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1.0 Introduction

Considerable care is taken in the design and construction of wings to

ensure that the shape provides the required combination of llft and drag

over the flight cycle and that the surface is aerodynamically smooth. The

presence of rain, insect deposits or Ice can change the shape of the wing

and its surface finish and this paper examines the magnitude of the effects

on llft and drag and describes the status of calculation methods which can

provide a basic tool for their prediction.

The problems associated with flying airplanes through heavy rain Include

those associated with aerodynamic performance. It is difficult to quantify

these effects from flight experience since they occur usually together with

other effects such as wind shear and downdraft. It is known, however, that

heavy rain can increase the effective thickness of a wing and cause rough-

ness which stems from drop impingement and from waviness of the liquid

film. These effects can, in turn, influence the transition from laminar

to turbulent flow and increase drag while decreasing llft. They are sig-

nificant at all angles of attack and can be important at the higher angles

associated with landing configurations. More will be said of this topic

later in the course by Dunham.

Knowledge of insect contamination is less, mainly because the likely conse-

quences are small. It is assumed that the contamination acts as distrib-

uted roughness with maximum height in the region of the leading edge. The

contamination tends to be removed at high speeds or in the presence of

rain.

The formation of ice is usually confined to the leadlng-edge region and

again has maximum importance at the high angles of attack associated wlth

landing and takeoff. Deicing is carrled out where possible and can avoid

or reduce the problem but, as is known from recent accidents, ice can form

rapidly on the leading edge of wings and intakes with considerable conse-

quences for aerodynamic properties. Ice formation can also occur at cruise

conditions and to an extent that llft is reduced by an important amount.

It can be considered in two ways, the first where the _ffectlve shape is

changed and the second where the ice acts as an equivalent sand-graln

roughness although both can be important in many circumstances.



lhe lollow%ng sectlon examlnes the experimental evidence for the effects

of rain, insects and ]ce on airfoil performance and considers the extent

to which the available information can be incorporated in a calculation

method in terms of change of shape and surface roughness. It is easy to

envisage that a major shape change will have effects which can be described

by the same procedures which led to the arrangement of the orlg_nal alr-

foil. In a s%milar manner, roughness can be _ncorporated in the solution

of boundary-layer or the Navler-Stokes equations provided the character-

Istlcs of the roughness are known, l hus the experimental knowledge of

rain, insects and ice must be presented in the form of equivalent rough-

ness. It is also known that the environmental effects can affect the onset

of transltion and, since thls can be important wlth low Reynolds-number

airfoils and with attempts to ensure laminar-flow alrfo_Is, this evidence

is also examined.

The experimental information has been used traditionally in the form of

correlation equations and these are reviewed in Section 3. The advantage

of these correlations is that they can provide accurate representation

within the limited range of the data but they are restricted by their lack

of a physlcal basis for the equation.

lhe fourth section of the paper considers the components of a method, based

on more fundamental equations, to calculate the performance of airfoils as

a function of shape, angle of attack and Reynolds number. One procedure

Is described in greater detail and the ways of accommodating changes to the

airfoil shape and surface roughness are considered. It Involves the numer-

ical solutlon of conservation equations in differential form and has been

used to obtain results which are presented in Section 5 and allow appraisal

of the numerical features of the calculation method and of the extent to

which it can predict the known environmental effects.

2.0 Experimental Evidence

The effects of rain have been examined in the wind-tunnel tests of Refer-

ence l and more recently in References 2 and 3. The magnitude of the rain

falls considered stem from arguments similar to those of Haines and Luers

[4] who examined the records of the U.S. weather stations and concluded

that the yearly mean-maxlmum rainfall rate over a 60 sec period in the



eastern United States ranged from 150 to 250 mm/h. It is expected that

shorter term averages will achieve larger values and it should be noted

that the record rainfall rate is 1830 mm/h. Although these torrential

rainfalls are uncommon, It is desirable to know their likely consequences.

lhe average thickness of the film of water on a lOm chord airfoil and fus-

elage at zero angle of attack was calculated in Reference 4 and is shown

on lable I. It is unlikely that the distribution of film thickness would

be uniform and increasing angle of attack is likely to lead to increased

thickness in the traillng-edge region since the drag force between the air

and water will decrease from around mldchord. Thus, the traillng-edge

region can be expected to support film thicknesses considerably greater

than those of ]able I, so that the effective shape of the airfoil can be

altered by the rain to imply an adverse pressure gradient in the aft part

of the upper slde of the airfoil which is reduced by an additional dis-

placement of, say, 3 mm. This wlll have ]Ittle importance to llft at

cruise but can be more important at high angles of attack.

lhe raindrops fall on an established film and cause an effective roughness

as does the existence of waviness in the downstream flow. So far, all

theoretical attempts have made use of an equivalent sand-grain roughness

and Table 2, taken from Ref. 4, shows the sand grain roughness equivalent

for a range of ralnfa11. The corresponding increase in skln-frlctlon drag

is shown on Table 3 and is appreciable, although unlikely to be important in

terms of fuel consumption for the assumed llmlted period of the heavy

rainfall. The variations in maximum llft coefficient and stall angle

associated with the two forms of roughness are shown in Table 4. Taken

together with the expected modified alrfoll shape, the effects of the

rainfall are clearly important at high angles of attack.

The experlmental evidence of the effect of rain on airfoil performance is

meager and sometimes contradictory. For example, the tests of Ref. 2 on

an NACA 64-210 airfoil at R = 2.6 x 106 with slat and flaps extended
c

showed that a llft loss of up to 30% was possible but results with the same

configuration at R = 1.8 x 106 showed a much smaller llft loss. The
c

reason for this difference is not known but the possibility of the runback

water clogging the flap gaps had been mentioned as a possibility. It has
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lable 1. Average film thickness for a symmetric alrfoil and
fuselage at 0 deg angle of attack, lO-m chord

Calculated Estimated
Rainfall thickness thickness

rate, alrfo_l, fuselage
mm/h mm mm

I00 <0.2 <0.2
200 0.5 or less 0.2 or less
500 0.8 0.6

lO00 l.O 0.9

2000 1.3 l.l

Table 2. Equivalent sand-graln roughnesses by rainfall rate

on a wing

ks. mm

Drop
Rain rate Impact

mm/h Craterlng Waviness

I00 0.18 <0.3
200 0.37 0.?

