 1 ight curves and 

99% confidence position limits in Figure 3.4. 

The position of the event on 0494.15 fell so close to Cygnus X-1 

that there was some question whether or not it was real. If 

Cygnus X-1 were radiating at its maximum luminosity, and if, further, 

the spacecraft positions were off by about 0.02" (which is the usual 

systematic error associated with determining the spacecraft position), 

then Cyg X-1 could have been the source of this event, although 

formally it lay just outside the detector collimators at the time. 

Since we had no evidence from the other HEAO 1 instruments that 

Cyg X-1 was outstandingly bright (Re Remillard private communication, 

P. Hertz private communication), we have provi sional ly accepted thi s 

event. 

Three of the events, on D342.12, D343.23, and 0345.62, had 

overlapping position error boxes and occurred within 3% days of each 



other, suggesting they may have come from the same source. We 

calculated tha t  the probabl i ty o f  one o r  two o f  the seven event e r ro r  

boxes overlapped by chance t o  be qui te  small - less than 0.2%, even i f  

one assumes f i r s t  t ha t  a l l  three have f a l l e n  on the Galactic plane. 

We in ferred tha t  it was l i k e l y  tha t  these three events were indeed 

re1 ated. 

For three events ( including 68780330 on D454.44) a f i t  t o  a 

constant in tens i ty  gave a value f o r  x2 t ha t  was greater than twice the 

number o f  degrees o f  freedom. We have indicated these sources w i th  a 

' Y '  i n  the eighth column. The other two var iable events, on D343.23 

and D345.62, showed an increase i n  f l u x  as the detectors spun over the 

source, and there were s l i g h t  indicat ions i n  the br ighter  event o f  

-20-30 s substructure. (We found reduced x2 f o r  a l inear  f i t  t o  be 

-1.7 f o r  the event on D343.23.) As i n  Table 3.3.a, data from the A-1  

detectors could be used t o  help constrain the durations o f  the other 

f i v e  events. None were detected as las t ing  longer than an hour. 

The posi t ions o f  the three repeating events f e l l  very near an 

unidentif ied, var iable source H0845-53 (-0.6' away). However we th ink  

the three f a s t  t ransient events probably came from a separate source, 

as 99% confidence l i m i t s  on the scan angle f o r  the hard, variable, -2 

m i  1 1 i c rab  source H0845-53 (calculated assuming a constant source 

intensi ty,  using 8 days o f  summed HED3 plus MED data from the 1.5' 

f i e lds  of view) d id  not overlap those f o r  any of the three events 

(D342.12, D343.23, and 0345.62). This i s  i l l u s t r a t e d  i n  

Figure 3.4.c-e, where we have p lo t ted  99% pos i t ion  l i m i t s  f o r  the 

three events and the A-1 catalog error  box f o r  1H0846-531 (=H0845-53). 

As f o r  the events from the source-free phase, we found no 



significant of quiescent flux, and have listed 90% upper 1 imits on 

persistent emission in the 9th column of Table 3.3.b. The ratio of 

peak-f 1 ux-to-quiescent-f 1 ux ranged from above 20: 1, for events on 

D268.67, D311.65, and 0586.70, to almost 20:l for the three events on 

0342-0345, to less than 10:l for the event in the Cygnus region on 

0494.15. The close proximity of Cygnus X-1 made measurements of 

persistent emission highly uncertain for this event. 

Again, we listed parameters from fits to three simple models in 

columns ten through twelve of Tables 3.3.b. Unlike for some of the 

events found in tlsource-freell data, we could not rule out any of the 

models, and we could not constrain the column densities for any of the 

events. In part, this may be because we relied on fits to the llcolorll 

rates, for which it was possible to subtract an appropriate 12 hour 

average and therefore the contributions of nearby sources, rather than 

the better calibrated PHA spectra, for which this was not possible. 

For optically thin thermal bremsstrahlung models, with negligible 

column densities, we found events with temperatures ranging from 

greater than 9.5 keV (D342.12, 0345.62, D494.15) to consistent with 

3-10 keV (0268.67, D311.65, D586.70). For the gamma-ray burst 

68780330 incident through the sides of the detectors, on 0454.44, 

spectral fits would have been meaningless and so were not performed. 

In the last column of Table 3.3, we listed notes on nearby X-ray 

sources, from the A-1 Catalog (Wood et a1 . 1984), Bradt and McCl intock 

(1983); and types of optical objects that may vary in X-rays. For the 

latter, we used an on-1 ine computer catalog (Mead and Hi 1 1  1983). In 

some cases, we included the positions of nearby A-1  catalog sources, 

even if they were formally excluded, as variabi 1 ity could have skewed 



solutions for the positions of theses sources, which were calculated 

under the assumption of constant intensity (Wood et al. 1984). We 

found 59 early type emission-line objects (58 within the 99% position 

contours for 0494.15, and one in the intersection of the position 

error boxes for 0342.12, 0343.23, and D345.62); and one classical DQ 

Her type nova (in the intersection of the 99% contours of the three 

repeating events). The error box for the event on D494.15 that fell 

in the crowded Cygnus region a1 so contained seven ecl ipsi ng Algol-type 

systems, all probably too distant to be the source of this event; 

four eclipsing beta Lyrae type variables and one U Gem type dwarf 

nova, again probably too distant to be likely sources of the X-ray 

event. We also listed any gamna-ray burst position error boxes, 

kindly provided by J. Norris, U. Desai, and T. Cline (private 

communication), that may have over1 apped the position 1 imi ts of our 

events. 

i i . General Remarks on Identifications 
As was the case for the events from the "source-free" sky, we 

again found it improbable that any of the events from the "source- 

full1' sky survey would have originated on extragalactic objects. We 

found no known rapidly variable AGNs in any of the position error 

limits. The one event for which the peak-flux-to quiescent-flux ratio 

was allowed to be less than 10:l (the event on 0494.15) came from a 

direction on the sky crowded with interesting and possibly X-ray 

variable Galactic sources, while for the other events this ratio was 

again constrained to be greater than 20:l in under an hour, even for 

the two events exhibiting evidence of persistent emission. 



We find the events in Table 3.3.b to be divided into three 

natural categories. The event on 0454.44 formed a class by itself, as 

it was identif led by Hueter (1987) as a -20 s, 1.3x10-~ erg-cm-' 

gamna-ray burst, 68780330, with a moderately hard spectrum (power 1 aw 

photon index -1.8), incident through the sides of the detectors at an 

angle of -31" from the main detector axis. 'The four events exhibiting 

the hardest best-fit spectra (three apparently from the same 

direction) all came from low Galactic latitudes, and two exhibited 

evidence of 400 s variability. We suggest these four events probably 

were not coronal flares, and probably originated on systems containing 

compact objects. The remaining three events all had spectra 

consistent with thin thermal bremsstrahlung models with temperatures 

of 5-10 keV, and probably represent flares from active stellar 

coronae . 

iii. Coronal Transients: Flare Stars Revisited 

We suggest three of the events from the source-full search, those 

not occurring within 10" of the Galactic plane and constrained to have 

peak-to-qui escent-f 1 ux ratios >20 (D268.67, 0311.65, and D586.70), 

were probably coronal flares from cool dwarf stars. In the first 

phase, we suggested that five out of seven events were flares from 

dMe-dKe stars. In this second phase, we covered nearly twice as much 

data (92% more), but the effective threshold of this second search 

algorithm, which compared 5, 15, and 61 s rates with 12 hour means for 

corresponding positions, was slightly higher. This is illustrated by 

our results when we re-surveyed the source-free sky data with this 

second algori thm: we triggered on five (D249.14, D298.62, 0343.97, 



D405.85, and 0436.84) out of the original seven source-free events, 

but not the two faint events that we suggested originated on dMe-dKe 

stars (0370.82 and 0623.47). That is, using this second algorithm, we 

found three events that probably originated on cool dwarf stars in the 

source-free regions of data, and three more in the additional -92% of 

data from the llsource-full" sky. Therefore we measured roughly the 

same event rates in both sections of the data, finding the rate of 

three new events from the source-full sky (D268.67, D311.65, and 

0586.70) to also be consistent with the rates of flares expected from 

dMe-dKe stars calculated in 53.C.iii and Appendix C. 

iv. Luminous Events From Compact Objects Revisited 

It is unlikely that any of the events could have originated on 

strongly accreting, persistently luminous, high- or low- mass X-ray 

binaries, with average luminosities on the order of the Eddington 

limit, as these would be detectable in quiescence clear across the 

Galaxy at levels of several millicrabs or more in the 2-20 keV energy 

band. If we let hlOO represent the height of a source above the plane 

of the Galaxy in units of 100 pc, then the upper limits on 2-20 keV 

quiescent emission range from less than (hlO0) 2*1~35 ergs-s-l, for the 

event from the Cygnus region on 0494.15; to less than 

(h100)2*2x1033 ergs-s-l, for the three events on the other side of the 

Galactic plane on 0342.12, 0343.23, and 0345.62; and (h100)2~6x1031 

ergs-s-' for the three events that probably were coronal flares (on 

0268.27, 0311.65, and 0586.70). Upper limits on the event 

luminosities are roughly a factor of five greater, for the event on 

0494.15, and an order of magnitude larger, for the events on 0342.12, 



0343.23, and 0345.62, and are therefore we1 1 under the Eddington 

luminosity unless one allows distances above the disk of greater than 

500 pc or 2 kpc, respectively. We note that it is therefore unlikely 

that any of the events we observed were classic Type I or Type I1 

X-ray bursts. 

In their detailed sumnary of what is understood of the geometry 

of low-mass X-ray binaries, White and Mason (1985) describe the 

decrease in observed source intensity that occurs when the observer's 

line of sight lies close to the plane of the accretion disk. The 

flared and irregular accretion disk can obscure the X-ray bright 

compact object in the center, so that one observes only radiation 

scattered from material (an accretion disk corona) that is outside the 

plane of the disk. The observed X-ray luminosity is on the order of 

3 x 1 0 ~ ~  ergs-s-l, with variations in intensity by factors of -2-5, due 

to obscurations by differing portions of the irregular rim of the 

thick accretion disk as the system rotates (irregular dippers such as 

X1822-371). White and Mason (1985) note that it is possible to 

observe higher ratios of peak flux to quiescent flux from systems 

tilted in such a way that the X-ray bright point source in the center 

is directly visible, but can be briefly occulted in each orbit by a 

thick accretion column; however for these systems the average 

observed X-ray luminosity is higher (on the order of 10 36-37 ergs-s-l 

for periodic but irregular dippers such as XB1916-050). Therefore we 

can rule out luminous low mass binaries viewed edge-on through an 

irregular accretion disk (dippers) as an explanation for all the fast 

transient events save the event on 0494.15. We point out that it 

seems unlikely that we should have observed only one significant 



variation in intensity from this source, if it is a dipper, as such 

dips tend to occur quasi-periodically, but we cannot exclude the 

possi bi 1 i ty. 

Similarly, it is unlikely that any of the A-2 fast transient 

events originated from a close binary containing a very massive 

optical companion (giant or supergiant), as the average luminosity 

would be too bright. However, sources containing only moderately 

massive companions (0-B II-Ve) are a varied lot. Some have been 

observed to be transient sources lasting for weeks or months with peak 

luminosities on the order of the Eddington limit; some Be transients 

exhi bit quasi-periodic outbursts (coincident with periastron of the 

binary cycle) lasting for hours to days and with peak luminosities 

from apparently super-Eddington to orders of magnitude fainter (cf . 
the LMC Transient in Chapter 4; see also van den Heuvel and Rappaport 

1986; Stella, White, and Rosner 1986). There are also less luminous 

Be-neutron star binaries ( ~ ~ ~ 1 0 ~ ~  ergs-s-l), which can flare by an 

order of magnitude in about an hour and show indications of incoherent 

variations on time-scales of minutes (Steiner et al. 1984; 

Koenigsberger - et a1 . 1983; White, Swank, Hol t , and Parmar 1982). 

Over 50% of these systems show evidence of pulsations, and many have 

hard pulsar spectra (power law -1 plus an exponential cutoff above 10- 

20 keV) , a1 though there is considerable variation in hardness. We 

consider these varied systems as sources of the harder, Gal act ic 

plane, A-2 fast transient events in the following section. 

v. The Be Star-Neutron Star Binary Hypothesis 

In this section, we argue that the four events that occurred 



within 10" of the Galactic plane (D342.12, 0343.23, D345.62, and 

D494.15, and possibly D249.36) probably represent a class of hard, 

variable sources identified with wide, less luminous, Be-neutron star 

binaries. These events were faint. Since they were found in scanning 

data, we viewed them for less than 100 s each. The four Galactic 

plane events we discuss here came by definition from regions of sky 

prone to source confusion. Therefore our conclusions, though 

plausible, cannot be definitive, and should be considered as a working 

hypothesis in need of further testing. 

We cannot rule out a coronal flare as the source of the event 

from the Cygnus region on 0494.15, and that its position in the middle 

of a Cygnus 00 association is simply by chance (probability -2%), 

although we do not consider it the most likely explanation. Of the 

other three events on the Galactic plane, an optically thin thermal 

bremsstrahlung 'temperature constrained to be above 42 keV, for the 

event on D345.62, seems to rule out a stellar flare origin. Since we 

have argued that the other two events (on D342.12 and D343.23) 

probably originated from the same source, they were also unlikely to 

have been stellar coronal flares. For a1 1 these sources, the 

quiescent luminosity was constrained to be less than ergs-s-l, if 

they were to be contained in the Galaxy, and the ratio of maximum to 

minimum luminosity was on the order of 5-10:1, or greater. The two 

brightest of the repeating events showed evidence of vari abi 1 i ty on 

time-scales of -minutes. We note that two events from the source-free 

phase of the fast transient survey, on D249.36 and D728.15, also came 

from within 10" of the Galactic plane, but that the spectrum o f  the 

latter event was so well fit by a cooling optically thin thermal 



I*. -* - * 
bremsstrahlung spectrum that a steflt; coronal flare was the preferred 

explanation. However the evefrtm*oh-bZ49.36, which exhibited strong 
6 -a* 

evidence of high intrinsic absorbioii, had a limit on peak-to- 
')me - 

quiescent-flux ratio of 12:T or'-#kdar, and so we include it in this 
,.-' 

discussion of Galactic pl ane'fdiFma%sients. 

To the consideration of these%vents, we added some 

investigations done for a completely 3li fferent project: looking for 

persistent erni ssion from a gamnt~~~iiyiburst, 68780506, viewed in 

pointed data, that happened tog#dlt%n the Galactic plane in a region 

free of sources with average'~luxi!+')s~s than about a mill icrab 

(Connors, Hueter, and ~erleii tsos bm). We investigated both three 

six hour points and 2% d&k of scannflg data along the region. We 

divided it into 4 day intervals, and looked for significant persistent 

emission with the position f i n d i n m r a m  described in Appendix B. 

We assumed the sources were'CarMaubever the 3-6 hour intervals we 

studied. As described earl ier; a'so~fte was considered significant if 

x2 dropped by at least 30 whenEY$tBgl3 constant source. We 

apparently found at least thrge ke'$&tUe sources, a1 1 with hard 

spectra consistent withZwhat one e x $ W s  from Be stars-. These sources 

only glowed for 3-12 hokrs at a time; but were as bright as 5-15 

millicrabs. We found at least one of trhese sources to be in the field 

of view 30% of the time: One of thesetfew-hour variable sources 

contains within it 99% &ition contrours an A-1 source, suggested by 

Buckley - et a1 (1988) toUbe iden&i;?f with a 'recently discovered Be 
. - 

star. We present the 99% confidence position contours in Figure 3.5, 

calculated using the position' f iriding programs of Appendix B, along 

with the positions of nearby A-f'eaMhg sources (Wood et a1 . 1984) 
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Fiqure 3.5 Two maps of confidence position limits of sources in the 
region containing 68780506, centered at Galactic longitude and 
latitude of -256",-go, plotted in 1950.0 R.A. (abcissa) and Dec. 
(ordinate). The criteria for the existence of a source was that x 
drop by at least twenty when two gatameters, describing the source 
scan-angle and intensity, were introduced. - 
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a) We show here the gamma-ray burst 99% confidence error box and 90% 
confidence limits on the positions of two weak sources of 
persistent emission, labeled '6A1 and '6B1, visible during the 
point on May 6, 1978 (0491). We have also plotted the positions 
of nearby A-1 catalog sources (Wood et al. 1984), one of which has 
been tentatively suggested to be a recently identified Be star, 
SA0219073 (Buckley et al. 1988). 



b) We display 99% confidence position limits for four more variable 
sources ('8A' on May 8, 1978, 0-6 hrs UT., with a flux of f6 
millicrabs; '8C' on May 8, 1978, 12-18 hrs UT., with a flux of f4 
millicrabs; '80' on May 8, 1978, 18-24 hrs UT., with a flux of f2 
millicrabs; and '9A' on May 9, 1978, 0-6 hrs UT., with a flux of 
f13 millicrabs), plus the Be star of Buckley - et al. (1988), which 
we think may be the source of all but two of the sources of hard 
emission. 



and the newly identified Be star (SAO 219073). We have plotted the 

positions of the sources seen in the pointed data (including that of 

68780506) seperately from those discerned in the fol lowing three days 

of scanning data. (However, when one summed the data over one or more 

days, only one of these sources turned out to be significant, leading 

us to conclude a probabi 1 i ty of -8% of chance association with a weak 

source of persistent emission visible on >12 hour timescales. We 

suggest the faint persistent source in the direction of the event on 

D728.15 but visible a year earlier may have been one of these variable 

Galactic plane sources, and possibly also the hard variable source 

H0845-53 + ) 

From five careful scanning observations of the Galactic plane 

with the Japanese satellite GINGA, Koyama et a1 (1988) have discovered 

four hard, 2-10 millicrab sources, visible for 1-3 days, but 

erratically variable during that time. One of these sources was 

subsequently shown to be a 413 s pulsar (Tawara et ale 1988). 

The simplest interpretation of these disparate observations is 

that all are evidence of a single class of hard, variable, sources 

along the Galactic plane, with peak fluxes ergs-s", and average 

quiescent luminosities of over an order of magnitude f ainter. Widely 

seperated Be-neutron star binaries are therefore a natural source 

population for this proposed class, as their characteristics ( ~ ~ - 1 0 ~ ~ -  

35 ergs-s-l; L X x - 1  power law Ipulsar1 spectra with photon index -1; 
C 

both coherent and incoherent variability on time-scales of minutes; 

longer intensity variations on time-scales of days to months; and 

tight Galactic plane distribution) match all of the observed 

Calculations by Rappaport and van den Heuvel (1982) 



suggested there may be on the order of such systems throughout 

the Galaxy. It is certainly the obvious identification for the event 

on 0494.15 that had 58 early-type emission line objects (two, HD194335 

and 28 Cyg, with mv<5, and so probably as close as 1-2 kpc) in its 

error box (Wackerl ing 1970; -Allen 1973). There is also at least one 

object identified by Wackerl ing (1970) as an early-type emi ssion 1 ine 

star of unknown spectral type (HD299794, with mv-8.6) in the 

intersection of the 99% position limits for the events on D342.12, 

D343.32, and D345.62. Also, the identification by Buckley et al. 

(1988) of SAO 219703 as an emission-line object illustrates that not 

all 0-B 11-V emission-line stars have been identified. Although the 

A-2 position error boxes are probably too large to make direct optical 

identifications feasible, we think the finding of pulsations in these 

proposed Be-neutron star binaries would constitute strong indirect 

evidence in favor of this hypothesized identification. 

However, although we think this the simplest explanation, it is 

not the only possible explanation. First, we may be being fooled by 

small statistics into hypothesizing a single category when we may have 

actually observed a handful of disparate, rare, types, only a few of 

which may turn out to be Be-neutron star binaries. For example, the 

brightest high intrinsic absorbtion event from the source-free phase 

of the survey (on 0436.84) was not well fit by this explanation (as 

the average quiescent flux was constrained to be less than 

5x10~' ergs-s-l, the ratio of peak-f lux-to quiescent-f lux to be 

greater than 40:1, and we saw no evidence of recurring outbursts); 

neither was the singular bright 6-Nov-77 event observed by OSO-8 and 
-. 

discussed in Chapter 5. 



Also, in their report on a flux-limited survey of the Galactic 

plane using data from the IPC instrument of the Einstein Observatory, 

Hertz and Grindlay (1984) found 71 sources above their threshold of 

-0.02 millicrabs in 275 deg2. They found roughly 46% of their sources 

to be due to coronal emission from main sequence stars (assuming all 

systems with log(Lx/LV) < -1 were coronal sources), -31% to be from 

extragalactic sources, and 23% that were "neither coronal nor 

extragala~tic~~ . They attributed this 1 ast class of sources to 
accreting white dwarfs, such as those in cataclysmic varible systems 

31 32 with X-ray luminosities of -10 -10 ergs+-', but with luminosites 

closer to those of a proposed class of systems in globular clusters 

34 35 1 with luminosities of -10 -10 ergs-s' , in part because these 
systems exhibited high ratios of X-ray to optical luminosity. In 

contrast, the Be-neutron star systems we considered above. should been 

visible both in soft X-rays and optically (unless they were heavily 

absorbed), with Lx/Lopt < 1; Hertz and Grindlay (1984) noted that 

they could have mislabeled neutron star systems with Be companions as 

'coronal ' sources, because of this relatively low ratio of X-ray to 
optical flux. 

This illustrates that many questions, suggested by this 

hypothesis of a class of hard, variable sources along the Galactic 

plane, remain unanswered. Assuming a duration on the order of an 

hour, we calculate a total event rate over the whole sky of -300 

events per year above our threshold of -4 mil licrabs (-10-lo 

ergs-cm-2-s'1), with an uncertainty (lo) of nearly an order of 

magnitude. If the peak luminosity is ergs-s-l, we detected 

these events only out to about 4 kpc, and calculite an event rate of 



-4000 per year tover the whole Galaxy. If the tentative calculation 

of -100-1000 such Be-neutron star systems throughout the Galaxy was 

correct, we infer an average recurrence time of 4-40 outbursts per 

year per system. 

