
Title of Grant:

FAULT DIAGNOSIS BASED ON CONTINUOUS SIMULATION MODELS

Grant Number: NAG-I-618

Period of Grant: October 1, 1986- December 31, 1987

Principal Investigator: Stefan Feyock

Grantee Institution:

The College of William & Mary

Williamsburg, Virginia 23185

FINAL REPORT

[_ASA-CB-1_2;37) cAU[", blA£1fSlH EASED C_
C[_iI_UCU5 _f_ULAIICN _CDEI_ Ai_al beport,

cct. ISE_- 31 £ec. 15E7 ((cJleqe of

_llliam dad _d[_) 91 _ CSCL 09D
G 3/b I

_89-15152

[Jncla_
G1693_5

FAULT DIAGNOSIS BASED ON

CONTINUOUS SIMULATION MODELS

Final Report

NASA/Langley Grant NAG-I-618

Stefan Feyock

Department of Computer Science

College of William & Mary

October 28, 1988

Abstract

_ent_report describes the results£o'f an investigation of techniques
for using continuous simulation models as basis for reasoning about physi-

cal systems, with emphasis on the diagnosis of system faults. It is assumed

that a continuous simulation model of the properly operating system is

available. Malfunctions are diagnosed by posing the question: "how can

we make the model behave like that?" The adjustments that must be made

to the model to produce the observed behavior usually provide definitive

clues to tile nature of the malfunction. A novel application of Dijkstra's
weakest-precondition predicate transformer is used to derive the precon-

ditions for producing the required model behavior. To minimize the size

of the search space, an envisionment generator based on interval mathe-

matics was developed. In addition to its intended application, the ability

to generate qualitative state spaces automatically from quantitative sim-

ulations proved to be a fruitful avenue of investigation in its own right.

hnplementations of the Dijkstra transform and the envisionment genera-

tor are reproduced in the Appendix.

f'¢

r
i

Contents

Models of Physical Systems 6
1.1 Dynamical systems 6

1.2 CSMs of Intractable Systems 8
1.2.1 Continuous Simulation: Schematic Form 9

1.3 Components of a Continuous Simulation Model 13
1.3.1 State Variable Form 14

CSM-based reasoning 16

2.1 Introduction to the Dijkstra Transform 18

2.1.1 Fundamental Algorithmic Constructs 18

2.1.2 Applications of the Dijkstra Transform 19

Qualitative Reasoning and Interval Mathematics 23

3.1 Mathematical Background 25
3.1.1 Definition of Elementary Sets 25

3.1.2 Mappings on Elementary Sets 26
3.2 Interval Mathematics 28

3.2.1 Addition of es Values 29

3.3 Application to Qualitative Reasoning and Qualitative Simulation 30

4 Envisionments and Envisionment Generation 33

4.1 Definition and Purpose of Envisionments 33

4.2 Representation of Qualitative States 34
4.3 Generating the Envisionment from the CSM 35

4.3.1 The Set of Initial States 35

4.3.2 Generating the Successor B states of an Arbitrary A State 36

4.3.3 Generating the Successor A states of an Arbitrary B State 40
4.4 Examples 42

4.4.1 An Abstract Buzzer 42

4.5 An AEROBEE Rocket Control System 44

47
CSM-based Fault Diagnosis . 47
5.1 Use of Envisionments for wp-based Diagnosis 47

5.1.1 Examples of Use " 50

5.2 Relay Servo Diagnosis using wp 51
5.3 Future Research Directions

INTRODUCTION

The present report describes the results of a research project extending over two

years, consisting of an investigation of techniques for using continuous simulation

models (CSMs) as basis for reasoning about physical systems. In particular,
techniques for model-based reasoning about faults of physical systems were to
be investigated. The underlying idea is as follows: we assume that a CSM of the

actual system is available, and that this model reflects the behavior of the actual

system with a fidelity that suffices for the given application. A malfunction in

the actual system will produce symptoms, i.e. a stream of data (observations)
reflecting the aberrant behavior. We then pose the question "how can we make

the model act like that?" Presumably the adjustments that must be made to

the model to produce the observed behavior will provide definitive clues to the
nature of the malfunction.

Such an approach is based on two important assumptions. The first is that

the model on which the diagnosis is based is a component model rather than a
response surface, i.e. that the structure of the model reflects the nature of the

actual system. (The research area known as causal modeling is concerned with

this same issue, and in fact carries these concerns further than our application

requires.) By way of example, consider the familiar linear harmonic oscillator,

described by the equation

m* x" + d* x' + k. x = F(t)

This equation is a constraint model rather than a causal model. Nonetheless,

attributes of the basic system components are represented; for example, if we are

dealing with a mass-spring system, then m represents the mass, d the damper
resistance, k the spring stiffness, and F(t) tile driving force. By contrast, a

response surface model may be constructed by fitting, say, a polynomial to data
representing the behavior of a mass- spring system. Such a model will in no

way reflect the structure of the underlying system, and will be unsuitable for

system identification-based diagnosis.

The second assumption underlying our approach is that the adjustments
to the model that make it reproduce the aberrant behavior observed in the

actual system consist of finding new values for system parameters, rather than

structural changes such as addition of new equations. This is plausible, in that

addition of new structure in the form of equations corresponds to addition of
new constraints. Malfunctions, however, generally involve the modification or

removal of existing constraints, which can frequently be modeled by parameter

adjustments. For example, spring breakage in the mass-spring system discussed
above can be represented by setting k to O.

Three innovations which we consider to be significant were developed and

integrated. They are:

1. the development of a canonical schematic form for continuous simulation
models

2. the application of Dijkstra's predicate transformers to algorithmic map-

pings, leading to techniques and results with extend techniques familiar
from continuous mathematics to CSMs

3. the development of qualitative reasoning techniques based on quantitative
models. These techniques include the application of interval mathematics

to perform automatic generation of envisionments from CSMs, and the
use of predicate transformers to do fault diagnosis on the basis of these
envisionments.

In the subsequent discussion we will often use the abbbreviations qn for "quan-

titative" and ql for "qualitative", since these are more easily distinguished than
their abbreviands.

The results we have developed afford a number of interesting analogies with

techniques from continuous mathematics, particularly dynamical systems theory

[4]. Among these are formal parallels in model structure, the use of transforms to
derive information from the model, and conceptual similarities in the treatment

of questions such as steady-state conditions and system identification. We have
even found a transform-based represention of iterative prograrrLs that is formally

analogous to a power series expansion.

While the results to be described are mathematically interesting, the intent

of this research was to develop approaches to the diagnosis of faults in actual

physical systems. We believe our results to be of practical value for several
reasons:

• CSMs of physical (and frequently economic, urban, and other) systems

are often available. An understanding of the distinct operating regions
of such models is almost always necessary in order to reason about the

system. An envisionment is a schematic representation of these operating

regions; it is therefore evident that a technique for automatic generation
of envisionments from CSMs should be of value.

• The Dijkstra transform, which was originally developed in a programming

methodology/software engineering context, has proved to be a powerful

tool for pre-and postdiction when applied to CSMs. Chapter 1 of this

report establishes its general usefulness by describing its application to
derivation of steady-state conditions; in Chapter 3 the transform is applied

to our particular research area: fault diagnosis.

In order to test the techniques which were developed, LISP implementations

of the Dijkstra transform, interval mathematics operations, and the interval
mathematics-based envisionment generator were written (see Appendix). The

resulting programs currently reside on a Macintosh TM personal computer; we
consider their satisfactory performance on such a small machine to be evidence

of the practical feasibility of the underlying ideas.

ORIGINAE PAQE /.g

OE Poor QUA/_TY

Chapter 1

Models of Physical Systems

The title of this section notwithstanding, the systems under consideration here

include non-physical types such as economic, biological, and urban dynamics
systems, among others. The only requirement for consideration is that the

system be describable in terms of relationships among a finite set of model

variables and their rates of change. For the purposes of this research we will, in
fact, be interested chiefly in physical systems, particularly systems associated
with aviation and avionics.

1.1 Dynamical systems

When the previously mentioned relationships among model variables and their

derivatives can be expressed in terms of algebraic equations, then the model

takes the form of a system of differential equations. In the course of our inves-

tigation it became evident that since the models with which we are concerned
usually represent physical systems, additional structure can be imposed on the

system of equations. This structure is derived from considerations of dynamical
systems theory, which affords a device-oriented ontology as well as a unifying

and methodical approach to the modeling of physical systems. In this approach,

physical systems are deemed to be made up of only seven basic component types:
generalized capacitors, which store "effort", generalized inductances, which store

"flow", generalized resistances, which dissipate energy, transformers and gyra-

tors, which model transmissions, and effort and flow sources. Two junction
types suffice to connect these components. The interested reader is urged to

consult a work such as [4] for a detailed presentation of these ideas, since this

elegant and highly effective ontology diverges from those customarily employed
in qualitative reasoning research. For our purposes, the importance of dynam-

ical systems theory lies in the fact that it provides a systematic approach by

ORIGINAU PAG_E Ig

OF POOR QUALITY

which any model of a physical system can be put in the form

I
X I = Fl(Xl,...,x,,Ul,...,ur)

...

t
X. = Frt(z1,"', xn, Ul,'", "r)

or, in vector form,

= f(2, 0)

where zi,i = 1,..-, n, represents the amount of effort or flow stored in (ca-

pacitive or inductive) component i, and uj,j = 1, ..., r, is an input variable.
The xi are called the state variables of the system; the above form of system

equations is accordingly called state variable form. The Fi represent algebraic

functions, i.e. compositions of elementary functions; we will therefore refer to
functions such as F as algebraic mappings. It can in fact be shown that

Fi(xl,... ,xn,ul,'" ",Ur)

may be assumed to have the form

gil(=l) "Jr""""_"gin(Xn) "_ hil(ul) +"" + hir(ur)

since the process of equation derivation [4] produces such a form. A linear

system is then a special case where gik(zk) = q-aikzk and hir(ur) = q-birur.
It should also be pointed out that it is in general a trivial matter to reduce

n-th order (n > 1) differential equations to systems of n first-order equations.

We need merely introduce intermediate variables in an appropriate manner. For
example, in the case of a maas-spring system defined by the equation

m*x" +d* zl +k,z = F(t)

we define a new variable y = z t. The second-order equation then becomes the

system of two first-order equations

x I = y

y' = -(1/m) • d, y - (1/m) * g * x - (1/,7,) • F(t)

The resulting system has the advertised form

)?'= f(:L _7)

but is unsatisfactory insofar as the X and U are not in general the actual energy
variables and inputs, but linear transforms of these.

In terms of our mass-spring example, the capacitative element is the spring,

which stores effort (generalized force), the inductive element is the mass, which

7

storesflow(generalizedvelocity),andthedissipativeelementis thedamper,
whichacts as a resistance. The state variable form of

m* z" + d,z' + k* x = F(t)

is

z' = -kq + dz/m - F(_)/m

qt ... z/m

where q is momentum, z displacement. [4] should be consulted for details of the
process of constructing systems of equations.

Note that in this case the state function F(X, U) is linear, i.e. it has the
form

!
X 1 = allXl "l- " " " "1t" alrtXn "4- bllUl "4" • • • -_- blrUr

I
X n : anlXl -1- • ""-t- annXn -t- bnlUl A- • • • + bnrur

or, in vector form, X' = A)_ + BU, where A, B are coefficient matrices.

When linearity obtains, an extensive arsenal of powerful mathematical tech-
niques can be brought to bear, to such an extent that non-linear F functions

are often made tractable by replacing them with linear approximations. Among
these tools are Laplace transforms, eigenvalues, poles and zeroes, and numerous

other techniques for establishing steady-state conditions, oscillatory modes, and
similar system properties.

The state variable formulation of the linear harmonic oscillator exemplified

by the mass-spring system above yields a simple example. The system is stable
if none of the variable values are changing, i.e. if p' = 0 and x I = O. This
happens when

0 = -kq+dz/m- F(t)/m

0 = x/m

Solving these equations, we see that the system is stable iff z = 0, and

F(t) = -qm. More generally, we can obtain the equilibrium (steady-state)

conditions for an arbitrary system .V_ = A)_ + BL7 by solving the system of
simultaneous equations 0= A._ + BU for)_ in tile usual manner.

1.2 CSMs of Intractable Systems

Instead of assuming models with docile properties such as linearity, our research
has taken the opposite approach, concentrating on discontinuous, non-linear,

analytically intractable systems, since these are the ones for which simulation
rather than analysis is appropriate. Rather than assuming that f can fea-

sibly be linearized, or even that it is a continuous, differentiable function of
its arguments, we do not require F to be a closed-form function at all, but

rather allow it to denote an arbitrary algorithm, possibly including assign-

ments to temporaries, if-fi statements, and explicit dependence on time (as

in, say, if t _.>4 then z := 48 else x := 0), for computing the indicated values.
It should be noted that the term "continuous simulation" is quite misleading:

the Fi can be discontinuous, non-linear, non-analytical, and in fact should not
be taken literally as closed-form functions at all: the notation F# merely denotes

' is computed from other values on the basis of some arbitrarythe fact that x i
computation. The term "continuous simulation" has as its opposite "discrete-

discontinuous simulation". To emphasize this fact, weevent simulation", not " " " . . .
shall generally use the notation .A(X, U; t) instead of F(X, U) to emphasize tim

algorithmic nature of the computation.

1.2.1 Continuous Simulation: Schematic Form

As indicated, we are interested in a particular kind of model called a Contin-

uous Simulation Model, which is appropriate if the system in question can be
described in terms of relationships among a set of model variables and their

derivatives, but the relationships are mathematically intractable.

A continuous simulation of the sort we shall discuss proceeds by integrating
a system of ordinary differential equations. Since a digital computer is a discrete

machine, this process must necessarily proceed in discrete steps. The approach

we shall take is based on Euler integration, which derives from the following

straightforward principles:

1. The progression of time is quantized into discrete steps of size dr. The

smaller the value of dr, the more accurate (and slow) the simulation be-

comes; dt is not, however, deemed to be infinitesimal.

2. The relation distance -" rate * time. In this context, "distance" refers to

the amount a variable changes from one time step to the next. "rate" is

given in terms of differential equations determining the variable; "time"
is, of course, dt.

The schematic form of a continuous simulation has the following structure:

initialize all but highest derivatives

loop
A. use values of simulation variables at time

to compute, by moans of model equations,

time t values for the highest derivatives

occurring in the model

B. use time t values of derivatives and other

variables tocompute, by means of the d = r*t

principle, time t+1 values for all but

the highest derivatives

end loop;

Let us examine this computation schema in more detail. Suppose the vari-

ables involved in the simulation are xl x,, as well as their derivatives

x_ 1) xl m'). (Note: we will use the term "highest derivative(s)" for the

highest-order derivative of each variable occurring in the model, and "lower

derivatives" to denote all derivatives other than the highest derivatives. In-

cluded in these lower derivatives is the zero-order derivative of each variable,

i.e. the variable itself: x_ °) : x,..) Also given are functions relating the highest

derivative of each variable to the values of the lower derivatives and of auxiliary

variables:

:= l((argSl))

:=

The arguments (argsi) typically include lower derivatives (including the vari-

ables themselves), as well as auxiliary variables. Inclusion of highest derivatives

in the arguments is permissible, but must be handled carefully to avoid circu-

larity. As is the case in the analytical approach, a set of initial conditions is

given, which specify initial values ofxli),j -- 0 my - 1. We thus begin

with known values for all except the highest derivatives z_ m') , x (_"). Tile

first step is to complete this set by computing the highest derivatives for dt :

=

• :

(the notation x_i)[t] denotes the value of x_ j) at time t). At this point we have

• (J) i = 1, . n,j - 0 We can now use thesevalues for all "i mj.

values and the d = r. t principle to compute values for time t + 1. Since t was

0 above, the next step computes t - 1 values:

X 1 [1] := ZI[0]-F X i " dt

-- - z'denotes dz/dt

xl[] := "xI ,dr

Z1 :'--

10

From this we see that the general computation proceeds as follows:

loop

- at this point we have time t values for

- all but the highest derivatives

:= A((args.))
- at this point we have time t values of all variables
- and their derivatives.

