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PREFACE

The low degree and order terms in the spherical harmonic model of

the tidal potential have been observed through the perturbations which

are induced on near-earth satellite orbital motior_. This recovery,

which is the most complete dynamic model ever obtained, has been

achieved through evaluating tracking observations on 17 different,

mostly laser, satellites. A new improved GEM-TI geopotentlal model,

complete to degree and order 36, was estimated simultaneously with the

66 adjusted tidal coefficients. The gravltatlonal and tidal models were

developed using the J2000 Reference System with the adopted nutatior_ of

Wahr and the precession model of Lieske. The tidal recovery was made in

the presence of an extended oceanographic model containing over 600 long

wavelength coefficients from 32 major and minor tides. Since solid

earth tides have identical perturbing frequencies as the ocean tides,

the solid earth tidal model of Wahr was used as a basis for the recovery

of the ocean tidal terms. This provided a complete description of the

combined tidal potential sensed by these well tracked satellites. This

tidal model (for all 32 adjusted and unadjusted tides) has then been

used to calculate the secular change in the moon's mean motion due to

tidal dissipation and the tidal braking of the earth's rotation. The

secular change in the moon's mean motion due to tidal dissipation is

found to be -25.27 ± 0.61 arcsec cy -2. Our estimate of the lunar

acceleration agrees well with that observed from Lunar Laser Ranging
techniques, which most recently found -24.9 + 1.2 arcsec cy-- (Newhall

et al, 1986). The corresponding tidal braking of the earth's rotation

is -5.98 + .22xI0 -zz rad sec -z. If the non-tidal braking of the earth

due to the observed secular change in the earth's second zonal harmonic

(Yoder et al, 1983) is considered, modern satellite techniques yield a

total value of the secular change in the earth's rotation rate of -4.69

± 0.36xi0 -22 rad sec -2.
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1.0 INTRODUCTION

The gravitational attraction of the sun and moon deform the earth,

its oceans and its atmosphere. These deformations, known as tides,

provide a rich spectrum of effects. Among those which are readily

observable, the tides cause temporal variations in the external gravita-

tional attraction the earth exerts on near-by orbiting objects and cause

ccmplex changes in the rate of the earth's rotation.

Any imperfect tidal response of the earth results in a tidal

bulge which is not exactly aligned in the direction to the disturbing

third body. This phase lag in the tidal response produces a torque

which causes a transfer of angular momentum in the earth/moon/sun

system. Since the ocean tides usually have much larger phase lags than

the solid earth tides, they play a dominating role in this exchange of

angular momentum. This transfer of angular momentum manifests itself as

secular changes in the orbital elements of the disturbing bodies and in

the braking of the earth's rotation rate.

The subject of tidal dissipation is a classical problem which is

discussed at length in Lambeck (1980). Tidal dissipation hag been a

subject of intense interest in the geophysical, astronomical and oceano-

graphical communities, because the redistribution of the earth's mass

due to the tides is the recognized explanation for the observed accel-

eration in the earth's rotation and acceleration of the lunar orbit.

The earth/moon and earth/near-earth satellite systems have strong

physical slmilarites. Man-made earth orbiting satellites have certain

observational advantages over the moon. They have better known, and in

most cases, laboratory measured physical characteristics. Man-made

orbiting objects are generally easier to observe with great precision by

earth-based ranging systems. The diversity of objects available for

tracking also helps in the separation of contending forcing effects.



Therefore, precise measurements to artificial satellites can play an

important role in understanding the evolution of the earth/moon/sun

system.

One disadvantage of resolving the tides from their effects on

artificial satellites lles in the short observation history available on

these orbits and the resulting inherent difficulty of separating secular
from long periodic effects. However, the near earth satellite record is

lengthening in time, permitting more robust tidal solutions. Centimeter

level laser systems now routinely perform both lunar and near-earth
satellite tracking. Direct comparisons and inferences can be made of

the commonsatellite responses--elther that of the moonor an artificial

satellite--to the external potential of the earth, especially those

resulting from tidal forces.

Theoretical results associated with the evolution of the earth/

moon system have not previously been in close agreement with those

obtained observationally. This disagreement has caused someto introduce

other physical mechanisms, such as a temporal change in the gravita-
tional constant, to bring theory and observation into balance (Van

Flandern, 1975). Recoveries of tidal parameters from artificial satel-

lites give important new insight into the earth's tidal response and the

role these deformations play in the evolution of the lunar orbit.

The early work of Kaula (1964, 1969) first addressed the effects

of solid earth tides on near-earth satellite orbits. Lambeck et al

(1974) complicated the picture by showing the importance of ocean
tides. Additionally, Lambeck(1977, 1980) has discussed a wide range of

geophysical and astronomical consequencesof these tides, such as their

importance in the evolution of the earth/moon system, and braking the
rotation of the earth. The purpose of this paper is to evaluate, in

these contexts, the consequencesof a new satellite based solution of

earth and ocean tide parameters.



Most of the early analyses for the recovery of tidal parameters

from orbital perturbations were investigations of the long period tidal

effects evidenced in the evolution of the orblt's mean Kepler elements.

In most cases, the inclination and ascending node of the orbit were

analyzed. These two out-of-plane components of the orbit have strong

tidal signals, and these components are less sensitive to errors in

other force models, such as the non-conservative effects. Tidal values

from satellite analyses have been appearing in the literature since the
late 1960's. Someof the major satellites used in our solution were

previously analyzed in this manner; Douglas et al (1974) and

Felsentreger et al (1976) studied Geos-1 and Geos-2, Cazenave and

Daillet (1981) performed an analysis of Starlette, Goad and Douglas

(I 977) studied an Oscar Navy navigation satellite and Goad (I 977)

evaluated Geos-3.

The introduction of very precise laser ranging systems and an

accompanying strong global tracking network made the combined recovery

of tidal and geopotentlal terms possible from a direct analysis of

satellite tracking data. As will be shown, the tides and the geopoten-

tlal are closely related so that their effects can both be represented
in the usual spherical harmonic form (Lambeck, 1980). Herein, the

gravitational model is treated as the constant part of a time varying

potential, with time dependent effects solved for at tidal frequencies.

Williamson and Marsh (1985) broke important new ground in this direction
with their tidal solution from Starlette and Christodoulidls et al

(1986) followed with a comparable analysis of Lageos.

In this paper we report on a new dynamical tidal solution which

has been obtained at NASA/GoddardSpace Flight Center as part of an

effort to develop an improved geopotential model (Marsh et al, 1987) in

preparation for the 1991 launch of Topex/Poseldon (Born et al, 1986).

In order to yield an accurate time-lnvarlant gravity model, a complete

separation of gravitational and tidal potential is necessary. This was



accompllshed through improved modeling, including the adoptlon of

special tidal models which were more complete than those ordinarily

available from oceanographic sources and the simultaneous least squar_
estimation of numerousgeopotential and tidal coefficients.
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2.0 MODEL

A natural form for expressing the gravitational field for orbital

calculations Is in terms of spherical harmonic coefficients,

® £ a £

£=2 m=O
P£m(SinC)[C£mCOS mR ÷ S£mSin mR]}

(i)

where GM is the earth's gravltlonal constant (including the atmosphere),

ae is the earth's mean equatorial radius, P£m is the associated Legen_e

function of degree £ and order m, and r,_ and R are the distance from

the center of mass, latitude and longitude (e.g. Kaula, 1966). A number

of the potential coefficients C£m and S£m are considered to be tlme

Invarlant unknowns and are allowed to adjust based upon observed orbital

motl on.

It is shown (Appendix I) that in a system where the disturbing

bodies (sun and moon) are referred to the ecliptic, and the perturbed

body (the artificial satellite) Is referred to the equator, the second

degree tlde potential is given by:

= _. k2, f Af OD (_) (R) 3 P2m(Sin¢) cos_f
VSE f

(2)

for the solid earth and by

I+k_ £+1
Vocean. [ [ 4_GRPo(_)C +£q,f (R) P£q(Sln¢) ooSa£q,+ f

f £,q, +
(3)



for the oceans. This spherical harmonic form provides a linear response

at each constituent f in the tlde-generatlng potential. The tidal and

gravitational potentials combine to perturb the orbit. As can be seen

in the above equations, the second degree tidal potential is equivalent

to that due to gravitation with tidally driven, temporally varying

second degree harmonics. Allaslng of the gravitational solution can

result if there is a poor temporal sampling of these tidal effects

and/or if the tides are poorly modeled. The principal earth and ocean

tides, their Doodson numbersand appropriate Darwinian corr_pondancies
are shown in Table I.

The principal perturbatiork_ due to solid earth and ocean tides

have identical frequencies on satellite orbits. Consequently, earth and

ocean tidal parameters cannot be recovered separately from the analysis

of near-earth tracking data. In our solution, an adju_tment is madeto
a set of ocean tidal parameters, which corrects the observed temporal

exterior potential of the earth relative to an adopted solid earth tide
model and relative to a partially unadjusted base ocean tidal model. By

design within the solution, a sufficient number of independent tidal

terms have been adjusted at their dominant frequencies. This solution

and its interpretation form the basis of this paper.

2.1 A PRIORI SOLID EARTH AND OCEAN TIDE MODELS

For the solid earth tides, the frequency dependent model developed

by Wahr (1979) has been adopted and held unadjusted within the solution

(Table 2). All of the remaining solid earth tides are modeled with a

frequency independent Love number of k2=.30 with zero phase. Their

tidal potential is evaluated in the time domain from lunar and solar

ephemerides.
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qchwiderskl (e.g., 1983, 1981, 1980) and Parke (1982) have

analyzed global data acquired by tidal stations and have estimated

oceanographic models for the major ocean tides. These models have been

spectrally decomposedusing quadrature under the assumption that the
tidal amplitude (A) and phases (_) are known at all points on the globe

(where Au0 for land areas). The Afcos@f and Afsin_f are computed on a
uniform dense grid of points on the earth's surface to solve for

the a_m,f, b_m,f, C_m,f and d_m,f used to represent each tide in
harmonic form:

Afcos_f -- _ (a_m,fCOSmk + b_m,fSin m_) P_m(Sin¢)
_0 m_O

Afsin_f -- _. _. (C_m,fCOS mA + d_m,fSin mk) P_m(Sin¢) (4)
_0 m_0

For each tide constituent (f), the values used for orbit computations

are obtained as:

+ + I la_m 'C_m,f cos _mpf _ _ f - d_m,fl

+ sin + I [ + ]
C£m,f _m,f m _ b_m,f C_m,f

m

C_m,f cos K_m,f

(5)

m

C_m,f sin _m,f I [C_m,f + ]- b_m,f



The expansion is taken out to some maximumorder, £max. The ocean

tidal phases in the oceanographic models can be related to that of eq. 3

by:

w + w + Xcf - _f - _ _om (6)

where 6om is the Kronecker delta (where m=O denotes the long period, m=1

the diurnal and m=2 the semi-dlurnal tides) and

-0 positive Doodson coefficients
X :" (7)

__ negative Doodson coefficients

Note that for our major tides, X=_ only for KI. ef is used in this form

in Appendix I.

