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§1 Introduction

In this paper, we introduce a simple yet effective method to improve the performance of

the ENO schemes for hyperbolic conservation laws.

Consider the following initial value problem:

(1.1)

where

Assume that the system (1.1) is strictly hyperbolic in the sense that the Jacobian

of
(1.2) A = 0"-'_

has only real eigenvalues with a complete set of eigenvectors.

It is well known that the solution of (1.1) may develop discontinuities in finite time even

though the initial value uo(x) is very smooth, say, a C ¢0 function. These discontinuities

include shocks, contact discontinuities and the wave fronts of rarefaction waves.

It is natural that efforts in numerically simulating the solution of (1.1) with these struc-

tures mainly focus on designing numerical schemes with the following properties:
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i) achievinghigh accuracyin smooth regionsof the solutions,

ii) producing sharp profiles for the shocks and the contact discontinuities,

iii) avoiding superfluous oscillations in front of or behind the shocks and the contact

discontinuities,

iv) getting correct positions and speed of the discontinuities, and

v) avoiding non-physical discontinuities (e.g., expansion shocks).

The Lax-Wendroff theorem (see [13]) says that, for a convergent conservative scheme

consistent with (1.1), the limit function of the numerical solution as the mesh size tends to

zero is a weak solution of (1.1). Thus, conservative schemes automatically guarantees iv).

Throughout this paper, we shall only consider schemes in conservation form_

To enforce v), one has to consider the so called entropy conditions which distinguish the

physical solution from others. However, we are not going to discuss this problem here.

Recently, Harten, Osher, Engquist and Chakravaxthy (see [2],[3] and [4]) introduced a

class of essentially non-osciUatory (ENO) schemes which axe of globally high order of accuracy

where the solution is smooth. Although a complete theoretical analysis of these schemes has

not been done, extensive numerical examples show that these schemes are nonlinearly stable.

Hence, these schemes excellently meet the requirements i) and iii). For ii), the ENO schemes

produce extremely sharp shock profiles. However, they smear the contact discontinuities at

a rate which appears to be of order O(n--'_r), where r is the order of accuracy, and n is the

number of the time steps. In order to overcome this dif_culty, Haxten introduced the concept

of subcell resolution. This led to excellent results in 1-<t computation. He is currently

considering 2-d extensions. Another method which can be used to sharpen the contact

discontinuity is Mao's method introduced in [11]. Merging his ideas with subcell resolution,

Mao's method, hopefully, could be used with any known scheme. Some remarkable results
J

have been obtained. However, much work needs to be done in order to make it practical in

the cases of systems and of multi-dimensions.

In this paper we will introduce a procedure which is different from Harten's and Mao's

and which greatly improves the performance of the ENO schemes at the contact disconti-

nuities. This is going to be achieved by combining the ENO schemes with a ACM(artificial



compressionmethod, seeHarten's pioneering work [1]) type technique. In this way, we

can effectively prevent the conta_:t discontinuities from being smeared and, in most cases,

limit the transition of a numerically computed contact discontinuity to about 2 ceils while

essentially keeping the order of accuracy in the smooth regions of the solutions.

This procedure was originally invented for the cell average framework of the ENO schemes.

Since then, Shu and Osher have transformed it to their pointwise ENO schemes. They have

obtained surprisingly good results in 2-d computations. See [7] for the details.

In the next section, we will give a brief review of the ENO schemes. §3 describes in detail

our ACM type technique - the slope modification method and proves some of its properties.

§4 applies the method to the system of Euler equations for gas dynamics. In §5, we will

present some numerical results showing the performance of our method as well as giving

some suggestions as to the choice of the parameters concerned.

§2 Review of the ENO schemes

We refer to [2], [31, [41, [51, [61 , [7] and [8] for details of the cell average ENO schemes

and their pointwise versions. Here we only give a very brief review of the schemes. This is

necessary for us to describe our slope modifying method.

Originally, the ENO schemes were introduced for cell average values of the solutions as

high order extensions of the Godunov scheme and the MUSCL scheme. Denote by v the

numerical solution approximating the sliding average fi of the exact solution u of (1.1), i.e.,

- t)

=

Let {[zj__,xj+_] x [t,, t,,+z]} where z_ = c_h, t,, = n_', j = 0,+1,+2,--., n = 0,1,2,---, be

a partition of l:t x R +. Denote u(zj, t,) by u_' and v(xj, t,) by v_'. Assume that E(t) is the

exact solution operator of (1.1). I.e., if u(x, t) is the solution of (1.1), then

u(z, t)- E(t)u(z,O).
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The theoretical ENO schemecan be written as

(2.1) v,]+ 1 1 [_,+_ E(r)R(z,v,_)dz
= _ j_,_b

which is said to be 'theoretical' since E(t) is exact. In (2.1), R(z, v '_) is a pointwise approxi-

mation of the solution u at time t" derived from the cell average approximate solution v". It

is a piecewise polynomial. In fact, it is a polynomial in each ceU (zj__, zj+b). The procedure

of computing R(z, v") from v" is called reconstruction.