500 0.89 1.2

1000 1.83 1.5
2000 3.65 2.0

Table 3. Increase in total drag due to increased wing and fuselage

friction drag (747 alrcraft landing configuration)

ACD/CDo, %

Drop

Ralnfall Impact

rate Craterlng Waviness

I00 1.6 2.1

200 2.3 3.2

500 3.5 3.8

I000 4.6 4.2

2000 5.9 4.6



Table 4. Reduction In maximum llft coefficient and

angle of attack at stall due to roughness

ACL/CL, % A_E , deg
max

Rain rate, Drop impact Film Drop impact Film

mm/h craterlng waviness craterlng waviness

lO0 7 II I-2 I-3

200 13 20 I-3 2-4

500 25 25 2-5 2-5

lO00 29 28 3-5 3-5

2000 34 30 3-6 3-5

also been pointed out that wind tunnel experiments sln:ulatlng flight in

rain should be properly scaled in order to model full-scale conditions and

that this involves careful consideration of the transition process and of

wind-tunnel characteristics. The added influence of the type of surface

has been demonstrated in Reference 3 for a low Reynolds-number airfoil

(Wortmann FX-6?-K-170) with the resulting llft and drag coefficients of

Figure I. In these experiments, the equivalent rainfall was 440 mm/h and

the chord Reynolds number 310,000. It is evident from the figure that the

maximum llft and minimum drag are obtained with a dry surface and that the

combination of simulated raln and a range of surface coatings is to reduce

llft and increase drag. The surface with a clean epoxy gel may be

regarded as closest to that of a commercial aircraft but the addition of

wetting agents is relevant to surfaces which have been deiced or washed

with detergent. It is particularly important to observe the magnitude of

the decrease in llft, which occurs close to the angle of attack corres-

ponding to maximum llft.

The effects of Figure 1 are, in some measure, particular to the low

Reynolds number of the investigation so that it may be that the location

of transition has been moved forward by the simulated rain. Experiments

were performed with three different positions of a boundary-layer trip and

led to the results of Figure 2, which shows that effects of similar mag-

nitude to those of Figure l can be achieved in the absence of the simu-

lated rain by tripping the boundary layer at locations up to mldchord.

The trip was a 2mm-wlde strip of sand grains of O.3mm average size so
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Fig. 2. Effect of boundary layer trip on the llft and drag coefficients

as a function of angle of attack (Ref. 3).

that, as can be seen from Table 2, It is similar to the equivalent sand-

grain roughness of the simulated rain. The position of transition on the

wings of commercial aircraft is usually close to the leading edge, so that

the nature of the surface is less important but the differences between

the dry results and those obtained wlth simulated raln and the gel coat,

Figure I, indicate the likely effect of heavy rain. In addition, novel



designs Involving procedures to malnta_n laminar flow must take account of

the implications of Figures 1 and 2.

Exper_mentally based information of the effects of insect contamination is

less than that for rain or ice, is confined to low speeds and has been

considered mainly in relation to the location of transition. This is an

important aspect of lamlnar control since insect contamination first

appears near the leading edge so that laminar flow can be lost if a crlt-

ical level is exceeded. It has been found that insect contamination acts

as distributed roughness and in this sense it may be treated by computa-

tlonal methods once the statistical properties of insects are known.

Experiments indicate that, for contamlnat_on to occur, a minimum speed,

probably different for different species, has to be exceeded so that the

insects burst on impact and adhere to the surface. Impact regions or

capture areas can be calculated by computer programs used for water-

droplet trajectory and impingement calculatlon by substituting for insect

mass and drag coefficient. Experiments made on 5-foot-chord alrfolls at
6

R - ? x lO with fruit f11es showed maximum roughness heights in
c
the range of 0.015 - 0.030 inches can occur near the stagnation point

(Ref. 5). It was found that the roughness height decreased rapidly with

distance from the leading edge and the effect of this local buildup on the

airfoil performance was sma11. The experiments were, however, restricted

to low angles of attack and larger effects can be expected at large angles

because the area of peak velocity may occur not far from that of insect

impact. Quantification of this hypothesis can be obtained with the calcu-

lation method of Section 4. Although no direct tests of insect contami-

nation effect on maximum llft are available, it can be assumed that it

would be similar to that of a distributed roughness.

It is evident from Refs. 6 to lO, that ice accretion may affect the aero-

dynamic characteristics of airfoils by reducing C_ and increasingmax

drag. Two types of ice may form, rime ice where low temperatures and

velocities allow supercooled water droplets to freeze on impact with a

resulting accretion similar to that of Figure 3a and glaze ice at temper-

atures just below freezing so that water droplets flow along the surface

and freeze to glaze-ice forms similar to those of Figure 3b. Both types

of ice can influence llft and drag considerably by the modified shape of



(a) (b)

Fig. 3. Typlcal (a) rime and (b) glaze ice accretions on the leadlng-edge
of an alrfoll.

the effective airfoil; they also contrlbute to added drag, and reduced

llft, through surface roughness.

The influence of ice accretion on the aerodynamic properties of airfoils

has been investigated experimentally over many years. In the 1950's, the

NACA investigated the effects of ice on airfoil performance and some of

these results can be found in the work of Gray and Von Glahn [6] who

examined NACA 65-212 and 65A004 airfoils and showed the adverse effects of

ice on the integrated llft, drag and moment. Other investigations, such

as that by Korkan et al. [7], quantified the effects of simulated ice

shapes on airfoil performance and, more recently, Bragg and Colrler [9]

simulated a measured glaze ice accretion on a wooden 21-1nch chord NACA

0012 airfoil and reported measurements of surface pressures, llft and

moment coefficients and a wake survey to provide alrfoll drag. The sepa-

ration bubble was explored by measuring the tlme-averageo velocities using

a spllt-film probe and velocity profiles were obtained in the separation

bubble for several chordwlse stations at three angles of attack. The

results show that the ice shape caused a severe reduction in llft and sub-

stantlal increase in drag.

A comprehensive investigation of the efforts of accretion of frost and

various ice formations has been reported by Roed [lO] who presents varia-

tions in llft coefficient measured with a single airfoil, with a trailing

flap and with extended slat and flap. The measurements [Ill were obtained

in a flight test and show very large modifications of the curve of llft
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against angle of attack, particularly w_th the tralllng edge extended. 1he

angle ot attack corresponding to CI max can be changed trom 9 to 1 degree
from 3.5 to 2.8. Wlth the multi

with corresponding reduction tn CL m,_x

element configuration, corresponding reductions in CL max from 4.3 to 3.3

were observed.

