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SUMMARY 

The three-dimensional marginal separation of a boundary layer along a line of 

symmetry is considered. The key equation governing the displacement function is derived, 

and found to be a non-linear integral equation in two space variables. This is solved 

iteratively using a pseudo -spectral approach, based partly in double Fourier space, and 

partly in physical space. Qualitatively the results are similar to previously reported 

two-dimensional results (which are also computed to test the accuracy of the numerical 

scheme) ; however quantitatively the three -dimensional results are much different. 

*Work funded under Space Act Agreement C99066G; presently at Department of Mathematics, University 
of Manchester, Manchester, England. 
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1. INTRODUCTION 

High Reynolds number flows may be broadly categorised into two classes, namely 

attached and detached. The former class generally involves the confinement of a viscous 

(Le. boundary) layer to the immediate vicinity of the flow boundary, the flow elsewhere 

being generally inviscid. A classical example of this is the Blasius flow over a 

semi-infinite flat plate. The detached class of high Reynolds number flow involves 

viscous layers occuring in the main body of the fluid (as well as on the flow boundaries). 

An important example of a flow of this class is that of the steady flow past a circular 

cylinder. This problem has been investigated numerically (for finite Reynolds numbers) by 

Fornberg (1980,1985) and models for asymptotically large Reynolds number situations been 

described by Smith (1979,1985) and by Peregrine (1985), although the precise details of 

the ultimate high Reynolds number flow in this, (and similar important cases) are still 

open to speculation. Generally, attached flows may be thought of as being associated with 

streamlined bodies, whilst detached flows are more likely to be associated with bluff 

bodies. 
I 

One reason for the great theoretical difficulty in describing detached flows is that 

generally there appears to be no continuous transition from the fully attached to the 

grossly detached state. A classical example of this is the mark of Goldstein (1948), who 

showed convincingly, for the first time how a boundary layer with an adverse pressure 

gradient would terminate in a singularity right at the the point of separation. Some years 

later Stewartson (1970) showed that this singularity could not be removed or alleviated 

with the inclusion of a triple deck. 

I 

The problem studied by Steaartson et a1 (1982) (hereafter refered to as r) was that 

of two-dimensional marginal sepzration. Here the question was the behaviour of a 

boundary layer which is on the verge of separating at a point, but then recovers. This 

work showed how an interaction regior. was formed, centred at the point of zero aal! 

shear, which served to smooth - out the discontinuous sueamwise padlent of the shear 
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I .  

I -  

stress at this point. 

equation) that by means of mrying an arbitary parameter 

( r in their notation) that : (i) separated flow was possible within the interaction zone; 

(ii) for certain values of r the solution exhibited non-uniqueness; (iii) there exists a 

critical value of r above whicb no solution exists. (This latter conclusion is a further 

example of a lack of uniform transition from a fully attached to a grossly detached state.) 

A thorough investigation of the aformentioned integral equation was mounted by Brown 

and Stewartson (1983), and this revealed that up to four solutions were possible for certain 

values of the parameter r. 

Further, it was shown hi I (by the solution of a non-linear integral 

One of the motivations for thii work was some numerical investigations of laminar 

boundary layers on smooth bodies of revolution at incidence, camed out by Cebeci et a1 

(1980). In t h i s  study, the classical boundary layer equations along the line of symmetry 

were integrated numerically, and it was found that at one particular angle of incidence 

(40" for the case cited), the skin friction dipped (linearly) to zero at  one location, and 

then rose quickly again. At a very slightly increased angle of incidence (41") the 

separation process turns out to be catastrophic (although this is not unexpected, due to the 

non-interacting nature of the calculation). More recently, Cebeci and Su (1988) have 

considered the full three-dimensional boundary layer problem on a prolate spheroid, 

focusing much attention on the separation aspect. Smith (1982) considered the unsteady 

counterpart of the problem considered by I, and found that a finite-time breakdown of 

the solution was possible, which he attributed to the occurence of dynamic stall. 

In an attempt to model the Cebeci at a1 (1980) configuration rather better, Brown 

(1985) (hereafter referred to as II) considered the problem of marginal separation of a 

boundary layer along a line of symmetry. The result of the analysis %as again an integra; 

equation, although this time two constants w:re found necessary (although these turn out 

to be related). One important assumption with this work is an a priori knowledge of the 

crossflow pressure gradient (obtained from inviscid theory), and so this work ma) be 

described as mildly three- dimensiona!. although it does have in:erestinp and important 
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differences from the two-dimensional work of I. In particular, in general the upstream 

streamwise gradient of skin friction is no longer minus the downstream gradient (the ratio 

of these quantities being a parameter to the problem). 