- Now compute time t + 1 values for all but the

- highest derivatives

zl[t + 11 := zl[t] + z_[' l * dI

- now update t and iterate

t := t + 1;

end loop;

The -(J) above were treated as array variables indexed by t. In general,x i

however, it is not necessary to save all values of all x_ j) for all t; the computations

typically proceed quite locally in time. The loop can thus be rewritten as follows:

loop
- point A:

x_m') := fl(<argsl))

:= f.((a,-gs,,))
- as before, we now have a full set of values for

- - xlJ),i = 1,...,n,j = 0 mj

- point B:
- Now compute time t + 1 values:

zl "= xl + x_[t] • dt
x_ := x'1 + x_'[t] * dt

(m.-1) .- X(nm.--D + X(m.) * dt

11

OR/GINAI; PAGE [g

OF POOR QUALITY

- explicit updating of t is no longer necessary

- point A:

end loop;

Note that we have designated two control points in the above program; we

call them point A and point B (the point A just before the end loop is logically

identical with the point A following loop). Moreover, we shall refer to the

computations following point A and preceding point B as the A-computations
or the A block; similarly, the block of code after B and before A is called the

B-computations or the B block. A number of observations are in order regarding

the above program. The first is that while the order of the B computations

is irrelevant if explicit time subscripts are used, order is critical if, as above,
subscripts are omitted. Suppose, for example, that we had written

t I II

x x := z I + x I • dt

zl := xl+z_*dt

It is clear that the x] used in the second equation to update xl is z][t + 1], not

x_ [t]. As noted previously, the notation fi merely denotes the fact that ,.i-("_') is

computed from other values on the basis of some arbitrary computation, which

may involve loops, if statements, procedure calls, and all the other mechanisms

of computation.
We now present an example of such a simulation: a program which models

a relay servo. (Source: [1], pp. 117 - 119.) A relay servo is a feedback control
system in which the corrective signal is applied discontinuously. The intent of

the system is to minimize the error difference E = Y - X between reference

(input) signal Y and the output X (Y is kept constant at zero in this model).

The servo equation is
X" = -X'/B + G. A/B

where G represents the action of the relay, taking on values of -1, 0, and +1,
depending on the value of E. The formal similarity of the above equation with

the linear harmonic oscillator equation x" = -x'/mass - k • x/rnass should
be noted; A plays the role of the spring constant, B the role of mass.

-- parameter specifications:

A := 2; b := 0.5; V := 1; Y := O;

-- step size specification:

dt := 0.01;
-- initial conditions:

X_ := O; X := 1.B;

-- simulation loop:

loop

-- point A:

E := Y - X;

12

if E > 0 then G := V;

elsif E = 0 then G := O;

else G := -V;

X'' := -X'/B + G * A/B

-- x,,Ct] = :_(x'Ct],oft], A, B)

-- All values X, X', X'' are current to time t here

-- Now compute t+l values of X and X':

-- point B:

X := X + X' * dt

X _ := X _ + X'' * dt

end loop

1.3 Components of a Continuous Simulation

Model

The previous section has presented a schematic form for CSMs. We now examine

the constituents of CSMs more closely. These may be classified as follows:

• Constants: quantities that cannot change, even in principle (in particular:

in the presence of faults).

Example: conversion._actor = 180/3.14159

• Parameters: quantities treated as constants for the duration of a simula-

tion run, but which may vary from one run to the next.

Example: mass -- 2.0

In the context of fault diagnosis and fault propagation, parameters fall into

two classes: intentional parameters (those intended by the programmer to

be parameters) and inadvertent parameters, i.e. quantities intended by

the programmer to remain constant, but which have changed due to a

fault. Inadvertent parameters can, in fact, act as variables, changing in

mid-run.

• Endogenous variables: xl xn, and their derivatives: the quantities

whose values are determined by the equations of the model. In the case of

dynamical systems in state variable form, endogenous variables correspond

to state variables. In the relay servo example (which is not in state variable

form), X, X', and ,_" are endogenous variables.

• Exogenous variables: quantities supplied (input) from outside the model,

rather than being computed in terms of model quantities. In the relay

servo example, tile reference signal Y is an exogenous variable (which is

held constant at zero in this particular example). In dynamical systems,

exogenous variables are referred to as input variables or sources of effort

or flow.

13

• Auxiliary variables: quantities computed in terms of endogenous and ex-
ogenous variables and other auxiliary variables, but which are not them-

selves endogenous variables. In the relay servo example G and E are

auxiliary variables. It should be noted that auxiliary variables occur in

algorithmic mappings but not in equational ones: only algorithms require
temporary variables.

In an algorithmic model constructed without the benefit of a methodology
such as the one outlined in [4], the difference between auxiliary variables and

endogenous variables is in general subjective and arbitrary. As a rule of thumb,
a variable is deemed to be endogenous if it is the sort of thing that might

reasonably be printed out as model output, otherwise it is auxiliary. In a system

dynamics model, the category of any variable is evident: if it represents an effort

or flow source, it is an input (exogenous) variable; if it represents the amount of
effort or flow stored in a capacitance or inductance, it is a state (endogenous)

variable; if it belongs to neither class, the only remaining possibility is that it

is an auxiliary variable.

1.3.1 State Variable Form

While we will continue to deal with models involving higher-order equations,

we have seen that we may confine ourselves to systems of first-order equations

if desired. In this case we can restate our CSM loop schematic as follows:

Assign initial values to simulation variables

loop
A. use values of simulation variables at time t to compute,

by means of model equations, time t values for the
derivatives occurring in the model

(which will be first-order only)

B. use time t values of derivatives and other variables to

compute, by means of the d = r*t principle, time t+l values
for all variables

end loop;

or in vector form,

21_ X0

loop

A. X' := _t(_?, J,t)

n..f := _?+ _'.at

end loop

In our previous discussion of dynamical systems models having the general
form X' = F(X,U,t), we referred to the mapping F as an algebraic or equa-

14

tional mapping. By analogy, we refer to .4 as an algorithmic mapping. More

generally, an algorithmic mapping is any computational scheme that maps a set

of input values X to a set of output values Y.

As is apparent from the loop schema, the simulation loop body consists of two
consecutive mappings, the A-computations .4 followed by the B-computations

B. The effect of running the simulation for n iterations can then be expressed

as applying the mapping (.4 •/3) n to argument X0. If the loop has the form

loop

A. ,7' := .a(,_, H, u)

B. X" := .at
end loop

then we see that initially -_i = -_0, and for i > 0 we have

:= L + at. t)

It is evident that each iteration of the simulationloop computes the next value
of)_ by adding a small vector pointing in the .A(X, U, t) direction to the current

)_. It is fairly common for simulations to have neither exogenous variables nor

explicit time dependences; if this is so, then the above assignment becomes

)_i+1 := -_i + A,(-_0' at

The significance of this form is that the behavior of)_ under the iteration is

governed by the time-invariant mapping .,4; in particular, the fact that the
mapping does not depend on t makes it possible to pre-establish operating

regions in the vector space. Such operating regions will play a role in the

subsequent development; in particular, each qualitative state corresponds to a

distinct operating region.

15

Chapter 2

CSM-based reasoning

We have presented a formalization of the CSM process in terms of iterated

mappings on a vector space R n. We will now explore some of tile implications
of this formulation.

We have indicated previously that the system identification approach to di-

agnosis consisted of posing the question "how do we make the model behave like

that?" As it happens, this approach is not confined to either fault diagnosis or
qualitative reasoning. Consider a dynamical system _1 = F(X,U), and sup-

pose we are interested in steady-state (equilibrium) conditions, i.e. in conditions
under which the system is stationary. In model terms, this corresponds to having

no changes in any of the state variables; formally,)_' = 6 =/6()_, 0). T+he prob-
lem has been reduced to finding values for X and [7 satisfying 0 = F(X, U),

which is generally possible, at least numerically, if the system equations are

closed-form expressions. In the case of linear systems the solution process re-
duces to solving a set of linear equations.

The case where the system model is a CSM rather than a dynamical sys-

tem model presents rather greater problems. Instead of a system of equations
._ = F(X, U), we have an interated computation

loop

._' := _t(2, 0, t)

_ :=._ +)_l.dt
end loop

Since .4 is not in general a system of equations, linear or otherwise, tra-

ditional methods do not apply. We have nonetheless been able to develop a

technique for attacking such problems, which represents a generalization to al-

gorithmic mappings of techniques appropriate to equation mappings . This

approach makes use of the weakest precondition predicate transformation tech-

nique developed by Dijkstra [2] to derive solutions to questions posed of models
based on algorithmic (special case: equational) mappings.

16

Bywayofexample,consideronceagaintheproblemofdeterminingsteady-
stateconditionsdiscussedabove,this timefor thecaseof analgorithmicmap-
ping.Forthesakeofsimplicity,supposetherearenoexogenousvariables,and
timeisnot an explicit parameter. Thus we have

loop

Z, := t(g, O,t)
._ := .Y + X'. dt

end loop

As before, equilibrium corresponds to a condition where ._1 = 0". In this

case, however, we have an assignment statement (:=) rather than an equation

(=). The question thus becomes: what has to be true before the assignment is
performed, for ,_1 = 0" to be true afterwards?

This formulation is essentially identical to Dijkstra's definition of the wp

predicate transformer [2]. For the sake of completeness, we will present a brief
review of the basic predicate transformers; readers requiring more detail are

referred to [2].

17

2.1 Introduction to the Dijkstra Transform

Tile wp predicate transformer is an operater that takes two operands, a program

and a predicate, and produces a predicate as result. We will use Dijkstra's

notation wp(Prog I R) to denote the weakest (most general) predicate, called

the weakest precondition, that must hold prior to execution of program Prog, if
predicate R (the postcondition) is to hold after execution of Prog.

2.1.1 Fundamental Algorithmic Constructs

The well-known Jacopini-B6hm theorem states that any single-entry/single-exit

program is equivalent to a program using only sequencing, if statements, and a

controlled looping construct such as the while or repeat-until loop as control

structures. Furthermore, loops within the main simulation loop tend to be rare,

and most of the "inner syntax" of CSMs consists of assignment statements. For
our purposes it therefore suffices to give the wp transform for sequencing, if

statements, and assignment.

Transforms of Fundamental Algorithmic Constructs

Statement sequencing: if $1 and $2 are program statements, then

wp(S1;S2 I R) = wp(S1 I wp(S2 I R)). This fact immediately gener-
alizes to

wp(S1;... ;Sn I R) = wp(S1 I wp(S2 I wp(Sn I R)...).

Assignment:

wp(x := E I R) = R,__>_

where RE....r denotes predicate R, with expression E substituted for all
free occurrences of variable x in R. For example,

wp(x:= 1-ylx=y+5) =y+5= 1-y

or y = -2, which is the weakest predicate that had to be true if the
postcondition x = y + 5 was to hold.

if statements The if statement has the usual guarded-command syntax:

(if) ::= ff (be:) --, (statements:) 1

I tangleben) -- (statements,,)
fi

where the bei are boolean expressions. The transformer for (if) is

18

ORIG-'q_rAEPAGEIS
OF.,eooa QU ag .,

wp((if) l R) -- ((bq} =_ wp((statementsl), n))^

((be,,} :* wp((statements,,) [R))

In our application we can state that exactly one guard will be true. The

condition ((be_)V...V (be,,)) included in Dijkstra's formulation is therefore
always true and can be omitted.

Loops The wp transform for looping constructs is less straightforward, and in
fact cannot be stated in closed form. We assume the syntax employed in

[=]:

(do) ::= do (be1) "--+(statementsx) [

I (be.} (stateme.t,.)
od

The semantics of this construct stipulate that the statements within the

do-od are executed repeatedly as long as a true guard exists. As before,
our application and implementation language allows us to assume that at

most one guard is true for any iteration.

The transformer for (do) is

where

and

wp(< do >1 R) = (3k > 0: Hk(R))

Ho(R) = RA ",(3j : 1 < j <_ n : (bej))

Hk(R) = wp(IF, Hk-I(R)) V Ho(R)

2.1.2 Applications of the Dijkstra Transform

Equilibrium Conditions

Example: An Abstract Buzzer We begin with a simple example: applying
the wp transform to the problem of finding equilibrium conditions for an abstract

buzzer. We assume we have a device whose (sole) moving part is characterized

by its position z on the real axis. Furthermore, we posit that if Irnin < x < a,
then x is moving right; if a < x < lmax then x is moving left; otherwise x is

stationary. In schematic form:

lmin a lm)ix

s tationary -.-* *--- stationary

The CSM has this form:

19

loop

{A:}
$1 : if

1 >= imax --> I' := O;

1 <= Imin --> i' := O;

imin < 1 <= a --> I' := 1;

a < 1 < imax --> I' := -1;

fi

{s:}
$2: i := 1 + i j * dt

until done

We now pose the question: under what conditions is this system stable? In

wp terms, this question appears as: what is the weakest precondition for l' = 0
9

We have

l' = .4q, tin;n,., t._.x) = .4(0 =
if

I > lmax ----,,i t := O;

l < train _ i t := O;

lmin < l < a ---* l' :-- 1;

a < I < Imax --.* I':= --i;

fi

Then

wv(.4(OIt' = 0)
(I > _rnaz =_ wp(l' := 0 11' = 0)) A

(t < tmi,, _ wp(t' := o I l' = o)) A
(lmin < l < a _ wp(l' := 1 I I' = 0)) ^

(a < I < lmaz _ wp(l' := -1 I I' = 0))

=_-

(_(l >_lmax) v (0 = 0)) A

(-,(l _<_.,i,,) v (o = o)) A
(--11E (Imin, a] v (0 = 1)) ^

(-,_e (a, t.,a_) v (o = -1)

(l ¢ (lmin, a]) A (l ¢ (a, imaz))

20

1 ¢_ (lmin, Imax)

This answer is, of course, intuitively obvious; the purpose of this example was
to illustrate the formal definition of preconditions prerequisite for given post-

conditions, in this case equilibrium conditions. The following example derives
a less obvious precondition.

Example: Relay Serve By way of example, we will apply the wp transform
to the problem of finding equilibrium conditions for the relay serve discussed

previously:

x" = -z'/B +G* A/B

G = if F(t) > x then - l'else

if F(t) > x then 1 else 0 fi

For the sake of simplicity we first put the model in state variable form:

p' = -x * A - p/B

q' = -G/B

with G as above, p represents momentum, and q is displacement in these equa-
tions.