E, Constraints on Gamma-Ray Bursts 

We think it unlikely that any of the sixteen HEAO 1 A-2 fast 

transient events listed in Table 3.3 were "Soft Gamma-ray Repeaters" 

(or SGRs). This term was coined to decribe hard (kT-20-40 keV, with a 

dramatic low energy turnover below 5 keV), very short (durations on 

the order of 0.1 s, with rise and decay times often two orders of 

magnitude faster), repeated outbursts, from two sources on the plane 

of the Galaxy, and possibly one more in the direction of the supernova 

remnant N49, with observed fluences of -5-40x10~~ ergs-cm-2, and peak 

fluxes inferred to be on the order of ergs-cm-2-s-1 (Atteia 

al. 1987; Laros et a1 . 1986). None of the A-2 fast transients varied - 
on these extremely short time-scales, and although two showed evidence 

for a low energy turnover, and none were spatially coincident with any 

of the three suggested SGR sources. 

X-ray observations of "classic" gamma-ray bursts indicate that 

although the emission in -2-20 keV X-rays exhibits less rapid 

variability than is characteristic at higher energies, the X-ray 

emission is sti 1 1  characterized by dramatic, hard-to-sof t spectral 

variabl i ty (Connors, Hueter, and Serlemi tsos 1988) ; the X-ray 

emission has in general rise and decay times 2-5 times longer than 

that seen at higher energies; and that an event that lasts 10s >30 

keV may have an X-ray duration of more-than a minute. From comparing 



the spectra alone o f  D249.36 and 0436.84 t o  tha t  o f  the only gamna-ray 

burst seen through the f ron t  o f  the A-2 detectors (GB780506), we see 

tha t  the 2-60 keV spectra o f  these two events resemble the spectrum of 

the softening t a i  1 o f  GB780506 (Connors, Hueter, and Serlemi tsos 

1988). However, A-4 data (k ind ly  provided by G. Hueter a t  U.C.S.D., 

and Hueter 1987) showed no evidence o f  gamma-ray emission p r i o r  .to o r  

around the times o f  the A-2 detections o f  these events. I f  they were 

from gamma-ray bursts s imi lar  t o  68780506, the fluence i n  gamma-rays 

should have been above ergs-cN2, eas i ly  observable by A-4 

(Hueter 1987). We therefore in fe r red  tha t  the HEAO 1 A-2 al l -sky 

survey saw no gamma-ray bursts down t o  our f l u x  level  o f  -4 

mi l l icrabs. 

By comparing the observed X - r a y  f l u x  and durat ion w i th  the 

calculated g&a-ray fluence f o r  the one gamma-ray burst  observed 

through the f r o n t  o f  a HEAO 1 A-2 detector (Connors, Hueter, and 

Serlemitsos 1988) we f i n d  tha t  a 7x10-~ ergs-an-2 gamma-ray burst  has 

a 2-20 keV f l u x  about 200 times our search threshold o f  4 mi l l ic rabs,  

and l as ts  f o r  about a minute. This event was so f t  f o r  a gamma-ray 

burst, so we calculated tha t  our al l -sky X-ray search threshold 

corresponded roughly t o  a gamma-ray fluence o f  -10'~-10-~ ergs-cm"; 

a measurement o f  no gamma-ray bursts (through the f r o n t  o f  the 

detectors) i n  -104. days o f  'on' time corresponds t o  a 90% upper l i m i t  

of 1300 gamma-ray bursts over the whole sky per year above 1 0 - ~ - 1 0 - ~  

2 ergs-cm' . Even i f  one considers tha t  there are large systematic 

errors i n  comparing f luences observed i n  d i f f e ren t  experiments 

(Jennings 1987), when considering only the bursts observed by HEAO 1 

s a t e l l i t e  (Hueter 1987), t h i s  rough calcu lat ion seems t o  ind icate a 



difference of over 5 orders of magnitude between what one calculates 

assuming an s-lo5 distribution and our crude constraint on the number 

observed above f luences of ergs-cm'2. If systematic errors do 

not invalidate this estimate, it seems likely that the gamma-ray burst 

2 logN-logs curve does indeed turn over somewhere around ergs-cm- , 

suggesting that the sources of gamma-ray bursts may be within a few 

hundred parsecs. From stringent upper limits placed on the apparent 

magnitude of optical counterparts on some of the brighter gamma-ray 

bursts (mVs2Z; Schaefer and Cline 1985) one is led to infer an 

absolute visual magnitude on the order of 12 or more. If the sources 

of gamma-ray bursts are neutron star binaries, this seems to suggest 

their companions should be cool red dwarf stars or degenerate stars 

such as white dwarfs. 



Chapter 4: Looking Towards the Magellanic Clouds 

A. Overview 

If one considers the geometry of the sky seen by HEAO 1 as laid 

out in the sky and coverage maps of Chapter 2, one sees that by 

excluding the Magel lanic Clouds from our a1 1-sky search, we excluded a 

fair proportion of the sky. First, because of the geometry of the 

sky: the Magellanic Clouds are understood to be small sister galaxies 

in orbit at -53 and 69 kpc from our larger Milky Way. The Large 

Magellanic Cloud, about 1/10 the mass of the Milky Way, subtends a 

solid angle of -lo0 in diameter; the Small Magellanic Cloud has a 

mass about a fifth less (1150 that of the Milky Way) and subtends an 

angle about half the size. Second, from the geometry of the satellite 

orbit: as HEAO 1 moved in Ecliptic coordinates it passed frequently 

over the North and South Ecliptic poles. While sources along the 

plane of the Ecliptic were only observed for about 6 days at a time, 

some of the sources in the direction of the Magellanic Clouds were 

visible to HEAO 1 A-2 as long as 100 days (per 6 month pass) because 

of their proximity to the South Ecliptic pole. Therefore the HEAO 1 

data affords a particularly rich sample of data on the X-ray sources 

in these nearby dwarf galaxies. This effort focuses on just one small 

area out of many possible areas of investigation. We consider the 

question, what would one expect to find if the mass of the Milky Way 

were reduced by a factor of 10, and viewed in 2-20 keV X-rays, from a 

distance of half a megaparsec, through the 'filter' of the HEAO 1 fast 

transient search algorithm? Does what one expects match what this 

search has found? 

we-reemphasize that this fast transient survey only considered 



variations above a twelve hour average. One should not expect this 

search to trigger on a bright 1 - 14 day outburst of the LMC Transient 
(A0538-66), for example, even though this is "fast but not unheard of" 

(Johnston et ale 1979) by classic X-ray transient standards. Also, 

the Magellanic Clouds region is more crowded and more prone to source 

confusion than the areas around most of the "a1 1-sky" triggers in 

Table 3.1, so the peculiarities of dealing with only the excess flux 

above a 12 hour mean will be more evident. For example, when fitting 

the positions of most events, we have fit this excess above the 12 

hour average to a model of a variable point source plus a constant 

background. If the source(s) in the field of view at the time of this 

excess flux varied appreciably during the scans within the 12 hours, 

although the position contour would not have been affected, the light 

curve .inferred from the excess flux may not have been indicative of 

the true fast transient light curve and may have included negative 

count rates. The spectral fits we infer from the relative intensities 

of the excess counts in several energy bands (called 'color rates') 

could have been skewed by this effect: to avoid source confusion 

problems and because of the large number of events, we re1 ied on fits 

of the 'color' rates' minus the 12 hour background to give us an 

indication of the spectrum. Since these excess color rates were 

available every 5.12 s rather than every 40.96 s (as was the case for 

the generally more reliable PHA spectra), we could also use them as an 

indication of the hardness, or temperature versus time, as the 

detectors spun past a source. However useful as this was for 

indicating hardening or softening trends, spectral fits of these color 
m 

rates are not as well calibrated and in general were not as clean an 



indicator of the absolute value of spectral parameters as were fits to 

PHA data (Marshal 1 private communication; Swank private 

comnunication). One should be wary, also, of possible biases 

introduced by subtracting a 12 hour mean that may include a spectrally 

varying source. (We consider that this may have been particularly a 

problem for the bright pulsing flares from LMC X-4 discussed later.) 

From work by Cowley et al. (1984) we first draw a static map of 

the X-ray sources in the Magellanic Clouds. This is from a survey 

undertaken with the IPC and HRI instruments of the Einstein 

Observatory in 0.3-3 keV X-rays (Long, Helfand, and Grabelsky 1981) 

revealing -100 X-ray sources found in 37 degZ towards the Magellanic 

Clouds. Cowley et al. (1984) suggest a ratio of -25 interlopers 

(including stars with active coronae such as cool dwarfs and RS CVn- 

like variables; clusters of galaxies; and AGN) to 10 LMC members. 

They expect -70% of the LMC X-ray Sources to be supernovae remnants 

which should not contribute events to the fast transient search. They 

suggest a total of 4-11 of the remainder may be Population I massive 

binaries (LMC X-1, LMC X-3, LMC X-4, the LMC Transient (A0538-66), 

plus Columbia Astrophysical Laboratory sources CAL 8, CAL 9, and 

CAL 37, and 4 unidentified point sources). They point out only two 

possible Population I1 low-mass X-ray binaries, LMC X-2 and CAL 83. 

Cowley et al. (1984) conclude that although the total number of X-ray 

binaries per unit mass is consistent with being the same in both the 

Milky Way and the Magellanic Clouds, the LMC Pop I sources appeared 

more luminous than their Milky Way counterparts, and there may have 

been a dearth of moderate luminosity Pop I1 low-mass binaries in the 

Magel lanic Clouds. 



The fast transient search required a minimum increase in flux of 

about 10-lo ergs-an-2-s-1 (2-20 keV) over -1-lo3 s. (This is 

equivalent to -0.007 HED3 ct~-cm'*-s-~, or -4 mill icrabs.) At a 

distance of 55 kpc, that corresponds to a minimum increase in 

luminosity, above a 12 hr mean, of - 4 ~ 1 0 ~ ~  ergs-s-l (2-20 keV) (or 

37 -6xlO ergs-.s-l at 69 kpc, the distance of the SMC). From our survey 

of the Galaxy in the preceding chapter, we see that a similar search 

of the Magellanic Clouds could expect to trigger only on the brightest 

types of events from close X-ray binaries with compact objects, 

including: luminous flares; rapid @flickeringt ; abrupt transitions 

between high and low intensity states; Type I and I1 X-ray bursts; 

and (possibly) X-ray counterparts to gamma-ray events like those 

observed after March 5, 1979 from the direction of the LMC SNR N49. 

In the equivalent of -6 continuous days of clean data from the 

direction of the Magel lanic Clouds, our survey found 37 good events. 

We found none from the direction of the North Ecliptic pole, over 

which the HEAO 1 satellite had similar coverage. We have attributed 

two to a foreground star identified by Cowley et ale (1984) as an 

RS CVn type system at -70 pc (that happens to be 0.4' from N49). We 

identified two with the low mass binary LMC X-2, and five with bright 

@flickers1 from the high mass binary (and black hole candidate) 

LMC X-1. Eight were consistent in phase and position with an origin 

on the LMC Transient. Interestingly, we suggest nineteen of the 

remaining twenty events to have been bright flares from the (high 

mass) pulsar system LMC X-4, and we think it likely the last event was 

a trigger on an eclipse egress of this -1.4 day binary system. Many 

of these events were apparently super-Eddington. We found no events 



from the direction of the Small Magellanic Cloud, including none from 

the black hole candidate SMC X-1. We also detected none from the 

black hole candidate LMC X-3. We found no events that we could 

plausibly attribute to sources invisible to the CAL HEAO 2 survey 

(hidden either by high column densities or long term variability). In 

particular, we detected no events that we identified as classic X-ray 

bursts. As we discuss in the final section, this may suggest a lack 

of moderate luminosity Pop I1 low mass binaries of the sort 

responsible for the majority of the X-ray bursts in the Milky Way. 

B. The Hunt for Identifications 

We first constrained the possible sources of the 37 events by 

plotting 99% confidence position limits (in 1950 R.A. and Decl.) for 

each on a map of the X-ray sources in the Magel lanic Clouds region, as 

identified by Cowley et al. (1984). The 37 events fell naturally into 

several categories. The position limits of two (on D.O.Y. 1977 365.35 

and 550.58) were consistent only with N49 and that of the RS CVn-type 

system HD36705. Two more (on D.O.Y. 1977 290.62 and 653.78) contained 

only the (Pop 11) low mass binary LMC X-2 and the nearby candidate Pop 

I massive binary systems, CAL 8 and CAL 9. Five events that occurred 

within eight days of each other (D.O.Y. 1977 303.98-311.59) evinced 

position limits containing only the massive binary systems LMC X-1 and 

CAL 37. The positions of the remaining twenty-eight events clustered 

about the corner of the Large Magellanic Cloud that contained the LMC 

Transient (A0538-66), the pulsar system LMC X-4, the proposed low mass 

binary CAL 83, and the super nova remnant and suggested gamma-ray 

burst source N49. One of these 99% confidence error boxes contained 



only the LMC Transient; four others contained only LMC X-4. We 

display all these position contours in Figure 4.1, in groups of two to 

five based on spatial and/or temporal proximity. We have labeled each 

position contour with the Day of Year 1977 on which it occurred. 

We next compared the times of our events with long-term 1 ight 

curves of LMC sources from other observations. Skinner et a1 . (1980) 
had investigated LMC X-4 and the LMC Transient using data from the 

first six months of HEAO 1 A-1 and A-3 observations. They 

corroborated the results of Johnston et ale (1979) who found the LMC 

Transient to have outbursts on roughly a 16.7 day cycle. Seven of the 

A-2 LMC fast transients were identified by comparison with Skinner et 

al. (1980) to be outbursts from the LMC Transient. We identified one - 
more as an LMC Transient outburst, based on its position constraints 

and occurrence at the proper phase of the 16.7 day outburst cycle. 

None of our events coincide exactly in time with the events 

identified by Skinner et al. (1980) as originating on LMC X-4. 

(However, one, on D.O.Y. 1977 328.34 is very close.) Since bright 

flares from LMC X-4 may last 20-40 minutes (Kelley et al. 1983), and 

their data was from the A-1 instrument, which was on the opposite side 

of the spinning spacecraft from A-2, this is not surprising. Kelley 

et al. (1983) point out that these flares (during which the source is - 
seen to pulse with a 13.5 s pulse period) may occur preferentially in 

the week following the peak of LMC X-4's 30..5 day cycle. From HEAO 1 
r 

A-4 data, Lang et a1 . (1981) have mapped out a long-term 1 ight-curve 

for LMC X-4 which clearly displays this 30.5 day cycle. By comparing 

the times of our events with this long term light curve, we find, as 

illustrated in Figure 4.2, all but one of the remaining twenty LMC 



f as t  transients f a l l  a t  the same phase of the 30.5 day cycle, about 1- 

7 days a f te r  the peak. We therefore suggest these nineteen events may 

be f la res  from the pulsar system LMC X-4. The remaining event, 

f a l l i n g  on D.O.Y. 1977 530.57, contains only LMC X-4 w i th in  i t s  99% 

posi t ion l im i ts ,  It also coincides i n  time wi th  a local  peak of Lang 

e t  al. 's LMC X-4 l i g h t  curve, so i t seems plausible t o  ident i f y  t h i s  

l a s t  event w i th  LMC X-4 as well. This was the event we iden t i f i ed  as 

a t r igger  on ecl ipse egress, a f te r  considering i t s  phase w i th  respect 

t o  the -1.4 day binary period. 

We have l i s t e d  these 37 events, i n  order o f  t h e i r  occurrence, i n  

Table 4.1. We l i s t e d  the times i n  Days o f  Year 1977; the excess 

count rates i n  HE03 cts/s (the Crab nebula + pulsar i s  about 660 HED3 

cts/s); the X-ray sources found w i th in  each posi t ion e r ro r  box; plus 

our suggested i den t i f i ca t i on  f o r  each event and the information on 

.which each suggested i den t i f i ca t i on  was based. We displayed, i n  

Figure 4.3, a short term (-80 s) l i g h t  curve and an ind ica t ion  o f  the 

hardness o r  co lor  temperature as a funct ion o f  time, f o r  a l l  the 

events. Below, we discuss some o f  the character ist ics o f  the events 

from each source. 

i. H036705 / N49 

The events on D,O.Y. 1977 365.35 and 550.58 contained only the 

SNR and suspected gamna-ray burst  source N49, and the suggested 

RS CVn-type system H036705, a seventh magnitude K 1  I I I p  star. 

Although i t  would be exc i t ing t o  f i n d  bursts from N49 p r i o r  t o  the 

massive March 5, 1979 gamma-ray burst, we f ind, because o f  the lack of 

var iabi  1 i t y  and the apparent unevol v i  ng , -10 keV ( t h i n  thermal 



bremsstrahlung) spectra o f  these events, t ha t  they were u n l i k e l y  t o  be 

gamma-ray bursts. However both the temperature and lack o f  var ia t ions 

on time-scales o f  seconds are what one expects from f l a r e s  from the 

act ive coronae o f  a cool star. I f  they are f l a r e s  o r i g i na t i ng  on the 

foreground RS CVn-like system HD36705, which i s  a t  a distance o f  -70 

pc, we f i n d  luminosi t ies o f  1-5x10~' ergs-s-l. This i s  again what one 

expects f o r  f l a res  from an RS CVn-type system. Ambruster (1984) f i nds  

a f l a r e  r a t e  o f  1 events w i th  luminosi t ies - 1 0 ~ ~ e r ~ s - s - I  o r  greater 

per f i v e  days o f  scans over H08357, which i s  also a seventh magnitude 

sub-giant a t  a distance o f  -70 pc and o f  s im i l a r  spectral type t o  

HD36705. (Ambruster notes tha t  there were ac tua l l y  two f l a r e s  from 

t h i s  system, but they occurred so close i n  time t h a t  they may have 

come from the same ac t i ve  region on the s ta r  and so were not  

independent events. I n  Chapter 3, we noted t h a t  the A-2 f a s t  

t rans ient  search had tr iggered on the b r igh te r  o f  the two f l a r e s  from 

t h i s  system, which was o r i g i n a l l y  i d e n t i f i e d  from A-3 data as coming 

from HD8357 (Garcia e t  al. 1980). Given tha t  the HEAO A-2 coverage o f  

HD36705 was about an order o f  magnitude higher than tha t  o f  H08357, 

but because o f  d i f f e r i n g  co l  1 imator sizes the A-1 coverage was about 

twice t ha t  o f  A-2, i t seems reasonable t h a t  t h i s  search should have 

detected two separate events from HD36705. We therefore consider 

HD36705 a much more l i k e l y  source than N49 f o r  these two events. 



ii. LMC X-2 / CAL 8 or CAL 9 

There were two events with positions consistent with that of LMC 

X-2. The first of these events, on D.O.Y. (1977) 290.62, also 

contained the faint proposed high mass X-ray binaries CAL 8 and 

CAL 9. In Figure 4.4, we display -12 hour light curves and plots of 

softness ratios (MED/HED3) versus time around the time of each 

event. The light curve for the event on D.O.Y. (1977) 653.78 seems to 

show a -6-8 hour transition from a low intensity state to one of 

higher intensity. Interestingly, the spectrum of the source a1 so 

changed at this time, from a thin thermal bremsstrahlung temperature 

of -6 keV, to -10 keV, as the source intensity increases. This change 

is illustrated by the plot of softness ratio versus time accompanying 

the light curve in Figure 4.4.b This is characteristic of the 

behavior one finds in similar Galactic low mass X-ray binaries when 

one considers the hardness of a source as a function of its intensity 

(Parmar, Stella, and White 1985). 

For the first event, on D.O.Y. (1977) 290.62, Figure 4.4.a 

illustrates a different behavior. The PHA spectra indicate that the 

source is apparently in an -8.4 keV (thin thermal bremsstrahlung) 

'soft' state, and one sees evidence of 'flickering' at least on 

timescales as short as an hour. The spectrum of the 'flare' on which 

the fast transient search triggered is harder than the average LMC X-2 

spectrum at this time, with kT-10 keV. (There is a corresponding 

slight dip in the plot of softness ratio'versus time that accompanies 

the light curve in Figure 4.4.a). However (Parmar, Stella, and White 

1985), this is also behavior characteristic of low mass X-ray binaries 

similar to LMC X-2. We therefore think it plausible to identify both 



of these events with the low mass binary LMC X-2, rather than the 

faint Pop I candidates CAL 8 or CAL 9, or with any previously 

undetected source of X-rays. 

iii. LMC X-1 / CAL 37 

Five events in eight days occurred around the vicinity of LMC Xrl 

and the proposed high mass binary CAL 37. However, the 99% position 

limits for three exclude CAL 37. A1 1 five occurred at times when LMC 

X-1 was most visible during this pass (although, interestingly, the 

search found no corresponding variability during the second and third 

passes six and twelve months later). In Figure 4.5, the 13 day light- 

curve shows flickering on time-scales of -1 hour to - 1 day. From the 

accompanying plot of softness ratio as a function of time, we see 

interesting spectral variability, including an indication of slight 

hardening during the brightest flare; but there is no obvious overall 

pattern of spectral change related to the other four fast transient 

events. From comparison of the PHA spectrum of the brightest events 

with the average spectrum, it appears there may be a slight increase 

in the emission measure of the hotter component of the soft, 'black- 

hole-1 i ke ' spectrum (White, Kaluzienski , and Swank 1984) during these . . 

events. Despite the apparently regular spacing of these events, like 

investigators before us (White and Marshall 1983) we found no evidence 

of periodicity. Also, we find no evidence of the kind of rapid 

intensity and temperature variations one typically finds in Type I or 

I1 X-ray bursts, which can ha;e outbursts that appear semi-regular but 

that show no periodicities. Therefore we find it most likely that our 

fast transient program triggered on the peaks of the sorts of 

variability one expects from such high mass binaries, and we identify 



a l l  f i v e  o f  these events w i th  LMC X-1. 

iv. The LMC Transient (A0538-66) 

This high mass X-ray-binary (82 IVp + compact object; Johnston 

e t  al. 1979) has been observed t o  give X-ray and op t ica l  outbursts - 
that  l a s t  from a few hours t o  ( i n  one case) -14 days (White and 

Carpenter 1978; Johnston e t  al. 1979; Skinner e t  al. 1980). 

Although White and Carpenter (1978) noted a spectrum consistent w i th  a 

t h i n  thermal bremsstrahlung model wi th  kT o f  6.5 keV and neg l ig ib le  

absorption, Johnston e t  al. (1979) found tha t  the hardness r a t i o s  were 

roughly constant throughout each outburst, but t ha t  there was an 

increase i n  hardness f o r  the n=8 peak equivalent t o  a change i n  power 

law photon index o f  1.5 t o  0.3. 

