NASA Contractor Report 178384

The Computational Structural Mechanics Testbed
Architecture: Volume I - The Language

(MASA-CE-1783 EH) TEE CCMEUT2TICNAL NB89-14472

STRKUCTURKAL MECHANICS TESTBELC BRCHITECTURE.

VOLUME 1: THE LAMNGUAGE (lcckbeed Missiles

and Space Cc.) ¢S5 CSCL 20K Unclas
G3/39 (0165073

Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

December 1988

NASA

st 1onal Aeronauncs and
Space Administration

Langiey Research Center
Hampton. Virginia 23665-5225






Preface

The first three volumes of this five-volume set present a language called CLAMP, an
acronym for Command Language for Applied Mechanics Processors. As the name
suggests, CLAMP is designed to control the flow of execution of Processors written for
NICE, the Network of Interactive Computational Elements, an integrated software
system developed at Lockheed’s Applied Mechanics Laboratory.

The syntax of CLAMP is largely based upon that of a 1969 command language called
NIL (NOSTRA Input Language). The language is written in the form of free-field source
command records. These records may reside on ordinary text files, be stored as global
database text elements, or be directly typed at vour terminal. These source commands are
read and processed by an interpreter called CLIP, the Command Language Interface
Program. The output of CLIP does not have meaning per se. The Processor that calls
CLIP is responsible for translating the decoded commands into specific actions.

The ancestor of CLIP. LODREC. was patterned after the input languages of ATLAS
and SAIL, two structural analysis codes that evolved at Bocing in the late 1960s. More
modern language capabilities, notably command procedures and macrosymbols, have been
strongly influenced by the Unix™ operating system and the C programming language, as
popularized by Kernighan, Plauger and Ritchic in their textbooks. The Unix “shell/kernel”
concept, in fact, permeates the architecture of the NICE system. of which CLIP is a key
component.

NIL and its original interpreter LODREC, which now constitutes the “kernel” of CLIP,
has been put to extensive field testing for over a decade. [n fact NIL has been the input
language used by all application programs developed by the author since 1969 to 1979.
(NIL also drives the relational data manager RIM developed by Boeing for NASA LaRC.)
During this period many features of varying degree of complexity were tried and about
half of them discarded or replaced after extensive experimentation. CLAMP represents a
significant enhancement of NIL, particularly as regards to directive processing, interface
with database management facilities, and interprocessor control. The current version is
therefore believed to be powerful, efficient, and casy to use, and well suited to interactive
work.

The present Manual is a greatly expanded version of the original March 1980 version,
revised on April 1981. Because of its length. the material has been divided into five
Volumes, which cater to different user levels.

Volume I (NASA CR-178384) presents the basic elements of the CLAMP language and
is intended for all users. Volume I1 (NASA CR-178385), which covers CLIP directives, is



intended for intermediate and advanced users. Volume 11 (NASA CR-178386) deals with
the CLIP-Processor interface and related topics, and is meant only for Processor devel-
opers. Volume 1V (NASA CR-178387) describes the Global Access Library (GAL) and is
intended for all users. Volume V (NASA CR-178388) describes the low-level input/output
(I/0O) routines.

All volumes are primarily organized as reference documents. Except for modest at-
tempts here and there (e.g. §3.1 in Volume I and Appendix C in Volume [II), the presen-
tation style is not tutorial.

i



© @ I O o e W N e

st
(=]

Introduction

CLIP

Commands .

Lines of Input
Command Records
Characters

Lists

Constant Items

Special Items

Command Description .

Appendices
Glossary

Ancient History

Contents

1-1
2-1
3-1
4-1

5-1

9-1

10-1

A-1
B3-1






1
Introduction



Section 1: INTRODUCTION

§1.1 WHAT IS A COMMAND LANGUAGE?

Readers not previously exposed to interactive software may find it difficult to grasp the
difference between a programming language such as FORTRAN or Basic, and a command
language. The key differences are summarized helow.

1. Programming languages are used to construct executable software elements such as
FORTRAN subroutines, Pascal procedures or Ada packages. On the other hand,
command languages are used to guide the high-level execution of such software el-
ements. Put it in another way: programming languages are used to specify data
processing and management functions, while command languages are primarily used
for high-level control functions.

2. Programming languages are generally compiled into object code prior to linking and
execution. Command languages are interpreted at run time by control software.

3. Command languages specify actions, which in most cases are carried out immediately
before the next command is read. The do-it-now mode facilitates conversational op-
eration of programs by interactive users, because these users can enter commands
in response to the observed eflect from the previous command. This “improvisa-
tional”, continuous-feedback style cannot be achieved with conventional programming
languages.

Some batch-oriented users may be surprised to learn that they have been using a command
language for some time! The so-called “control cards™ in batch operating systems are
nothing more than statements of an operating system command language through which
the user directs the overall job execution of operating system routines. In this case, the
software being controlled is the computer operating system.

A problem-oriented command language is one through which the user controls the
execution flow of application programs. In this case, the thing being controlled is the
application software itself. The qualifier problem-oriented means that the English-like
command syntax reflects the application. For example, a command appropriate for a
finite-element analysis code might be

PRINT ELEMENTS 5 TO 24

which is easily memorized. This example clearly shows that command languages tend to be
of higher level than programming languages. because the details of how the print display is
accomplished are concealed and the user simply perceives the results of the PRINT request.

Or to put it more succinctly: in a command language the task of specifying how is
less important than specifying what.

REMARK 1.1

In the computer science literature, conventional programming languages such as FORTRAN,
Pascal or Ada are sometimes called procedural, whereas higher level command languages are called

1-2



1.1 WHAT IS A COMMAND LANGUAGE?

nonprocedural. These adjectives try to convey the idea of how versus what, but are misleading in
the sense that one may certainly write command language “procedures’. (A good part of Volume
11 is devoted to this topic).

REMARK 1.2

The term object-oriented programming is currently in vogue to describe software-development
methodologies that emphasize thinking in terms of objects whose actual representation in the
computer is irrelevant to the user. For example. a finite element is an object; a subroutine
that prints finite element data is an object, and so on. Command languages combine functional
abstraction (the verb PRINT in the example) with object references (the names that follow the

verb).

REMARK 1.3

Note that the example command was printed in typewriter font. This convention is used through-
out this Volume set: it means the actual command as typed by the user. This is different from
a command specification, which is done in terms of a metalangnage described in §10. The met-
alanguage specification combines typewriter font for literal items with italics font for variable
itens.

13



Section 1: INTRODUCTION

§1.2 WHAT IS CLAMP?

CLAMP is an acronym for Command Language for Applied Mechanics Processors.
The name conveys the origin and intended application.

In general terms, CLAMP was created to simplify high-level, interactive operation
of application programs and integrated networks of such programs. It offers program
developers ways and means for building problem-oriented languages tailored to achieve
specific goals. The language is not tied. however, to any specific application: it is generre.