The A-computations of the relay serve CSM are thus

£S1:} p' := -q*A - p/B

{$2:) if F(t) < q then q' := -I/B

else £f F(t) > q then q' := 1/B else q' := 0 f£

We have equilibriumifp' - 0 and q'= O. But q'iscomputed by an algorithm

(however simple),not an algebraicequation. We thereforeuse the "algorithm

solver",the wp transform:

wp(S1;S2 I P' = 0 A q' = O) = wp(S1 I wp(S2 I P' = 0 A q' = 0))

wp(S21 p' = o ^ q' = o) =
(F(O < q => wp(q'
(F(t) > q => wp(q'

(F(t) = q => wp(q'

:= -lIB Ip' = o ^ ¢' = o)) ^
:= liB lp'= OAq'= O))A
:=0 Ip'= OAq'= 0))

(F(t) < q -'> p' = 0

(F(t) > q => p' = 0

(F(t) = q => p' = O

^ -lIB = O) A

^ 1/B = o) ^
A0=0)

21

(since B # oo, and so 1/B = 0 is false)

(F(t) < q => false) A

(F(t) > q => false) ^
(V(t) = q => p' = 0)

",(F(t) < q) ^ {so F(t) > q}

",(F(t) > q) ^ {so F(t) < q,

(F(t) = q => p'= 0)

i.e. F(t) = q)

(F(t) = q) ^ (F(t) = q => pJ = 0)

(F(t) = q) A (p' = O)

SO

wp(S1] wp(S2, p' = O A q' = 0)) =

wp({S1 :) p' := -q • A - p/B] (F(t) = q) ^ (p' = 0))

= F(t)=qA-q*A-p/B=O

so F(t) = (-A/B) • p is the weakest precondition for equilibrium.
The preceding discussion of equilibrium conditions for a relay servo has illus-

trated the extension of reasoning processes heretofore possible only for algebraic

mappings to algorithmic mappings by means of the wp transform. The mapping
employed in this example was quite simple; even so, the resulting development
was sufficiently complex to make it clear that more substantial examples requite

computer-assisted processing. The wp transform implementation we have devel-
oped (Appendix B) supplies the basic tools required for this sort of reasoning.

22

Chapter 3

Qualitative Reasoning and
Interval Mathematics

We have presented an overview of CSMs, touching on dynamical systems based

on equational mappings. We have given a simple canonical schematic for CSMs

based on the concept of algorithmic mappings, as well as a concise vector nota-

tion for CSMs. Finally, the concept of wp predicate transformer was introduced
and it was shown how this transform could serve as a generalized form of "solv-

ing" the algorithmic mapping, analogous to solving equational mappings, by
providing answers to the question "what must hold beforehand, in order for

condition P to obtain after ,4./3 is applied?" The use of this approach was
illustrated by example.

We now turn our attention to the domain of qualitative reasoning, with the
ultimate goal of applying wp transform techniques to this domain. The rationale

for employing qualitative reasoning rather than quantitative methods have been

' amply discussed elsewhere [3], and can be summarized as corresponding to a
requirement for reasoning at a more abstract level, and/or with less specific

information than is the case for quantitative reasoning. [3] contains descriptions
of a number of approaches to this goal. The ontologies and methods underlying

these approaches vary widely, but all have this in common: it is assumed that

no quantitative model of the system of interest is available, and that inferences

may/must be made solely on the basis of knowledge of monotonicity of functional

relationshps, and position of values with respect to designated ("landmark")
values in a quantity space.

Our research has proceeded on the basis of the opposite assumption: that a
quantitative model is available. A number of reasons motivate this approach.

Important among these is the fact that qn models are frequently available for

the systems of interest; moreover, as pointed out in the previous discussion of
spring breakage in the mass-spring model, these models often reflect physical

23

realityaccuratelyenoughto form a basis for ql inference about system behavior.
A second motivation for the use ofqn models as inference basis is the author's

belief that the most powerful model-based inference engine of all, the human

mind, does its reasoning on the basis of qn rather than ql models. This view is

admittedly incompatible with the assertion of most authors in the ql reasoning

field that ql reasoning corresponds to the sort of modeling done by the mind.

To quote Bertrand Russell, "when the experts are in agreement, tile opposing

position cannot be held to be certain." Nonetheless, it appears to us that the
imprecision and heavy reliance on default values inherent in mental modeling has

been confused with true ql reasoning processes. A simple gedankenexperiment
will illustrate this point. Imagine a tennis ball dropped from shoulder height:

how many times does it bounce? The gedankenexperimenter will solve this

problem by producing and then watching an impromptu "mental movie" of this

script. Rather than deducing or inferring a result by any formal method, the

answer is obtained by counting how many times the mental image of the ball
bounces on the "inner screen." Default values are inherent in the choice of

production values for "shoulder height" as well as the surface on which the bali

bounces. The qn nature of the process can be seen in the fact that the answer
will probably "four or five times", rather than one of the answers produced by

true ql reasoners: "don't know" or "infinitely often" or, most likely, an infinite

branching tree of histories.
But we digress. The third cogent motive lies in these considerations:

• a qn model allows powerful inferencing, and

• if a qn model is not available, it may well be possible to produce one,

even in the absence of deep physical insight. On the most basic level, this
corresponds to noting which variables are present, and how they interact:
if a increases, b decreases, etc. By a leap of faith, a first-cut assumption of

linearity can then be made: a -- k.b. In many cases, such an assumption

will not be justifiable, but may nonetheless provide a sufficiently accu-

rate approximation of reality to be useful. [7] and [8] provide intriguing
discussions of these ideas.

Why CSMs as qn Models? In view of the vast variety of qn models avail-

able, a word of explanation regarding our choice of CSMs as representation is
in order. Our domain of discourse is concerned largely with physical systems,

for which the most natural representation is in terms of relationships among

magnitudes and their rates of change. If these relationships are of a particularly

simple and regular form, they can conveniently be cast in the form of differen-
tial equations. If this is not the case, then the derivation of new values from

old must proceed as some form of more complex computation, i.e. in terms of

an algorithmic mapping. The CSM is a canonical form for such computational
treatment of qn models.

24

Havingprovidedarationalefor CSM-basedreasoning,wenowexaminethe
processesinvolved,andhowtheydifferfromtraditionalqlreasoning.In concise
terms,whereql reasoningproceedsonthebasisof resolvinginfluences,CSM-

based reasoning proceeds by means of symbolic evaluation of interval values by

means of interval mathematics. More precisely: as in traditional ql reasoning,
there is a set of variables representing the quantities of interest in the system.

Moreover, we have given a set of landmark values: a finite set of distinguishing

points (which always include 4-oo)on the extended real axis N+ = Nu{4-cx_}. In
our formulation each variable may have associated with it its own personal set of
landmark values; that set is a totally ordered finite subset of N+. No particular
ordering need be assumed, however, for the landmarks of one variable relative
to those of another.

3.1 Mathematical Background

The present section introduces the mathematical vocabulary which will be
needed to develop our approach to ql simulation. Since our CSM-based rea-

soning system proceeds on the basis of interval arithmetic, we must first define

its operands, which in Lebesque theory are known as elementary sets (es's).

3.1.1 Definition of Elementary Sets

Definition The extended reals 3 + = _ U {+c_}, the reals augmented with
-4-oo.

Definition An interval in _+ is the set of points x = (zl x,_) such that
ai _<(or <) x; _<(or <) = 1, ... ,v.

Thus intervals may be open, closed, or half open (equivalently: half closed).
We will use the notation [(a, b]) when we wish to leave unspecified whether the

endpoint in question is open or closed. [and (will be referred to as left,] and
) as right marks. The degenerate interval [a, a] is a permissible interval; it is a
singleton containing only a, and will in most cases be identified with the number

a. The left endpoint of the interval may be greater than the right endpoint, i.e.
the empty set is an interval. In addition, if no confusion is possible, we will write

[(a, a]) to denote the singleton es {[(a, a])}, and a to denote the es {[a, a]}.
Unless otherwise stated, we will assume that p = 1 i.e. our intervals are

subsets of one-dimensional Euclidean space.

Definition An elementary set is the union of a finite number of intervals in

Nothing in our implementation, or in principle, requires the intervals of an es

to be disjoint. In our application, however, ess do have this property in most

25

cases.Wewill usethetermoverlap to denote the intersection of two intervals

within a single ess.

It is easy to see that ess are closed under operations such as union, intersec-

tion, and complementl in measure theoretic terms, families of sets having this
properties are called rings. It is important to note that it is sets of intervals

that are being operated on here, not the intervals in these sets.

Note that since we identify singleton intervals with the real number they
contain, any finite set of real numbers is an es .

It will frequently be necessary to perform case analyses involving the posi-

tions of points in an es relative to landmarks. An operation useful in automating
such analyses is the split, denoted by l- A split takes as operands an arbitrary

es and a finite set of reals (intuitively: landmarks), and produces an es as result.

Definition Let E be a singleton es containing (only) the interval I, I # 0,
and let .5"be a singleton set containing (only) the real number a. Then E I S

(equivalently: S i E) is defined as

As special case, we define E _ $ to be E.

Example:

{[1,2)} i {1.5} = {[1,1.5),1.5,(1.5,2)}
{[1,2)} l {0} = {[1,2)}, and
{[1,2)} I {1} = {1,(1,2)}

It is easy to extend the split operator to the case where operands E and S

are not singletons, lfS = {al,... ,an}, we define E l S recursively as

(E I {al}) i {a2 a,_}

IfE={I1 Ik} , then EIS=({Ii}IS) O...U({Ik} _ S).

3.1.2 Mappings on Elementary Sets

We begin by reviewing some basic concepts of mappings. Recall that if D and

R are arbitrary non-empty sets denoting the domain and range of a function

f : D _,R, and ifS C_ D, then](S) = {.f(s) e R I s e S}. In particular, of
course, ess are subsets on Euclidean space, and thus functions having Euclidean

space as domain extend immediately to ess. Furthermore, for arbitrary f, if

f : D _ R and A and B are subsets of D, then it is easy to see that f(A t3 B) =

f(A) O f(B).
Since we are dealing with digital computers, which are necessarily finite, we

must confine ourselves to finite sets. We therefore require that the mappings
that occur in our application produce ess when applied to ess; we will call such

26

mappings es-ciosed. It is thus appropriate to discuss the issue of closure of the

class of ess under function application.

The Mean Value Theorem implies that if I is an interval, and f is continuous,

then f(I) is an interval. Thus:

Theorem Continuous function are es-closed.

It is easy to exhibit examples of mappings that produce non-es values when
applied to es arguments; for example, define

x ifz is transcendentalf(x) = 0 ifx is rational

Fortunately the sort of functions that occur as constituents of.A and B mappings

are better-behaved. In the case of Euler integration (as well as most other
kinds), only + and • are involved in the B mapping; both are continuous, and
thus es-closed.

That takes care of the B mapping. What of .4? The raison d'etre of CSM

lies in the intractability of the .4 mapping; if .4 were well-behaved, analytic

techniques would apply. Can we expect such a mapping to be es-closed?
Somewhat surprisingly, the answer is in the affirmative for the sorts of func-

tions likely to occur in CSMs. These functions typically include the basic

arithmetic operations such as addition, subtraction, multiplication and division,
which are manifestly continuous. In fact, the higher-level operations likely to be

found in CSM programs, such as trigonomentric and logarithmic functions, are
invariably implemented as subprocedures composed of the four basic arithmetic

operations. Thus the functions likely to occur in a CSM are all continuous.

Computer programs are composed of computational expressions that are em-
bedded in three types of control structures: statement sequencing, if-then-else,

and looping constructs featuring some sort of termination construct such as a
while condition. Statement sequences that contain no control constructs com-

pute compositions of those computational (non-branching) functions provided
by the machine architecture.

It must be admitted that any modern computer provides a wide variety of

additional operations, e.g. logical operations such as XOR. Such functions may

not even be defined for arbitrary reals; the logical operations, in particular,
operate only on integers (bit strings). We could, of course, fall back on the

finite nature of the computer, and point out that a finite-state machine cannot

produce an infinite set of outputs for a finite input. This argument is not
satifactory, however, since it depends on the finite-grainedness of computers.

Matters are clarified by postulating an abstract machine featuring unlimited

memory and infinite-precision operation. In this case discontinuous operations
such as boolean functions do fail to be es-closed, while the basic arithmetic

operations retain this property. The implementation of elementary functions on
computers is such that we may safely assume that such discontinuous operations

do not occur in the sorts of computations that constitute the .A-computations.

27

It isthusapparentthatthecomputationalpart(sometimestermedtheinl, er

syntaz) of CSMs consists of compositions of continuous functions, which are in
turn continuous. Discontinuity is introduced by if statements. Any program,

however, has only a finite number of if statements, each of which has only a finite

number of branches (usually two). The number of discontinuities introduced by
if statements is thus finite.

Finally, we note that a while loop represents a finite (since we assume it

terminates) number of iterations, i.e. of compositions of the mapping repre-
sented by its body, with itself. Iterating a function with at most finitely many

discontinuities yields a function with at most finitely many discontinuities. We

thus see that an ,A mapping is piecewise continuous, with at most finitely many
discontinuities.

The above discussion has, of course, the nature of argument rather than

proof. Moreover, the assurance that a mapping has only finitely many discon-

tinuities gives no assurance that this finite number will remain bounded, or if
it does, that the bound will be a representable number. As we will sce subse-

quently, it is generally possible to reduce at least the ql es values of derivatives to
Q0, the space containing 0 as its only landmark. Simplification of the variables

themselves is frequently possible as well.

3.2 Interval Mathematics

We now turn to the subject of interval mathematics, also known by the equiva-

lent term interval analysis 1. This field of mathematics, which was pioneered by

R. E. Moore [6], was originally motivated by the need to formalize the study of
roundoff error in computer calculations. In such an application the uncertainty

regarding the value of any variable is, of course, quite small; the basic techniques
nonetheless apply unchanged to the ql reasoning field, where the uncertainty is

frequently on the order of "x E (0, co)."

Interval mathematics has developed tremendously since its inception; the lit-
erature now numbers over 500 papers. Fortunately the nature of our application

is such that we will require only the most basic operations in order to provide

a basis for the piecewise continous functions which constitute CSMs. All such

operations are implemented in terms of the machine's basic add, subtract, mul-
tiply and divide instructions, however; thus development of implementations of

these basic operations was of the highest priority. We will use the term inter-
val arithmetic to denote the operations of interval mathematics that implement

basic arithmetic operations.
As is pointed out elsewhere in this report, when dealing with CSMs we

may confine ourselves to operations relevant to continuous mathematics, and

need not consider other functions provided by computer instruction sets, such

1 Interval analysis generally concerns itself only with closed intervals. Our application does

not allow this simplification.

28

asbooleanfunctions.Wewill illustratetheconceptsinvolvedbyshowingthe
intervalarithmetic version of addition.

The straightforward extension of any function f : D _ R to a function
f : 2 ° _-* 2R, which has been discussed previously, gives little indication of how

the result is to be constructed computationally. It is this question that interval
arithmetic addresses.

3.2.1 Addition of ea Values

Since for arbitrary function f and subsets A, B off's domain we have f(At.JB) =
f(A) U f(B), we may confine our discussion to singleton es operands, i.e. to ess

consisting of a single interval.

Let x = (a, b), y = (c, d). Then

x+y = {rE_lqu, v such that uEx,vEy:r=u+v}

= (a+c,b+d)

Similarly, if both intervals are closed, the result will be closed.

Some of the complexities that arise in these computations become apparent

when we consider the case when one of the corresponding ends of the intervals
is open, and the other closed, or one is 4-00, and the other is finite, or both are

infinite. To consider a concrete example:

(-3,3)+(2,4) = (-1,7)
[-3,31+[2,4] = [-1,7]
(-3,3)-t-[2,4]- (-1,7)
(-3,3]+[2,4] = (-1,7]

etc.

By the f(A U B) = f(A) tJ .f(B) principle, the operations of interval arith-

metic extend immediately from the case where the operands are single intervals

to arbitrary ess. For example,

x + y = {u + v I u an interval in x, v an interval in y}

Interval addition is deceptively simple, possibly leading the reader to

conclude that for any arithmetic operation op, we have [(a,b])op [(c, at]) --
[(a op c,b op d]). That this is not the case can be seen by considering sub-
traction:

[(a,b]) - [(c,all)= [(a - a,b - cl)

In particular, [(a, b]) - [(a, b]) = [(a - b, b - a]) rather than [(0, 0]).