It is evident that the maln effect of lce accretion is to change the shape

of the airfoil and so modify Its performance, l he prediction of the flow

characteristics which result from the accretions can be achieved by the

solutlon of lnvlscld and viscous-flow equations and interaction of the

solutions or of the Navler-Stokes equations. As has been shown in various

papers, for example Reference 12, interaction between the lnvlscld and

viscous flow equations becomes increasingly necessary as the angle of

attack is increased. In addition, it ls desirable to make provision for

the roughness of the ice surface In a general manner which wlll also

accommodate the related roughness effects of rain and insect contamination.

To provide this generality, and to permit the inclusion of accretion model,

an interactive boundary-layer procedure, based on the solutlon of differ-

ential equations in flnlte-dlfference form is advocated and a preferred

approach Is described in Section 4.

3.0 Data Correlations

Roughness caused by rain, frost, snow or freezing fog adhering to the wlng

surface, large accumulations of insect debris and badly chipped paint can

play an important role on aircraft flight performance. These adverse

effects are addressed in the Federal Air Regulations and have received

considerable attention in the past several years. Due to the immense com-

plexlty of the problem, however, estimation of the roughness effects are

presently limited to data correlations. Computational methods which offer

broader appllcabillty, accuracy an fundamental understanding are very new,

as discussed by Shaw [13,14] and their development has so far been limited

to airfoils. Before we discuss these recent and advanced computational

methods for airfoils and their possible extension to wings, empennage,

propellers, rotors and eventually for complete aircraft configurations, it

Is useful to review the correlations which provide insight Into the effects

of small amounts of wing-surface roughness on aircraft flight performance.

In addition, the shortcomings of correlatlons for predicting the effects

9



ol Ice on lift and drag of alrfolls are considered. Prevlous reviews ol

performance degradation of propellers, helicopter rotors (hover and forward

flight) and complete aircraft are available In References 14 to 20.

As discussed by Brumby [21] for full wlng-span upper surface roughness

beginning at the leading edge and extending varying distances aft, typical

effects are a reduction of the maximum lift coefficient (increase In stall

speed), a reduction in the angle of attack at which stall occurs and a

rapid post-stall drag increase (see Fig. 4). The effects become more

severe as the slze and chordwlse extent of the roughness increase and they

may be accompanied by a reduction In llft at a given angle of attack and

by an increase In the parasite drag.

Figure 5 shows Brumby's correlation of wind tunnel and flight data and the

effects of surface roughness on the maximum lift coefficient of a wing.

The majority of the data are from two-dimensional tests but the four

flagged points represent data obtained from three-dlmensional swept sur-

faces and appear to confirm that the correlation is applicable to wings.

The data are for two general types of roughness on wings without leading-

edge high-llft devlces. The solid symbols indicate data for distributed

(sand-grain type) roughness at the leading edge, or on the entire upper

surface, and the open symbols correspond to localized full-span

CL
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Fig. 4. Typical effect of surface roughness at the leading edgeon aero-
dynamic characteristics.
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disturbances at various chordwlse stations. It Is clear that large

decreases In CL max' wlth resultant large increases In stall speed, can

occur due to comparatively minor wlng surface disturbances.

Bragg et al. [20] claim that Brumby's correlation, while useful In estlma-

tlon of changes In C L max' Is limited In that It contains no Reynolds

number effects and llttle detail of the actual roughness or Its density.

As a consequence, It fails to predict the measured results of increased

CL max due to Ice accretions.

An early correlation equation for the effects of Ice on drag was formulated

by Gray [22] and based on the data collected In the NASA Lewis Icing

Research Tunnel (IRT) primarily In the 1950's. It Is best suited for glaze

conditions and Flg. 6, taken from Ref. 14, shows that It provides guidance,

though the predicted drag rlse is often too large. More recently, Bragg

[23] developed a rlme-lce correlation, also based on the data gathered In

the NACA IR1. Flemmlng [18] acquired a large data base In the Canadian

11
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NRC high-speed }clng wlnd tunnel for a series of reduced scale rotor alr-

foll sections which he used to develop a series of correlations for the

drag rise due to Ice accretions. Figure 7 shows Flemmlng's correlation for

the same two airfoils as Fig. 6, also taken from Ref. 14 and that contrary

to Gray's correlation, It provides a lower drag rise.

It Is evident from the results discussed above and from the additional

examples of Ref. 14, that the experimental data involve effects not repre-

sented by the correlation equations. They are confined mainly to drag and

do not Include terms to take account of known effects such as those of

Reynolds number, alrfoll shape and slats. There is a clear need for a

procedure which wlll represent the aerodynamic properties of the flow

around alrfoils correctly and will a11ow correct representation of large

changes in geometry, such as those associated with accretions of rime and

glaze ice, as well as the smaller changes associated wlth frost, insects

and raln. It is also deslrable that this procedure should be able to deal

with the three-dlmenslonal effects of real a_rplanes, lhe followlng sec-

tlon addresses these needs.
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4.0 Numerical Solution Procedures

The development of digital computers, and their ability to solve many alge-

bralc equations in a short time, has spawned considerable efforts to solve

the conservation equations of fluid mechanIc_ and heat transfer in differ-

entlal form. In the fleld of aerodynamics, these numerical solution

procedures have been directed to the solution of reduced forms of the

Navler Stokes equations and particularly to interactive boundary-layer and

thln-layer Navler-Stokes equations. Reviews, such as that of Cebecl and

Whltelaw [25] show that useful calculations can already be performed for

two- and three-dlmenslonal flows and over an extensive range of angle of

attack.

Two approaches have been used to obtain the results of Section 5, and are

based on the interactive boundary-layer procedure of Cebecl et al. [12] and

on the thln-layer Navler-Stokes procedure developed at NASA Ames [26, 27].

lhe followlng paragraphs provide outlines of these two approaches and Sub-

section 4.1 a more detailed description of the interactive procedure, which

has been used to obtain most of the results of Section 5. The turbulence

13



model and the modlflcatlons necessary to deal wlth rough surfaces are

considered in Subsection 4.2.

lhe Interactlve procedure Involves solution of Invlscld-flow equations and

of boundary-layer equations. The results of Section 5 were obtained with

steady, two-dlmenslonal equations. The Invlscld flow was determined by

conformal mapping and by a panel method and the boundary-layer equations,

with turbulent dlffuslon represented by an eddy vlscoslty approach, were

solved by the two-polnt flnlte-dlfference method of Keller. Interaction

between the Invlscld and viscous flows was achieved by a blowlng-veloclty

distribution which was linked to the dlsplacement-thlckness distribution

through the Hilbert integral. Where separation was encountered, the equa-

tions were solved in inverse form with the FLARE approximation which neg-

lects 1ongltudlnal convection in the reclrculatlon region. The same

approach was taken in the wake where the dividing streamline was computed

from the Invlscld flow as a llne having constant stream function and was

used by the Invlscld method to apply the blowing velocity required to

simulate the displacement thickness and to compute the Invlscld velocity.