More specifically, CLAMP was originally designed and implemented to support the
NICE system, which has been under development at. Lockheed’s Applied Mechanies 1ab-
oratory since 1980. But, as noted above, the scope of CLAMP is not limited to NICE
support.

The CLAMP language may be logically viewed (sec Remark 1.4 below) as a streamn of
free-field command records read from command sources. Command sources may be actual
files or virtual files (messages). The source commands are interpreted by a “filter” utility
called CLIP, which stands for Command Language Interface Program. The main
function of CLIP is to produce object records for consumption by its user program. (In
this regard, see Remark 1.5 below.)

Most (but not all) command records are devoid of meaning at the CLIP level. That
is, CLIP does not care what the command is for. This is analogous to a data management
system, which does not care about the meaning of the data structures it manages, or a
compiler, which does not care about the purpose of the code it translates. Going back to
the example of §1.1, CLIP interprets the command

PRINT ELEMENTS 5 TO 24

as a sequence of five items: PRINT, ELEMENTS, 5, TO and 24. But CLIP does not understand
about finite elements, element numbers. and similar problem-related things.

The assignation of meaning transmutes object command records into statements.
Statements are the basic building blocks of a problem-oriented language. The language
drives the application program through the statements. A command-driven input envi-
ronment is ideally suited to interactive work, whether carried out in conversational or
spectator run mode. (For precise definition of these “run mode™ terms, see the Glossary
provided in Appendix A.)

REMARK 1.4

CLAMP represents a significant enhancement of the NOSTRA Input Language (NIL), which was
developed to support the NOSTRA program during the period 1971-1972. Historically curious
users may read Appendix B.

REMARK 1.5

Not all commands are devoid of meaning at the CLIP level: §2 introduces dircetives, which are
commands executed directly by CLIP. Volume I is entirely devoted to directive description.

1 4



§1.3 THREE COMMAND VIEWS

§1.3 THREE COMMAND VIEWS

In modern database management systems three views of the stored data are distinguished:
physical, logical and conceptual. A similar three-tier structure can be distinguished for
command languages:

1. Physical view: data lines. Commands as physical records of characters. This level
relates to the way you get these characters into the program.

2. Logical view: command records. Commands as item sequences. This level is also
called the syntactical or grammatical level: you learn a set of rules for writing formally
correct commands, e.g., that items are separated by blanks. This level is concerned
with form and not with meaning.

3. Conceptual view: statements. ‘ommands as action agents. This level is also called
the semantic level: you are concerned with what a syntactically correct command will

do for you.

At the physical level CLIP is simply a free-field data line reader. At the logical level CLIP
is a lezical analyzer that parses those data lines into tokens or rtems. CLIP enters the
conceptual level only for directives. For ordinary commands the conceptual level is left to
the processor executive.

15



Sectlon 1: INTRODUCTION

§1.4 MANUAL ORGANIZATION OUTLINE

This document has been written to fulfill two main objectives.

1. To serve as a CLIP User’s Manual for developers of application programs (e.g., NICE
processors) that use CLAMP as source input language.

2. To serve as a general Reference Manual for CLLAMP language syntax and command

descriptions.

The material covered in Sections 2 through 10 applies to both objectives, although the last

three sections deal primarily with advanced features.

This Manual is not a tutorial document.

16



CLIP



Section 2: CLIP

§2.1 CLIP OPERATION

The command language interpreter CLIP interacts with three operational elements: user.
running processor, and global data manager. These three terms are defined as follows:

User. The person (or entity) that reaps the benefits of the processor activity. In interactive
conversational mode, a human user is in direct two-way communication with the processor.
In other situations, such as batch runs, the communication is indirect and occurs through
a prepared command file.

Running Processor. The software element that produces results for the user. (If the
running processor is a NICE-conforming processor. the noun is capitalized: Processor.)
The processor activity is controlled by the command language.

Global Data Manager. The software element through which the global database is accessed.
The global database is a catalogued collection of data produced by the running processor
or other communicating processors. It can also store command langnage procedures and
help documentation for the interactive user. The global data manager for the NICE system
is called GAL.

During processor execution, CLIP can operate in three modes: user command, user di-
rective, or message. The last mode has two variants known as self-message and mailbox.
These operation modes are summarily described below.

User Command Mode

The standard operating mode of CLIP is the user-command mode, sometimes called the
command mode for short. Commands are directly supplied by the user, retrieved from
ordinary card-image files, or extracted from the global database, and submitted. on request,
to the running processor. This mode can be diagrammed as

User l
Card-image file
Database entity

> Command text s CLIP » Processor

User Directive Mode

In user directive mode, special commands called directives, which are supplied by the user,
read from card-image files, or retrieved from the global database, are processed directly
by CLIP. The processor is “out of the loop™. This mode can be diagrammed as

User l
Card-image file > Directive text > CLIP | - » Database]
Database entity l



§2.1 CLIP OPERATION

where the bracketed term is meant to indicate that processing of the directive may possibly
affect the database state.

Directives are identified by a leading keyword prefixed by an asterisk. Transition from
processor-command mode to directive mode is antomatic. Once the directive is processed,
CLIP returns to processor-comnmand mode unless the directive is a command-procedure
definition. In this exceptional case, CLIP stays in the directive mode until the end of
a procedure is detected (procedure definition is the only instance of a multi-command
directive).

Directives are used to dynamically change run-environment parameters, to process ad-
vanced language constructs such as macrosymbols and command procedures, to implement
branching and cycling, and to request services of general usefulness.

All CLIP directives are available from any processor that uses it.

Self-Message Mode

Message mode means that the processor “talks” to CLIP. There are two variants of mes-
sage mode: self-message and mailbox. In self-message mode, the processor supplies a
directive or stream of directives, possibly intermixed with ordinary commands, to CLIP
for immediate processing. This mode may be diagrammed as

Processor > Message tert s CLIP | »  Databasel

In this mode the user is “out of the loop.” Transfer to message mode occurs when the
processor calls a message-sender entry point. The processor-CLIP ensemble stays in this
mode until an explicit or implicit end-of-message signal is acknowledged by CLIP.

Mailbox Mode

This is an advanced variation of the inessage mode in which the processor supplics a
command procedure to CLIP for downstream consumption by other processors. CLIP
effectively acts as a mailbor through which the command procedure is stored in the global
database. This mode can be diagrammed as

Processor -~ > CLIP s Database > CLIP »  Processor

Again the user is “out of the loop.” As above, transfer from the processor-command mode
to the message mode is initiated by the running processor calling a message-sending entry
point. The key difference from the previous case is that the message is not immediately
“opened” by CLIP, but simply saved for use by another processor. The mailbox mode
forms the basis for synchronizing the execution of NIC . mini-networks for coupled-system
dynamic analysis or optimization applications.



