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PREFACE

The low degree and order terms in the spherical harmonic model of
the tidal potential have been observed through the perturbations which
are induced on near-earth satellite orbital motions. This recovery,
which is the most complete dynamic model ever obtained, has been
achieved through evaluating tracking observations on 17 different,
mostly laser, satellites. A new improved GEM-TI geopotential model,
complete to degree and order 36, was estimated simultaneously with the
66 adjusted tidal coefficients. The gravitational and tidal models were
developed using the J2000 Reference System with the adopted nutations of
Wanhr and the precession model of Lieske. The tidal recovery was made in
the presence of an extended oceanographic model containing over 600 long
wavelength coefficients from 32 major and minor tides. Since solid
earth tides have identical perturbing frequencies as the ocean tides,
the solid earth tidal model of Wahr was used as a basis for the recovery
of the ocean tidal terms. This provided a complete description of the
combined tidal potential sensed by these well tracked satellites. This
tidal model (for all 32 adjusted and unadjusted tides) has then been
used to calculate the secular change in the moon's mean motion due to
tidal dissipation and the tidal braking of the earth's rotation. The
secular change in the moon's mean motion due to tidal dissipation is
found to be =-25.27 + 0.61 arcsec ey “. Qur estimate of the lunar
acceleration agrees well with that observed from Lunar Las%r Ranging
techniques, which most recently found -24.9 + 1.2 arcsec cy © (Newhall
et al, 1986). The corresponding tidal braking of the earth's rotation
is -5.98 ¢ .22x10722 rad sec 2. If the non-tidal braking of the earth
due to the observed secular change in the earth's second zonal harmonic
(Yoder et al, 1983) is considered, modern satellite techniques yield a
total valggzof the secular change in the earth's rotation rate of -4.69

+ 0,36x10 rad sec °.
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1.0 INTRODUCTION

The gravitational attraction of the sun and moon deform the earth,
its oceans and its atmosphere. These deformations, known as tides,
provide a rich spectrum of effects. Among those which are readily
observable, the tides cause temporal variations in the external gravita-
tional attraction the earth exerts on near-by orbiting objects and cause

complex changes in the rate of the earth's rotation.

Any imperfect tidal response of the earth results in a tidal
bulge which is not exactly aligned in the direction to the disturbing
third body. This phase lag in the tidal response produces a torque
which causes a transfer of angular momentum in the earth/moon/sun
system. Since the ocean tides usually have much larger phase lags than
the solid earth tides, they play a dominating role in this exchange of
angular momentum. This transfer of angular momentum manifests itself as
secular changes in the orbital elements of the disturbing bodies and in

the braking of the earth's rotation rate.

The subject of tidal dissipation is a classical problem which is
discussed at length in Lambeck (1980). Tidal dissipation has been a
subject of intense interest in the geophysical, astronomical and oceano-
graphical communities, Dbecause the redistribution of the earth's mass
due to the tides is the recognized explanation for the observed accel-

eration in the earth's rotation and acceleration of the lunar orbit.

The earth/moon and earth/near-earth satellite systems have strong
physical similarites. Man-made earth orbiting satellites have certain
observational advantages over the moon. They have better known, and in
most cases, laboratory measured physical characteristics. Man-made
orbiting objects are generally easier to observe with great precision by
earth-based ranging systems. The diversity of objects available for

tracking also helps in the separation of contending forcing effects.



Therefore, precise measurements to artificial satellites can play an
important role in understanding the evolution of the earth/moon/sun

system.

One disadvantage of resolving the tides from their effects on
artificial satellites lies in the short observation history available on
these orbits and the resulting inherent difficulty of separating secular
from long periodic effects. However, the near earth satellite record is
lengthening in time, permitting more robust tidal solutions. Centimeter
level laser systems now routinely perform both lunar and near-earth
satellite tracking. Direct comparisons and inferences can be made of
the common satellite responses--either that of the moon or an artificial
satellite--to the external potential of the earth, especially those

resulting from tidal forces.

Theoretical results associated with the evolution of the earth/
moon system have not previously been in close agreement with those
obtained observationally. This disagreement has caused some to introduce
other physical mechanisms, such as a temporal change in the gravita-
tional constant, to bring theory and observation into balance (Van
Flandern, 1975). Recoveries of tidal parameters from artificial satel-
lites give important new insight into the earth's tidal response and the

role these deformations play in the evolution of the lunar orbit.

The early work of Kaula (1964, 1969) first addressed the effects
of solid earth tides on near-earth satellite orbits. Lambeck et al
(1974) complicated the picture by showing the importance of ocean
tides. Additionally, Lambeck (1977, 1980) has discussed a wide range of
geophysical and astronomical consequences of these tides, such as their
importance in the evolution of the earth/moon system, and braking the
rotation of the earth. The purpose of this paper is to evaluate, in
these contexts, the consequences of a new satellite based solution of

earth and ocean tide parameters.



Most of the early analyses for the recovery of tidal parameters
from orbital perturbations were investigations of the long period tidal
effects evidenced in the evolution of the orbit's mean Kepler elements.
In most cases, the inclination and ascending node of the orbit were
analyzed. These two out-of-plane components of the orbit have strong
tidal signals, and these components are less sensitive to errors in
other force models, such as the non-conservative effects. Tidal values
from satellite analyses have been appearing in the literature since the
late 1960'5. Some of the major satellites used in our solution were
previously analyzed in this manner; Douglas et al (1974) and
Felsentreger et al (1976) studied Geos-1 and Geos-2, Cazenave and
Daillet (1981) performed an analysis of Starlette, Goad and Douglas
(1977) studied an Oscar Navy navigation satellite and Goad (1977)

evaluated Geos-3.

The introduction of very precise laser ranging systems and an
accompanying strong global tracking network made the combined recovery
of tidal and geopotential terms possible from a direct analysis of
satellite tracking data. As will be shown, the tides and the geopoten-
tial are closely related so that their effects can both be represented
in the usual spherical harmonic form (Lambeck, 1980). Herein, the
gravitational model is treated as the constant part of a time varying
potential, with time dependent effects solved for at tidal frequencies.
Williamson and Marsh (1985) broke important new ground in this direction
with their tidal solution from Starlette and Christodoulidis et al
(1986) followed with a comparable analysis of Lageos.

In this paper we report on a new dynamical tidal solution which
has been obtained at NASA/Goddard Space Flight Center as part of an
effort to develop an improved geopotential model (Marsh et al, 1987) in
preparation for the 1991 launch of Topex/Poseidon (Born et al, 1986).
In order to yield an accurate time-invariant gravity model, a complete

separation of gravitational and tidal potential is necessary. This was



accomplished through improved modeling, including the adoption of
special tidal models which were more complete than those ordinarily
available from oceanographic sources and the simultanecus least squares

estimation of numerous geopotential and tidal coefficients.



2.0  MODEL

A natural form for expressing the gravitational field for orbital

calculations is in terms of spherical harmonic coefficients,

M © 4 a, )
V = ;—'{1 +2§2 mzo (F_) sz(81n¢)[C2mCOS mA + S, sin mA ]}

(1)

where GM is the earth's gravitional constant (including the atmosphere),
ag is the earth's mean equatorial radius, le is the associated Legendre
function of degree % and order m, and r,¢ and A are the distance from
the center of mass, latitude and longitude (e.g. Kaula, 1966). A number
of the potential coefficients Clm and ng are considered to be time
invariant unknowns and are allowed to adjust based upon observed orbital

motion.

It is shown (Appendix 1) that in a system where the disturbing
bodies (sun and moon) are referred to the ecliptic, and the perturbed
body (the artificial satellite) is referred to the equator, the second
degree tide potential is given by:
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for the oceans. This spherical harmonic form provides a linear response
at each constituent f in the tide-generating potential. The tidal and
gravitational potentials combine to perturb the orbit. As can be seen
in the above equations, the second degree tidal potential is equivalent
to that due to gravitation with tidally driven, temporally varying
second degree harmonics. Aliasing of the gravitational solution can
result if there is a poor temporal sampling of these tidal effects
and/or if the tides are poorly modeled. The principal earth and ocean
tides, their Doodson numbers and appropriate Darwinian correspondancies

are shown in Table 1.

The principal perturbations due to solid earth and ocean tides
have identical frequencies on satellite orbits, Consequently, earth and
ocean tidal parameters cannot be recovered separately from the analysis
of near-earth tracking data. In our sclution, an adjustment is made to
a set of ocean tidal parameters, which corrects the observed temporal
exterior potential of the earth relative to an adopted solid earth tide
model and relative to a partially unadjusted base ocean tidal model. By
design within the solution, a sufficient number of independent tidal
terms have been adjusted at their dominant frequencies. This solution

and its interpretation form the basis of this paper.

2.1 A PRIORI SOLID EARTH AND OCEAN TIDE MODELS

For the solid earth tides, the frequency dependent model developed
by Wahr (1979) has been adopted and held unadjusted within the solution
(Table 2). All of the remaining solid earth tides are modeled with a
frequency independent Love number of k2=.30 with zero phase. Their
tidal potential is evaluated in the time domain from lunar and solar

ephemerides.



Schwiderski (e.g., 1983, 1981, 1980) and Parke (1982) have
analyzed global data acquired by tidal stations and have estimated
oceanographic models for the major ocean tides. These models have been
spectrally decomposed using quadrature under the assumption that the
tidal amplitude (A) and phases (y) are known at all points on the globe
(where AsO for land areas). The A coswf and A

f f
uniform dense grid of points on the earth's surface to solve for

sinwf are computed on a

the aﬁm,f’ bzm,f’ clm,f and dzm,f used to represent each tide in

harmonic form:
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For each tide constituent (f), the values used for orbit computations

are obtained as:
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The expansion is taken out to some maximum order, imax. The ocean
tidal phases in the oceanographic models can be related to that of eq. 3
by:

-+ 7 8 +X (6)

where 60m is the Kronecker delta (where m=0 denotes the long period, m=1
the diurnal and m=2 the semi-diurnal tides) and

"0 positive Doodson coefficients
X = (7
_m negative Doodson coefficients

Note that for our major tides, y=w only for K1, €e is used in this form

in Appendix 1.