Given the cell averages {vi}_=__¢ of a function u(z), in [31 two ways to compute R(z, v=),

reconstruction via primitive function (RP) and reconstruction via deconvolution (RD) were

described. We only review RP here since a knowledge of it is enough for us to introduce our

slope modification method.

Notice that, for any fixed integer io, {Pi}_i0 = {E_=i0 vjh }_0 is a sequence of pointwise

values of the primitive function p(z) = f_:o__ u(z)dz of u(z) at Zio__,Zio+b,Zio+_, ... A

1 ;17. tnatural way of getting a polynomial which approximates u in the cell (zj_r, j+_) is, there-

fore, to interpolate p(z) at r + 1 consequent points zi(j)__, zi(j)+_ , ..., zi(j)+_+_ , including

z j_ _ and xj+b. The derivatives of the interpolating polynomial then give the reconstruction

and its derivatives. One has r degrees of freedom of choosing i(j), i.e., the stencil. It is the

way of choosing the stencil that distinguishes the ENO schemes from others.

For simplicity, we only give the hierarchical algorithm for evaluating i(j). The goal is to

find the "smoothest" stencil which includes z__½ and z¢+b. The smoothness of the stencil

is somehow measured by the absolute value of the divided differences p[zj, xi+t,"-, x¢+k]

which are defined inductively by

(2.2) p[zj] = p(xj) j = -o¢,. . ., +_,

and

(2.3)

p[xj,xj+x,... ,xj+,,] = -

k =1,2,-..,r

We describe the algorithm evaluating i(j) in the flavor of Fortran language as follows:



1) i(j) = j.

2) For k = 1,2,...,r, if

then

Ip[xi(.i)____.,"" ",xi(.i)-a- _.+k]l <- Ip[xiO)__.,-.., x i0)- _-+k]l,

i(j) -- i(j) - 1.

Having computed i(j), one then gets a polynomial pi(x, v) by Newton's form of interpo-

lation. From this the reconstruction R(x, v) and its derivatives at x = xj are given by

d _ dt+X

_R(_,_)I___, = d-TZrP_(_,_)l_-_,, l=0,1,.-.,r- 1.

§3 The Slope Modification Method for Scalar Conservation Laws

Denote by gj__ the jump of R(x, v) at the cell interface xj__, i.e.,

(3.1) _j__ = R(___ + 0,_) - R(___ - 0,_).

We introduce the following slope modification algorithm:

Algorithm 3.1. The modified reconstruction R(x, v) in (xj__, xj+_) is a (r-1)-th order

polynomial which is defined by

d t . £

(3.2) "_TzzR(x, v) I_-=,=- "_'_ix_R(z, v) I=_i, 1 <_ r- 1 ,l ¢ 1,

(3.3) _--_k(x,v) [__=#= dR(x,v) ,_,, +OSi/h ,

where the slope modifier OSj is given by

(3.4) 085 = 2m(aim($i_½, gj+½), m(v_+, - R_+_,R+_ - vj_t)),

here {(_j} is a sequence of positive numbers, the function re(x, y) is defined by

(3.5) . m(_,y) = / 0, _y <_0,

t min(lxl, lyl)sgn (x), otherwise,



and R_+_ denotesR(xj+_ 5: O, v).

To see the effect of the algorithm, let us apply it to the UNO scheme introduced in

[1]. The UNO scheme is based on a non-oscillatory piecewise linear reconstruction. More

precisely, if v = {vj}_=_¢. are the cell averages of a function u, the UNO reconstruction

R(x, v) can be written as

(3.6) R(x,v) = vj + Sj
X -- Xj

h ' zj_].<x<zi+_:.

The reconstruction is non-oscillatory in the sense that the number of the extrema of R(., v)

is no more than that of v. We recall that R(., v) satisfies(see [2])

(3.7) ,hj__(vj- vj-x) > 0,

(3.8) 6j_} = 0, if pj -- 73j-- 1 "-" 0,

(3.9) Sjm(vj+l - vj, vj - vj-1) > 0.

Recall also that (see [1]), if the numerical scheme for scalar conservation law (1.1) is

(3.10) _7+' = v_ - A(/j+_- ]j__), .

a modified scheme adding artificial compression to (3.10) would be

_,;+'= ,,'_- ,_(1_+_- i___),(3.11)

where the flux modifier

(3.12)

obeys

(3.13)

-- A

gJ+_ = f j+_ - f j+

gj+_ Au'_ > O.