Following Skinner e t  al. (1980) and Johnston e t  al .  (1979), we 

number the outbursts o f  the LMC Transient so tha t  n = 0 f a l l s  on 

D.O.Y. (1977) 180.46. By comparing the times o f  the A-2 events t o  the 

A - 1  and A-3 l i g h t  curves o f  Skinner e t  a l e  (1980) and Johnston e t  a l e  

(1979), we a t t r ibu ted  e ight  o f  the A-2 LMC f as t  t ransients t o  the LMC 

Transient during f i v e  of i t s  outburst cycles. We l i s t  these e ight  

events i n  Table 4.2, along w i th  i n tens i t i es  and rough spectral 

information. Since our database o f  12 hour averages star ted on D.0.Y 

(1977) 232, we d id  not observe outbursts p r i o r  t o  n = 3 (on D.O.Y. 

1977 230.46). 

The n = 3 outburst was o f  unusually long duration; the peak 

occurred -1.6 days a f te r  the predicted time and excess emission was 

observed f o r  -14 days (Skinner e t  a l e  1980). The A-2 f a s t  t rans ient  

survey found s ign i f i can t  var iab i  1 i t y  (above the 12 hour mean) three 



times during t h i s  long outburst. A l l  three t r i gge rs  occurred on the  

fa1 l i n g  edge o f  the event, 1-2 days a f t e r  the peak. During one of 

these events, on D.O.Y. (1977) 233.82, we detected s ign i f i can t  shor t  

t e r n  var iab i  1 i t y  (x2 was greater than twice the number o f  degrees o f  

freedom when we assumed the  source was constant during the -80 s i t  

was i n  the f i e l d s  o f  view). From power law f i t s  t o  the average co lo r  

rates exhibi ted i n  Table 4.2, one sees tha t  the spectra o f  a l l  three 

o f  these events was ev ident ly  qu i te  hard. 

The outburst a t  n = 6 (D.0.Y 1977 260.43) was roughly twice as 

b r i gh t  a t  peak as a t  n = 3, but was o f  much shorter durat ion (-6 hrs  

FWHM). I n  t h i s  cycle the A-2 f a s t  t rans ient  survey t r iggered on the  

peak o f  the outburst I t s e l f ,  rather than on shorter term v a r i a b i l i t y  

on the r i s e  o r  t a i l .  During the -8 hour (FWHM) n = 8 outburst, the  

A-2 survey tr iggered twice, once on the r i s i n g  edge j u s t  p r i o r  t o  the  

peak (D.0.Y 1977 313.75), and once on the peak i t s e l f  (D.O.Y. 1977 

313.79). During the former we again found evidence f o r  s i g n i f i c a n t  

v a r i a b i l i t y  during the -80 s the source was i n  the f i e l d s  o f  view o f  

the A-2 detectors. Again, we i n f e r  from the power law f i t s  t o  the 

excess co lor  ra tes  t ha t  the  t r i gge r  on the r i s i n g  edge appeared 

s l i g h t l y  harder than t h a t  on the peak. F ina l l y ,  the A-2 survey 

indicates one f a i n t  t r i g g e r  each on the peaks o f  the f a in t ,  few hour 

duration, n = 11 and n = 12 outbursts. (Neither Skinner e t  a l .  1980 

nor Johnston e t  a l .  1979 detected the f a i n t  n = 12 outburst.) The 

co lo r  ra tes o f  both indicated power law (photon) indexes o f  1.8-2.4, 

consistent w i th  the so f te r  values found by Johnston e t  a l .  (1979). 

The A-2 f a s t  t rans ien t  survey found no events during the short  

outbursts of cycles 4, 5, 7, 9, o r  10. We a lso found no events l a t e r  



than the n = 12 outburst that we attribute to the LMC Transient. 

Overall, it may be true that we measured a softer spectrum when 

triggering on the peak of an outburst than when triggering on shorter 

term variability on the rising or falling edges. However this does 

not appear consistent with Johnston et a1. (1979) finding the average 

spectrum of the n = 8 outburst significantly harder than those at 

n = 3 and n = 4. 

v. The Flares from LMC X-4 

LMC X-4 has been identified as an 08 111 + 1.6M0 neutron star in 

a -1.4 day eclipsing binary sys-tem (Hutchings, Crampton and Cowley 

1978; Li , Rappaport, and Epstein 1978; Kel ley et a1 . 1983). Lang 

al. (1981) also observed a clear -30.48 day cycle in 13-125 keV - 
X-rays. We noted earl ier that a1 1 twenty of the remaining events fell 

within 1-2 weeks of the peak of this 30.5 day cycle. All but one fell 

within phases 0.2-0.48, about one to nine days just after the peak. 

We calculate the probability of this clustering in phase happening by 

chance to be -0.001%, and therefore think it probable that all these 

events originated on LMC X-4, despite having other variable sources . . 

within 16 out of 20 of the 99% confidence position limits displayed in 

Figure 4.1. 

White (1978) displays in his Figure 1 a 1.7-17 keV light curve 

for LMC X-4, covering five days of data, from roughly phase 0.2 to 0.4 
r 
of the -30.5 day cycle. It illustrates several features of the 

shorter term (<30 day) light curve. Most prominent are the bright 

39 flares, lasting -20-45 minutes, with L, - 10 ergs-s" (Epstein & 

a1 .*1978; Li, Rappaport, and Epstein 1978; Kel ley et a1 . 1983). - 



Kel ley et a!. (1983) noted that these flares are seen about 1 to 6 

days after the peak of the -30.5 day cycle (phase -0.2-0.4), and 

detected -13.5 s pulsations only during these flares, with the pulsed 

fraction of -30%. Also visible in Figure 1 of White (1978) are the 

X-ray eclipses, -1.408 days-apart, and lasting for -5 hours. From his 

Figures 1 and 2, eclipse ingress and egress appear to last -20 minutes 

to an hour each. During the eclipses, the X-ray flux sinks from its 

average value of -8-10 millicrabs to consistent with zero. This is 

roughly an order of magnitude smaller change in flux than that seen 

during the luminous flares. 

Theoretically, this A-2 fast transient survey could trigger on 

the eclipses as well as the brighter flares. If one of the half-days 

over which the 12 hour mean was calculated happened to include most of 

the zero flux portion of an eclipse, it was possible for the A-2 fast 

transient search program to trigger on the greater amount of emission 

during eclipse ingress or egress. We find only one event that matches 

this scenario. The event on D.O.Y. (1977) 530.57 occurs at phase 

-0.06, during eclipse egress, and its corresponding 12 hour mean 

included the -5 hour eclipse. This was also the only event (out of 

twenty) that did not occur between phases 0.2 to 0.48 of the -30.5 day 

cycle. From Table 4.3, we note the apparently soft spectrum (power 

law photon index of -1.9) and short term variability evident during 

this event. 

We calculate the respective trigger rates one expects for the two 

types of variability (eclipses and flares), assuming that Figure 1 of 

White (1978) is a reasonable representation of the 2-20 keV LMC X-4 
.. light curve. During this -1/3 of the 30.48 day cycle (phase 0.2-0.5), 



the flares occurred four times in five days and last for -20 minutes 

to an hour (if our identification of the events on D.O.Y. 1977 354.24, 

354.26, and 354.28 was correct). The eclipses occur with roughly the 

same frequency as the flares (once every -1.4 days), and eclipse 

ingress and egress appear to last about as long (-20 minutes to an 

hour). However the flares are only visible during this third of the 

-30.5 day cycle; from Lang et a1 (1981) it appears that the X-ray 

flux goes to zero during roughly another third of this cycle (during 

which neither the flares nor the eclipses should be visible). That 

suggests, overall, that there are roughly four times as many eclipse 

ingresses and egresses as luminous flares. From Appendix A we note 

that for events which last appreciably longer than a minute, the 

probability of triggering on an event of intensity S, when the trigger 

threshold is So, goes roughly as (1-SO/S). Since one sees about an 

order of magnitude greater change in luminosity from the bright flares 

than from the eclipses, there is roughly twice the probability of 

triggering on a bright flare than on an eclipse ingress or egress, 

assuming they occur with equal frequency, and assuming the minimum 

possible trigger threshold So of -4 mi 1 1  icrabs. Moreover, when 

passing over this portion of the sky, the threshold level ranged from 

this minimum level to -20 times that; it was only low enough to 

trigger on an eclipse during -15% of the triggers. Combining these 

three factors, we calculate an expected ratio of -0.6 triggers on 

eclipse ingress or egress per twenty triggers on bright flares. This 

is consistent with our identification of only one event as a trigger 

on an LMC X-4 eclipse egress. This identification of a low number of 

events with LMC X-4 eclipses is further supported by the apparent 



random distribution of all the LMC X-4 events with respect to the 

phase of the -1.408 day binary period. (Had a greater proportion of 

the events been from triggers on eclipse ingress or egress, one would 

expect a clustering around binary phases of -0.06 and -0.94.) 

There is one discrepancy apparent with this identification of the 

event on D.O.Y. (1977) 530.57: it is about five times more luminous 

than the eclipse ingresses and egresses shown in White (1978). Had 

every eclipse evinced a change in X-ray flux of this magnitude, the 

A-2 fast transient search should have triggered on nearly equal 

numbers of flares and eclipses. That it did not suggests this event 

was unusual. We leave this interesting question of apparent changes 

in the profile of the binary period to future researchers. 

We have identified the remaining 19 events with luminous flares 

from LMC X-4, with durations of 20 minutes to an hour, and detected 

only during phases 0.2-0.48 of the -30.5 day cycle. The fluxes 

detected above a 12 hour mean implied excess luminosities of 

-0.1-6x10~' ergs-s-l. The mass of the neutron star in LMC X-4 has 

been fairly well determined to be -1.6 solar masses, so these flares 

apparently frequently exceed the Eddington luminosity (of -lo3* 

ergs-s-' for hydrogen and twice that for helium). The spectral 

parameters listed in Table 4.3 range from very hard (power law photon 

index of -0.2) to very soft (power law photon index of -2.4), with no 

apparent correlation among intensity, variability, and hardness. This 

differs from the conclusion of Epstein et al. (1978), who suggested 

that the bright flares have generally harder spectra (power law photon 

index of -0.5) than the lower intensity state (power law photon index 

of -1.2). However, as indicated in the introduction, the absolute 



values of spectral parameters determined from fits to excess color 

rates may not have been very reliable, and the systematic errors 

inherent in this approach were difficult to quantify. A better 

understanding of the spectral variability of these events may have to 

- wait for a careful study of the full LMC X-4 1 ight curve over the year 

and a half HEAO 1 was aloft, a project which is beyond the scope of 

this thesis. 

vi. Upper Limits on X-ray Bursts from the LMC 

We identified none of the 37 fast transient events as typical 

Type I (or 11) X-ray bursts. This conclusion is independent of our 

finding that all 37 events most probably originated on known, varying, 

sources. None of the 37 events in Table 4.1 exhibited the typical 

X-ray burst light curve of sharp rise and exponential decay within 

-10 s; neither did any show evidence for a black-body spectrum cooling 

on the -10 s time-scales typical of classic X-ray bursts. (Indeed, 

the events that showed evidence of spectral variability on time-scales 

of less than a minute seemed to be hardening rather than softening.) 

. . In our Galaxy, Cowley et al. (1984; 1987) estimate there are 

about 75 accreting low mass X-ray binaries, about half of which they 

expect to be hidden by strong interstellar absorption as one looks 

towards the Galactic plane and Galactic center. If these are 

considered in terms of their X-ray burst properties, one can divide 

them into three categories (with about a third in each category): 

high luminosity (-10 37-38 ergs-s-l) sources, with the X-ray bursts 

infrequent due to an inferred high accretion rate; low luminosity 

sources (such as those found in globular clusters with ~ ~ - 1 0 ~ ~ -  



ergs-s-l) with infrequent bursts due to a low accretion rate; 

and moderate luminosity sources of the sort responsible for the 

majority of X-ray bursts. The burst rate of the last type of source 

is typically once every -3 hours, during the -1 month per year when 

the source is bursting, for a mean yearly rate of 0.5 per day per 

source (Swank private communication; Bradt and McClintock 1983). The 

mean burst rate per source, when averaged over a1 1 three types of low 

mass sources found in our galaxy, is then expected to be something 

like 0.34 per year. 

To compare this rate with the limits on X-ray bursts from the 

LMC, following Cowley et a1 . (1984), we assume the number of Pop I1 
binaries scales as the to ta l  mass, so that  one expects -7-8 Pop I1 

binaries in the LMC. For ease of calculation, we had divided the 

~a~ellanic Clouds region into 14 bins (not of equal area), 3' in 

Ecliptic latitude and longitude on a side, and calculated trigger- 

probabi 1 ities as a function of the time-averaged count-rate in each 

bin. On average one expects 0.5 Pop I1 sources per bin. Although the 

Magellanic Clouds survey incorporated a total of -5.6 continuous days 

of data, since the expected luminosity of an X-ray burst was only -4 

times the minimum search threshold if the source of the burst was at 

the distance of the Magellanic Clouds, we found our measured rate of 

no X-ray bursts in 3 days of 'on' time to be equivalent to a 90% upper 

limit of a mean burst rate o f  less than 1 per source in -0.43 days. 

Although this 90% upper limit is consistent with the Galactic mean 

rate estimated in the paragraph above, it still supports the 

suggestion in the Einstein survey work of Cowley et al. (1984) that 

there may be a lack of moderate accretion rate Pop I1 sources in the 



Magellanic Clouds. 

C. Summary 

In this HEAO 1 A-2 fast transient survey of the ~a~ellanic 

Clouds, out of -6 days of coverage of the region, we found 37 good 

events, all from the direction of the Large Magellanic Cloud. We 

detected none from the Small Magellanic Cloud. We attribute this in 

part to the smaller number of sources in the SMC (which has -115 the 

mass of the LMC) , in part to the slightly lower coverage of the SMC 
region (due to its greater distance from the South Ecliptic pole), and 

in part to the greater distance of the SMC (-70 kpc versus 55 kpc for 

the LMC), so that to have the same probability of triggering our 

search algorithm as an event from the LMC, a fast transient from the 

SMC would need to be almost twice as bright. 

We identified two of the thirty-seven events with a foreground 

object, an RS CVn-type system at -70 pc. We attributed the remaining 

thirty-five events to four of the five brightest X-ray binaries in the 

LMC. Interestingly, we found no events we could plausibly attribute 

to the high mass binary and black hole candidate LMC X-3. We 

attributed two (one year apart) to the low mass binary LMC X-2. The 

first we identified with 'flickering' on time-scales of -hours; and 

the second with an abrupt transition from a low intensity state to a 

state of high intensity. We attributed five events to flickering of 

the luminous high mass X-ray binary LMC X-1. The events from both 

sources appeared similar to those from luminous high and low mass 

Galactic X-ray binaries discussed in Chapter 3. We identified eight 

events with outbursts from the high mass binary A0538-66, the LMC 



Transient. This system exhibited a pattern of (super-luminal) 

intensity increases, lasting from hours to weeks, on a -16.7 day cycle 

attributed to its eccentric orbit. For these events, when we 

triggered on the peak of an outburst the spectrum appeared softer than 

when we triggered on a rising or fa1 1 ing edge. 

We attributed the remaining twenty events to the high mass 

eclipsing binary LMC X-4. This system exhibits both -5 hour eclipses 

in its -1.4 day binary period, and overall intensity modulation on a 

-30.5 day cycle, as well as bright flares that exhibit -13.5 s 

pulsations (Li, Rappaport, and Epstein 1978; White 1978; Kelley et 
a1 1983; Lang et al. 1981). We suggested that one event out of the - 
twenty was a trigger on the change in X-ray flux during eclipse 

egress, a1 though that event was abnormal ly bright. We identified the 

remaining nineteen events, with 20-60 minute long highly luminous 

flares (AL,/L~~~ - 0.5-20). which all occurred between phases 0.2 and 

0.5 of the 30.5 day cycle. 

We found no events that may be typical Type I (or 11) X-ray 

bursts (Lewin and Joss 1981). This conclusion was independent of our 

identifying all thirty-seven events with known luminous X-ray sources, 

and was based on the shape of the -1 minute 1 ight curves and the lack 

of characteristic burst cooling seen during each event. (Using these 

criteria we could not have ruled out an identification of some of the 

events, such as the brightest one from LMC X-1 and LMC X-2, with 

unusually long X-ray bursts like those detected from some Galactic 

sources. However, for these events, the PHA spectra seemed to 

indicate that black body models were not a good fit to the excess 

emission.) We calculate a 90% upper 1 imit on the average number of 



bursts per source per year from the LMC of < 1 per 0.43 days. This is 

consistent with the average rate of -0.34 per year seen from the Milky 

Way; however, it is interesting to note that no observer has yet 

detected any 'moderate luminosity', moderate accretion rate Pop I1 

X-ray binaries in the LMC, of the sort responsible for the majority of 

X-ray bursts in our Galaxy. In fact, this survey found no events from 

sources invisible to the Columbia Astrophysical Laboratory Einstein 

LMC survey, hidden either by high column density or long term 

variability. Cowley et al. (1984) point out that they detected one 

bright Pop I1 X-ray binary (LMC X-2), and one faint candidate Pop I1 

binary that is not in a globular cluster - i.e. it apparently does not 

belong to the oldest population of low-mass X-ray binaries visible in 

the Milky Way. 



Table 4.1 

EVENTS FROM THE MAGELLANIC CLOUDS 

Time i n  Flux Sources i n  Suggested Based On: 

D.O.Y. i n  HE03 c ts /s  Error Box: I.D. 

1977 (> 12 h r  mean) 

233.55 16.4 4, T LMC Trans Skinner e t  a l .  

233.82 6.3 II I1 I1 I1 I1 I1 I1 

234.45 9.2 II * I1 I1 I1 II II 

290.62 8.3 2, 8, 9 LMC X-2 Spectrum, 1 i g h t  curve 
seem plausible;  s l i g h t l y  

be t t e r  p o s i t i o n  f i t  

1, 37 LMC X-1  Same here 
II II I1 11 I1 I1 

4, T LMC Trans Skinner e t  a1 . 
It, 83 II II II II II 

4, T, 83 LMC X-4 Phase o f  30.5d cycle 

N, H, 4, T, 83 I' I1 II I1 I1 

4, T, 83 LMC X-4 Skinner e t  a1 . 

4,T, 3, N, H LMCX-4 Phaseof 30.5dcycle 

4 LMC X-4 Pos i t ion  and phase 

4, T, 3 II II Phase o f  30.5d cycle 



Table 4.1 EVENTS FROM THE MAGELLANIC CLOUDS, continued 

Time i n  Flux Sources i n  Suggested Based On: 

D.O.Y. i nHED3cts /s  ErrorBox: I .D. 

1977 (> 12 h r  mean) , 

363.64 12.9 4,T, 3, 83 LMCTrans S k i n n e r e t  a l .  

365.35 24.5 N, H HD36705 Pos i t ion  & spectrum 

381.03 5.5 4, T LMC Trans Pos i t ion  and phase 

o f  16.6d cyc le  

LMC X-4 Pos i t ion  and 

phase o f  30.5d cyc le  

530.57 28.4 4 LMC X-4 Pos i t ion 

536.52 53.1 4 II H Pos i t ion  and phase 

539.24 43.4 11 II II Pos i t ion  and phase 

540.14 9.2 T II II Phase o f  30.5d cyc le  

541.18 15.1 II 11 3 I1 It II I1 II I1 

550.58 9.5 N, H HD36705 Pos i t ion  & spectrum 

573.51 8.5 N, H, 4, T, 3 LMC X-4 Phase o f  30.5d cyc le  

653.78 7.8 2 LMC X-2 Posit ion; l i g h t  

curve and spectrum 

Above, we designated the b r igh tes t  X-ray sources by t h e i r  X-ray 

source number, e.g. '1' represents LMC X-1, ' 2 '  LMC X-2, '3 '  LMC X-3, 

and ' 4 '  LMC X-4. We designated the supernova remnant N49 by I N ' ,  the 

LMC Transient (A0538-66) by IT1,  and the RS CVn-type var iab le  HD36075 by 

H .  There are four  f a i n t  sources suggested by Cowley e t  a1 . (1984) t o  

be X-ray binar ies;  we labeled them w i th  t h e i r  Columbia Astrophysical 



Laboratory Einstein LMC Survey number, so t ha t  CAL 8, CAL 9, CAL 37, and 

CAL 83 are designated by '8 ' ,  '9 ' ,  '37', and '83', respectively. We d i d  

not l i s t  the posi t ions o f  any o f  the act ive dwarf s ta rs  found by Cowley 

e t  a l e  (1984) t o  be i n  the f i e l d  o f  view, as they are too d i s tan t  (>50 - 
pc) t o  have given the events recorded here. We also d i d  not include 

X0544-665 i n  t h i s  short l i s t  o f  objects i n  each e r ro r  box. 

"Skinner e t  a1 stands f o r  Skinner e t  a l e  (1980). The 30.5d cyc le  

o f  LMC X-4 i s  from Lang e t  a l e  (1981). Kelley e t  a l e  (1983) discuss 

those 20-40 min f l a res  from LMC X-4 tha t  occur about 1-7 days a f t e r  a 

peak i n  the  30.5 day cycle. 



Table 4.2 

Fast Events From The LMC Transient 

Time i n  Outburst In tensi ty  Varies? Rough Spectrum: 

D.O.Y. Cycle 2 HED3 cts/cm -s ( X ~ ~ ~ D O F )  Mean power law 

1977  umber^ (> 12 hr meanlb (c) Photon 1ndexd - 
233.55 3 0.36120.04 0.520.2 

233.82 18 0.21120.04 Y 0.520.3 , 

234.45 II 0.21320.03 0.720.3 

381 -03 12 0.01620.01 1.420.5 

a. Following Skinner e t  a1 . (1980) and Johnston e t  a1 . (1979) we have 

numbered each outburst cycle so tha t  n = 0 begins a t  D.O.Y. (1977) 

180.46. 

b. We performed a least-squares f i t  t o  a constant value t o  the -80 s 

l i g h t  curve f o r  each event (displayed i n  Table 4.3), assuming the 

pos i t ion  o f  the LMC Transient. I n  t h i s  column we l i s t e d  the best f i t  

values and 10 errors i n  HEDJ cts/cm2-s. The in tens i t y  o f  the Crab 
Nebula + pulsar (about 3.4x10-~ ergs-cm-'-s-l from 2-20 keV) I s  -1.64 

2 HED3 cts/cm -s, 

c. When x2 was greater than twice the number o f  degrees of freedom for  

the f i t  described above, we indicated tha t  the source varied on 

timescales 180 s w i th  a ' Y '  i n  the four th column. 

d. We have f i t  the excess color ra tes (above the 12 h r  mean) t o  a model 

power law spectrum, w i th  the column density held f i xed  a t  lo2' ~ m - ~ ,  the 

value appropriate f o r  an o r i g i n  i n  the LMC. Here we have 1 i s ted  the 

best f i t  power law (photon) index, and l a  errors. 