There are many minor ocean tides which are not developed directly
from oceanographic data due to the computational burden required for
precise solutions of the Laplace Tidal Equations. Because of the
coupling of the satellite motion and the disturbing body, many of these
tides have significant effects on satellite orbits and are a source of
aliasing in the recovery of satellite derived ocean tidal models if not
properly accounted for. This 1is especially true of the numerous
sideband constituents which typically have an amplitude of 10% of the
major tide at a nearby frequency. Total neglect of these sideband tides
significantly degrades the accuracy of the adjustment for the terms
defining the major tides. To calculate models for many minor ocean
tides which were otherwise unavailable, an algorithm was developed and
tested. Figure 1 diagrams the predictive method which was developed for
the computation of any tide constituent and its errors given its
frequency. The algorithm uses linear admittances to predict any tide in
the long period, semi-diurnal and diurnal bands (Christodoulidis et al,
1986a).



A sensitivity analysis was performed using the 1linear orbit
perturbation theory of Appendix 1 to isolate those tides which were
important for the satellite solution, and ocean-based tidal models were
developed for those found to be satellite sensitive. The long wavelength
coefficients of the ocean tides were adjusted simultaneously with the
geopotential if sufficient sensitivity existed within the satellite
observations. Otherwise, the ocean tidal terms were held fixed at their
oceanographically determined values. Note that a change in the solid
earth model is accomodated by a comparable change in the solved for
ocean tides of the same frequency. This is further discussed in
Section 3. Table 3 summarizes the complete set of ocean tidal terms
which were modeled in the GEM-T1 solution and indicates which terms (if

any) were adjusted within each tidal frequency.

Due to attenuation with altitude, most near-earth satellites are
insensitive to ocean tidal terms above degree 6 and are most sensitive
te the long period perturbations which arise exclusively from the
prograde terms in the harmonic expansion. R. Eanes of the University of
Texas has shown (private communications) that there are a few ocean
tidal terms which we have neglected. These neglected terms are not of
the same order as the dominant terms and resemble m-daily gravity
effects of a few cm amplitude in orbital perturbations. As m-daily
effects, these neglected tidal terms can cause an aliasing error in the
geopotential recovery, but they are quite distinct from the tidal

parameters adjusted herein,

2.2 THE GEM-T1 SOLUTION DESIGN

The recent GEM-T1 solution {(Marsh et al., 1987, in press) using
significantly more and better tracking data was a complete re-iteration
of Goddard Space Flight Center's general gravitational model solutions.
The availability of a super computer (the Cyber 205) and the



vectorization of our major software tools greatly impacted the timeframe
required to complete this work. GEM-T1 was carefully designed to be a
general gravitaticonal field (i.e., not a "tailored field" for any
specific orbit). GEM-T1 was solved in the J2000 Reference System (with
IAU 1980/Wahr nutation and modern reference constants being adopted).
This reference system was generally based on the Merit Standards
(Melbourne, et al., 1983). A summary of the reference parameters
adopted within GEM-T1 can be found in Table 4.

The GEM-T1 solution made use of a large subset of the precise
third generation laser tracking data (with tracking precision better
than 5cm) taken on 7 geodetic satellites. Strong Tranet Doppler data
sets from Seasat and Oscar 14 were also used. Interestingly, each of
the geodetic satellites which have been studied earlier for tides have
now been reanalyzed as part of this simultanecus multi-satellite
gravitational and tidal solution. In each case, improved tracking data
sets (i.e., better precision and global distribution) have been utilized
in the formation of GEM-TI1. Furthermore, a simultaneous adjustment of
tidal and geopotential terms has yielded more complete and accurate
dynamic tidal results. The GEM-T1 gravitational model is complete in
spherical harmonics to degree and order 36; 66 tidal parameters
representing the longest wavelength coefficients of 12 major tides were
simultaneously adjusted in the solution. Approximately 550 other ocean
tidal terms were used to model long wavelength ocean tidal variability

for 32 major and minor tides.

In all, 17 satellites were included in the GEM-T1 soluticn. Of
the 17, weaker data sets from six low inclination objects were used
specifically to help resclve the zonal harmonica of the field. The
strong data sets were those acquired by recent laser and Doppler
systems. Table 6 and Figure 2 deacribe the orbital characteristics of

the satellites used in the formation of GEM-T1.

10



The summary of the data in Table 5 reveals that precise laser
tracking played a dominant role in defining the GEM-T1 geopotential and
tidal models. Of particular importance, two laser =atellites, Lageos
and Starlette, made strong contributions to both the tidal and
geopotential field recoveries. These are completely passive orbiting
objects which were exclusively designed to serve as space-based laser
targets. Both satellites are extremely dense spheres {(area to mass
ratios of .00069 and .00096 me kg'1 respectively), covered by laser
corner cubes, and are in orbits designed to minimize non-conservative
forcing effects. Lageos orbits at nearly an earth radius above the
earth and senses only the longest wavelength gravitational and tidal
fields. Starlette, orbiting at a much lower altitude of ~1000 km,
experiences a rich spectrum of tidal and gravitational perturbations and
is highly complementary to Lageos for the separation of long and short
wavelength gravitational and tidal terms. Figures 3.1 and 3.2 show the
complimentary tidal perturbation spectra sensed in the inclination and
ascending node perturbations of Starlette and Lageos. Both of these
satellites are tracked on a high priority basis by a global network of
laser tracking stations and have extensive observation sets which have
been acquired under NASA's Crustal Dynamics Project activities (Coates
et al, 1985), Project MERIT, and the WEGENER Campaign.

A summary of the prineipal periods of the solid earth and ocean
tides on the major satellites utilized in the solution can be found in
Figure 4. These tides perturb the satellite orbits with dominating long
period effects. On the earth's surface, the largest tides are found in
either the diurnal or semi-diurnal band. The precession of a satellite's
ascending node and not the earth's rotation is responsible for the wide

range of these satellite periodicities.
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3.0 THE GEM-T! OCEAN TIDAL SOLUTION

Table 3 has summarized the ocean tidal terms which were selected
for adjustment in the GEM-T1 solution (that is, adjusted simultaneously
with the gravitational field). Tables 7.1 through 7.4 present the
recovered ocean tidal spherical harmonic coefficients respectively for
each degree. The values shown for the coefficient and phase uncertain-
ties were taken from a covariance matrix which was calibrated for the
geopotential coefficient uncertainties (see Marsh et al, 1986). We
believe this calibration also applies for the tides. This calibration
gave realistic (one sigma) uncertainties for the estimated tidal and
geopotential terms. Because the ocean tidal terms are inseparable from
those of the solid earth at the same frequencies, the uncertainty
specified for a given tidal term does not reflect changes which would
arise from modifications to the fixed solid earth tides which are
modeled. Rather, these uncertainties represent the error in the sum of
the solid earth and ocean tidal models at a given frequency mapped into
the spherical harmonic decomposition of the ocean tide. These uncer-
tainties represent commission errors (in a strict sense) in modeling the
external potential of the earth at tidal frequencies when using the
complete ocean tidal description available in GEM-T1 plus the Wahr solid
earth tidal models. Neglect of an adjustment for the very long period
tides (e.g. the 18 year tide) is a potential source of aliasing which is

not considered in the error estimates which are presented.

Note that the GEM-T1 recovered tide coefficients do not require
correction for sideband effects as was necessary in Cazenave & Daillet
(1981) and in Williamson and Marsh (1985). The errors associated with
the sideband constituents have been minimized because the sideband terms
are explicitly modeled in our solution and the satellite data spans a

significant number of years.

13
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In the current solutions, the Wahr Earth Model is adopted to
describe the solid earth's tidal response. This model was developed
assuming a uniformly rotating earth comprised of an elastic inner core
and mantle and a liquid core. Dehant (1986a,b,c) has estimated the
effects of anelasticy on different components of the earth's tidal
response using models developed by Zschau (1985) and others. She has
shown that the neglect of anelasticity may be the cause of some of the
discrepancy in the observed versus predicted gravimetric factors at
tidal frequencies. Wahr and Bergen (in press) have also addressed the
question of the effect of anelasticity on the earth tides (and in the
tidally induced variaticn in the earth's rotation rate) and have
estimated upper and lower bounds for these effects. They have noted
that observational data cof sufficient precision is lacking to permit a
meaningful estimate of anelastic parameters directly, even though recent
recoveries of nutation amplitudes by space based technologies like VLBI
put us on the threshold of doing so. Wahr and Bergen (ibid) show that
for the diurnal and semi-diurnal tidal frequencies, the lower and upper
bound for the anelastic effect on ke is typically .002 and .015
respectively. These assessments agree well with those developed by
Dehant. Using the midpoint of these upper and lower bounds shown by
Wahr and Bergen for the anelastic contribution at specific tidal
frequencies and a 1% change in k2 for all other tides in our model, we
have performed a sensitivity study by re-estimating all 66 ocean tide
coefficients in the presence of thia changed solid earth tide model.
The adjusted 2nd degree ocean tidal coefficients which result generally
change in phase by approximately 3 degrees and in amplitude hy less than
10%. However, the resulting external potential described by the
complete ocean and solid earth model remains nearly constant (within one
third of the standard deviations given). This test of the stability of
the model's external potential compared the calculated values of the
lunar acceleration and the braking of the earth's rotation with the

values obtained with the original Wahr model.
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The GEM-T1 satellite determined values are also compared to those
estimated from the oeanographic tidal solutions of Schwiderski and Parke
(Tables 7.1 to T.4). Generally, the comparison of satellite and oceano-
graphic tidal values is quite good. The variation seen between the two
oceanographic tidal solutions is often larger than the uncertainty of
the dynamic satellite solution. We believe these results confirm that
the adopted Wahr so0lid earth tidal model is quite reasonable and that
the solution for long wavelength ocean tidal terms is realistic when
compared to those observed oceanographically. These satellite determined
ocean tidal coefficients can provide effective constraints within future

oceanographic~based model developments.