Sectlon 2: CLIP

§2.2 INTRA- AND INTERPROCESSOR CONTROL

The conventional use of a command language such as CLAMP is to guide the How of
execution within the running processor: do this, do that. This is called intra-processor
control. The key feature is that the processor does not stop executing.

In certain advanced network-operation modes a running processor may directly or
indirectly initiate the execution of other processors, put itself to sleep (hybernation) and
resume execution (wakeup). These operations pertain to a higher planc known as inter-
process control.

In addition to its more mundane capabilities, certain versions of CLIP provide in-
terprocessor control services. These services include process initiation. suspension, task
synchronization through status checking. and wakeup. These services are provided through
ad hoc directives.

The implementation of interprocessor control is highly machine-dependent, because
CLIP has then to talk directly to the operating system. Remnants of the dependency per-
colate to the processor-developer and processor user. On some archaic operating systems,
such as Univac's Exec-1100 and CDC's Scope, these operations are either impossible or
severely restricted.

On the last account, effective application of interprocessor control services is a fairly
advanced and specialized topic and thus it does not pertain to the clementary exposition
jevel of this Volume. The subject is dealt with in the “SuperCLIP™ chapter of Volume IL.

2 4



§2.3 CONFIGURATION OF CLIP

§2.3 CONFIGURATION OF CLIP

Internal Structure
The present CLIP consists of the following components.

CLIP Shell. The implementation of a closed interface between the three internal com-
ponents of CLIP (kernel, directive and databasc-interface subsystems). and the external
environment. (For the definition of “closed interface.” sce Appendix A

CLIP Kernel. Largely based on LODREC (cf. Appendix B) The workhorse module of
CLIP. Performs tasks pertaining to the decoding and parsing of command language text.

Directive Subsystem. Controls activities undertaken while in directive mode. For example,
definition and retrieval of command procedures.

Global Database Interface Subsystem. A module that handles communication with the
global database manager GAL for activities that require transactions with the global
database.

SuperCLIP. A module that handles activities that pertain to interprocessor control. This
module exists only under certain operating systems.

CLIP Versions

The CLIP master source code (MSC) embeds all conceivable instances of CLIP, including
machine-dependent code for various computer systems such as VAX/ VNS, VAX /Ultrix,
SUN/UNIX and CRAY/UNICOS. Virtually all of the code is full FORTRAN 77, with
some assembly-language sections for VAX/VMS.

The single MSC file also contains CLIP versions of varying functionality. These ver-
sions are delimited by the MAX distribution keys listed in Table 2.1.

When the MSC file is read through the preprocessor MAX to extract compilable
code, specifying all the above distribution keys results in a version of CLIP with its full
functionality. 1f no keys are specified, a bare-bones CLIP results; this stripped version
(MicroCLIP) is not much more than a fancy free-field reader. Specifying several (but not
all) keys yields versions of intermediate functionality.



Section 2: CLIP

Table 2.1. CLIP MSC' Distribution Keys

Key

Purpose

COMPRO

EZGAL

MACRO

SUPERMAN

WORKPOOL

Delimits the command procedure facility described in §5 of
Volume II. This is part of the directive subsystem.

Delimits the global data manager interface described in §7 of
Volume II.

Delimits the macrosymbol facility described in §4 of Volume

II.

Delimits the interprocessor control facility known as Super-
CLIP, which is described in §9 of Volume 1. This is only
presently available under VAX/VMS.

Delimits the local data manager interface described in §8 of
Volume II.

2.6



3
Commands



Section 3: COMMANDS

§3.1 WHAT DO COMMANDS LOOK LIKE?

This section covers the general aspects of the command language CLAMP. Before
launching into technical details, however, let us begin with an overview of what CLAMP
commands are supposed to look like. If you are already an experienced user of command
languages, you may want to go over this section quickly. just skimming over it to absorb
terminology.

The following description covers the so-called standard CLAMP format. This is a small
but important subset of the total number of command formats that CLIP can process.
Reasons for using this particular format are offered in §3.2.

One-Item Commands

The simplest type of command has only one item. which is usually an action verb. Exam-
ples:

RUH
STOP

An item such as RUN or STOP is called the command verb. The verb indicates what the
command does. These commands are very easy to remember and quick to type, so they
are recommended for highly interactive programs as long as they are workable.

Two more advanced but important applications of one-item commands are: to en-
ter and exit processor subsystems, and as components of multilevel commands. The last
function is briefly covered in Remark 5.1.

Abbreviations

One-item commands are so much easier to type that sometimes the command language
designer “cheats” a little bit. Consider

PRINT TABLE.OF CONTENTS

This is a two-item command in which TABLE OF CONTENTS is a either a parameter of the
PRINT command, or a verb modifier. as explained below. If this command happens to be
heavily used by interactive users, the command designer may introduce an abbreviation
such as

TOC

There is no visible verb here; PRINT is implied. As a general rule the abbreviation technique
should be sparingly used. as it can get out of hand. It is gencrally better to let users decide
upon their own “custom” abbreviations.



§3.1 WHAT DO COMMANDS LOOK LIKE?

Parameterized Commands

One-item commands are convenient but limited in function. Most useful commands are
parameterized in one way or another. For example:

TYPE INPUT.DAT

is a parameterized command that may request that the contents of a text file be displayed
on the uvser’s terminal. Here TYPE is the command verb while INPUT .DAT is a parameter.
If you look up the description of the TYPE command on the Users Manual or Processor
Help File, you ought to see a “generic” description such as

“The command
TYPE Filename

displays the contents of an existing card-image file named Frlename on the user’s
terminal.”

This description style is typical of CLAMP commands. The key point is that Filename
is a parameter; hence the use of italics; capitalization of the first letter conventionally
indicates that a character string is expected (precise rules to this effect are given in §10.2).
When the user enters a TYPE command, he or she writes the name of the specific file to be
displayed.

Parameter Lists

Parameters need not be single items. Some commands take parameter lists. A list is a
sequence of items separated by commas. F.xample:

DELETE 4,17,23,31

The four integers: 4,17,23 and 31 form a parameter list for the DELETE command.

Is the order of list items relevant? 1t may or may not be: this depends on the command
function and its implementation. Consultation of the directives manual or Processor Help
File is recommended to determine exact usage.

Assignment Commands

A more general form of a parameterized command is one in which a parameter, or param-
eter list, is equated to another parameter, or to a parameter list. Bxamples:

SET SPEED OF SOUND = 6125.3
DEFINE NODELIST = 1,2,3,6,8,13,21
COPY 1.2 = 3,6,ABSTRACT

This command form is typically used to “assign™ or “instantiate”, in some sense, objects
named in the right parameter list to the objects named on the left. Think of the general
form



Sectlon 3: COMMANDS

Verb Destination « Source

or, if you are mathematically minded,

Verb Lefthandside - Righthandside

in which the Verb clarifies the operation. These are called assignment commands.
Typical “assignment” verbs: ASSIGN, ATTACH, BIND, CONNECT, COPY, DEFINE, GET,
MAP, MOVE, PUT, RENAME, SET, TRANSFER. Note the similarity with assignment state-

ments in conventional programming languages. for example
A==BiX (FORTRAN)
a:- bt x; (Pascal)
Verb Modifiers

Sometime a command verb is actually two words; the second one. called a modifier, makes
the first one more explicit:

SET UNIT PRINT = 6

SET UNIT is a compound command verb; UNIT is the modifier. PRINT is the left (receiver)
parameter and 6 is the right (source) parameter.