The aim of this paper is to treat a fully three-dimensional marginal separation 

(again along a line of symmetry), incorporating crossflow pressure variations in the 

interaction zone. Following I and Il we assume the boundary layer has a particular 

form at the separation point, which lies on the line of symmetry. Defining the 

streamwise direction to be parallel to the line of symmetry, and the crossflow direction 

perpendicular to the line of symmetry, we then make a key assumption (akin to that used 

in I and 11), that the streamwise component of skin friction vanishes simultaneously (at 

the separation point) with the crossflow derivative of the crossflow component of skin 

friction. The precise details will be described in the following section. 

Work on three-dimensional interacting boundary layers (a category to which this 

work relates) has progressed somewhat slowly. Smith et a1 (1977) posed the 

three-dimensional triple deck problem, which they then solved for a linearised case. 

Duck and Burggraf (1986) used a pseudo-spectral method to treat the fully non-linear 

version of Smith el a1 (1977), and obtained solutions for a number of separated flows. 

Smith (1983) (extended by Bodonyi and Duck 1988) presented a finite-difference scheme 

for treating flows of this type, using a system of rotated coordinates, enabling the problem 

to be made quasi -two-dimensional. The amount of literature on three -dimensional 

separation remains small, in spite of its great importance; this would appear to be due to 

the great numerical difficulties encounted with flows of this type. Indeed the author is 

unaware of any detailed studies of the three-dimensional Goldstein singularity per se 

(although Cebeci et a1 1980 do have some discussion of t h i s  point). 

The outcome of the analysis of this paper is a two-dimensional non-linear integral 

equation (or partial -integro -differentia? equation depending on the final form usedj. 

(Tne work of I and I1 resulted in an analogous one-dimensional equation.) In order tc 

sojw this equation, we shali adopt a pseudc(-s;>ectral approach, with the solution 
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technique being based partly in Fourier space, and partly in physical space. This type of 

approach is in the spirit of Duck and Burggraf (1986). although the details are very much 

different. It appears that this type of approach has considerable advantages over solution 

procedures confined to physical variables. 



2. BASIC FORMUL ATION 

Let us consider an incompressible fluid of kinematic viscosity 8 ’ .  

Suppose that L denotes a typical lengthscale in the problem (for example 

the distance between a leading edge/stagnation point to the separation 

point), and that a typical freestream velocity directed along the 

centreline is U,. Then we take Cartesian coordinates (Lx,Ly,Lz), 

origin at the separation point; the flow velocity is U, ,u = U,(u,v,w), 

and we define the centreline to lie along z - 0. The body surface 

(ignoring any curvature terms) lies on the plane y - 0. The pressure 

is written as pU,* p, where p is the fluid density. The Reynolds 

number (assumed large throughout this paper) is defined as 

R = UmL/v. (2 .1 )  

The governing non-dimensional equations are then written as 

( 2 . 2 )  

( 2 . 3 )  

v . u - 0  - 
( u . V )  u - -Vp + R - 1  V ~ U .  - - - 

We shall suppose that all three velo mponents a neral ly) 

non-zero and functions of x ,  y, z. Because of the symmetry of the 

problem about z = 0, we expect u,v and p to be even functions about 

the centreline, whilst w will be an odd function of z. 

Finally, on y - 0 we require to impose the usual conditions 

of zero velocity, i.e. 

u - 0  on = G. - ( 2 . 4 )  
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3 .  NON-INTE RACI'ING F'LW 

As the flow approaches the point of zero skin friction (x-y-2-0) 

O ( R - 4 ) .  we suppose that the boundary layer has the standard thickness 

However, rather than allowing the boundary layer at this point to have a 

Goldstein (1948) "square-root" singularity, we assume that ambient 

conditions are such that this is avoided. This we achieve (foIlowing I 

and 1 1 )  by a careful choice of conditions (as defined in (3.11) below), 

which results in the boundary layer exhibit ng a streamwise gradient 

of streamwise wall shear (and crossflow der vative of streamwise gradient of 

crossflow wall shear) that is discontiinuous at x-2-0. We now seek to 

determine the general form of this solution under these conditions, in 

this region, 

variables, 

Taking ( 2 . 2 ) ,  (2.3) and introducing classical boundary-layer 

y - R'fY 
v - R'h, 

with all other variables (both dependent and independent) remaining 

unchanged, then the three-dimensional boundary layer equations can be 

written (to leading order) 

