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A partial spline model is a model for a response as a func- Theorem: (Kimeldorf and Wahba (1971) - KW ) Let
tion of several variables, which is the sum of a "smooth".. ... 0

m span the null space of J.. If the design matrix
function of sevaral variables and a parametric function of for least squares regression on span
the same plus possibly some other variables. Partial spline 4 11, ; 1 ..... ,p is of full column rank, then there
models in one and several variables, with direct and exists a unique minimizer (f .,,x) for any .>0 , and f ) is a
indirect data, with Gaussian errors and as an extension of polynomial spline function.
GLIM to partially penalized GLIM models are described.
Application to the modelling of change of regime in several The parameter as well as m can be choosen by gen-
variables is described. Interaction splines are introduced eralized cross validation (GCV).
and described and their potential use for modelling non- The appropriate function space here is the Sobolev
linear interactions between variables by semiparametric space W', however, J. (and W') can be replaced by any
methods is noted. Reference is made to recent work in seminorm in a reproducing kernel (r. k.) Hilbert space of
efficient computational methods. real valued functions on [0,1] provided that least squares
1. Introduction regression onto the span of the null space of the seminorm

is well defined - you get a Bayes estimate with the r. k.
Partial spline models have proved to be interesting related to the prior covariance. Details may be found in

both from a practical and a theoretical point of view, partly KW and Wahba (1978) but we will not discuss the Baye-
because of their dual nature both as solutions to certain sian aspect any further, other than to note that the prior
intuitively reasonable variational problems, and as Bayes behind J. is the most parsimonious member of a large
estimates with certain parsimonious priors. In these class of equivalent priors.
proceedings we will attempt to give a quick rundown con- Partial spline models with one splined variable were
cerning some of their more interesting manifestations, and introduced by several authors in different contexts, with
to report briefly on two new developments, first, the use of some interesting applications, see Anderson and Senthilsel-
partial spline models to describe discontinuities or changes van (1982), Engle et al. (1983), Green, Jennison, and
of regime, in two, three and higher dimensions, and, Seheult (1983), Shiller (1984).
second, the idea of interaction splines for use in studying
nonlinear interactions between variables semiparametri- 3. Partial Spline Models - Several Splined Variables
cally. Now, let the model be

2. Partial spline models - one splined variable Yi = x (i)) + N0.iP'(x(i); z(i)) + Ci  (3.1a)

A response as a function of the variables x ,z 1 ..... zj=
is modelled as where

P

Yi =f (x(i))+ ,O(i'j(x(i); z(i)) + i (2.1a) x =(x 1 .... xd) ,x(i)=(x(i). xd(i)). (3.1b)
j=t

Again, we find f in an appropriate space to minimize
where I,

z(i)=(z(i),.,z(i)) (2.Ib) (Yi -f (x(i))- , 9 1 '(x (i ); z (i )))2 +
" i=l j=1

the %pi's are given parametric functions and the Ei's are
independent, zero mean Gaussian random variables with X V (3.2)

common (unknown) variance. The estimate (f x,0)), where where now, we can use the "thin plate spline" penalty ",.

0X=(0jX,.... pX), is found as the minimizer, in an functional. For d=2, m =2, it is
appropriate space, of

y+ Jm(f)= f 2. +2f . +f2 (3.3) 0
-X;(Y, -f(Oi) - Jo_ ~~) ~)) Jf 1  1  X I +f+f 2 '2i=1 j=l

and for arbitrary d it is M

w here Jm (f ) - Xq ••c
whee ..+...+=m •

II

J. (f -. (f (m)(X ))2d. (2.2b) f jm 2dX .. . ]d 34

We have the following
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provided 2m >d. The null space of J,. is the span of the 5. Non Gaussian errors (semiparametric penalized GLIM

M= +d- monomials of total degree less than m, call models)

them 0 1 .. .,M. Again, there will be a unique minim-
izer (f k,0X) for every nonnegative 26 if the design matrix g (x, z) =f (x) + Oj PYj(x; z) (5.1)
for least squares regression on 0I1 ..... ,DM;1F1 ..... , Wp is but
of full column rank, and f is a thin plate spline function. 1.F

Partial splines with several splined variables were
introduced in Wahba (1984a), Wahba (1984b), Wahba For example:
(1985), and a discrete version has been proposed by Green, Yi -"Poisson with A i = e 9(x i)z i ,