There are many minor ocean tides which are not developed directly

from oceanographic data due to the computational burden required for

precise solutions of the Laplace Tidal Equations. Because of the

coupling of the satellite motion and the disturbing body, many of these

tides have significant effects on satellite orbits and are a source of

allaslng in the recovery of satellite derived ocean tidal models if not

properly accounted for. This is especially true of the numerous

sideband corL_tltuents which typically have an amplitude of 10% of the

major tide at a nearby frequency. Total neglect of these sldeband tides

significantly degrades the accuracy of the adjustment for the terms

defining the major tides. To calculate models for many minor ocean

tides which were otherwise unavailable, an algorithm was developed and

tested. Figure I diagrams the predictive method which was developed for

the computation of any tide constituent and its errors given its

frequency. The algorithm uses linear admittances to predict any tide in

the long period, seml-dlurnal and diurnal bands (Chrlstodoulldls et al,

1986a ).
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A sensitivity analysis was performed using the linear orbit

perturbation theory of Appendix I to isolate those tides which were

important for the satellite solution, and ocean-based tidal models were

developed for those found to be satellite sensitive. The long wavelength

coefficients of the ocean tides were adjusted simultaneously with the

geopotentlal if sufficient sensitivity existed within the satellite

observations. Otherwise, the ocean tidal terms were held fixed at their

oceanographlcally determined values. Note that a change in the solid

earth model is accomodated by a comparable change in the solved for

ocean tides of the same frequency. This is further discussed in

Section 3. Table 3 summarizes the complete set of ocean tidal terms

which were modeled in the GEM-TI solution and indicates which terms (if

any) were adjusted within each tidal frequency.

Due to attenuation with altitude, most near-earth satellites are

insensitive to ocean tidal terms above degree 6 and are most sensitive

to the long period perturbations which arise exclusively from the

prograde terms in the harmonic expansion. R. Eanes of the University of

Texas has shown (private communications) that there are a few ocean

tidal terms which we have neglected. These neglected terms are not of

the same order as the dominant terms and resemble m-daily gravity

effects of a few cm amplitude in orbital perturbations. As m-daily

effects, these neglected tidal terms can cause an aliaslng error in the

geopotential recovery, but they are quite distinct from the tldal

parameters adjusted herein.

2.2 THE GEM-TI SOLUTION DESIGN

The recent GEM-TI solution (Marsh et al., 1987, in press) using

significantly more and better tracking data was a complete re-iteratlon

of Goddard Space Flight Center's general gravitational model solutions.

The availability of a super computer (the Cyber 205) and the

9



vectorizatlon of our major software tools greatly impacted the tlmeframe

required to complete this work. GEM-TIwas carefully designed to be a

general gravitational field (i.e., not a "tailored field" for any

specific orbit). GEM-TIwas solved In the J2000 Reference System (with
IAU 1980/Wahr nutatlon and modern reference constants being adopted).

This reference system was generally based on the Merit Standards

(Melbourne, et al., 1983). A summaryof the reference parameters

adopted within GEM-TIcan be found in Table 4.

The GEM-TI solution made use of a large subset of the precise

third generation laser tracking data (with tracking precision better

than 5cm) taken on 7 geodetic satellites. Strong Tranet Doppler data
sets from Seasat and Oscar 14 were also used. Interestingly, each of

the geodetic satellites which have been studied earlier for tides have
now been reanalyzed as part of this simultaneous multl-satelllte

gravitational and tidal solution. In each case, improved tracking data
sets (i.e., better precision and global distribution) have been utilized
in the formation of GEM-TI. Furthermore, a simultaneous adjustment of

tidal and geopotentlal terms has yielded more complete and accurate

dynamic tidal results. The GEM-TI gravitational model is complete in

spherical harmonics to degree and order 36; 66 tidal parameters

representing the longest wavelength coefficients of 12 major tides were
simultaneously adjusted in the solution. Approximately 550 other ocean

tidal terms were used to model long wavelength ocean tidal variability

for 32 major and minor tides.

In all, 17 satellites were included in the GEM-TIsolution. Of

the 17, weaker data sets from six low inclination objects were used

specifically to help resolve the zonal harmonics of the field. The

strong data sets were those acquired by recent laser and Doppler

systems. Table 6 and Figure 2 describe the orbital characteristics of
the satellites used in the formation of GEM-TI.
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The summaryof the data in Table 5 reveals that precise laser

tracking played a dominant role in defining the GEM-TIgeopotentlal and

tidal models. Of particular importance, two laser satellites, Lageos

and Starlette, made strong contributions to both the tidal and

geopotential field recoveries. These are completely passive orbiting

objects which were exclusively designed to serve as space-based laser

targets. Both satellites are extremely dense spher_ (area to mass
ratios of .00069 and .00096 m2 kg-I respectively), covered by laser

corner cubes, and are in orbits designed to minimize non-conservative

forcing effects. Lageos orbits at nearly an earth radius above the

earth and senses only the longest wavelength gravitational and tidal

fields. Starlette, orbiting at a much lower altitude of-1000 km,

experiences a rich spectrum of tidal and gravitational perturbations and
is highly complementary to Lageos for the separation of long and short

wavelength gravitational and tidal terms. Figures 3.1 and 3.2 show the

complimentary tidal perturbation spectra sensed in the inclination and
ascending node perturbations of Starlette and Lageos. Both of these

satellites are tracked on a high priority basis by a global network of

laser tracking stations and have extensive observation sets which have

been acquired under NASA's Crustal Dynamics Project activities (Coates

et al, 1985), Project MERIT, and the WEGENER Campaign.

A summary of the principal periods of the solid earth and ocean

tides on the major satellites utilized in the solution can be found in

Figure 4. These tides perturb the satellite orbits with dominating long

period effects. On the earth's surface, the largest tides are found in

either the diurnal or semi-diurnal band. The precession of a satelllte's

ascending node and not the earth's rotation is responsible for the wide

range of these satellite periodicities.

I!





3.0 THEGEM-TIOCEANTIDAL SOLUTION

Table 3 has summarized the ocean tidal terms which were selected

for adjustment in the GEM-TIsolution (that is, adjusted simultaneously

with the gravitational field). Tables 7.1 through 7.4 present the
recovered ocean tidal spherical harmonic coefficients respectively for

each degree. The values shown for the coefficient and phase uncertain-
ties were taken from a covarlance matrix which was calibrated for the

geopotential coefficient uncertainties (see Marsh et al, 1986). We
believe this calibration also applies for the tides. This calibration

gave realistic (one sigma) uncertainties for the estimated tidal and

geopotential terms. Becausethe ocean tidal terms are inseparable from
those of the solid earth at the same frequencies, the uncertainty

specified for a given tidal term does not reflect changes which would
arise from modifications to the fixed solid earth tides which are

modeled. Rather, these uncertainties represent the error in the sum of

the solid earth and ocean tidal models at a given frequency mappedinto

the spherical harmonic decomposition of the ocean tide. These uncer-
tainties represent commissionerrors (in a strict sense) in modeling the

external potential of the earth at tidal frequencies when using the

complete ocean tidal description available in GEM-TIplus the Wahr solid
earth tidal models. Neglect of an adjustment for the very long period

tides (e.g. the 18 year tide) is a potential source of aliasing which is
not considered in the error estimates which are presented.

Note that the GEM-TIrecovered tide coefficients do not require

correction for sideband effects as was necessary in Cazenave & Daillet

(1981) and in Williamson and Marsh (1985). The errors associated with
the sldeband constituents have been minimized because the sideband terms

are explicitly modeled in our solution and the satellite data spans a

significant number of years.

pRFJCEDINGPAGE BLANK NOT FILMED
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In the current solutiorLq, the Wahr Earth Model is adopted to

describe the solid earth's tidal response. This model was developed

assuming a uniformly rotating earth comprised of an ela_tic inner core

and mantle and a liquid core. Dehant (1986a,b,c) has estimated the

effects of anelastlcy on different components of the earth's tidal

response using models developed by Zschau (1985) and others. She has

shown that the neglect of anelastlclty may be the cause of some of the

discrepancy in the observed versus predicted gravimetrlc factors at

tidal frequencies. Wahr and Bergen (in press) have also addressed the

question of the effect of anel_ticlty on the earth tides (and in the

tidally induced variation in the earth's rotation rate) and have

estimated upper and lower bounds for these effects. They have noted

that observational data of sufficient precision is lacking to permit a

meaningful estimate of anelastic parameters directly, even though recent

recoveries of nutation amplitudes by space based technologies like VLBI

put us on the threshold of doing so. Wahr and Bergen (ibid) show that

for the diurnal and semi-diurnal tidal frequencies, the lower and upper

bound for the anelastic effect on kf is typically .002 and .015

respectively. These assessments agree well with those developed by

Dehant. Using the midpoint of these upper and lower bounds shown by

Wahr and Bergen for the anelastlc contribution at specific tidal

frequencies and a I% change in k2 for all other tides in our model, we

have performed a sensitivity study by re-estimating all 66 ocean tide

coefficients in the presence of this changed solid earth tide model.

The adjusted 2nd degree ocean tidal coefficients which result generally

change in phase by approximately 3 degrees and in amplitude by less than

10%. However, the resulting external potential described by the

complete ocean and solid earth model remains nearly constant (within one

third of the standard deviations given). This test of the stability of

the model's external potential compared the calculated values of the

lunar acceleration and the braking of the earth's rotation with the

values obtained with the original Wahr model.

14



The GEM-TI satellite determined values are also compared to those

estimated from the oeanographic tidal solutions of Schwlderskl and Parke

(Tables 7.1 to 7.4). Generally, the comparison of satellite and oceano-

graphic tidal values is quite good. The variation seen between the two

oceanographic tidal solutions is often larger than the uncertainty of

the dynamic satellite solution. We believe these results confirm that

the adopted Wahr solid earth tidal model is quite reasonable and that

the solution for long wavelength ocean tidal terms is realistic when

compared to those observed oceanographlcally. These satellite determined

ocean tidal coefficients can provide effective constraints within future

oceanographic-based model developments.

Of special interest are the second degree values for the M 2 tide

where the amplltudes show large disagreement between oceanographic

models. For this term, which dominates the lunar evolution, the GEM-TI

satellite result favors the value obtained by Parke. For the 01 second

degree values, a large disagreement is also present, only this time the

GEM-TI satellite results favor the Schwlderski model.

The large uncertainty in the oceanographic models (as evidenced

by the level of disagreement they exhibit) prevents an accurate

separation of solid earth and ocean tidal contributions in the observed

total effects seen by orbiting objects. As explained in Williamson and

Marsh (1985), significant improvements are also required in the modeling

of atmospheric tides, atmospheric pressure loading over both the ocearL_

and the continents, the radiational potential, and other such subtle

effects. This lack of strong earth-based modeling is the reason that

satellite tidal analyses cannot yet be expected to contribute

significantly to assessing tidal dissipation in the solid earth. Zschau

(1986) comes to the same compelling conclusion in his attempt to

interpret the M 2 solid tide dissipation from combined satelllte-ocean

tide solutions.

15



Table 8 compares 2nd and 4th degree ocean tidal coefficients

obtained by other satellite studies with the values from the GEM-TI
solution. Our satellite values seem to be consistent with most

previously reported satellite results, especially the M2 analyses. For

M2, both the second and fourth degree terms are in good agreement. Note

the Cazenave and Daillet (1981) values for 01 shown were taken from
Williamson and Marsh (1985), who corrected them to refer to the Wahr

nutations from the original values using the Woolard nutatlons.