Qualifiers

So far we have talked about commands whose items are mandatory; they must not be
omitted and must appear in the order shown. For example, leaving out UNIT in SET UNIT
PRINT = 8 produces

SET PRINT = 6

whose meaning is quite different.

How can we take care of options? An elegant way, though far from the only one, is
through command qualifiers. A qualifier is a word preceded by a special prefix, which in
CLAMP is usually the slash. Example:

QPElIl /UEY INPUTFIL

may be a command that opens a new file called INPUTFIL. The blank before the / is often
optional, but it never hurts.

The key feature of a qualifier is that it is optional, which means that there is always
a default interpretation. If you just say:

OPEN INPUTFIL

this must be a legal command for opening INPUTFIL. (A common default interpretation,
by the way, is open an old file if it exists or else create a new one.)

3 4



k3.1 WHAT DO COMMANDS LOOK LIKE?

In most cases, the position of a qualifier does not matter as long as it comes after the

verb. Thus
OPEN INPUTFIL /HNEW

will also work. This indifference to position is an asset in conversational interactive work,
as the need for a qualifier often comes as an afterthought, after one has ty ped much of the
non-default part.

The slash is the usual default qualifier in CLAMP commands, but it may be changed
to another special character through the use of the SET character directive.

Parameterized Qualifiers

Sometimes qualifiers are followed by a parameter or paramcter list, to which they are
connected by an equals sign. Here is an example: the command

OPEN INPUTFILE /NEW /LIMIT=45000

specifies the capacity of file INPUTFIL, which is the maximum size to which the file may
expand after creation; this is necessary on some archaic operating systems. Just saying
/LIMIT would not work; the computer has to be told “how big it can get.” It is perfectly
acceptable to have a default capacity; therefore, LIMIT is a qualifier and not a parameter.



Sectlon 3: COMMANDS

§3.2 STANDARD CLAMP FORMAT

Are the commands illustrated in §3.1 the only forms accepted by CLIP? Far from it. CLIP
can process virtually any command format vou care to think about.

Thus, if you happen to be a command designer with Germanic tastes and would like
to put the verb at the end, so be it. CLIP will pass to your program the parsed command
and you search for the verb. Similarly. you can have three parameter lists or transpose the
meaning of = in an assignment comumand. or replace the by the keyword TO.

Even if you object to CLIP item-parsing rules there is an ultimate solution: you can
ask for the “virgin” text, just as the user typed it. and write your own parser. {Volume
II1 explains how to get the command text.)

Why, then, have we talked about a standard format? There arc three good reasons
that put together form a compelling case.

1. Additional Support. CLIP provides a comprehensive set of utilities for helping vou,
as a processor developer, process a standard-format command. For example, you can
ask for a list of all qualifiers and you will reccive it. But if your command syntax is
nonstandard you will have to build such utilities yourself.

2. Interface Consistency. Components of large program networks sich as NICE are writ-
ten by different persons. Adopting a standardized command format avoids surprising
users when they move from one processor to another.

3. Agreement with CLIP Directives. As noted previously, directives are special commands
processed by CLIP. Their format agrees with that described in §3.1. Thus, interface
consistency is further enhanced.



£3.3 COMMAND SOURCES

§3.3 COMMAND SOURCES
Source Files

After reading or skimming §3.1, you should have by now an idea of what CLAMP com-
mands look like. But where do they come from? Well, CLIP normally takes them from a
card-image file. Reasonably enough, this file is called the command source file.

But wait, you say. Suppose I am happily typing commands at my terminal: what file
are you talking about? Well, there is always a file involved, albeit invisible. Most operating
systems communicate with the outside world of peripheral devices through actual files, and
a terminal is a peripheral device. Thus, the lines vou type become in fact records of the
system input file. Since CLIP is inside the computer, it can access your keyboard input
only by reading that file.

REMARK 3.1

On most systems, CLIP accesses the system input file through the READ (unit *(A)’) statement
of FORTRAN 77.

REMARK 3.2

The system input file has system-dependent names. On the Univac it is called READ$; on CDC
it is INPUT; and on VAX/VMS it’s SYSSINPUT. But the name is unimportant. To CLIP this
is called the root command source because of the reasons offered in §14.2, and its internal name is
either $root or $term.

REMARK 3.3

Why did we say “normally takes them”? There is the world of messages to worry about. One-line
messages are not implemented as actual disk files, but virtual ones.
Changing Sources

When CLIP starts up, its input is normally taken from the system input file. The command
source file can be identified with other files or source of input. CLIP can in fact change
the source input for

(A) Reading commands from a “script” or procedure file;
(B) Reading commands from a global database entity: or

(C) Receiving commands sent by the processor while in the message mode.

A change in the command source file to account for cases (A) and (B) occurs in response
to special directives. In case (C), the switch occurs in response Lo a processor reference to
the message-receiver entry point in CLIP. More details on multisource input are provided
in §4.2.



Section 3: COMMANDS

§3.4 THE COMMAND STREAM

The sequence of images received by CLIP from one or several source files is called the
command source stream, or command stream for short. The command stream is a logical
concept; it reflects the way CLIP kernel “sees™ its input:

command]l
command?2
command?3

regardless of physical source. Perhaps command! comes from the terminal, command2
from a script file, command3 from a message. From the receiving end, it does not really

madtter.

Following §4, which deals with physical aspects, §5 and §6 focus on the basic organi-
zation of the command source stream. These {wo sections explain how the basic command
components, called items, mesh together to form command records. Rules to this effect
define the command record syntax. §7 through §9 go deeper and cover rules concerning
individual items.

Basic Characteristics

Some important characteristics of the command stream are listed next.

1. The command stream is partitioned into logical blocks of information called command

records.

2. On first cut, command records may be categorized into ordinary commands and di-
rectives. Ordinary commands are processed by CLIP for eventual use by the running
processor and become object command records on output. Directives are for internal
consumption by CLIP, although indirect effects may be felt by the processor. (A more
refined classification takes into account the command sender: user or processor.)

3. Each call to the “get next command” entry point by the running processor loads one
and only one ordinary command record. This rule is never violated.

4. Any directives interspersed between two ordinary commands, say ('} and (9, are pro-
cessed by CLIP when the processor calls for ;. The number of intervening directives
is irrelevant. It can be one or one thousand. A procedure-definition block (introduced
by a PROCEDURE directive and terminated by an END directive) counts as one directive.