Jennison, and Seheult (1986). Transportable code
(GCVPACK, Bates et al. (November 1985)) is available for Yi -Binomial with pi(l-pi) = eg (x()); z(i)),

fitting the partial spline models of (3.1)-(3.4) and comput- etc. Here, one finds f . to minimize
ing the GCV estimate X of X. This code does well with up

to around 400 data points on the VAX 11/750 in the Statis- L (f ,0) + Jm(f) (5.2)
tics Department at Madison. The work primarily depends

on n , and not d, but, of course good estimates with large d where L is the log likelihood. O'Sullivan (1983) and
will require large n. Diagnostics for splines (without the wheell isa he ogn ikelhoo.dOSulivr (198 3) nd

calne anicaedl httisor.iletndt ata also Green and Yandell (1985), Silverman (1982), Cox and
splineO'Sullivan (October, 1985), Leonard (1982). Further work
4. Indirect measurements on numerical methods for penalized GLIM and nonlinear ,

Let indirect sensing problems is reported in this proceedings

g(x;z) =f(x) + YOj'j(x;z), (4.1) by Yandell.
6. Use of partial splines to model functions which are

and now let smooth except for specified discontinuities

yi =Lig +Ei (4.2) Let d =I and let

where Li is a bounded linear functional, for example:

Lif =fwi(x;z)g(x;z)ndxTdz. (4.3) g(x;z)=f(x)+OIxx*l

This kind of data comes up in X-ray tomography, satellite that is, 'P(x; z) = Ix-x*l. Then the partial spline estimate
tomography, stereology, and in other remote or indirect of g will have a jump in the first derivative at x* of sizesensing problems in the physical and biological sciences. 20. In two dimensions we may use a partial spline to model
One finds f and 0 to minimize: a jump in the first derivative with respect to x 2 along a

Oe fgiven curve x 2.(x ): Let

n -Lf - 8jLi j)2 + &.Jm~f)" (4.4) 'Y(x) =Y(X 1,X2)= x 2-x 2* (x 1),

The use of variants of (4.3), and (4.4) may also provide a g(X; Z) =f W)+9(x 07(x)

good way to deal with heterogeneous aggregated economic where 0 may depend on x 1 . Then
data. For an application in stereology, see Nychka et al.
(1984). 1 1_ I - ag 20(x0

Data involving mildly nonlinear functionals can be ax2 x-=(x,)*_ ax2 1=x(,)
accomodated - then

If, for example
Yi = Nig + ei (4.5a)

where p
0(xI)= YOjqj(x1)

Nig = f fwi(x,z, (x; z))ndx ndz. (4.5b) j=1

One findsf and 0 to minimize where the qj's are given, then

n1(i )+ ,,(). (4.6) 'j(x; z) = q,(x )y(x).

The minimization can be performed using basis functions This fits right into the partial spline setup, and GCVPACK S
and a Gauss-Newton iteration and X chosen by GCV for may be used to compute the estimate. A generalization to
nonlinear problems, see O'Sullivan and Wahba (1985). d=3 with a jump in the first derivative with respect to x3
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along a surface x3* (x ,A 2) is straigtforward. For details,
and a description of an application to the three dimen- V [v, + + O 2  vc..-v <o HfTPL(8.3)
sional modelling of the tropopause in the atmosphere and v,.
the thermocline in the ocean, see Shiau, Wahba, and John- It can be shown that Hfg, will be a reproducing kernel
son (Dec. 1985). hilbert space with (8.2) as squared norm for any m > 1/2,
7. Linear inequality constraints and Hf?71,pL will be a reproducing kernel space with the

Expressions (2.2), (3.2), (4.4), etc. can be minimized squared norm (8.3) for any m > d/2. These spaces are not
subject to finite families of linear inequality constraints, equivalent, and reflect different ideas of what is "smooth".

See Villalobos and Wahba (March 1985). However, each can be written as the direct sum of 2 d

8. Main effects and interaction splines orthogonal subspaces, namely, Ho, the "main effects

The thin plate spline is defined on Euclidean d space subspaces of the form
for any d with 2m-d > 0, provided there are enough data Ha = span [*v.(xa), va=1,2,...) ctl.
points for m th degree polynomial regression, but unless the (d) fir d
there are very large data sets, in many applications will be 2 t order interaction spaces of the form
desireable to reduce the amount of structure involved. Ha = span vj(x )vo(x p), v., vp>0), l_<z<-a .:d,
Several authors have suggested modelling f as a linear
combination of functions of one variable, that is, and so on.