Of special interest are the second degree values for the M5 tide
where the amplitudes show large disagreement between oceanographic
models. For this term, which dominates the lunar evolution, the GEM=-T1
satellite result favors the value obtained by Parke. For the 01 second
degree values, a large disagreement is also present, only this time the
GEM-T1 satellite results favor the Schwiderski model.

The large uncertainty in the oceanographic models (as evidenced
by the level of disagreement they exhibit) prevents an accurate
separation of solid earth and ocean tidal contributions in the observed
total effects seen by orbiting objects. As explained in Williamson and
Marsh (1985), significant improvements are also required in the modeling
of atmospheric tides, atmospheric pressure loading over both the oceans
and the continents, the radiational potential, and other such subtle
effects. This lack of strong earth-based modeling is the reason that
satellite tidal analyses cannot yet Dbe expected to contribute
significantly to assessing tidal dissipation in the solid earth. Zsachau
(1986) comes to the same compelling conclusion in his attempt to
interpret the M2 solid tide dissipation from combined satellite-ocean

tide solutions.

15



Table 8 compares 2nd and 4th degree ocean tidal coefficients
obtained by other satellite studies with the values from the GEM-T1
solution. Qur satellite values seem to be consistent with most
previously reported satellite results, especially the M2 analyses, For
M2, both the second and fourth degree terms are in good agreement. Note
the Cazenave and Daillet (1981) values for 0, shown were taken from
Williamson and Marsh (1985), who corrected them to refer to the Wahr

nutations from the original values using the Woolard nutations.

The GEM-T1 ocean tidal model is a significant improvement over
earlier studies. It alone is based upon the simultaneous adjustment of
geopotential and tidal terms, it uses the Wahr nutations, it has modeled
550 presently unrecoverable sideband and higher degree ocean tidal
terms, and has been derived from complete tracking information on a
multiplicity of satellites. Most, If not all, of these factors are
significant limitations in the earlier satellite ocean tidal
inveatigations. Because of the nature of present model improvements,
the systematic errors in the earlier investigations are probably
comparable to or larger than any error estimates found in previous
analyses., We have therefore not tabulated the comparitive error

estimates from these earlier investigations.
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4.0 SECULAR PERTURBATIONS IN THE MOON/SUN ORBIT

The observed secular acceleration in the moon's orbit is dominated
by tidal dissipation within the earth's oceans. The secular variation
of the Kepler elements of the moon and apparent sun are calculated using
the tidal potential in the Lagrange Planetary Equations, evaluating
those terms of zero frequency as detalled in Appendix 2. The ecliptic

Kepler rates take the form:

da¥* + +

— *

- K3 Com,r 310 Eop g

de* + +

—— = * 3

- K& Com,r SIM Epp g (8)
di* + +

—— *

at - Ki Cop,p 810 ey ¢

The * stands for either the moon or the sun (there is also a small
change in the apparent solar orbit); m = 0 for long period tides (LP),
m=1 for diurnal tides (D) and m=2 for semi-diurnal tides (SD). These
labels are used in summary tables. C+ and e+

2m 2m
tidal amplitudes and phases obtained from the GEM-T1 tidal solution or

are the second degree

the Dbackground wunadjusted tidal models, and K;, K;, and Ki‘ are

calculated from analytical theory as shown in Appendix 2.

To obtain the third body accelerations from the GEM-T1 tidal
model, it is necessary to consider the contributions of all of the
adjusted and unadjusted second degree terms. The Wahr so0lid earth tidal
model has no anelasticity and thus there is no phase lag in the earth's
lunisclar tidal response and no resulting torque on the lunar orbit.
The complete second degree ocean tide model includes the unadjusted
tidal coefficients derived from admittances (Table 9) which have been
included in all of our near-earth orbital calculations as well as those

terms adjusted from the satellite data (as given in Table 7.1).

17



The secular changes in the Kepler elements of the moon and
apparent solar orbit based on the GEM-T1 model due to tidal energy
dissipation in the earth's oceans are summarized in Table 10. The effect
of the earth's ocean tides on the lunar orbit is reasonably well
determined and can be compared with 1lunar evolution observations.
However, only the change in the apparent solar semi-major axis is
measured significantly in the sun/earth case. The uncertainties in the
Kepler-element rates which are given have been obtained from a formal
RSS propagation of the tidal coefficent errors (as given in Table 7.1)
combined with a 10% estimated uncertainty for all unadjusted terms shown

in Table 9.

Using the simple relationship derived from Kepler's Law, the
secular perturbation of the lunar mean motion is obtained from the semi-

major axis rate as

dn _ -3 n* da
dt 2 a¥% dt (9)

where the computation of n*, the mean motion, is given by

= |1/2
*
n%¥ = GM—3 (10)
a%*
and
- *
Me M1+ 2] (1)
e

Details of the contribution of each tidal constituent and its associated
uncertainty to the secular change of the moon's mean motion is given in
Table 11. The total acceleration from the GEM-T1 ocean tidal model is

the sum of each of these contributions and, as shown in Table 12,

18



produces a value of -25.27 % 0.6 ar‘csec/cy2 for the secular change in
the moon's mean motion. This value is in excellent agreement with latest
value obtained observationally by Lunar Laser Ranging: (LLR) (Newhall et
al., 1986 in press) of -24.9 & 1 arosec/cyz. The ﬁm observed from LLR
is in harmony with the energy dissipation calculated from the earth's
ocean tidal model for the earth/moon system. This confirms that energy
dissipation due to the ocean tides is the dominant source of the lunar
orbit's secular acceleration and no other physical mechanisms are

required at the current .6 arcsec cy"2 level of precision.

Table 11 also reveals that the long period tides have secular
effects on the lunar mean motion. Our formulation allows us to evaluate
these effects: the coefficients describing the tides are equatorially
referenced whereas the satellite orbital frequencies of the tidal
disturbing potential are best described and implemented herein as linear
combinations of the ecliptic rates. Previous derivations have missed
this phenomenon because of their expansion within an equatorial refer-
ence system. In this equatorial system, the correspondence between the
tidal perturbation rates and the orbit element rates do not exactly
cancel, whereas the more correct derivation (given in Appendix 2) find

them doing so, giving rise to secular effects.

In our calculations we have ignored any contribution that arises
from the dissipation of energy due to tides raised on the moon by the
earth. While M2 is not of consequence due to the permanent bulge it
causes in the moon's shape, contributions from 01 and N, may need to be
considered. Lambeck (1975) estimates that these terms have small
effects, being no more than .16 m/cy in %% for the moon. This effect is
of the order of the accuracy we are now achieving and requires further

investigation.
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5.0 TIDAL BRAKING OF THE EARTH'S ROTATION

The ocean tides retard the axial rotation of the earth. Conserva-
tion of angular momentum in the earth/moon/sun system requires that the
secular change in the rotational velocity of the earth due to the

lunisolar tidal torques is (Bursa, 1986):

. dnm dem dim
=M g thw "M T
dn de ai
s ) 3 @ dC
*Bigg *Bat *B3a TCat (12)

where am, em, im are the ecliptic Keplerian elements of the
moon; as, es, is are the equatorial Keplerian elements of the apparent
sun; the A terms are for the orbital angular momentum contributions of
the Earth/Moon system; the B terms are for the orbital contributions of
the Earth/Moon system about the sun; and the C term represents the

effects due to changes in the Earth's polar moment of inertia C.

The formulae for the A and B terms, which are taken from Lambeck
(1980), have been derived from conservation of angular momentum in the
direction of the Earth's mean spin axis. In Lambeck's derivation, he
uses the inclination of the lunar orbit on the equator averaged over one

period of the lunar ascending node on the ecliptic, Im. Thus

cos I =cos i cos i
m s m
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The requisite formulae are then, where M is the mass of the Earth, Mg is

the mass of the Sun, and Mm is the mass of the Moon:

™ Mm— —hm ai cos is_
Fn = | ¥oM c (13)
— m— — —
F
A1 = g cos i (14)
m
A2 = Fm e, ¢os 1m (15)
A3 = Fm sin in (16)

for the lunar terms, and

—MS(M+Mm]- _ns ag
Fs = | Mewom C an
Fo
B1 " 3n cos is (18)
s
B, = F e, cos is (19)
B3 = Fs sin ig (20)

for the solar terms.
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Bursa (1986) has evaluated the effects due to changes in the
Earth's polar moment of inertia due to the secular time variations in

the second zonal harmonic:

ddJ
dC 2 2 2 2
T3 Ma”™ o kg m /cy (21)

where Ma2 is 2.14296x1038 kg m2. The corresponding C is 8.0378x1037 kg m®

and 9 is 7.292115x10'5rad/sec. Yoder et al (1983) have estimated:
—< = (-2.810.6) x 10-9/cy

from Lageos tracking data, and have attributed it to the effects of

post-glacial rebound. Thus, the non-tidal acceleration of the earth is

dc
d

o)
[}
1
Ol

NT

ct

= (1.29+.28) x 10-22rad/sec2

Each second degree tide in the GEM-T1 expansion, including both
adjusted and modeled values, has been used to calculate its contribution
to braking the earth's rotation. These rates with their associated
uncertainties are given in Table 1. A summary of the long period,
diurnal and semi-diurnal contributions to Q0 and that from the non-tidal
secular change in J2 is presented in Table 12. Qur estimate of the
secular tidal acceleration of the earth's rotation (ﬁT) is -5.98 =
0.22x10722 rad sec™2. Taking into account the non-tidal effect of the
change in the earth's oblateness (32), our best estimate of the secular
braking of the earth's rotation is -4,69 % 0.36x10'22 rad sec 2. In
terms of the change in length of day, ﬁT corresponds to 2.25 .08

msec cy'1 and @ corresponds to 1.76 + .14 msec cy'1.