An Invlscld point distribution in the wake was defined on which the wake

veloclty distribution was determined. This required interpolation of the

boundary-layer blowlng veloclty onto the Invlscld points. In addition, the

computed Invlscld velocity was interpolated back to the boundary-layer

points by making use of the computed velocity at the trailing edge as the

initial wake point. In the immediate vicinity of the trailing edge, par-

tlcular care was required in the choice of the locations at which values

of the blowing velocities were applied in the solution of the Invlscld

equations. Further details are provided in the followlng subsection.

The thin. layer Navler-Stokes equations are generally referred to in the

literature as ILNS equations and are obtained by neglect)ng streamwlse and

spanwlse derivatives of the viscous and turbulence stress, conductive heat-

flux terms, and any term involving mixed derivatives. These approximations

are Justified either by order of magnitude arguments or by consideration

of computational accuracy argument [28,29]. The TLNS equations have been

proposed mainly on the computational argument. The form of the equations

generally used does not satisfy relationships between metric coefficients

in diffusive and conduction terms but the resulting error is usually

insignificant, except when the effective viscosity is relatively large.

14



In addition, Iongltudlnal-curvature diffusive terms are neglected as a

consequence of the Cartesian velocity components.

An implicit numerlcal method was used to solve the ILNS equations and Is

based on that of Ref. 30. Since only steady-state computations are of

interest, a diagonal form for the Euler equations and a spatially varying

tlme step were used. Reference 27 provides a description of the numerical

scheme to obtain the results presented here. The turbulence model incor-

porated in the code Is described In Ref. 31.

4.1 Interactive Boundary-Layer Procedure

The outline of the interactive approach provided above Is expanded in thls

section so as to allow more detailed assessment of Its features. The

conformal-mapplng method for the solution of the Invlscld-flow equations

has been described extensively In the paper by Halsey [32] and the panel

method by Hess and Smith [33] to which the reader Is referred for further

information.

The boundary-layer equations are solved In their two-dlmenslonal form,

a___u av
ax _ T_ = 0 (])

du

au au e a a_) (2)
uT_ _ vT# = Ued-_ _y (b Oy

where b = l _ c /v and c Is defined by a form of the eddy-vlscoslty formu-
m m

latlon of Cebecl and Smith [34] discussed In Subsection 4.2. For wall

boundary layer flows, the boundary condition may be written as

y : O, u : O, v = O; y -_ _, u -_ ue (3)

and for the asymmetric wakes of airfoils,

y -* -6_, u = ue, y = y*, v : 0, y-_ 6u, u = ue (4)

Here _ and _ denote the lower and upper wake boundary-layer thicknesses,
u

respectively, wlth y* representing the dividing streamline assumed to be

given, lhe above equations assume that there is no pressure gradient

across the shear layer but the corresponding constraint can be removed for

strongly curved wakes.

15



Ihe so|utlon of Eqs. (I) and (2) can also be obtained by a procedure in

which the external velocity is computed as part of the solution, lhls

procedure is known as the inverse problem and is essential to remove the

singularity associated with an external boundary condition based on a

specified distribution of u . It is necessary to specify an additionale
boundary condition in addition to the boundary conditions given by Eqs. (3)

and (4) since u (x) now represents an unknown and, in the interactivee
schemeof Cebecl et al. {12], this is accomplished by rewriting the exter-

nal velocity, u (x) ase

Ue(X) = u_(x) • 6Ue(X) (5)

0

where Ue(X ) denotes the Invlscld velocity and SUe(X ) is the perturbation

velocity due to viscous effects. The latter is related to the blowing

velocity induced by the boundary layer by a variation of the Hilbert

integral

- IXb _s do (6)l (Ue6*) saUe(X) =
X

a

with the interaction region limited to a finite range x < x < xb-
a -

Following Cebecl and Clark [35], we write Eqs. (5) and (6) as

n

Ue(X) = u°(x)+ Z clj(Uea*) j
e j=l

(7a)

denotes the Interactlon-coefficlent matrix, which Is obtained
Here cij
from a discrete approximation to the Hilbert integral in Eq. (6). In this

form, Eq. (Ta) represents an outer boundary condition for the inverse prob-

lem. tt can be generalized to the form

n

k x) + Z clj[(Uea*) j
Ue(X) : Ue( J:l

k

- (Uea*)j], (Tb)

k
where Ue(X) corresponds to the Invlscld velocity distribution which

k
contains the displacement effect (4*) computed from a previous sweep.

The solution of Eqs. (1) and (2) for the inverse problem is now obtained

subject to Eqs. (3) for wall boundary layers and to Eqs. (4) for wake flows

with Ue(X) given by Eq. (5). It is convenient to express the above

16



equations In terms of transformed coordinates and, wlth u
o

constant reference velocity, we introduce the transformation

denoting a

u I/2
0

n = (_-_x) y, _ = (Uovx)l/2f(x,n) (8)

With primes denoting dlfferentlatlon wlth respect to n, Eqs. (l) and (2)

and their boundary conditions on the airfoil and In the wake can be written

In the following form:

' 1 ff,, dw 8f' 8f
(bf") * _ ÷ xw dxx = x(f' ax - f''_x ) (8)

On the airfoil

n = O, f = f' = 0 (9a)

n = ne, f' = w, w - cli(neW - f) = gl (gb)

In the wake

n = - n_ f' = w; n = n*, f : 0 (10a)

N

n = nu, f' = w, w - cll[w(n u -- nst ) - (fu - f_)] = gl (10b)

where

vx 1/2
:cll

0

Here w denotes the dimensionless external velocity u /u and the par-
e o

ameter gi' which results from the discrete approximation to the Hllbert

integral Eq. (6), is given by

where

l-I

k kgl = w + Z cIj(D j - D ) - cllD I (ll)
J=l

vx 112
D = (_-) (new --fe) (12)

0

The expresslon for gl on the wake Is nearly identical to that for the

airfoil, Eq. (ll), except that now Eq. (12) is given by

D = (_--XoX)l/Z[w(n u n_) (fu f_)] (13)

The numerical solution o[ Eq. (8) subject to the boundary conditions given

by Eqs. (9) and (lO) has been obtained wlth Keller's Box method which Is

an efficient, second-order flnlte-dlfference method extensively used by
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Cebecl and his associates for a wide range ol flows, as discussed in [36].