Consider the UNO scheme with numerical flux(see [2])

(3.14)fj+_ = {

where

(3.15)

f(v'_) + 0.5aj+_(1 - )_aj__.)S_/[1+ )_(a./+_.- aj__.)]

f(v'_+O- 0.5a,+_(1+ )_a,+_.)Sj'+a/[1+ ,_(aj+_.- aj+_.)]

aj+_ = (f(v'_+_) - f(v'_))/(v'_+ x - v'_).
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In the remaining part of this section, by ' the UNO scheme ', we always mean the scheme

with this flux.

Applying the slope modification method to the UNO scheme, one gets a scheme whose

numerical flux has the same expression as (3.14) except that Sj is replaced by Sj for all j.

From (3.4), (3.7), (3.8) and (3.13) one can see that under the CFL type conditions

(3.16) I,Xaj+_] < 1

and

(3.17) A(aj+b - aj_ ) >-1,

algorithm 3.1. applied to the UNO scheme has the effect of adding artificial compression to

the UNO scheme.

Remark 3.2. For general high order ENO schemes, (3.7), (3.8) and (3.9) are not

necessarily true. Nevertheless, the numerical experiments in [4] (see the figures of the recon-

structions at the end of [4]) show that they are essentially true. Furthermore, the numerical

results we are going to report in §5. show that the slope modifier with suitable chosen czj

works well for all the cases that we have tested, although a rigorous analysis is not available

now.

Next, we discuss the stability of our method. Since the modified reconstruction no longer

obeys (3.7), (3.8) and (3.9), the algorithm does introduce oscillations to the reconstruction.

However, due to the cell average process, it seldom introduces oscillations to the solution at

the next time level. In fact, we have

Theorem 3.3. /f,klaj+ _ - aj__l < 1 and Alai+_ [ < 1 hold for all j, then the modified

scheme obtained by applying algorithm 3.1. to the UNO scheme is non-oscillatory.

In order to prove the theorem, we first describe the procedure for deriving the modified

UNO scheme. This procedure is a direct copy of that for the UNO scheme. Having obtained

the reconstruction R(x, v r_) and the corresponding modified reconstruction R(z, v_), one

derive pointwise approximate solutions w(z) and _b(x) at time t,,+l as follows: both w(x)

and tb(x) are piecewise linear with possible discontinuities at

(3.18) Xj+_ = zj+_ + aj+_r
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such that

(3.19)

and

(3.20)

w(xj+{ +o)= +o,v"),

+o)= k(=s+ + O,v").

We shall call these points of possible discontinuities d-points. The modified UNO scheme is

then completed by defining

1
(3.21) v_+l = _d='-b

For convenience, let us make some definitions and notations.

Definition 3.4. A sequence of points xi, =i+1,.. • ,xj is called a strict maximum section

of a cell average function v = {vj}j_-oo and is denoted by S(v; i,j) if

(3.22) Ui-I < ?Ji _-_ Ui+l _- "'" ---_ Uj _> Uj+ 1

Denote by S(v) the set of all such S(v; i, j)'s.

Definition 3.5. An interval [a, b], a < b is called a strict maximum section

piecewise linear function u and is denoted by _(u; a, b) if there exists a 6 > 0 such that

of a

u(x) < c = limsupu(_)
{_---*a

holds fora-6<x<aorb<x<b+6, and such that u(x) =cifa <x< b. Denote by

_(u) the set of all such _(u;a,b)'s.

Similarly, one can define strict minimum sections S(v; i,j) and s_(u; a, b) along with cor-

responding sets S(v) and _.(u).

Remark 3.6. In the Definition 3.5., if u is the UNO reconstruction of a cell average

function v, and if a = b, then one can make u(x) continuous at z = a by defining u(a) = c.

The same observation holds for the strict minimum sections.

Remark 3.7. If _(w; a, b) is a strict maximum section of w, then _(@; a, b) is also a strict

maximum section of tb. Furthermore,

lira sup zb(_) --- limsup w(_).

The same observation holds for the strict minimum sections.



We denoteby 2_r(u) the number of the strict maximum sections of a function u, by N(u)

the number of its strict minimum sections and by N,(u) the number of all its strict extremum

sections. Finally, we denote by u[a, b] the average of a pointwise function u over (a, b).

We have trivially,

(3.23) N,(w) < N,(R(., v")).

We will prove the theorem by showing that

(3.24) N,(v "+I) <_ N,(w).

This inequalityisimplied by the followingtwo inequalities

(3.25) N(v "+') <_N(w)

and

(3.26) N(v "+') <_ N(w).

Since the proofs of the two inequalities are same, it suffices to prove (3.25) which is equivalent

to the following

Claim. There is a I-:1 mapping

(3.27) P:S(v "+I) --__(w).

We need the following

Lemma 3.8. Under the conditions of the theorem 3.3, If w increases(decreases) in

(xj__, xj+_), then

(3.28) ,_,+:> (<)_,+1.