Multiplication is defined as follows:

[(a, b]) • [(c, d])= [(min(a • c, a * d, b • c, b * d), max(a • c, a • d, b * c, b • d)])

29

The reciprocall/[(a,b]) of an interval [(a,b]) is givenby [(l/b, l/a]) if
0 _ [(a,b]);if0 E [(a, b]) then

:l[(a,b])= [-oo,II 1)u [(:Ib,oo1

Finally, we have [(a,b]) / [(c,d]) = [(a,bl) * t/[(c,d])

Since it is evident that interval arithmetic requires a computer even for sim-
ple interval addition, it was clearly necessary to implement the basic arithmetic

operations +, -, ,, and / for ess. (In fact, + and * are all that is required
for the B-computation: x := x + x' * dt). In addition, every non-trivial A-

computation will contain additional operations such as sin, cos, exp, etc. These

were implemented as the need arose in the course of working examples. The

current library of implemented es functions is adequate for most applications,

and serves as model and basis for producing implementations of additional func-
tions as required. For example, a tangent function for es can be implemented
as

(defun e_-tan (x) ($s-d:i.v±de (ca-sin x) (ca-con x)))

The reader is referred to the implementation itself, reproduced in the Ap-

pendix A, for details.

3.3 Application to Qualitative Reasoning and

Qualitative Simulation

The major point of the preceding development of es and interval mathematics
concepts is that CSM-based ql simulation proceeds formally exactly as does

ordinary (qn) CSM-based simulation, with the proviso that for ql simulation

the operands of the CSM (more precisely: of the .A and B mappings) are ess
rather than real numbers. We begin our discussion of CSM-based ql simulation

by examining the source of these es operands.
As is the case in traditional ql modeling, the ql CSM model contains a set

of variables representing the quantities of interest in the system. Moreover, we

have as given a set of landmark values: a finite set of distinguishing points (which
always include +oo)on the real axis _R+ . In our formulation each variable has

associated with it its own personal set of landmark values; that set is a totally
ordered finite subset of _+. No particular ordering need be assumed, however,
for tile landmarks of one variable relative to those of another.

Since the set of landmarks associated with a model variable is a set of num-

bers, it is clearly an es. We will use the notation

L(z) = {! I 1 is a landmark of z}

(more precisely: L(a_) -- {[l, l]li is a landmark of x}.) For example, ifx is the

variable of the abstract buzzer example, then L(x) = (Imin, a,imax}.

3O

It is interesting to examine the possible values that x can assume. The value

ofx may be one oflmin, a, lmax, or x may be in one ofthe intervals (-c_, Imin),

(lmin, a), (a, lmax), or (lmax, c_). Much more concisely, x E L(x) V x E L(x).

The preceding paragraph illustrates the fact that ess are a concise notation

for representing qualitative variables. It is also apparent that at any time any

ql variable v is either in L(v) or its complement L(_.__v). Moreover, the value of

any CSM variable alternates between L(v) and L(v).

It is important to emphasize at this point the fact that any variable v in

any model at any time has a distinct numeric value. Tile ess thus cannot be

considered to be tile value of a model variable; rather, it represents our knowledge

of the value of that variable. The notation [v] = (a,b) does not indicate that

the interval (a, b) is the value of v, but rather that the value of x is somewhere

between a and b, although we are not sure exactly where. When no confusion is

possible, we will become sloppy and use the notation v = E (E an elementary

set) rather than Iv] = E, to denote the fact that the qualitative value of v is

E, i.e. that x E E.

It is evident that the traditional qualitative values are a special case of our

representation, corresponding to the case L(v) = {0}. We will call this par-

ticular landmark set the Qo space. The es representation facilitates specifying

the state of knowledge as precisely as possible. For example, if we know that v

is between 1/2 and 1 or between 2 and infinity, we can indicate this by writing

Iv] = {(0.5, 1), (2, oo)}, rather than the coarser-grained x = [+]. In addition,

the es representation prevents the proliferation of variables occasioned by the

traditional ql value space [-],[0], [+]. For example, to utilize the traditional

space for the abstract buzzer problem it is necessary to introduce new variables:

x l = x - lmin

x2 -- x -- a

x3 = x -- Imax

Each of the new variables has only tile single landmark 0; we believe, however,

that such proliferation of variables radically reduces intelligibility.

ql reasoning usually deals with the ql values [-], [0], [+], and [?] (the Q0

space).

Ix] = [-]meansxe[-oo, O)
Ix] = [01mea,,s x e [0,0], i.e. • = 0

= [+1 means • e (0,oo3
= [71means e [-oo, oo1

We, however, are using a quantiative simulation as reasoning basis, and thus

have a qn mapping ,4 explicitly given. The Q0 space {[-1, [0], [+1, [71} is not

closed under the operations that commonly occur in CSMs. For example, if

31

Ix] = [+], then after executing y := sin(x), y E [-1, 1]. To map this result
to the Q0 space, we must either have [y] = [?], or must case-analyze:

ve[-1,o)-[v] = [-]
v _ [o,o] - Iv] = [o1
v _ (o,1]-- Iv] = [+]

Two of these alternatives, however, discard information. Since y may welt be
involved in downstream computations, this is undesirable.

32

Chapter 4

Envisionments and

Envisionment Generation

4.1 Definition and Purpose of Envisionments

The intuitive meaning of landmarks is that they are the points within the do-
main of each variable where "something interesting" happens. "Something in-

teresting" is a subjective notion; in general, however, it can be stated that

discontinuities are interesting, as are points where a derivative changes sign.
Other points in _" may be interesting as well, depending on the problem at

hand. The set of landmarks associated with each model variable is, after all,

chosen by the user in what may be an arbitrary manner; in general, however,

the points having the above-mentioned properties must be included if the ql
analysis is to make sense.

Given a set of landmarks, an operating region of n-space is a (maximal) set

of points (model variable values) such that all points in the region have the same
qualitative (es) values, and _4-map onto the same ql derivative values.

A qualilalive slate is a set of assignments of qualitative values to the variables

and derivatives of a CSM. From the above definition of operating region it is
easy to see that all points of an operating region have the same qualitative state.

As a simulation proceeds, the values of model variables will, in general,
transit from one operation region into another. A corresponding transition will,

of course, occur from the ql state corresponding to the source region to the

state representing the destination region. A state diagram depicting the ql
states representing the operating regions of a ql model and the possible (subject

to model constraints) transitions among these states is called an envisionment.

Much mainstream ql reasoning research [3] is concerned with generation and
manipulation of envisionments. A significant portion of the second year of this

research was devoted to a (successful) search for techniques for automatically

33

ORIGINAE PAC IS
OZ QUAr,

generating envisionments from CSMs.
Envisionments are useful for a number of reasons, most of which are thor-

oughly covered in [3]. As concerns the present research, ql state diagrams al-

low interpretation of observations of physical systems, as well as providing an
abstract characterization of system behavior, correct as well as faulty. Further-

more, envisionments allow the wp transform we have developed to be applied

without incurring combinatorial explosions.

4.2 Representation of Qualitative States

Since traditional ql simulation deals with ql values from Q0 space, the corre-

sponding ql states are accordingly vectors of values from Q0 space:

x: [+] y: [-] z: [7]

The envisionment then consists of such states, and arrows representing pos-
sible transitions between them.

CSM-based ql simulation differs from the traditional version in that CSM
envisonments contain two kinds of states:

Intuitively, the state ofa CSM is given at any time by specifying the values of

all variables occurring in the model. To maintain some semblance of tractability,
we confine our attention to snapshots taken at two distinguished points in the

simulation loop:

point A: the point just before the beginning of the A-computations (equiva-

lently: just after the end of the B-computations)

point B: the point just after the A-computations (equivalently: just before the

beginning of the B-computations)

A (B) states represent qualitative values of variables at loop point A (B). The

significance of these points is that the states can be specified by giving the values

of only the endogenous variables. At point B, the A-computation is finished, and
the exogenous and auxiliary variables that computation employed are no longer

relevant. The B-computations involve no exogenous or auxiliary variables, so

once again only the endogenous variables need appear in the state specification.

It is worth noting that if the CSM in question was developed by a systematic
method such as bond graphs, the variables appearing in A and B states will

coincide with what dynamical systems theory also terms the stale variables of
the system.

Since we are doing qualitative reasoning, the state variables will be bound to

ess. In most cases, derivatives will employ the Q0 space; the same may or may

not be true for 0-order variables (i.e. variables which are not derivatives). If the

ess in question are sufficiently simple, a concise graphical notation may be used.
We denote A states by rectangular boxes in illustrations, or enclose them in

34

[...] bracketswithintext;sincethecomputationsforthehighestderivativesare
separatefromthecomputationsofall othervalues,wewill frequentlyseparate
thembya verticalbarin thestate:

I ' 1Xl : esl . . "xn : es,_ I x_ : deriv..esl . . . x,_ : deriv_esn

B states are represented by oval boxes having similar content, or by enclosing

the state in (...). If we wish to avoid specifying the type of a state, we enclose

it in [(...]).

Useful facts about CSM-envisionment states:

• Only B-states correspond to real-world situations, since only at point B
of the loop are all variables at the same time point

• The values of the qualitative state variables are frequently +, -, 0, and ?,

especially the variables representing derivatives

In fact, the qualitative value of a variable may be an arbitrary finite subset
of the real line.

We usually care only about the sign of derivatives.

i The variables change by this pattern:

at B: at A: at B again: at A again:

[u I v] --> (u I v') --> [u' I v'] --> (u' I v")

4.3 Generating the Envisionment from the

CSM

The Starting Point Initially each member of the set of state variables has

as ql value an es. In addition, each state variable x has associated with it a set

of landmark values L(x).

4.3.1 The Set of Initial States

We begin with a definition. Recall that the configuration of a state is

s = [(xl - - - =. I_'- - - =.'])

The ql values of the derivatives are confined to [-], [0], [+], [?]; the values of

the xi, however, are arbitrary ess: xi = {I_z Ii,}, I, i an interval.

35

WethendefinethereductionR = R(S) of S as

R = { [(11... 1, I zl...z_]) I Ij • zi)

Thus R is the set of all states derivable from S by keeping only a single interval

from each zi of S, and making no changes to the derivatives.

The set of initial states (which are always A states, since the CSM compu-
tation begins at point A) is then the reduction

R([x, : x_t Z(_l)..._.: _; t Z(_.)I x_: [?]..-_': [7]])

where x* denotes the initial interval value of variable xi. Recall that [?] is

shorthand for the _s {(-=¢, oo)).
For example, if the (only) state variable is x, with initial ql value [x] =

(-1, 1), and L(x) = 0, then we have x I L(x) = {(-1,0),0,(0,1)}. Tim set of
inital states is then

t?Jl,I-:' I.': t?JI, (0,1)Ix': [?]J)

The A-computation, of course, will assign values to x' immediately.

4.3.2 Generating the Successor B states of an Arbitrary

A State

Transitions out of A States

We will begin with an example. Consider the relay servo previously discussed,
which has A-computations (state variable form)

p' = -q * A - p/ B

q' = -G/B,

where

G = -lifF(t)<q

G = lifF(t)>q

G = OifF(t)=q

F(t) is the (exogenous) input being controlled. The A-computations of the CSM
loop are thus

(*SI*) p' := -q*A - p/B;

iX F(t) < q --> q := -l/B;

F(t) > q --> q := I/B;

F(t) = q --> q := 0;

36

Suppose that as before we have A = 2, B = 0.5, V = 1. Furthermore, suppose

F(t) is constant at 0. Let the initial values ofp = (-1,0) and q = (0, cx_). p
has no landmarks; the only landmark for q occurs at q = F(t), i.e. q = 0.

We compute the set of inital states, and obtain the singleton

{[p: (-1,0) q: (0,oo) I P': [?] q': [?]]}

Given these values ofp and q, statement S1 taken as interval arithmetic expres-

sion produces

[p'] = -(0,_) * 2 - (-1, 0)10.5 = (-_, 0) - (-0.5, 0) = (-_, 0)

At statement $2 we see that since [q] = (0,c_), only the guard F(t) > q can

be true. Thus [q'] becomes -1/0.5 = -2. We have thus reached the B state

(p: (-1,0) q: (0, oo) I P': (-oo,0) q':--2)

or, discarding superfluous derivative information,

(p: (-1,0) q: (0, oo) I P': [-] q': [-1)

Suppose that in the above example we had used q = [0, o¢) as initial value
instead. Then the _ operator would have produced

[p] = (-1,0), [q] = {0,(0,o¢)}

Applying reduction to this produces the set of (two) inital states

([p: (-1, 0) q: [0] I p_ : [?1 q': [?11,[p : (-1,0) q: (0, oo) I P': [?] q': [?11}

Since the quard F(t) = 0 is true for the former state, the A-computation

now have produces B state

(p: (-1,0) q: [0] [p_: [-] q': [0])

in addition to the B state computed above.

The preceding example has made it clear that if statements occurring within
the A-computations can lead to branching, since the destination B state depends

on which guard was true. The example contains a particularly straightforward
situation, insofar as the es values of the variables involved were such that a

unique quard could be determined to be true. The general case is more compli-

cated. Suppose we have a statement of the form

if (SO:} x > y then "[Sl:} <statement_l>
else {$2:} <statement_2>;

37

and that Ix] = (0,2), y - {(-oo,-1],[1, oo)}. What should be the values

of x and y as a result of executing this if statement? More precisely, it is clear

that each of the two possible outcomes of the boolean expression corresponds
to distinct successor values ofz and y. What should they be for each of the two

branches of the if?

The initial impulse is to require that if the $1 branch is taken, the new

ql values [z] and [y] of x and y should be subsets of the real line such that for

arbitrary u E [X],v E [y] the boolean expression x > y holds. Unfortunately,

such a choice is not possible (more precisely: assigns 0 to z) in this example:
there is no u E Ix] that guarantees that u > v for arbitrary v E [y].

It is clear that we must lower our expectations, or abandon the attempt to

apply _t-mappings to ql states, i.e. to es-valued variables. We shall proceed as

follows: Suppose the state at point SO is

[x: [z I y: [y] I z' : [_] ¢: [/31]

Then execution of the if statement produces two (more generally: one per

branch) successor configurations sl and s2. We stipulate:

where

sl-'z:py:_lxl :ayl :f3

p = {u E [x]lBv in [y] such that u > v}

v = {v e [y]13u in Ix] such that u > v}

In words, the new ql values of z and y are sets of reals such that for any point

chosen from one of the ql values, it is possible to choose a point from the ql value

of the other variable such that the boolean expression is satisfied. Similarly, we
have

s2=x:Oy:O[z_ :ay' :[3

where

and

r/= {u e Ix] [By in [y] such that u <_ v}

0 = {v E [y] 13u in Ix] such that u <_ v}

In terms of our example, state

[x: (0,2) y: {(-oo,-1], [1,c_)} I x': [_] y': [/311

produces the two sucessor configurations

sl = z: (0,2) y: {(-oo,-11,[1,2)} I x': [a] y': [/31

and

s2 = _: (0,2) y: {[1,o_)} Ix': [a] y': [/3]

38

Let us examine the effect of this branching process more closely. Configura-

tion sl (s2) corresponds to the state of knowledge at program point S1 ($2). As

we have seen, it is not the case that arbitrary values for z and y chosen from sl

will necessarily satisfy x > y. However, the meaning of the statement Ix] = E

is that the actual value of z is unknown, but is somewhere in the es E. It is

easy to see that the branching process preserves this meaning.

It is important to note that the branching process we have described does

not correspond to the transition from an A state to a B state, but rather to a

step within the A-computation, to wit the step of executing the if statement in

question.