The procedure for wake flows is novel and has some desirable features which

allow the calculation of thick separated boundary layers by the extension

of the interactive scheme. As in the solution of wall boundary-layer

flows, we assume

fl = U

U _ = V

and write Eq. (8) as a flrst-order system

l dw au af
(bv)', fv XWdx = x(u

(14a)

(14b)

(14c)

The Mechul functlon formulation [37] is used to obtain stable solutions to

the above equations and to reduce their sensitivity to the boundary condl-

tlons which Involve fu and f_. Since both s and w are functions of

w only, we wrlte

s' : 0 (]4d)

w' = 0 (14e)

and the boundary conditions for the system given by Eq. (14) become

n = -n_, u = w, s = fE; q = n*, f = 0 (15a)

n = nu, u = w, w - cll [w(n u - n_) - (f - s)] = gl (15b)

Ihe system of Eqs. (14) and (15) are solved by the procedure described in

Ref. 36. After the flnlte-dlfference approximations to Eqs. (14) are

written, the resultlng nonllnear algebralc system is llnearlzed by Newton's

method and the llnear system is then solved by the block-ellmlnatlon

method.

In computing alrfoll flows wlth separation [12], again the FLARE approxi-

mation was used to obtain stable solutions on the airfoil and in the wake.

As the extent of the separation region increased, however, Cebecl et a1.

[12] introduced an additional Iteratlve scheme based on a continuation

method at the start of the wake caIculatlons. With Ure f corresponding

to a nonseparatlng velocity profile constructed somewhat arbitrarily from

the separated velocity profile at the trailing edge an initial veloclty

profile was defined by
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u = Ure f , n(u Uref) n : O, 0.50, 1.0 (16)

and the boundary-layer solution was computed at the first point on the wake

wlth n = O. The solution was repeated for other values of n until converg-

ence. The procedure was applied for each profile In the wake wlth separa-

tion and was necessary at higher angles of attack near stall conditions.

For additional details, see Chol [38].

4.2 Eddy-Vlscoslty Formulation

The presence of vt in b requires a turbulence model and In Ref. 12, the

algebraic eddy-viscosity formulation of Cebeci and Smith [34] was used for

"clean" alrfolls. According to this formulation for wall boundary-layer

flows, ut is defined by two separate formulas, given by

L2
l'a-_lYtr 0 _ y _ Yc (17a)

vt =

S (ue - u)dy YtrY
0

Yc _ y _ _ (lTb)

where wlth K = 0.4

L = Ky [l - exp(-y/A)]

I

A = 26vu -I . _,I12
, u_ = (N;max,pT

(18)
au 1

i_ = _ ay ' Y :
I • 5.5(y/6) 6

The condition used to define Yc Is the continuity of the eddy viscosity;

from the wall outward Eq. (17a) Is applied untll Its value Is equal to the

one given by Eq. (17b). In Eq. (17), Xtr is an Intermlttency factor

which accounts for the transltlonal region between a laminar and turbulent

flow and is given by

Ytr = l - exp[-G(x --Xtr )

X
dx

Xtr e

(Iga)

Here G is an empirlcal parameter which, w%th Xtr denoting the locatlon

of the start of transltion and Rxtr the transition Reynolds number
R

defined by Xtr =(UeX/V)tr, Is given by
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3
U

1 e R-1.34
G - 1200 v2 Xtr

(Igb)

According to the Cebeci-Smlth (CS) model, the parameter e in Eq. (17b)

Is equal to 0.0168 for values of R0 greater than 5000, and is given by

the expression in [34] for R0 less than 5000. Studies indicate, how-

ever, that in flows with strong pressure gradient, the value of _ should

also be changed when R0 > 5000. For this purpose Cebeci et al. use an

expression for _ to account for strong adverse pressure gradient effects

as discussed in Ref. 12.

The above eddy-vlscoslty formulation of Cebecl and Smith for "clean" air-

foils can also be used for "rough" airfoils wlth small modifications to the

inner eddy-vlscoslty formula of Eq. (17a) only. We use the formulation of

Cebeci and Chang [38] for this purpose and rewrite the modifled mixing

length expression of Eq. (18) as

L = K(y _ Ay){l exp[-(y + Ay)/A]}

where Ay is a function of an equlvalent sand-graln roughness k
S

terms of dlmenslonless quantities with k+s = ksUT/U' we have

Ayu
T

'0.9 [ V/_S- k+s exp (-k_16)] 5 < k + < 70
-- S --

+ 0.58 +
< 2000

0.7 (ks) 70 _ ks _

(20)

In

(21)

5.0 Results and Discussion

The calculated results are presented in three subsections which deal with

smooth airfoils, rough airfoils and iced airfoils, respectively. The first

subsection is included to quantify the extent to which the two calculation

methods can represent airfoll flows as a function of angle of attack and

without the added complication of a roughened surface. The rough surfaces

of section two allow examination of the value of the concept of equivalent

sand-grain roughness within the framework of the turbulence model of the

interactive procedure. Similar results can be expected from solution of

the thln-layer equations and from the application of both procedures to
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problems of iced airfoils were the Ice can be consldered as roughness. The

last section descrlbes results obtained wlth the two calculation methods

for Iced airfoils where the Ice accretion changes the shape of the ]eadlng

edge of the a%rfoll.

5.1 Smooth Alrfolls

Figures 8, g and 10 present results obtalned with the lnteractlve and thin-

layer procedures for two airfoils and angles of attack up to around 16

degrees. They are taken from Ref. 39 In which additional results can be

obtained.

Measurements of the flow around a NACA 4412 airfoil have been reported in

Refs. 40 and 41 and made use of Flying hot wlre anemometry at angles of

attack up to that of maximum lift. The Reynolds number based on chord

0.06
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GA(W)-2 alr-

length was 1.523 x 106 and transltlon was Induced at 2.5% chord on the

upper surface and 10.3% chord on the lower surface. The s_me Reynolds num-

ber and transition locations were used in the calculations wlth both meth-

ods at angles of attack up to 12 degrees. Above 12 degrees, the inter-

active calculations revealed a laminar separation very close to the leading

edge and the location of the onset of this separation was taken as that of

the onset of transition. Thls assumption is consistent with transition

having occurred upstream of the trlp in the experiment.

The flow around a NACA 4412 airfoil has also been investigated at a chord

Reynolds number of 3 x lO6 (Ref. 42) and corresponding calculations have

been performed wlth the onset of transition determined, In the absence of

experimental information, by Michel's formula [43] g%ven In Ref. 44, that

Is

R8 : l 174 (l + _) R0"46" x (22)
X

or by the onset of laminar separation.