Lines of
Input



Sectlon 4: LINES OF INPUT

§4.1 DATA LINES

Each physical record of the command source stream is said to be a data tine or simply line.
Character positions within a line are sometimes called columns, a terminology holdover
from the good old days of punched-card input.

How are data lines created? If commands are entered directly from an online keyboard
device, lines are composed “on the spot” by the interactive nser and sent to CLIP when
the carriage-return key is pressed. If input is to be read from an existing card-image file,
data lines are prepared in advance (for example, with a text editor) and then CLIP is told
the file name. In the case of punched-card input for a batch run, each card is effectively
one data line.

Data Field

The data field is the “active” portion of a data line. It is the portion examined by CLIP
for command items. The extent of the data field is governed by a simple rule: the data
field extends from column 1 through the end-of-line mark, or column &0, whichever occurs
first. (See Remark 4.1 below for a generalization).

End-of-line marks may be explicit or implicit. This topic is taken up in detail in §5.

Sentinels

The first character of each data line may have a special significance, in which case it is
called a sentinel character. The following two sentinels are presently recognized:

(period) If followed by a blank, it flags a comment line (which may be echoprinted,
but is otherwise ignored).

@ (at) Causes an end-of-source condition detectable by the data line reader.

REMARK 4.1

The standard 80-column line width limit may be widened or contracted through the directive SET
WIDTH directive described in §53 of Volume II.

REMARK 4.2
The perind is the default comment line sentinel 1t may be changed to another special character
through the SET CHARACTER directive discussed in §53 of Volume 11.

REMARK 4.3

In batch mode, the image of each data line is immediately printed upon being read by CLIP. This
echo display can be suppressed, however, with the SET ECHO directive discussed in Volume 11. In
the interactive mode, the echo display is normally turned off, but can be turned on with the SET
ECHO directive.



§4.2 MULTIPLE SOURCE INPUT

§4.2 MULTIPLE SOURCE INPUT

Multiple source input occurs frequently in nontrivial operation of CLIP. Therefore, it's
important that prospective users get a general idea of how this capability works so that
they can make informed decisions about data preparation for complex problems.

The Command Source Stack

CLIP kecps track of multisource input through a command source stack {CSS), the top of
which points to the active input source. The €SS operation is best deseribed by working
through an example.

Assume that a NICE Processor is activated and that the first thing it does is to call
a CLIP entry point and state: “give me the first command™. When CLIP receives this
request, it tries to read the first data line. since the first command is presumably within
the data line. But where is the first line?

CLIP normally assumes that the first data line arrives fromn the root command source
file. The term “root” relates to the appearance of this source at the base of the command
source stack. Within CLIP this file is conventionally known as Source number 0 (zero)
and has the internal name $root for batch or spectator-interactive work or $term for
conversational-interactive work. In the examples below we assume the latter. (As noted
in §3.3, for interactive operation, this source is the user's terminal, whereas for batch it is
the system-defined card-image input file.) So at runstart the CSS contains only one entry:

Stack level Source no. Source name
0 0 $term (1)

After some commands have been processed, an ADD directive tells CLIP to open the existing
“script” file INPUT.DAT, and begin reading commands from it. CLIP connects this to an
internal FORTRAN unit, let’s say 32, and places this source on top of the CSS:

Stack level Source no. Source name
1 32 INPUT.DAT
0 0 $term (2)

Data lines stored in unit 32 are sequentially accessed through FORTRAN reads, and
commands contained in those lines processed. Suppose a call 1o procedure ITERATE is
encountered.

As noted in §2, command procedures may reside on ordinary (editable) card-image files
or on data-library files readable through the global database manager GAL. Assume it’s
the latter. Data library files are internally identified by Logical Device Indices (LDI), which
range from 1 through 30. The data library that contains the procedure is PROCLIB.GAL,
and its LDI is 3. Once CLIP begins reading data from the command procedure, the CSS
looks like:



Section 4: LINES OF INPUT

Stack level Source no. Source name
2 3 ITERATE
1 32 INPUT.DAT
0 0 $term (3)

Two points should be noted: (1) CLIP stores the negative of the LDI in the CSS to
distinguish a procedural source from a non-procedural source such as unit 32, and (2) the
name recorded in the CSS is ITERATE, not PROCLIB.GAL. (Had the procedure been resident
on an ordinary file, the name of the file must be ITERATE, so in such a case there is no
dichotomy.)

Now suppose that procedurc ITERATE contains an ADD directive that opens another
existing script file MAKEITGO.DAT, connects it to unit 33, and directs subsequent reads to
it. The CSS now contains four entries:

Stack lerel Source no. Source name
3 33 MAKEITGO.DAT
2 -3 ITERATE
i 32 INPUT.DAT
0 0 $term (4)

Eventually the end-of-file (EOF) on unit 33 is reached. CLIP then closes unit 33 and “pops”
the stack - that is, CLIP discards the top level of the last-in-first-out (L.1IFO) queue. We
are back to the three-level configuration (3), and CLIP continues reading the command
procedure. When the end of the procedure is detected, or a return-from-procedure taken,
the stack is popped again. to the two-level configuration (2), and reading continues from
unit 32. On end-of-file on unit 32, the CSS reverts to its one-level original configuration
(1) and input is back to the root command source. Should an end-of-file be detected at
this point (for example, an interactive user enters an @ in column 1), CLIP notices that
the stack is exhausted, and calls the run-termination routine ENDRUN described in Volume

I,

REMARK 4.4

The command source stack contains additional information not described here. The complete
“packet” of information is called a CSS frame. Frammes may be displayed through the SHOW CSS
directive covered in §54 of Volume II.

REMARK 4.5

The first data line seen hy CLIP may actually come from the processor rather than unit 0 if the
processor starts up execution by sending a message. This is fairly common in NICE Processors,
where the message may be used 1o set “startup” oplions. On the VAX it is also possible that the
first line comes from the processor invocation as a loreign DCE command.

4-4



§4.2 MULTIPLE SOURCE INPUT

REMARK 4.6
Nothing prohibits the root input source from appearing more than once in the ¢SS, For example

Stack level Source no. Source name
5 4 PRINTALL
4 0 $term
3 33 MAKEITGO.DAT
2 -3 ITERATE
i 32 INPUT.DAT
0 0 $term

This sample configuration may appear in interactive mode if a command read from procedure
ITERATE asks for user’s feedback, and in response the user has called upon procedure PRINTALL.
Repetition of non-procedural source units such as 32 should not occur, however, because such
files are read sequentially, and a multiple-positioning conflict would occur. On the other hand,
repetition of procedural sources is not only feasible but common in practice: for example, a

procedure may call itself.

REMARK 4.7
The CSS concept permits uniform implementation of multiline messages as internal ADD files,
and of procedural recursion (a command procedure may call itself directly or indirectly).