It is left to the interested reader to generalize the above branching process

to arbitrary sets of ql variables and arbitrary boolean expressions composed of

comparisons of variables and constants connected by the usual boolean opera-

tors, as well as to verify that the resulting ql values are ess, i.e. if-branching

is es-closed. An indication of the nature of the proof may be found by exam-

ining the algorithm that performs general if-branching in the implementatio,1

(Appendix A).

Here, then, is the procedure for computing the set of successor B states of a

given A state sA. Let $1, ..., Sn denote the statements of the A-computation.

state_set := R(s_A) -- compute the reduction of s_A

for k in l..n do

new_state_set := emptyset;

for_each s in stateset do

s ' := set of successors of s

obtained upon executing S_k;

new_state_set := new_state_set union s_;

end for_each;

state_set := new_state_set;

end for;

-- upon termination, state_set contains

-- the set of B states that succeed s_A.

It is interesting to note the source of landmarks. It has been intimated

that they are provided by the user as input. The above discussion, however,

makes it obvious that target states are produced not only from user-supplied

landmarks, but also from if statements. In fact, the user is not compelled to

supply any landmarks at all; in the relay servo example discussed above, p had

no landmarks. In such cases, all branching occurring in transitions from B to

A states is produced by if statements. Here is a simple example: suppose we

have ql variable z, for which neither landmarks nor ql value are known. We

must therefore begin by assuming [x] =7, i.e. x = (-oo, oo). Suppose the A

computations begin with

x :: sin(x); -- no_ x = [-1,1]

39

if x > 0 then $1 else $2;

At this point two resulting states are created, one for z _< 0 and one for x > 0.

We thus have branching transitions, despite the lack of any information about
the landmarks or value of the variable involved.

4.3.3 Generating the Successor A states of an Arbitrary
B State

We continue our discussion of envisionment generation by describing the con-
struction of transitions out of B states. The B mapping generally produces

branching, i.e. a set of possible transitions to new (A) states. We will examine
how this comes about.

At point B we have a set of values current for time t for all variables, and

are about to compute subsequent values by means of equations of the form

• + 1]:= +

where the time subscript is usually implicit. Transitions out of the present

B-state are constructed in accordance with deKleer & Bobrow's principles [5],
modified as required for the purposes of dealing with continuous simulation

models. We repeat the original versions here for completeness:

Rule 0: Value continuity: values must change continuously over a transition,
i.e. a value cannot go from - to + without assuming the value 0 at some
intermediate state.

Rule 1: Contradiction avoidance: the system cannot transit to an inconsistent

state. Note that this Rule fails to hold in the presence of faults.

Rule 2: Instant change rule: changes from 0 happen at an instant.

Rules 3, 4, and 5 merely state that Rules 0 and 2 also apply to derivatives;
this is self-evident in our context.

Rule 6: Change to all 0 derivatives is impossible.

The following modifications and qualifications are required when applying these

principles to construction of transitions out of B-states in state diagrams for
continuous simulations: Rules 0 and 2 are oddities in that they do not, strictly

speaking, hold for continuous simulation models: if x[t] < 0, then x[t +

1] = x[t] + x'[t] • dt can be > 0 if dt is sufficiently large. For similar

reasons, a non-zero quantity may reach 0 at the same time (iteration) that
another quantity becomes non-zero, thus violating Rule 2. We ignore these

potential violations in qualitative reasoning, however, since they depend on the

value of dr. CSM-based qualitative reasoning assumes that dt values can be
made arbitrarily small, in order to provide arbitrarily close approximations to

4O

thedifferentialequationmodel.Sincedt can always be chosen small enough so
that the above rule violations do not occur, we posit that rules 0 and 2 hold in

tile qualitative domain, for transitions out of B states. As it happens, Rule 0
does not hold at all for transitions out of A-states.

Similar reasoning justifies Rule 6. Suppose that at point B some quantity
_(j) _0-1)

i <> 0. Then a_i , computed by

:=x? + d,

can equal 0 only if xl 1-1) = -x_ j) * dr. Again this depends on a fortuitous

choice of dt, and clearly a dt can be chosen so that no variable transits to zero.

An intuitive grasp of of Rule 6 in the continuous simulation context can be

obtained by noting that any simulation model can be run backwards in time by

taking final values as initial values, and choosing a negative dr. Starting our

backward run with all quantities equal to zero (stationary) clearly cannot result

in any (simulated) motion as a result of the B computations.
Given the above considerations, we are now in a position to describe how

transitions out of B states are computed. We begin by recalling that the con-

figuration of a state is

!s = - - - .. - - -

The ql values of the derivatives are confined to [-], [0], [+]; the values of the

zi, however, are arbitrary ess: xi = {/1 , I,}, I t an interval.

Let S be an arbitrary B state. We begin the construction process by con-

structing a set of preliminary "scratch" configurations R = R(S), the reduction
of S. Given R, constructing the target A states is straightforward.

For each configuration in R:

• If any z_J)[t] = 1, where l is a landmark, and xli+_)[t] > 0, then transit

to an A state with zl j) bound to (!, m) where m is the smallest landmark

greater than 1, and all other bindings unchanged (Rule 2). (Note: m may

be oo.) Similarly, if z_¢+l_[t] < 0, then zl j) becomes bound to (k,l),

where k is the greatest landmark less than z.

If several variables qualify, transit to a state in which each is newly bound
as described above. These are the only transitions out of such a state.

• If there are no variables bound to landmark values, add arrows leading to

A-state successors by identifying quantities moving to their thresholds: if

[z_j)] is in the interval between two landmarks, and [z__+1)] <> 0, then

x_ j) is moving to a threshold, unless the end of the interval toward which

it is moving is Zoo. A binding change for [z_j)] to the landmark value

toward which it is moving is then possible. Add arrows for all possibilities
and all combinations of possibilities of such binding changes.

41

Hereisanexampleof thisconstruction.
Let

S = (x: (2,3] y: {-1, [0, oo)} Ix': + y':-)

and suppose integers are landmarks.
Then

R= {[(x: (2,31u: -1 I_': + u': -)], [(_ : (2,3] y: [0,_) I_': + u': -1)}

From temporary configuration [(x : (2,3] y : -1 } x' : + y' : -]) we see

that z is moving right and will ultimately reach 3; y is moving left. Transi-

tions from points happen at an instant (i.e. the time for x to reach 3 is finite,

while the time it takes y to move off -1 is infinitesimal), and we see that

Ix: (2,3] y: (-2,-1)[z': + y':-])]is one of the target A states.
Similar considerations show that the "scratch" configuration

CCx:(2,3]_: [o,_) I_': +¢: -])

will produce the target A states

Ix:3 _: [0,oo)Ix':+ V :-],
[z:(2,3]y:Olz':+y':-] and

[z:3 y:Olz' : + y' :-]

The last state corresponds to x and y reaching their landmarks simultaneously.

We now discard R, and are left with the transitions

(,_: (2,3] _: {-1, [0,o_)) I,¢: + y':-)
.---, Ix: (2,31y: (-2,-1)I x' : +V: -]
--.-, [= : 3y : [0,_) 1_' : +V : -],
---. [x: (2,3]y: 0 Ix': +y': -] a.d

[x : 3y : 0 Ix' : +y' : -]

It is clear that the tedious and painstaking nature of this process makes the
computer implementation indispensable.

4.4 Examples

4.4.1 An Abstract Buzzer

A program was written to generate envisionments automatically. Figure 4.1
shows the envisionrnent produced for the abstract buzzer: It should be pointed

out that the graphic state diagram was created by hand from the actual output
of the envisionment generator, which produces a list of states and transitions.

42

loop
(A)

S1'if

1 >= Imax --> I' := O;

1 <=Imin--> I':=0;
Imin < l &1<= a -- >1'

a<l&l <Imax -->

fi

(B)
$2: l:=l +l'*dt

until done;

:= I;

I' := -I;

l[Imax,inf]]?_

I

I<:IminI?l
2

2

l ol

[(lmin. a] l?]
3

4

3I I(., re.x)

x__I....>__._4:,a ,_i .'

Figure 4,1: Envisionment of Abstract Buzzer

43

4.5 An AEROBEE Rocket Control System

The Aerobee is a small research rocket used to carry scientific payloads into

space. It contains an attitude control system which can be used to orient in-

struments toward designated celestial objects. This control system utilizes two

reference and three orthogonal rate gyros to determine orientation and rates of

change of attitude. For simplicity, only a single-axis system will be simulated.

Space restrictions preclude a detailed description of tile attitude control system

components and circuitry; the reader is referred to [1] for further discussion. In

outline form, the system operates as follows. The free gyro produces an error

voltage EV = G2 • sin(RA - X), where G2 is the gyro sensitivity, RA the

reference angle (i.e. the intended angle of orientation), and X is the actual angle

of orientation of the rocket. This error voltage EV is added with a feedback

voltage FV = -G1 • X' from a rate gyro by a mixing network that contains

resistors R1, R2, and R3; G1 is the sensitivity of the rate gyro. The voltage V

output by the network is given byV = C1.EV + C2*FV, where

C1 = 1/(1 + (1 + R3/R2)* (R1/R3)),and

C2 = I/(I +(i + R3/RI)* (R2/R3))

The dynamics of the rocket can be taken as X I' = F,MA/I, where MA is the

moment arm, I isthe moment of inertia of the rocket about itslongitudinal axis,

and F is the force produced by the gas thrustors used to control the angular

orientation. These thrustors can produce only three discrete levels of forces: FA,

0, and -FA; there is a dead space of 2 * DS. The following LISP statements

represent a simulation of this nonlinear feedback control system. Note that the

program statements are in infix form; for reasons extraneous to this discussion

it was considered desirable to implement an infix-to-prefix parser to preprocess

such statements.

; value assignments to system parameters and constants

(setq CI (ra := 0)) ; reference angle

(setq C2

(setq C3

(setq C4

(setq CS

(setq C6

(setq C7

(setq C8

(setq C9

(setq CIO

(setq Cll

(setq C12

(setq C13

(i := 900)) ; moment of inertia

(ma := 12.S)) ; moment arm

(dr := .01)) ; time step size

(gl := 0.13)) ; rate gyro sensitivity

(g2 := 11.9)) ; free gyro sensitivity

(ds := 0.025)) ; dead space in thrustor

(rl := 33000)) ; resistance RI in mixing net

(r2 := 33000)) ; resistance R2 in mixing net

'(r3 := 25000)) ; resistance R3 in mixing net

'(pi := 3.14159))

'(x := 12.08)) ; orientation of rocket

'(xldot := -1.27)) ; ist derivative of x

44

(setq C14 '(rc := pi / 180)) ; radian conversion factor

(setq C15 '(dc := 180 / pi)) ; degree conversion factor

(setq M1 '(cl := 1/(l+(l+r3/r2)*(rl/r3))))

; mixing network

(setq M2 '(c2 = 1/(l+(l+r3/rl)*(r2/r3))))

; coefficients

; statements

(setq $1 '(ev := g2 * sin((ra - x) * rc)))

; error voltage

(setq $2 J(fv := NEG gl * xldot)) ; feedback voltage

(setq $3 '(v := cl * ev + c2 * fv)) ; network output voltage

(setq $4 '(IF

))

((v < NEG ds) ==> (h := v + ds))

((v <= ds) ==> (h := O))
((ds < v) ==> (h := v - ds))

; thrustor controller dead space

(setq $5 '(IF

))

((h < o) ==> (f := -4))
(Ca = o) ==> Cf := o))
((o < h) ==> (h := 4))
; thrustor force

(setq S6 '(x2dot := (f * ma / i) * dc))

; rocket dynamics

; part B of the simulation: updating of x and x'

(setq $7 '(x := x + xldot * dr))

(setq $8 '(xldot := xldot + x2dot * dr))

Tile above program statements constitute parts A and B of the simulation loop

for the Aerobec attitude controller.

Here is the envisionment produced for the aerobee rocket:

45

Figure 4.2: EnvisiOnment of Aerobee Rocket

46

Chapter 5

CSM-based Fault Diagnosis

5.1 Use of Envisionments for wp-based Diag-

nosis

A major advantage of having available an envisionment of the system being

simulated is that it is frequently possible to use wp transform techniques oil

envisionments, whereas the same approach would lead to a combinatorial ex-

plosion if applied to the raw output data.

The application of the wp transform to envisionments depends on the as-

sumption that the structure of the envisionment remains valid despite the oc-

currence of faults. This corresponds to the assumption, discussed previously,

that faults correspond to changes in model parameters but leave model structure

unchanged.

5.1.1 Examples of Use

Buzzer Diagnosis using wp

Our first example of wp-based diagnosis will consider a particularly simple sys-

tem: the abstract buzzer introduced previously. "VVe reproduce the CSM here:

loop

{A:}
Sl: if

1 >= Imax --> i' := O;

1 <= imin --> 1 * := O;

imin < 1 <= a --> I' := 1;

a < 1 < Imax --> I' := -1;

fi

47

{B:].

$2:1 := 1 + I' * dt

until done

As indicated, we will assume that the model structure remains valid in the

presence of faults, i.e. that there are numbers imin, lmax, and a, such that if
l is in the stated relationship to these points, then it will move with speed 0

or +l, depending. Faults are assumed to correspond to inadvertent changes to
lmin, lmaz, and a.

Let Imin and lmax have nominal values -2 and 2, respectively. Now suppose

that we observe the following phenomenon in the real system: 1 is stationary at

-3, but suddenly begins moving to the right at velocity 1. This corresponds to
a state transition

1: (l: (-oo, lmin] I I': 0) ----, 2: (! : ... I I': 1)

Both states 1 and 2 must be B states, since only B states correspond to states
of the real-world system. A search of the set of B states for the buzzer sys-

tem retrieves only two B states whose ql value for l' is [+]. These states are

2: (1: (lmin, a]ll': [+]) and 2': (l:a I I': [+])

We now ask: what is the weakest precondition that l' be [+] after transiting
from state 1 to an unknown intermediate A state, and thence to state 2? In

terms of the computations, this is equivalent to the query "what is the weakest

precondition that l' be [+] after executing statement $2, then SI?"
This formulation omits the critical fact that 1 was observed to be stationary

at -3 before starting to move right. We thus need to append "given that I = -3

and l' = 0 before executing $2; SI." Formally, we thus have

wp({Vl:} l:= -3; iV2:} 1' := 0; S2; Sl I r = 1)

The statements labeled V1 and V2 express the "initially stationary at -3"

condition. Executing these assigments before $2; S1 assures that the desircd
values are bound to I and I' before the transitions are taken.

Here are the wp calculations for this system:

wp(V1; V2;S2; S1 { l' = 1)

wp(Vl; V2;S21wp(Sl l l'= 1))

wp(Vl; V2; $2 I (l >_ lmaz _ wp(l' := 0 [l' = 1)) ^

(l < lmin _ wp(l' := 0 I I' = 1)) ^

(lmin < l < a =_ wp(l' := 1 It' = 1)) ^

(a < l < lmax ::_ wp(l' := -1 I I'= 1)))

48

yields

Simplifying

whichisequivalentto

wp(Vl;V2;S2 l (l >__lmax => 1 = O) A

(l < Imin _ 1 -- O) A

(lmin < l < a ::> l = l) A

(a < l < lmax =_ l =--1))

(l > lmax _ l = O) A

(1 < train =_ 1 = O) ^

(lmin < l < a => l = 1)^

(a < l < lmaz ::_ 1=-1)

(1 < Imam v false)A

(1 > lmin V false)^

(lmin < 1 < a V 1 = 1)A

(i ¢_ (a, lmaz) V false)

(l < lmax) A (I > lmin) A (tnot E (a, Imax))

i.e. l E (lmin,a]. The original expression

wp(V1;V2;S2;S1 I I'= 1)

thus reduces to

wp(V1; V2; S2 l l e (lmin, a])

Since $2 is 1 := 1 + Udt, this becomes

wp({VX :} /:= -3; {V2 :} l' := 0;1 l+l'dt • (lmin,a]) =

wp({V1 :}/:= -3;I I e (train, a])

= -3 • (lmin, a]

i.e°

(Imin < -3) ^ (-3 _< a)

The putative values of lmin and a are -2 and 0 respectively. -3
is true, so we have (lmin < -3) A true, or eqivalently, (lmin <
weakest precondition for the observed symptoms: lmin has shifted.

