NASA Contractor Report 4200

Development of Three-Dimensional
Code for the Analysis
of Jet Mixing Problem

Part I: Laminar Solution

Khaled S. Abdol-Hamid

CONTRACT NAS1-18599
DECEMBER 1988

NASAN



NASA Contractor Report 4200

Development of Three-Dimensional
Code for the Analysis
of Jet Mixing Problem

Part I: Laminar Solution

Khaled S. Abdol-Hamid
Analytical Services avd Materials, Inc,
Hampton, Virginia

Prepared for
Langlev Rescarch Cenner
under Contract NASL- %599

NNASA

National Aeronautics
and Spane Administratisn

Scientific and Technicai
information Divisinn

1988



ABSTRACT
Future aircraft will eventually feature nonaxisymmetric or rectangular
nozzles. Developing a three-dimensional code to simulate the characteristics
of the jet exhaust plume, issuing from nonaxisymmetric nozzles, in general, at
different flight conditions, is very important. In the present investigation,
two three-dimensional codes were developed to simulate the shock-cell
structure of circular nozzles. These codes are used to solve the parabolized
and simplified Navier-Stokes equations respectively. Both codes are based on
a method previously developed by Newsome et al. (Ref. 1). These codes are
fully vectorized on the VPS 32 at NASA Langley Research Center. The
axisymmetric underexpanded supersonic jet flow problem, exhausting into still
air, was used as a test case for developing an efficient three-dimensional
code which should be capable of simulating two-dimensional problems and
preserving crossplane symmetry of the flow downstream of the jet exit.
INTRODUCTION
Future propulsion systems for fighter aircraft must be designed for
maximum maneuverability over a wide range of flight Mach numbers (Ref. 2 and
3). These features can be achieved with rectangular or nonaxisymetric nozzles
(Ref. 4-8). Rectangular nozzles provide more rapid plume velocity decay than
axisymetric nozzles (circular jet) and is simpler to modify, for example, to
incorporate thrust vectoring (Ref. 9). Developing an efficient computational
technique is essential to fully understanding the flow characteristics of
these nozzles (rectangular nozzles). This computational technique should have
a three-dimensional calculation capability and be able to simulate a wide

range of jet flow conditions.



One of the most popular techniques for computing supersonic jet flows
is a space marching scheme based on solving the steady, parabolized Navier-
Stokes (PNS) equations. The principle advantage of the PNS approach is its
greater computational efficiency compared to that of methods which solve the
full unsteady Navier-Stokes equations. The efficiency results from the fact
that a solution can be obtained by a spatial marching approach in which the
solution is advanced downstream from some specified initial condition. Thus,
for steady supersonic flows, only a single marching sweep is needed.

At the present time, a few such codes are available for predicting
such flows, but they are limited in calculation capabilities. Dash and
Wolf developed a two-dimensional (SCIPVIS (Ref. 10)) and a three-dimensional
(SCIP3D Ref. 11)) parabolized Navier-Stokes code for analyzing propulsive
jet mixing problems. SCIPVIS soives the mean flow equations for steady-
state, two-dimensional compressible flows. This code can quantitively
predict many of the details of the shock-cell structure, the turbulent
mixing with an external stream, and the subsequent decay of the shock-cell
strength as the result of shock/mixing-layer interactions. The SCIPVIS
code can also give accurate predictions for underexpanded and overexpanded
cases, SCIP3D solves the mean flow equations for steady-state, three-
dimensional compressible flows. Wolf et al. (Ref. 12) have used SCIP3D
to simulate an axisymetric supersonic jet problem. They found that, SCIP3D
code overpredicted the shock-cell decay and spacing as compared with the
SCIPVIS result. These comparisons indicate that further work and modifi-

cations in SCIP3D code are required to duplicate SCIPVIS result. They
recommended the use of time-iterative procedure in plane to plane basis
to replace their noniterative methodology which is proven to be very

complex to deal with. They also suggested that the governing equation



should be formulated in generalized coordinates form, which will simplify the
solution procedure for arbitrary exit shapes.