Proof. Assume that w(x) monotonically increases. By (3.21),

(3.29) v,_+l _ u_+l 1 fh/2_+_ = -£j_h/ (_o(_j+,+ _)- _(xj + _))d_.

It suffices to show that

(3.30) _v(zj+,+_)>__b(xj+_), for -h/2<_<h/2.
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Notice that both xj + _ and xj_i ÷ _ are in (xd__, xj+]). If (xj + _, Zj+l + _) contains no

d-point, inequality (3.30) is trivially true. If (xj + _, Zj+l + _) contains more than one d-

point, say, Xk+_, Xk+},..., Xk+,n+_, then by algorithm 3.1. and the monotonicity of w(x),

tb(z: + _) < v _ < tb(xj+l + _). Finally, suppose that (xj + _, Xj+l + _) contains only one-- k+l --

d-point, say, X_+_. Under the conditions of theorem 3.3., the inequality

0 < Xj+_ - Xj__ < 2h

holds for all j. Therefore, if we extend _(z) in (Xk__, Xk+_) linearly to -c_, extend _(z)

in (Xk+_r, Xk+_) linearly to +_, and denote the extension by l_(x), then,

(3.31)

and

(3.32)

9¢(x,+_ +0) > 9¢(xk+_ - h),

W(X_+k + h) > W(Xk+_ -0).

The linearity of t_r(x) in each half-line derided by Xk+ k implies that for the above _, there

is a 0, satisfying 0 < 0 < 1, such that

(3.33) @(zj + _) = OI?V(Xk+_ - h) + (1 -O)I?V(Xk+ _ -0),

and

(3.34) tb(zj+l + _) = OIdV(Xk+_ + 0) + (1 -O)ldV(Xk+_i + h).

Clearly, (3.31)-(3.34) imply (3.30). The lemma is then proven.

Proof of theorem 3.3. We define a mapping P from S(v "+1) into _(w) as follows.

Given S(v"+l; i,j) 6 S(v"+l), one of the following five cases must occur. In each case, we

will determine the image P(S(v"+I; i, j)) E _(w), and prove that the mapping is well-defined.

Case 1. There is at least one strict maximum section $(w; a, b) E $(w) such that

[_,b]n [_-_, zs+_]# ¢.

and

lim sup w(x) >_ v'_+x.
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In this case,we pick up this strict maximum section to be P(S(v"+I; i, j)). Obviously,

(3.35) x___ < a _ b < zj+_

holds.

Case 2. The following two conditions hold:

1). There is no strict maximum section _(w; a, b) E _(w) which satisfies the conditions of

the case 1).

2). w(x) -- v'_+1, for zi_ _ <: z _< zi+_..

Let (c, d) be the largest interval containing (zi__, zj+_) such that w(x) is constant in it.

Since (c, d) is not a strict maximum section of w(x), w(z) must either strictly increase in

some right neighborhood of zi+ _. or strictly decrease in some left neighborhood of zi_ _. If

the former is the case, according to the definition of S(v"+I; i,j), there must be a left most

_(w; a, b) such that

d < a < b < xj+_.

We then define P(S(v'_+_; i,j)) to be this ](w; a, b). Otherwise we can pick up the right most

one as P(,_(v_'+t; i, j)). In either case, (3.35) holds.

Case 3. w(x) increases but is not constant in (zi__,xj+_). We take P(S(vn+t;i,j)) to

be the left most _(w; a, b) E ,_(w) such that a >_ xj+_. The well-definedness is justified by

above lemma, and (3.35) holds.

Case 4. w(x) decreases but is not constant in (zi__,zj+_). We take P(S(vn+l;i,j)) to

be the right most ](w; a, b) E _(w) such that b < zi_ _. The well-definedness is justified by

the same [emma, and (3.35) holds.

Case 5. The following two conditions hold:

1). There is no strict maximum section ._(w; a, b) E 3(w) which satisfies the conditions of

the case 1.

2). w(s) is not monotone in (xi__,xj+_).

In this case, there must be a _ in (xi__, xj+_) which satisfies the following requirements:

a). tb _= w in a neighborhood of _. b). _b(_) = w(_) < v_'+_ and c). Either

(3.36) _b[x,_½,_] < v_ '+1
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or

(3.37) _b[zi__,_] > v_ '+x

is true. If (3.36) is the case, we define P(S(v"+X;i,j)) to be the left most _(w; a,b) E $(w)

such that a _> z_+_. Otherwise, we define P(S(v"+t; i, j)) to be the right most _(w; a, b) E

_(w) such that b < zi_ _. To see that such _(w; a,b) exists, let us assume that (3.36) holds,

then we have

(3.38) tb[_,z_+b] > vj '+1.

Suppose that k is the integer satisfying

If S_' < 0, then

Xk+b > z_+_ > X___.