(5.1)
(5.2)
(5.3)

< 0 = a

--3) as the

49

5.2 Relay Servo Diagnosis using wp

Our second example shows a wp-based diagnosis performed on a more complex

system: the relay servo. The ql state diagram for the relay servo contains the

following transitions:

1

+---> h: (-+ I -)

t
I 2

a: [-+ I 03 --+---> i: (-+ I O)

[
i 3

+---> j: (-+ } +)

(The numbers on the arrows, like the labels on the states, are for reference

purposes only.) None of the states h, i, or j violates any constraints, and thus

these transitions must be included in the state diagram. But upon observing

the actual relay servo in action, we notice that it is always transition 3 that is in

fact taken; it then appears at least plausible that transitions 1 and 2 represent

abnormal conditions. Now suppose that one day we find the relay servo making

unusual noises, and find that the controlled variable X is oscillating strangely.

Upon making some numeric measurements to determine X and X' values 1 from

the actual servo (not the simulation model), we find that the actual system is

taking transition 1. What does this signify? As was the case for the abstract

buzzer, we apply the wp approach to find out. Suppose the values X - -0.2,

X I = 0.8 have been observed. (These values were taken from [1], Fig. 3.60,

p. 120.) We now pose the question "what has to hold in order for transition 1

to be taken, given that X -- -0.2, X' = 0.8?" Recall that the transition in

question corresponds to proceeding from point A to point B, and so the problem

is formulated as

wp(PROG]X"< O)

where PROG denotes the program segment

-- s_atement 1:

if X < 0 then G := I;

elsif X = 0 then G := O;

else G := -I;

end if ;

-- statement 2:

X '_ := -X_/B + G * A/B

1X" can, if necessaxy, be observed ms well.

5O

In other words, what is the most general statement that must hold before exe-

cuting PROG, if IX I_] = - is to be true afterwards? Proceeding as usual, we
find

wp(statement 2 I X" < O) -- -X'/B + G* A/B < 0

and so G • A/B < X_/B. Since by physical considerations B > 0, we simplify
this tog • A < X',andsinceX'=0.8, wehaveG • A < 0.8. Continuing:

wp(staternent 11G • A < 0.8) =
X < O ::C, wp(G := l IG*A<0.8);

X = 0 =_ wp(G := 0 I G* A < 0.8);

true =¢, wp(G := -1 I G * A < 0.8);

end if;

Since X = -0.2 < 0, we have wp(G:=llG * A < 0.8), which is
1 * A < 0.8. But this contradicts the supposed binding of A to 2, and

so we have a malfunction consisting of a shift in the value of A: the loop gain
has inadvertently decreased.

5.3 Future Research Directions

The techniques we have described were applied to a number of additional sys-

tems. In particular, experiments in envisionment-based diagnosis were carried

out on the automatically generated state diagram of an aircraft carrier arrest-

ing cable system described in [1]. This system was used to explore hypotheses

such as the possibility that the track of the actual system, i.e the sequence of
states it traced out in the envisionment, could yield valuable diagnostic clues.

Initial investigations proved promising, but the research project ended before

definitive conclusions could be reached. It was apparent, however, that addi-

tional research was needed on problems such as appropriate notations for the
characterization of tracks, as well as the integration of quantitative information
with the envisionment.

51

Bibliography

[1] Y. Chu, Digital Simulation of Continuous Systems, Mcgraw-Hill, New York,
1969.

[2] E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[3] D. Bobrow, ed., Qualitative Reasoning about Physical Systems, MIT, Press,

Cambridge, MA, 1985.

[4] R. Rosenberg & D. Karnopp, System Dynamics: a Unified Approach, Wiley
& Sons, New York, 1975.

[5] J. de Kleer & D. Bobrow, Qualitative Reasoning with Higher-Order Deriva-
tives, Proc. of the 1984 National Conference on Artificial Intelligence,

Austin, TX.

[6] R. Moore, Methods and Applications of lntervai Analysis, SIAM, Philade-
phia, 1979.

[7] C. Puccia & R. Levis, Qualitative Modeling of Complex Systems, Itarvard

University Press, Cambridge, MA, 1985.

[8] F. Roberts, Discrete Mathematical Models, Prentice-HMl, Englewood Cliffs,
NJ, 1976.

52

Appendix A

Envisionment Generator

; states.peril

{Used with states.part2 and a specialized X.part3 to construct

state space transitions for the simulation in X.part3,

according to the scheme outlined in the proposal.}

{TO RUN:

Compile states.part1, states.part2 and X.part3 and type

(main_loop).

Go for coffe AND dinner}

************************** DATA STRUCTURES *************************

;ENDPOINT -- a list containing the value of an endpoint and either

; _c J if the sndpoint is included in the range or 'o '

; if it is not.

; EX: (14 o)

;INTERVAL -- EITHER a single atom, indicating left and right

; endpoints are the same (i.e., a single known value)

; EX: 7

; EX: infinity

; OR a list consisting of a left and a right ENDPOINT

; EX: ((14 0)(25 c))
;VALUE -- list of INTERVALs

; EX: (7 ((14 0)(25 c)) ((-34 c)(O c)) infinity)

; The example contains 4 intervals.

; a_ Returnsvalue of left endpoint of an interval

; _ RANGE is an interval

(defunlefft (range)

(if (atom range) range (caar range))

)

; *_ Returns value of right endpoint of an interval

; _* RANGE is an interval

(defun rite (range)

(if (atom range) range (caadr range))

)

; ** Returns 'c' if RANGE is a single value, ot otherwise the

; ** 'o' or 'c' indication from the left endpoint.

; ** RANGE is an interval

(defun loc (range)

(if (atom range) 'c (cadar range))

)

; ** Returns 'c J if RANGE is a single value, o¢ otherwise the

; ** _o' or _c _ indication from the right endpoint.

; ** RANGE is an interval

(defun roc (range)

(if (atom range) _C (cadadr range))

)

; ** Returns t if the left side of the interval is open;

; ** Otherwise nil.

; ** RANGE is an interval.

(defun openleft (range)

(equal (loc range) So)

)

; ** Returns t if the left side of the interval is closed;

; ** Otherwise nil.

; _* RANGE is an interval.

(defun closedleft (range)

(equal (loc range) 'c)

)

; ,* Returns t if the right side of the interval is open;

; _ Otherwise nil.

; ** RANGE is an interval.

(defun openriEht (range)

(equal (roc range) _o)

)

; ** Returns t if the right side of the interval is closed;

; _* Otherwise nil.

; ** RANGE is an interval.

(defun closedright (range)

(equal (roc range) 'c)

)

; ** If left endpoint of RANGE is greater than right endpoint, then

; ** the left and right endpoints are swapped. Otherwise RANGE is

; _* returned unchanged.

; _* RANGE is an interval.

(defun order (range)

(cond

((atom range) range)

((or (equal (lefft range) minf) (equal (rite range) inf)) range)

((or (equal (lefft range) inf) (equal (rite range) minf))

(reverse range))

((<= (lefft range) (rite range)) range)

(t (reverse range))

)
)

; ** Returns t if any point in interval A is less than any point

; ** in interval B.

; ** A and B are intervals.

(defun one_less (a b)

(cond

((or (equal (lefft a) minf) (equal (rite b) inf)) t)

(Cot (equal (lefft a) inf) (equal (rite b) minf)) ())

(t (< (lefft a) (rite b)))

)

)

; ** Returns an interval that is the portion of interval A that is

; ** strictly less than some point in interval B.

; A and B are intervals.

(defun prune_less (a b)

(cond

((or (equal (rite b) inf)

(equal (rite a) minf)) a)

((or (equal (rite a) inf)

(equal (rite b) minf)
(>= (rite a) (rite b)))

(list (list (lefft a) (loca)) (list (rite b) 'o)))

(t a)
)

; _ Returns an interval that is the portion of interval A that is

; _ strictly greater than some point in interval B.

; A and B are intervals.

(defun prune_greater (a b)

(cond

((or (equal (lefft b) minf)

(equal (lefft a) inf)) a)

((or (equal (lefft a) minf)

(equal (lefft b) inf)

(<= (le_ft a) (lsfft b)))

(list (list (lefft b) 'o) (list (rite a) (roc a))))

(t a)

)

)

; _ Returns true if any interval in i contains a point which is

; _ less than a point in any interval in B.

; _ A and B are VALUES (lists of intervals)

(defun qual_less (a b _aux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

(if (one_less (nth k a) (nth i b))

(setq auxI C)

)
)

)
auxl

)

; ** Returns a value that contains intervals of A that are less than

; ** some poin_ in an interval of B.

; ** A and B are values.

(defun find_less (a b _aux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

(if (one_less (nth k a) (nth i b))

(setq auxl (cons (prune_less (nCh k a) (n_h

i b)) auxl))

)

aux 1

)

; *_ Returns a value that contains intervals of A that are greater

; ** than some point in an interval of B.

; ** A and B are values.

(defun find_greater (a b _aux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

i b)) auxl))

)

aux I

)

(if (one_greater (nth k a) (nth i b))

(setq auxl (cons (prune_greater (nth k a) (nth

)

)

; ** Returns t if interval A and interval B are disjoint.

; *_ A and B are intervals.

(defun one_he (a b)

(or

(one_less (rite a) (lefft b))

(one_less (rite b) (lefft a))

(and (equal (rite a) (lefft b))

(or (openright a) (openleft b)))

(and (equal (lefft a) (rite b))

(or (open/eft a) (openright b)))

)
)

; ** Returns t if any point in interval A is equal to any point

; ** in interval B.

; ** A and B are intervals.

(defun one_eq (a b)

(null (one_ne a b))

)

; ** Returns true if any interval in A contains a point _hich is

; ** equal to a point in any interval of B.

; *$ A and B are VALUES (lists of intervals).

(dsfun qual_eq (a b &aux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

(if (one_eq (nth k a) (nth i b))

(setq auxl t)
)

)
)

auxl

)

; ** Returns true if all intervals of A are disjoint from all

; ** intervals of B.

; ** A and B are VALUES (lists of intervals).

(defun qual_ne (a b)

(null (qual_sq a b))

)

; ** Returns true if any interval in A contains a point which is

; ** less than or equal to a point in any interval in B.

; ** A and B are VALUES (lists of intervals)

(defun qual_lesseq (a b)

(or (qual_less a b) (qual_eq a b))

)

; ** Returns t if any point in interval A is greater than any point

; ** in interval B.

; ** A and B are intervals.

(defun one_greater (a b)

(cond

((or (equal (lefft a) inf) (equal (rite b) minf)

(equal (rite a) inf) (equal (lefft b) minf)) t)

((or (equal (rite a) minf) (equal (lefft b) inf)) ())

(t (> (rite a) (lefft b)))

)

; ** Returns true if any interval in A contains a point which is

; ** Ereater than a point in any interval in B.

; ** A and B are VALUES (lists of intervals).

(defun qual_greatsr (a b kaux aux1)

(dotimes (k (lenEth a))

auxl

)

(dotimes (i (length b))

(if (one_greater (nth k a) (nth i b))

(setq auxl t)

)
)

)

; ** Returns true if any interval in A contains a point which is

; ** greater than or equal to a point in any interval in B.

; ** A and B are VALUES (lists of intervals)

(defun qual_greatereq (a b)

(or (qual_greater a b) (qual_eq a b))

)

; ** Conses A onto B only if B doesn't already contain A.

; ** B is a list -- A is anything you want it to be.

(defun mycons (a b)

(cond

((member a b) b)

(t (cons a b))
)

)

; ** Returns the greater of two endpoints.

; ** A and B are endpoints. They may not be constants.

(defun onemax (a b)

(cond

((or (equal (car b) minf) (equal (car a) inf)) a)

((or (equal (car a) minf) (equal (car b) inf)) b)

((> (car a) (car b)) a)
((> (car b) (car a)) b)

((equal (cadr a) 'o) b)

(t a)
)

)

; ** Returns the maximum valued endpoint from the list of endpoints

; ** A, or the endpoint E.

; ** A is a list of endpoints and B is an endpoint.

; ** The endpoints may not be constants.

(defun mymaxaux (a b)

(cond

((null a) b)

(t (mymaxaux (¢dr a) (onemax (car a) b)))

)
)

; ** Returns the maximum valued endpoint from the list of endpoints

; ** A. The endpoints may not be constants.

(defun mymax (a)

(mymaxaux a (list minf Jc))

)

; ** Returns the lesser of t_o endpoints.

; ** A and B are endpoints. They may not be constants.

(defun onemin (a b)

(cond

((or (equal (car b) minf) (equal (car a) inf)) b)

((or (equal (car a) minf) (equal (car b) inf)) a)
((> (car a) (car b)) b)

((> (car b) (car a)) a)

((equal (cadr a) 'o) b)

(t a)

)

)

; ** Returns the minimum valued endpoint from the list of endpoints

; ** A, or the endpoint B.

; ** A is a list of endpoints and B is an endpoint.

; ** The endpoints may not be constants.

(defun myminaux (a b)

(cond

((null a) b)

(t (myminaux (cdr a) (onemin (car a) b)))

)

)

; #* Returns the minimum valued endpoint from the list of endpoints

; ** A. The endpoints may not be constants.

(defun mymin (a)

(myminaux a (list inf Jc))

)

; ** Returns the value portion of an endpoint A, which may or may

; _* not be a constant.

(defun int_val (a)

(i_ (atom a) a (car a))
)

; _# Returns 'c if a is a constant, or the _o' or 'c' portion of

; _* the interval A otherwise.

(defun intoc (a)

(i_ (atom a) 'c (cadr a))
)

; ** Returns the sum of two values A and B, either numeric or

; ** symbolic (infinity or negative_infinity).

(defun plusval (a b)

(cond

((or (equal a inf) (equal b inf)) inf)

((or (equal a minf) (equal b minf)) minf)

(t (+ a b))

)
)

; ** Returns _o if either a or b is _o. Otherwise 'c.

(defun plusoc (a b)

(if (or (equal a _o) (equal b 'o)) Jo 'c)

)

; ** Returns the sum of two endpoints A and B, either numeric or

; ** symbolic (infinity or negative_infinity).

(defun plusint (a b)

(list (plusval (int_val a) (int_val b)) (plusoc (intoc a) (intoc

b)))

)

; ** Returns the left endpoint of the interval A.

(defun leftpt (a)

(i_ (atom a) a (car a))
)

; ** Returns the right endpoint of the interval A.

(defun rightpt (a)

(if (atom a) a (caar a))
)

; ** Returns an ordered interval representing the sum of the two

; _ intervals A and B.

(defun one_plus (a b)

(order (list (plusint (leftpt a) (leftpt b))

(plusint (rightpt a) (rightpt b))))

)

; ** Returns a VALUE that contains intervals that result from

; ** all pairwise sums of intervals, one from A and one from B.

; ** A and B are VALUES.

(defun qual_plus (a b _au_ auxl)

(dotimes (k (length a))

(dotimes (i (length b))

(setq auxl

(cons (one_plus (nth k a) (nth i b)) auxl))

)
)

auxl

)

; ** Returns the difference of two values A and B, either numeric

; _ or symbolic (infinity or negative_infinity).