In this study, an underexpanded supersonic jet will be used as a test
case for developing the present three-dimensional code. The shock-cell
structure in underexpanded, supersonic jets has been the subject of several
experimental and theoretical studies in recent years (Ref. 13-17). An
understanding of these structures is especially important to the field of
aeroacoustics where shocks contribute significantly to jet noise (Ref., 13). A
schematic of a typical flow field for an underexpanded, supersonic jet is
given in fig. 1. The jet is characterized by repetitive shock cells whose
strength and size are modified through turbulent mixing with the surrounding
medium,

The objective of the present study is the application and comparisons of
two recently developed codes to simulate the shock-cell structure of the
underexpanded supersonic jet problem. These codes were developed by modifying
the 3D code developed by Newsome et al. (Ref. 1). Their code was used to
solve the thin layer Navier-Stokes equations for a laminar, hypersonic
afterbody flow problem. On the other hand, the present codes will be used in
solving the Thin-layer Navier-Stokes {(TLNS) and the Parabolized Navier-Stokes
(PNS) equations for laminar or turbulent jet flow problems. Different options
were added to the original code. These options are as follows:

1. Either half (one symmetry; HP) or quarter (two symmetry plane; QP) of
the cross-flow plane can be simulated. The QP option can be useful
in calculating square or circular jets,

2. Van Leer's Flux Vector Splitting method or Rao's Flux Differencing

technique can be used to calculate the flux in the subsonic and

supersonic regions of the flow,



3. A limiter can be used in the shock region, thus eliminating
overshoots or undershgots,
4, The state variables at cell interface is constructed from either the
primative or conservative variables.
The present codes use an implicit, approximately-factored, upwind, flux
splitting finite volume algorithm., The flux-splitting and upwind spatial
differencing method for the convection terms, used in the present study, has
several advantages over central difference schemes. This method has natural
numerical dissipation and better stability property. Both codes are third
order accuracy in the cross-plane directions and second order in the
streamwise direction. These codes solve the equations in conservation form
for a generalized coordinate system., The paper will also discuss some of the
differences in computational requirements between the PNS and NS codes.
GOVERNING EQUATIONS
The TLNS equations can be written in the following generalized coordinate and

conservative form:

g% +-%§ + %% + %% =0 (1)
where
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F = RX(E1 - EV) + Ry(Fi - FV) + Rz(Gi - GV) = F1 + FV
G = Tx ti + TyFi + TZG1 = G1
SX, Sy, Sz’ Rx’ Ry, Rz’ TX, Ty and TZ are the components of the surface

normals. These terms and the cell volume, Vol, are evaluated using the
procedures described by Chakravarthy and Szema (Ref. 19).

The inviscid (convection) flux vectors of the TLNS equations are given by
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The viscous (diffusion) flux vector are of the form
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where the viscous stress and heat transfer terms are given by
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The Parabolized Navier-Stokes (PNS) equations are obtained from the TLNS
equations when the unsteady terms are omitted. If a space-marching procedure
is used to solve these equations, the following assumptions should be enforced
(Ref. 20):
1. The streamwise velocity component is, everywhere, greater than zero
2. The pressure gradient term in the streamwise direction (%%) is either
omitted or treated with other technique to avoid a complex
eigenvalue.
In this study, the technique of Vingeron et. al. (Ref. 20) is adopted to
supress the departure solutions associated with the elliptic behaviour of the
equations. Vingeron et al. (Ref. 20) show that PNS equations is hyperbolic-

parabolic provided that
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where
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o is a safety factor for not taking into account the nonlinearity of the
governing equations.

COMPUTATIONAL METHOD
In this section, the implicit upwind/relaxation algorithm is used to solve the
unsteady Navier-Stokes equation. The laws of conservation of mass, momentum,
and energy over a volume, Vol, bounded by a surface S, can be expressed in

integral form as

3 . z .

3T J Vol Qdv + fs (R n)dS =0 (5)
The tensor H can be written in terms of the Cartesian fluxes by
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Associating the subscripts j,k,! with &, n, ¢ directions, a numerical

approximation to Eq. (5) may be written in the following form:
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where E, é and F are numerical fluxes at the boundary sides of the cell
and 6 is the cell-average value for the numerical approximation to §.