The GEM-TI ocean tidal model is a significant improvement over

earlier studies. It alone is based upon the simultaneous adjustment of

geopotentlal and tidal terms, it uses the Wahr nutations, it has modeled

550 presently unrecoverable sideband and higher degree ocean tidal
terms, and has been derived from complete tracking information on a

multiplicity of satellites. Most, if not all, of these factors are

significant limitations in the earlier satellite ocean tidal

investigations. Because of the nature of present model improvements,

the systematic errors in the earlier investigations are probably

comparable to or larger than any error estimates found in previous

analyses. We have therefore not tabulated the comparitive error

estimates from these earlier investigations.

16



4.0 SECULARPERTURBATIONSIN THEMOON/SUNORBIT

The observed secular acceleration in the moon's orbit is dominated

by tidal dissipation within the earth's oceans. The secular variation

of the Kepler elements of the moonand apparent sun are calculated using

the tidal potential in the Lagrange Planetary Equations, evaluating

those terms of zero frequency as detailed in Appendix 2. The ecliptic

Kepler rates take the form:

da* + +- K* sindt a C2m,f e2m,f

de _ + +
--= K* sin (8)
dt e C2m,f e2m,f

di* + +

d-_ = K_ C2m,f sin _2m,f

The * stands for either the moon or the sun (there is also a small

change in the apparent solar orbit); m = 0 for long period tides (LP),

m=1 for diurnal tides (D) and m=2 for semi-diurnal tides (SD). These

+ +

labels are used in summary tables. C2m and e2m are the second degree

tidal amplitudes and phases obtained from the GEM-TI tidal solution or

• and
the background unadjusted tidal models, and Ka*, Ke, K_ are

calculated from analytical theory as shown in Appendix 2.

To obtain the third body acceleratiorm from the GEM-TI tidal

model, it is necessary to consider the contributions of all of the

adjusted and unadjusted second degree terms. The Wahr solid earth tidal

model has no anel_gticity and thus there is no phase lag in the earth's

lunisolar tidal response and no resulting torque on the lunar orbit.

The complete second degree ocean tide model includes the unadjusted

tidal coefficients derived from admittances (Table 9) which have been

included in all of our near-earth orbital calculations as well as those

terms adjusted from the satellite data (as given in Table 7.1).

17



The secular changes in the Kepler elements of the moon and

apparent solar orbit based on the GEM-TI model due to tidal energy

dissipation in the earth's oceans are summarized in Table 10. The effect

of the earth's ocean tides on the lunar orbit is reasonably well

determined and can be compared with lunar evolution observatio_q.

However, only the change in the apparent solar seml-major axis is

measured significantly in the sun/earth case. The uncertainties in the

Kepler-element rates which are given have been obtained from a formal

RSS propagation of the tidal coefflcent errors (as given in Table 7. I)

combined with a 10% estimated uncertainty for all unadjusted terms shown

in Table 9.

Using the simple relationship derived from Kepler's Law, the

secular perturbation of the lunar mean motion is obtained from the semi-

major axis rate as

dn. -3 n* da (9)
dt 2 a* dt

where the computation of n*, the mean motion, is given by

and

n _ =

_a .3

(10)

'S'i_ I M e [1 * MM--'_'_] (1 1)
e

Details of the contribution of each tidal constituent and its associated

uncertainty to the secular change of the moon's mean motion is given in

Table 11. The total acceleration from the GEM-TI ocean tidal model is

the sum of each of these contributions and, as shown in Table 12,

]8



produces a value of -25.27 ± 0.6 arcsec/cy 2 for the secular change in

the moon's meanmotion. This value is in excellent agreement with latest

value obtained observatlonally by Lunar Laser Ranging: (LLR) (Newhall et
al., 1986 in press) of -24.9 ± I arcsec/cy 2. The n observed from LLRm
is in harmony with the energy dissipation calculated from the earth's

ocean tidal model for the earth/moon system. Thls confirms that energy

dissipation due to the ocean tides is the dominant source of the lunar

orbit's secular acceleration and no other physical mechanics are
required at the current .6 arcsec cy-2 level of precision.

Table 11 also reveals that the long period tides _ave secular
effects on the lunar meanmotion. Our formulation allows us to evaluate

these effects: the coefficients describing the tides are equatorlally

referenced whereas the satellite orbital frequencies of the tidal

disturbing potential are best described and implemented herein as linear

combinations of the ecliptic rates. Previous derivations have missed

this phenomenonbecause of their expansion within an equatorial refer-

ence system. In this equatorial system, the correspondence between the

tidal perturbation rates and the orbit element rates do not exactly

cancel, whereas the more correct derivation (given in Appendix 2) find

them doing so, giving rise to secular effects.

In our calculations we have ignored any contribution that arises

from the dissipation of energy due to tides raised on the moon by the

earth. While M2 is not of consequence due to the permanent bulge it

causes in the moon's shape, contributions from 01 and N2 mayneed to be
considered. Lambeck (1975) estimates that these terms have small

da
effects, being no more than .16 m/cy in _ for the moon. This effect is
of the order of the accuracy we are now achieving and requires further
i nvesti gati on.
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5.0 TIDAL BRAKINGOFTHEEARTH'SROTATION

The ocean tides retard the axial rotation of the earth. Conserva-

tion of angular momentumin the earth/moon/sun system requires that the
secular change in the rotational velocity of the earth due to the

lunisolar tidal torques is (Bursa, 1986):

dn de di
+ A2 m m= AI dt _ + A3 dt

dn de di

s + B2 s s fl dC (I2)+ BI d--t- _ + B3 dt C dt

where am , em, im are the ecliptic Keplerlan elements of the

moon; as , es, is are the equatorial Keplerlan elements of the apparent

sun; the A terms are for the orbital angular momentum contributions of

the Earth/Moon system; the B terms are for the orbital contributions of

the Earth/Moon system about the sun; and the C term represents the

effects due to changes in the Earth's polar moment of inertia C.

The formulae for the A and B terms, which are taken from Lambeck

(1980), have been derived from conservation of angular momentum in the

direction of the Earth's mean spin axis. In Lambeck's derivation, he

uses the inclination of the lunar orbit on the equator averaged over one

period of the lunar ascending node on the ecliptic, Im. Thus

cos I = cos i cos i
m s m

PRECEDII_G PAGE BLANK NOT FILMED
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The requisite formulae are then, where M is the mass of the Earth, M s is

the mass of the Sun, and Mm is the mass of the Moon:

--M Mm- I

2

_-nm amcC°S isi I
(13)

F
m

AI " 3n---mcos i
(14)

A2 = Fm em cos im
(15)

A3 - Fm sin im
(16)

for the lunar terms, and

F
S inIM_M_m_I _as

M +M+M CI_ m l
(17)

F
S

BI " 3n--_cos is
(18)

B2 - Fs es cos is (19)

B3 sin iFs s (20)

for the solar terms.
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Bursa (1986) has evaluated the effects due to changes in the

Earth's polar moment of inertia due to the secular time variations in

the second zonal harmonic:

dC 2 dJ2

d-_ _ _ Ma2 dt kg m2/cy (21)

where Ma 2 is 2.4296xi038 kg m 2. The corresponding C is 8.0378xi037 kg m 2

and _ is 7.292115x10-5rad/sec. Yoder et al (1983) have estimated:

dJ2

dE- _ (-2.8±0.6) x I0-9/cy

from Lageos tracking data, and have attributed it to the effects of

post-glacial rebound. Thus, the non-tldal acceleration of the earth is

dCA
"NT = C dt

= (1.29_+.28) x 10-22rad/sec 2

Each second degree tide in the GEM-TI expansion, including both

adjusted and modeled values, has been used to calculate its contribution

to braking the earth's rotation. These rates with their associated

uncertainties are given in Table 11. A summary of the long period,

diurnal and semi-diurnal contributions to _ and that from the non-tldal

secular change in J2 is presented in Table 12. Our estimate of the

secular tidal acceleration of the earth's rotation (_T) is -5.98 ±

0.22xi0 -22 rad sec -2. Taking into account the non-tldal effect of the

change in the earth's oblateness (i2) , our best estimate of the secular

braking of the earth's rotation is -4.69 ± 0.36xi0 -22 rad sec -2. In

terms of the change in length of day, _T corresponds to 2.25 _+ .08

msec cy -I and _ corresponds to 1.76 _+ .14 msec cy -I.

Lambeck (1980) summarizes the astronomical results which have

been obtained for constraining the values of _ and nm and for the
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determination of _ itself. Although there appears to be a wide varia-

tion of values, Lambeck found _ -- -5.48xi0 -22 rad s-2 to be his

consensus value from astronomical observations. Our estimate of this

rate, which was satellite derived using both a new ocean tidal model and

the observed non-tidal change in the earth's 2nd zonal harmonic, agrees

reasonably well with his interpretation of the astronomical constraints.

Clearly, this new satellite determination lacks many of the problems

associated with the determination of the time and place of ancient

eclipses, and represents a significant advancement in determining the
tidal braking of the earth's axial rotation.

The derived value for _ discussed herein, is solely based on the

long term secular effect. While the tidal contribution, _T' is complete
and not expected to vary over the three thousand years of recent history
(Lambeck, 1980), the non-tidal contributions may not be complete. In

our derivation of _NTwe have based the estimate on the effects which

arise from J2" Yoder et al (I 983) suggest that other smaller

contributions may come, for example, from J3' although present orbital
histories cannot accurately resolve them.

Recently, a re-analysls of the eclipse records by Stephenson and
Morrison (1984) suggests that there is evidence of a non-unlform

decrease in the earth's rotation rate over the l_t three thousand

years. However, the physlcal basls for any such change remalns
unexplained. In the case of Stephenson and Morrlson, the evidence for a

changing non-tidal acceleration is based upon an apparent discrepancy
between the historical eclipse results prior to 1620 and the analysis of

the later telescopic data subsequent to 1620. From their telescopic

data, they derive changes in the length of day of 1.4 msec cy-I versus
2.4 mseccy-I for the earlier eclipse data. The artificial satellite

results for _T' the tidal effect alone, yield 2.25 + .I msec cy -I, which

is a value quite cor_istent with that Stephenson and Morrison found from

their early eclipse records. Our value of 1.76 + .14 for _ is not really
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too different from their 1.4 given the accuracies of the astronomic

analyses. Their telescopic results depart from those found herein using

modern satellite la_qer ranging techniques by about -.4, and the early

eclipse results depart by about .6. A simple explanation for these
disagreements may be that the astronomic data is of insufficient

accuracy; also error sources such as inconsistent reference frames may

be present. Given the lack of supporting error analyses, their
conclusion of non-uniformity in the decrease of the earth's rotation

r at e i s questi onable.

From another perspective, Lambeck (1980, eqn. 10.5.2) estimated
that the tidal deceleration of the earth's rotation and the secular

change in the lunar meanmotion are related by

_T _ (51+4) nm

This is simply derived from the separate estimates of nm and _T" If we

use this equation with our estimate of nm, we find _T _ -6"27xi0-22
rad/sec 2, which is in good agreement (one sigma) with our solution. Our

estimates of nm and _T provide the corresponding relationship

_T _ (49+3) nm

indicating that we find the Lambeckformula slightly overestimates the

nm on _T"effect of

These results from the present artificial satellite analyses

represent the _ and nm of an epoch around 1980. These results can be

directly compared to the excellent contemporary observation history of
the earth's rotational behaviour available from the space technologies

of Satellite and Lunar Laser Ranging and Very Long Baseline Inter-

fercmetry to assess the contemporary role tides play in this complex
retardation of the earth's rotation rate.
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6.0 SUMMARY

Modern l_er tracking technologies allow us to monitor the orbital

evolution of near-earth satellites to unprecedented levels of accuracy.