(3.3) aU aV aw - + - + - = o  
ax aY aZ 

ZP 
c - 0. 
dY 

( 3 . 4 )  

(3.5) 

( 3 . 6 )  

We now assume the follouing solurion expansions (in l i n e  with our 

earlicr remarks) 
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- px(X2x2 + 22)f (VI" + Wl') + ... 
n 

(2Wl+Vf) + . . .  + x 2 9 p  
(X2,2+22) f 

(3.7) 

(3.8) 

w - Z W ~  (Y) + x z w~(Y) + ~ z ( X ~ X ~ + Z ~ ) ~  w l ' ( Y )  + . . . (3.9) 

(3.10) 1 1 
P P - Po + P1 x + P2 x2 + 2' P3 22 + ... 

The key assumption here is that at x-2-0 the solution is generally 

non-differentiable about a small elliptic region centred about x-2-0. 

The parameter p is essentially a lengthscale parameter, whilst 

X is a measure of the aspect ratio of the elliptic region (which may 

also be related to the relative magnitude of the streamwise and crossflow 

velocities, close to the surface). Notice that (3.7)-(3.10) satisfy 

the continuity equation (3.3). 

In order that the appropriate boundary conditions on y-0 are 

satisfied, we must have 

UO(O) = UO'(O) = 0 

Vl(0) = Vl'(0) = 0 

w 1 ( 0 )  - wl'(0) = 0 (and hence Vl"(0) = 0) 

w2(0) - V2(0) - 0 

(3. lla) 

(3.11b) 

(3.11~) 

(3.11d) 
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V2,(0) - $A2 Uo"(0) (3. lle) 

The key assumptions here, at least from the physical point of 

view, are equations (3.11a) and (3.11~) (the remainder of these conditions 

are basically zero velocity restraints). Equation (3.11a) demands that at 

x - z = 0 the streamwise component of wall strear vanishes (c.f.1 and 

11), whilst (3.11~) demands that the z derivative of cross flow wall 

shear vanishes, simultaneously, at this point. 

Since we expect the solution to bce regular as Y + 0, we may 

expand the solution in the form of a Taylor series in this limit, 

for example 

I t  is a simple. matter to show tha.t 

Y 

However we expect Vi to be regular as Y - 0 also, and this 

condi t ion then also demands 

a2 = UO"(O) - PI, a3 - U O 1 " ( O )  - 0, 
a4 = l j o l l l ' ( 0 )  = 0, U o l o l l '  (0) - a3 - 0. 

A similar, local analysis with the z momentum equation. as 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Y - 0, reveals the,solution to remain regular provided, the following 
additional conditions are fulfilled 

( A  similar analysis is also p o s s i b l e ' v : i t h  c'2 ana w2, aithough we 
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have more than enough details to proceed to the next stage of the 

anlaysis). 

I At this stage i t  is interesting to distinguish between the above, 
I 

1 and 1 1 .  Setting z - 0, w1 - w2 - ... - 0, togther with p - 1 in the 

above reduces to a system identical to that described in 1 .  The key 

difference with the work of I 1  is that in the latter, no restriction 

was placed on 

the above (and I), the no-slip condition downstream ( e o )  was 

violated, and so an inner, Coldstein type layer was found necessary. 

This leads to a situation, in general, where the downstream wall shear is 

no longer symmetrical about x - 0 (as in the case in the above and I). 

A further difference in 1 1  was that the discontinuity in wall shear was 

centred along a line (x-0), (rather than at a point, as above), thus 

the present structure is rather more three-dimensional. A further 

important distinction is described later. 

wi'(0); the primary repercussion of this was that unlike 

I t  is interesting to note that conditions (3.11a)-(3.11c) imply 

that at x - z - 0, all components of the vorticity vector on the wall 
are zero, and this is exactly the condition for a point of separation as 

described by Lighthill (1963). Thus the situation described above is 

important generically. 