The flux vectors (E, F and é) are split according to the scheme of Van
Leer (Ref. 21). These fluxed are split according to their contravariant Mach

number

(M., M and M), defined as
£ n g
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where
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As an example, for supersonic flow in the g direction
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The flux at (n + 1) is linearized as
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The conserved variables Q+, Q~ obtained by an upwind biased one parameter
family
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$ =0 first order fully upwind

Kg = -1

¢ =1 second order fully upwind
1

Kg =3

o =1 third order biased upwind

However, to ensure Montone interpolation for the third order interpolation in

the vicinity of a shock, a min mod limiter is used as follows:

vQ = min mod (vQ,baQ)
(13)
AQ = min mod (AQ , bVQ)
3 - kE
where b is a compression parameter, b il
g

It should be mentioned that the upwind split-flux difference procedure
are only used for the inviscid convection parts of the flux vectors (E & é).
A second order, central difference is used to represent the diffussion terms
of SNS and PNS equations.

In the present study, first order upwind method is used to evaluate the
implicit (Jacobian part of equation (11)). This will result in great
reduction of the computational steps and will not affect the steady-state
accuracy which is controlled by the R.H.S. of the equation. Equation (6) can
be written as

1 n+1

T Vol + Bg + Bn + BC AQ
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These relations are equivalent to set the gradient of p, v, w and E and the

value of u to zero along %o line.

3) Conditions at g
max
Factitious grid points are

in figure (3). For the quarter

factitious points are
{(Pes Ugy Vs Wey p }T = {p, u
f’ f’ f’ f’ f .n ] b

4) Condition at the centerline

located along the side of Znax line as shown

plane (QP) simulation, the values of the

-V, W, p}T

C s N

max

n, o n = 0. (x = 0. and y = 0.)

Factitious points are added across the o line as shown in figure (3).

Their values are evaluated as follows:

QP simulation

{ u v w }T
PpUspVeWyery
°f

HP simulation

= {p’ - U, =V, W, p} Csl

T Cf - Cmax

T _ T
{Pf: ufs Vf’ wf’ pf} = {P - U, V, W, p}Csl

g
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5) Conditions on the Far-Field Boundary

The treatment of this boundary is based on Rieman invarients for a one-

dimensional flow.

Riemann invarients

0>
]

<l
+

=
1
<
'

where,

T=rusrysrm (r, =0, x (R R R}
then,

VR = %-(ﬁ + ﬁ)

ag = L5 (P - W)

Inflow Boundary, VR <o

2 T

T - T
{psU’V:W,P}n + 1 {p’u’szsp}w + VR {Oyrxsry’rzyoj

max
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Outflow Boundary, VR >, 0

T YP T - - T
{P,u,v,w,p} = {— , U,V,Wep} + (V, -V ) {o,r_,r ,r_,o}
nmgxl ag ® R max Y z

b) S nax
This boundary is treated as the same as in 5-a where the surface normal

r 1is replaced by s in the above calculations. These calculations are,
only, used for the subsonic portion of the flow, whereas first order
extrapolation was used for the supersonic part.

RESULTS AND DISCUSSIONS
In this section, the present three-dimensional codes are used to predict

the shock-cell decay and flow characteristics of an underexpanded supersonic
jet (1. < M < 2.) issued into still air. The three-dimensional results are,
then, compared with the predicted results using a two-dimensional PNS code

(SCIPVIS (Ref. 10) as well as the experimental data of Norum and Seiner (Ref.
16) exhausting into nominally still air. It should be mentioned that PNS
techniques assume that the velocity in the streamwise direction always has a
non-negative value. Norum and Shearin (Ref. 22) investigate the shock
structure and noise of supersonic jets in simulated flight to Mach 0.4. They
show that the changes in shock strength and ampiitude of broadband shock noise
in flight to Mach 0.4 are insignificant. Therefore, all calculations
presented in this paper are for an external stream at a Mach number of 0.05.
Comparisons are presented for static pressure distributions measured along the

jet centerline.