Recently acquired observation data sets from a total of seventeen mostly

laser satellites have been used to develop detailed models of the forces

which explain these observed orbital effects. Both the time invariant

and the temporally varying tidal gravitlatlonal potential fields of

the earth have been accurately resolved from our analysis of direct

satellite tracking observations. This model, GoddardEarth Model (GEM)-

TI, is the most complete gravitational and dynamic tidal solution ever

produced exclusively from direct satellite tracking data.

The GEM-TIsolution simultaneously recovered a complete gravita-

tional field to degree and order 36 and 66 tidal coefficients repre-

senting twelve major tides. The solution made use of modern geodetic

constants, such as the J2000 Reference System complete with the Wahr

nutation and solid earth tidal models. A more complete model of the

background ocean tides was used, which had been developed to reduce

all_ing in the recovery. These unadjusted tidal terms included over

550 coefflcents representing the longest wavelength constituents of
32 major and minor tides. The minor ocean tidal models were estimated

using a predictive technique based on the observed major tides and a
postulated linearity of the admittances. The tidal perturbations which

result from the separate solid earth, atmosphereand oceans give rise to

identical orbital frequencies which cannot be separately resolved from

an analysis of orbital motion. However, the total tidal effect is
accurately sensed in these well tracked orbits and the tidal

perturbations are knownto be strong.

The complete GEM-TItidal model containing both the adjusted and
unadjusted terms has been used to estimate the effects of the earth's

tides on the earth/moon/sun system. The secular change in the lunar mean

t,_ _,/:t_.i_̧ ,_,_
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motion estimated from this dynamic tidal model, -25.27±.61 arcsec cy -2,

agrees very well with the value of -24.9 ± I. arcsec cy -2 recovered

from a decade of Lunar Laser Ranging by Newhall et al, 1986. The tidal

braking of the rate of the earth's rotation due to conservation of

angular momentum in the earth/moon/sun system yields a value of

-5.98 ± .22 x 10-22 rad sec -2, corresonding to 2.25 + 0.08 msec/cy in

length of day. Thus we have derived a set of tides from tracking of

artificial satellites which seems to consistantly predict the observed

evolution of the lunar orbit.

Taking into account the non-tidal braking due to the Lageos

derived secular rate of change in the earth's second zonal harmonic

(Yoder et al, 1983), artificial satellite techniques provide a total

value for the secular change in the earth' s rotation rate of

-4.69 ± .36 x 10-22 rad sec -2, which corresponds to 1.76 ± .14 msec/cy

in length of day. This value is consistent with recent astronomic

studies of eclipse records such as that of Stephenson and Morrison

(1984), who obtained 2.4 msec/cy for the data prior to 1620 and 1.4

msec/cy for the telescopic data since 1620. Because there may exist

other secular effects which we have not yet accounted for, and because

of the significantly poorer accuracies acheivable frem the astrcmical

data, this agreement must be regarded as quite good. Also, the

1.76 msec/cy does not confirm any inference of a non-uniform change in

the earth's rotation rate; rather it tends to indicate that the

difference of I msec/cy in the separate estimates of Stephenson and

Morrison may reflect the separate errors of their determinations.

28



REFERENCES

Balmino, G., "Analytical Expressions for Earth Tides Perturbations on

Close Earth Satellites," The Use of Artificial Satellites for

Geodesy and Geodynamicss, pp. 313-322, edited by G. Veis, National

Technical University, Athens, Greece, 1974.

Born, G.H., Stewart, R.H, and Yamarone, C.A., "TOPEX - A Spaceborne

Ocean Observing System," Monitoring Earth's Ocean, Land, and

Atmosphere from Space--Ser_qors, Systems, and Applications, Vol. 97

of Progress in Astronautics and Aeronautics series, pp. 464-479.

Publ ished by the Ameri can Ins ti tute of Aer onauti cs and

Astronautics, Inc., New York, 1985.

Bursa, M., "Geodynamics Due to the Varying Second Zonal Geopotential

Harmonic", paper presented at the XXVI COSPAR Conference,

Toulouse, France, June, 1986.

Cazenave, A., Daillet, S.,"Lunar Tidal Acceleration from Earth Satellite

_ -S t'Orbit Anaiy_ , J. Geophys. Res., 86(B3), 1659-1663, 1981

Christodoulidis, D.C., Smith, D.E., Klosko, S.M., Torrence, M.H., Dunn,

P.J., "A GSFC Alternative to the SLR MERIT Constants", Proceedings

of the International Conference on Earth Rotation and the

Terrestrial Reference Frame, July 31-August 2, 1985.

Christodoulidis, D.C., Williamson, R., Chinn, D., and Estes, R., "On the

Prediction of Ocean Tides for Minor Constituents", Proceedings of

the Tenth International Symposium on Earth Tides, R. Vieira

editor, Consejo Superior de Investigaciones Cientificas, Madrid,

1986.

Christodoulidis, D.C., Smith, D.E., Klosko, S.M., and Dunn, P.J., "Solid

Earth and Ocean Tide Parameters From LAGEOS", Proceedings of the

Tenth International Symposium on Earth Tides, R. Vieira editor,
i

Consejo Superior de Investigaclones Cientificas, Madrid, 1986b.

29



Coates, R.J., Frey, H., Mead, G.D., Bosworth, J.M., "Space-Age Geodesy:

The NASA Crustal Dynamics Project", IEEE Transactions on

Geoscience and RemoteSensing, Vol GE-23, No. 4, July 1985.

Dehant, V., "Tidal Parameters for an Inelastic Earth", paper presented

at the European Geophysical Society Joint Meeting, Kiel, West

Germany,August, 1986a.

Dehant, V., "Comparison Between the Theoretical and Observed Tidal
Gravlmetric Factors", paper presented at the European Geophysical

Society Joint Meeting, Kiel, West Germany,August, 1986b.

Dehant, V. "Integration of the Gravitational Motion Equations for an
Elliptical, Uniformly Rotating Earth with an Inelastic Mantle",

paper presented at the EuropeanGeophysical Society Joint Meeting,
Kiel, West Germany, August, 1986c.

Doodson, A.T., "The Harmonic Development of the Tide Generating

Potential," Proc. Roy. Soc_u.,London, 100, 305, 1921.

Douglas, B.C., Klosko, S.M., Marsh, J.G., and Williamson, R.G., "Tidal

Parameters from the Variation of Inclination of GEOS-I and GEOS-

2" Celestial Mechanics (10), 165-178, 1974.

Felsentreger, T.L., Marsh, J.G., Williamson, R.G., "M2 Ocean Tide

Parameters and the Deceleration of the Moon's Mean Longitude from

Satellite Orbit Data", J. Geophys.Res., 84(B9), 4675-4679, 1979.

Felsentreger, T.L., Marsh, J.G., Agreen, R.W., "Analyses of the Solid

Earth and Ocean Tidal Perturbations on the Orbits of the GEOS-I

and GEOS-2 Satellites", J. Geophys.Res., 81(14), 2557- 2563, 1976.

3O



Goad, C.C., Douglas, B.C., "Lunar Tidal Acceleration Obtained from

Satellite-derived Ocean Tide Parameters", J. Geophys. Res.,

83(85), 2306-2310, 1978.

Goad, C.C., Douglas, B.C., "Determination of M2 Ocean Tide Parameters

from Satellite Orbit Perturbations", J. Geophys. Res., 12(5),

1977.

Goad, C.C., "Application of Digital Filtering to Satellite Geodesy",

NOAA Technical Report NOS 71, NGS 6 Rockville, MD., May 1977.

(Doctoral dissertation, School of Engineering and Architecture,

Catholic University of America, Washington, D.C.)

Kaula, W.M., "Tidal Dissipation by Solid Friction and the Resulting

Orbital Evolution", Reviews of Geophysics, Vol. 2, No.4, November

1964.

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell Publishing Company,

Waltham, Mass., 1966.

Kaula, W.M., "Tidal Friction with Latltude-Dependent Amplitude and Phase

Angle", Astronomical Journal, 74, NO. 9, November 1969.

Lambeck, K., Cazenave, A., Balmino, G., "Solid Earth and Ocean Tides

Estimated from Satellite Orbit Analyses", Rev. Geoph_,s., 12, 421-

434, 1974.

Lambeck, K., "Effects of Tidal Dissipation in the Oceans on the Moon's

Orbit and the Earth's Rotation", J. Geophys. R., 80(20), 1975.

Lambeck, K., "Tidal Dissipation in the Oceans: Astronomical, Geophysical

and Oceanographic Consequences", Philosophical Transactions of the

Royal Society of London, Vol. 287, No. 1347, 545-594, December

19, 1977.

31



Lambeck, K., The Earth's Variable Rotation: Geophysical Causes and

Consequences, Cambridge University Press, New York, 1980.

Marsh, J.M., "An Improved Model of the Earth's Gravitaitonal Field: GEM-

TI", NASA Technical Report, in press, 1987.

Melbourbe, W., Anderle, R., Feissel, M., King, R., McCarthy, D., Smith,

D., Tapley, B., Vincente, R., "Project MERIT Standards", Circ.

167, U.S. Nay. Observ., Washington, D.C., 1983.

Newhall, X.X., Williams, J.G., Dickey, J.O., "Earth Rotation from Lunar

Laser Ranging", JPL Geodesy and Geophysics Preprint, No. 153,

December 1986.

Parke, M.E., "O1, PI, N2 Models of the Global Ocean Tide on an Elastic

Earth Plus Surface Potential and Spherical Harmonic Decompositions

for M2, $2, and KI", Marine Geodesy, Vol. 6, No. I, 1982.

Schwlderski, E.W., "Atlas of Ocean Tidal Charts and Maps, Part I: The

Semidiurnal Principal Lunar Tide M2", Marine Geodesy, Vol. 6, No.

3-4, 1983.

Schwlderskl, E.W., Global Ocean Tides, PartV: The Diurnal Principal

Lunar Tide (O1), Atlas of Tidal Charts and Maps, May 1981.

Schwlderski, E.W., "On Charting Global Ocean Tides", Reviews of

Geophysics and Space Physics, Vol. 18, No. I, 243-268, February

1980.

32



Stephenson, F.R., Morrison, L.V., "Long-term Changesin the Rotation of

The Earth: 700 B.C. to A.D. 1980", Phil.Trans. R. Soc. Lond, A

313, 47-70, 1984.

Van Flandern, T.C., "A Determination of the Rate of Change of G", Mon.

Not. R. Astron. Soc., 170, 333-342, 1975.

Wahr, J., Bergen, Z.,"The Effects of Mantle Anelasticlty on Nutatlorkq,

Earth Tides, and Tidal Variations in Rotation Rate" in press.

Wahr, J.M., "Body Tides on an Elliptical Rotating, Elastic, and

Oceanless Earth", Geophys. J.R. Astron. Soc., 64, 677-703, 1981.

Wahr, J.M., "The Tidal Motions of a Rotating, Elliptical, Elastic and

Oceanless Earth", PhD. Thesis, University of Colorado, 1979.