(defun minusval (a b)

(cond

((or (equal a inf) (equal b minf)) inf)

((or (equal a minf) (equal b inf)) minf)

(t (- a b))
)

)

; _ Returns _o if either a or b is 'o. Dtherwise

(defun minusoc (a b)

(if (or (equal a 'o) (equal b 'o)) _o 'c)

)

_C.

; _ Returns the difference of two endpoints A and B, either numeric

; _* or symbolic (infinity or negative_infinity).

(defun minusint (a b)

(list (minusval (int_val a) (int_val b)) (minusoc (intoc a) (intoc

b)))

)

; ** Returns an ordered interval representing the difference of the

; ** two intervals A and B.

(defun one_minus (a b)

I0

Corder(list (minusint (leftpt a) (rightpt b))

(minusint (rightpt a) (leftpt b))))

)

; ** Returns a VALUE that contains intervals that result from

; ** all pairwise differences of intervals, one from A and one from

; ** B.

; ** A and B are VALUES.

(defun qual_minus (a b &aux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

(setq auxl

(cons Cone_minus (nth k a) (nth i b)) auxl))

)

)
auxl

)

; ** Returns a list consisting of the minimum and maximum

; ** endpoints from the list of endpoints X.

(defun getmaxandmin (x)

(list (mymin x) (mymax x))

)

; ** Returns the product of two values A and B,

; ** symbolic (infinity or negative_infinity).

(dsfun timesval (a b)

(cond

((or (equal a O) (equal b 0)) O)

((and (equal a inf) (equal b inf)) inf)

((and (equal a

((and (equal a

((equal a inf)

((and (equal a

((and (equal a

inf) (equal b minf)) minf)

inf) (< b 0)) minf)

inf)

minf) (equal b minf)) inf)

minf) (equal b inf)) minf)

((and (equal a minf) (< b 0)) inf)

((equal a minf) minf)

((and (equal b inf) (> a 0)) inf)

((equal b inf) minf)

((and (equal b minf) (< a 0)) inf)

((equal b minf) minf)

(t (* a b))

)

either numeric or

II

; _ Returns 'o if either a or b is Jo. Otherwise

(defun timesoc (a b)

(if (or (equal a 'o) (equal b _o)) 'o _c)

)

_C.

; _* Returns the product of two endpoints A and B, either numeric or

; _* symbolic (infinity or negative_infinity).

(defun timesint (a b)

(list (timesval (int_val a) (int_val b)) (timesoc (intoc a) (intoc

b)))

)

; ** Returns an ordered interval representing the product of the two

; _ intervals A and B.

(defun one_times (a b)

(getmaxandmin (list (timesint (leftpt a) (leftpt b))

(timesint (rightpt a) (rightpt b))

(timesint (leftpt a) (rightpt b))

(timesint (rightpt a) (leftpt b))

)

)

; ** Returns a VALUE that contains intervals that result from

; ** all pairwise products of intervals, one from A and one from B.

; ** A and B are VALUES.

(defun qual_times (a b Raux auxl)

(dotimes (k (length a))

(dotimee (i (length b))

(setq auxl

(cons (one_times (nth k a) (nth i b)) auxl))

)
)

auxl

)

; ** Returns the quotient of two values A and B, either numeric or

; ** symbolic (infinity or negative_infinity).

(defun divideval (a b)

(cond

((equal a O) O)

((and (equal a inf) (equal b inf)) inf)

12

((and (equal a inf) (equal b minf)) minf)

((and (equal a inf) (< b 0)) minf)

((equal a inf) inf)

((and (equal a minf) (equal b minf)) inf)

((and (equal a minf) (equal b inf)) minf)

((and (equal a minf) (< b 0)) inf)

((equal a minf) minf)

((equal b inf) O)

((equal b minf) O)

(t (/ a b))

)

; ** Returns 'o if either a or b is _o. Otherwise 'c.

(defun divideoc (a b)

(if (or (equal a 'o) (equal b 'o)) 'o 'c)

)

; ** Returns the quotient of two endpoints A and B, either numeric

; ** or symbolic (infinity or negative_infinity).

(defun divideint (a b)

(list (divideval (int_val a) (int_val b)) (divideoc (intoc a) (intoc

b)))

)

; ** Returns an ordered interval representing the quotient of the

; ** two intervals A and B.

(defun one_divide (a b)

(getmaxandmin (list (divideint (leftpt a) (leftpt b))

(divideint (righCpt a) (rightpt b))

(divideint (leftpt a) (rightpt b))

(divideint (rightpt a) (leftpt b))

)

)

; ** Returns a VALUE that contains intervals that result from

; ** all pairwise quotientss of intervals, one from A and one from

; ** B.

; ** A and B are VALUES.

(defun qual_divide (a b taux auxl)

(dotimes (k (length a))

(dotimes (i (length b))

13

auxl

)

(setq auxl

(cons (one_divide (nth k a) (nth i b)) auxl))

)

; ** Returns ths sins of the value A, either numeric or symbolic

; ** (infinity or negative_infinity). An interval is rsturnsd.

(defun one_sin (a &aux auxl)

(if (one_less a O) (setq auxl '(((-I c) (0 o)))))

(if (ons_sq a O) (sstq auxl (cons 0 auxl)))

(if (one_greater a O) (sstq auxl (cons '((0 o) (I c)) auxl)))

aux1

)

; ** Returns a list of intervals, one for the sins of each

; ** interval in the list of intervals A.

(defun qual_sin (a _aux auxl)

(dotimes (k (lsngth a))

(sstq aux1

(append (one_sin (nth k a)) auxl))

)
aux_

)

;sub performs a textual substitution of x for all occurrences of

;z in y (at any level of nesting).

(defun sub (x in y for z)

(cond

((null y) ())

((null (atom (car y)))

(cons (sub x in (car y) for z) (sub x in (cdr y) for z))

)

((sq (car y) z)
(cons x (sub x in (cdr y) for z))

)
(t (cons (car y) (sub x in (cdr y) for z)))

)

)

14

;* dead space function

(defun dsp (a b c kaux auxl)

(if (qual_less a b)

(setq auxl (qual_minus (find_less a b)

(find_greater b (find_less a b)))))

(if (and (qual_lesseq b a) (qual_lesseq a c))

(setq auxl (cons 0 auxl)))

(if (qual_greater a c)

(setq auxl (append (qual_minus

(find_greater a c)

(find_less c (find_greater a c))) auxl)))

auxl

)

;* function switch

(defun fsw (a b c d aaux auxl)

(if (qual_less a '(0)) (setq auxl b))

(if (qual_eq a '(0)) (setq auxl (append c auxl)))

(if (qual_greater a '(0)) (setq auxl (append d auxl)))

auxl

)

(defun msetq (a b)

(set a (list b))

)

; ** Indeed an unusual way to obtain a list of digits, but

; ** necessary because of the unusual "things" that result

; ** _hen an atom is exploded.

(setq digits (cdr (explode 'x0123456789)))

(setq in ())

(setq for ())

(setq inf 'infinity)

(setq minf 'negative_infinity)

A.1 Qualitative Simulation of the
Controller

Aerobee.part3

AEROBEE

15

;* establishes values of program constants

(defun set_constants ()

(msetq 'ra O)

(msetq 'inertia 900)

(msetq 'ma 12.5)

(msetq 'fa 4)

(msetq 'gl 0.13)

(msetq '52 11.9)

(msetq 'dead_space 0.025)

(msetq 'rl 33000)

(msetq 'r2 33000)

(msetq Jr3 28000)

(msetq 'pi 3.14159)

(setq rad_conversion (qual_divide pi '(180)))

(setq degree_conversion (qual_divide '(180) pi))

(setq cl (qual_divide '(I) (qual_plus '(1) (qual_times (qual_plus

'(I) (qual_divide r3 r2))(qual_divide rl r3)))))

(setq c2 (qual_divide '(I) (qual_plus '(I) (qual_times (qual_plus

'(1) (qual_divide r3 rl))(qual_divide r2 r3)))))

)

; ** Allocates arrays. Sets initial count values, endogenous

; ** variable list, landmarks, maximum number of states,

(defun main ()

(set_constants)

(define_symbolic_a)

(setq endogenous '((x 2 1)))

(setq landmarks '(0))

(setq max_states I00)

(setq acount 1)

(setq bcount O)

(setq old_acount O)

(serq old_bcount O)

(declare_transitions_array 'atransitions)

(declare_transitions_array 'btransitions)

(declare_states_array 'astates)

(declare_states_array 'bstates)

(declare_one_state_array 'new_z_states)

(declare_one_state_array 'new_b_states)

(declare_one_state_array 'new_non_z_states)

(declare_one_state_array 'state_candidate)

16

($etq (aref astates 0 0 O) *((0 o) (infinity c)))

(setq (aref astates 0 0 1) O)

(setq (aref astates 0 0 2) '((negative_infinity c) (infinity c)))

)

; ** A state computations.

(setq a_computations '((setq ev (qual_times g2 (qual_sin (qual_times

(qual_minus ra xO)

tad_conversion))))

(setq fv (qual_minus _(0) (qual_timss gl xl)))

(setq v (qual_plus (qual_times cl ev) (qual_times c2 fv)))

(setq h (dsp v (qual_minus '(0) dead_space) dead_space))

(setq force (fsw h (qual_minus '(0) fa) _(0) fa))

(setq x2 (qual_times (qua1_divide (qual_times force ma)

inertia) deEree_conversion))

))

; ** B state computations.

(setq b_computations '(

(setq xO (qual_plus x (qual_times dt xl)))

(setq xl (qual_plus xl (qual_times x2 dr)))

))

17

Appendix B

The WP Transform applied
to the Aerobee Controller

; Aerobee.wp.lisp

(The weakest precondition for an observed value is obtained from

the loop of the aerobee rocket simulation. (One constant representing

the mistrusted component is not specified.) Then simplification of

the resulting weakest precondition is obtained using a recursive

descent parser to perform the actual simplifications.

Then an actual numerical value or range of values for the

untrusted variable is searched for using a mathematical technique.

Beginning with a possible interval, endpoints are found by

successively halving the interval and noting the resultin E value

this produces in the weakest precondition, terminating when the

weakest precondition evaluates to true.

TO RUN:

Modify constant values and program specification to represent the

desired program, leaving out a constant value for the mistrusted

component. Specify the desired result predicate in the

"weakest_precondition" function. Modify the function "try" by

specifying the "unknown", "value" (as the midpoint of), "high" and

"low" endpoints.

Compile.

Type (ultimate).

If only the weakest precondition is desired,

type (weakest_precondition). If simplified ,eakest precondition

is desired, run (weakest_precondition) and (simplification).}

18

;seg segregates expressions. It extracts all numeric operands from

;an expression that has the same operator throughout its top level.

;The operation implied by the operator is applied to all the numeric

;operands in the expression. The result of this is combined with

;any non-numeric operands to be returned as the result of seg. If

;all top-level operators are not identical or there are no operators

;in the expression, it is returned unchanEed.

(defun seg (x kaux temps tempresult)

(cond

((null x) ())

((atom x) x)

((equal (length x) 1) (seg (car x)))

((same_op (cadr x) (cdddr x))

(setq temps *s*)

(setq *s* (combine (cadr x) (numbersonleft x)))

(setq tempresult (app *s*))

(setq *s* temps)

tempresult

)

(t x)

)
)

;app accepts an infix expression as its argument and evaluates it

;left to right (no precedence) until a non-numeric operand is

;encountered.

(defun app (x)

(cond

((null x) ())

((atom x) x)

((equal (length x) I) (car x))

((and (numberp (car x)) (numberp (caddr x)))

(app (cons (apply (cadr x)(list (car x) (caddr x))) (cdddr x)))
)
(t x)

)
)

;same_op returns t if all operands at the top level of the expression

;y are equal to x. y is an infix expression with the first element

;removed.

(defun same_op (x y)

19

(cond

((nuil y) t)

((equal (car y) x) (same_op x (cddr y)))

(t ())

)
)

;combine returns y with x between each of its elements. If only one

;element in y, it is returned unchanged. This is useful for creating

;infix expressions out of a list of operands.

(defun combine (x y)

(cond

((null y) ())

((equal (length y) I) y)

(t (cons (car Y) (cons x (combine x (cdr y)))))

)

)

;numbersonleft takes an infix expression as its argument and returns

;a list consisting only of the operands. Numeric operands precede

;non-numeric ones in the list.

(defun numbersonleft (x)

(cond

((null x) ())

((numberp (car x))

(cons (car x) (numbersonleft (cddr x))))

(t

(append (numbersonleft (cddr x)) (list (car x)))

)

;symb_times performs symbolic or actual multiplication on its

;arguments.

(defun symb_times (I r)

(cond

((or (safe_zerop I) (safe_zerop r)) O)

((or (eq I 'inf) (eq r 'inf)) _inf)

((eq i 1) r)

((eq r I) i)
((and (numberp 1) (numberp r)) (* 1 r))

((and (numberp r) (atom 1)) (list r '* 1))

((and (atom i) (atom r)) (list 1 _* r))

((and (listp 1)

(or (equal (length i) I) (same_op _* (cdr i))))

2O

(cond

((atom r) (seg (cone r (cons '* 1))))

((or (equal (length r) 1) (same_op '* (cdr r)))

(seg (append 1 (cons '* r)))
)

(t (list 1 '* r))))
((and (listp i)

(numberp (car I))

(equal (cadr i) '/)

(numberp r))

(cons (* r (car 1)) (cUr l))
)

((and (listp r)

(or (equal (lenEth r) 1) (same_op '_ (cdr r))))

(cond

((atom 1) (se E (cons 1 (cons '* r))))

((or (equal (length 1) 1) (same_op '* (cdr 1)))

(seg (append r (cons '* I)))

)
(t (list 1 ', r))))

((and (listp r) (equal (cadr r) '/) (numberp (caddr r)))

(cond

((atom I)

(list

(seg (cons 1 (list '_ (/ I (caddr r)))))

'* (car r)))

((or (equal (length I) 1) (same_op '* (cdr i)))

(list

(seg (append 1 (list '_ (/ I (caddr r)))))

'* (car r)))
(t (list 1 '* r))

)

)

(t (list 1 '* r))

;safe_zerop is the same as the built-in zero_p, but doesn't crash if

;its arEument is not a number.

(defun safe_zerop (x)

(and (numberp x) (zerop x))

)

;symb_add performs l+r, either symbolically or numerically, depending

21

;on the types of 1 and r.

(defun symb_add (I r)

(cond

((safe_zerop I) r)

((safe_zerop r) i)

((or (eq 1 'inf) (eq r 'inf)) inf)

((and (numberp i) (numberp r)) (+ 1 r))

((and (atom I) (atom r)) (list 1 '+ r))

((and (listp r) (listp i) (numberp (car I)) (numberp (car r))

(> (car I) (car r)))

(list r '+ i)

)

((and (listp i)

(or (equal (length i) I) (same_op '+ (cdr I))))

(cond

((atom r) (cons r (cons '+ 1)))

((and (listp r) (numberp (car i)) (numberp (car r))

(> (car l) (car r)))

(list r _+ i)

)

((or (equal (length r) 1) (same_op '+ (cdr r)))

(seg (append 1 (cons '+ r)))

)

(t (list 1 '+ r))))

((and (listp r)

(or (equal (length r) I) (same_op '+ (cdr r))))

(cond

((atom i) (seg (cons 1 (cons '+ r))))

((or (equal (length i) 1) (same_op '+ (cdr i)))

(seg (append r (cons '+ I)))

)

((and (listp I) (numberp (car I)) (numberp (car r))

(> (car I) (car r)))

(list r '+ i)

)

(t (list 1 '+ r))))

(t (list 1 '+ r))

)

)

;symb_div returns the actual or symbolic result of I/r.