Summarizing

The use of an input stack allows uniform treatment of heterogencous command sources.
These sources may be procedural or non-procedural. There are few restrictions on the
order in which sources can appear. The stack depth is limited to 6 levels but in practice
2 or 3 is rarely exceeded. An end-of-file or return-from-procedure always acts as a return
to the previous input source as long as at least one remains in the stack. If none remains,

an end-of-file acts as a normal run stop.



Section 4: LINES OF INPUT

§4.3 RESERVED SOURCE UNITS

The use of units 32 and 33 in the example of §4.2 is not accidental. FORTRAN logical
unit numbers 30 through 40 are in fact reserved for usage by CLIP.

Unit 30 is a reserved unit used for dynamic connection to non-command sources such
as help files. Unit 31 is a reserved scratch file where CLIP saves command-procedure
header and state tables. The running processor should not tamper with these two units.

Units 32 through 40 are available for connection to non-procedural card-image files
named in ADD directives. These units do not have to he pre-assigned. however, because
they are automatically connected and disconnected by CLIP as needed. Selection of this
particular sets of units minimizes the chance of clashing with files under control of the
global data manager GAL.

REMARK 4.8
On some operating systems, unit number constraints may force a different block to be reserved.



b

Command
Records



Section 5: COMMAND RECORDS

§6.1 COMMAND STRUCTURE

In this section, we rise from the physical view of data lines to a higher plane - the logical
level. In §3.4 it was stated that the source stream is logically subdivided into command
records. A command record is a block of symbolic information processed by CLIP as a
whole. In the case of an ordinary comnmand, CLIP does not return control to the running
processor until the entire command record is interpreted.

It was also noted in §3.4 that a command record can be an ordinary command or a
directive. Directives are treated exhaustively in Volume 1l. Conscquently, in this and fol-
lowing sections of this Volume, attention is directed to ordinary commmands unless otherwise
noted.

An ordinary command record is a sequence of items terminated by an explicit or
implicit end-of-record. These records are interpreted by CLIP and presented to the running
processor, which is supposed to carry out the action(s) specified by the command.

A command record, while subject to the size limitations stated in §5.2, may extend
over any number of data lines. Conversely, several command records may be written on
the same line if space allows.

REMARK 5.1

There is generally a one-to-one correspondence hetween processor actions and command records,
but sometimes several command records may be used to compose one statement. The most
common instance of this is detailed prompting. For example, take up again the sample statement
of §1.1:

PRIIUT ELEMENTS 5 TO 24

If this is a common command, the processor may allow it to be “broken up” to help a beginner

user:
Enter command: PRINT
Print what: ELEMENTS
Range: 5 TO 24

The text on the left of the : is prompting text written to the screen, and the text on the right is
the user’s response. In this example, the PRINT statement is made up by three command records.

(34 ]
[



§5.2 I TEMS

§56.2 ITEMS

Command records are formed by components called items. An item is a string of printable
characters appearing on the data field. Items are delimited by blanks, commas. special
delimiters, or data field boundaries, and may be written anywhere inside the data field,
i.e. in free-field form. (A complete description of item delimiters is provided in §6).

The interpretation of a command by CLIP is essentially a process of rfem evaluation.
Evaluation means looking at what the user has typed and figuring out the appropriate
interpretation in terms of primitive data types such as integer. floating-point, or character
string.

An ezpression is an item or a combination of items that eventually evaluates to a
single value.

Item Categorization

Items can be categorized into three types:

1. Dataltem: an item whose value can be determined directly {rom the characters entered
by the user. For example:

ABC 432 1.765E+6

2.  Special Item: work-saving constructions such as
1:101:10 3502.5

which specify numeric list generation and item repetition, respectively, or marks used for
special purposes such as delimitation of command records.

3.  Symbolic Item: an item or expression thal has to go through a string-replacement pro-
cess for evaluation. In some cases, the replacement process may be quite complicated
and involve multilevel nesting. The final product is one or more data items. CLIP
handles two types of symbolic items: procedure arguments, and macrosymbols. As the
use of both types depends heavily on the notion of directives, they are not described
in this Volume.

REMARK 5.2

Previous versions of CLIP (and its ancestor LODREC) incorporated since 1972 a third symbolic
itern type: the register, which has disappearcd from the present version.  Its function (primar-
ily that of controlling loops in command procedures) has been taken over by a special form of
macrosymbol described in §4 of Volume IL

Data Items

Data items may be numeric or nonnumeric. The latter are called character strings and
often function as command keywords at the processor level. Numeric itemns may be integer
or floating-point constants. These types are extensively studied in §7.

5-3



Section 5;: COMMAND RECORDS

Further material on the classification and interpretation of special items and symbolic
items is provided in §8-9 of this Volume, and in Volume .

Size Limitations

The present version of CLIP allows up to 512 data items to appear on an ordinary command
record. If this limit is exceeded, an informative diagnostic is issued and the excess items
are discarded. The item count does not include symbolic or special items per se, but does
include data items generated as a result of the processing of symbolic or special items.

There are two other size limitations that pertain to character count:

1. The total length of a command record, ercluding in-line comments or interspersed
comment lines, may not exceed 2400 characters. Obviously this limit is only relevant
when you have lots of continuation lines (at least 30). If this limit is exceeded, CLIP
first tries to squeeze out multiple blanks from all data lines read so far. If this device
fails an informative diagnostic is printed and trailing continuation lines are ignored.

2. The sum of the character lengths of all character-string data items may not exceed
480. If this limit is exceeded, an informative diagnostic is given and excess characters
are discarded.

(4]
[



§5.3 RECORD MARKS

§5.3 RECORD MARKS
Termination
A command record can be terminated explicitly or implicitly.

Erplicit termination. The following special character sequences are interpreted as explicit
end-of-record marks:

; blank-semicolon

blank-period-blank

The semicolon mark is used to separate short records written on the same data line. This
saves space on prepared command files (scripts or procedures) that are to be archived, but
offers no special advantages in conversational work.

An isolated period indicates that the next command record begins on another line:
text following this end-of-line terminator is ignored. This feature may be exploited to insert
inline comments in nonvolatile command files such as scripts or command procedures that
are to be archived for some time.

Implicit termination. A command record is implicitly terminated when the right data field
boundary (column 80 or carriage return mark) is reached without a continuation mark
being encountered.

REMARK 5.3

Implicit termination is by far the most common in conversational interactive work, where pressing
the return key is equivalent to ending the data field. In conversational mode all command source
input is usually volatile, i.e. disappears upon processing by CLIP; thus explicit termination marks
serve no useful purpose and just add keystrokes.

REMARK 5.4

If the isolated period is in column 1, the whole line is treated as a comment line (see §4.1).

REMARK 5.5

Both the record separator and the end-of-line mark may be changed to another character via the
SET CHARACTER directive.