Williamson, R.G., Marsh, J.G., "Starlette Geodynamics: The Earth's Tidal

Response", J. Geophys. R., 90(B11), 1985.

Williamson, R.G. and B.C. Douglas, HAP User;s Guide, Wolf Research and

Development Corporation, Report No. NAS-11726-163, 1972.

Yoder, C.F., et al, "Secular Variation of Earth's Gravitational

Harmonic J2 Coefficient from LAGEOS and Nontidal Acceleration of

Earth Rotation", Nature, 303, 757-762, 1983.

Zschau, J., "Tidal Friction in the Solid Earth: Constraints from the

Chandler Wobble Period", S_pace Geodesy and Geodynamlcs, Anderson,

A. and Cazenave, A. Editors, Academic Press, 1986.

Zschau, J., "Anelasticity in the Earth's Mantle: Impllcatior_g for the

Frequency Dependence of Love Numbers", in press, 1985.

33



TABLE1.

Darw ini an

Symbol

M 2

S2

N2

K 2

L 2

K I

01

PI

Mf

Mm

Ss a

Doodson' s

Argument

Number

255.555

273.555

245.655

275.555

265.455

165.555

145.555

163.555

075.555

065.455

057.555

Period

(hr)

12.42

12.00

12.66

II.97

12.19

23.93

25.82

24.07

1 3.66d

27.55d

188.62d

Description

Principal lunar semidlurnal

Principal solar semidlurnal

Larger lunar elliptic

semi di urnal

Lunar/Solar semidi urnal

Smaller lunar elliptic

Lunar/Solar dl urnal

Principal lunar diurnal

Principal solar diurnal

Lunar fortnightly

Lunar monthly

Solar semi-annual
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TABLE2. WAHRLOVENUMBERSMODELEDIN GEM-TI

Band

Long Period

Diurnal

Semi-Diurnal

Tidal Line (f)

All

145555 (01)

163555 (PI)

165545

165555 (KI)

165565

166554 (PSI)

All

k2,f

.299

•298

.287

.259

.256

•253

•466

.302

*All phases are equal to zero.
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Table 3

OCEAN TIDE MODELING

FOR

ORAVITY RECOVERY

• LONO PERIOD TIDES •

0ood$on 0arwin

NO. Name Modeled

056.554

057.555

058.554

065.455

075.555

075.565

Adjusted

Sa deg. 2---,6 deg. 2

$$a prograde deg. 2
only none

M m _ deg. 2

M j _ deg. 2
none

• DIURNAL •

135.655

145.545

145.555

155.455

155.655

162.556

163.555

164.556

165.545

165.555

165.565

166.554

167.555

175.455

185.555

QI

01

MI

PII

Pt
$I

KI

$I

00!

deg. 246

prograde

and

retrograde

none

none

deg. 2, 3, 4
none

none

none

deg. 2,3,4
none

none

deg. 2, 3, 4
none

none

none

none

none
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• SEMI-DIURNAL •

Dood$on

No.

245.655

255.545

255.555

265.455

271.557

272.556

273.555

274.554

275.555

285.455

295.555

Darwin

Name

N2

Ma

La

Ta

$2

R2

Ka

Modeled

deg. 2-,6

progra(le
and

retrograde

Adjusted

deg. 2, 3, 4, 5
none

deg. 2, 3, 4, 5
none

none

(leg. 2, 3, 4, 5

(leg. 2, 3, 4, 5
none

(leg. 2, 3, 4, 5
none

none
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Table 4

CONSTANTS FOR NORMAL JI
EQUATION GENERATION FOR IGEM-TI

APRIORI GRAVITY MODEL

GEM-L2' FOR LAGEOS

PGS- 1331" FOR STARLETTE

PGS-S4' FOR SEASAT

GEM-10B" FOR ALL OTHER SATELLITES

PRIME (']INDICATES FIELDS RESOLVED

HOLDING C,S 2,1--"O

EARTH TIDES

WAHR WITH k z = .3, O=PHASE
no mi nal

OCEAN lILIJ_S

CHRISTODOULIDIS El AL MODEL WITH

600 INDIVIDUAL TERMS, PREDICTED FROM

OCEANOGRAPHIC MODELS USING

ADMITTANCES

TIDAL DEFORMATIONS

h2 AND J_2 AT MERIT VALUES

GM,__,,_ILL

GM = 395600436 km3/sec _

ao : 6378.137 km
lIf = 298257

POLAR MOTION AND AI-UT I

ZERO MEAN SET OF POLAR MOTIONS

BASED ON 6 YEARS OF SLR DETERMINATIONS

STATION COORDINATES (unadjusted)

250 STATIONS TRANSFORMED TO LAGEOS

SL-6 AND ROTATED INTO NEW POLAR

MOTION SYSTEM

THIRD BODY EFFECTS

PLANETS MERCURY THROUGH NEPTUNE

INSTANTANEOUS SPIN-AXIS

COORDINATE SYSTEM

J20OO

RELATIVITY

NONE

38



Table 5

DATA UTILIZED |N PRELIMIIIARY
TOPE| GRAVITT JIODEL: 1986

SATELLITE

LASEOS
STARLZTTE
GEOS- 1
GEOS-2
GEOS-3
BE-C
SEASAT
DI -C
DI-D

PEOLE

LASER

SUB-TOTAL- LASER

NUMBER 0r

 ORMAI,.MATRICES

5B
46
48
28

36

39
14

4
6

6

2B5

NUMBER OF

144527

57356
71287

26613
42407

64240
14923

7455
11487

4113

444.408

SEASAT
0SCAR-14

DOPPLER

SUB-TOTAL - DOPPLER

15
13

28

138042
63098

201,140

GEOS-I
OEOS-2
ANNA
TELSTAR
BE-C

BE-B
COURIER IB
VANGUARD-2RB

VANGUARD-2
DI-C
DI-D
PEOLE

SUB-TOTAL - CAMERA

CAMERA 43
46

3O

_0
50
20
10
10
10
10

9
6

273

60750
61403

4463
3962
7501
1739
2476

686
1299
2712
6111

38

153.140

TOTAL 580* 798.688

*PEOLE arcs conledned bo_h optical and laser dam.
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Table 6

_ATELLIYE ORBIYAL _BARACTERISYICS

SATELL ITr- SAT£LL ITE SEM I-MA J0R INCL. DATA *
_AMZ IDNo AXIS _ _ TVPr

ANNA- 1B 620601 7501. .0082 50.12 0
Br--B 640841 7354. .0135 79.69 o
BZ-C 650321 7507. .0257 41 19 L,0
C0U R IER-1B 600131 7469. .0161 28 31 0

DI-C 670111 7341. .0532 3997 L,0

D I-D 670141 7622. .0848 39.46 L,0
GF-OS-1 650891 8075. .0719 59.39 L.O
GEOS-2 680021 7711. .0330 105.79 L.O
G_EOS-3 750271 7226. .0008 114 98 L
LAGEOS 760391 12273. .0038 109.85 L

OSCAR 670921 7440 .0029 89.27 D

PEOLE 701091 7006. .0!64 15.01 L.0
SEASAT 780641 7170. .0021 1De 02 D.L
STARLETTE 750101 733 I. 0204 49.80 L

TELESTAR- 1 620291 9669. .2429 44 79 0
VANGUARD-2RB 590012 8496, .1832 32.92 0
VANGUARD-2 590011 8298 .1641 3289 0

• D = Doppler
L • Laser

0 ! Optical

4O



N

N

,l)
Ill

i--

:--1i 1

b

e

t..
Ill

J:
IS
14
0
E

0

I1

E

41



t_

(.-.

8

_il _ I_1

V'II'_ 0 U'11_ IDa"

_000_
_ -_° ' ,

_i _-_ _©©-'

00000

" _

42



43



b-.

44



Table 8

COMPARISON OF OCEAN TIDAL COEFFICIENTS

FROM

SATELLITE SOLUTIONS

Amp Phase Amp Phase

+2m C+4m [

M 0.36 274.10
m

1.99 132.5

Mf I .80 245.35
1.70 265.4

0 t 2.69 318.53
2.83 327.

2.85 344.3

2.96 354.

1.83 283.38

(1.43)" (276.3)*
1.44 304.5

I .7 350.0

Source

(ref)

{ this _i
GEM-T 1 _paper/
5TABLETTE (B)

GEM-TI'

5TARLETTE (0)

GEM-TI

LAGE05 (C)
5TARLETTE (8)

5TARLETTF+GE05 3 (D)

PI

K I

0.81 296.83 0.35 234.91
0.73 253. (0.63)* (258.3)"

1.77 188.3 0.74 264.9

2.61 328.50 2.62 254.42

2.63 311.7 3.40 244.4

GEM-TI

LAGE05 (C)
5TARLETTE (0)

GEM-TI
5TARLETTE (B)

N 2

I12

0.70 334.0 O. 17 137.29

0.59 346. (0.37)* (I 03.0)*

0.76 322.9 0.24 192.7

3.26 320.93 0.93 127.41

3.45 319. (I.01)* (I 24.7)*

2.57 319.2 1.70 I18.5

3.5 338. 1.03 79.

3.1 333. I .03 78.

3.4 325. 1.0 124.

3.2 331. 0.9 I 13.

2.9 332. 1.0 115.

GEM-TI

LAGE05 (C)
5TARLETTE (B)

GEM-TI
LAGEO5 (C)

5TARLETTE (8)
STARLETTE (E)
5TARLETTE+GEO5 3 (D)

OSCAR, STARLETTE,
GEO5 3 (F)

GE05 3+05CAR (G)

GEO5 3 (H)

If

S 2 0.80 301.93 0.41 86.53
0.77 502. (0.21)* (141.8)*

0.78 32.4 0.42 94.8

GEM-TI
LAGEO5 (C)

5TARLETTE (B)

K 0.31 302.14 0.19 75.96

0.16 238. (0.1 I)* (103.5)*
0.83 23.4 0.53 96.0

GEM-TI

LAGEO5 (C)
5taRLETTE (B)

• "includes atmospheric tide

• held unadjusted at Schwiderski value

(B) Williamson and Marsh, 1985 (F) Felsentreger et al., 1979

(C) Christodoulidis et al., 1985 (G) Goad and Douglas, 1978A
(D) Cazenave and Doillet, 1981 (H) Goad and Douglas, 19788

(E) Cazeneve and Ootllet, 1981
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Table 9.