Unfortunatly, due to the limited literature available on 

integrating the three-dimensional boundary layer equations (even of a 

non-interacting nature), there do not appear to be any calculations 

illustrating the above characteristics. 

example of flow past the special case of a paraboloid of zero thickness, 

with a point where V,'(O) - 0, bur with w:'(O) t 0; this 

provided the stimulus for the work of 1 1 . 1  

(Cebeci et a1 1980 did present an 

The discontinuity in slope oi the solution here at the origir; 
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(and in I and 1 1 )  Is removed by means of a triple deck, centred at 

x-y-PO, and we focus our attention on this aspect next. 
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4. THE INTERACTING REGION 

As in I and 11,  the appropr-ate strearmwise scale is x-O(a), where 

6-R-1/5. 

same, namely z=O(6), and so scaled variables (X,Z) are defined by 

We also expect the appropriate crossflow lengthscale to be the 

x = x/a (4.1) 

2 - z /6 .  (4.2) 

Consider first the main deck, comparable in thickness to the classical 

boundary layer described in the previous section. 

The expansion for the solution in this (YoO(1)) region (guided 

partly by (3.7)-(3.10), and partly by 1 and 11) is 

(4.3) 

P - Po + 6P1 x + 62 P2X2 + ; 62 P3 22 + 6512 P(X,Z) -t * . .  (rC.6) 2 

The function y(Z) here is an arbitary function of Z, which as we 

shall see performs a key role in the investigation, and is analogous 

to the constant r in I .  y(Z) is a function we may postulate, although 

we s h a l l  assume - o(Z2) as Z - in order that a proper match is 

made with the results of the previous section. The functions A(X,Z)  

and P(X,Z)  are a displacement function and pressure perturbation 
- 

respzctively, and arise from the interaction to be described shortly. 

In order that a proper match is made with (3.7) - (3.10) we require 



The system (4.3)-(4.6) clearly violates the no-slip condition on 

Y-0, and hence the inclusion of a lower deck Is necessary. In order that 

a meaningful balance of terms is affected, this must have thickness given by 

T - m-114 - 0(1), (4.8) 

(the same thickness as found in I and 1 1 ) .  In this region, the solution 

expansion given in (4.3)-(4.5) remains essentially unchanged, except 

Y is replaced by 6dF, and there is a correction to the u expansion 

of 6* b ( X , y , Z ) ,  to the V expansion, of 65/4 v (X,”yZ)  and to the 

w expansion of 62 5 (X,?,Z) .  The governing equations for these 

correction terms are 

(4.9) 

(4.10) 

(4.11) 

where a2 - Uon(0). (4.12) 

The boundary conditions to be applied to this system are that 
- - u , ~ Q + o  as Y + - ,  

together with 

5(%0) - v(Y-0) - 0, 

Differentiating (4.10) with respect to X ,  and (4.11) with respect 

to 2, and adding y i e l d s  



Invoking continuity (4.91, and then differentiating with respect to 

yields 

7 

(4.15) 

Here the problem has been reduced to a (quasi-) two-dimensional problem, 

which greatly simplifies obtaining a solution. The boundary conditions 

to be imposed are: on ? - 0 
v - 0, 

(4.16) 

whilst + 0 as ? + QD. 

A very similar system was considered by Stewartson (1970), the key 

result of which shows that‘a solution subject to (4.16) is only possible if 

a2 [A2  + y(2) - p2(X2X2 + Z2)] 1 
2’ 

(4.17) 

(subject to ( 4 . 7 ) ) .  

The system is now closed by consideration of the upper deck, wherein 

Y - O ( C ~ / ~ ) .  The solution is standard, with the pressure being determined 

by Laplaces equation, and so following Smith et a1 (1977) and Duck and 

Burggraf (1986) we may write 
m m  

The combination of (4.17) and (4.18) represents a closed probier,, the  
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solution of which w i l l  be discussed in the following section. 

We note that the condition (4.7), as X2 + Z2 + can be 

made stronger, namely 

A2(X,Z) - p2(X2X2+Z2)-y(Z) (4.19) 

This is analogous to the farfield condition found in I ,  namely 

A ~ ( x )  - x*-r (4.20) 

(where r is a constant). We note that if y(Z)  is entirely negative, 

then we might expect there to be no difficulty in obtaining a solution to 

the system described above, with the flow remaining entirely attached. 

However as y(Z)  increases, and becomes progressively more positive, (4.19) 

suggests a three-dimensional analogue to the classical Goldstein square-root 

singularity is possible, leading to a catastrophic breakdown. (Indeed, 

similar observations are noted in the work of I and 1 1 . )  One of the primary 

aims of the following sections will be to determine the maximum value 

of y(Z)  for which solutions exist. Notice, also, that as y(Z) 

becomes progressively more negative the effect of the interact ion 

is reduced, and (4.19) becomes an asymptotic solution to the above 

system. 