M = sup w(z) - sup tb(z) > v_ +'.
_(_,=_+ _) _(_,=j+_)

Assume that w(z) has been made continuous at those d-points mentioned in the remark

3.6.. Then, M will be attained by w(x) in (_, zj+_). There is thus a strict maximum section

$(w; a, b) such that _ < a < b < zj+_ and

lira sup w(_) > ,_'+'.

This contradicts the condition 1). Therefore one must have S_' _> 0.

Using a similar argument one can show that v_' _> vj '+1. Hence, if w(x) monotonically

increases in (xj+_, zj+_), then

(3.39) ?3n+l n+lj+_ >v_'>vj ,

which contradicts the definition of S(v"+_; i, j). This impfies that there must be a _(w; a, b)

such that

xj+{ > b > a > x.i +_.

Similarly, if (3.37) holds, then, there must be a $(w; a, b) such that

xi-_<a_b<zi__.
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Finally, we have to show that P is 1-1. Let $(v"+l;il,jl), and ,._(vn+l;i2,j2) be two

adjacent strict maximum sections of v "+1, and

P(S(v"+I; ik,jk)) = ._(w; ak, bk), k = 1,2

From the argument above, we see that if

p(.._(v_+l; i, j)) = ._(w; a, b),

then

(3.40) zj_} < a < b < xj+}.

Therefore, if al = a2 and bl -- b_, the only possibility would be

i2 = jl + 2

and

Now, one can see easily that either

,?,++,,> ,?÷1,

which contradicts the definition of S(v "+ 1; il, jl), or

V n+l _ V._? 1i_--1 --

which contradicts the definition of _'(v"+l; i2,j2). The claim and, therefore, the theorem is

proven.

Next, we consider the order of accuracy of our method. For linear equation

ut _ u_ -- O,

we have

Theorem 3.9. Suppose the eq's in algorithm 3.I. are uniformly bounded, then at the

worst, this method lowers the accuracy of the original scheme by one order. If, in addition,

o_i+i - aj = O(h),
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then the method applied to the ENO schemes keepsthe order of the accuracy. For the choices

of the parameters we are going to suggest, this last condition is valid if there are no zeros of

the first r - 1 derivatives of the true solution u near zj

Proof. It suffices to recall

struction satisfies

(3.41)

and

(3.42)

if

that, at the cell interface zj+]r , the jump 6j+_ of the recon-

"Sj+_ = cj+_h r + O(h _+1)

Acj+b = O(h)

(d)tu(z) # 0, l = 1,2,...,r- 1.

We believe that the conclusion of above theorem is also true for the fully nonlinear

problems, but do not have a proof yet.

Next, we discuss the choice of the %'s. Hereafter we shall call them the SM(slope

modification) coefficients. Unfortunately, we have not been able to give a universal method

for determining the aj's. The recommendations we are going to give come from our numerical

experiments. We found that, for linear problems, the smearing effect is essentially eliminated

when the %'s are greater or equal to 1.9 - 2.3. One usually gets satisfactory results by letting

aj be equal to or slightly larger than the smallest number capable of eliminating the smearing

effect.

For the problems with rich smooth structures, the uniform choice of % as suggested

above could run into trouble. Although the essentially non-oscillatory property is generally

kept, some artificial contact discontinuities may damage the smooth structure.

One way of avoiding this is to use a discontinuity detector. A well known one is

(3.43)

Then aj can be written as

(3.44)

J

[ A 2u_-i

k

aj = c_j

In most computations we have performed, c = 33.
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Remark 3.10. Usually,(3.43) and (3.44) give satisfactory results. However, for the local

CFL number far away from 4-0.5, the compression effect is not balanced between the head

and the tail of a discontinuity. Further improvement can be made by multiplying the coeffi-

cients (3.44) with a balance factor. For details of the balance factor, see §5.

§4 Application to the ENO schemes for the Euler equations of gas dynamics

In this section, we apply the slope modifying method to the ENO schemes for the Euler

equations of gas dynamics for a polytropic gas. The application to the general systems of

hyperbolic conservation laws follows immediately.

For a polytropic gas, the governing equations are, as in [4],

(4.1) u, + f(u)= = 0

(4.2) u=(p,m,Z) r

(4.3) f(u) = qu + (O,P, qP) T

1 2
(4.4) P = (7 - 1)(Z- _pq )

Here p, q, P, and E are the density, velocity, pr.essure and total energy, respectively; m = pq

is the momentum and 7 is the ratio of specific heats.

The eigenvalues of the Jacobian matrix _u are

(4.5) al(u) = q- c, a2(u) = q, a3(u) = q + c

where c = (TP/p)_ is the sound speed.

The corresponding right-eigenvectors are

(4.6)

here

(4.7)

(1/(1= q = q

H qc ½q2

is the enthalpy.