Lambeck (1980) summarizes the astronomical results which have

been obtained for constraining the values of Q and ﬁm and for the
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determination of ﬁ itself. Although there appears to be a wide varia-
tion of values, Lambeck found Q = -5.48x1022 rad s™2 to be his
consensus value from astronomical observations. Our estimate of this
rate, which was satellite derived using both a new ocean tidal model and
the observed non-tidal change in the earth's 2nd zonal harmonic, agrees
reasonably well with his interpretation of the astronomical constraints.
Clearly, this new satellite determination lacks many of the problems
associated with the determination of the time and place of ancient
eclipses, and represents a significant advancement in determining the

tidal braking of the earth's axial rotation.

The derived value for ﬁ discussed herein, is sclely based on the
long term secular effect. While the tidal contribution, éT’ is complete
and not expected to vary over the three thousand years of recent history
(Lambeck, 1980), the non-tidal contributions may not be complete. 1In
our derivation of éNT we have based the estimate on the effects which
arise from 32. Yoder et al (1983) suggest that other smaller
contributions may come, for example, from 33, although present orbital

histories cannot accurately resolve them.

Recently, a re-analysis of the eclipse records by Stephenson and
Morrison (1984) suggests that there is evidence of a non-uniform
decrease in the earth's rotation rate over the last three thousand
years. However, the physical basis for any such change remains
unexplained. In the case of Stephenson and Morrison, the evidence for a
changing non-tidal acceleration is based upon an apparent discrepancy
between the historical eclipse results prior to 1620 and the analysis of
the later telescopic data subsequent to 1620, From their telescopic
data, they derive changes in the length of day of 1.4 msec cy'1 versus

2.4 msec cy_1

for the earlier eclipse data. The artificial satellite
results for éT’ the tidal effect alone, yield 2.25 + .1 msec cy'l, which
is a value quite consistent with that Stephenson and Morrison found from

their early eclipse records. Our value of 1.76 + .14 for ﬁ is not really
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too different from their 1.4 given the accuracies of the astronomic
analyses. Their telescopic results depart from those found herein using
modern satellite laser ranging techniques by about ~.U4, and the early
eclipse results depart by about .6. A simple explanation for these
disagreements may be that the astronomic data is of insufficient
accuracy; also error sources such as inconsistent reference frames may
be present. Given the lack of supporting error analyses, their
conclusion of non-uniformity in the decrease of the earth's rotation

rate is questionable.

From another perspective, Lambeck (1980, eqn. 10.5.2) estimated
that the tidal deceleration of the earth's rotation and the secular

change in the lunar mean motion are related by
Qp > (51£4) ny

This is simply derived from the separate estimates of ﬁm and ﬁT. If we
use this equation with our estimate of ﬁm, we find éT = -6.27x10"22

2

rad/sec“, which is in good agreement (one sigma) with our solution. Our

estimates of ﬁm and éT provide the corresponding relationship

Qp ~ (493) ny

indicating that we find the Lambeck formula slightly overestimates the

effect of ﬁm on ﬁT.

These results from the present artificial satellite analyses

represent the ﬁ and n_ of an epoch around 1980. These results can be

m
directly compared to the excellent contemporary observation history of
the earth's rotational behaviour available from the space technologies
of Satellite and Lunar Laser Ranging and Very Long Baseline Inter-
ferometry to assess the contemporary role tides play in this complex

retardation of the earth's rotation rate.
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6.0 SUMMARY

Modern laser tracking technologies allow us to monitor the orbital
evolution of near-earth satellites to unprecedented levels of accuracy.
Recently acquired observation data sets from a total of seventeen mostly
laser satellites have been used to develop detailed models of the forces
which explain these observed orbital effects. Both the time invariant
and the temporally varying tidal gravitiational potential fields of
the earth have been accurately resolved from our analysis of direct
satellite tracking observations. This model, Goddard Earth Model (GEM)-
T1, is the most complete gravitational and dynamic tidal solution ever

produced exclusively from direct satellite tracking data.

The GEM-T1 solution simultaneously recovered a complete gravita-
tional field to degree and order 36 and 66 tidal coefficients repre-
senting twelve major tides. The solution made use of modern geodetic
constants, such as the J2000 Reference System complete with the Wahr
nutation and solid earth tidal models. A more complete model of the
background ocean tides was used, which had been developed tc reduce
aliasing in the recovery. These unadjusted tidal terms included over
550 coefficents representing the longest wavelength constituents of
32 major and minor tides. The minor ocean tidal models were estimated
using a predictive technique based on the observed major tides and a
postulated linearity of the admittances. The tidal perturbations which
result from the separate solid earth, atmosphere and oceans give rise to
identical orbital frequencies which cannot be separately resolved from
an analysis of orbital motion. However, the total tidal effect 1is
accurately sensed in these well tracked orbits and the tidal

perturbations are known to be strong.

The complete GEM-T1 tidal model containing both the adjusted and
unadjusted terms has been used to estimate the effects of the earth's

tides on the earth/moon/sun system. The secular change in the lunar mean
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motion estimated from this dynamic tidal model, -25.27+.61 arcsec cy'z,

agrees very well with the value of -24.9 + 1. arcsec cy-2

recovered
from a decade of Lunar Laser Ranging by Newhall et al, 1986. The tidal
braking of the rate of the earth's rotation due to conservation of
angular momentum in the earth/moorn/sun system yields a value of
-5.98 + .22 x 10722 pag sec-z, corresonding to 2.25 t 0.08 msec/cy in
length of day. Thus we have derived a set of tides from tracking of
artificial satellites which seems to consistantly predict the observed

evolution of the lunar orbit.

Taking into acecount the non-tidal braking due to the Lageos
derived secular rate of change in the earth's second zonal harmonic
(Yoder et al, 1983), artificial satellite techniques provide a total
value for the secular change in the earth's rotation rate of
-4.69 + .36 x 10722 pad sec"z, which corresponds to 1.76 + .14 msec/cy
in length of day. This value is consistent with recent astronomic
studies of eclipse records such as that of Stephenson and Morrison
(1984), who obtained 2.4 msec/cy for the data prior to 1620 and 1.4
msec/cy for the telescopic data since 1620. Because there may exist
other secular effects which we have not yet accounted for, and because
of the significantly poorer accuracies acheivable from the astromical
data, this agreement must be regarded as quite good. Also, the
1.76 msec/cy does not confirm any inference of a non-uniform change in
the earth's rotation rate; rather it tends to indicate that the
difference of 1 msec/cy in the separate estimates of Stephenson and

Morrison may reflect the separate errors of their determinations.
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TABLE 1.

Doodson's
Darwinian Argument Period
Symbol Number _(hr) Description
M, 255.555 12.42 Principal lunar semidiurnal
S, 273.555 12.00 Principal solar semidiurnal
N, 245,655 12.66 Larger lunar elliptic
semidiurnal
K, 275.555 11.97 Lunar/Solar semidiurnal
L, 265,455 12.19 Smaller lunar elliptic
K, 165.555 23.93 Lunar/Solar diurnal
0, 145,555 25.82 Principal lunar diurnal
Py 163.555 24,07 Principal solar diurnal
Me 075.555 13.66d Lunar fortnightly
Mp 065,455 27.55d Lunar monthly
Ssa 057.555 188.624d Solar semi-annual
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TABLE 2.

Band

Long Period

Diurnal

Semi-Diurnal

WAHR LOVE NUMBERS MODELED IN GEM-T1

Tidal Line (f)

All

145555 (01)
163555 (P1)
165545
165555 (K1)
165565

166554 (PSI)

All

¥A1l phases are equal to zero.
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.298
.287
259
.256
.253

466

.302



Table 3

OCEAN TIDE MODELING
FOR
GRAVITY RECOVERY

e LONG PERIOD TIDES o

Doodson Derwin
—No. Nome Modeled Adjusted
056.554 Sa deg. 2—6 deg. 2
057.555 Ssa prograde deg. 2
058.554 only none
065.455 Mmn deg. 2
075.555 M f deg. 2
075.565 none

e DIURNAL »
135.655 Q, deg. 2—6 none
145.545 prograde none
145.555 0, and deg- 2,34
155.455 retrograde none
155.655 M, none
162.556 Ply hone
163.555 P, deg. 2, 3, 4
164.556 LY none
165.545 none
165.555 K, deg. 2,3, 4
165.565 none
166.554 none
167.555 none
175.455 Sq none
185.555 00, “ none
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Doodson

NO.

245.655
255.545
255.555
265.455
271.557
272.556
273.555
274.554
275.555
285.455
295.555

e SEMI-DIURNAL

Darwin
Name

Mogdeled

deg. 2—6
prograde
and
retrograde

37

deg.
deg.

deg.




Table 4

CONSTANTS FOR NORMAL
EQUATION GENERATION FOR
GEM-T1

APRIOR] GRAYITY MODEL

GEM-L2 FOR LAGEOS

PGS-1331" FOR STARLETTE

PGS-S4° FOR SEASAT

GEM-108" FOR ALL OTHER SATELLITES

PRIME (') INDICATES FIELDS RESOLVED
HOLDING C,S , = 0

EARTH TIDES

WAHR WITH kK, . =.3,0°PHASE
nominal

OCEAN TIDES

CHRISTODOULID!IS ET AL MODEL WITH
600 INDIVIDUAL TERMS, PREDICTED FROM
OCEANOGRAPHIC MODELS USING
ADMITTANCES

TIDAL DEFORMATI
h, AND R, AT MERIT YALUES

GM, a,, t/f
GM = 398600.436 km®/sec?
2, = 6378137 km
1/f = 298.257

POLAR MOTION AND A1 -UT 1

ZERO MEAN SET OF POLAR MOTIONS
BASED ON 6 YEARS OF SLR DETERMINATIONS

STATION COORDINATES (uynadjusted)
250 STATIONS TRANSFORMED TO LAGEOS
SL-6 AND ROTATED INTO NEW POLAR
MOTION SYSTEM
THI Y EF
PLANETS MERCURY THROUGH NEPTUNE
AXI
INSTANTANEOUS SPIN-AXIS
RDINA TEM
J2000

ATIVITY
NONE
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PAYA UTILIZED IN PRELIMINARY
TOPEX GRAVITY MODEL: 1996

SATELLITE

LAGEOS
STARLETIE
GEOS-1
GEOS-2
GEOS-3
BE-C
SEASAT
Di-C

D1-D

PEOLE v

SUB-TOTAL - LASER

DATA TYPE
LASER

SEASAT
OSCAR-14

SUB-TOTAL - DOPPLER

DOP*PLER

GEOS-1 CAMERA
GEOS-2

ANNA

TELSTAR

BE-C

BE-B

COURIER 1B
VANGUARD-2RB
VANGUARD-2
D1-C

Di1-D

PEOLE ¢

SUB-TOTAL - CAMERA

TOTAL

Table 5

v

6

NUMBER OF
NORMAL MATRICES

15
13

26

43
46
30

S0
20
10

10
10

273

580*

#PEOLE arcs contained both opticel and laser data.