VALUES FOR MODELED 2ND DEGREE TIDES

CALCULATED FROM LINEAR

ADMITTANCES

TIDE (f)

+
C

2m,f

AHPLITUDE (cm)_

+
£

2m,f

PHASE .(de g)_

LONG PERIOD (m = O)

058.554
075.565

0.03
0.35

231.63
261.15

DIURNAL (m = I)

135.655 01
1 45.545 01 f

155.455 Htf

155.655 P1I
162.556 I_ I
164.556 S I
165.545 Klf
165.565 KIS
166.554 V I

167.555 01
175.455 Jl

185.555 O01

0.53

0.47
0.06
0.17
0.05
0.02
0.05
0.36
0.02

0.04
0.13
0.06

313.70
313.85

314.03
314.04
314.22

314.26
314.28
314.28
314.30
314.32

314.60
315.08

5EHI-DIURNAL (m = 2)

255.545 H2S
265.455 L 2
271.557

274.554 R 2
285.455
295.555

0. II
0.07

0.002
0.01
0.01
0.002

316.82
315.86
314.93
314.57
312.22
308.07
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Table I0

SECULAR CHANGES IN THE ECLIPTIC KEPLER

ELEMENTS OF THE MOON AND THE SUN

DUE TO TIDES

daQ:

dt

-I
3.73 ± 0_09 rn cy

(I.83 +_ 1.10) x 10-11 yr-1

di_

dt
(-6.65_+ 0.53) x I0 -I° deg yr-1

d_o0
dt

(1.43 +_ 0.25) x 10 -4 mcy-I

deE}

dt
(1.3+_ 9.4) x 10-19

-I
yr

dio (-5 + 51) x 10-17 deg yr -I
dt
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Table II

MOON (_, in ARCSEC/CY z) AND IN THE I

ROTATIONAL VELOCITY OF THE EARTH I(_, in I 0 -zz RAD/SEC z) DUE TO TIDES

TIDES

I. LONG PERIOD TIDES

056.554 Sa 0.00 0.00 0.00 0.O0

057-555 Ssa -0.00 0.00 0.04 0.03

058-554 -0.00 0.00 -0.00 0.OO

065-455 Mm -0.03 0.31 -0.00 O.12

075.555 Mf -0.56 O. 18 -0.12 0.07

075.565 -0. IO 0.06 -0.01 0.02

TOTAL LP-TIDES -0.69 +0.36 -0.17 +_0.14

2. DIURNAL TIDES

135-655 Q I

145.545 Oil

145.555 O I

155.455 M1f

155.655 M i

162.556 _ l

163.555 PI

164.556 S I

165.545 K1f

165-555 K1moon

165.565 K!sun

165.565 K1s

166.554 Yls

167.555 _)I

175.455 J1

185.555 ooi

TOTAL D-TIDES

-0.18

-0. I0

-2.92

0.OO

0.01

-O.00

-O.OO

0.00

0.00

0.O0

O.O1

-0.00

-3.18

0.04

0 02

025

0 O0

000

O00

000

0.00

0.00

0.O0

0.00

0.00

_+0.25

-0.03
-0.01

-0.65
0.00

0.00

-0.00

-O.12

0.00

-0.00

0.01

0.00

0.00

0.00

-0.00

-O.8O

0.01

0.01

0.07

0.O0

0.00

0.O0

0. I0

0.00

0.00

0.00

0.O0

0.00

0.00

0.00

+-0.12
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TIDES

3- SEMI-DIURNAL TIDES

245-655 N2

255.545 M2s

255.555 Mz

265.455 L2

271.557

272.556 T2

273.555 $2

274.554 R2

275.555 K2 moon

275.555 K2 sun

285-455

295-555

TOTA L SD-T IDE S

r_<_.

-1.43

0.02

-20.00

0.01

-0.o0

-0.00

-0.00

0.00

-0.0o

0.00

-21.40

0.16

0.01

0.40

0.00

o.00

0.00

0.00

0.00

0.00

0.00

+0.43

Q

-0.21

0.00

-4.45
0.00

-0.00

-0.00

-o.35
0.00

-0.00

0.00

-5.oi

0.04

0.00

0.09

0.00

0.00

0.05
0.04

0.00

0.00

0.00

+0.12
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Table 1 2.

SUMMARY OF THE SECULAR TIDAL ACCELERATION

OF THE EARTH _ AND THE ACCELERATION OF THE

MOON _ FROM THE GEM-T 1 OCEAN TIDAL MODEL

t_ ( I0 -22 rad/sec -2) • -2
n (arcsec cy )

|1

QT,LP -0.1 7 +- O. 1 4 nT,LP
-0.69 +_ 0.36

QT,O -O.OO + O. 1 2 nT, o
-3.113 +_0.25

• @

Q r,SD -5.01+ 0.12 n T oSD

-2 1.40 + 0.43

t_ -5.98 _+ 0.22 n
T •

-25.27 _+ 0.61

+ 1.29 • 0.21]
_'_NT

-4.69 _+ 0.36 n -25.27 +_0.61
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BACKGROUND TIDES MODEL DEVELOPMENT

X

tidal heights (A).

phases (_')and

]o% ]o errors given by
Schwiderski for

major tide

constituents

COMPUTE

Long Period Band Diurnal Band

!
o

J

I

I

= known admittances for fl • f2, f3 frequencies

(computed from Schwiderski

tides)

= predicted admittance for fp's

_, compute

heights (_), phases (_') & errors

for fp's

• veighted least squares

FIGURE I
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PERIODS (DAYS) OF PRINCIPAL LONGPERIOD
SATELLITE PERTURBATIONS

DUE TO SOLID EARTH AND OCEANTIDES

FOR 12 MAJOR TIDE CONSTITUENTS

:SATELLITE

LAGEOS

Sm Sam I't m I'if 01 P! K I N2 M2 T2 52 K2

365 183 27.6 13.7 13.8 221 1050 9.20 14.0 159 280 524

STARL[TT[ 365 183 27.6 13.7 11.9 60.8 91.0 7.61 10.5 33.1 36.4 45.5

G[O$- I

GEO5- 2

G[OS-3

B[-B

B(-C

365 183 27.6 13.7 12.6 05.4 160 6.20 11.7 48.3 55.7 80.2

365 183 27.6 13.7 14.4 629 257 9.83 15.3 2250 436 129

365 183 27.6 13.7 15.2 482 132 10.6 17.2 145 104 66.2

365 183 27.6 13.7 13.1 118 332 8.66 12.6 70.2 07.0 166
,

365 183 27.6 13.7 11.0 57.9 84.8 7.51 10.3 31.5 34.4 42.4

SEASAT 365 183 27.6 13.7 14.8 7130 178 10.2 16.1 331 174 89.0

TELSTAR-I 365 183 27.6 13.7 12.8 93.9 193 8.34 12.0 53.9 63.2 96.7

ANNA 365 183 27.6 13.7 12.0 64.4 99.4 7.71 10.7 35.3 39.1 49.7

OSCAR 365 183 27.6 13.7 13.6 180 11700 9.12 13.6 119 177 5830

Figure 4
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APPENDIX A

Mathematical Formulation

of the

Earth and Ocean Tidal Potentials

The purpose of this appendix is to provide the mathematical

formulation of the solid earth and ocean tidal potentials appropriate

to the use of osculating ephemerldes. The relationship between the

Kaula type indices and the equivalent Doodson numbering scheme is

provlded. Addltionally, the linear orbit perturbations for the Kepler

elements are given.

The formulation of the solidearth and ocean tidal potentials

for use in Cowell type programs implies that the satellite accelerations

are computed as the gradient of the potential:

C (¢,X,r)-

F¢ (¢, ;k ;r) -

8U

ar

1 8U

F) (e,_,r)-
r cos ¢ 8 _,

In our software, GEODVN, the accelerations are evaluated

in the inertial system aligned with the instantaneous earth-fixed

system. These accelerations are then rotated to the inertial system

of integration via transformations accounting for precession,

nutation, polar motion and earth rotation

(I.I)

These tidal potentials are formulated in terms of the

ecliptic elements of the disturbing bodies and the equatorlal elements

of the satellite. The development we followed is quite similar to Goad

(1977), wherein the surface harmonics due to the disturbing body

are rotated from the equatorial to the ecliptic system This

formulation thus can use the planetary ephemerides (currently

DE-200) directly, and the tldal perturbations are computed with the

identical preclse ephemeris used for other perturbations Using

this form means that there are no terms which are dependant on

A-!



both the sun and moon: these interaction effects are automatically
generated by the numerical intergrationprocess. It should also be
noted that the distinction between mean and osculating is not currently
significant (R. J. Eanes, 198'I, private communication).

The Expressions Describing The Solid Earth And Ocean Tide Potentials

The following initial definitions are required:

are the latitude, east longitude, and radial

distance of the polnt of evaluation,

Og is the Greenwich sidereal hour angle,

are the associated Legendre functions

a* e _ l*

Q*, M*
are the Keplerian elements of the disturbing

body referred to the ecliptic,

I'fl

are the Keplerian elements of the moon referred

to the ecliptic,

are the Keplerian elements of the sun referred

to the ecliptic,

is the gravltational constant times the mass of

the moon

P$ is the gravitational constant times the mass of

the sun

is the gravitational constant times the mass of the earth

R is the average radius of the earth

A-2



GD

Z

is the equlvalent of the Doodson constant,

indicates summation over all tide constituents

(I's)in the expression of the tide generatlng

potential

f

k
2,f

is the equivalent of the Doodson coefficient,

is the second degree love number and c_2,f

is its phase,

k"

{3o

÷

C_-q,f;

are the load deformation coefficients,

is the average density of the oceanic water,

are the amplitude and phase in the spherical

harmonic expansion of the ocean tides

specified by jr,q,_+,and the tide

constituent I

It can be shown that, in a system where the disturbing bodies

(sun and moon) are referred to the ecliptic whereas the perturbed

body is referred to the equator, the second degree tide potential

is given by:

V(_,_,r)= _ k2, _ _,_ GD 3-rn R 3 ...(1.2)

for the solid earth, and by

" + ),Q+I

f .Q,q,± 2,0,+ 1
(,ioe)co,cx_q,f...(1.3)

for the oceans, where the angular arguments are respectively

(x

and

SE = (¥) r(2-2h)
L

"l

oa* + (2-2h+j)M*+k _*J + mI3_+ m)_

+ m /z 2,f ...(1.4)

A-3



• [(X_q,f :(¥) (2-2h) oa* + (2-2h+j)M*+kO*] + mO_ ± q _,

+

+/_- mn/2 +_q,i ...(1.5)

Note that there is a difference between ± which belongs to the

ocean tide expansion and (+) which is part of the definition of the

tidal constituent I- The tidal constituent I corresponds to

specification of m, k, h, j, (+),and*. The equivalent of Doodson's

constant is given by

3 P'm R2
GD:4 -3

a m

..(1.6)

moon

sun

The equivalent of the Doodson coefficient is given by

m

A

where

..(1.7)

ore
is the Kronecker delta

d : _ok ÷ _ [-k (+) k ]2

-(-*) 1 8ok) T(-+)1_2mk : ( I - _ 2mk 1 / (-)(Z-k)!

(2;_}, (+)

..(1.8)

.(1.9)

T(-+) : (cos _)m(±)k(sin _ )(_+)k-m F(±) (cos2 _)
2mk 2mk (11o)

F(±) (×)_ d 2(±>k [3< 2_m ( )2*m]
2ink dx 2(±)k X- I

..(1.1 1)

: _ and C is the obliquity of the ecliptic.
2
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The inclination function F2kh(i*) and eccentricity function Gzhj(e*)

can be found in Kaula (1966, pp. 34-39).

The formulation of the potential in (1.2) and (1.3) is compatible

with Doodson's development (Doodson, 1921). Doodson, however,

elected to adopt Brown's lunar theory for the description of the

position of the disturbing bodies, and thus his formulation is in

terms of the mean elements of the sun and moon. In the present

development, osculating elements are used.