(1/, r3(u) = q + c ;

H+qc

H = (E + P)/p = c2/(7 - 1) + lq 2
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The correspondingleft-eigenvectorsbi-orthonormal to (4.6) are

(4.8)

lb

ll(u) = _( 2 +q/c,-btq- 1/c,b_)

12(u) = (1 - b2, blq,-_)

la(u) = ½(b2-q/c,-blq + 1/c, bl)

where

(4.9) bl = (7- 1)/c2

b2 = 2q2b_(4.10)

To avoid too many collisions of the discontinuities which damage the advantage of the

ENO reconstructions, ENO uses the characteristic reconstruction. Numerical experiments

demonstrate that our slope modifier should also be applied in characteristic variables to get

rid of some, although minor, spurious oscillations. In addition, since our goal is to sharpen

the contact discontinuities which are the 2-waves, we only have to use it in the second field.

We now introduce two algorithms to modify the r-th order characteristic reconstruction.

Algorithm 4.1. For each j,

1). Compute the locally defined characteristic variables

(v_(v'_) = lk(vT)vp for i = j-- r,...,j + r /fk=l,3,
(4.11)

fori=j-r-1,...,j+r+l /fk = 2.

2). Apply the scalar reconstruction algorithm to each of the locally defined characteristic

variable in (4.11). The result is

bj_,, = J-_R(x;_v_(v2))l___,,, l=O, 1,...,r-1;k=l,3,(4.12)

and

(4.13) -_Tx_R(x; _2(v_. __l:jj,____j+,,, l=O, 1,...,r-1;m=-l,0,1.

When m = O, l # 1, we denote (4.13) by b_,I.

3). Apply our method, i.e., add the slope modifier to (13) to get b_,1.

4). Transform back to physical variables:

r-1

R(x;v") = _ bjj(x - xj)t/l!
I=0

xj__ < z < z._+_.
(4.14)
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where
3

(4.151 _,, E-- bj, lrk.

k_.l

Algorithm 4.2. 1). For each j, do the ENO characteristic reconstruction as usual to

wj_l(v j ), and• _(_'s), wj+_(,,_),getR(x,_,") forxj__ <_<_i+ _ Storel_(,t]), r_(,,']), -2 ,, -2 ,, -_ ,,

b_j .

2). For each j, compute R_+_ = R(xj+_ -4- O, v"), 5j+_ = R +j+_ - R_+_.

3). For each j,

and

i). compute

R+(w) = 12(vj)Ri+_,

R-(w) -" 12(vj)R+ _,

_+(w) = t2(vs)_s+_,

ii) _i,_g _-1(_,'1), w;(,,j-_"),

the slope modifier Obj21,

2 n
iii). compute bj,x = bj,1 + Obj,lr2(vj ).

5-(w) = /2(v/)Sj__;

_+,(,7), R+(w), R-(w), 6+(_), and 6-(w) to get

§5 Numerical results

Since our purpose in designing the slope modification method is to improve the per-

formance of the ENO schemes for the solutions which contain contact discontinuities, the

numerical experiments we will present in this section are either on linear equations with dis-

continuous initial values or on the Euler equations for gas dynamics whose solutions contain

contact discontinuities. All the examples are standard problems widely used in the literature

to test various schemes for the hyperbolic conservation laws.

With these examples, in addition to showing the performance of our methodl we also try

to give some suggestions on how to choose the parameters in our algorithms since we have

not been able to establish any theoreticMly meaningful rule to determine these parameters.
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Example 5.1. We apply our method to 1D linear model problem

(5.1) ut+u_=O, l<x<l

(5.2) = u0(x)

with periodic boundary condition.

We test our method for this problem with each of the following four initial conditions.

Divide the interval [-1, 1] into 100 cells of equal size. The center of the j-th cell is xj =

(j - 50.5)h, where h = 1/50. The four initial conditions are

1, 35_<j<65,(5.3) v° = 0, otherwise,

0 { (1 - [(j - 50)/1512) 1/2, 35 _< j _< 65,(5.4) vj = O, otherwise,

V0 -- e-300(_j-0.5)2(5.5)

and

• 3 2

--yj sm(_-rryj), --1 < _L3'

(5.6) v°j+25 (_oal00)= [sin(2rryj)[, lYjl < 3,

2yj- 1 -sin(3 yA/6, < < 1.

In the last condition, yj = xj - 0.01. Essentially, the first 3 conditions are those used by

Zalesak [15] (see also the references therein) and the last one is that used by Harten et al

[4land [9]

The numerical solutions for the initial condition (5.3) are displayed in the Figures 1 -

19. In the computations for the Figures 1-5, the 2nd order ENO scheme is used. The CFL

number is fixed at 0.8 and the SM coefficients aj's in (3.4) are chosen to be independent

of j and n. We increase cU - a from 0 to 10 and, for each choice of a, run the program

twice for 250 timesteps and 1250 timesteps respectively. The figures show clearly that, for

small a, the discontinuities are smeared more and more as the the number of the time steps
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increases. However when the coefficient reach about 1.9-2.3, the smearing appears to be

essentially eliminated. This is indicated by the coincidence of the graphs of the numerical

solutions obtained by running the program over the two different numbers of time steps. For

a given ENO scheme and a fixed CFL number, we call the smallest a which is capable of

eliminating the smearing effect the critical value of the SM coefficient with respect to the

scheme and the CFL number.