39

NUMBER 0OF
OBSERVATIONS

144527
37356
71287
266173
42407
64240
14923

7455
11487
4113

444 406

1368042
63098

201,140

60750
61403
4463
3962
7501
1739
2476
686
1299
2712
6111
38

153.140

798,688



SATELLITE
NAME

ANNA-1B
BE-B
BE-C
COURIER-IB
D1-C
Di1-D
GEOS-1
GEOS-2
GEOS-3
LAGEQS
OSCAR
PEOLE
SEASAT
STARLETTE
TELESTAR-}

VANGUARD-2RB

VANGUARD-2

* D Doppler
L= Laser
0 s Optical

SATELLITE ORBITAL CHARACTERISYICS

SATELLITE
ID NO.

D

620601
640841
650321
600131
670111
670141
650891
680021
750271
760391
670921
701091
780641
750101
620291
590012
550011

Table 6

SEMI-MA JOR
AXIS

7501.
735¢.
7507.
7469.
7341
7622.
8075.
711,
7226.
12273.
7440.
7006
7170.
7331
9669.
8496 .
8298

40

0082
0133
0257
D161

0532
0848
0719
0330
0008
0038
0029
0164
002}

0204
2429
1832
1641

INCL.

(DEG )
50.12

79.69
4119

28 31
3997
39 46
59.39
10579
11498
10985
89.27
1501
1086 02
49 80
44 79
3292
32.89

DATA®
TYPE

sndl sull sl ondEEN oo
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Table &8
COMPARISON OF OCEAN TIDAL COEFFICIENTS

FROM
SATELLITE SOLUTIONS

Amp Phase Amp Phase Source
+ + + +
c 2m 2 2m c 4m 2 4m (rEf)
M 0.36 27410 GEM-T1 (Phper
1.99 1325 STARLETTE (B)
N’ 1.80 245.35 GEM-TV
1.70 265.4 STARLETTE (B)
0, 2.69 318.53 1.83 283.38 GEM-T1
2.83 327. (1.43)+# (276 .3)*% LAGEOS (C)
2.85 344 3 1.44 3045 STARLETTE (B)
2.96 354. 1.7 350.0 STARLETTE+GEOS 3 (D)
P, 0.81 296.83 0.35 23491 GEM-T1
0.73 253. (0.63)* (258.3)* LAGEODS (C)
1.27 188.3 0.74 264.9 STARLETTE (B)
K‘ 2.61 328.50 2.62 254.42 GEM-T1
2.63 311.7 3.40 244.4 STARLETTE (B)
N2 0.70 3340 0.17? 137.29 GEM-T1
0.59 346. (0.37)* (103.0)* LAGEDS (C)
0.76 322.9 0.24 192.7 STARLETTE (B)
H2 3.26 320.93 0.93 127.41 GEM-T1
3.45 319. (1.01)* (124" LAGEOS (C)
2.57 319.2 1.70 118.5 STARLETTE (B)
35 338. 1.03 79. STARLETTYE (E)
3.1 333, 1.03 78. STARLETTE+GEOS 3 (D)
OSCAR, STARLETTE,
34 325. 1.0 124. GEOS 3 (F)
3.2 331. 0.9 13 GEOS 3+0SCAR (G)
2.9 332. 1.0 115, GEOS 3 (H)
t X 3
S, 0.80 301.93 0.41 86.53 GEM-T1
0.77 302. (0.21)* (141.8)* LAGEOS (C)
0.78 32.4 0.42 94.8 STARLETTE (B)
K2 D.31 302.14 0.19 75.96 GEM-T1
0.16 238. (0.11)* (103.5)* LAGEOS (C)
0.83 23.4 0.53 96.0 STARLETTE (B)
#sincludes atmospheric tide
* held unadjusted at Schwiderski value
(B) Williamson and Marsh, 1985 (F) Felsentreger etal_, 1979
(C) Christodoulidis et al_, 1985 (G) Goad and Douglas, 1978A
(D) Cazenave and Deillet, 1981 (H) Goad and Douglas, 1978B

(E) Cazenave and Daillet, 1981
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Table 9.

VALUES FOR MODELED 2ND DEGREE TIDES

CALCULATED FROM LINEAR
ADMITTANCES
C + +
2m,f 2m,f
TIDE (f) AMPLITUDE (cm)_ PHASE (deg)
LONG PERIOD (m = 0)
058.554 0.03 231.63
075.565 0.35 261.15
DIURNAL (m = 1)
135.655 Q, 0.53 313.70
145.545 O4¢ 0.47 313.85
155.455 M 0.06 314,03
155.655 M, 0.17 314.04
162.556 B 0.05 314.22
164.556 Sy 0.02 314.26
165.545 Kig 0.05 314.28
165.565 Kys 0.36 314.28
166.554 V¥, 0.02 314.30
167.555 0' 0.04 314.32
175.455 Ji 0.13 314.60
185.555 00, 0.06 315.08
SEMI-DIURNAL (m = 2)
255.545 Mo 0.11 316.82
265.455 L, 0.07 315.86
271.557 0.002 31493
274.55%4 Ro 0.01 314.57
285.455 0.01 312.22
295.555 0.002 308.07
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Table 10

SECULAR CHANGES IN THE ECLIPTIC KEPLER
ELEMENTS OF THE MOON AND THE SUN

DUE TO TIDES
3.73 1+ 0.09 m oy~
(1.83+1.10) x 107" gr !
(-6.65+053)x 107" deg yr '
(1.43 + 0.25) x 107* mecy ™!
(1.3294)x 107" yr !
(-5+51)x 107" deg yr™!
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Table 11

SECULAR CHANGE IN THE MEAN MOTION OF THE
MOON (n, in ARCSEC/CY?) AND IN THE

ROTATIONAL VELOCITY OF THE EARTH
(Q. in 1022 RAD/SEC?) DUE TO TIDES

TIDES

1. LONG PERIOD TIDES

056.554 Sa
057.555 Ssa

058.554

065.455 Mg
075.555 My

075.565

TOTAL LP-TIDES

135.655
145.545
145.555
155.455
155.655
162 556
163.555
164.556
165.545
165.555
165.565
165.565
166.554
167.555
175.455
185.555

2. DIURNAL TIDES

Q,
O,¢
04
M;r¢
M,
My

Py

Si
K¢
K{moon
K, sun
Kis
V|s
Oy

11
00,

TOTAL D-TIDES

0.00
-0.00
-0.00
-0.03
-0.56
-0.10

-0.69

48

0.00
0.00
0.00
0.31
0.18
0.06

+0.36

Q (01
0.00 0.00
0.04 0.03
-0.00 0.00
-0.00 0.12
-0.12 0.07
-0.01 0.02
-0.17 +0. 14
-0.03 0.01
-0.01 001
-0.65 0.07
0.00 0.00
0.00 0.00
-0.00 0.00
-0.12 0.10
0.00 0.00
-0.00 0.00
001 0.00
0.00 0.00
0.00 0.00
0.00 0.00
-0.00 0.00
-0.80 +0.12



TIDES f, i, Q g
3. SEMI-DIURNAL TIDES
245.655 N, -1.43 0.16 -0.21 0.04
255545 My, 0.02 0.01 0.00 0.00
255555 M, -20.00 0.40 -4 .45 0.09
265455 L, 0.01 0.00 0.00 0.00
271557 -0.00 0.00 -0.00 0.00
272556 T, -0.00 0.00 -0.00 0.05
273.555 S2 -0.00 0.00 -0.35 0.04
274554 R, 0.00 0.00 0.00 0.00
275555 K,mo00  -----  "ToTo o TTTTTO TR
275555 Ksun ----=- TToooo o TTTTm OO
285 455 -0.00 0.00 -0.00 0.00
295.555 0.00 0.00 0.00 0.00

TOTAL SD-TIDES -21.40 +0.43 -5.01 +0.12
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Table 12.
SUMMARY OF THE SECULAR TIDAL ACCELERATION
OF THE EARTH Q AND THE ACCELERATION OF THE
MOON n FROM THE GEM-T1 OCEAN TIDAL MODEL

: ~22 - _
Q (10™°° rad/sec”?) n (arcsec cy~2)
Qr,m -0.17+0.14 Ny ,p -0.69 2036
o .