Continuation

A long command record may be extended over the next data line by writing one of the
continuation marks:

++ hlank-plus-plus
-~ minus-minus

before the right data field boundary is reached.

5-5



Section 5: COMMAND RECORDS

The double-plus mark must be preceded by a blank to be recognized, and is ignored if
inside an apostrophe string (§7.6) or a quote string (87.7). This mark is always an item
delimiter, i.e. items cannot be continued into the next line.

The double-minus mark may be used as a hyphenation mark to continue a long item
into the next line, and is recognized even inside an apostrophe string or a quote string.
This property is occasionally useful for things such as very long textstrings, e.g.

"If I have all the eloquence of men or of angels, --
but speak without love, I am simply a gong boom--
ing or a cymbal clashing'

A double-minus is not treated as a hyphenation mark inside an apostrophe or quote string
that is closed on the same line. For example:

TITLE = 'This is the way it was -- and will be’

The double minus sign is not a hyphenator here hecause there is a matching apostrophe
in the same line.

There is no a priori limit on the number of continuation lines; however. the limitations on
number of items, total record size and character-string-sum size stated in §5.2 should be
kept in mind when writing very long command records.

REMARK 6.6

Both continuation marks may be changed to another character pair {or be disabled) via the SET
CHARACTER directive explained in Volume LI

Examples

To illustrate the most important rules stated above. consider the lollowing command
record:

LOAD INPUT CASES 6 TO O LEVEL 32.4 . one record

This command record contains eight data items. Iems 1, 2. 3. 5 and 7 are character
strings. Items 1 and 6 are fixed-point constants (integers). Item R is a floating-point
constant. The isolated-period end-of-line is not counted as a data item. Next. consider

LOAD INPUT ; CASES 6 T0 9 : LEVEL 32.4 . three records
We now have three command records written on the same data line. Note that semicolon

separators must be preceded by at least one blank: otherwise they would be treated as
part of the preceding item. Finally, consider

LOAD INPUT ++ First line
CASES 6 TO 9 ++ Second line
LEVEL 32.4 . Third and last line

56



5.3 RECORD MARKS

This represents one command record that extends over three data lines. (Double-pluses
may be replaced by double-minuses with identical effect in this example.) Observe that
anything appearing after a continuation mark or an end-of-line mark is treated as comment

text.

5 7



Section 5: COMMAND RECORDS

§5.4 EMPTY LINES

An empty line is one that contains only zero or more blanks, or one or more blanks followed
by an inline comment. Unless told otherwise (see Remark 5.6), CLIP ignores all empty
lines, just as it ignores comment lines.

The most visible effect of this feature is in conversational mode. Suppose that vou
start up a processor and get the following prompt on the screen:

Enter something:

If you respond to this request with a carriage return, you will see the same prompt come
up instantly: CLIP is still waiting! If you type one thousand carriage returns in a row,
you will get a thousand prompts but nothing else will happen.

The same thing will happen if you space over and type a carriage return, or just enter

an inline comment:

Enter something: . I am not ready!
Enter something:

Empty continuation lines arc also ignored. Example:

BEGIN LIST =1, 2, 3, --
this is an empty continuation line

4, 5, 6, --

7, 8, 9
This input sequence has the same effect as

BEGIN LIST = 1, 2, 3, --
4, 5, 6, --
7. 8, 9

Note that the continuation mark does not have to appear explicitly in empty continuation

lines.

REMARK 5.7

The “ignore empty lines” behavior is the normal one. CLIP may be told to pay attention to empty
lines through the SET MODE directive discussed in Volume II. The non-default interpretation is
useful for batch-oriented processors that use a multilevel command language and key on an empty
line for detecting the end of an input block. This interpretation is not recommended, however,
for interactive processors because accidentally typing blank lines is a common occurrence.



6
Characters



Section 6: CHARACTERS

§6.1 THE CHARACTERS YOU TYPE

Commands are character streams, so CLIP s intimately acquainted with the world of
characters. This Section focuses on the characters you type to form commands, and the
special attributes that some of these characters enjoy.

CLIP is not tied to any particular character sct, but all of its implementations so far
have been on ASCII machines. (ASCII stands for American Standard Code for Information
Interchange.) The only serious competitor to ASCII is presently EBCDIC, which is used
on IBM mainframes. So for the sake of specificity the text below refers to characters that
you will normally find on the so-called ASCII keyboards.

The ASCII Character Set

ASCII is a 7-bit integer code, which spans 0 through 127 inclusive. 1t has 94 visible
characters, which are internally coded 33 to 126, inclusive. There is also the blank or
space, which is coded 32. Visible characters and the blank are called display, visible or
printable characters. Each of the printable symbols should be on your kevhoard.

The remaining ASCII characters. coded 0 to 31 and 127, are control or nonprintable
characters. They are used to send signals to the operating system, to format your screen
displays, etc. With a few important exceptions such as escape, delete and return, these
characters do not have dedicated keyboard keys, and must be created by control sequences.
For example, on a VAX running under VMS, <control-Y - creates a process-interrupt
character.

Printable Characters
The set of 95 printable characters include three families:

Letters: A-7 and a-z. As explained in more detail in §6.3 and §7.6, upper and lower case
letters are usually equivalent hecause CLIP internally converts the latter to the former
unless the letters are “protected™ with enclosing apostrophes. The choice between lower
and upper case is therefore largely a matter of personal style.

Numbers: 0-9. No ambignity here.

Non-alphanumerics. The remaining printable symbols are

"SR L @+ o=, 2t ()<>[T{ N/ R

plus the blank.

Special Characters

Some of the non-alphanumeric characters shown above assume special significance in
CLAMP, and so they are the primary subject of the following scctions. These charac-
ters are covered in alphabetic order, as per the table:

6 2



REMARK 6.1

The following non-alphanumeric cha

mentation of the language:

and remain available for user-defined chores. Paraphrasing Luigi Pirande
characters in search of a purpose. One possible
a special character in present use through the

Character

Angle brackets
Apostrophes
Arithmetic Operators
Asterisks

At Signs

Blanks and Commas
Colons

Dollar Signs

Equals Signs
Parentheses

Percent Signs
Periods

Quotes

Semicolons

Slashes

Square Brackets

¢~ 7

raclers do not have spe

46.1 THE CHARACTERS YOU TYPE

See
§6.2
$6.3
K6.1
§6.5
86.6
86.7
K6.8
£6.9
£6.10
R6.11
86.12
§6.13
R6.14
K6.1H
§6.16
R6.17

#\ {1}

cial significance in the present imple-

lo. we might call them

« nse is snbstituting one of the above characters for

SET CHARACTER directive.



Section 6: CHARACTERS

§6.2 ANGLE BRACKETS

Balancing left-right angle brackets function as delimiter pairs for macrosymbol references
(§4 of Volume II). For example:

<SOLVE(mtx!; mtx2; result; LOADS=1.2,1.45,1.52.1.6)>

Angle brackets should not be used for any other purpose unless mside apostrophe or quote
strings. Otherwise, CLII will complain about undefined macrosymbols.