(defun symb_div (I r)

(cond

((safe_zerop r) 'inf)

22

((eq 1 r) I)

((eq 1 'inf) 'inf)

((eq r 'inf) O)

((eq r I) I)

((and (numberp 1)

(t (list l '/ r))

(numberp r)) (/ 1 r))

;symb_minus returns l-r. This may or may not be an actual numeric

;subtraction, depending on whether 1 and r are both numeric or not.

(defun symb_minus (i r)

(cond

((eq r 1) O)

((and (numberp 1) (numberp r)) (- 1 r))

((safe_zerop r) i)

((safe_zerop i) (list 'NEG r))

((eq 1 'inf) 'inf)

((eq r 'inf) (simp (list 'NEG 'inf)))

(t (list 1 '- r))

)

)

;symb_neg performs actual or symbolic unary minus on its argument.

(defun symb_ne 8 (x)

(cond

((numberp x) (- 0 x))

((atom x) (list 'NEG x))

((eq (car x) 'NEG) (cdx x))

(t (list 'NEG x))

)

;symb_sin returns the sine of its argument if it is numeric.

;Otherwise, (sin x) is returned, where x is the argument.

(defun symb_sin (x)

(cond

((numberp x) (sin x))

((atom x) (list 'sin x))

((eq (car x) 'sin) (cdr x))

(Z (list 'sin x))

)

23

;symb_or performs actual or symbolic manipulations of "1 OR r".

(defun symb_or (I r)

(cond

((or (equal 1 'T) (equal r 'T)) 'T)

((equal 1 'F) r)

((equal r 'F) i)

((and (equal (length I) 3) (equal (length r) 3)

(equal (car I) (car r)) (equal (cddr I) (cddr r)))

(cond

((and (equal (cadr l) '>=) (equal (cadr r) '>)) l)

((or (and (equal (cadr i) '<) (equal (cadr r) '>))

(and (equal (cadr I) '>) (equal (cadr r) '<)))

(list (car I) '<> (caddr i)))

(t (list 1 'OR r))

)

)

(t

(list i 'OR r)

)
)

)

;symb_and performs actual or symbolic manipulations of "i AND r".

(defan symb_and (i r)

(cond

((and (equal 1 'T) (equal r 'T)) 'T)

((or (equal 1 'F) (equal r 'F)) 'F)

((equal 1 'T) r)

((equal r 'T) I)

((and (equal (length I) 3) (equal (length r) 3)

(equal (car I) (car r)))

(cond

((and (equal (cadr I) '>=)

(equal (cadr r) '<>)

(equal (cddr i) (cddr r)))

(list (car i) '> (caddr I)))

((and (or (equal (cadr I) '>) (equal (cadr i) '<))

(equal (cadr r) '<>) (equal (cddr i) (cddr r)))

l)

((and (or (equal (cadr r) '>) (equal (cadr r) '>))

(equal (cadr i) '<>) (equal (cddr I) (cddr r)))

r)

((and (equal (cadr I) '>=)

24

)
(t

(equal (cadr r) '>)

(numberp (caddr 1))

(numberp (caddr r))

(null (< (caddr r) (caddr 1))))

r)
(t (list 1 'AND r))

)

(list 1 'AND r)

)

;symb_It performs actual or symbolic simplification of 1 < r.

(defun symb_lt (i r)

(cond

((equal (symb_eq 1 r) 'T) 'F)

((and (numberp I) (numberp r))

(cond

((< 1 r) 'T)

(t 'F)

)
)

((and (numberp r) (listp I) (> (length I) 2) (equal (cadr i)

(cond

((numberp (car 1))

(list (cddr i) '< (- r (car I))))

((numberp (caddr i))

(list (car I) '< (- r (caddr i))))

(t (list 1 '< r))

)

,+))

((and (numberp r) (listp I) (> (length I) 2) (equal (cadr i) '-)

(numberp (caddr i)))

(list (car i) '< (+ r (caddr I))))

(t

(list I '< r)

)
)

;symb_eq performs actual or symbolic simplification of 1 = r.

(defun symb_eq (I r)

25

(cond

((equal 1 r) JT)

((and (numberp 1) (numberp r))
(c ond

((< (abs (- 1 r)) o.ool) 'T)
(t 'F)

)
)

((and (listp 1) (numbsrp (car 1)) (equal '+ (cadr 1))

(numberp r))

(list (cddr 1) '= (- r (car 1))))

((and (numberp r) (listp I) (> (length i) 2) (equal (cadr I) _-)

(numberp (caddr 1)))

(list (car 1) '= (+ r (caddr 1))))

(t (list I '= r))
)

)

;symb_le performs actual or symbolic simplification of 1 <= r.

(defun symb_le (I r)

(list 1 _<= r)

)

;symb_ne performs actual or symbolic simplification of 1 <> r.

(defun symb_ne (1 r)

(cond

((equal (symb_eq 1 r) 'T) _F)

((equal (symb_eq 1 r) 'F) 'T)

(t

(list 1 '<> r)

)

)
)

;symb_not simplifies "HOT i".

(defun symb_not (i)

(cond

((equal 1 'T) 'F)

((equal 1 JF) JT)

((equal (length i) 3)

(cond

((equal (cadr l) '=) (list (car l) '<> (caddr 1)))

((equal (cadr i) '<>) (list (car i) '= (caddr 1)))

((and (equal (cadr l) '<) (numberp (car 1)))

26

)
(t

(list (caddr I) '< (car I)))

((equal (cadr i) '<) (list (car I) '>= (caddr i)))

((equal (cadr i) '>) (list (car i) '<= (¢addr I)))

((equal (cadr I) '<=) (list (car i) '> (caddr I)))

((equal (cadr i) '>=) (list (car i) '< (caddr I)))

)

(list 'NOT I)

)

;listp returns t if its ar&_Ament is a list. () otherwise.

(defun listp (x)

(null (atom x))

)

**

;The following functions of the form p_x (where x varies) form a

;recursive descent parser for logical and arithmetic expressions.

(defun p_logterm (kaux logterm)

(setq logterm (p_logfactor))

(prog ()

loop

(cond

((null *s*) (return logterm))

((eq (car *s*) 'OR)

(setq *s* (cdr *s*))

(setq logterm (symb_or logterm (p_logfactor)))

)

(t (return log_erm))

(go loop)

)

(defun p_logfactor (_aux logfactor)

(setq logfactor (p_boolean))

(prog ()

loop

(cond

27

((null *s*) (return logfactor))

((eq (car *s*) 'AND)

(setq *s* (cdr *s*))

(setq logfactor (symb_and logfactor (p_boolean)))

)

(t (return logfactor))

)

(go loop)

(defun p_boolean (kaux boolean)

(setq boolean (p_expr))

(prog ()

loop

(cond

((null *s*) (return boolean))

((eq (car *s*) '<)

(setq *s* Ccdr *s*))

(setq boolean (symb_It boolean (p_expr)))

)
((eq

)

((eq

)
((eq

)

((eq

(car *s*) '>)

(setq *s* Ccdr *s*))

(setq boolean (symb_le (p_expr) boolean))

(car *s*) *<=)

(setq *s* (cdr *s*))

(setq boolean (symb_le boolean (p_expr)))

(car *s*) '>=)

(setq *s* (cdr *s*))

(eetq boolean (symb_l_ (p_expr) boolean))

(car *e*) '=)

(setq *s* (cch" *s*))

(setq boolean (symb_eq boolean (p_expr)))

)

((eq (car *s*) '<>)

(setq *s* (cdr *s*))

(setq boolean (symb_ne boolean (p_expr)))

)

(t (return boolean))

)

(go loop)

28

)

)

(defun p_expr (_aux expr)

(setq expr (p_term))

(prog ()

loop

(cond

((null *s*) (return expr))

((eq (car *s_) '+)

($etq *s* (cUr *s*))
(seZq expr (symb_add expr (p_term)))

)

((eq (car *s*) '-)

(setq *s* (cdr *s*))
(setq expr (symb_minus expr (p_term)))

)

(t (return expr))

)

(go loop)

)

(defun p_term (&aux term)

(setq term (p_factor))

(prog ()

loop

(cond

((null *s*) (return term))

((eq (car *s*) '*)
(setq *s* (cdr *s*))
(setq term (symb_times term (p_factor)))

)

((eq (car *s*) '/)

(se_q *s* (cUr *s*))

(setq term (symb_div term (p_factor)))
)

(_ (return term))

)

)
(go loop)

(defun p_factor ()

29

(cond

((eq (car *s*) 'neg)

(setq *s* (cdr *s*))

(symb_neg (p_primary))

)

((eq (car *s*) 'sin)

(setq *s* (car *s*))

(symb_sin (p_primary))

)
((eq (car *s*) 'NOT)

(setq *s* (cdr *s*))

(symb_not (p_primary))

)

(t (p_primary))

(defun p_primary (_aux primary)

(cond

((null *s*) ())

((listp (car *s*))

(setq *s_ (append (append (car _s_) (list '_right_)) (cdr

s)))

(setq primary (p_logterm))

(setq *s* (cdr *s*))

primary

)
)

)

)
(t

(setq primary (car *s*))

(setq *s* (cdr *s*))

primary

;some is the same function as described in the experlisp manual --

;except this one works(!!

(defun some (X y)

(cond

CCnull y) ())
((x (car y)) (car y))
(t (some x (car y)))

)

)

3O

(setq printdepth 100)

(setq in ())

(setq for ())

;The next few ftmctions are used for obtaining weakest

;preconditions. (unsimplified)

**

;sub performs a textual substitution of x for all occurrences of

;z in y (at any level of nesting).

(defun sub (x in y for z)

(cond

((null y) ())

((null (atom (car y)))

(cons (sub x in (car y) for z) (sub x in (cdr y) for z))

)

((eq (car y) z)

(cons x (sub x in (cdr y) for z))

)

(t (cons (car y) Csub x in (cdr y) for z)))

)
)

;wp_asn returns wp(s,r) where s is an assignment statement.

(defun wp_asn (s r)

(cond

((> (length (cddr s)) 1)

(sub (cddr s) in r for (car s))

)

(t (sub (caddr s) in r for Ccar s)))

)

;wp_seq returns wp(s,r) where s is a sequence of one or more

;statements.

(defun wp_seq (s r)

(cond

((cdr s) (_p (car s) (wp_seq (cdr s) r)))

(t (wp (car s) r))
)

)

31

;wp_if returns wp(s,r) where s is an IF statement consisting of one

;or more guarded commands.

(defun wp_if (s r)

(cond

((null s) ())

(t (if_comb (doll (car s) r) (wp_if (cdr s) r)))

)

)

;if_comb is used for combining parts of a wp for an IF. An AND is

;introduced between each clause. If there is only one clause, then

;there is no AND.

(defun if_comb (x y)

(cond

((null y) (list x))

(t (cons X (cons 'A_D y)))

)
)

;doll performs the actual wp calculation for one branch of an if

;statement. It also makes use of (p ==> q) == ('p v q).

(defun doif (s r)

(list (list 'NOT (car s)) 'OR (wp (caddr s) r))

)

;wp determines what type of statement s is and makes the necessary

;calls to return wp(s,r).

(defun wp (s r)

(cond

((null s) r)

((eq (car s) _IF) (wp_if (cdr s) r))

((atom (car s)) (wp_asn s r))

(t (wp_seq s r))

)

;plug v in as the value for the unknown and test it

;do the actual mathematical evaluation

(defun evaluate (i r unknown v oldhighv oldlowv _aux templ %emp2)

(setq tempi (plugandchug 1 unknown v))

32

(setq *s* r)

(setq temp2 (plugandchug r unknown v))

(print (list templ temp2 unknown v oldhighv oldlowv))

(again unknown v oldhighv oldlowv templ temp2)

)

;If the two sides of the equation aren+t equal (with a tolerance of

;0.00000001) then halve the interval and try again.

(defun again (unknown v oldhighv oldlowv ires rres)
(cond

((< (abs (- ires rres)) 0.00000001) v)

((< Ires rres)

(evaluate (car ans) (cddr ans) unknown

(/ (+ v oldhighv) 2) oldhighv v))
(t

(evaluate (car ans) (cddr ans) unknown

(/ (+ v oldZowv) 21 v oldlowv 1

)

)

(defun pluEandchug (1 unknown v)

(setq *s* (sub v in 1 for unknown))
(p_logterm)

)

(defun findendpoints (low high expr unknown)

(do ((value low (+ value (abs (/ (- high low) I0)))))

((> value high) t)

(add_crossing (plugandchug expr unknown value) value)

1

)

(defun add_crossing (x endptl

(cond

((or (and (< x O) (> lastval 01)

(and (> X O) (< lastval 0)))

(print (list _adding _crossing 'at lastpt endpt))

)

)

(setq 1astral x)

(setq lastpt endpt)

)

33

(defun sea_last_the_first_time (expr unknown val)

(setq lastpt val)

(setq lastval (plugandchug expr unknown val))

)

(defun find_zeros (expr unknown)

(cond

((null crossings) zeros)

((< (abs (- (caar crossings)

(/ (+ (caar crossings) (cadar crossings)) 2)))

o.ool)

(cons (car crossings) zeros)

(setq crossings (cdr crossings))

(find_zeros expr unknown)

)

(t

(set_last_the_first_time expr unknown (caar crossings))

(findendpoints (caar crossings) (cadar crossings) expr 'rl)

(setq crossings (cdr crossings))

(find_zeros expr unknown)

)
)

)

(defun find_values (low high expr unknown)

(setq zeros ())

(setq crossings (list (list low high)))

(find_zeros expr unknown)

)

;try is a shortcut call to extract a limiting value for rl

(defun try ()

; "unknown" "val" "high" "low"

(evaluate (car arts) (cddr ans) 'rl 500000 1000000 O)

)

;The following setq's define the simulation program to be used as

;data by this program.

(setq IF2

'(IF

34

((h < O) ==> (f := -4))
C(_ = O) ==> (_ := 0))
((0 < h) ==> (_ := 4))
)

(setq IF1

'(IF

((V < NEG ds) ==> (h := v + ds))

((V <= ds) ==> (h := 0))

((ds < v) ==> (h := v - ds))

)

)

;constants

(setq C1 '(ra := 0))

(setq C2 '(i := 900))

(setq C3 '(ma := 12.5))

(setq C4 '(fa := 4))

(setq C5 '(gl := 0.13))

(setq C6 '(g2 := 11.9))

(setq C7 '(ds := 0.025))

(setq C8 '(r2 := 33000))

(setq C9 '(r3 := 25000))

(setq C10 '(pi := 3.14159))

(setq Cll '(x := 12.0779))

(setq C12 '(xldot := -1.2732))

(setq C13 '(ro := pi / 180))

(setq C14 '(dc := 180 / pi))

;meta-constants

(setq M1 '(cl := 1 / (1 + (1 + r3 / r2) * (rl / r3))))

(setq M2 '(c2 := 1 / (1 + (I + r3 / rl) * (r2 / r3))))

;statements

(setq $1 '(ev := g2 * sin ((ra - x) * rc)))

(setq S2 '(fv := NEG gl * xldo_))

(setq S3 '(v := cl * ev + c2 * fv))

(setq S4 IFI)

(setq $5 IF2)

(setq S6 '(x2dot := (f * ma / i) * dc))

(setq pgm (list Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 Cll C12 C13 C14

M1 M2

35

$1 $2 $3S4$5 S6))

;obtain the weakest precondition

(defun weakest_precondition ()

(setq temporary (wp pgm '(x2dot = 3.1831)))

)

;simplify it

(defun simplification ()

(setq *s* temporary)

(p_logterm)

)

;find the value for rl

(defun ultimate ()

(weakest_precondition)

(setq ans (simplification))

(try)

)

36