17



Two test cases were selected for comparison:

1. Underexpanded, cold-air, supersonic jet -M = 2.0, p/p = 1.45.

2. Underexpanded, cold-air, sonic jet - M = 1.0, p/p = 1.62
In the present PNS calculations,

1. The jet starts with a top-hat profile at x = 0.

2. The local time-like iteration is activated at j-plane for n-iteration
until the R.H.S. of the equation (15) is reduced to four-order of
magnitude from its original value.

3. The solution at j is used as an initial condition for the j + l-plane
which, in turn, reduce the number of iterations required to reach
converged solution at J + l-plane.

4. Step 2 and 3 are repeated for all j-planes., Both test cases are
converged within a number of interations less than 70. The PNS
solutions are used as an initial condition for the TLNS solution as
suggested by Walter et al. This approach will reduce the number of
globel iteration required for the TLNS to reach a steady state
solution.

To get a good insight of the capability of each code using less computer
resource (memory and time), we have selected a coarse grid in the T-direction
to predict the shock-cell structure of the Mach 2 jet. The Quarter-Plane
option will be sufficient in solving axisymmetric problems. A typical grid
distribution is shown in figure 2 with 160x61x11 (JxKxL) grid. It is believed
that the highest gradient (pressure, temperature, and streamwise velocity), in

the i-direction occurs close to the sonic-line (sonic-surface for 3-D case).

In this investigation, the location of the sonic-line is always less than 1.5

jet-radii from the jet centerline, Based on these observations, a fine grid
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was used for 1.5 jet-radii and stretched grid up to jet-radii. On the other
hand, a uniform grid was used in the g-direction,

Case 1 - M =2.0, P/P = 1.45

In figure (4), the measured centerline static pressure illustrates the
decaying shock structure that occurs as a result of the interaction of the
shocks with the growing mixing layer. The jet is operated at a pressure ratio
of 1.45 which corresponds to a fully expanded Mach number of 2.24 and is
issued from a convergent-divergent nozzle with a design Mach number of 2.
Figure (5) shows the comparison between the results predicted using PNS and
TLNS code for the streamwise pressure variation along the jet centerline. The
PNS predictions were completed in 240 CPU seconds compared to 8400 CPU seconds
used by the TLNS code. This comparison shows that the PNS code is quite
efficient, as compared to TLNS code, in predicting the shock-cell structure of
this case. Figure (6) shows the comparison between the pressure and density
contour, respectively, using PNS and TLNS code. In this figure, the PNS is
able to give essentially the same result presented by the TLNS code. However,
the TLNS code gives a better description for the compression and expansion
(reflected and intercepting) shocks for the whole flow domain than the one
given by the PNS solution which gives good description for the first 5 shock
cells.

Figure (7) shows the calculating centerline pressure using 160, 320 and
640 grid points in the streamwise direction respectively. This comparison
shows that increasing the grid refinement in the steamwise direction does not

have a significant effect in the predictions of shock-cell spacing (number of

shock-cell) however, it does show improvement in the strength and shape of the

first three shock-cell (in particular the first reflected shock).
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Finally, figure (8) shows the comparisons between 3-D and 2-D PNS
solution with the measured streamwise pressure variation along the jet
centerline. The measure static pressure distributions illustrate the decaying
shock structure that occurs due to the interaction of the shocks with the
growing mixing layer. Both the PNS solutions predict the pressure variations
up through the first 4 shock cells and underestimate the rest of shock-cell
decay. This was expected as the mixing layer and turbulent dissipation of the
shock strength are not modeled in both codes. This problem can be resolved by
using an adequate turbulence model.