Remark 5.1. A quantity equal to or slightly larger than the superemum of the critical

value over the range [0,1] of the CFL number is a good candidate for the choice of the

MS coefficient. For the solutions which lack smooth structure we can choose a larger SM

coefficient. Otherwise, we should choose one near or equal to the superemum of the critical

value.

Remark 5.2. For the solution dependent SM coefficient (3.44), one can similarly "define"

the critical value for the parameter c. The recommondations in the last remark also applies

here.

The Figures 6-13 show the effect of CFL numbers on the critical values. We do the same

computations as for the Figure 1-5 with different CFL numbers. The SM coefficients are

- 1.9 "and a - 2.3. We found that the effect is minor.

Notice that although the CFL numbers have little effect on the critical value of the SM

coefficients, it does play a role in the profiles of the solutions over the linear discontinuities.

The sharpening effect is not well balanced, i.e., the steepness at the heads of the disconti-

nuities is different from that at the tails when the CFL numbers are far away from 4-0.5.

Looking at the Figure 1 carefully, one sees that this property of nonsyfnmetry already exists

with the original ENO schemes.

For solutions with rich smooth structures and/or for multi-dimensional problems, when

our slope modification method is applied and the resulted programs are run for huge number

of timesteps, this phenomenon becomes more serious. To overcome this trouble, observe that

at the head of a discontinuity, I_--/:-L_ I is very large, while at the tail, it is very small. We
I Air

hence define the following balance operator

Aj_iv bg,j-o.ssgn(x_))
(5.7) b)= I-Z 
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where b is a positive parameter to be chosen, ,_ - r-- aj_ is the local CFL number, and a s is

the characteristic speed. We will see the effect of this operator in the examples displayed in

the Figures 26 - 29.

The Figures 12-19 show the effect of the order of accuracy on the the critical values of

the SM coefficients. In these figures, r-0 denotes the " r-th order " ENO schemes, while

r-1 denotes the r-th order ENO schemes, both in the sense of [4] . We find that the effect

is also minor. This is interesting since the jumps of a higher order reconstruction at the cell

interfaces over the transitions of the discontinuities are much smaller than those of a lower

order reconstruction (see, again, the figures at the end of [4]).

The fact that the critical value of the SM coefficients is relatively independent of rather

than inversely proportional to the jumps for different orders of the schemes is consistent to

the fact that the higher order ENO schemes smear the contact discontinuities less then the

lower order ones do.

The results for the initial condition (5.4) are displayed in the Figures 20 - 29. In the

Figures 20 - 25, we use the SM coefficient 1.9. The improvement is apparent. The Figures

26 - 29 test the effect of the balance operator (5.7). This time we run our program of the

2nd order ENO for 6000 timesteps. For the Figures 26 and 27, we l:.se the constant SM

coefficients 1.9 while for the Figures 28 and 29, we use (3.44) with c = 33. The results

obtained by using the SM coefficients multiplied by the balance operator with b = 4.3 are

displayed in the Figures 26 and 28. The Figures 27 and 29 show the corresponding results

without applying the operator.

The Figui-es 30-31 displays the numerical results for initial condition (5.5); the Figures

32-33 are the results for initial condition (5.6). Again one can see apparent improvements

of our method in the treatment of the cusps, jumps or both.

Example 5.2 We apply our method to the Riemann problems for the Euler quations of

gas dynamics (4.1) with following two sets of initial conditions known as the Sod problem

and the Lax problem respectively:

(5.s)
qL,PL) = (1,0, 1);

(PR,qR,PR) = (0.125,0,0.10)
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and

(5.9) (pc, qL, Pc) = (0.445, 0.698, 3.528 );

(pR,qR,PR) = (0.5,0,0.571)

Both problems are solved by the "4-th order" ENO schemes with and without the slope

modification. In all the computations, we use 100 equally sized space cells and the CFL

number 0.8. The Figures 34 and 35 are the numerical results for Sod problem after 60 time

steps; the Figures 36 and 37 are those for Lax problem after 85 timesteps. Here we apply

the alghorithm 4.1 with the SM coefficients (3.44) such that c = 33. Notice that with the

slope modification method the computed contact discontinuities are of the same quality as

the discontinuities captured by the same method in the linear model problems above.