Table 4.3 

Fast Events From LMC X-4 

Time i n  Phase of: In tens i ty  Varies? Rough Spectrum: Varies? 

D.O.Y. 30.56 1.41d HE03 cts/cm2-s (e) Mean power law 

1977~ cycleb cycleC (> 12 h r  meanld Photon ladexf 

321.294 0.21 0.457 0.06920.02 Y 2.320.6 

321.415 0.21 0.546 0.37820.07 Y 0.920.4 

328.338 0.44 0.462 0.106f0.02 1.4f0.5 

602.644 0.44 0.237 0.19120.05 Y 0.320.2 Y 

a. Ju l ian Days = D.O.Y. (1977) + 2,443,144.500. 

b. We calculate the phase o f  the 30.5 day cycle from Lang e t  a l .  

(1981). A phase o f  zero corresponds t o  the end o f  the cycle minimum; 

the X-ray peak begins a t  roughly phase 0.2. We estimate a systematic 

e r ro r  i n  phase o f  roughly 20.02. 



c. We calculate the phase with respect to the -1.41 day binary period 

using Kelley et al. (1983). A phase of zero corresponds to the center 
of the eclipse, which lasts about 5 hours (+ = k0.08). We calculate a 

systematic error in phase of roughly t0.02. 
d. We performed a least-squares fit to a constant value to the -80 s 

light curve for each event (displayed in Table 4.3), assuming the 
position of LMC X-4. In this column we listed the best fit values and 

la errors in HED3 cts/m2-s. The intensity of the Crab Nebula + pulsar 
(about 3.4x10-* ergs-cm-*-s-l from 2-20 keV) is -1.64 HED3 cts/cm2-s. 

2 e. When x was greater than twice the number of degrees of freedom for 
the fit described above, we indicated that the source varied on 

timescales r80 s with a ' Y '  in the fourth column. 
f. We have fit the excess color rates (above the 12 hr mean) to a model 

power law spectrum, with the column density held fixed at 10" cm-', the 
value appropriate for an origin in the LMC. Here we have listed the 

best fit power law (photon) index, and la errors. 



Figure 4.1 We present the 99% confidence pos i t ion  1 im i t s  fo r  the 35 
LMC f a s t  t rans ient  events i n  Table 4.1. We have labeled each w i th  the 
D.O.Y. (1977) on which i t occurred. They are superposed on a map of 
var iable X-ray sources from Bradt and McCl intock (1983) and Cowley et 
al. (1984). A key t o  these X-ray sources precedes the p l o t s  of these - 
posi t ion  e r ro r  boxes. We designated the br ightest  X-ray sources by 
t h e i r  X-ray source number, e.g. '1' represents LMC X-1, ' 2 '  LMC X-2, 
'3 '  LMC X-3, and '4 '  LMC X-4. We designate the supernova remnant N49 
by IN ' ,  the LMC Transient (A0538-66) by I T ' ,  and the RS CVn-type 
var iab le  HD36075 by 'Hi. There are four  f a i n t  sources suggested by 
Cowley e t  a1 . (1984) t o  be X-ray binaries; we labeled them w i th  t h e i r  
Columbia Astrophysical Laboratory Einstein LMC Survey number, so t h a t  
CAL 8, CAL 9, CAL 37, and CAL 83 are designated by '8' ,  ' 9 ' ,  '37', and 
'83', respectively. We have not p lo t ted  the posi t ions o f  any of the 
act ive dwarf s tars  found by Cowley e t  al.  (1984) t o  be i n  the f i e l d  o f  
view, as they are too d is tan t  (>50 -0 have given the events 
recorded here. 
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a) We have p lo t ted  99% confidence posit ion l i m i t s  f o r  two events, 
-180 days apart,  on D.O.Y. (1977) 365.35 and 550.58. They contain 
only the RS CVn-like system HD36705, and the supernova remnant and 
suggested gamma-ray burst source N49. 



b) We plot here two 99% confidence position 1 imits that contain the 
low-mass X-ray binary LMC X-2. They are from the events on D.O.Y. 
(1977) 290.62 and 653.78 (almost exactly one year apart). The 
first also contains the high mass X-ray binary candidates CAL 8 
and CAL 9. 
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c) There are five events (from D.O.Y. 1977 303.98, 306.11, 307.50, 
311.47, and 311.59) with 99% confidence limits that contain LMC 
X-1. Three of them also contain the suggested high mass binary 
CAL 37. 



d) We plot here our 99% confidence limits for four events identified 
by Skinner et al. (1980) as originating from the LMC Transient 
(A0538-66). These position limits are all consistent with this 
identification. 



e) We plot here 99% confidence 1 imi ts for four more events that we 
attribute to the LMC Transients. Three were identified original ly 
by Skinner et  al. (1980), and one we identify with the LMC 
Transient on the grounds that i t occurred at the same phase of the 
system's 16.6 day cycle, (at n=12, in Skinner's notation) as the 
other outbursts recorded by Skinner et a1 . (1980) and Johnston gJ 
a1 (1979). All our position limits are consistent with this - 
identification, although other variable sources in the position 
error boxes include LMC X-4 and CAL 83. 



f) The 99% confidence limits for the first three events we attributed 
to LMC X-4 (on D.O.Y. 1977 321.29, 321.42, and 328.34). They 
occurred at phases 0.21-0.44 of the 30.5 day cycle. 

FIGURE 4 . 1  .F  ILUCX4F.BOXI . 



g) The 99% confidence 1 imits for the three events (on 0.O.Y 1977 
354.24, 354.26, and 354.28) that triggered during three successive 
spacecraft revolutions (-30 minutes apart) and so were likely to 
have been three triggers on a single long flare from LMC X-4. The 
first was extremely bright; the only known X-ray source inside 
its position limits is LMC X-4. The position limits for the two 
following events are centered on LMC X-4, but also include the 
supernova remnant and gamma-ray burst source N49; the RS CVn-type 
system HD36705; the LMC Transient; and LMC X-3. 

F I G U R E  U. l . C  ILMCXUG.BQX1 



h) The 99% confidence 1 imits f o r  the other f i v e  events we a t t r ibute  
to  LMC X-4 (on D.O.Y. 1977 351.57, 355.30, 357.55, 357.90, and 
358.56) that occurred during th is  same 30.5 day cycle, with phases 
ranging from 0.20 to 0.43. 



i) This br ight  event (on D.O.Y. 1977 420.58) occurred two 30.5 day 
cycles a f t e r  the previous group, a t  a phase o f  0.47. 



j) This event, on D.O.Y. (1977) 530.57, occurred about 335 30.5 day 
cycles (at phase 0.07) after the previous event, and at phase 0.06 
of the 1.408 day binary period (during eclipse egress). Of the 
events apparently from LMC X-4, it is the only one we identified 
as a trigger on an eclipse rather than a trigger on a bright 
flare. 



k) These f l v e  events (on D.O.Y. 1977 536.52, 539.24, 540.14, 541.18, 
and 543.04) occurred one to  two weeks a f ter  the l as t  event, a t  
phases 0.27 to  0.48 of the 30.5 day cycle o f  LMC X-4. 
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1) The 99% conf ldence posit ion 1 imi ts  f o r  the l a s t  two events (on 
D.0.Y 1977 573.51 and 602.64), which occurred one and two cycles 
a f t e r  those on the previous p lo t ,  a t  phases 0.48 and 0.44 of the  
30.5 day cycle o f  LMC X-4. 



Figure 4.2 We have p lo t t ed  the i n tens i t i es  ( i n  excess HED3 cts-s- l )  versus time ( i n  D.O.Y. 1977) f o r  the 
twenty events we suggest may  have or ig inated on LMC X-4. (The i n t e n s i t y  o f  the Crab nebula + pulsar i s  
about 660 HED3 cts-s' ) Below it, we have reproduced the  long-term A-4 (13-100 keV) LMC X-4 l ight -curve o f  
Lang e t  a l .  (1981), which c l ea r l y  shows the 30.5 day cycle. A l l  save one o f  these twenty events occurred 
w i t h i n  days a f t e r  the peak of the 30.5 day cycle. The remaining event, on D.O.Y. (1977) 530.57, seems 
t o  coincide w i th  a l oca l  maximum j u s t  before the peak, and we i d e n t i f i e d  i t  as a t r i g g e r  on egress from the 
b inary  ec l  ipse. 



Figure 4.3 I n  t h i s  f igure,  f o r  every LMC f a s t  t rans ient  event, we p l o t  an s 80 s l i g h t  curve (o f  the excess 

HE03 cts-cd2-s- '  above the 12 hour average) whi le the event was i n  the combined A-2 f i e l d s  o f  view. (One 

m i  11 ic rab i s  -3. 4x10-l1 ergs-cm-2-s-1, and corresponds t o  about 0.0016 HE03 ~ t s - n - ~ - s - ~ . )  Except where 

noted, during the f i t s  which produced these l i g h t  curves, we held the of fscan angle f ixed a t  zero, but  

allowed the scan angle t o  vary f reely,  so t ha t  the l ight-curve e r r o r  bars would r e f l e c t  the uncertainty i n  

pos i t ion  (but not the uncertainty i n  the overa l l  normalization). The except ions e i t h e r  were events 

iden t i f i ed  by someone else (Skinner e t  a l .  1980; Johnson e t  al. 1979), o r  were events w i t h  no more than one 

b r i gh t  X-ray t rans ien t  w i t h i n  the 99% confidence pos i t i on  l im i ts .  
F 
w 
a, These l ight-curves are accompanied by p l o t s  o f  the power law photon index as a funct ion o f  time. To 

obtain these p lo ts ,  we f i t  the excess (above the 12 hour mean) ' co lo r '  rates, every 5.12 s, t o  a power law 

model w i th  the column density held f i xed  a t  the average value t o  the Magellanic Clouds (NH - lo2' On 

2 each p l o t  we show the resu l t s  o f  leas t  squares f ' i t s  t o  both a constant and t o  a s t ra igh t  l i ne .  If x was 

greater than twice the number o f  degrees o f  freedom, t ha t  event was designated 'var iab le '  i n  Tables 4.2 and 

4.3. I n  each graph, the l i n e  w i t h  the lowest 2 was p lo t ted  wi th  the data. 



a) P lots  f o r  the event on D.0.Y (1977) 233.55. Time zero i s  at  13:08:05 U.T. The posi t ion was held f i xed  

a t  t h a t  o f  the LMC Transient, A0538-66. 
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b) Plots for  the event on 0.O.Y (1977) 233.82. Time zero i s  at 19:48:33 U.T. The position was held f ixed 

a t  that  of the LMC Transient, A0538-66. 
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c) Plots for  the event on D.0.Y (1977) 234.45. Time zero i s  a t  10:48:59 U.T. fo r  the l i g h t  curve and 

10:49:19 U.T. fo r  the spectral var iab i l i ty  p lot .  The position was held f ixed a t  that  of the LMC 

Transient, A0538-66. 
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d) Plots f o r  the event on D.0.Y (1977) 280.51. Time zero i s  a t  12:10:59 U.T. The posit ion was held f i xed  

a t  t h a t  of  the LMC Transient, A0538-66. 
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f) Plots for  the event on D.0.Y (1977) 303.98. Time zero i s  a t  23:32:38 U.T. fo r  the l i g h t  curve and 

23:32:53 U.T. fo r  the spectral va r i ab i l i t y  plot.  The position was held f ixed a t  that  of LMC X-1. 
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g) Plots f o r  the event on D.0.Y (1977) 306.11. Time zero i s  a t  02:41:54 U.T. The position was held fixed 

a t  that  of  LMC X-1. 
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h) Plots f o r  the event on D.0.Y (1977) 307.50. Time zero i s  at  12:07:30 U.T. fo r  the l i g h t  curve and 

12:07:50 U.T. for  the spectral va r i ab i l i t y  plot.  The position was held f ixed a t  that of  LMC X-1. 
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i) Plots for  the event on D.0.Y (1977) 311.47. Time zero i s  a t  11:11:10 U.T. fo r  the l i g h t  curve and 

11:11:15 U.T..for the spectral var iab i l i ty  plot.  The position was held f ixed a t  that  of  LMC X-1. 
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j) Plots for  the event on D.0.Y (1977) 311.59. Time zero i s s a t  14:05:56 U.T. fo r  the l i g h t  curve and 

14:06:17 U.T. for the spectral va r i ab i l i t y  plot. The position was held f ixed a t  that  of LMC X-1. 
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k)  Plots f o r  the event on D.0.Y (1977) 313.75. Time zero i s  a t  17:55:44 U.T. The posi t ion was held f ixed 

a t  tha t  of  the LMC Transient, A0538-66. 
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1) Plots for  the event on D.0.Y (1977) 313.79. Time zero i s  a t  19:05:17 U.T. fo r  the l i g h t  curve and 

19:05:32 U.T. fo r  the spectral va r i ab i l i t y  plot.  The position was held f ixed a t  that  of the LMC 

Transient. A0538-66. 
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m) Plots for  the event on D.0.Y (1977) 321.29. Time zero i s  a t  07:02:51 U.T. fo r  the l i gh t  curve and 

07:03:17 U.T. for  the spectral va r i ab i l i t y  plot.  
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n) Plots f o r  the event on D.0.Y (1977) 321.41. Time zero i s  a t  09:57:37 U.T. 
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o) Plots f o r  the event on D.0.Y (1977) 328.34. Time zero i s  a t  08:06:36 U.T. 
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p) Plots for the event on D.0.Y (1977) 351.57. Time zero i s  a t  13:38:12 U.T. f o r  the l i g h t  curve and 

13:38:28 U.T. f o r  the spectral variabl l i t y  plot .  
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q) P lots  f o r  the event on D.0.Y (1977) 354.24. Time zero I s  a t  5:38:07 U.T. f o r  the l i g h t  curve and 

5:38:38 f o r  the spectral v a r i a b i l i t y  p lo t .  
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r) Plots f o r  the event on D.0.Y (1977) 354.26. Time zero i s  at  06:13:42 U.T. f o r  the l i g h t  curve and 

06:13:57 U.T. f o r  the spectral v a r i a b i l i t y  p lot .  
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t) Plots for  the event on D.0.Y (1977) 355.30. Time zero i s  at 07:18:38 U.T. f o r  the l i g h t  curve and 

07:18:49 U.T. f o r  the spectral v a r i a b i l i t y  p lot .  
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u) Plots for the event on 'D.0.Y (1977) 357.55. Time zero is at 13:04:45 U.T. for the light curve and 

13:05:06 U.T. for the spectral variability plot. 
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v) Plots for  the event on D.0.Y (1977) 357.90. Time zero i s  at 21:39:03 U.T. for  the l i g h t  curve and 

21:39:08 U.T. f o r  the spectral v a r i a b i l i  t y  p lot .  
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w) Plots f o r  the event on D.0.Y (1977)' 358.56. Time zero i s  a t  13:21:49 U.T. f o r  the l i g h t  curve and 

13:21:59 U.T. f o r  the spectral v a r i a b i l i t y  p lo t .  
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x) Plots f o r  the event on D.0.Y (1977) 363.64. Time zero i s  a t  15:25:08 U.T. f o r  the  l i g h t  curve and 

15:25:28 U.T. f o r  the spectral v a r i a b i l i t y  p lo t .  The posit ion was held f i xed  a t  t h a t  o f  the LMC 

Transient, A0538-66. 
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y) Plots for the event on D.0.Y (1977) 365.35. Time zero is at 08:29:54 U.T. for the light curve and 

08:30:04 U.T. for the spectral variability plot. 
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z) Plots f o r  the event on 0.O.Y (1977) 381.03. Tlme zero i s  a t  00:44:08 U.T. f o r  the l l g h t  curve and 

00:44:28 f o r  the spectral v a r i a b i l i t y  p lo t .  
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aa) Plots for the event on D.0.Y (1977) 420.58. Time zero i s  a t  13:56:27 U.T. for the l i g h t  curve and 

13:56:42 U.T. for the spectral v a r i a b i l i t y  p lo t .  
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bb) Plots for the event on D.0.Y (1977) 530.57. Time zero i s  at 13:35:43 U.T. 
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cc) Plots for  the event on D.0.Y (1977) 536.52. Time zero i s  a t  12:29:09 U.T. 
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dd) Plots f o r  the event on D.0.Y (1977) 539.24. Time zero i s  a t  05:50:44 U.T. 
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ee) Plots f o r  the  event on D.0.Y (1977) 540.14. Tlme zero I s  a t  03:27:33 U.T. 
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ff)  Plots for  the event on D.0.Y (1977) 541.18. Time zero i s  a t  04:19:05 U.T. f o r  the l i g h t  curve and 

04:19:20 U.T. fo r  the spectral v a r l a b i l i t y  p lot .  
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gg) P lo ts  for the event on D.0.Y (1977) 543.04. Time zero i s  a t  00:50:57 U.T. 
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hh) Plots for the event on D.0.Y (1977) 550.58. Tine zero i s  at 14:01:24 U.T. 
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ii) Plots  f o r  the event on D.0.Y (1977) 573.51. Time zero i s  a t  12:19:15 U.T. f o r  the l i g h t  curve and 

12:19:26 U.T. f o r  the spectral v a r i a b i l i t y  p lot .  
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jj) P l o t s  f o r  the event on D.0.Y (1977) 602.64. Time zero i s  a t  15:27:10 U.T. 
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kk) Plots f o r  the event on D.0.Y (1977) 653.78. Time zero i s  a t  18:41:18 U.T. f o r  the l i g h t  curve and 

18:41:33 U.T. f o r  the spectral v a r i a b i l i t y  p lo t .  The posit ion was held f i xed  a t  t h a t  o f  LMC X-2. 
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a) This i s  the (MEDMED3) l i g h t  curve and accompanying softness r a t i o s  (MEDlHED3) f o r  the two twelve hour 
periods around the event on D.O.Y. (1977) 290.62. We have marked the time o f  the t r igger  with an arrow. 
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F i  ure 4.5 Here we present a 13 day (MEDcHED3) l i g h t  curve, and the corrffponding s f t n  ss r a t i o s  
MED/HEDJ as a funct ion o f  t i . (One mi l l i c rab ,  which I s  about 3.4~10- ergs-cm-q-s-f, corresponds t o  a blEOtHED3 c t ~ - c m - ~ - s ~  . For the Crab Nebula p lus  pulsar, MED/HED3 - 1.14, i n  these units.) The 

times o f  the f i v e  events we a t t r i bu te  t o  LMC X - 1  have been marked w i t h  an arrow. 
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Chapter 5 

Two Special Cases: LDS 131 and 6-Nov-77 OSO-8 Event 

A. Overview 

In this chapter we present data on two very different bright fast 

transients, representing the two classes of fast transient events 

djscussed in Chapter 3. One was a prototypical coronal transient, the 

energetic bright stellar X-ray flare source LDS 131. The other 

represents the incompletely understood class of rare events that 

probably originate on compact objects. It was a-bright, highly 

variable, unidentified, 12 minute event observed by the OSO-8 

satellite on November 6, 1977, from the direction of Cygnus, near the 

Galactic- plane. 

The identification of the event on 0405.85 with LDS 131 seemed 

unexpected because it was so bright, with ~ ~ - 1 0 ~ ~  ergs-s-' and Ex-10 3 5 

ergs (Kaluzienski et al. 1978a,b; Griffiths et al. 1979). Those only 

slightly familiar with stellar flares may not realize that the 

measured distribution of event rate with flare size follows a power 

law rather than a Gaussian form, with an ill-defined mimimum and 

maximum flare size (Lacy, Moffet, and Evans 1976; Kunkel 1975a; 

Gershberg 1972; see Appendix C; and Ambruster, Sciortino, and Golub 

1987 on microf laring). For example, a1 though the most frequently 

observed flare sizes are on the order of 10 31-32 ergs, this is not 

necessarily the mean flare size; and it is more probable to get 

flares with sizes far from the mean than one expects assuming a normal 

distribution. 

In 95.B we present detailed data of this bright flare observed by 

HEAO 1. We show that the identification of this event with the 10th 



magnitude dM3e pair LDS 131 is highly probable (>99.9%), and discuss 

follow up observations of this active dwarf star system. Although 

some have used the term 'superflare' to denote events of this 

magnitude (Roizman and Shevchenko 1982; Ambruster , Snyder, and Wood 

1984), we find the dM3e pair to be normal active dwarf stars, and the 

bright flare itself to differ from more common events mainly in the 

inferred size (and overall emission measure) of the coronal magnetic 

loops thought to confine the lo8 K plasma during the flare. 

The bright 6-Nov-77 OSO 8 event, on the other hand, is shown to 

be atypical of any of the classes of X-ray fast transients discussed 

earlier (including the 'hard transients8 of Chapter 3, because of its 

inferred Eddington luminosity). In 55.C we summarize data from the 

event i tself , and from attempted follow-up observations, It was 

detected once. at a flux of 1.5~10~ mi 1 1  icrabs; but not detected again 

despite 'coverage of the region by several X-ray satellites. 

Constraints on position show that it originated from the crowded 

Cygnus region (not far from the event on D494.15), but in that 

direction 1 ie several heavily absorbing clouds (the "Cygnus rift"), so 

that constraints on optical emission were difficult. 