Figures 8 and 9 permit comparison of the measured and calculated values of

llft and drag coefficients for the NACA 4412 alrfo11. The results for llft

coefflclent display the variation wlth angle of attack obtained from the

solution of the Invlscld-flow equations and which diverges from the mea-

surements wlth increasing angle. It is clear that the two calculation

methods agree well wlth each other and with experiment up to around 8

22



degrees beyond which the interaction procedure follows the experimental
results more closely and represents the expected maximum value at the same

angle of attack on the measurements. Thls aspect of the comparison of the

two calculatlon methods Is slmlIar to that reported In Ref. 31 In relation

to a NACA 0012 airfoil, wlth the two calculation methods agreeing well wlth

each other up to around 14 degrees.

The drag coefficients of Figure 9 are more dlfflcult to appraise since the

two experimental distributions differ increasingly with angle of attack

and, for example, by a factor of almost two at 12 degrees. Experimental

differences are common, due to the inaccuracy of the integrating the wake

profile and to wlnd-tunnel effects associated wlth blockage or finite span.

The magnitude of the present differences Is, however, unusual. The results

obtained wlth the two calculatlon methods agree well wlth the measurements

of Refs. 42 and 45 and are at odds wlth those of Refs. 40 and 41. They

were obtained by wake integration of the interactive boundary-layer results

and by surface integration of the 1LNS results since, In the latter case,

the far wake was not well represented by the calculatlons.

It is interesting to note that measurements of drag coefficient obtained

with NACA 0012 alrfolls and described In Refs. 46 and 4? also show dls

crepancles which increase wlth angle of attack so that, at 12 degrees, the

difference was around 15%. The calculatlons of Ref. 31 revealed similar

discrepancies and It Is clear that It is difficult to achieve a hlgh degree

of accuracy.

Distributions of pressure coefficients agreed very closely at 0 and 4

degrees angle of attack and agree reasonably well at 12 degrees but wlth

d_fferences in the trailing-edge region and particularly In the repre-

sentation of the small region of upper surface separation which affected

the wake and led, in part, to better representation of the wake by the

interaction boundary-layer method. It was found that the pressure peak was

very sharp and located almost at the leading edge. The distributions at

16 degrees revealed an even more peaky pressure distribution and the need

to specify the onset of transition upstream of the trip can be appreciated.

The discrepancy between the two calculation methods was more evident at 16

degrees and involved a large and important difference In the tralllng-edge

region where the interactive approach suggested separation some 20% of

23



chord upstream of the trailing edge and the TLNS method suggested a smaller

separation.

1he GA(W) 2 airfoll represents a more dlfflcult test since it ls a 13%

thick airfoll of supercrltical form. Measurements have been reported [4B]
6

at a chord Reynolds number of 4.3 x 10 and with transition trips at

1.5% chord on both surfaces. Calculations were performed with both methods

and, as before, considered the onset of transition in accord with the

experimental configuration unless the interactive approach indicated a

laminar separation bubble, in which case the onset of transition was taken

as coincident with the onset of separation. The results shown in Figure 10

display the variations of llft and drag coefficient with angle of attack.

The deductions which can be made from Figure I0 are similar to those

obtained from Figures 8 and 9. The two calculation methods represent an

improvement over the %nviscid-flow calculations in terms of the llft coef-

flcient and, as before, the interactive method provides results In very

close agreement wlth experiment. The interactive method is also able to

calculate the drag coefficient with accuracy which diminishes wlth angle

of attack so that the difference between measurement and calculation is

around 20% at 14 degrees. The results of the TLNS method are less satis-

factory. A sample of pressure distributions is provided on Figure II and,

as before, shows the need for proper implementation of the TLNS method in

the traillng-edge region.

Before we conclude the discussion on clean airfoils, it is useful to point

out the importance of including the wake effect in the interactive

boundary-layer method. Studies by Cebec% et al. [12] indicate that in

high Reynolds number flows over airfoils at small and moderate angles of

attack, it Is sufficient to perform the calculations up to the trailing

edge. The effect of the wake becomes important at higher angles of attack,

especially in flow conditions approaching stall angle, and must be

accounted for in the calculations. As can be seen from the results shown

in figure 12a for the NACA 0012 airfoil, the effect of wake on the

traillng-edge displacement thickness is negligible for _ = lO° but more

than 30% for _ = 16° indicating that without the wake effect, the mag-

nitude of the traillng-edge displacement thickness is significantly greater

than its value with the wake effect. The reduction of the displacement

24



-8.0

-7.0

-6.0

0.4

0.8

(a)

-1.6

-- IBL Cp
....... TLNS

C) EXPERIMENTAL DATA [48] -1.2

xJc

0.8 1.0
(b) (c)

-5.0_Cp

-4o

-20 _

-1.0

0 '_

Flg. 11. Comparison of calculated and experlmenta] pressure dlstrlbutlons

for the GA(W)-2 airfoil, Rc = 4.3 x ]0 6 . (a) _ = 0 °, (b)

= 6 °, (C) _ = 12 °

thickness reduces the flow separation on the airfoil and decreases the llft

coefficient, as shown In Figures 12b and 12c, respectively.

The effect of wake Is also important at low Reynolds number flows, which

are dominated by large regions of separation bubbles leadlng to relatively

large tralllng-edge displacement thicknesses even at low angles of attack.

Thls sltuatlon Is analogous to hlgh Reynolds number flows over airfoils at

hlgh angles of attack and agaln It requires the inclusion of the wake In

the calculatlons. Further detalls are provided In Ref. 49.

5.2 Rough Airfoils

To examine the ability to deal wlth alrfolls wlth rough surfaces, the

experiments of [50] were represented by the interactive boundary-layer

method. The roughness comprised O.OOl inch carborundum grains applied to

24-1nch chord airfoils and spread evenly over a surface length of 0.08

chord. Within the framework of the turbulence model of Subsection 4.2, it

Is necessary to convert thls form of roughness Into equivalent sand-graln

roughness. This was done wlth the procedure of Smlth and Kaups [51] In
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which the ratio of the equivalent sand-graln roughness to the roughness of

the applied elements, ks/k, was assumed to be a function of the concen-

tratlon and shape of the roughness elements, see Flg. 13. In all cases

considered here, the shape of the elements was approximated by a sphere,

and the concentration, which represents the mean value of the area covered

by the roughness elements was taken as 0.0]5 and the equlvalent sand-graln

roughness height was obtained from Flg. 13 to be

kslC : 0.00094 (23)

The above expresslon was used for three alrfolls NACA 4412, 23012 and 0012

for which experiments were performed at a Reynolds number of R = 6 x

i06. c
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Figures 14 and 15 contain the results

of the computations for the NACA 4412

airfoil. It can be seen from the

11ft coefficient results of Fig. 14a

that the computations and measure-

ments agree well up to the stall

angles for the smooth alrfoli as well

as for the airfoil with ieadlng-edge

roughness. The drag curves of Fig.