In I 1  i t  was assumed that the cross-stream pressure gradient 

was known a priori, (not a completly rational assumption) leading to a 

one-dimensional mathematical problem, ziimilar to that found in 1 ;  here, 

the mathematical problem (4.17)-(4.18) is fully two-dimensional. 
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3 .  “ERICAL TECHNIOU‘E 

At this stage it is convenient to take the double Fourier Transform of 
- 

(4.17) and (4.18) to eliminate the pressure perturbation P (X,Z). 

Defining 

A** = 7 7 A(X,Z)e - i k x  -iPZdXdf 
(5.1) 

(with other transform quantities defined similarly), then (4.17) and (4.18) 

give 

This equation can be transformed back into (X ,Z)  space, namely 

where K ( x )  denotes the complete elliptic integral of the first kind, 

argument X, where 

and 

and 

1’ + [(X-E)2+(Z-f)2]f 
X-,r 

X’ 

L(X,Z)- 1 a2 [A2+r(Z)-p2(A2X2+Z2)], 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

However from a numerical point of view (5.3) would present a number 

of difficulties, primarily associated with singularities in the kernel 

term. Instead we prefer to adopt an alternative scheme based on the  

transform equation (5.2). If we write 
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then (5.2) simplifies to 
A A 1  

A A  

= (ii)f (k2+P2)fAA’t* . ( 5 . 9 )  

In its present form (5.9) is unsuitable for numerical manipulations, 
A A  A -  

because of unboundedness as X2+Z2 -) QD (this i s  mirrored in k ,Q space 

by a singularity as k and/or Q _I) 0). We do, however have the 
A A 

condition 

Guided by this we write 

(5.10) 

(5.11) 

c . 6  

where now we have + 0 as X2+Z2 & w .  We have introduced the 

(artificial) constant cyo into the problem in order to ensure boundedness 

as X*+Z2 + 0.  (This is mirrored in k, P space by appropriate decay as 

k2+P2 - =; setting oo - 0 would cause difficulties with the transform 

. . A  A A  

. . A  

in this limit.) (yo may take on any real value, and is thus a parameter 

entirely of our choice, the exact sohtion for A being completely 
A 

independent of oo.  

Substituting (5.11) into ( 5 . 9 )  yields 
A , .  

= ( i k ) i  (k2+Q2)f 

I. L 

** 

I r 

I -  (3.12 
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Here, for convenience we have written 

r - ( ~ 2 x 2  + 22 + ao2>f. 
A c 

(5.13) 

Unfortunately (5.13) is still not quite suitable for numerical 

treatment (because of difficulties with the second term on the left-hand- 
A c 

side of (5.13) as X2 + Z2 

= A, + B, 

where 
A 

[2Aor]** = (ik)f 

Details of the evaluation 

now we may regard A, as 

known function of k and 
A 

Equation (5.12) may 
A A  

-+ a). This may be rectified however by writing 

(5.14) 

2r (k2+Q2)f I r - (5.15) 

of A, are given in the Appendix, but 

a known function of X and Z (or A,** as a 
A A 

A 

P), and B the function to be determined. 

now instead be written 

% ** 

.. .. - ( i k ) f  (k2+Q2)f (Ao+B)**. (5.16) 

n e  

Equation (5.16) Is cast in k,Q space; however although the right- 

hand-side of this equation is most simply evaluated in its present form, in 

Fourier space, the left-hand-side is best evaluated in physical space. 

Consequently we choose to adopt a solution procedure which exploits the 

favourable aspects of both spaces. More specifically, the technique is 

as follows. 
C C  

For a given y ( Z ) ,  A,, then A,** and the inverse of 
h C  

(ik)i (k2+f?Z)* A,** 

somz "guessed" B ( X , Z )  (on a discrete set of X and Z points) is 

transformed into k , P  space to yield B** (k . lZ) .  This is achieved using th? 