0. The Briqht Coronal Flare from LDS 131 

i. History and Overview 

Kaluzienski et al. (1978a,b) reported detecting an X-ray 

transient event in the quick-look data from HEAO 1 A-2, on Feb 9, 1977 

h m at 20 24 U.T. (or D405.85), with a peak flux >8xl0-' ergs-cm-'-s-', 

making it one o f  the brightest 'high latitude transients'. The event 

was visible for several scans, decaying in intensity with a time 



constant o f  about 40 minutes (see Figure 3.l.e). It was given the 

X-ray designation H0449-55, since the center o f  the o r i g i n a l  A-2 e r ro r  

box l ay  a t  a 1950.0 R.A. and Dec. o f  0 4 ~  4gm, -55". Optical  

observations o f  the combined A-4 and A-3 pos i t ion  e r r o r  boxes resu l ted 

i n  the i d e n t i f i c a t i o n  o f  the source w i th  one o f  two dM3e stars  w i t h  

s im i la r  op t i ca l  spectra, a t  a 1950.0 R.A. and Dec. o f  04h 52m 31.5s, 

-55" 56' 27" ( G r i f f i t h s  e t  al.  1979). The b r igh te r  was about 10th 

magnitude, and the other, 8.5' due NW o f  the f i r s t ,  was about hal f  a 

I magnitude fa in te r .  This p a i r  was designated LDS 131 i n  the double 

s ta r  catalog o f  Luyten (1963a), and BPM 17964 and 17965 i n  the Bruce 

Proper Motion Catalog (Luyten 1963b). Measurements o f  t h e i r  proper 

motion [by Tom Morgan o f  Sidney Observatory] showed the  b r i gh te r  t o  

have r,,rg of 0.13020.004,0.050+0.004, and the f a i n t e r  t o  have u,,u6 

o f  0,13620.009,0.05820.009, implying a distance o f  about ' l0  pc 

( G r i f f  i t h s  p r i va te  conmunication) . Upgren e t  a1 . (1972) noted t h a t  

the pair,  l i s t e d  as U98, exhibi ted hydrogen emission l i n e s  (although 

they were l i s t e d  as a s ing le  9.2 mag object because o f  the small 8.5" 

separation). 

If t h i s  i d e n t i f i c a t i o n  i s  correct, the outburst on 0405.85 was 

both the highest temperature (kT-12 keV) and highest peak luminosi ty 

( ~ ~ - 6 ~ 1 0 ~ ~  eqs-5- l )  f l a r e  t ha t  has been detected i n  X-rays from a 

cool dwarf star. (It may not have been the most energetic; see 

discussions o f  a longer event from EV Lac i n  Ambruster e t  a1 1983). 

Events o f  s im i la r  durat ion and i n t e n s i t y  have long been observed i n  

the U-band (Kunkel 1975a). The b r i gh t  f l a r e  on D405.85 appears t o  

support the contention o f  Roizman and Shevchenko (1982) t h a t  nearby 

f i e l d  f l a r e  s tars  are capable o f  r a re  outbursts as v i o l en t  and 



energetic as those observed more frequently from dMe-dKe stars in 

young associations (Gurzadyan 1980). In Chapter 3 of this work, we 

used the identification of this event as an energetic stellar flare as 

a cornerstone in building our argument for the identification of the 

majority of the A-2 fast transient events with flares from similar 

systems. This, in turn, supports the current understanding of stel lar 

flares as dramatic manifestations of the coronal magnetic fields 

thought to determine the structure of the outer atmospheres of cool 

stars. Flare size and temperature correspond to varying sizes of 

magnetic loops in the coronae, from small (-lo6 an) loops thought to 

be associated with soft, kT<lkeV, microflares which may be the source 

of heating in the coronae (Ambruster, Sciortino, and Golub 1987); to 

large (-10'' an) loops associated with the dramatic outburst from LDS 

131. 

In the following sub-sections, we present the varied data on 

H0449-55/LDS 131. Since it is crucial, in §5.8.i1 we present the 

evidence, based primarily on position constraints, for the 

identification of the bright X-ray flare on D405.85 with LDS 131. We 

then discuss the properties of the original intense event observed by 

HEAO 1, and infer some physical parameters, in 95.B.iii. In 55.B.i~ 

we briefly discuss follow up observations of LDS 131 in flares and 

quiescence with both the Einstein IPC and EXOSAT observatories, and 

we briefly summarize IUE observations of the dM3e pair. 

if. Constraints on Position and the Identification with LDS 131 

In Figure 3.l.e we plotted the new HEAO 1 A-2 99% confidence 

position limits, produced by the position finding algorithm described 

in Appendix 0, for the bright event on D405.85. The new A-2 position 
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error box eliminated all but 5 of the A-3 position diamonds (Griffiths 

et a7 1979; also Griff iths private communication), and was neatly - 
centered on the dM3e pair LDS 131. The combined error boxes covered 

an area of about square degrees. If one also required the source 

to fall within the A-1 catalog source identified as H0449-55 (Wood et 

.ale - 1984), one eliminated all of the A-3 error diamonds save the one 

with LDS 131 on its edge. The combined error boxes would then cover 

an area of about 2xl0-~ square degrees. From Joy and Abt (1974) and 

At len (1973), one estimates a space density of dMe-dKe stars of about 

0.0394 pc-3. We find the expected number of dMe-dKe stars within 

30 pc to fall within the position limits by chance to be about 7x10-~, 

ignoring the A-1 position limits; and 1x10-~, including them; implying 

the probability of serendipitously finding one or more dMe-dKe systems 

within the position limits of less than 0.01%. 

Also, as menf ioned in the overview, the region around LDS 131 has 

been observed both by the EXOSAT CMA, with a 2"x2" field of view, and 

the Einstein Observatory IPC, with a 1°x10 field of view. Not only 

was LDS 131 the brightest X-ray source in either field of view, but it 

was also the only one detected within the A-2 99% confidence position 

limits. Of course, simply because a quiescent X-ray source falls very 

near a small position error box of a bright transient does not prove 

it is the source of the bright event; witness the case of the bright 

OSO-8 transient described in 95.C, where it was probably not 

physically reasonable to identify the event with the X-ray emitting dK 

star found just outside the transient error box. However, we find the 

position constraints for H0449-55 to be quite strong and the 

identification with a bright stellar flare to be physically 



reasonable. 

iii. Data from the Bright Flare: Inferring Physical Parameters 

H0449-55 was at high Ecliptic latitude (-76.3"), and so was - 

visible by the scanning HEAO 1 A-2 detectors for about 18 days per 6 

month pass. In Figure 5.1, we display the 18 day light-curve for the 

pass containing the bright flare. The data were summed A-2 HE03 and 

ME0 1.5" rates, averaged over twelve hours. The flux was consistent 

with zero save during the 12 hours centered on the flare on 0405.85, 

when the time-averaged flux rose to roughly 25 cts-s-l. The flux was 

measured by A-2 to be consistent with zero during the passes 6 months 

before and after the bright flare. However, the softer bandpass, 

larger area A-1 instruments measured a weak flux during the -4 days 

that LDS 131 was in the center of their fields of view, around D.O.Y. 

1'977 400 (Wood et al. 1984; P. Hertz private comnication). This 

A-1 flux of -0.4 millicrabs, 0.15-10 keV, was significantly higher 

than extrapolations to higher energies from the Einstein and EXOSAT 

observations described 1 ater. If this flux was indeed associated with 

the cool dwarf pair LOS 131, it suggested a light curve similar to - 

those shown by Ambruster, Snyder, and Wood (1984) for days-long, low 

level soft X-ray activity around the times of bright stellar flares 

from EV Lac and EQ Vir. One is struck by the image of a particularly 

1 arge active stellar active region (or ' star-spot I ) ,  giving rise to 

both enhanced quiescent X-ray flux and the large flare. 

In Figure 3.l.e we have displayed the A-2 light curve of just the 

three hours containing the bright flare. We noted a sharp rise from a 

quiescent level of less than 2.5 HE03 cts-s'l, to 62 cts-s-' 32 



Figure 5.2 Two p lo t s  o f  HED3 spectrum, sunned over both layers and both 40.96 s time in te rva ls  avai lable 
during $,he f i r ~ t ~ ~ b r i g h t e s t ,  pass. The f i r s t  p l o t  shows the raw (uninverted) PHA spectrum, i n  
cts-cm- -5- -kev , as a funct ion of energy i n  keV. t o  exh ib i t  the i r o n  l i n e  featurf  a t  6.8 keV. The second 
shows the inverted photon spectrum, assuming the b e s t - f i t  spectrum, i n  photons-kev . 



minutes later, implying an exponential rise time of 10 minutes or 

less. It was interesting that the flux measured during that first 

brightest pass was also still increasing at about an exponential rise 

time of 7-10 minutes, implying that the flare may not have reached its 

peak. The subsequent scans exhibited a slower decay, with a time 

constant of about 40 minutes. 

We first consider the spectra from just the first, brightest, 

pass. As Kaluzienski et al. (1978b) pointed out, the overall spectrum 

was well-fit by an optically thin thermal bremsstrahlung model, with a 

clear Fe line feature visible at 6.8M.1 keV. To demonstrate the 

significance of the iron line, we added together all three fields of 

view durfng which the flare was v i s l b l e  i n  the two detectors wi th  the  

highest signal-to-noise at the energy of  the Fe line. As Figure 5.2 

demonstrates, the line feature was visible in the raw data. A minimum 

x2 fit to a simple thin thermal bremsstrahlung model. (exponential 

modified by a Gaunt factor and absorption) gave a x2 of 25.1 for HED3, 

and 12.8 for HED2. When two parameters describing the intensity and 

position of the line feature were added (the line width was held 

constant at roughly the resolution of the detectors), x2 dropped to 

12.8 for HED3, and 8.2 for HED2. Both indicated a line at 6.8 keV, 

with an emission width of 0.8i0.3 keV, which is consistent with 

predictions for 1 i ne strengths predicted from (solar abundance) 

thermal plasmas with kT-11.5 keV f-rom Raymond and Smith (1977). The 

most stringent limits on low energy absorption came from fits to the 

MED and HED2 detectors, which had the highest quantum efficiencies 

below a few keV. Combining the limits from fits to the two detectors, 

we found a 90% upper limit on NH of ~ 3 x 1 0 ~ ~  cm2, certainly consistent 
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with an estimate of -1 atom per cm3 out to 10 pc. 

In Figure 5.3, we show the results of fits to the spectra at 

three different times during this brightest scan, in three 90% 

confidence contours of flare emission measure versus temperature. We 

were able to obtain PHA spectra from all 4 detectors (HED3, MED, HED2, 

and HED1) , covering three (disjoint) 41 s intervals (TI, T2, and T3) , 
as the detectors scanned over the source. The 1 ight curve indicated 

that the flux was increasing during the -90 s the source was in the 

combined fields of view of the offset and co-aligned detectors, so it 

is Interesting to see whether the temperature or emission measure may 

have changed as well. We used only the 3"x3" fields of view, which 

not only had high signal to noise, but did not contain data from 

overlapping times. The first contour is from combined HED3 (both 

layers) and HED2 (top layer) at time 'TI' (-20h24.3-24.6. UT); the 

second from the same detector fields of view at time 'T2' (-20h24-6- . 

24.9m UT); while the third is from the 3" field of view of the offset 

detector HE01 at time T3 (-20h24.9-25.2m UT). We find, during the 

100 s of this brightest pass, the best fit temperatures dropped from 

kT-13 keV at TI, to -11 keV at T2, and -10 keV at T3; while the 

corresponding best-f it emission measures (ne2v) increased sl lghtly 

from - 5 ~ 1 0 ~ ~  to 6x10'~ cmw3 (for a distance of 10 pc) . However a1 1 
three 90%. confidence contours were consistent with a constant 

temperature of -11.5He5 keV. This is in contrast to what one expects 

from simple thermal models of flares, where the temperature continues 

to increase at least as long as the flare intensity increases (e.g. 

Batchelor et a1. 1985 on thermal models). Both the luminosity and 

emission measure were closer to values more frequently observed from 



Figure 5.4 To the three 90% confidence contours o f  temperature versus emission measure o f  the br ightest  
scan from the previous figure, we have added 90% confidence contours, o f  the same spectral parameters, f o r  
the subsequent two fa in te r  scans (-32 and 64 minutes la ter) .  For these f a i n t e r  scans we used only HED3 data 
(from both f i e l d s  o f  view). The stars ind icate the b e s t - f i t  temperatures and emission measures. 



RS CVn-type flares, rather than those from cool dwarf stars. 

In Figure 5.4 we compared the temperature and emission measure of 

the flare during this brightest pass with 90% confidence contours of 

the spectrum of the two subsequent passes -32 and -64 minutes later. 

(The flux dropped by roughly a factor of 2 each time.) The PHA data 

were from the HE03 detector, which was on during all three passes. 

The best-fit temperatures and emission measures fell at a rate roughly 

the same as the decay rate of the X-ray flux. 

For understanding the physical properties of stellar flares, it 

is reasonable to compare them to flares observed from the active dwarf 

star closest to us - that is, to flares from the sun. Solar flares 

have been observed in a bewildering variety of sizes, shapes, and 

temperatures at all wavelengths from radio to hard gamna-ray; 

detections of energetic particles have also been correlated with these . 

observations. Recently a delineation into two rough classes of flares 

has been found to be useful: 'impulsive' flares exhibit 4 0  keV X-ray 

flux lasting for an hour or less, associated with >10 keV X-ray 

emission and microwave emission lasting for less than about 10 

minutes, with little or no coronal mass and energetic particles 

ejected, and apparently occuring on small, low coronal magnetic loops 

(<lo9 cl on the sun); while 'gradualt events are probably associated 

with coronal mass ejections, with filament eruption perhaps leading to 

very large loops high in the corona (>lo9 cm for the sun), with hard 

X-ray emission lasting for over -10 minutes, and <10 keV X-ray 

emission lasting for over an hour (Sturrock 1986). 

Applying models based on the sun to more distant stars, with very 

different masses, temperatures, radii, suface gravities, and rotation 



rates, is not straightforward. One obvious difference is that one 

cannot directly image the structure of stellar coronae, and so must 

infer the geography of the outer atmosphere from indirect evidence, 

including photometry and variations in optical and ultraviolet 1 ine 

intensity, or X-ray flux, with time (Bopp and Espenak 1977; Linsky 

1980; Linsky et a1 . 1982; Schri jver 1985); and high resolution 

spectral work such as mapping of magnetic fields via measurements of 

Zeeman splitting (Saar and Linsky 1985). During flares, the rise and 

decay times in differing wave bands or the ratios of key lines formed 

at different temperatures can be used, with some simple models, to 

infer temperatures, pressures, and densities as functions of loop 

geomtries. For this bright flare from LDS 131, none of these methods 

were readily available, as we were hampered by both an interrupted 

1 ight curve, and no simultaneous observations at other wave1 engths 

(a1 though qua1 i ty of X-ray spectra is very good). Therefore we re1 i ed 

on limits from some very simple models, to match the limitations of 

our data. 

In the models used by Batchelor et ale (1985) to describe hard 

X-ray and microwave emission from 'impulsive' solar flares, the top a 

coronal magnetic loop is heated, by some unspecified process of 

anni hi 1 ation of magnetic flux, possibly through reconnect ion. The 

thermal electrons propogate down along the magnetic field lines, in a 

'conduction front' traveling at roughly the ion sound speed, to the 

footpoints of the loop in the denser chromosphere. Cooler material is 

boiled up from this denser region, still confined by the magnetic 

field, and fills the whole loop. The X-rays are radiated by thermal 

bremsstrahlung from this optically thin plasma. In this scenario, the 



X-ray rise time is roughly the height of the loop (or loop 'half- 

length') divided by the ion sound speed, while some other scenarios 

suggest the Alfven speed to be more appropriate. However, this 

picture does have grosser features generally in agreement with many 

other scenarios, including the hardest X-ray emission occuring at the 

greatest height, and the necessity of continual energy input, from 

some kind of magnetic field annhilation near the top of the loop, 

throughout the duration of the flare (Stucker 1986). Since scenarios 

detai 1 i ng f i 1 ament eruption and coronal mass eject ion appear more 

complicated, we shall not consider them here. 

From the light curve in Figure 3.l.e, we see the total rise time 

of this bright X-ray flare must be less than -30 minutes. Since the 

ion sound speed, ( k T e m i ) ,  is - lo8 cm-s-' for kTe - 11.5 keV, we 

find an upper limit to the loop 'half-length of - 2 ~ 1 0 ~ ~  an (or less 

than several stellar radii). A second crude constraint on the total 

volume ' V 1  of the emitting region comes from combining the reasonable 

assumption that the ratio of thermal energy density to that of the 

magnetic field is less than one (i.e. this is a low ' 0 '  plasma, with 0  

= (nekT)/(B2/8~), where ne is the electron density and 8 the magnetlc 

field strength), together with the looser assumption that, since the 

flare was powered by magnetic field annhilation, the total energy 

emitted in the flare was roughly equal to the energy originally stored 

in the magnetic field: E - lo3' ergs - vx(B2/8n). Since we have 

found the emfssion measure to be ~ 5 x 1 0 ~ ~  for a distance of 10 pc, 

3 one can solve for an upper limit on the volume. We find ~ < 3 x 1 0 ~ ~  cm , 

which in turn implies an average I3 > 700 G. This value o f  the 

magnetic field is certainly consistent with measurements of magnetic 



field strengths in the active regions of stars (Saar and Linsky 

1985; Saar, Linsky, and Beckers 1986) and in intense impulsive solar 

flares (see, for example, Batchelor et a1 1985). The electron density 

was inferred to be ne > 1012 ~ m - ~ ,  only slightly higher than that 

observed from similar stellar flares (see, for example, a erg 

event with similar rise and decay times observed by EXOSAT from EQ 

Peg, a dM3.7e star, in Pallavicini, Kundu, and Jackson 1985). In 

other words, we found this bright stellar flare observed with HEAO 1 

A-2 appeared only slightly larger, denser, and hotter, but otherwise 

very similar, to those observed (with high spatial resolution 

instruments) from other cool dwarf stars, and so the identification of 

this event as a flare from the dMe pair LDS 131 appears physically 

reasonable. 

iv. Brief Sumnary of Einstein, ,Exosat, and IUE Observations 

The soft X-ray telescope of the Einstein Observatory pointed in 

the direction of H0449-55/LDS 131, with the Imaging Proportional 

Counter at its focus, for about 1.1~10~ s on 1980 Mar 8, 

18:29:8.2 U.T., through 1980 Mar 9, 10:42:37.17 U.T. The Einstein IPC 

had about a 1°x10 field of view and spatial resolution o f  30 

arcseconds, which was insufficient to resolve the two proposed 

sources, LDS 131 ' a '  and 'b', or stars I S '  and 'TI of Griffiths et al. 

(1979). The band pass of the HEAO 8 Einstein Observatory telescope 

with the IPC was about 0.15-3 keV, with moderate spectral 

resolution. As mentioned earlier in this chapter, a soft X-ray source 

was observed at the position of the two stars comprising LDS 131, with 

a flux of -0.4 ct-s'l, or ergs-ci2-s-l, implying a combined 

quiescent X-ray luminosity of -loz9 ergs-s-I and a ratio of X-ray to 





bolometric 1 umi nosi ty of between 3x10-~ and 5x10-~, depending on how 

one partitions the X-ray emission between the two dM3e stars. This 

implies a high rotation rate, with a period of around 3-7 days (K. A. 

Jensen, J. H. Swank, private communication). 

In Figure 5.5, we present a light curve from this observation. 

The break in the time axis represents a data gap of -3.3~10~ s. We 

note a small flare (on Mar 8, 1980 20:42:30 UT), with a peak flux 

about 3 times the quiesent rate, or with Lx - 4 x 1 0 ~ ~  ergs-s-l, and a 

total energy of -3x1031 ergs. Using the moderate spectral resolution 

of the IPC instrument, we found the spectrum to be consistent with the 

two temperature (0.2 keV, 1.5 keV) model used by Golub (1983). 

Studies using higher resolution X-ray data have implied the spectra 

are more realistically modelled by magnetic loops of plasma with the 

temperature vary1 ng continuously along i ts length (Swank and Johnson 

1981; Schmitt and Stajno 1985; Schri jver 1985 and references 

therein). However if we interpret the temperature and emission 

measure as rough indicators of the amount of higher and lower 

temperature material, we found we could interpret the flare with an 

. increase in the emission measure of the hotter (-1.5 keV) portion, 

consistent with other measurements of stellar coronae (Golub 1983; 

Schmi tt and Sta jno 1985). 

The source was also observed by the European X-ray Observatory 

(EXOSAT) telescope on January 13, 1986, with the CMA (behind a thin 

lexan filter) at its focus The observation was originally intended to 

be coincident with an IUE observation o f  the dMe flare, but a high 

particle flux in the vicinity of EXOSAT forced the X-ray observation 

later, overlapping only about an hour of the IUE observation. From 



Figure 5.61 The EXOSAT CMA (with th in lexan f i l t e r )  l i gh t  curve, i n  
CMA cts-s- versus time i n  hours (of January 13 1986) presented with 
two di f ferent  time binnings. I n  the top we used 30 minute bins; while 
i n  the bottom we used time bins of 5. minutes. 



the 0.2-1.5 keV spectrum, we calculated tha t  0.4 I P C  c ts -s - I  were 

equivalent t o  about 0.1 CMA cts-s-l, i n  the 0.1-2.0 keV band o f  the 

EXOSAT telescope f o r  the CMA with a t h i n  lexan f i l t e r .  From Figure 

5.6 one sees tha t  t h i s  i s  approximately what was observed, but t ha t  

the source(s) again showed indicat ions o f  var iabi  1 i t y  , inc luding a 

f a i n t  gradual f l a r e  las t ing  f o r  about an hour, wi th  a peak luminosity 

only about 30% higher than the quiescent f lux,  o r  - 4 x 1 0 ~ ~  ergs-s-l. 

The two stars were easi ly  resolved i n  the observation by the 

International U l t rav io le t  Explorer, which preceded the EXOSAT 

observation by several hours. The stars were aligned along the long 

s l i t  of the IUE spectrograph, but t i l t e d  a t  an angle o f  41" t o  the 

main axis, so tha t  t h e i r  spectra were not only dispersed by the 8.5" 

seperation o f  the pair, but the posi t ions o f  the wavelengths were 

s l i g h t l y  o f f se t  from each other. We took three long wavelength 

exposures, and three short wavelength exposures, each about 30 and 90. 

minutes long, respectively. The l i n e  f luxes o f  LDS 131b ( the f a i n t e r  

star)  appeared s l i g h t l y  brighter, on average, than those from 

LDS 131b; f o r  example, the average f l u x  i n  the br igh t  Mg I1 2800 1 

blend was -10-l2 ergs-cm-2-s-1 f o r  LDS 131b, but 

-4~10- l3  e r g ~ - a n - ~ - s - l  f o r  LDS 131a, w i th  an uncertainty o f  nearly 

25%. (The equivalent surface f luxes were calculated t o  be -5x105 and 

2xlo5, respectively, fo l lowing Linsky e t  al. 1982.) However we noted 

t h a t  the emission from LDS 131a decreased by nearly an order of 

magnitude during the -6 hour duration o f  the US2 observation, as we 

i l l u s t r a t e  wi th  Figure 5.7. The spectra were noisy, but ce r ta in l y  

consistent w i th  those o f  other act ive cool dwarf stars, as compiled i n  

Linsky e t  al. (1982). 