QT'l> -0.80+0.12 nT,D -3.18 + 0.25
A e 5012012 Nysp ~21.40:0.43
61 -5.98 + 0.22 n, ~25.27 + 0.61
[ ]

Q +129+028

e

Q -4.69 * 0.36 -235.27 + 0.61
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ACKGROUND TIDES MODEL DEVELOPMENT
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FIGURE 2. ORBITAL CHARACTERISTICS OF THE GEM-T1 SATELLITES
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SATELLITE PERTURBATIONS
DUE TO SOLID ERRTH RND OCERN TIDES

FOR 12 MAJOR TIDE CONSTITUENTS

PERIODS (DAYS) OF PRINCIPAL LONG PERIOD

2] " n " n n N N N n 'g) "
< in n N ¥ n n N N O i N
2] " \n n n n n n in n 'g) "
kO L T NN O - O T - T - O - O 2O I
8 ™ n N [p) ™ n N " N ” gl
n n O ~ < o o < " ~~ ~ ~
© o o o - - - N N N N N
LAGEDS 365 | 183 | 27.6] 13.7| 138|221 {1050 [9.20|14.0 159 [280 |S24
STARLETTE (365|183 | 27.6( 13.7 ) 11.9|60.8 |91.0 7.61 [10.5 |33.1 |36.4|45.5
GEOS-1 365 183 | 27.6| 13.7] 12.6 | 85.4 | 160 8.20 |11.7 | 48.3 |55.7 (80.2
GEOS-2 365|183 | 27.6| 13.7| 144|629 |257 9.83 |15.3 | 2250(436 | 129
GEDS-3 365|183 | 27.6| 13.7| 15.2 | 482 [132 10.6 [17.2 | 145 [104 |66.2
BE-B 365 183 | 27.6( 13.7] 13.1 | 118 [332 8.66 (12.6 | 70.2 |{87.0| 166
BE-C 365183 | 27.6| 13.7| 11.8|57.9 |848 |7.51 103 31.5(34.4/42.4
SEASAT 365 | 183 | 27.6| 13.7| 148 | 72130178 10.2 |16.% | 331 [174 |B89.0
TELSTAR-1 |365 | 183 | 27.6{ 13.7| 12.8 | 93.9 | 193 8.34 |12.0 {53.9 [63.2|96.7
ANNA 365 (183 | 27.6| 13.7] 120/ 64.4 ({994 [7.71 [10.7 35.3 139.1 | 49.7
0SCAR 3651183 | 27.6| 13.7| 136 | 180 |11700]9.12 136 119 (177 | S830
Figure 4
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APPENDIX A

Mathematical Formulation
of the
Farth and Ocean Tidal Potentials

The purpose of this appendix is to provide the mathematical
formulation of the solid earth and ocean tidal potentials appropriate
to the use of osculating ephemerides. The relationship between the
Kaula type indices and the equivalent Doodson numbering scheme 1s
provided Additionally, the linear orbit perturbations for the Kepler
elements are given.

The formulstion of the solid earth and ocean tidal potentials
for use in Cowell type programs implies that the satellite accelerations
are computed as the gradient of the potential

(o) = 28 1
ar
Loy 1 dU |
Fm(m,)\,r)- 30 (1.1)
). 1 2
k(m’ ,r) res@®

In our software, GEODYN, the accelerations are evaluated
in the inertial system sligned with the instantaneous earth-fixed
system. These accelerations are then rotated to the inertial system
of integration via transformations accounting for precession,
nutation, polar motion and earth rotation

These tidal potentials are formulated in terms of the
ecliptic elements of the disturbing bodies and the equatorial elements
of the satellite. The development we followed 1S quite similar to Goad
(1977). wherein the surface harmonics due to the disturbing body
are rotated from the equatorial to the ecliptic system. This
formulation thus can use the planetary ephemerides (currently
DE-200) directly, and the tidal perturbations are computed with the
1dentical precise ephemeris used for other perturbations Using
this form means that there are no terms which are dependant on

A-1



both the sun and moon: these interaction effects are automatically
generated by the numerical intergration process. It should also be
noted thet the distinction between mean and osculating is not currently
sigmficant (R. J. Eanes, 1981, private communication).

The Expressions Describing The Salid Esrth And Ocean Tide Potentials

The following initial definitions are required:

Q. A.r are the latitude, east longitude, and radial
distance of the point of evalustion,

eg 1s the Greenwich sidereal hour angle,

qu (cos ) are the associated Legendre functions

a¥*, e* 1* are the Keplerian elements of the disturbing

Q% w* M= body referred to the ecliptic,

are the Keplerian elements of the moon referred

Qo ‘*’rr:, Mm to the ecliptic,
s , € 15 are the Keplerian elements of the sun réferred
Q. wg, My tothe ectiptic,
Hom Is the gravitational constent times the mass of
the moon
H 1s the gravitational constent times the mass of
the sun
H is the gravitational constant times the mass of the earth
R is the average radius of the earth

A-2



is the equivalent of the Doodson constant,

0
> indicates summation over 8ll tide constituents
f (f's)in the expression of the tide generating
potential
Ki 15 the equivalent of the Doodson coefficient.
k is the second degree love number and 62 {
2.4 is its phase, '
k’p are the load deformation coefficients,
Po is the average density of the oceanic water,

are the amplitude and phase in the spherical
harmonic expansion of the ocean tides
specified by %, q, *, and the tide
constituent f

Coa.fs €pq.

It can be shown that, in 8 system where the disturbing bodies
(sun and moon) are referred to the ecliptic whereas the perturbed
body 1s referred to the equator, the second degree tide potential
is given by:
~ _ T I.m (R Y3 _
V(m‘)\‘r)'% K21 Af Go 3 (T) p2m(3‘“m)coso<?E (1.2)

for the sohd earth, and by:

c%. = () ‘._*_k:q. * B e \ b
U (o r) }S n§34nGRP (22”) CDq,f (r ) F;q(sm[n) COSCX g (1.3)

for the oceans, where the angular arguments are respectively:

o = (%) [(2-2h)w* . (2-2h*J)M**kQ*] *mBg+ mA

e -mT, .
m-mi, v 0, {1.4)

and

A-3



a4 =(F) [(Q‘Qh)w* ¢ (2-2n+)Mx+k Q*] $mBOg + Q)

+ n - mn/z ’8ﬂq,f (15)

Note that there is a difference between * which belongs to the
ocean tide expansion and (*) which is part of the definition of the
tidal constituent f. The tidal constituent f corresponds to
specification of m, k, h, j, (¢), and * The equivalent of Doodson’s
constant is given by

R2
Hn (16)

3
m

G

=3
4

D
a

The equivalent of the Doodson coefficient 1s given by

’

moon 1 2 [5 ) )
N 3 d 4 A TTA - *
Apz 42 (an Y 1001 G50 Teme Yome a7 Oany (™) (1.7)
sun Hm L\Bs
where
éom 15 the Kronecker delta
d = byt 5 [k@K] (18)

AR | N L
Wka = (- 2 éok) TZr;k (2-K)!

(2+ K1 J(+) .(1.9)
Ty = (o3 1" om0 Fz(,;i (cos” 1) (110)
2(;3 (x) = d_d% [xz'm(x- 1)2"“] (1)
{= —%— and £ 1s the obliquity of the ecliptic.
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The inclination function F,,, (i*) and eccentricity function GZhj(e*)
can be found in Kaula (1966, pp. 34-39).

The formulation of the potential in (1.2) and (1.3) is compatible
with Doodson's development (Doodson, 1921). Doodson, however,
elected to adopt Brown's lunar theory for the description of the
position of the disturbing bodies, and thus his formulation is in
terms of the mean elements of the sun and moon. In the present
development, osculating elements are used.

The Relationship To Doodson Agument Numbering

[t 1s often convenient to express the angular arguments in the
same form as the Doodson solution. This requires the following
osculating angular variables which correspond to Doodson’s mean

variables:

I =local osculating lunar hour angle, measured from lower transit
of the moon past the local meridian:

Il=zX-s5-7177

where & is the right ascension of the point of evaluation and s is
the moon's osculating longitude given by

s=0.,+ W, M
p = moon’'s osculating longitude of perigee

p=Qn* w,

N’ = the negative osculating longitude of the moon's
ascending node
N'=-Q
h = the sun’'s osculating longitude

h= Q,+cw, + M,
p, = the osculating longitude of the sun’'s perigee
p,= Q.+ Wy, end

Ni = the negative osculating longitude of the sun's
ascending node.

N;: -Qs

A-5
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(1.13)
(1.14)
(115)
(116)
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The angular argument of the tidal potential used by Doodson,
allowing for the use of osculating variables, is:

Ag= Byl + B2S + Bzsh + Bap+ BsN'+ Bepy* BN}

Where B; 's are integers which are typically in the range of -4 to 4.

As B, 1s always positive, the angular argument was expressed by
Doodson as an "argument number™

By (B2+5) (Bz+5) ¢ (Ba*5S) (Bs+S) (Be+5) (P7+5)

Note that By 15 not present 1n Doodson’'s development because the
mean longitude of the sun’s ascending node 1s by definition zero
on the ecliptic.

Using (1 19) and (1 12), the angular argument takes the form
Ap= B+ (B ~By)S * Bsh+ Bap+t BsN'* BsPy* Bz Ny - BT

Ommission of the phase 52,} in equation (1.4) produces the
angular argument of the tide generating potential whichs
equivalent to that expressed by equation (1.21) except for a
possible offset. Allowing for the following definitions of the
astronomical longitudes of the disturbing bodies

L* = co®+ M* +QQx
p* - w*+Q*

the angular argument in (1 4) takes the form

o/fe - Oaf =mox +T-m3 (3) [(2—2h+j) L* - jP* ~(2-2h-K) Q*]

Note that L* 1s either sor h, P* is either p or Py, and (2* 1s erther
-N“or -N7. Also, the entire argument 1s either for the moon or for
the sun, as mixed terms are not present in this formulation
(Doodson has a small number of mixed terms which are present
due to his choice of independent variables.)

By equating the coefficients of the independent variables in
(1.23) and (1.21), the following correspondences are obtained:

A-6
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..(1.20)

(121

(1.22)
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a) Lunar Case
Br=m
Bz - By = (3)(2-2h+]))
Bz = 0

Ba = (1))

b) Solar Case

By=m
Bz = By=m
Bz = (3) (2-2h+j)

0

Ba

Bs = (¢) (2-2h-k)

Be = O
Pz = 0
Bs = O
Be = (¥)]

B7 = () (2-2h-k)

The 1nverse correspondences are:

a) Lunar Case

Let k= By~ By — Ba + Bs

Fork » O:

m= B
h=(Bg+Ba-By+2)/2
k =k
Fork <0
m =,
h= (B - Bp-Ba+2)/2

k = -k

] = Ba
sign = (+)

) =-Pa
sign = (-)

A-7
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b) Sglar Case

Let k= By - Bg - Bz

Fork O
m= By ) = Be
h= (Bas Be +2)/2 sign = (+)
k =k

Fork <0
m=fy = -Be
h=(-Bz -Bg *2)/2 sign = (-)
k = "!:

Mote that when erther k or mis zero, there 1s a twofold
symmetry 1n that two different choices of indices generate the
carne frequencies ‘when both m and k are zero, a fourfold
symrmetry exists. This s 50 whether the Doodson notation or the
Kaula type indices are used

The Doodson coefficients indicated by (1.7) must be surnmed
aver the symmetric cases to compare with Doodson's tables. in

these cases the vaiues of the separate coefficients are identical.