14b also show good agreement between

computations and measurements

although for the clean airfoil the

drag is slightly underpredlcted at

higher angles of attack. Values of

dimensionless displacement thickness

6"/c at the trailing edge are

shown in Fig. 15a and, since the

transition location is much further

0 2 04 06 08 l 0

CONCENTRATION

Fig. 13. Equivalent sand-graln rough-
ness for uniform three-

dimensional roughness as a
function of concentration.

Dashed lines are extrapola-

tions of experimental data

[51].
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upstream In the case of a rough alrfoll than in the case of a smooth air-

foll, the tralllng edge value is higher In the rough case wlth C_ max

consequently lowered. Figure 15b shows the extent of the traillng-edge

separation as a function of the angle of attack and quantifies the earlier

separation associated wlth the rough surface.

The NACA 23012 alrfo11, llke the NACA 4412, has camber and the results of

the calculations are shown In Figs. 16 and 17. The llft and drag curves

of Fig. 16 again demonstrate good agreement between the computations and

measurements, and the drag curve is in even better agreement than that for

the NACA 4412. Figure 17a shows the value of dlmenslonless displacement

thickness at the tra_11ng edge and Fig. 17b the trailing edge separation

both as a function of the angle of attack. The slope of the traillng-edge

separation curve of Fig. 17b at II° angle of attack suggests that, with the

rough surface, separation would occur over a very large portion of the

alrfoll if the angle of attack were increased.
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lhese results, together wlth the results shown In llg. 18 for the NACA 0012

airfoil, quantify the extent to which the Interactlve boundary-layer method

can represent the flows over airfoils wlth roughened surfaces. It is evl-

dent that the calculation method correctly represents thls effect and the

trends of the llft and drag curves. Where the effects of ice, raln or

insect deposition can be regarded as roughness wlth an equivalent sand-

grain value, similar results can be expected.
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Comparison of calculated results for the NACA 0012 alrfoll at

RC = 6 x lO6.

5.3 Iced Alrfoll

Thls section presents results for alrfolls wlth Ice accretions large enough

to change the shape of the leading edge. The results of the two calcula-

tion procedures are compared with the measurements of Bragg and Colrler

[9], obtained wlth an NACA 0012 airfoil at a Reynolds number of 1.4 x 106

and at angles of attack up to lO degrees. A large change In the leading

edge was arranged with a wooden attachment to represent the shape of a

typical glaze-ice formation. The calculations with the ILNS equations were

performed by Potapcynk [52] wlth the ARC2D code and the grld of 253 x 64

nodes shown In Fig. 19.

The llft and drag coefficients computed wlth the ARC2D code are shown in

Flg. 20 as functions of angle of attack. As can be seen, the results agree

well wlth the measurements up to an angle of attack sllghtly smaller than
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that of maximum llft. At thls angle,

as in the case of "clean" airfoils,

the computed llft coefficient does

not agree as well but the drag coef-

ficient agrees remarkably well wlth

the data.

Before we present the results ob-

talned wlth the interactive boundary-

layer approach, It Is useful to

comment on the Invlscld method and

Flg. 19. Grld used in the TLNS code to discuss the role of the ice on

for the NACA 0012 Iced air- the boundary-layer calculations. In

foll at _ = lO°.
the latter case the Ice accretion

can drastically change the pressure
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Fig. 20. Computed (a) lift and (b) drag coefficients for the Iced airfoil
of Ref.9.

distribution near the leading edge and can cause the viscous flow calcula-

tlons to break down.

The interactive boundary layer results presented in the previous two sec-

tions were obtained with Invlscld flow computed by the conformal-mapplng

technique developed by Halsey [32]. While thls technique gives excellent

results for clean and rough airfoils, preliminary studies showed that It

was less satisfactory for iced airfoils of interest. The reason appears

to be that the conformal mapping uses up to 250 points equally spaced

around the circle Into which the airfoil Is mapped and these are not
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sull%clentiy concentrated at the leading edge to represent a complicated

shape such as that of the accumulated ice. for this reason, attention was

directed to a panel method [33] in which the airfoil is defined by a set

of points in the physical plane, which would allow the concentration of

points in the leadlng-edge region and to verlfy graphically that the ice

shape has been adequately represented. Neighboring points on the alrfoil

are connected by straight-llne panels so that, in a sense, the airfoil is

approximated by a hlgh-order inscribed polygon. Each panel has both source

density and vortlcity distributed along it wlth panel vorticity strengths

set equal so that the vortlcity is defined by a slngle parameter, total

strength, which Is adjusted to satisfy the Kutta condition. The source

strengths, however, have independent values on each panel and these are

adjusted, by solving a set of simultaneous ]1near equations, to satisfy the

normal-veloclty boundary condition at the midpoints of the panels. In the

strictly Invlscid case thls condition requires that the total normal vel-

oclty, freestream plus body sources and vortices, should vanish. When the

boundary layer is simulated, the desired normal velocity is finite and

equals the derivative along the surface of the product of tangential vel-

ocity and dlsplacement thickness. It is known that this surface blowing

distribution dlsplaces the dividing streamline outward from the surface of

the airfoil to the 1ocatlon of the displacement surface. Experience has

shown that best results are obtained when the surface pressures are calcu-

lated and the Kutta condition is applied on the displacement surface,

rather than on the surface panels.

In general, boundary layer calculations are rather sensitive to rapid var-

iations In the external velocity distribution. In order to malntaln comp-

utational accuracy and avoid early breakdown of the solutions in regions

of steep adverse pressure gradients, it is necessary to take fine steps In

the streamwise direction. For airfoils with large ice accretions, however,

it is further necessary to reduce the sensitivity of the boundary-layer

calculations to the pressure distribution. In the extension of the inter-

active boundary-layer approach of Cebecl et al. to iced airfolls, this is

accompllshed by using a continuation method In which the prescribed ice

shape is introduced into the calculations gradually. Figure 21 shows a

sketch of the iced airfoil in which the ice shape changes In increments of

n ranging from 0 to l with n = 0 corresponding to the clean airfoil and

n = l to the airfoil with the prescribed ice shape of Ref. 9.
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In performing the interactive bound-
N

ary-layer calculations for Iced air l.o

foils, unlike the procedure used for 08
ob

c]ean and rough airfoils, the viscous
04

flow calculations were performed only o.2

up to the trailing edge and dld not

include the influence of the wake,

thus restricting the accuracy of the

solutions at high angles of attack.