The 20 minute IUE long wavelength (LWP) spectra for 
top) and LDS 131b (bottom), showing the varying intensity of 

the prominent Mg 11 blend at 2800 A over the course of the 6 hour 
observation. The first and ifst exposu s in each tri let have been 
offset in the Y-axis by -10- and +lo-'' ergs-an-'-s-', respectively, 
so that the exposures are time-ordered from the bottom. 



C. The Briqht 6-Nov-77 Event Observed with OSO-8 

On November 6, 1977, from 8:18:20 t o  8:36:40 UT, the Goddard and 

Wisconsin experiments on board the OSO 8 s a t e l l i t e  detected an intense 

h m X-ray event, from 1950.0 R.A. and Dec. 20 14 2gS, 30" 53' 24" 

(Serlemitsos, Bunner, and Swank 1979). A t  peak, i t  was nearly twice 

as b r i gh t  as the Crab, wi th  a peak f l u x  o f  -5x10-~ ergs-af2-s- l ,  and 

a heavily absorbed spectrum. The source was seen t h i s  once, but never 

detected again i n  X-rays. We i l l u s t r a t e  t h i s  i n  Figure 5.8 w i th  three 

1 i g h t  curves, i n  ~ t s - c m - ~ - s - ~  versus D.O.Y. 1975, from OSO-8 

observations of the source region. The f l u x  was consistent w i th  zero 

everywhere save during the event i t s e l f .  

The source region was also observed w i th  the Einstein Observatory 

IPC. I n  Figure 5.9 we p l o t  the posi t ions o f  the three REV 1 I P C  

sources detected i n  i t s  1 x 1  f i e l d  o f  view during the observation. 

On the f i e ld ,  we have superposed 99% confidence l i m i t s  on posi t ions 

obtained from f i t t i n g  the observed count rates, w i th  a l l  scans summed, 

t o  the response o f  the Goddard detector t o  a po in t  source. The best- 

fit pos i t ion  had a reduced x2 o f  0.9, f o r  49 degrees of freedom. The 

br ightest  I P C  source, w i th  a f l u x  o f  -0.04 I P C  cts-s-l,  also f e l l  

closest t o  the er ro r  box, but a f i t  t o  the OSO 8 data assuming t h i s  

pos i t ion  increased the reduced x2 t o  2.0 ( f o r  49 degrees o f  

freedom). A1 so, the source was i den t i f i ed  as a nearby K dwarf 

(Connors and Takalo 1985; C a i l l a u l t  e t  al. 1986) ,'which i s  an 

un l i ke l y  source f o r  such a heavi ly absorbed t rans ient  event. We 

estimated the probabi l ty o f  a dM-dK star  w i th in  30 pc f a l l i n g  tha t  

close t o  the posi t ion o f  the source t o  be about 8%, and concluded tha t  





the association was serendipitous. We therefore obtained an upper 

limit on quiescent flux from the source to be < 10-l3 ergs-cm-2-s'1, 

in the 0.15-3 keV band of the Einstein IPC. Also, a search of the 

Harvard Plate Stacks uncovered no evidence of significant optical 

variability. Interestingly, there do seem to be two sources from the 

IRAS catalog within the transient error box (Hugh Johnson private 

comnunication) . 
Aside from the very high ratio of peak-to-quiescent flux 

(>5x105), the event was also unusual in its temporal 

characteristics. In Figure 5.10 we showed the light curve of the 

event itself, which was highly variables, characterized by a -2 minute 

'precursor' and dramatic -10 s 'spikes' in a roughly Gaussian 

envelope. However, this event was observed by a detector that spun 

with a period of about 10 s, so the 18 minute event was only viewed in 

'snapshots' of -2.8 s duration every -10 s rotation.   his limited the 

efficacy of timing analysis. Although to the eye the light curve 

looks suggestively like that of the intense flares from LMC X-4, 

during which 13.5 s pulsations were found (see especially the variable 

light curves at the end of Chapter 4), when we Fourier transformed the 

light curve, which was available in time bins as short as 160 ms, we 

found mainly aliases of the 10 s rotation period. A cross correlation 

analysis of the 160 ms data found no characteristic time, and in 

particular no evidence of <1 s variability. 

No spectral information was available from the Goddard OSO-8 

proportional counter experiment, but information from the University 

of Wisconsin experiment showed the average spectrum to be well fit by 

a thin thermal bremsstrahlung model with a temperature of -12.3 keV. 
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Figure 5.10 The l i g h t  curve o f  the bright transient event. i n  OSO 8 c t s - c i 2 - i 1  versus time i n  seconds. 
Each point i s  from -2.88 s o f  data out o f  each 10 s scan. 

OSO-8 6 NOV 77 FAST TRANSlENTt COUNTS VS TIME ISECI 



The spectrum is reproduced in Figure 5.11, from Serlemitsos, Bunner, 

and Swank 1979, and Bunner private communication. Bunner also noted 

the temperature fell from -20 to 4 keV during the event, with heavy 

absorbtion (NH - 2 . 3 ~ 1 0 ~ ~  cm-') remaining constant throughout. 

However, he found "no particular difference between the spectra of 

intensity peaks and minimau. The direction of the event happens to 

1 ie at the intersection of the Cygnus superbubble with a region of 

dense intersellar clouds called the Cygnus rift, where the average 

extinction is E(B-V) -0.4 kpc'l, but the material highly clumped into 

dense clouds (Lucke 1978). We therefore found it plausible to assume 

the absorption to have been interstellar in nature, implying a 

distance of between 2 to 7 kpc, a peak luminosity of 

3x10~'-~* ergs-r-l, and an upper 1 imit on quiescent luminosity of 

< 1032 ergs-s-1. 

The properties of this event do not match those of any other 

ident if fed transient, a1 though the apparent high luminosity suggests 

an origin on a compact object. The light curve was highly unusual. 

Although repeated sub-bursts in classic gamma-ray bursts tend to 

soften from event to event, they very rarely repeat for more than a 

few minutes, and the spectra are harder than is possible to fit with a 

thermal model in this energy range, particularly at the onset; they 

also show significant hard-to soft spectral variations within each 

peak (see Connors, Hueter, and Serlemi tsos 1988). Soft gamma-ray 

repeaters (Atteia et al. 1987) are even less 1 ikely to exhibit 

repeated peaks this closely spaced in an event lasting tens of 

minutes; also, they exhibit very rapid variablity on time-scales as 

short as milliseconds. The dearth of quiescent X-ray flux appears to 



Fiqure 5.11 The average spectrum of the event, from the Wisconsin 
experiment on 050 8, taken from Serlemitsos, Bunner, and Swank (1979), 
and A. Bunner (private communication). 



rule out an identification with a flare from a classic X-ray binary. 

Not only was the light curve very different from those observed from 

X-ray burst sources, but the spectrum was clearly not a black-body 

spectrum, or even a super-position of black-body spectra. The 

apparent high luminosity even suggests this event was dissimilar to 

the hard fast transients of Chapter 3, which we found constrained to 

be less than ergs-s-l. The lack of  quasi-periodic recurrence 

and stringent 1 imits on quiescent flux also makes identification with 

a Be-neutron star binary questionable. We are left with the 

conclusion that there are rare types of transients that we do not yet 

understand, and until a similar event is detected from a region not 

heavily obscured by thick interstellar clouds, we are unlikely to be 

able to definitively identify the source population. 



Chapter 6 

Conclusions and Future Prospects 

A. Sumnary 

In the first chapter, we introduced the study of X-ray 

variability, and divided it into two kinds: an interuption of X- 

radiation from a source that was radiating continuously (as in X-ray 

eclipses); or a transient release of stored energy. Throughout this 

work, except in Chapter 4, we have dealt predominantly with the 

latter. We have concentrated on fast transient activity from sources 

that are, for the most part, X-ray dark (quiescent luminosities 

< lo3' ergs-s-l), with X-ray emission detectable mainly during 

outburst or flare activity. When that rare event occurs, one can 

briefly discern some of the underlying physical properties of the 

emitting region. 

These transient events encompassed quite a range of physical 

phenomena, from el ectromagnet i c energy re 1 ease in p 1 asmas conf i ned by 

- 1000 gauss magnetic fields in the atmospheres of stars less dense 
than the sun, to the release of nuclear or gravitational potential 

energy on the surface of a neutron star, moderated by fields of - 10'' 
gauss. Below we sketch out the scenario of X-ray fast transient 

activity over the whole sky, as it has been presented in this 

thesis. We move from the least luminous events to the most luminous, 

therefore proceeding from nearby sources (< 100 pc) to those visible 

(above 10-lo ergs-crn-'-s-l) from distances of - 0.5 Mpc. 

As we wrote at the beginning, the patterns we discerned are often 



at the limits of detectability. When considering possible 

identifications of barely detectable events, we imp1 ici tly assumed 

that they were similar to events that had been observed previously 

with greater clarity. New phenomena could therefore have been 

misidentified. Many of the identifications we summarize below were 

based on statistical or plausibility arguments. Therefore at the end 

one is left with few strong statements (such as a reasonable 

measurement of all-sky X-ray flaring activity among cool dwarf stars), 

but many directions for future inquiry, 

In the HEAO 1 A-2 all-sky survey described in Chapter 3, out of . 

- 104 days (-2x10~ 5.12 s intervals during which at least one out of 

four detectors was 'on'), we found 15 good events. We inferred 8 of 

them to be flares from cool dwarf stars with active coronae. Stellar 

flares have a low peak luminosity (< lo3' ergs-s-l 2-20 keV) , but dMe- 
dKe stars have a high space density (- 1 per 25 pc3). The flare 

frequency goes (very roughly) as the inverse of the total flare 

energy, with a maximum energy of ergs (2-20 keV), and with 

roughly 10% of the total event energy emitted in X-rays. The spectra 

were we1 1 fit by unabsorbed, cool ing, thin thermal bremsstrahlung 

models, with peak temperatures of - lo6-* K. Overall we saw these 

events to be distributed isotropical ly, consistent with a local 

origin, with a rate over the whole sky of something 1 ike lo4 per year 

over the whole sky above our minimum flux level of 

10-lo ergs-cm-2-s-1. This is equivalent to a time averaged total 

power of 4 x 1 0 ~ ~  ergs-s-l released in 2-20 keV X-rays throughout the 

Gal axy. 

Our case for the identification of so many events with stellar 



flares was based on statistical arguments, and on the properties of 

the small number of flares observed in X-rays. One of the most 

prominent of these was described in some detail in Chapter 5. From 

the narrow A-2 position error box and the X-ray brightness of LDS 131 

when observed with the Einstein Observatory IPC and EXOSAT CMA, we 

strongly confirmed the original identification from A-3 and A-4 data 

by Griffiths et al. (1979). From the time-scales, intensity, and 

spectra of its variable X-ray activity (and UV and optical activity), 

we briefly traced the geometries of the emitting regions. We compared 

our observations to those of other active coronae stars. Giampapa and 

Liebert (1986) have demonstrated the shortcomings of the current 

decriptions of stel 1 ar coronae, which feature an atmosphere decreasing 

in density with increasing height, confined by magnetic field loops, 

attached via the assumption of comnon boundary conditions to the 

surface (photosphere) o f  an older, spherically symnetric, model of a 

cool main sequence star. Thi s empirical description, when coupled 

with calculations of an internal stellar dynamo, leads to a prediction 

of a cessation of magnetic activity in very dim, low mass, stars, that 

seems counter the activity that has been observed. 

We now direct our attention further outward. In the Galaxy, we 

found this faint I sotropic f 1 ickering of X-ray flares from ubiquitous 

dMe-dKe stars appeared to be superposed on a disk distribution of 

harder, more luminous, fast transient events, which we tentatively 

identified as outbursts from neutron star-Be star systems. (These are 

normally X-ray faint, L, < ergs-s'l, until optical activity and 

the approach of the neutron star at periastron apparently allow mass 

accretion, triggering a sudden increase in X-ray luminosity, with 



LX - 1035-37 ergs-s-l.) We suggested that 5 of the HEAO 1 A-2 a1 1-sky 

fast transients (those with harder spectra and near the Galactic 

plane) to be members of this class of rarely visible neutron star 

systems. We suggested the short term variablilty observed in some 

events may turn out to be evidence of pulsations. From very 

preliminary work mapping out small slices of the Galactic disk, we 

suggest there may be -lo3 of these systems, contributing an overall 

time-averaged 2-20 keV X-ray luminosity to the Galaxy of at most 

37 1 10 ergs-s' . 
But is this tentative identification really correct ? X-ray 

surveys of the Galactic plane with imaging instruments have not 

proposed this class of very hard, - few hour, X-ray transients. 
Warwick et a1 (1985), using EXOSAT data, and Koyama, Ikeuchi, and 

Tomisaka (1986), using TENMA data, simply did not see them; while 

Hertz and Grind1 ay (1984), considering El nstei n 0.15-4.5 keV data, 

proposed instead that they had detected foreground CVs (which are 

often less luminous above 2 keV), and suggested that the CV number 

densities inferred from optically selected samples may have been 

underestimates by an order of magnitude. It is possible that the hard 

Galactic plane transients that we propose have spectra which are too 

hard or highly absorbed, or that the number density (<0.2 per square 

degree) is too low, to be detected by the Einstein IPC or EXOSAT 

CMA. There may be preliminary evidence from a more extensive GINGA 

survey of the Galactic plane supporting the Be-system hypothesis 

(Koyama et a1 1988). If these systems are 1 ike closer neutron star-Be 

star systems, at least 50% should show evidence (pulsations) of 

12 magnetic fields of - 10 gauss, leading to the interesting question 



of what fraction of the total power pumped into cosmic rays over the 

whole Galaxy comes from these hypothetical -lo3 spinni ng compact 

objects. 

Among the events picked up by the A-2 fast transient survey, 

there are a few rarer events. One of these is the bright gamma-ray 

burst observed through the sides of the A-2 detectors. Only one X-ray 

counterpart to a gamna-ray burst was observed through the front of the 

HEAO 1 A-2 detectors, and since that was during a pointed manuever, it 

was not in data meeting the fast transient search criteria (Connors, 

Hueter, and Serlemitsos 1988). The burst, with a >30 keV fluence of 

7x10-~ ergs-an-', lasted for over a minute below 30 keV, had a 2-20 

keV X-rays fluence on the order of 1-3x10-~ ergs-an-', and was over 

two orders of magnitude above our search threshold. We noted that 

.although the HEAO 1.A-2 fast transient search had a threshold over two 

orders of magnitude lower than that using the A-4 experiment (fluences 

of lo-' ergs-at-' vs lo-' ergs-an-'), which was co-a1 igned with A-2 

but had a much larger field of view, the A-4 experiment detected 

roughly an order of magnitude more gamna-ray bursts through the front 

of its detectors during the lifetime of the HEAO 1 satellite (Hueter 

1987). In other words, we are already seeing across the Galaxy at 

fluences of - ergs-an-', implying the energy released in a single 

gamma-ray burst is something like ergs, and the 90% upper limit 

on the total rate throughout the Galaxy is less than 1300 per year. 

With an assumption of an - 8 yr recurrence time (Schaefer and C1 ine 
1985), this imp1 ies a total Galactic source population of something 

like lo4. 

In Figure 6.1, we plot estimates of event rate per year above a 



certain fluence as a function of that fluence, on a log-log scale, for 

fast transient events (not quiescent emission) from cool dwarf stars, 
RS CVn-type systems, Cataclysmic variables, and both X- and gamma-ray 

bursts. (We chose fluence (ergs-an-') rather than flux 

2 1 (ergs-an' -s' ) because the probabi 1 i ty of detecting an event, in many 

types of X-ray instruments, is more nearly proportional to the former 

than the latter. In the HEAO 1 A-2 fast transient search, with a flux 

threshold of ergs-an-2-s-1, the mi nimum f luence for detect1 ng 

X-ray flares from dMe-dKe stars was effectively just over lo-' 

ergs-an-2 (2-20 keV) , whi le for the longer flares from RS CVn-type 

systems it was closer to ergs-tS2.) The plot does not reflect 

our uncertainty in normalization o f  the rates o f  each type of event. 

The curve for flares from dMe-dKe stars is probably the best- 

determined. We used the normalization determined in Chapter 3 and 

Appendix 8, wlth an uncertainty of only about a factor of three, and 

assumed a scale height of -300 pc (Allen 1973) and a maximum energy of 

ergs (2-20 keV) . The lack of turnover at low f luences reflects 
the intrinsic rate versus size spectrum of flares from each star. We 

then assumed that the rate of flares from the active subgiants in 

RS CVn-type systems followed a similar functional form, but noted that 

the A-2 fast transient search had found fewer triggers from 

RS CVn-type systems by about a factor of 2-4. We suggest the curve 

plotted for these systems to be uncertain by roughly a.factor of ten 

in the normalization. 

Since we had excluded some regions containing X-ray bursters from 

the all-sky transient search, we could not use the results of this 

survey to estimate X-ray burst rates. Instead we used the estimates 



of burst frequency in Bradt and McClintock (1983), and note that the 

distribution of X-ray burst sources and the intrinsic luminosities of 

X-ray bursts have been well determined (Ebisuzaki 1987). We estimate 

this curve to have an overall uncertainty in normalization of roughly 

an order of magnitude. 

Our estimate of the gamna-ray burst log event rate versus log 

event f luence curve came from combining the A-2 survey upper 1 imi ts 

with rates from the HEAO 1 A-4 ganvna-ray burst survey (Hueter 1987) by 

assuming that the one burst observed through the fronts of both 

experiments was represenative except for being softer than average. 

We note, following Jennings (1987), that the normalization at high 

fluences is apt to be highly uncertain (because of the difficulty of 

correctly calculating burst f luences) , but point to the evidence 
sumnarized above for a flattening, and a 90% upper limit on the gamna- 

ray burst rate of 1300 bursts per year over the whole sky, below 

2 -loo9 e r g s - d  . 
Perhaps the most intriguing curves are for the types of events we 

did not plot in Figure 6.1: those that remain unidentified, whether 

from this search (D436.84) or from different experiments entirely 

(Serlemi tsos, Bunner, and Swank 1979 - see Chapter 5; Ambruster and 

Wood 1986; Pye and McHardy 1983; Helfand and Vrti lek 1983). We 

-. 
estimated, based on a single detection each, that the rate curves for 

hard events such as the bright 6-Nov-77 transient and the hard and/or 

absorbed unidentified events from the HEAO A-1 and A-2 searches 

probably lie somewhere between that for gamma-ray bursts and our 

estimate of flares from RS CVn-type systems. 

All these X-ray fast transient events are set against a backdrop 



of  the - 100 very luminous (- 10 37-38 ergs-s-l) Gal ac t  i c  X-ray 

sources, the accreting high and low mass binar ies t h a t  we touched on 

b r i e f l y  i n  Chapter 3. These b r igh tes t  X-ray sources are the ones we 

concentrated on i n  Chapter 4, which described the HEAO 1 A-2 f a s t  

t rans ient  survey o f  the Magellanic Clouds. Out o f  37 events, we 

i den t i f i ed  a l l  but  two w i th  four  out o f  f i v e  o f  the most X-ray 

luminous sources i n  the Large Magel 1 anic Cloud. We i d e n t i f i e d  the 

other two w i t h  f l a r e s  from a nearby RS CVn-type system. We detected 

none from the Small Magellanic Cloud. We a t t r i bu ted  the  remaining 

t h i r t y - f i v e  events t o  four  o f  the f i v e  br ightest  X-ray b inar ies i n  the 

LMC. In terest ing ly ,  we found no events we could p laus ib ly  a t t r i b u t e  

t o  the high mass binary and black hole candidate LMC X-3. We 

i d e n t i f i e d  e igh t  events w i t h  the roughly per iod ic  (-16.7 days) 

outbursts from the high mass binary A0538-66, the LMC Transient. We 

a t t r ibu ted  two (one year apart) t o  the low mass b inary  LMC X-2, and 

f i v e  events t o  the luminous high mass X-ray binary LMC X-1. The 

events from both sources appeared s im i l a r  t o  those from luminous high 

and low mass Galact ic X-ray b inar ies touched on i n  Chapter 3. 

We a t t r i bu ted  the remaining twenty events t o  the high mass 

ec l ips ing b inary  pulsar LMC X-4, which also exh ib i t s  an overa l l  

i n tens i t y  modulation on a -30.5 day cyc le  (Li, Rappaport, and Epstein 

1978; White 1978; Kel ley e t  a1 1983; Lang e t  a l .  1981). We 

suggested t h a t  one event out o f  the  twenty was a t r i g g e r  on the change 

i n  X-ray f l u x  during ecl ipse egress, although tha t  event was 

abnormally br ight .  We i d e n t i f i e d  the remaining nineteen events, w i th  

20-60 minute long h igh ly  luminous f l a r e s  (bLx/LEdd - 0.5-20). which 

a l l  occured between phases 0.2 and 0.5 o f  the 30.5 day cycle. 



We found no gamna-ray bursts (despite high coverage of the 

repeating gamma-ray burster associated with the SNR N49), and we found 

no events that may be typical Type I (or 11) X-ray bursts. These 

conclusions were independent of our identifying a1 1 thi rty-seven 

events with known luminous X-ray sources, and was based on the shape 

of the -1 minute light curves and the lack of characteristic burst 

cool ing seen during each event. We calculated a 90% upper 1 imi t on 

the average number of X-ray bursts per source per year from the LMC of 

< 1 per 0.43 days. This is consistent with the average rate of -0.34 

per source per year seen from the Milky Way; however, it is 

interesting to note that no observer has yet detected any 'moderate 

luminosityi, moderate accretion rate Pop I1 X-ray binaries in the LMC, 

of the sort responsible for the majority of X-ray bursts in our 

Galaxy. In fact, this survey found no events from sources invisible 

to the Columbia Astrophysical Laboratory Einstien LMC survey, hidden 

either by high column density or long term variablity. 