Additronally, when the angular argument 1s independent of the
elements of the disturbing body (h=1, =0, k=0), each disturbing
body has a twofold symmetry and the coefficients must also be
surnmed over the disturbing bodies (i.e, for the permanent tide,
Ky, and kK,)

ORIGINAL PAGE iS
OF POCE QUALITY

A-8
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Perturbations In The Kepler Elements

The analytical formulations for the tidal perturbations of the
Kepler elements of a satellite are derived below. As can be seen
from inspection of equations (1.2), (1.3),(1.4) and (1 5) the
solid earth potential is a special case of the ocean tide potential
Thus the following derivations are for the 0cean potential, and
the solid earth case will be derived therefrom.

Let
2 ,
+_ 4PGRp, / 1+kg .
qu‘f T (29*' ) Cpq,f . (1.28)
+ - * —
Oyaf = Caq F 94, and (1.29)

H = the gravitational constant times the mass of
the earth

The tide potential given in (1.2) for the oceans can then
be rewritten as:

2
' + R : b
Ul®hr) = 2 Koy 55 R (sinedcos (0% £ q)) (1.30)

2.,q.%
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Letting

Agat =K cos Uﬂg’f + Ky g cos Ogqf

94§
(13
= - M ] + + N sin -

Bﬂq,f an,f sin Ogqf K“:f Ogq.f

a particular 0,qterm of the potential can be written as
uRp A .

Uga s = aei Fq(sin ¢)[ gq,§C0S AN +By ¢ sin Q);l .{132)
which 1s of the same form as the potential given by Kauls (1966,
p 31;eq (3,53)) Carrying on in the same fashion as Kaula did, (1.30)
takes the form (see ibid eq. 3,70 & 3.71)

Rp 2 00
an,f - spﬂ ;Z_o F,,qp(i) 2 Gyps (8) qups‘f W, M, Q, Bg) (133)
= s = —00

where a,e,1, >, ™M, Qare the Kepler elements of the perturbed
body, the functions Fyqp 8nd Ggps Bre givenin Keula (1966,
pp. 34-38), and

~ Agad f-qeven B gq.f 9-qeven
) (,M,Q,0,) =], 24 £0s X + 2q. in x (1.34)
9aps., g [ng,f 9-q 0dd 2905 " 1A 00.f | gq o s 29ps

with

_(0- 2p) w+ (4- 2p+s)M+gq (Q-B¢) (135)

X
2qps

It can be easily shown that Spqps j may also be written as:

= f-qeven
_ + cos {779 +
SﬂQPS,f (W,M,0.8¢) = Z Kﬂq‘f [sin] 9-q odd (anpst O—gq,{) (136)
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The time rate of change of the argument

L)

b4 +

gaps.f = Zgaps * Unq,f

1s dominated by the equatorial secular rates in CO, 0, and M of

the satellite, by the rotation of the earth represented by Bg,

and by the ecliptic secular rates of the disturbing body in

CO*, 0%, and M*_ Hence T'fgqps,f is approximetely constant over -1.37)
the period associated with Syqps §. The linear perturbations in

the orbit elements can be constructed (Kaula, 1966, pp 37 - 41)

for each term desired by analytically integrating the Lagrangian
equations of motion for that term:

_ ypd 2Faap Gyps (A= 20+s)
Aanqps,f = MR TV Sgaps. (1.38)
T gaps.f
1 i}
Ao - is PO (17627 [(1-62)7 (8- 2p4s)(8- 20)] (1 39)
99ps, 03~ 2qps, §
nNa™"" e W ops f
N Rprﬂpgm[u—zwcmiﬂ] X
i -
sqps, f H 1 ~+ 2qps,§
nat*3 (]_ez); sin i ‘H\nqps,f q (1.40)
o . (anqp/a]. ) Gyps Spaps.f .
gaps,f = HE . IPOY + ol (141)
ne?*3 (1-e2)7 sint 'h/\pqps,f
_ [ 2\% -t E (aGDDy ) i 2‘%(5':9% )G :l
Wrps f = HR [(1-8 )2 e Foqp 3e/ ~coti(i-ec) D1 ) ees|
.. S gaps, §
ne®*3 Y gaps.f fow
(1.42)
. -1
an f:uRn[-(l—ez)e" (%9955 )42 (o) Gy~ 306y (-20vs) (2 Y]
29ps, < .
n89+3 ‘K‘;qps'i (143)

o Foap Sgaps,f + &M
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where n is the mean motion of perturbed body:

m
n-= -5
3 .(1.44)
Soqps,f 1S the integral of Syo.. ¢ with respect to its argument.
g-q even _.(1.45)
= R - sin| ”~ +
Spqps,f B gKgq,f [—cosjl 9-q odd ‘K‘DQPSJ
and §9, S, &M are the indirect effects due to the earth’'s
oblateness From Balmino (1974).
B ) — 1 = )
é;Q 1 2(1-8232 4 cosi ]
_ RY | e
St = 3nCyy (a) (1-e2)2 [(1—e2) 1-5 cos?1 | E
_éM 4 —3—3— 1-3 cos?
_e2y%2 - -
IR (1.46)
-8int
+ % sin2i | | }
3in2i
with the earth's second degree harmonic C,q = - 1.082628* 107
and
E = A€ g, (t)
(1.47)
[=[A gops f (t)
integrating the inclination, we get
Foqp Ggps [(R-2p)cosi - q) _

Y (et
na?*3(1-e2)* sini (qups,f)z



and for the eccentricity

I G s (“e )'2 [(]‘82)1i (,Q‘Z +3)-(,Q'2 )] =
)} 29p W p p (149)
E = R + S <
H n89+38( . ;qps { )2 f2qps,f

Substituting (1.48) and (1.49) to (1.46) and by letting

2 d
amGRp, /14K,
Sgaps,f = m (Q,Q . ]) Q s f ..(1.50)
and
dﬂGR2p 1+K
— _ o p _
where
= 9-q even
— + Cos +
Opqps,f - 2 Cpq'f [Sm:’ 9-q odd qups'j .(1.52)
—_ g-qeven
Q = S : (153)
O_qus,f - Z Cpq f [-COS}’O—Q odd 'H\,QQPS,J
we have

é)Q - 677[390 C20 R )9*4 ( ]+sz ) Foap Gﬂps 6
(‘_—]— 2)5/2 - - E‘ 2J1 .1 ( -+ )2 2qps, f
e T gaps.f

o[q+4cos1 (1—92)1/2(,Q~2p+s)—5 cosi(ﬂ-Qp)] (1.54)

67]‘6[30[:20 & 2+4 (]+k9 ) anp G,QS
(1-e2)% g 2817 (% pqpsf) saps. f

dco = 8
. ES cos2i(Q-2p)- 5qcos1+ 2(1-5cos? i)(l—e?)‘/2 (R —20+s)—2(}1—2p)] .(1.55)
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§M = S7116p,C 20 ( R ”“‘( 1+K) ) FNP Gps
(1-e2)° o 2 () e
T gaps.f

.[5 cos?i (1-2p)- 2qcos i -(4-2p)+ (1-3 cos2i) (1-e2)? (ﬂ‘QP*S)] -(1.56)

From (1.38) through (1.56) we can write the final form of the
perturbation in the Kepler elements due to the oceanic tidal
potential:

8mGe. (R “?(‘”w ) Fyop Oy 2720 +9)0

Al ggps,f = - x 8 20 +1 bps f
nvnam.f
. 4nGen(I- e? R Y2 1Ky
D€ ggps,i = 3 ( <2n+1)
naexafoqps f
. [(1-e2)"i’ (ﬂ—2p+s)-(ﬂ—2p)] Q aps.f
| B 47 Gp, R ) 242 ¢ 14Ky
Blggps.f = * (& 8 (211 +1 )

2y2
na(1-e2) smlf,,qpsf

[(,Q—2p) cos i—q} Q ggps.f
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471 Gp, G s Qpops 9+2 14K
AQ gqps f = : ( 8 ( )

na(1-e2)2 gin i ]Briqps 20 +1

) (5cos i (1-2p)-4 cos i1(1-2)%

.[(aﬂmp 3 C20nsiniFag (R
S +

: 2 2 -+
o (1-e2) 9qps ., f
«(f-2p+s)-q) ..(1.60)
A7 Gp, Qpgps (R 4242/ 14K,
A gaps,f = pq‘if (—) ( )

2 C20 N Fagp Gyps R\2
1-e (5[3”5)}_, . aFqu . 1S p (_)
. nqp‘COt'( ; )ans 2 2(1_02y2 + + a
L e de a1 al(1-e%) ¥ oqps §

0[3 cos2 i{(A-2p)-qcos i + % (1-5 cos? i)(1-e2)2 (,Q-2p+s)—§ (Jl—2p)] (161)

471 6p, Fyap O gope R (22, 14K 5ans
Ampqps,f _ p.qi 2qps, f (__) ( 9 ) )

Jde

na \Oﬁnqps,f

3n Gpps (A-2p +s)
+ 208+ 1) Gy, _ 2P

3 L2000 (Rytf5 sz (1-20)
4 8

. _p2y2 -+
0 gaps.f (1-e9) T gaps.f
-2qcos 1 -(A-2p)+(1-3 cos2i)(1-e2)2 (Jl-2p*s):' .{1.62)
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Perturbation amplitudes given by (1.57)..(162) can also be
expressed in the form of position perturbations in the radial