Studies are under way to remove this

restriction.

n = 0

Flg. 21. Ice shapes used In the con-
tlnuatIon method of the

Interactive boundary-layer

scheme; n = l corresponds to

the prescribed shape.

At first the calculations were per-

formed for the clean airfoil (n = O)

at _ = O. After convergence, the

ice shape was introduced Into the calculatlons by taking the value of n

equal to 0.4 and iterating the solutions untll convergence. Subsequent

calculations were then made for new values of n equal to 0.5, 0.6, 0.7,

0.8, 0.85, 0.90, 0.925, 0.950, 0.975 and l.O. Once a complete converged

solution for _ = 0 was obtained, the calculations for another angle of

attack were performed for n = l by initially computing the pressure dls-

trlbutlon for the new e for the blowing velocity of the Iced airfoil at

= O. Wlth each solutlon of the boundary-layer equations, a new blow-

Ing veloclty was computed to obtain a new pressure distribution, and, as

before, thls procedure was continued until convergence. At small angles

of attack, It was sufficient to choose the angle of attack increments,

a_, to be around 0.50°; at higher angles of attack, especlally at con-

dltlons approaching sta11, _ had to be chosen smaller, becoming around

O.l ° for _'s between 5° and 6°.

Figure 22 shows the lnvlscld external velocity distribution near the lead-

ing edge of the airfoil shown In Flg. 21. As can be seen, the Invlscld

velocity distribution dlffers significantly wlth and without ice: the clean

airfoil has a favorable pressure gradient followed by an almost zero pres-

sure gradient whereas the Iced airfoil has a severe adverse pressure gra-

dient after a short initial region of favorable pressure gradient. For

both surfaces the rapid flow deceleration ts followed by a gentle favorable
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Fig. 22. [nvisctd UelU= distributions for iced and clean NACA 0012
alrfoll at _ : -0.15 °.

pressure gradient and the 1ocatlons of possible flow separation can be

easlly identified.

The results shown In Figs. 23 to 27 correspond to interactive boundary-

layer calculatlons obtained for the Invlscld velocity distribution of Fig.

22 after several boundary-layer sweeps along the alrfoll. As In the case

of a clean airfoil, the calculatlons were started at the stagnation point

of the alrfoi1. The leadlng-edge results of Flg. 23 show that the computed

external veloclty dlstributlon changes drastlcally wlth each sweep from

that predicted by Invlscld flow theory, but the location of flow separation

for each surface remains essentlally unchanged. The calculatlons, see also

Fig. 24, indicate a 10-percent separation bubble for the upper surface and

a 25-percent separation bubble for the lower surface. Unlike the separa-

tion point, the reattachment point moves upstream wlth each sweep, but the

difference In reattachment points becomes smaller wlth increase In the

number of sweeps. The veloclty proflles on the upper surface of the alr-

foll, Flg. 25, show that the extent of flow separation Is large and that

the present method Is still able to cope well wlth It.

Perhaps the biggest surprise In the interactive flow calculations Is the

behavior of the displacement thickness distribution on the airfoil. Since

the incidence angle Is practically zero and the airfoil Is symmetrlcal,

the dlsplacement-thIckness dlstrlbutlons on both surfaces are the same for
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the clean alrfoil. Its magnitude at the tralllng edge is approximately

one-half percent of the airfoil chord, which Is relatively small and has a

very small effect on the overall pressure distribution. In the case of the

iced airfoil, the flow separation due to ice alters the displacement thick-

ness distribution on the airfoil, as shown in Fig. 26. The lower surface

has a large separation bubble which causes the magnitude of the displace-

ment thickness at the trailing edge to be about two percent of the airfoil

chord. The upper surface has a smaller separation bubble and, as a result,

the dlsplacement thickness at the trailing edge is about one percent of the

airfoil chord. This difference in the magnitudes of displacement thick-

nesses due to ice affects the pressure dlstrlbutlon and leads to a higher

drag.
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lced NACA 0012 airfoil

at _ = -0.15 ° and Rc = 1.S
x 106.

To provide further insight into the behavior of the solutions, calculations

were performed In which lnvlscld and viscous flow equations were solved

successively. That ls, rather than making several sweeps along the alrfoll

for a given pressure distribution, one boundary-layer sweep was made and

the Invlscid flow was updated wlth the blowlng velocity v computed by
n

the boundary-layer method. The results In Flg. 27 correspond to the vari-

ation of the external velocity distribution on both surfaces of the airfoil

with each cycle and show that the separation bubble of the previous calcu-

lations becomes smaller and almost equal to that on the upper surface when

the initial lnvlscld solution is updated. In both cases, the separation

and reattachment locations of the bubbles remain essentially unchanged

after four cycles. As expected, the external velocity In the separated

region is uniform and decreases sharply near the reattachment point in

accord with the behavior of separating and reattachlng flows. The separa-

tion bubble ls roughly ten percent of the chord, which ls in agreement with

the experimental result of Bragg and Colrler. The llft is nearly independ-

ent of the viscous effects for this angle of attack but the total drag

coefficient requires the solution of the boundary-layer equations and the

result is different from that for a clean airfoil.

Figures 2B to 30 show addltlonal results for the same Iced airfoil. Com-

parison of calculated llft and drag coefficients for a range of angles
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NACA 0012 airfoil, Rc = 1.5 x 106 .

of attack up to stall (e = 6° ) Indlcate that In general there Is good

agreement wlth data. As expected, however, the behavior of the computed

llft coefflclents need improvement. While the agreement at lower angles

of attack is satisfactory, it deterlorates wlth Increaslng angle of attack

due to the neglect of the wake effect. Figures 29 and 30 show the results

for e = 6 ° . As can be seen from Fig. 29, at thls angle of attack, there

are substantial dlfferences between the Invlscld and viscous velocity dls-

tribution. Perhaps the most remarkable aspect of the calculations Is the

behavior of the viscous flow solutions on the upper surface of the alrfoll

shown In Fig. 30a. The calculations Indlcate approximately twenty-percent-

chord leadlng-edge separation followed by fifteen percent marginally
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attached flow and sixty-five percent separated flow up to the tralllng

edge. It ls posslble that wlth the inclusion of wake effects, the extent

of the flow separation on the alrfoll wlll decrease. Nevertheless, from a

numerical point of view, the calculations are able to cope well wlth such

rather extensive flow separation.
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