B. Thouqhts for the Future 

i. The Maqellanic Clouds 

As a consequence of both the satellite orbit and proximity of 

these sources to the South Ecliptic pole, HEAO 1 observations of the 

Magellanic Clouds provide continuing opportunities to track the long 

term behavior of these luminous X-ray binaries. Of particular 

interest are the spectral variations accompanying the variations in 

intensity indicated by in this search. There were suggestions in the 

events from the LMC Transient (A0538-66) of the shorter variations 

being harder than the overall outbursts, but it was not at all 



conclusive, In the twenty events detected from LMC X-4, no underlying 

pattern of spectral variabi 1 i ty seemed clear. In particular, since 

this effort apparently documented so many luminous flares from this 

system, it may be possible in the future to consider the statistical 

properties of these superluminal outbursts. Also, it was not clear 

how the phase portrait of the binary period changed with time; the 

brightness of one of our events seemed to indicate that the -1.4 day 

light curve was not always similar to the earlier observations of 

White (1978). 

The upper 1 imit obtained by this HEAO 1 A-2 search on X-ray 

bursts from the Magellanic Clouds was intriguing but not conclusive. 

The launch o f  the Japanese satellite GINGA fn early 1987 may make it 

possible to extend this limit, The smaller field of view of the GINGA 

Large Area Proportional Counters (-2.~~~4' FWFM) imp1 ies that the 

sate1 1 ite will have a smaller expected number of possible bursters 

within its field of view each time it scans the Magellanic Clouds; 

however these tighter field of view will reduce source confusion 

problems, and the larger area counter (-4000 cm2 for LAC versus 

-800 cm2 for each HEAO 1 A-2 detector) will help reduce the effective 

threshold for triggers on a burst. With the advent of Supernova 1987a 

near LMC X-1 in the Magel lanic Clouds and the subsequent GINGA 

monitoring program, researchers may accumulate sufficient coverage of 

this region to substantially lower the HEAO 1 A-2 upper limit on X-ray 

bursts (Ebi suzaki private communication), 

ii. The All-Sky Survey for Fast X-ray Transients 

Unlike the Magellanic Clouds survey, the all-sky fast transient 



survey dealt with stars that are primarily X-ray dark. We divided the 

events we found into two rough categories: softer and unabsorbed 

'coronal' fast transients, originating from the active cornae of cool 

dwarf stars; and 'hard' fast transients, with harder or more highly - 

absorbed power law specta, presumably from compact objects, found 

mostly along the Galactic plane. 

The coronal sources, such as dMe-dKe stars and RS CVn-type 

systems, which could only be detected by the HEAO 1 A-2 MED and HE0 

detectors during bright flares, are easily observed both in quiesence 

and during small flares at softer wavebands accesible to most X-ray 

telescopes. There is some speculation that the total energy budget of 

an active coronae comes from heating by numerous small flares, which 

become increasingly difficult to measure as the flare size 

decreases. Figure 6.1 i 1 lustrates that, since the frequency of 

flaring activity increases as flare size decreases, i ncreasi ngly 

sensitive X-ray experiments (ROSAT, AXAF, with detection 1 imi ts on the 

order of 10' 11-12 ergs-cm-') should observe >5 times as many 

serendipitous stellar flares per year as did this fast transient 

survey, despite their smaller fileds of view. 

Interesting follow up studies of coronal sources include mapping 

the cycles of activity over long periods of time. Is the X-ray flux 

modulated by rotation in the way one expects from observing optical 

and ultraviolet emission lines ? Does the rough correspondence 

between U-band and X-ray flare activity, delineated in Chapter 3 and 

Appendix 0, hold when scrutinized in greater detail ? As a long time- 

scale database is accumulated, does one find evidence for decades-long 

cycles of stellar activity analogous to the 11 year sunspot cycle ? 



Does this account for differences in activity of stars of otherwise 

similar spectral type ? One is interested, eventually, not only in 

detailed measurements of the physical mechanisms driving individual 

bright stellar flares, but in measuring varied flares from a broad 

sample of stars, for indications of stellar activity as a.function of 

stellar mass, age, and rotation rate. 

One of the most significant preliminary results coming out of 

thfs.work is the suggestion of hard, -few hour, fast transients (some 

showing < 1 minute variability) along the Galactic plane. If the 

'hard' fast transients are like either some Be-neutron star systems, 

which can undergo quasi-periodic outbursts at times of optical 

activity ("Class 11" of van den Heuvel and Rappaport 1986) , or 1 1 ke 

gamna-ray burst sources, these objects wi 11 be virtually undetectable 

save during outbursts. That makes follow-up X-ray monitoring of the 

"hard"trans1ents impractical in the extreme - the recurrence time for 
I 

gamna-ray bursts is estimated to be on the order of years, while we 

suggest that for the Be-neutron star systems to be at best once a 
I month. For these infrequently detectable X-ray sources, one must - 

either take advantage of all data on an individual source, while it 

was on; or rely on surveys of the whole sky, for properties of the 

class as a whole. The HEAO 1 A-2 database, with its stable detector 

background, -2-60 keV spectral range, observing each point on the sky 

every 0.5-2 hours (for -100 s) for a week at a time, is ideal for 

investigating this hypothesized class of sources. However the current 

software tools are not set up for observing objects that vary on this 

time-scale (that is, -hours): they are set up for either events that 

last seconds to minutes (software used in this search) or > 12 hours 



(software used to make A-2 catalog). If this hypothetical class of 

sources does exist, it should be visible umnistakeably, in the A-2 

data, and wants only the application of the proper software tools to 

deny or confirm (and illuminate) its existence. We suggest the 

clearest way to identify these sources is to map out the Galactic 

plane (and enough on either side to differentiate any isotropic 

populations) using integration times of several hours. (Some 

difficulty may be i ntroduced by the expectation that -50% will vary, 

if they are Be star pulsars, but not enough to warrant the additional 

computer time necessary for using tools such as the FINDP programs 

detailed in Appendix B, which are independent of such short time-scale 

vari at i ons . ) After sources have. been i dent i f i ed , the search for 
pul sations could prove interesting. 

Since there were three other experiments besides A-2 on the 

HEAO 1 spacecraft (A-1, A-3, and A-4) It may be possible to get 

additional information on particularly interesting outbursts from 

these complementary databases. The A-4 experiment was coal igned with 

the A-2 detectors, had a much wider field of view, and covered a 

hSgher energy band (-30 kev-3 MeV). However, because o f  its small 

area, it was unlikely to have detected any of the A-2 fast 

transients. (Compare the threshold of the A-2 survey with that of the 

, A-4 gamna-ray burst survey of Heuter 1987, for example.) The A-3 

experiment, with the capapbility of constraining the positions of 

sources to within repeated error diamonds a few arcminutes on a side, - 

also was a smaller area instrument, co-aligned with A-2 and A-4. 

Although the brightest fast transient event, that from LDS 131 on 

0405.85, was detected with over 20a significance, the moderate 



intensity flare attributed to AT Mic (on D298.62) appeared 

insiginificant, at most as a 'bare warming' in the A-3 detectors (R. 

Remillard private communication). The events with A-2 fluxes between 

that of these two events have not yet been thoroughly investigated in 

A-3 data, but may also prove too faint for significant detection. If 

the events from near the Galactic plane (D249.36, D343.12, 0342.23, 

D345.62, and D494.15) were associated with low-level persistent 

emission lasting for hours or days, the A-3 experiment, which had less 

problems with source confusion, may have detected sufficient photons 

to set signifi;ant constraints on the source positions. The A-1 

instrument incorporated detectors with 1 arger areas than the A-2 

instruments, covering an -0.25-25 keV energy range. All but one of 

the seven A-1 modules pointed 180" away from the A-2 main detector 

axis; the seventh had a wide field of view in the direction of scan 

(7' M M )  and often had d high -background rate, making detection of 
faint transient events difficult. Ambruster and Wood (1986) surveyed 

the first six months of data from the six coaligned A-1 modules, in a 

fast transient survey similar to this one. As evident from Chapter 3, 

we referenced results from this complementary search to set 

constraints on source populations and occasional ly event durations. 

. However, the remainder of the A-1 database has yet to be 

comprehensively surveyed in this manner. Also, two of the A-1 modules 

had quite small fields of view, so it may be possible to more tightly 

constrain the positions of the sources of these events, if the event - 
durations were greater than -lo3 s. The eventual goal would be 

constraints on the optical counterparts of the sources of these fast 

X-ray transient events. 



We have not yet addressed follow-up studies of the rare, hard, 

events, that we think are unlikely to be identified with Be-neutron 

star systems, such as that from the A-2 survey on 0436.84, or that on 

6-Nov-77 observed with the 050-8 detectors. One method of identifying 

poss 1 bl e source popu 1 at i ons i s by more stringent 1 y constraining the 

rates of such events over the whole sky, Other interesting events - 
such as the bright X-ray counterpart to a gamna-ray burst - were found 
by chance in HEAO 1 A-2 pointing data (which was not used in this 

survey). Since the incidence of fast transient events in HEAO 1 A-2 

pointed data has not yet been completely investigated, accurate 

estimates of event rates for these interesting classes are 

difficult. Also, some bright events were observed in densely 

populated regions of the sky and may have been misidentified (see 

Chapter 3). With only slight modifications of the software tools used 

in the a1 1-sky survey and the survey of the Magel lanic Clouds, it 

would be possible to: 

1. penetrate densely populated regions more carefully (the remaining 

7-10% of the scanning database) after the manner of the LMC 

survey; 

2. survey any unexamined pointed data, including blank-sky points 

(particularly- along the Galactic plane), data from the offset 

(HED1) detector, and transients bright enough to be di st i ngui shed 

by position and/or variabi 1 i ty from the target source, (Although 

A-2 data from some blank sky points were investigated by Tennant 

(1983) in his study of the X-ray variability of active Galaxies, a 

complete survey for fast transient activity - particularly using 
data near the Galactic plane and from the offset H E D l  detector - 



has not been performed . ) 
More complete, more sophisticated, fits of event rates over the whole 

sky (perhaps a1 lowing for differences in Galactic latitude and 

longitude) would then be possible. Since gamna-ray bursts are so 

X-ray bright, lasting (in 2-20 keV X-rays) for -100 s, constraining 

gamma-ray burst event rates with HEAO 1 data alone would be 

particularly exciting. However we point out, even using the current 

software tools, some regions containing bright and highly variable 

sources (such as Cyg X-1) trigger so often that thoroughly 

investigating them would be cumbersome and extremely time consuming . 
What about the possi bi 1 i ty of future X-ray missions observing and 

identifying these rare types of fast transient events ? We point out 

that in the compromise between wide field of view and high spatial 

resolution, after a decade of f 1 yi ng col 1 imated proportional counters, 

the U.S. space science conununity has moved towards flying higher 

resolution instruments, with greatly increased sensitivities, but with 

an order of magnitude smaller fields of view. However useful it may 

be to resolve the X-ray sky when one is studying other types of X-ray 

sources (sources of diffuse emission, such as supernova remnants, or 

clusters of Galaxies, as well as AGNs and persistent Galactic X-ray 

sources), and however psychologically satisfying it seems to finally 

"seeN the X-ray sky, a glance at Figure 6.1 shows that greatly 

increased sensitivity is unlikely to be enough to counterbalance the 

smaller fields of view for observing the "hardtt fast transients. For 

example, during the -1% years HEAO 1 was aloft, in the combined A-2 

fields of view of - 2 ~ 6 ~ x 3 "  (FWHM), we detected one X-ray counterpart 

to a gamma-ray burst. Since it appears that we are already seeing 



across the Galaxy at f luences of ergs-an-2, any increase in 

sensitivity leads to no greater number of detectable X-ray 

counterparts to gamma-ray bursts. Therefore even an instrument with a 

Z0x2" field of view (EXOSAT CMA, or ROSAT), if it had a comparable 

percentage of 'on' time as HEAO 1 A-2, would have to observe for 

-seven years before detecting one event. Instruments with smaller 

fields of view (XM, XTE, AXAF), one predicts, would have to observe 

for decades - clearly impractical (a1 though if one is observed by any 
of the proposed high resolution instruments, it would be a spectacular 

find). Even attempting to observe classic gamna-ray bursts from the 

Magellanic Clouds would be prohibitive. Scaling down from the 

Galactic rate by the ratio of the masses of the Milky Way and the 

Magel lanic Clouds, one expects 400 per year from the LMC as a whole, 

or (if they are distributed isotropically) -2 bursts per year per 

square degree. Even with the advent of SN1987a (an exciting X-ray 

target in the LMC), a high resolution X-ray instrument is unlikely to 

stay pointed at the Magellanic Clouds for the better part of a year. 

At the other extreme are instruments with wide fields of view, 

but much smaller effective area at -10 keV (including a 5"xS0 s o f t  

X-ray - extreme ultraviolet instrument on ROSAT, a -2"x90° sky monitor 
on XTE; and the gamna-ray burst monitoring experiments). These share 

a drawback with many hard X-ray and gamma-ray detectors, in that they 

can only observe the srongest f 1 uence events (typical ly >lo-'-' 

ergs-an-'), and so would miss the rare hard transient events discussed 

here, which apparently have spectra, fluences, and source 

distributions falling between those of gamma-ray bursts and the more 

energetic coronal events from RS CVn-type systems. The exceptions may 



prove to be instruments somewhat similar to HEAO 1 flown by other . 

nations, including the Large Area Counters of the Japanese satellite 

GINGA, and the proposed Soviet Mission GRANAT (although the latter may 

have too high a threshold). 

In other words, one of the most intriguing classes of events 

discussed in this survey, the rare hard fast transients, with 

characteristics intermediate between gamna-ray bursts and energetic 

coronal flares, may be undetectable by future U.S. X-ray missions. By 

historical accident, they were viewed for a decade, whi le moderate 

sensi tivi ty, moderate field of view instruments, with broad (-1-60 

keV) spectral coverage, were being flown. In the future (with 

apologies to Santayana op. ci t. Robinson-Saba 1983 p. i i) , these 

usually X-dark objects may flash signals o f  their nature, with no 

X-ray eyes scanning the sky to detect them. 

Ground-based optical programs surveying wide fields for fast 

transient activity may prove 1 ess expensive than space-based 

programs. Two such experiments, the Explosive Transient Camera and 

the coordinated Rapidly Moving Telescope, designed to search for 

optical flashes from gamma-ray bursts, will probably also trigger on 

other types of fast transient activity, Including stellar coronal 

flares. If any of the hard X-ray fast transients also flash in the 

optical, one may be able to measure event rates and identify the 

sources from the ground. However, if these sources are heavi 1 y 

absorbed even during outbursts, as the X-ray spectra may indicate, 

they may be undetectable by even these wide-field ground-based 

transient searches. 



Fiqure 6.1 A rough plot of the observed rate of events per year, for 

four diferent kinds of X-ray fast transient events, as a function of 

instrument sensitivity, measured in f luence (ergs-an-' 2-20 keV) . 



Appendix A 

1. Calculation of Fast Transient Search Thresholds 

We chose to err on the side of caution, and so required -60 

confidence, which' is equivalent to requiring the probabi 1 i ty of a 

spurious trigger (in a single time bin) due to Poisson noise to be 

less than -2xl0-~. In the first phase of the HEAO 1 A-2 fast 

6 transient survey, the "source free-earch, we examined -2x10 5.12 s 

bins (and four times that number of 1.28 s bins); and for the "all- 

sky* search we examined an additional 1.6~10~ 5.12 s time bins. We 

calculate an expected number of spurious triggers due to statistical 

fluctuations of -0.02. 

Whenever possible, we required coincidence among co-aligned 

detectors. If more than one of the co-aligned instruments were 'on', 

our requirement that the total probability be r2x10-~ translated into 

the requirement that the product of the probabilities (of spurious 

I triggers due to Poisson fluctuations) be less than this limit. Let 

PA(i), PB(i), and PC(i) represent the probabilities of finding by 

I 
chance a count-rate above the trigger levels in time bin 'i' from 

detectors A, B, and C. In the simplest case, which is what we chose 

to work with for the HEAO I A-2 fast transient search,. one requires, 

9 4 9 4 for two detectors 'on1, PA(i)r(2xlO- ) and PB(i)_<(2xl0- ) ; and for 

three detectors Ion1 , ~~(i)r(2x10-~) "', ~~(l)s(2x10-~) ' I 3 ,  and 

~~(i)s(2xl0-~) '". Using the notation of Chapter 2, if the expected 

count-rate in the ith time bin is Co(i), and the current count rate is 

1 C ( i ) ,  and one defines the parameter n=(C(l)-Co(i))/(c0(i))f, then, for 

a Poisson distribution, the upper limits on probability calculated 



above will be satisfied if, for only one detector 'on', nz6; for two 

co-aligned detectors 'on', n13.89; and for three n12.98. This is for 

the simplest case: triggering on a significant excess in count-rate 

in a single 5.12 s (or 1.28 s) time bin. These were the threshold 

level s used in the "source-freen search. 

The results from the first phase of our survey, the "source-free" 

search, demonstrated that the majority of our events glowed with 

roughly constant intensity for the entire -80 s it took for both the 

co-aligned and (trailing) offset detectors to sweep over a point 

source. We wished to take advantage of this long duration to lower 

our effective thresholds, by integrating over a longer time interval 

in a way which took into account the triangular response of the 

coll imated detectors as they passed over a point source. Since HEAO 1 

rotated at a rate of -lo every 5.12 s, it took -16 s for the -1.s0 

FWHh fields of view to scan past a point source (twice that for the 

-3' FWHM fields of view); and about 30 s for that point source to 

travel from the center of the co-aligned detectors' fields of view to 

that of the offset detector; HED1. We therefore consider the profile 

of a constant point source, as the detectors sweep past, on time- 

scales of three 5.12 s bins, and then eight 5.12 s bins. Let time bin 

' i ' contain the time of peak detector response, and let the time bins 
on either side be labeled by 'i-1' and Ii+lt. In general one does not 

know where the boundaries of the 5.12 s interval will fall, with 

respect to the time of the peak detector response, and so one does not 

find a general expression for the flux in bin i+l, given that in bin i 

(or for the flux in bin i, given that in bin i-1). However, we 

calculate the ratio of the excess flux in the ith time bin to the sum 



of the excess flux in bins to either side, 

( 1 - 1 - C 0 - 1  + C(i+l)-CO(i+l))/(C(i)-CO(i)), 

depends only weakly on the position of the time of peak detector 

response within the ith 5.12 s time interval. 

Let TI represent the displacement of the time of peak response 

from the center of time bin 'i I ,  measured in degrees. We consider the 

effective area EFFi , on a source stationed at scan angle +PO and an 
off-scan angle e=el, of the combined -3' and 1.5' fields of vlew (as 

was the case in the HEAO 1 A-2 fast transient survey for the two co- 

aligned detectors that were most frequently 'on1). Let u designate 

the satellite spin rate of -1' every 5.12 seconds, ht the integration 

time of 5.12 s, e0 the collimator opening angle in the offscan 

dlrectlon (which is -3' for all detector fields of vlew), and 40 the 

maximum collimator opening angle in the scan direction, which for this 

case is -3'. ' (Note that I.~)')UA~ 1 .) We calculate 

L 
T I  .UAt 

el EFFi = l-z(wAt' )(1+1 ), and 
40 0 

If CO(i) represents the expected count rate in the combined 

fields of view of a detector during the time bin 'il, and C(i) 

represents the current count-rate, which includes an excess 

contribution from a fast transient source, we calculate the expected 

value of the ratio 



to be 2/5/3, or -1.2. 

Therefore, when investigating a flux increase over three 5.12 s 

time bins, our requirement that the total probability of spurious 

triggers due to Poisson fluctuations be less than 2xl0-~ becomes that 

the excess flux in the ith time bin, measured in units of 

~=(C(~)-C~())/(C~()), be greater than n15, and that the sum of the 

excess flux in the i-lSt and i+lst (measured in the same manner) be 

greater than 1.2xn15; where, for one detector 'on', n15~4.23; for 

two coaligned detectors 'on', n15~2.68; and for all three 'on', 

n15=1.96. 

For the case of a fast transient event with an intensity that 

stays constant for the entire -80 s that it is in the fields of view 

of the A-2 experiment, a detection in the offset detector (HED1, which 

trails the co-aligned ones by -30 s) can in effect be considered as 

simultaneous with detections in the co-aligned instruments. If the 

offset detector and only one co-a1 igned detector w e d  on, the 

threshold (for >60 s events) was set at n60~2.68; for the offset 

detector and two co-aligned detectors 'on', we set n6011.96; if all 

four detectors were on, the threshold was set to its lowest level of 

n60=1.51. We have tabulated these values in the first table of 

Chapter 2. 

2. Calculation of Detection Probabi 1 i ties: 

Deconvolving the Response of Collimated, Scanninq Detectors 

Here we assume that our small sample of fast transient events is 

representative of events over the whole sky, and infer from it event 

distribution rates. We have made two further assumptions to simp1 ify 



this particular calculation: 

1. We have assumed the sky is more or less isotropic - we have not 
taken into account any variation of the sky wlth Galactic 1'' and 

bI1, for example. Any anisotropy would only be reflected in a 

slope of the Log Number vs Log Intensity function that differed 

from -3/2. 

2. For this work, we have only performed our event frequency 

calculations and fits for the "source-freen search, and so for now 

have side-stepped the questions of changing trigger 1 eve1 s with 

changing position on the sky inherent in our search of "source- 

fulln areas. It may be that the complete calculation will be 

performed for Connors, Heuter, and Serlemitsos (1988). 

With these caveats in mind, we proceed to calculate probabilities of 

detecting events in the Ysource-free* HEAO 1 A-2 fast transient 

search. 

Consider the probability Pl(S,t) of detecting a transient of 

intensity 5 (measured in cts-s-l), wlth duration r ,  at scan 

co-latitude and longitude (e,4). As illustrated in Figure A.1, there 

is a limited region of sky, A,, from which a collimated detector can 

start at time to in order to have this event in its field of view 

while the event (pictured as occurring at the origin) is on. The 

collimator opening angles are eo and I$~; the experiment rotates at a 

rate rl in the scan latitude direction, and at a rate w2 << ul in the 

scan longitude direction. The probability that, at a random time, the 

look direction is in the infinitesimal area dxdy of the tangent plane 

at e,I$ is dx/rsine- dy/2n. Then 



where Pg(x,y; S,S0;r) is the probability of detecting the event if, at 

its onset, the look direction is at (x,y), the intensity is S, and the 

threshold for detection So. Po is the sum of probabilities of 

detecting the event in the successive time integration intervals ~t as 

the experiment scans across the sky. With PA(i) the Poisson 

probability that detector 'A!. will register this event above search 

threshold in the ith integration interval, and requiring coincidence 

among coaligned detectors (denoted here as A, B, and C), 

We evaluated these expressions numerical ly. Figure A.2 

illustrates the results for T = 35 minutes. 