are all evaluated (see Appendix for details). Then 
A , .  c C 

e. ,. c c  

Fast Fourier Transforrr: (F.F.T.) technique of Cooley and Tukey (1965). The 
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n n n  

term (ik)!! (k2+Q2)f B** is then constructed, and transformed back to 

physical space (again by means of the F.F.T. technique). This yields an 

estimate for the right-hand-side of (5.16) on the X ,  Z grid, and provides 

a means of obtaining a new estimate for B(X,Z) .  A number of different 

L A  

n n  

schemes were ultilised for this, but the most reliable, generally, (although 

not always the scheme that gave the most rapid convergence) was to write 

(5.16) at each X,Z location as 
A -  

B - R - Q ~  B2, (5.17) 

and to use this to provide a new estimate for B, treating the right-hand- 

side of this equation as known (some under-relaxation was applied if 

necessary). In certain regions of pariameter space, this iteration 

procedure was modified slightly by using (5.17) at all X, Z stations, 

except at one (prescribed) station, (:$,Z0) say, B(X,,Zo) was 

prescribed and ~(2,) 

followed in I). The process was repeated until the maximum change to 

A -  

#. n A n  

A -  

was treated as the unknown (a s i m i l a r  tactic was 

the solution at any of the X ,  Z points fell below some predetermined 

tolerance (10-5). Since we are concerned with flows which are symmetric 

with respect to 2 0, we need only consider Z 4 0. Further, notice 

that if we use a gridsice in X of AX, with N, points, the grid in 

k space is given by 

n L 

.. 
n A 

Ak - 2r/N+. (5.18) 

This relationship arises through the use of the F.F.T. A similar 

relationship applies in the crossflow direction. ,. L 

AC - 2r/NZ AZ 
L 

where 42 is the gridsize in 

points, and Ld the gridsize 
L 

In the following section 

(5.1?j 
A 

the 2 direction. N, the number of grid 

in P space. 
L 

we g~ on to describe a number of results 
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6. RESULTS AND DlSCUSSlQN 

As a check of the general numerical technique, the two-dimensional case 

as considered in 1 was recomputed, using basically the same technique as 

described in the previous section. This involved solving (5.9) with Z = 0 

P = 0, X = 1, y(2) - r (a constant), with just a single Fourier 

Transform (in the X direction). Additionally, the particular details, 

A 

A A h  

A 

given in the Appendix are rather different, although the overall scheme was 

s imi lar . 
The two-dimensional 

a, - 3; the variation of 
of A here differs by a 

A 

A 

case was computed with Nx = 6 4 ,  AX - 0.317, and 

A(X-0) with r is shown in Fig.1. The value 
A A  

multiplicative factor r112 from that of I ,  

and the value of r here by a multiplicative factor r215 from that of 

I (on account of the slightly different normalisation used); to facilitate 

comparison, Fig.1 also indicates the values corresponding to the 

normalisation of 1 (these are denoted by a subscript 1 ) .  The present 

results reproduce those of 1 ,  to within graphical accuracy. 

The non-uniqueness of the solution over a range of r ,  together with the 

non-existance of solution for r > 1.74 is immediately apparent. On the - 
"lower branch" of the curve, computations became progressively more awkward 

as r was reduced, even using the alternative procedure where r 
itself is determined during the course of the iteration (although no 

really exhaustive attempt was made to extend these results further, the 

accuracy of the scheme having been confirmed). 

We now turn to consider a number of results for the three-dimensional 
A n  

case. To be specific, we shall focus attention on functions y(Z) of the 

class 

anci seel. to determine the variation of solutions with r .  (Note tha: 
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n e .  c. 

even though this choice of y(Z) - 0 as Z + =, the results will 

nonetheless be fully three-dimensional as seen by the form of the far 

field conditions (4.19)). 
. . A +  A A  

Variations of A(X,2) (at selected X,Z stations) are shown in Fig.2. 

N, = N, = 64, AX - A2 = 0.317, 
c. 6 

These results were determined with the grid 

and eo = 3, for the particular case A - 1. These distributions are 

qualitatirely similar to those obtained for the two-dimensional case, 

although the range of r for which solutions exist is much increased. To 

assess the effect of numerical grid changes, Fig.3. shows results for 

A(X=O,Z-0), obtained using : o0 - 3, N, = N, - 32, AX - AZ = 0.645 

(broken line), eo = 2, N, = N, = 64, AX - AZ - 0.317 (solidus), and a. = 3, 

N, - N, = 16, AX = AZ = 0.667 (dot-dashed line). 

c L A  A A c. 

A c. 