Case 2 - M= 1.0, P/P = 1.61

The experimental results shown in figure (9) are for the underexpanded
condition (Pj/Pa = 1.61) for a sonic nozzle. This pressure ratio corresponds
to a fully expanded Mach number of 1.37, and this figure shows that the
measured data appear to decay abruptly after the fourth shock cell. Although
there are no fiow-field data available to explain this uncharacteristic rapid
decay, acoustic data obtained under similar conditions suggested that such
phenomena may be caused by acoustic resonance., Figure (10) shows the results
predicted with the 3-D and 2-D PNS codes compared with measured centerline
pressures, Both calculations show reasonably good agreement up through the
first 4 shock cells, although there is some disagreement in amplitude after
the first shock cell. However, both calculations greatly underpredict the
shock-cell decay after the fourth cell, It is believed that the flow did not
reach steady state, and the measurement after the fourth shock cell is the
representations of time average flows. It is believed that the disagreements
with experiments are related to the limitations of the PNS methodology to

handle the elliptic effects.
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and AQ

(See the Appendix for the flux-Jacobians g% . gt s S , and V

1 2 2
The implicit upwing/relaxation algorithm of Newsom et. al (Ref. 1) is

used to solve TLNS equations. This can be achieved through a series of
alternative sweeps in the streamwise direction. For a forward

sweep, is known

8y 1k
n + 1
J o+ 1,k,1

and AQ.
QJ

is set to zero. For a backward sweep, A. is known

J + 1,k,1

1.k.1 is set to zero.
- sy

Finally, equations (14) is approximately factored and can be written in

the following compact form:

M+ 5, *-;-5-) wlom s S, 3_8) 8" * 1= RuHLS. (15)
where,
IVol
M = G + Bg

In the present code, the PNS equations are solved by retaining the time
dependent terms and the steady state solution can be obtained by Tocal
iteration. This will allow the use of the same upwind flux-split procedure
described in this section, Otherwise, very complicated flux-split procedure
will be required because of the complex eigen-values and eigen-vectors of the
steady state equations. At each cross-plane, local integration is used until
the R.H.S. of equation (15) is reduced by 4-order of magnitude. Then, this

sotution is used as an initial condition for the next cross-sectional plane.

This procedure is repeated for each cross-sectional plane cepta gmax
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THE BOUNDARY CONDITIONS

Figure (2) shows a typical physical domain, used in the present study.
The figure also shows the different boundary associated with external flow

proplem.

1) Inlet Flow Conditions at & = 0. (z = 0)

The static pressure, P. stream wise velocity, w, and temperature, are
extracted form the measurement of Norum and Seiner (Ref. 14). The values of
X- velocity, u, and y-velocity, v, are set to zero. Then, density p satisfies

the equation of state

p = P/Rge (16)
and
P 1,2 . 2. 2
E, = TTT 9P (U™ + vo + W) (17)

which is used to calculate the total energy, E;.
2) Conditions at g or ¢ = 0. (x = 0.)

Factitious grid points are located along the side of ¢ line as shown in
figure (3). The points are denoted by subscript f, and their values are

obtained from the following relations,
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Figure (11) shows the comparisons between 3-D PNS and TLNS (1000 and 2000
time steps) solutions for the sonic jet with pressure ratio of 1.61. The
first 3 shock cells did not show any significant differences for the PNS and
TLNS solutions. It is clear that the flow is unstable and will not reach a
steady state. Figure (12) shows the density and pressure contours for the
same results shown in figure (11). In this figure, the PNS and TLNS predict
similar shock cell structure for the first 3 shock cells. For the TLNS
solution, the first three shock cell seem to be quite stable and their
structure is completely time independent. Close to the third shock cell a
nearly normal shock is formed and it interacts with the basic structure. The
flow beyond this point is completely unstable and vortex rings are formed on
the jet boundary of the entire flow field. The same obsrervations were made
by Matsuda et. al. (Ref. 17). Matsuda et. al. 17 investigated,
experimentally and theoretically, the decay of the shock cell structure for a
sonic jet with pressure ratio of 2. They tcok two kinds of Schieren
photographs, a long time exposure (1/30s) and and short time exposrue
(1/1000s). With a short time exposure, they observed that the flow is
turbulent with vortices (unstable).