3. Fits to Frequency of Occurrence 

We estimate the total number of events per year over the whole 

sky, given that we detected seven in the 'source-free" survey of HEAO 

1 A-2 scanning data. We denote the probability of detecting one event 

of duration T and intensity S by Pl(t,S). If R(S), the rate over the 

whole sky per year of events with intensity a 5 ,  has the form R(S) = R,S-~, 

we calculate the number of transients AY(S) detected in 

each interval AS to be 

AY (S) = P l ( , )  bR(S) = Pl(r,S) (-r Ro 5- r-1) AS. 



In Figure 3 we display the results from AY(S) when all three 

detectors are coincident, with a search threshold So u 4 mil 1 icrabs, 

assuming T = 35 min., r = 1.5. The analogous graph for when only two 

coaligned detectors are ION1 and So - 6 mi 1 1  icrabs looks nearly 
identical. The expected number of events AY per intensity 

interval AS peaks at S - 1.5 So (for shorter t, the peak 

approaches - 1 .  S o  even for an event distribution R(S) as skewed to 

faint events as S' 3/2. For bright events (S/SO + m), bY falls off to 

a limiting value of R(S) times the fraction of the sky covered by the 

detectors while the transient is on. 

A maximum 1 ikelihood fit to the data shows any r between 0.3 and 

1.7 to be acceptable within lo. We estimate the event frequency per 

year over the whole sky above search threshold So to be, within lo, 

5 lo4 event~-~r-l-sk~-l r R(So) r 3 x 10 events-yr-l-sky-l, 

where r = 2 x lo3 s for the lower limit, and t = 60 s for the upper 

limit. 

These calculations were performed for the ltsource-freell data. 

From the figures on sky coverage and threshold of Chapter 2, one finds 

that on average the trigger level was slightly higher in the "all-sky" 

survey than in the nsource-freeu survey, and that a1 though there was 

-60% more coverage in the "a1 1-skym survey, there was only slightly 

more coverage of the Galactic plane in the usource-full~~ sections of 

the search. Therefore it is reasonable that we found only a few more 

fast transient events on the Galactic plane, and -60% more stellar 

flare candidates, in the nall-sky" survey; we do not expect that our 

estimate of the total event frequency to change if we do perform an 

event-size event-di stri bution fit over the whole "a1 1-sky" search. 



Figure A . l  Schematic diagram illustrating the calculation of the 
probabi 1 i ty that the field of view of an A-2 coll imated proportional 
counter (with opening angles +O and e in the scan and off-scan 
directions), scanning the sky at a ra ? e u , will intersect the world 
line of a transient event of duration r ,  For the case eo < o,r <360°. 
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Figure A.2 The number of events expected, AY (S,AS) between 5-6512 and 
S+AS/~ is plotted versus the intensity 5.  The intensity is measured 
in counts 'C' per experiment integration interval, divided by the 
threshold counts C per interval. The bin size AS was chosen to be 
0.1C , the duratioh T to be 35 minutes, to be 1.5, and R about 1 
even! per 3Ox3' per ' O N '  time. The graph assumes 3 detect8rs are 
'ON', implying a threshold C o of about 4 millicrabs. 
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Appendix B 

A Handbook on the New HEAO 1 A-2 Position Finding Programs 

Here we describe the evolution of a series of programs to 

constrain the positions of variable sources (such as the A-2 short 

transfents), and those observed in pointed data. These types of 

sources had not been addressed by earlier standard HEAO 1 A-2 

position-finding programs. The position-fitting algorithms presented 

here were conceived and implemented by A. Tennant, J. H. Swank, and 

me. We present these algorithms in three stages. 

1. Origins 

In late 1983, interested in finding the position of a fast 

transient discovered by A1 lyn Tennant in a blank sky point, we 

considered a means of obtaining an intensi ty-independent parameter 

that described the position of a source. The original idea exploited 

the differing collimator sizes among the HEAO 1 A-2 detectors. The 

expected count rate in the ith time bin, <C(IDET,IFOV,~)>, o f  a 

particular detector IDET with a particular field of view (fee. 

collimator width) IFOV, is a simple linear function of the intrinsic 

source intensity IS(i) : 



Here <BACK( IDET, IFOV)> is the expected background count rate (internal 

plus diffuse sky) for this detector and field of view; and the 

function EFFAREA represents the effective area of this detector on the 

source. For a square collimator, with detector axis pointing in the 

direction (e1,4,), and collimator opening angles e0 and +,, 

where A, is the total on axis area for that detector and field of view 

(typically about 400 an2 for each field of view). The parameters eo, 

+,, (collimator opening angles), are determined by the choice of IDET 

and IFOV; the parameters el, +, (detector look direction) depend also 

on the time bin, i. For each detector, e,(i), +,(i), and e, are 

approximately the same, while +,, the collimator opening angle in the 

scan direction, differs between the two fields of view by about a 

factor of two (3' and 6' for HEDl and HEDZ; 1.5' and 3' for HE03 and 

MED). See Shafer (1983), Robinson-Saba (1982), or Rothschild et. a1 . 
(1979) for more detai 1 s. 

Let A and B represent the smaller and larger fields of view on 

the detector IDET. We define the function 

If the background count rates, BACK(ID.ET,A) and BACK(IDET,B), are well 

determined, one can define the related random variable 



Notice that these are now measured quantities, rather than expected 

values, for the detector count rates and the associated background 

rates in the A and B fields of view. The function R(IDET,i,4) is then 

the expected value of the numerator of r(IDET,i), divided by the 

expected value of its denominator. The early position-f i tting 

program, FINDP, performed a standard least-squares fit (Bevington 

1969) of the measured quantities r(IDET,i) to the function described 

by R(IDET,i,$), for each time bin during which the source was in the 

field of view, in an effort to constrain the position of an X-ray 

source in a way that was Independent of its intensity variations. 

Since the function R(IDET,I ,4) has no e, or off-scan, dependence, but 

depends on 4 -  1 , this f Irst algori thm produced a pair of pardl lel 
position error boxes whenever the detector axis was stationary. 

Figure B.1 displays 90% confidence contours for H2120+55, a fast 

transient in pointed data on 0728.15; and for a flare from the dwarf 

star AT Mic, in scanning data. 

There were several systematic problems with this approach. 

First, the background count rates have been shown to vary in time and 

position, even in regions well away from known sources (Shafer 1983 

and references therein). Second, when neither detector field of view 

contained the source, the ratio became indeterminate (the 

uncertainties became so large that the ratio was a useless measure of 

position) ; however, especial ly for weak sources, the angles at which 



a source appeared and disappeared from both fields of view provided 

strong constraints on its position. 

The systematic errors in this approach were large enough to 

exclude the source AT Mi c, at the 90% 1 eve1 , from the position error 
boxes in Figure 0.1, when two other experiments on HEAO 1 had 

identified it as the source of this particular event. 

2. Simultaneous Fittinq of Several Fields of View 

Instead, we decided to fit the counts in each time bin, in all 

fields of view. For a particular detector, for each of its two fields 

of view, we modeled the expected count rate in the ith time bin, 
1 

c(IDET,IFOV,i,e,+), by: 

The statistical uncertainty of the counts in each time bin can be 

described simply by the Poisson distribution. The source intensity in 

each time bin, IS(i), no longer cancels neatly out of the model 

equations, but has become a freely varying fit parameter, as has the 

background. The earl ier algorithm a1 so assumed the spin-axi s (which 

defines the scan plane and therefore the scan and off-scan angles) to 

be fixed; in the one introduced here, we exploit the -lo wobble in 

spin-axis position by introducing the off-scan angle, 6 ,  as a fit 

parameter. The original program required fitting each detector 

independently. The new FINDP algorithm introduces three spectral 

parameters, called Itdetector ratios", that a1 low data from HED1, HED2, 



MED, and HE03 to be fit simultaneously. We define three detector 

ratios, DR(IDET), to be the ratios of the on-axis efficiencies of each 

detector to that of HED3 (which was OFF the least). Since the 

detectors are misaligned by about 0. lo, simultaneous fitting can place 

some constraints on e. The complete expression for the expected count 

rate in the ith time bin is then: 

Since we do not include any time dependence in DR(IDET), our model 

assumes any spectral changes are negligible over the duration of each 

event, This is not always the case, particularly with short events 

like gamna-ray bursts, but the dependence of the position solution on 

the spectrum is weak. The detector HE01 is a special case. Since the 

HE01 and HE03 detectors had the same response except for a geometry 

factor, for all our fits we fixed DR(HED1) at 0.921, which was the 

value determined from calibration runs using the Crab Nebula. 

The program uses a standard Marquadt algorithm to find a minimum 

x2 fit of our model to the data (Bevington 1969). There are options 

for writing a 1 ight curve file containing the intensity parameters 

IS(i); for mapping out grids of x2 values versus scan (4) and off-scan 

(e) angles; and for drawing contours of constant x2 values. 

This algorithm has the drawback of introducing a lot more fit - 
parameters than were required by the first FINDP (about two dozen 

more, for a typical fast transient). Since it no longer uses ratios 

of count rates, it also needs to fit twice as many data points. The 



program can therefore use over ten times more CPU time than the 

o r i g ina l  FINDP. A t  f i r s t ,  the speed o f  the new FINDP was also l im i ted  

by i t s  size. Many calculat ions had t o  be performed over and over 

again, ra ther  than calculated once and stored, because o f  s ize 1 i m i t s  

on the PDP 11/70 on which i t was f i r s t  implemented. The programs 

! FINDBPT, FINDBPS, and FINDBPSO, which contained various options t h a t  

would not f i t  i n  one task on the PDP 11/70, were therefore moved t o  

the LHEAVX MicroVax, combined i n t o  one program named FASFINDP, and 

sped up by a fac to r  o f  2-3. FASFINDP was subsequently copied t o  

NSSDCA, a Vax 8650, which was fas te r  s t i l l  by about an order of 

magnitude. 

Figure 8.2 t l l u s t r a t e s  how wel l  FASFINDP worked w i th  four  

d i f f e r e n t  types o f  data. The three maps show the 90% and 99% 

confidence contours f o r  the  f l a r e  a t t r ibu ted  t o  AT Mic, which used a 

s ing le scan (100s) o f  data; f o r  one day o f  .scanning data (D.O.Y. 1977 

260) on the Crab; and f o r  - 5 ~ 1 0 ~ s  o f  pointed data (D.O.Y. 1977 547) on 
I 

the AGN Abell  85. The f l a r e  s ta r  AT Mic i s  c l ea r l y  w i th in  the 90% 

confidence contours (and AU Mic i s  not). The AGN Abell  85, which 

would have been excluded had only the scan (4)  l i m i t s  a t  offscan angle 

= 0.0 (e=0.0) been used, also now f a l l s  w i th in  the 90% confidence 

l im i t s .  For both the f i t s  t o  the Crab and the Abell 85 contours, we 

assumed the source t o  be constant i n  i n tens i t y  throughout the 

observation, a reasonable assumption which reduced the amount o f  CPU 

time required. To show how wel l  the algorithm worked w i th  r a p i d l y  

varying pointed data, we have also p lo t t ed  90% and 99% confidence 

contours f o r  three major frames (-123 s) o f  Cygnus X-1 pointed data. 

The program has no d i f f i c u l t y  i n  f ind ing  the correct  pos i t ion  o f  the 



source. 

3. The Propogat ion of Systematic Errors 

Figures 8.2 also illustrate the next problem we encountered with 

the position error boxes generated by the program FASFINDP. The 90% 

confidence contours generated by FASFINDP for the Crab exclude the 

actual source position. In fact, the systematic errors in determining 

the detector look-direct ion and spacecraft spin axis, the col 1 imator 

opening angles in both directions, and the degree of slight 

misal igrnnent among the detectors, are a1 1 about 0.02~. This is larger 

than the width of the 90% confidence contours that exclude the Crab. 

The effects of these systematic errors become greatest near the edges 

of the rectangular collimators. 

We approached this problem by adding the uncertainty due to these 

systematic errors, ac(IDET, IFOV,i) , to our calculation of the goodness 
of fit. To second order, 

Here Vk, ak represent each detector parameter and the corresponding 

- l a  systematic uncertainties in determining them. The values for the 

a(Vk) came from in-fl ight detector call brations perfo&ed by Kim 

Tolbert and Jean Swank. 

For each detector and field of view, we considered the effects of 

uncertainties in the collimator opening angles i n  scan and off-scan 

direction; the detector rotation offsets with respect to the 



experiment 1 ook-direction and spacecraft .spin axes; and the 

determi nat ion of  the experiment look d i rec t ion  and space-craft spin 

axes. 

Inspection o f  Equations 8.2 and B.9 shows that  the variance of 

our model due t o  systematic errors can be approximated by: 

I 

I n  the version of  our pos i t ion  f ind ing  program named FULFINDP, we 

added 1 ac(IDET, IFOV, I) I i n  quadrature wi th the s t a t i s t i c a l  uncertainty 

f o r  each data point  before calcu lat ing x2 f o r  each fit. However, 

since the systematic errors i n  each time b i n  are not l i k e l y  t o  be 

independent (and therefore not l i k e l y  t o  be Gaussian), t h i s  method may 

underestimate the ef fects  o f  systemat i c errors whenever one uses more 

than about 10 time bins. I n  Figure 8.3, we display 90% and 99% 

confidence contours f o r  A t  Mic, Abell 85, and the Crab, using the same 

data as the previous figure, but generated with FULFINDP instead of 

FASFINDP. Notice tha t  t h i s  has indeed corrected the problem wi th  the 

Crab, but not appreciably affected the other two pos i t ion  contours. 

This i s  what one expects, since these systematic errors are only 

important when they are about the same as those due t o  s ta t i s t i cs .  
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Figure 8.2 We show maps (in 1950.0 R.A. and Dec.) of 90% and 99% 
confidence position limits for four different types of data, 
illustrating the successes and shortcomings of the second approach 
(FASFINDP). Starting clockwise from the top left: in the first we 
used 100 s of scanning data from the event on 0298.62 from AT Mic, and 
allowed t e intensity to vary in each time bin; for the second we b used 5x10 s of pointed data (on D.O.Y. 1977 547) of the faint AGN 
Abell 85, but assumed the source was constant; for the third we used 
123 s (three major frames) of pointed data of the highly variable 
source Cygnus X-1, allowing the intensity to vary freely; and in the 
last we used one day of scanning data (on D.O.Y. 1977 260) on the Crab 
Nebula plus pulsar, which was assumed to be constant. 
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Figure 8.3 We show maps of  the 90% and 99% confidence position l imi ts  ( i n  1950.0 R.A. and Dec.), using the 
same data and same basic approach as i n  the l as t  figure, but adding the effects of systematic errors 
(FULLFINDP). 
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APPENDIX C 

Statistics of Flarinq Activity Extrapolated to X-Rays 

The most complete statistical studies of flare frequencies have 

been carried out at optical wavelengths (Byrne 1983; Kunkel 197%; 

Lacy, Mof f ett , and Evans 1976, hereafter LME) . Extrapol at i ng f rom 
U-band to X-ray flux introduces considerable uncertainty (Hai sch 

1983). However, as we describe below, reasonable estimates imply that 

we could expect X-ray flares from dMe-dKe stars at a rate consistent 

with the HEAO 1 A-2 observations. 

M E  demonstrate that v(2EU), the number o f  events per hour with 

total U-band energy r EU, obeys their equation 18 

for EU in the range of the majority of their data. The flare rate 

decl ines to zero as EU approaches a maximum energy EMX. The form 

naturally includes this saturation effect. 

LME observe that the parameters a, 6, and perhaps EMX are 

functions of the quiescent U-band luminosity qu. (The maximum energy 

may increase with increasing qU, but this is not well determined - see 
Roizman and Shevchenko 1982.) For qU between 3x10'~ erg-s-' and 

2 x 1 0 ~ ~  erg-s-l, IX falls from - 30 to - 13. If one instead 



characterizes an event by its .equivalent duration" EU/qU, defining 

log a. - a = B log qU (Gershberg 1972; LME), then 

A least squares fit (using ME ~ables 2 and 3) shows log a. = 1.2f1, 

independent of qu . 
Since the HEAO 1 A-2 search did not constrain event durations 

beyond requiring them $0 lie between 1 and 60 minutes, we find it 

convenient to rewrite equation (C.2) in terms of a peak luminosity LU 

and an average flare decay time r. 

From Kunkel (1975a), one finds that if r, measured in minutes, is 

the time it takes for an event to decay to half its peak, then, on 

average, 

Kunkel (1975a) notes that deviations from the mean of more than an 

order of magnitude are not uncomnon. There is also some indication 

that X-ray decay times are longer than those in the U-band (Kahler 

ale 1982; Ha4 sch 1983). - 
To extrapolate C.4 to X-rays, we define = LU/Lx. Some 

measurements suggest A > - 10 (Haisch 1983). Then 



For comparison it is also useful to use 

Before modeling the HEAO 1 A-2 data, we test our assumptions by 

comparing equation (C. 5) to Einstein observations of known f 1 are 

stars. In 1982, Haisch (1983) reported the detection of 9 flares from 

nearby stars (plus several from associations of young stars) in 1.1 x 

10% of HEAO 2 flare star observations processed by mid 1981 (Seward 

and W1111ams 1981; Petterson 1976; Kunkel 1975a). For p(MV) the 

percentage of flare stars observed by HEAO 2 with absolute magnitudes 

between Mv and Mv + dMv, and T the total star-hours observed, the 

expected number of events observed with X-ray luminosity r Lx is 

and the expected number of *events with X-ray energy r Ex is 

These functions have the form NA(2Lx) = &L~~'-VA, and 

B NB (zE,) = oB(Ej2) -vB, where L30 and Eg2 are the X-ray luminosity and 

energy in units of lo3' erg-s-l and ergs respectively. The 

terms vA and vg go as LMX and E ~ ~ ~ .  Though the maximum flare 

luminosity o r  energy may vary with quiescent luminosity (LME: Byrne 



1983), our f i t s  were not a t  a l l  sensit ive t o  it. We assumed 

hX - erg-s-' and EMX - ergs (Kaluzlenski e t  al. 1978a.b; 

Ambruster 1984; Roizman and Shevchenko 1982; Gurzadyan 1980). The 

normalization o f  the luminosity prediction, aA, goes as (I=)', whi le 

tha t  for  the energy form, ag, depends only on xe. 

We numerically integrated equation (A.7) w i th  x given by equation 

(C.4). x = 10, and qu, p(Mv) from A1 len (1973). Petterson (1976). Joy 

and Abt (1974). and G l  iese (1969) t o  predic t  aA = 0. 18, vA = 0.02 

f o r  0 = -1 (aA = 21, vA = 4 i f  e = -0.4), and aB = 0.19, vB = -002 

f o r  6 = -1 (aB = 49, vB= -05 if g = -0.4). We performed three 

parameter, maximum li kel  i hood f i t s  t o  the detected Einstein 

Observatory f l a res  as funct ions,of  luminosity and energy. I n  nei ther  

case could we d is t inguish between B = -1 and B = -0.4 a t  the one sigma 

level, and we could only constrain vA and vg t o  vA, vB < 1. For the  

energy fit, aB ='0.17M.07 f o r  B = -1 (a8 = 1.5 f 0.6 i f  e = -0.4). 

5 implying, an average, x = 1&4 (or x - 10 f o r  0 = -0.4, much larger  

than our expected uncertainty). For the luminosity fit, aA = 

.033+.014 f o r  e = -1, ind icat ing the average duration o f  an X-ray 

f l a r e  i s  - 5.5 times greater than tha t  o f  a U-band f lare.  (The value 

i s  uncertain by a fac tor  o f  - 2.5 i n  e i ther  direction.) This i s  

s imi la r  t o  what was suggested by Kahler e t  al. (1982), and the decay 

times 1 i s ted  by Haisch (1983). 

We now use C.6 t o  model the HEAO 1 A-2 data, assuming the mean X-ray 

duration, rx, i s  between 200s and 1.3x103s. Let po be the density of 

dMe-dKe stars per cubic parsec, and p(Mv) the percentage wi th  absolute 

magnitudes between Mv and Mv+dMv. I f  S i s  the 2-20 keV f l u x  ( i n  

2 -1 ergs-cm' -s ) a t  earth, the expected number o f  f l a res  per hour w i th  



flux 1 S is 

2 C.8 N (2s) = P~J'J'J~M,,P(M~) d~ 4 ~ r  dr, 

where r is integrated to the maximum distance at which flares with 

peak lumlnositles Lx to Lx + dLx, which occur with frequency dv, can 

give a signal 2 S. So 

where So is the search threshold of 4 millicrabs, T~ = 500s. qo = loz9 

erg-s-l and T ~ Z T / T ~ ,  q29 r qU/qo. we usid the flare temperatures 

recorded in Haisch (1983) to estimate A = Lx/4J for 2-20 keV, 

given x = 10f4 for the Einstein IPC 0.1-4 keV energy band. A 

least-squares fit implied x(2-20 keV) = 322. The total rate has the 

form of an average density of - 0.04 ~tars-pc-~ times a total volume 

of - 2 x lo6 pc3, a rate of - 2 x lo-' -events-star-l-hr-l and a 

dimensionless integral of order unity. Stars of spectral type 

dM2e-dM3e make the largest contribution to the total rate. We assumed 

(conservatively) that 13 = -1, and hX - lo3' etg-s-' (Kaluzienski a 
a1 . 1978a, b) . Calcul ati ng po, r (MV) , and qU (M,) from Joy and Abt - 
(1974), Bahcall and Soneira (1980), A1 len (1973), we numerical ly 

integrated equation (C.9) to find 



In the notation introduced in §V.a, for flare stars, equation (C.10) 

predicts r = 1.5 and R(So) = lo4 event-yr-l-sky-l. The normalization 

is uncertain by about a factor of 3 in either direction, due chiefly 

to the uncertainty in the extrapolation to 2-20 keV, and in event 

duration. 
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