A A 

I t  is heartening that there appears to be no difference 

(to within graphical accuracy) between the cyo = 3 and corresponding 

a, = 2 results (indeed the computation was also carried out with a. = 2, 

N, - N,- 32, 
A A 

AX - AZ - 0.645, and this too gave results 

indistinguishable on the graphical scale used with the corresponding eo - 3 
calculation). On the whole the computations agree very well, although the 

most prominant discrepancy occurs in the "nose" region of the curve, as 

may be anticipated, although elsewhere the agreement is to within the 

accuracy of the figure. The computations on the "lower branch" became 

progressively more difficult as r was reduced (a typical computation on 

the finest, most extensive grid taking of the order of ten minutes on a Cray 

0 
XMP), and so the curves are not extended as far as the corresponding 

two-dimensional case (Fig.1). 
. . A *  

Figure 4 shows the contours of constant A ( X , Z )  for = 2.803103 

(upper branch) and for  comparison F i g . :  shows the c o n t o u r s  for the  same 

v a l u e  of r ,  but corresponding to the lower branch (both s e t s  of results 

were obtained using the same grid as used for Fig. 2). Since A ( X . 2 )  
- 4 n  
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A n n  

is proportional to the streamwise wall shear, negative A(X,Z) implies 

reversed flow. Comparing these two figures reveals the lower branch to 

involve a much larger region of reversed flow. Indeed, as the lower 

branch is followed, with r reducing, the region of reversed flow is 

expected to increase without bound (a feature observed in previous 

two-dimensional studies). As X2 + Z2 increases the contours became 
A n 

progressively more circular in both cases. 
n A  A 

Figure 6 shows the variation of A(X - 0, 2 - 0) with r for  the 
n L 

case A - 2 (obtained using the grid Nx - N, - 64, AX = AZ - 0.317, and 
cyo - 3 ) .  This case corresponds to a basic flow with a rather stronger 

streamwise flow near the wall conpared with the crossflow. In this case 

the range of r over which the solution exists is increased over the X = 1 

results, as is the range of A ( 0 , O ) .  Figure 7. shows contours of constant 

A(X,Z) for r = 5 . 3 4 2 5 9 7  (lower branch). The contours as X2+Z* + 0: in 

n 

n n h  n e  

this case w i l l  no longer approach the circular form of X - 1, but rather 

will tend to ellipses. 

These results presented here clearly illustrate the occurrence of fully 

three-dimensional solutions involving below - marginal skin friction. 
The basic solution technique introduced here, involving the usage of a 

pseudo-spectral method could fairly easily be extended to other classes of 

flow, for  example flows away from lines of symmetry, supersonic three- 

dimensional flows or flows where Uo'(0) and W i ' ( 0 )  do not vanish 

simultaneously (such as that studied in 11). However the particular 

details required in obtaining a well behaved "perturbation" solution 

to compute (c.f. the Appendix) would necessarily have to be modified. 

Further, and importantly, the theory presented here is not subject to th? 

limitations imposed as a result of the essentially two-dimensional 

interaction condition employed in 1 1 .  
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I t  is worth making a few final comments regarding the choice and 

determination of the function y(2) .  1.n this paper y(2) represents 
A , .  A , .  

a quite natural extension of the constant r found in the 

two-dimensional work of I (and I-2 in 1 1 ) .  In I ,  r was interpreted 

as being proportional to the excess of the angle of incidence 

(or camber) over the critical value. As described in 1 1 ,  the 

interpretation of the two related constants r2 occuring in that study 

is less obvious. In the present work, we may interpret y(2) as being 
A I  

a measure of the excess angle over the critical centreline angle; in the 

present context the local angle can depend on spanwise location, and so 

this excess will in general be a function of lateral position, which from 

a physical point of view can be regarded as a spanwise (i.e. 2 )  
A 

variation of body surface curvature and/or of streamwise conditions (we 

must however restrict spanwise variations to be on a scale z - O ( 6 )  

or longer). 

Our particular choice of y(Z ) ,  namely (6.1) leads to necessarily 

a model problem; however because of the qualitative similarity between the 

results for this particular choice of y(2) and those found in I and 

1 1 ,  we fully expect the present three-dimensional results to give a good 

indication of the qualitative feature of general flows o f  this class. 

Since y(2) represents an "excess" over the critical state, 

A I  

, . A  

by its nature i t  controls the amount of interaction in the problem (see 

also the remarks, towa-rds the end of Section 4 regarding this point). 