On the other hand, the long time exposure gives a rather regular and smooth
shock cell structure.
SUMMARY

The development of PAB3D PNS and TLNS codes and their application to
nonaxisymmetric jet mixing problem are described in this report. These codes
were compared with the experimental data for underexpanded supersonic jets
exhausting into a subsonic external stream. The PNS code successfully
predicts the shock cell structure of Mach 2.0 jet as compared with the TLNS

code results. The PNS calculations were completed in less than 3 percent of
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the TLNS computational time. However, PNS code fails to predict the flow
field of strongly resonant jet (sonic case) beyond the first three shock
cells, This was expected as the flow beyond this point was completely
unstable and the only way to simulate this kind of flow is through the use of
time dependent codes. For this kind of flow problem, the static or total
pressure measurements should be accompanied by Schlieren photographs of a
short and long time exposure or any method which can show the flow time
dependency.

In general, the PNS code can simulate efficiently, mildly underexpanded
and fully supersonic flow problems, and can be used to set the initial
conditions for a time dependent code. On the other hand, the TLNS can handle
relatively complicated flow problems. The developments of these codes should
be followed by a detailed validation study using nonaxisymmetric jet mixing
data base. Right now, the TLNS code is currently being modified to include
a multi-zone option which will give it the capability to simulate nozzle/
afterbody/jet exhaust problems including vertical and horizontal tails.
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APPENDIX

This appendix decribes in detail the Jacobians of the PNS and TLNS governing

equations for the inviscid and viscous terms

1) Inviscid Flux-Jacobians

s£t aF a6t
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The above matrix was used for PNS and NS calculations. For PNS calculations,
w is evaluated using eq. (4) and J_ vanishes. On the other hand, w is

set to value of 1 for the SNS calculations.

where

y-1,2 2 2 -
(U +u +w?) , 0= qu + Syu + Szw

D]. = (Et + p)/p

b) Subsonic for SNS Solutions |M£| <1
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Jt

For the ¢ direction Flux-Jacobian ( 3),

w=1 M +M ,0+0H, S~
S >
2) Viscous Flux-Jacobians

Neglecting cross-derivative term, the viscous flux vector in the n is given

by:
0
RXUn + R2un
Ev = V%T RyUn + szn
RO+ R%w

2

o 1 R 2
R ot Un +3 Rny (uv)n + Rsz (vw)n *RR (wu)l+.T7—:—T7—§; (a

)n

where, Vol is the cell volume,
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e e S———

The viscous flux vector in the ¢ direction can be constructed by replacing the

following variables in the above formulas,

~ ~ ~ ~ A~ T
F, > 6, » R>Tn>candR=[R,R,R,1]
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Figure 1. Typical flow field for underexpanded supersonic jet.
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Figure 4. Measured plume centerline pressure for underexpanded supersonic
jet. (Data from ref. 14)
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Figure 5. Comparison of 3-D PNS and 3-D NS predicted centerline pressures for
underexpanded supersonic jet.
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A) PNS SOLUTION

DENSITY CONTOUR CONTOUR INTERVAL = .11900E+00

B) NS SOLUTION

DENSITY CONTOUR CONTOUR INTERVAL = .11942E+00

Figure 6a.

Comparison of 3-D and 3-D PNS predicted density contours for
underexpanded supersonic jet.
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A) PNS SOLUTION

PRESSURE CONTOUR CONTOUR INTERVAL = 37381E£+04

B) NS SOLUTION

PRESSURE CONTOUR CONTOUR INTERVAL = .37929E+04

Figure 6b. Comparison of 3-D and 3-D PNS predicted pressure contours for
underexpanded supersonic jet.
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Figure 7. Comparison of 3-D PNS predicted centerline pressures for

underexpanded supersonic jet.
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Figure 9. Measured plume centerline pressure for underexpanded sonic jet.

(Data from ref. 14)
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Figure 10. Comparison of predicted (2-D and 3-D PNS) and measured centerline
pressure for underexpanded sonic jet,
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A) PNS SOLWTION
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Figure 12a. Comparison of 3-D and 3-D PNS predicted density contours for
underexpanded sonic jet.
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Figure 12b. Comparison of 3-D and 3-D PNS predicted pressure contours for
underexpanded sonic jet.
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