The Relationship To Doodson Agument Numbering

It is often convenient to express the angular arguments in the

same form as the Doodson solution. This requires the following

osculating angular variables which correspond to Doodson's mean

variables:

= local osculating lunar hour angle, measured from lower transit

of the moon past the local meridian:

_= o<- s - I_

where cx is the right ascension of the point of evaluation and s is

the moon's osculating longitude given by

s - _m + OOm + Mrn

p = moon's osculating longitude of perigee

P= _m+co
m

N'= the negative osculating longitude of the moon's

ascending node

/" -- _'_ FI"I

h = the sun's osculating longitude

+co +M sh=

Pl = the osculating longitude of the sun's perigee

+ co andP1=_s s,

J

N I= the negative osculating longitude of the sun's

ascending node.

NI -_s

.(i 12)

13)

(I 14)

(i 15)

(I 16)

17)
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The angular argument of the tidal potential used by Doodson,

allowing for the use of osculating variables, is:

/

Ap= 131C+ IB2S + IB3h + IB4p+ IB5N'+ B6Pl + IBTNI

Where 13i's are integers which are typically in the range of -4 to 4.

As IBIis always positive, the angular argument was expressed by

Doodson as an 'argument number":

P (P2+5) (P3+5).(P4+5)(Ps+5)(p6+5)

Note that 137 is not present in Doodson's development because the

mean longitude of the sun's ascending node is by definition zero

on the ecliptic.

Uslng (I 19) and (I 12), the angular argument takes the form

...(1.19)

AI_= BIC><+ (B2 - IBI)S + [B3h+ p4p + [B5N'+ IB6pl÷ [BTN'I - IBI_

Ommlssion of the phase _2,J in equatlon (1.4) produces the

angular argument of the tide generating potential which is

equivalent to that expressed by equation (1.21) except fora

posslble offset. Allowing for the following definitions of the

astronomical longltudes of the disturbing bodies

L* = co* + M* +_*

P* = co* +0-

..(1.21)

(122)

the angular argument In (14) takes the form

(X
SE

_2,1 : mcx + /7- m_- (;) 2-2h+j) L* - jP* -(2-2h-k) _*

Note that L* is elther s or h, P* is eltherp orpt, and _* is elther
/

-N'or-N I. Also, the entire argument is elther for the moon or for

the sun, as mixed terms are not present in this formulation.

(Doodson has a small number of mixed terms whlch are present

due to his cholce of independent varlables.)

By equating the coefficients of the independent variables in

(1.23) and (1.21), the following correspondences are obtained.

..(I 23)
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a) Lunar Case

#1=m

IB2- I_i= (_) (2-2h+J)

13s= 0

_4 - (±)]

IB5= (+-)(2-2h-k)

136= 0

137=0

(1.24)

b) Solar Case

IB1=m

132= P, =m

lg3 = (_) (2-2h+j)

_4= 0

j35=0

is6 : (±)]

137 = (+) (2-2h-k)

(T.25)

The Inverse correspondences are:

a) Lunar Case

Let k,= 131- 132- 134+ 135

For k _>0:

m= _ 1

h = ( _2 + _4 - #I + 2)/2

k=k

Fork<0

m=I31

h=(p_ - 132- _4 + 2)12

J=#4

sign : (+)

(1.26)

A-?



D) Solar Case

Let _ : p_- P6- P3

For k- _) O:

m=p_

h = (I_3- I_6*2)/2 sign : (+)

(1.27)

For k < 0

m=151

h : (-#3 - #6 ÷2)/2

j = -I_6

sign = (-)

Note that when either k or m is zero, there is a twofold

syrnrnetry ]n that two dlfferent cho]ces of indlces generate the

same frequencles When both m and k are zero, a fourfold

symmetry exists. Thls Is so whether the Doodson notation or the

Kaula type indices are used

The Doodson coefflclents indicated by (1.7) must be surnmed

over the symrnetric cases to compare with Doodson's tables, in

these cases the values of the separate coefficients are identical.

Addltionally, when the angular argument IS independent of the

elements of the disturbing body (h=1, ]=0, k=O), each dlsturbing

body has a twofold symmetry and the coefficients must also be

summed over the disturbing bodies (i.e.,for the permanent tide,

K I ,and K 2)

ORdINaL p_ IS
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Perturbations In The Kepler Elements

The analytlcal formulations for the tidal perturbations of the

Kepler elements of a satellite are derived below. As can be seen

from inspection of equations (1.2), (I 3), (1.4) and (1.5), the

solid earth potentlal is a speclal case of the ocean tide potentlal

Thus the following derivations are for the ocean potential, and

tI_e solid earth case will be derived therefrom.

Let

÷ ÷

- ,U 2J_+l _q,_ ..(1 28)

÷

..(1.29)

)_I= the gravltational constant times the mass of

the earth

The tide potential glven in (1.2) for the oceans can then

be rewritten as:

+ p R"Q +

Ut(m,,_,r) = E K_q.f r#÷, P_q(sin¢)cos(O#_f±q_)
,Q,q,_+

...(1.30)
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Letting

-- K ÷ ÷ - -

A Qq,f ._q,_ cos (]'_q,f + K.Qq,:( cos O'_q,f

...(1.3_)

B_q, + O" + + K_-q, sin 0"_f =-K_q,f sin .Qq,f _ q,f

a particular #,q term of the potential can be written as

U_q,f r9+I P_q(Sin(_) .Qq,tCosq,k+B0q,f sinqk ...(1.32)

which is of the same form as the potential given by Kaula (1966,

p 31; eq (3,53)) Carrying on in the same fashion as Kaula did,(1.30)

takes the form (see ibid eq. 3,70& 3,71):

.Q _ oo
pR Z F_qp(i) _ G_p_ (e) S_qp_,f (co, M, O, Elg)U'°q':_ = e "Q+I p=o s = -_ ...(133)

where a,e, I,co,M,O are the Kepler elements of the perturbed

body, the functions F#qp andG_ps are givenin Kaula (1966;

pp. 34-38), and

wlth

_-A_q,J7

S_qps,t (OO.M,C2,13i_) :Le.Qq,_j

COS ">< + Pq'_ "Q-q even

_-qo_d _qP_ LA _q,l]__qod_sinx pqps
..(1.34)

"><Qqps = (,_- 2p) co+(J- 2p+s)M+q (Q-Oe,) ( _ 35)

It can be easlly shown that S Qqps,f may also be written as

+ FCOSI J-q ewn

K; .f ..(I36)
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The time rate of change of the argument

÷

is dominated by the equatorial secular rates in (_,.2,_, and M of

the satellite, by the rotation of the earth represented by Be,,

and by the ecliptic secular rates of the disturbing body in

GO*,Q_, and M*. Hence _'_qps,fis approximately constant over

the period assoclated with SQqps,f.The linear perturbations in

the orbit elements can be constructed (Kaula, 1966, pp. 37 - 41)

for each term desired by analytically integrating the Lagranglan

equations of motion for that term:

...(1.37)

AaQqps, f pR.O 2 F.oqpGaps (,Q-2p+s)= S_qp_,f
na_+2 _'_,Qqps,J

..(1.38)

_qps,( : S_qps,i

na _+3 e "_'l_qps,_

(I39)

FQqp G Qps [(_,- 21))C0S i-q]

]_ i_qps,_ PR _
= I " * S_qps,_

no_÷3(I-e2)_- siniY_-qps,f
.(l 4o)

'{k'O_qps,f PR_ i ps S.Qqps,f: , .+ + _0
na "°÷3 (1-e2) } sin i _(_';qps.f

(I 41)

AMQqps,l :

• ÷

na_+3 _0"_qps, f

S,Qqps,f

+_co

(1.42)

pR.Q[-(1-e2)e -' (SG."PS../_e)+2 (_.+,) GQps - 3nGop,(.O.-2_÷s)(_qp,,t)-' ]

• ÷

na_*s "6"_qp_,I

• F_qp Sgqps,f + _ M

.(1.43)
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where n is the mean motion of perturbed body:

S_qps,X is the integral of S Qqps,f with respect to its argument:

- +_ + [ sinl_-q'v'_ ÷S_qps,f = K_q,f cosJ .Q-qodd _qps,f

...(1.44)

...(1.45)

and c_Q, c_co, cSM are the indirect effects due to the earth's

oblateness From Balmino (1974):

R)2= 3nC2o (-6

m

I

2(I- e2) 2

(I-e2) 2 I(eI-e2)

-4 cosi

I-5 cos2 i

I-3 cos 2 I

E

...(1.46)

+

sln2i I 1;

sin 2i

wlth the earth's second degree harmonic C2o ._-1.082628" 10 -3

and

E = JAeQqps, t (t)

I : JAi_qps.f(t)

(I LI7)

Integrating the inclination, we get

FQqp G_ps [(J),-Zp)COSi -q]
I = pR _

na_+3(1-e2)_ sini (_'_qps,f) 2 S'_qPs'f

...(1.48)
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and for the eccentricity

F9qp G_ips (l-e2) _ [(l-e
2)_(__2p+s)_(,O,_Zp)] Si_qps,f

Substituting (I .48) and (1.49) to (1.46) and by letting

S ,_qps,f- J.l

...(1.zl9)

..(1.50)

and

2

S'oqps'I -- P \2,q + 1 _qps,I
..(1.51)

where

= +_ C _+ [COSl p-qeven +
C},0qps,) .Qq,) Lsin] _-q odd "_O_';qps,f

...(_.52)

- - + [sin ]_-_° +O Qqps,_( = 7_+C;q,f _COS]__qodd "O/';qps,_
..(1.53)

we have

6TIGpo C2o (T
(I-e2_/2 8

.Q+4

l+k'_ ) F Qqp G Qps

• lq+4 COS i (I-e2)Y2(, O,-2p+s)- 5 cos i(]-2p)]
•(I 54)

6nGpo C2o (R )_+4 "
c_co = 2)% a ( l+kQ FQqp.+ G'Qps 0

o [_15COS2i(_-2p)- 5q COS i + 2(I-5 Cos2i)(l-e2) h (,0,-2p+s)-2(_-2P)l ...(1-55)
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g Gp°C2o i"4(I"k;) d- . + _qps,I

(I-e2) 2 O 2,([+ I (_O";qps,f

5cos
2 i (_-2p)- 2q cos i -(,It-2p)+ (1-3 cos 2i) (l-e2) t) (J_-2p +s)]

...(1.56)

From (1.38) through (1.56) we can write the final form of the

perturbation in the Kepler elements due to the oceanic tidal

potential

i

8# Gpo R )_+2 l÷k_ ) F (Jt-2p +s)O
...(1.57)

L_epqps,t
R _+2 l+k_

4/lrG£_l-e2)t_(__._) (2--_+1) F_qp e_ps

nae "_'Qqps,¢

, _ 1-e 2);)(,0.-2p +s)-(,O.-2p)] O ,@qps,l

..(!.58)

A 1_lqps,_ --
_+2 l+k_ ) F_qp Gap s411Gpo . , (R) (2_ :1

na(l-e2) t_sin i "_";qps,f

-2p) cos i-q]ORqps,J
..(1.59)
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4_ Gpo G_p s Q._qps,_

• ÷

nS(1-e2) ½ sin i _O";qps,f

i

R )_+2 1+kQ

.[(agqP] 5 C20nsiniF,qp+ (R)2(5a1 " 2 (l_e2)2_;q_.f
cos i (_-2p)-4 cos i(I-e2) t'2

-]

• (_-2p +s) - q)J

J

...(1.60)