dLetting
f(x)=fo+ "fa()lL 1 1

a=1 J(f) = If . If (x . xd)l dx  JI, (8.4)

where x =(x 1i....xd) , and fa(xa)dxa=0. (Note the 0 0 a

0 the squared norm (8.2) on HfEJDR can be shown to be equal
switch to the unit cube.) See Friedman, Grosse, and Stuet- (in Hf epR) to
zle (1983), Stone (1985), Burman (June, 1985). We have Jo(f)+jTHPL(f),
been working on generalizations of this idea, whereby f is (8.5)
modelled successively as linear combinations of functions where
of one variable, functions of one and two variables, func- jTHPL(f) = I
tions of one, two and three variables, etc. The resulting a,+...+a ...i ! 9
estimates may be called main effects splines, first order

interaction splines, second order interaction splines, etc., by 2

analogy with analysis of variance. We consider here two f 0 f dx 1 ... dXd (8.6)
quite different but interesting penalty functionals which we 0
will refer to as TEPR (for "tensor product"), and THPL (for
"thin plate"). We will briefly sketch some early results of is the thin plate penalty functional.
some work in progress, by describing the simplest exam- For lack of space we will not discuss the thin plate
ples. spaces further, but analyses similar to but slightly more

The main ideas are most easily explained by first con- complicated than those below can be carried out. In what

sidering only spaces of periodic functions on the unit d- follows, we will only consider the tensor product case and

dimensional hypercube, that satisfy certain linear equality sub or superscripts TEPR are to be understood.

or boundary condtions, and then removing these condi- Let
tions. Let 40,(xj) = cos2tvxj or sin2nvxj (with some abuse I I I
of notation), and let 0=l,,0v=27rv,v > 0, and let HfpR and Ja(f) =Jdx If l'-rd x p]2 (8.7a)
Hr1[pL be, respectively, the collections of all functions f of 0 0 0 ax 0

the form .

f(x . xd) J(f )= 00 0 fl daxa x (87b)

Scv,...,,,l,(x ) ... .,,(xd) (8.1)

with J.... I dxd.(8.7c)

i [0v, " '0V, 2nC , .. , _ 1f 
0 1 ..a

vs., v... v, <co, HfP (8.2) Then the squared norm (8. 1) on HrOR can be shown to be
equal to
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d Lvg=O,v=,l....m. Letk v = , v=Ol .... m, where
J(f)+ YJa(f) +  JY(f)+ "". +Jt..d(f).(8.8) V-

a1l a<c the b v  are the Bernoulli polynimials, we have

As an example, we will consider below fH'EpR which Lk,=O41 v,Lvkv= l,,v=0,1....m, and thus kv is

consists only of a mean, all d main effects and the first not in Ha. Let W°=span (k0 ..... k,._ and let W 1 be

order interaction between x jandx 2. Thus f is of the form isomorphic to Hd[km). Then it can be shown that W'
d endowed with the inner product

f(x 1 . .X d )=fo+ Xfa(Xa)+f12(xt,X 2), (8.9) 1

g ,h>w =-,LvgLh +fg()(u)h()(u )du (8.13)
where f0 is a constant, f EH a, and f 12EH 12. We can v 0
now define the periodic interaction smoothing spline as that satisfies
function f), of the form (8.9) which minimizes W2 = W°eW 1. (8.14)

n d

'(y, -f(x(i)) 2 + .[ YJa(f a) + J 12(f 12)],(8.10)
i=1 a~t Letting g EW2 with g = g 0 + g 1 , g OWO. g IeW I we

where x (i )=(x 1(i),...,Xd(i)), can call g the polynomial part of g, and g I the "smooth"

part. Now let
Using Lemma 5.1 in KW it can be shown that there is a pat ... ldt8
unique minimizer of (8.10) in HoeD -IHrSH 12. An expli- HTIHPL =  WV' d times (8.15)

a

cit representation for it may be found using this lemma and =(Wo-OWt)4D... O(WoWt)

the fact that the reproducing kernel K (x ,z) for YJ-/a,)H 12 d da =
is given by a1 a=1

K (x,z) = Bn(xa,Za) + Bn(x 1,Z )Bm (X 2,Z 2 )(8 .11 a) W !a
where a4 "aj

B.(s,t) = 
d

(flw-),

Y e; 2"[cos21cvs cos2nvt + sin2nvs sin2nvt 1(8.1 lb) where the Greek subscripts make explicit which variables
V=1 are involved. We can now identify the "polynomial" sub-

A closed form expression for Bn may be found in Craven space
and Wahba (1979). GCVPACK may be used to compute d
fX. In principle, J a( X) can be replaced by XwJa(f X), H0 =

a a a=l

where the w, are positive weights, but problems concern- the main effects subspaces
ing their estimation from the data have not been studied to d
date. H a=W 1 0= Wen]"lWo , at= 1- .... d,

