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INTRODUCTION

The use of computational methods for the prediction of multi-dimensional recir-

culating flows has been continuously increasing over the recent years. As the nu-

merical techniques become more powerful, they are being applied to even more chal-

lenging problems encountered in combustion chambers, gas turbines, rotating machin-

ery, heat exchangers, and other devices. Although computation is far less expensive

than full-scale testing, the cost of a computational run is still substantial.

Therefore, attempts are continually being made for improving the accuracy and effi-

ciency of numerical techniques so that the predictions of a given accuracy can be

obtained at a modest cost.

The central feature in any flow prediction method is the treatment of the cou-

pling between the momentum and continuity equations. In natural-convection flows,

the energy equation also becomes strongly coupled with the momentum equations. Be-

cause of the nonlinear nature of the coupling, these equations are solved iterative-

ly. Iterative methods are often prone to slow convergence, divergence, and extreme

sensitivity to underrelaxation factors.

The aim of the present research is to develop more efficient and reliable solu-

tion schemes for the coupled flow equations. Such schemes will significantly reduce

the expense of computing complex flows encountered in combustion chambers, gas tur-

bines, heat exchangers, and other practical equipment.

In the work completed so far, a technique employing norm reduction in conjunc-

tine with the successive-substitution and Newton-Raphson techniques has been devel-

oped. Also, a block-correction procedure for the flow equations is currently being
formulated and tested.

NORM REDUCTION TECHNIQUES

The development of a number of methods for solving strongly coupled equations

has been reported in reference i. The recommended method there is a combination of

the successive-substitution and Newton-Raphson methods coupled with a norm reduction

technique.

The central idea of the method will now be described. The linearized discreti-

zation equations are solved by a direct method, such as the sparse-matrix LU decom-

position. The linearization can be of two kinds. If the unknown coefficients are

simply evaluated from the currently available values of the dependent variables, the
linearization is called successive substitution. In the Newton-Raphson method, the

anticipated change in the coefficients is taken into account via their:first deriva-

tives with respect to the dependent variables.
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The solution of the linearized equations predicts a change in the values of the
variables. However, instead of accepting this change as is, it is multiplied by a
constant. (This constant can be imagined to be a kind of under- or over-relaxation
factor.) The value of this constant multiplier is found by requiring that the norm
of the residual vector (i.e., the sumof the squares of the residuals of all the
equations) be a minimum. This minimization search produces a kind of "optimum"
underrelaxation of the dependentvariables.

The normminimization (or reduction) can be used with either successive-substi-
tution or Newton-Raphsonlinearization. Whenthe current estimates are close to the
final solution, the Newton-Raphsontechnique is very efficient. But for initial
guesses that are far from the solution, the technique often diverges. Therefore,
the practice found satisfactory for all the flows tested was to employ the succes-
sive-substitution linearization until the norm becameless than a small quantity and
then to switch to the Newton-Raphsonlinearization until the final convergence. Be-
cause of the combination of the two linearization practices, the technique is called
the hybrid method in reference i.

The hybrid method and manyother alternative schemes(someof which are based
on the Broyden methods described in reference 2) were tested on two flow configura-
tions: the flow in a driven cavity at different Reynolds numbersand the natural
convection flow in an enclosure with hot and cold walls at different Rayleigh num-
bers.

For the driven cavity problem, solutions were obtained by the hybrid method in
at least one-third the computer time required for the iterative method SIMPLER. For
the natural convection problem, most methods either diverged or converged extremely
slowly as the Rayleigh numberwas increased. The hybrid method, however, converged
rapidly and required a very modest amount of computer time. By using the hybrid
method, it was possible to obtain convergence in 25 iterations at a Rayleigh number
of 107 whena zero initial guess was used for all variables. If the results for a
lower Rayleigh numbercould be used as the initial guess, it was possible to obtain
solutions at a Rayleigh numberof 109• It is believed that, for the first time,
solutions have been obtained for such a high Rayleigh number (with a Prandtl number
of 0.71). Iterative methods such as SIMPLERfailed to converge even after i000
iterations.

BLOCKCORRECTIONTECHNIQUE

Work is currently in progress on another approach for accelerating the conver-
gence rate of an iterative procedure such as SIMPLER. In the proposed technique,
the velocity and pressure values are adjusted through a block correction procedure.
Here the calculation domain is considered to be composedof several large blocks.
Each block contains a numberof grid points (and hence control volumes). It is pro-
posed that the values of a variable for grid points within a given block will re-
ceive a uniform correction. These corrections are calculated such that the integral
conservation of momentumand continuity is satisfied for each block. The block-
correction equations thus resemble the discretization equations for momentumand
continuity but are formulated on muchcoarser grid. The solution of these equations
by a direct or iterative method is rather straightforward.

Initial testing of this apprach shows that, for fine grids, there is a notice-
able improvement in the computational effort required to obtain a converged solution.
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