/_C-O#qps,t =
41/ Gpo O_qps,f

• 4-

2 _,ha( I-e )'2 _";qps,f
a - 2Jr +I

e ( Gpps)F_qp-c°ti(d3aiP)G'QPs+-2--"ae
C2o n FQqpG#p s (R_128j
82(1_e2) 2 • +

2 2cos 2 i(,II-2p)-q cos i + -_ (I-5 COS 2 i)(l-e2);) (),-2p +s)--_ (,O.-2p ...(_.61)

z_ M;Qqps, f =

+ 2(.Q+ I)G#p s _
3n G_ps (,q-2p +s)

9 C2°nG#ps. + (aR--)2 [ 5

+ 4 (l_e2)2,ff_qps, X

2q cos I -(_-2p)+(I-3 cos
2 i)(1 -e2) t) (.{[ -2p +s)]l

C0S 2 i(_-2P)

...(1.62)
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Perturbation amplitudes glven by (1.57)...(1.62) can also be

expressed in the form of position perturbations in the radial

(At), transverse (At), and normal (An) directions (Willlamson

end Douglas, 1972):

2)I/2(aM + + &C2 cos i + (L_e2 + (e&M)2) I/2)

Ar = &a2 + _ e&a + aloe)2 + (aeL_M)

2)_,i_ 1 2 2 2 _"An = a(l+_e (_ Z_i +AO s_n i) 2

..(163)

.(1.64)

(_ 65)

and for the veloclty perturbations:

ae 2 , I(Ae z_ae

+ (I+_ e cos i -_- (1.66)

L_'V'
r

I,

.(I 67)

and,

] I, 2)_'2 I d1 2 2 2 d@/2 sin2 iAVr, = e(l+se _ _.) ÷n A1 + (dt " ..(1.66)

For formulas (163) through (1.68).. we note the perturbation amplltudes

are the RSS values of the perturbations end that smell eccentriclty

epproxlmetlons have been extensively applied
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Formulae, for the perturbatlons due to the solid earth t_des can be

obtalned from (152)..(157) by maklng the followlng subst_tutlons

OCEAN TIDES SOLID EARTH

Replace With:
4-

4_ Gp,.,R (_,k;)C;_,f k2,IAI GD(3-m
2_+I 3 /

._ 2

q m

+ +

(I 69)

From formulas (1.57) through (I .62) one can derive principal

long-period perturbations for ocean or solld earth tides when-

P =_"z, s = O, + slgn and q = m

Then the angular argument becomes

÷

2-2h)co* + (2-2h+j)M* + kO*l+ mO+ #-m 2- 4- .Qrn,f ...(170)

with frequencies given by

• 4-

"O"_m_,_o,f= ( _-) 2-2h)co* 4- (2-2h4-j)M* + k6*l+ m6
.(1.71)

It is apparent from (1.71) that the principal perturbations due to the

solid earth and ocean tides have the same periods and therefore

cannot be distinguished. The satellite senses the total tidal effect.
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APPENDIX B

MATHEMATICAL FORMULATION

OF THE SECULAR CHANGES

IN THE LUNAR AND SOLAR ORBITS

Due to the anelastic behavlor of the Earth's response and the

dissipation of energy in the oceans, the earth's tidal bulge

causes secular changes in the motion of the moon and the sun.

The moons orbit and the sun's apparent orbit can be treated In a

way similar to that described in Appendix I and analyticalper-

turbations _n their orbital elements can be obtained from equa-

tions (I 57) through (I 62) It is evident, however, that secular

perturbations will be generated only when the angular arguments

glven by equations (I 4) and (1.5) are independent of time.

Necessary conditions for the cancellatlon of the angular elements

of the sun and the moon are that the motions of both the disturb-

ing and the perturbed bodies, whlch are the same in this case, be

referred to the same Diane The mathematical formulation of the

tidal potential given in Appendix I, is in a system where the dis-

turblng bodies are referred to the ecliptic whereas the perturbed

body is referred to the equator. The formulation of the potential,

where the eCliDtic is the reference frame common to both bodles

but the tide amplitude and phase are in the usual equatorial

reference frame, is given herein. The formulation of the potential

Is developed for the case of the oceans only since the solid earth

is a special case of this development.

From equation (I5), we can write:

+

where

_ = (-T-)E(2-2h)co*+ (2-2h+j)M*+ kO*]

m1_/ +_
+ mOe, 2 + 'n + E:_q, t

.(z.z)
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z

(__ )+l+k_ C_q,f
,f = 4r_GRpo 2_ + I ..(2.3)

and notlng that

cos (_ (+-) qk ) = cos (qk(+-)_) ...(2 4)

the potential given by (1.3) can be rewritten as:

+ + R .R+I
U3q,f - ^_-Q,f (-_) PRq (Sin ®) COS (qX(-+)_) .(2.5)

whlch Is the real part of the complex potentlal

+ ÷

U;q,f = A_q,_ (---R)"q+1 ,(qk(_+)-_)r , PQq (sin ¢)e ..(2.6)

Substitutlng the rlgnt ascenslon (o<) for the longitude (X) in

equatlon (2 6), gives

+ + i(-qo_(±),}) (,(# _R+_ lqo<)U_q,f = A_q,f e -F, Poq (sin ¢)e ...(2.7)

Using the approach of Goad (1977),

( P_q (sin ¢)e = (r- (R-q), E 7- V {+}rl
v=o {+} -Rqv

• PRy(sin®*)e,[{-+}v_*-_-q_,2]

..(2.8)
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_/(+-}
where the starred elements refer to the ecliptic and the function ._qv

is glven in equation (1.9) of Appendix I.Substituting (2.8) to (2.7) gives

;Q i(-qO$(+) _ +(q-v) _)1 E Ee4-

U q,f= A q.f {-+)

_qv T-) P_v (sin )e ...(2.9)

From Kaula (1966):

(R) _+i

where

ivc_* R ._+I "Q oo

P,Qv(sine*)e -(a*) E E F_vp (i*) GRps(e*)eJC_vps
p=o s=-oo

...(2I0)

C* = (]]- 2p)co* + (]_-2p+ s) M* + vO*- A mod (]]- v,2) .(2.11)
Qvps 2 •

and therefore (2.9) becomes

U+__ + 1 _. ei(-qo_,(t)_% +(q-v) -_ ) ( __.)R9+1
_q,f = A_q,f (__q)! v,p,_

l ÷• F#vp(l*) G_ps(e*) _/Qqv e i C* - -i C* }_vps + 1FRqv e .Qvps ...(2.12)

or

+ + 1 E ( R #+I
U_q,f = h_-q,f (__q), v,p,s,{_+} a*)

FQvp(i*) GRps(e*)

• _1/(-+} l({-+) C;vps-qOg (-+) _ +(q-v) 7)
--j)qv e ..(2.13)

This is the desired form of the potential, with both the disturbing

body and perturbations referred to the ecliptic. Note that the
÷

A_-q,f still refers to the usual ocean tide coefficients
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The angular- argument in equatlon (2 13) is given by

F = {-+}_* - (-+Q,,psqS_ )_ +(q-v)E (2 _4)

or.. expanding,

r 1
F

= {±}1(_ Q- 2p)co* + ( ]-2p + s) M* + vO* mod (]-v,2)J-q8_ (q-v)÷

2 2

+ [(;)((2-2h)_*+ (2-2h+J)M* + kO*) + mS_ m# +- 2
(2.15)

The conditlons for secular effects are attained when

tlme-dependent angular varlables in (2 15) drop out of the

equation These conditions are

the

1)-q@e, -+rnEl_t= 0 m,q z 0 --, q = m, ± 1s +

2) {±} vO* ± (_) kO* = 0; v,k z 0 _, v = k; it} = (+)

3) {_+} (@ - 2p) _+(_) (2 - 2h) = 0 I,

4) {±}(_- 2p ÷ s) ± (7,) (2- 2h ÷ j)= 0 ====_

.Q:2, p=h

s=_ ...(216)

Note that when m = 0 or k = O, both sign alternatives exist, and

we have applied the selection rule appropriate to the general case.

These degeneracies or symetries are the same as those discussed

in Appendix I for (1.24) through (1.27).

The only free variables for the secular effects are

(+), h, j, k, m
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.:,,,,nl,:nare a]'.:,otne var-_ables which define tile Doodson argument
iri( I 23) This _m_lles that each Doodson frequency has a secular

effect on the orb!t of the surl or the moon due to the ÷ tTdes Any

secular effect from the - tldes are strlctly through the m = 0 or

_:= 0 degeneracles noted above, which, In the Doodson development.

are _ncorporated _nto the Doodson coefflclent amplitudes

The constant phase angle

effects _s

F_._.assoclated with these secular

F._-ec= (_.)_. mad("- k 2) _:_ + n + E +
,= "- ' 2 2m, t

(2 17)

,,,Yh ; Ch for

k : 0 --, r'_e¢ : 1"1+ E:zm,t

÷

for(+) _ Fsec : E2m,!

1.

for (-) _ F__ec: rJ + E'Zm,l

÷

k = 2 --' r'sec : E
2m,_

(2 18)

The _ merely indicates a slgn change and therefore the Fsec is
÷

nothing other than measure of the phase lag _C2m..t of the ocean
tide potential.

We can also rewrite the amplitude of the potential in equation

(2.13) as a functlon of the Doodson coefficient, AI' using equatlon

(17) of Appendix I

U
÷

2m,_ :

I

Pm a s .3

 (Tff)

moo n

sun

+ (-I)d (Z+m), rsec
e

(2 19)
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The appropriate real form of the disturbing potential for the
secular effects is the real part of the complex potential in (2.19)
subject to the conditions of (2.15). Also, as equation (1.8) gives

'[ ]d = 6ok +_- -k {+} k

it can easily be shown that for any k,

÷

(-1) d COS r'sec : COS E:2m,f

Therefore the secular potential is expressed as

...(2.20)

+ D ÷ +
U2rn,f = 2m,f COS E2m,f ...(2.21)

where

D ÷

2m,f

I

= Jlm

o--T)

moo n

3

3Url

^2m(2-ao ) <2-m>,

..(2.22)

Of particular interest are the secular changes in the semi-major

axis, the eccentrlcity and the inclination of the orbits of the

moon and sun These secular changes describe the evolution of

the orbits of the sun and the moon and furthermore deflne the

secular deceleration in the rotation of the earth, through the

balance of the angular momentum equation
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Given a potential U, the secular rates in the Kepler elements
of the sun and the moon can be computed using the Lagrange
Planetary Equatlons from Kaula (1966, equation 338):

da* = (;) 2 (2 - °h+j ) + +
d-'t-- 'n'a----* .- D2m,f sin E2m,l

de*

dt

= (7.)(I - e*2) ½
• n.a.2e. [(I - e*2) "_(2-2h+j)-(2-2h)] D2m,f+ sin E:2rn,f+

di* [(2-2h) cos I*- k] D + +
= (_) 2m f sin Ezm,f

dt n*a*2(1 -e*2) "t_sln i* '

.(223)

where n* is derived from Keplers law:

n .2 8*3 = U + U*

Wr_en It is desirable to use the rate of ct_ange of the mean motion,

dn* in place of da _ the appropriate relatlonship is

dt dt

dri* _ -3 n* da*

dt 2 a* dt

The secular Derturbatlons due to the solid tide are easily computed

from equations (2.21) through (223) if the correspondences of (169)

are applied
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