(ar) transverse (at), and normal (An) directions (Wilhhamson
and Douglas, 1972)

1
At = a(\+1292)"2 (AM+ Aw + AQ cos i + (ae? + (eaM)?2)2 ) (163)
A 2 2 2] 1%
r=dqa8“+s3 eAa + aAe aeaM ]
{a 1 [( 8+ ase)? + (aeaM) 1 64)
- I 1,52 2 2.\ 2
An = a(1+3e2)2 (3 417+ AQ 51N 1) (165)
and for the velocity perturbations:
_ L8 2 11 ( _A_e_ - _éie_ 2 + £ AM\Z
LY, = {(2&3‘2) M [( /8 28k ) (JE J
2 1%
. 41/
+ra(1+'§ez)?cosw Eits - (166)
i dt -
12
) ae _ BAB L2 £ 2

For formulas (1 63) through (1.68), we note the perturbation amplitudes
are the RSS values of the perturbations and that small eccentncity
approximations have been extensively applied
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Formulas for the perturbations due to the solid earth tides can be
obtained from (1.52) (157) by msking the fallowing substitutions

OCEAN TIDES SOLID EARTH
Replace ) . With:
47 Gp, R ( ;;tﬂ ) Coa ko Ay Gp (Sém)
2 2
q m
+ +
E;q‘f ész (1.69)

From formulas (1.57) through (1.62) one can derive principal
long-period perturbations for ocean or solid earth tides when:

p=%, s=0, +signandg=m
Then the angular argument becomes
_ n
Yf;mg,zol’ = (%) [(Q—Qh)w* +(2-2h+j)M* + k0ﬂ+ me + ﬂ-mg + Ezm,f L {1.70)

with frequencies given by
Tombyos = (%) [(z—zh)cb* + (2-2h+])M* + ké*} mQ (171

It 1s apparent from (1.71) that the principa) perturbations due to the
solid earth and ocean tides have the same periods and therefore
cannot be distinguished. The satellite senses the total tidal effect.






APPENDIX B

MATHEMATICAL FORMULATION
OF THE SECULAR CHANGES
IN THE LUNAR AND SOLAR ORBITS

Due to the anelastic behavior of the Earth's response and the
gissipation of energy in the oceans, the earth’'s tidal bulge
causes secular changes 1n the motion of the moon and the sun.
The moon's orbit and the sun’'s apparent orbit can be treated 1n a
way similar to that described in Appendix t and analytical per-
turbations i1n their orbital elements can be obtained from equa-
tions (1 57) through (1 62) It is evident, however, that secular
perturbations will be generated only when the angular arguments
given by equations (1 4) and (1 5) are independent of time.
Necessary conditions for the cancellation of the angular elements
of the sun and the moon are that the motions of both the disturb -
ing and the perturbed bodies, which are the same in this case, be
referred to the same plane The mathematical formulation of the
tidal potential given 1n Appendix 1, is in 8 system where the dis-
turbing bodies are referred to the ecliptic whereas the perturbed
body 1s referred to the equator. The formulation of the potential,
where the ecliptic 1s the reference frame common to both bodies
but the tide amplitude and phase are in the usual equatorial
reference frame,is given herein. The formulation of the potentia)
1S developed for the case of the oceans only since the solid earth
1s 8 special case of this development.

From equation (1.5), we can write:

Kgaf =3 & gh 2

where

3 = (I)[(2—2h) W%+ (2-2h+]) M¥ + kO*]

(2.2)

miy +
tMOg - T+ T E g
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Letting
1+kg

’\iq,f = 4nGRp, ( ) qu‘f

29+ 1

and noting that

cos (3 (£)qh) =cos (gh()-})

the potential given by (1.3) can be rewrnitten as:

R (3%
)

Ve = Mpaf () Py (sing) cos (gh()3)

which 1s the real part of the complex potential

R S+ QA () d)

U;-m,f = "\fq,{ (=) Py (8N 0)e

Substituting the right ascension (&) for the longitude (N)in
equation (2 6), gives

(=q0g () ) /¢ R+
T (CO ML EID T

Using the approach of Gosd (1977),

2
R A+ (+)
> 2

g+ . Jaoc _
P (sin0)e™ = (T Gog) gav

(+)

v=o {t}

© Py, (sino®)e [ vt - -0 7,

B-2

- (2.3)

(2 4)

(2.5)

.(2.6)
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(*}
where the starred elements refer to the ecliptic and the function ¥ gqv
1s given 1n equation (1.9) of Appendix 1. Substituting (2.8) to (2.7) gives

E S e i(-q0g(H) ¥ +(e-v T

Ugaf = Agaf (n D 3o &

{2y . [¢ R . 1({#) voc¥)
.qu}v [(T) P (sine®)e " ° ] (2.9)

From Kaula (1966):

R (A+1 . ivx ¥ R ‘ Tk
(+) B (sine®)e’ :(E*) ST Fap(i%) Gypsle®) e Taves
: s=-00
(2100
where
Thvps = (0-2p)co® + ( f-2p + s) M* + yO* - -;1 mod (8 -v,2) (211)
and therefore (2.9) becomes
! i-q0g() 3 +a-) I) 2+
+
. o e
qu,f = /\qu (p_q)l v%‘g (a*)
A KA SR KA
* Fovp (1%) Byps(e™ ){wpqv fvps +]+!pqve fv ps} . (212)
or
f - R g+! _
2o oAt —— 2 () Fap(i%) Gypsle®)
qu,f = Nt (2-q)t V’pf;'{i}(a*) vp pst
(1) U T, -q0g () ¥+ )
* Voav e avpe (2.13)

This is the desired form of the potential, with both the disturbing
body and perturbations referred to the echiptic. Note that the
/\';‘q f still refers to the usual ocesn tide coefficients

B-3



The angular argument 1n equation (2 13) 1S given by

M=) %, . -q0g(£)d + (q-v) % (2 14)

avps
or, expanding,
M= () [(1- 2p)eo* + (1-20 + ) M* + v@* - F mod (1-v,2)] -q8g + (a-v) 2

m7!

[ ‘
e [(F)((2-2n) 0%+ (2-2n+]) M* + KQ* ) + mOg - T + 71 + £gq ¢ ] (2.15)

The conditions for secular effects are attained when the
time-dependent angular variables in (2 15) drop out of the
equation These conditions are

17-q8g + mBg =0, mqg20 — q=m, tis+
2) {2 v s (k¥ =0.v k20 == vz=k: {¢}=(2)
{0 -2p) () (2-2n)=0 = )=2,p=h

{2} (D-2p+35)2(3)(2-2h+})=0 == 5 .(216)

1]
—

Note that when m = 0 or k = 0, both sign alternatives exist, and

we have applied the selection rule appropriate to the general case.
These degeneracies or symetries are the same as those discussed
in Appendix 1 for (1.24) through (1.27).

The only free variables for the secular effects are

(£), h, j, k, m
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wricn are also tne varables which define the Doodson argurnent
i1 27 Thisymplies that each Doodson frequency has & secular
2ffpct on the orbit of the sun or the mocn due to the + tides Any
secylar effect from the - tides are strictly through the m = 0 or

k = O degeneracies noted above, which, 1n the Doodsan development,
are incorporated into the Doodson coefficient amplitudes

The constant phase angle lsec associated with these secular

efrects e
. : _ ‘ ) .
feve = (1 2 mod(2-v. 2 - L e e (2 17)
< I Lrn,}
.‘l""f‘ rl ‘v l: h 'y D ,r.
-
-
k:O =y rEGC :ﬂ*‘E:n-‘lf
C +
far (+) == [sec = £ ¢
H ] ! -~ I,
Vo= 1
veo = g. + > .(f) ‘8)
TOF(-) = rSQC:ﬂ*Eﬁ L
2rn, f
k=2 = [sec = EZm,f

The 1 merely indicates a sign change and therefore the lsec 1S
notting other than measure of the phase leg € \,2 § of the ocean
tide potential

we can also rewrite the amplitude of the potential in equation
213) as a function of the Doodson coefficient, Ef, using equation
]

(2.1
(1.7) of Appendix 1.

moon
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The appropriate real form of the disturbing potential for the

secular effects s the real part of the complex potential in (2.19)
subject to the conditions of (2.15). Also, as equation (1.8) gives

d = Sk +%[-k{z}k]

1t can easily be shown that for any k,

d +

(-1)" cos Csec = cos €2m,f .(2.20)
Therefore the secular potential 1s expressed as
+ + +
U2m,f = DZm,f cos E;2m,f (221)
where
1 moon
+ _ R s + 1 I-my (2+4m)!
D2m,f - um(as )3 ('a_i'b) Af(\2m(2_c\) ) 4 )(Z_m)l
H, 84 sun om
. (2.22)

Of particular interest are the secular changes in the semi-major
axis, the eccentricity and the inclination of the orbits of the
moon and sun. These secular changes describe the evolution of
the orbits of the sun and the moon and furthermore define the
secular deceleration in the rotation of the earth, through the
balance of the angular momentum equation



Given a potential U, the secular rates in the Kepler elements
of the sun and the moon can be computed using the Lagrange
Planetary Equations from Kaula (1966, equation 3 38):

da* .y 2 sheidpt +
FTR ‘(d'n*a* (2-2h+3) Dy 4 10 € 2m
de* o (1 - e*?)? % | ;
= = (%) — e (- e*2)% (2-2h+j) - (2-2h)) 02‘,“’f sin ez‘m’f
. 9. _
ax g [(2~-2h) cos 1: k] D2+mf s E’;mf
dt n*g*2(1 -e*2)2 gpn > ' '
. (223)

where n* 1s derived from Kepler's law:
n*2 8*3 - 1—1 + u‘l’

When 1t 18 desirable to use the rate of change of the mean motion,
an* ynplace of da* the appropriate relationship is
dt dt

an* -3 n* da*
dt 2 a* dt

The secular perturbations due to the solid tide are easily computed
from equations (2.21) through (2 23) 1f the correspondences of (1 69)
are applied.
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