We will now sketch how to remove the rather restric- a
tive periodicity conditions from HfE&R. For g a function of the first order interaction spaces
one variable, let Ha0lV'~v f_ Wj,

Log = Jg (u)du (8.12a) etc.W
0

The induced tensor ,roduct inner product in HTrpR is

Lvg =Jg(v)(u)du = g(V-I)(l) -g(V-")(0), (8.12b) a natural extension of the inner product of (8.7) and (8.8).
0 Letting J, be the induced norm on Ha , etc., we can now

and let Lv(,,j mean L v applied to f as a function of xa seek f X in the new, non periodic version of, for example

Then Lv(.,)f =0 for v--O,1 ...... n,a=l,2,...,d, any f in HoE)YHae1HI2 to mininize
a

HPE&R. Now, it can be shown that Ha is that subspace of I
the Sobolev space o I (Yi -f xx (i))2 + X [Yj a(f a) + J 12(f 12)]" (,16)

W [0,1]= (g: g, g'. i=1)abs.cont. g(m)eL2) i a
2, =Existence and uniqueness for any ). > 0 can be shown via

of co-dimension m+l which satisfies the m+l conditions Lemma 5.1 in KW provided the design points
x(i), i=l . n are such that least squares regression in
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Ho is unique. The reproducing kernels for the various sub- Burman, P. (June, 1985), Estimation of Generalized Addi-

spaces then follow:- The r. k.'s R 0 and R I for W0 and W' tive Models, Rutgers University. (manuscript)

can be shown to be Cox, D. D., and O'Sullivan, F. (October, 1985), Analysis of
R O(u ,v) = J k v(u )k v(v), Penalized Likelihood-Type Estimayors with Applica-

v=o tion to Generalized Smoothing in Sobolev Spaces,

R 1(u ,v) = km(u)k(v) + B,(u,v), manuscript.

and the r. k. for HTEpR with the inner product induced by Craven, P., and Wahba, G. (1979), "Smoothing Noisy Data
(8.13) is with Spline Functions: Estimating the Correct

d Degree of Smoothing by the Method of Generalized
11 (R o(x a,z a)OR I (x a,z,)), Cross-Validation," Numer. Math., 31, 377-403.
o=1

thus, for example the r. k. for YHae H 12 is now Engle, R., Granger, C., Rice, J., and Weiss, A. (1983)
a "Nonparametric Estimates of the Relation Between

Q(x,z)=YRI(x.,za)1I R
0(xp,zp)+ Weather and Electricity Demand.." Discussion paper

a O 83-17, San Diego: Dept. of Economics, University of

R I (x ,z )R 1 (x 2,z 2) II R O(x p,z p). California,.

PsI,2

Given the r. k. an explicit representation for f X can be Eubank, R.L. (1986), "Diagnostics for Smoothing

given, and, again GCVPACK can be used to calculate f k. Splines," J. Roy. Stat. Soc. Ser. B, 47. (to appear)

For m = 1, R O(x a,z ) = 1, H 0 is one dimensional as before, Friedman, J. H., Grosse, E., and Stuetzle, W. (1983), "Mul-
and we only replace Bm in the discussion of periodic tidimensional Additive Spline Approxmation,"
spaces by R 1 and the same expressions hold. For m> 1, a SIAMJ. Sci.Stat. Comput., 4, 291-301.
typical element of Ha with, say a = 1 is now of the form

f(xt . .xd)= Green, P., Jennison, C., and Seheult, A. (1983), "Com-
ments to Nearest Neighbour (NN) Analysis of Field

rn-I Experiments by Wilkinson, Et. al.," Journal of the

f..(k " k(x). (8.18) Royal Statistical Society, Ser. B, 45, 193-195.............. vI=O

The V2 =' =Vd 0 term depends only on x 1 but the Green, P.J., and Yandell, B.S. (1985) "Semi-Parametric
other terms do depend on the other variables albeit in a Generalized Linear Models." Technical
parametric ( i. e. polynomial ) way. The case m =2 is prob- Report#2847, Math. Research Center, U. of Wiscon-
ably of special interest, then x p with 3 a enters at most sin.
linearly in functions in Ha.

There are now many interesting questions. Some of Green, P., Jennison, C., and Seheult, A. (1986), "Analysis
the major ones are - the development of good methods for of Field Experiments by Least Squares Smoothing,"
choosing which interactions to include (GCV?), numerical Journal of the Royal Statistical Society, Ser. B, 47.
methods for vary large data sets, methods for interpreting
the results, development of confidence intervals, and so on. Kimeldorf, G., and Wahba, G. (1971), "Some Results on
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