Hence i t  is not directly deducible from "non-interacting" calculations such 

as those of Cebeci at a1 (1988). (The constant r found in I is also 

not directly obtainable from "non-interacting" calculations.) 
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AvDendix 

A A 

Here we consider the evaluation of A, and A,**. Since certain of 
A , . A  

the components in the evaluat ion of A, are unbounded as X2+Z2 -+ cc 

(and this is reflected by singularities as 
A n  

k2+P2 _.) 0 in Fourier space), 

a certain amount of analytic work is necessary, prior to any numerics. 

Fortunately, the inclusion of the a, term (see (5.11)) ensures 

decay in k ,  P space as k2+P2 c_) m, and so this limit requires no 
A , .  A C  

special attention. 

By (5.15) we have 
A A A A  A A  

2r (rAo)** - (ik)f (k2+Q2)f (r - T 

I t  is straightforward to show 

(assuming cyo > 0). (A. 2) 

The quantity r** (ik)f (k2+Q2)f is transformed back to X,Z  space 
A n A  e,. 

by the integral 
A 

A CI A A A , .  

- -  4A2 7 1'' (cosp)*  e X  3 p2' ( l + a o p 2 d l )  - cos (p2cospX+E) cos (p2sinpZ)dpdp 
.x 0 0  a3 x 

( A .  3 )  

where (3 - [cos2p+A2sin2p]!!. ( A . 4 )  
n A  

Here the Fourier variables k ,  I! have been transformed to Fourier polar 

variables p , p , and then the radial variable p is introduced by 

p 4 p : .  The result, (A.3) is a fairly well behaved integral, which is 

A - 
,. - 

readily amenable to numerical quadrature (the weak square root 

singularily at p - r / 2  was not found to cause any difficultiesj 

Tne "aO2/2r" tern in ( A . l )  was treated in much the same way as 

above, t is ing t h e  resulr 

( A .  5 )  



The remaining term was evaluated rather more numerically. We have 
c e n  n -  c c  

Q: ** - 2 ~(2)cosPZ KO [ (Z2+ao2)i]d; 
0 

n 

(having carried out the X transform. Here K0(x) denotes the modified 

Bessel function of order zero, argument a .  The Z integration generally 

requires a numerical treatment (depending on the particular form for 
, . A  A A , .  L C  

y ( Z ) ) .  Once evaluated, the quantity (ik)t(k2+C2)f [ r(z> }** was then 2r 
h A  

transformed to ( X , Z )  numerically, completing the determination of A,. 

A,** was then evaluated without any special numerical treatment, 

( ik)t(k2+P2)j A,** 
h n c  

was constructed, and then transformed back to X , Z  

space (again, with no special treatment), thus completing the preliminary 

computation, prior to the iteration commencing. , 
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FIGURE I .  - VARIATION OF ice) WITH r (TWO-DIMENSIONAL CASE). iI, PI DENOTE VALUES 

USING NORMALIZATION OF I ,  
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I . .  

-1.5 L 
FIGURE 2. - VARIATION OF i(i,?) AT SELECTED x̂,i SOLUTIONS. = re-”, N, = N, = 64. AX = AZ = 0.317, 

a,, = 3. A = 1. 

A 

A(O.0 )  

\ 
1.5 

FIGURE 3. - DETAILS AS-ABOVE. BUT i( = ? = 0. AND N, = N, = 64: Ai A? = 0.317. a. = 2 (SOLIDUS).  
N, = N, = 32, A X  = AZ = 0.645 (BROKEN LINE) N, = N~ = 16, A X  = A Z  = 0.667. a. = 3 (DOT-DASHED 
LINE). 
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FIGURE 4. - CONTOURS FOR CONSTANT A(X.2)  y (2)  = 2.803103 dZ2, h = 1, UPPER BRANCH SOLUTION. 
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2 A 

- I -  -.. 
FIGURE 5. - CONTOURS FOR CONSTANT A(X.2) .  y ( 2 )  = 2.803103 e-22, LOWER BRANCH SOLUTION. 
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-1.5 L 

FIGURE 6. - VARIATION OF ki = 0. ? = 0) WITH r. A , =  2. DEFINED BY (6.1). 

-1.5 -1.0 - .5 0 .5 1 .o 1.5 2.0 2.5 

- 
1 - 

FIGURE 7. - CONTOURS FOR i t ;  = 0, 'i = 0 ) .  i ( 2 )  = 5.342597 e-22X= 2. LOMR BRANCH SOLUTION. 
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