Example 5.3 (The blast waves problem). Here we consider the equations (4.1) with the

following initial condition

(5.10)

where

(5.11)

UL _

u(x, O) --'_ UM,

UR_

O_<z<0.1

0.I _<x < 0.9

0.9_x<l

PL = PM = Pa = I, qL = qM = qa = O,

Pc = 103,PM -" 10-2,Pa = 102,

and the two boundaries are assumed to be solid walls. See [14] for the details of the solution

and the comparison of the performance of various schemes for this problem. Notice that

the contact discontinuity results from the collision of the two strong shocks. It is extremely

difficult to be "captured" by a shock capturing scheme in the Eulerian framework. In fact, no

scheme tested in [14] captured the contact discontinuity well. To the auther's knowledge, in

the literature of the modern shock capturing technique, the only successful computations of

this discontinuity so far have been performed by Harten's subcell resolution(see [9] and [7]).

In the computations for this problem, we use 200 cells and the CFL number 0.8. The results

at t = 0.038 are displayed in the Figures 38, 39 and 40. The solid lines are the numerical

solutions obtained by the 2nd order ENO scheme and the slope modification method with

800 cells. The Figure 38 is the result of the 2nd order ENO scheme with the algorithm 4.2
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and the Figure 39 is the result of the 4-th order ENO schemes with the algorithm 4.1 . For

comparison, in the Figure 40 we display the numerical result of the 4-th order ENO without

the slope modification. Notice that all the contact discontinuities are well captured by the

ENO schemes with our method. Notice also that the two algorithm perform equally well.

Example 5.4 To see the performance of our method for the problems that have some

structure, we apply it to the Euler equations (4.1) with the following initial condition:

(3.857143, 2.629369, 10.33333), x < -4(5.12) (P'q'P) = (l +0.1sin5x, o, 1), x >-4

This is a model problem for shock/turbulence interaction. See [12] for a linearized analysis

of this problem, and [7] for a numerical result. We apply our slope modification method

with the balance operator on the "4-th order" ENO schemes. The results are demonstrated

in the Figures 41-34. The computations axe performed with the CFL number 0.8. The solid

line is the result with 800 cells. Comparing the result with that in [7] we can regard it as the

exact solution. The circles in the Figures 41 and 42 are the results computed with 200 cells

and 400 cells respectively. For comparison, the Figures 43 and 44 show the results computed

with 200 cells and 400 cells respectively without the slope modification.

Example 5.5 This is a preliminary result for 2D computations. Consider the 2D model

problem

(5.13)

with the initial condition

ut+u_+uy=0, -1 <z,y<l

1

(5.14) Uo(x,y) = 1, Ix-Yl _

0, otherwise.

In [10], Haxten used this problem to test the performance of the ENO schemes with the 2D

reconstructions via deconvolution. Now, we use the reconstructions via primitive functions

dimension by dimension and,at the same time, apply the scalar slope modification algorithm

with the balance operator. The CFL number is 0.8 × 0.8. The computations are performed

with 20 × 20 cells. The results with the slope modification are displayed in the Figures 45-47,

while those without in the Figures 48-50. The apparent improvements shown in these re-
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suits and the results in [7] indicate that the p_e_ent method is promising in 2D computations.
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Figure 28: order:. 2-1, timesteps=6000, CFL= 0.8
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Figure 30: order:. 3--0, timesteps= 600, CFL= 0.1
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1.5

I

0.5

0

-0.5

-1

. -- .. -.._ , +: with ACM, o: without ACM

t i i i i l ! ! |

O O

¢

O

\

)

o lff

÷,,I-T

-I,5 i i ! l i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 36.1: Lax problem, "4-th order" ENO without SM
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Figure 37.2: Lax problem, "4-th order" ENO with SM
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.2 J i ! i !

10

8

6

4

0
.-6

I ' l I I l

-4 -2 0 2 4

F'm_m 43.3:shock/mrhule_nc_. 4-_h andJr Wl_n ,,,_,h,_,,, cx#

,

4.5

4

3.5

3

i
2.5-

2

1.5

I

0.5
-6

i i !

I I I I I

-4 -2 0 2 4

Figure 44.1: shock/tttrbulcnc¢, 4-th order ENO without SM



i i i i !

2.5

2

1.5

0.5

0 I I i I I

45 -4 -2 0 2 4

Figure 44.2: shock/turbulence, 4-th order ENO without SM

6

¢#3

12

10

4

2

I I I I I

-6 -4 -2 0 2 4

Figure 44.3: shock/turbulent, 4-th order F.NO without SM

6



Fibre 45: _,ld order ENO, with _ compression

Figure 46: 3rd order ENO, with artificial compression



H_tre 47: 4th order ENO, with anificiai compression

Figure 48: 2nd order F._O, without artificial compression



Figure 49: 3rd order ENO, without artificial compression

Figure 50: 4th order ENO, without artificial compression