46.3 APOSTROPHES

§6.3 APOSTROPHES

Apostrophes are character-string delimiters of higher precedence than any other except
hyphenation marks in the case discussed in §5.3. More precisely: with the exception of
the double-minus hyphenation mark not followed by an apostrophe in the same line, any
character that appears within apostrophe marks, including blanks, commas, equal signs,
and the like, is considered part of the string. Example:

"1, 2, 3, 4, 5’

This is a 13-character string and not a list of integer items. An apostrophe can be repre-
sented as part of the string by repeating it as in FORTRAN 77; for example:

'Don’t get me wrong’

represents the string Don't get me wrong.

A common use of apostrophes is the specification of long textstrings for labelling print
or plot output.

Apostrophe delimiters enjoy another special property on computers where the char-
acter set distinguishes between upper and lower case letters (this is true of all modern
computers except CDC Cybers). CLIP automatically converts all lower-case letters to up-
per case, unless such letters are enclosed in apostrophes. This strategy aims at protecting
jower-case letters for things such as print titles or plot legends, as in

PLOT XLABEL = ’'Circular Sampling Frequency omega*h’

while simplifying keyword decoding by the processor (because keywords need be tested
only against upper-case strings).



Section 6: CHARACTERS

§6.4 ARITHMETIC OPERATORS

The following six characters:

A asterisk
caret or hat

- minus

% percent sign
+ plus

/ slash

are used as operators in the specification of the arithmetic expressions discussed in §7.4.

The asterisk, percent sign and slash have other special uses discussed in §6.5, §6.12
and §6.16, respectively.

6 6



6.5 ASTERISKS

§6.5 ASTERISKS

The ubiquitous asterisk was used as a multipurpose special character in old versions of
CLIP and even more heavily in its ancestor LODREC. In the present version, however,
asterisks have only two special uses:

1. Prefix of directive verb (Volume I1). Example:

+SHOW ARGUMENTS

2. Multiplication operator in the arithmetic expressions treated in §7.4. For example,
SET LIMIT = (<pi>”-(2“0.5))

The expression above, by the way. evaluates to m\'2,

Aside from these two cases, asterisks are now treated as an ordinary nonnumeric character.
For example:

A+«B, ¢+, 64, 14, 124

This is a list of five character strings: A+B, 4, 6+, t4 and +24. In older (pre-1982) CLIP
versions, the last four would have been treated as special items.

6 7



Section 6. CHARACTERS

§6.6 AT SIGNS

The at-sign character @ has two special uses:

1. Item repeater when prefixed by an integer. Example:

40(1/3)
means that item (1/3) is to be repeated four times.
2.  End-of-command-source sentinel, as described in §4.1.

Aside from these two cases, the at-sign is treated as an ordinary nonnumeric character.

REMARK 6.2

In pre-1983 CLIP versions, the asterisk served as an item repeater, in a construction that mimicked
the value repetition in FORTRAN DATA statements. This invited confusion when arithmetic
expressions were introduced, as further discussed in Remark 7.13.

REMARK 6.3

The second use of @ has historical roots: the extensive use of LODREC on the Univac 1100 from
1971 to 1980. On that machine, an at-sign on column 1 indicates a “control statement™ and
terminates a data deck. The custom has survived the Univac name (the machine is now called

Sperry).



£6.7 BLANKS AND COMMAS

§6.7 BLANKS AND COMMAS

Blanks are the conventional “white space” 1lem delimiters. 1n fact. CLII? ignores any blank
not comprised between higher-precedence delimiters such as apostrophes or quotes.

Commas delimit items just as blanks do, but serve an additional function: specifying
item lists. Example:

12345
1,2,3.4.,5

In the second form, integers 1 through 5 are logicallv connected to form a five-integer
list. This association does not exist in the first form. The distinction has implications as
regards use of the list-loading entry points described in Volume 1.

REMARK 6.4

The precise meaning of commas is as follows. Each data item processed by CLIP is stored in a
Decoded Jtem Table that remembers its type (integer, floating. or character), its value, and two
characters called prefiz and scparator. The five items: 1,2,3,4,5 arc stored in that table as
follows:

Type Pre Value Sep
Integer
Integer
Integer
Integer
Integer

Ao W N e

Thus, commas are “remembered” as separators. Suppose Lhat the processor then asks for this
particular list. CLIP delivers items to the processor until a separator other than a comma is
found.

REMARK 6.5

The presence of commas does not affect individual item retrieval. For example. the processor
may call for the third item in 1 ,2.3,4,5 and the value 3 18 returned regardless of the presence
or absence of commas. The underlying philosaphy is: provide higher level functions such as list
retrieval, but do not block processor developers that want to do more primitive things.

Consecutive commas, or cominas separated only by blanks, generate interspersed zero
items; see §9.2 for additional details.



Section 6: CHARACTERS

§6.8 COLONS

Colon delimiters are used to separate components of numeric list generators described in

§8.3. Thus
1:16:2
generates the integer list
1, 3,5, 7, 9, 11, 13, 15
Colons are not delimiters within character strings; for example

PROC: FORPRC .MSC

(a VAX/VMS file name) is a single character string.

REMARK 6.6

A character string prefixed by a colon is interpreted as a label in command procedure constructions
that involve nonsequential command execution, such as branching and looping. A label can occur
only as an isolated item on a data line, or in the body of certain directives such as DO and IF.
These labels are actually removed in the “procedure compilation” process, so that CLIP in fact
never sees them when reading a procedure. Details on this rather advanced topic are given in §6

of Volume 11



§6.9 DOLLAR SIGNS

§6.9 DOLLAR SIGNS

The dollar sign is used as a special character in one instance: as prelix of the argument
counter in the “definition body” of macrosymbols that admit arguments (44 of Volume II).
This function was previously performed by the percent sign.

REMARK 6.7

In previous CLIP versions the dollar sign served as a special character in two instances.

1.  As prefix for registers, which were special integer items identified as $1, $2. ... $8.

2.  When prefixed and followed by a blank, it acted as an end-of-data-field terminator (§5.3),
and also as a comment line marker when used as sentinel (§4.1).

6-11



Section 6: CHARACTERS

§6.10 EQUALS SIGNS

Equals signs, like blanks and commas, are item terminators but serve to specify assign-
ments, as discussed in §3.1. They also terminate lists. The following two examples illustrate
typical uses.

Example 1:
SET TIME = 0.2407

Here SET is an assignment command. The equals sign separates the destination item TIME
from the source item 0.2407.
Example 2:

SET INITIAL /TIME=6.7 /HEIGHT= -0.34
Here the equals signs are used in the parameterization of qualifiers TIME and HEIGHT.
REMARK 6.8

In pre-1983 CLIP versions equals signs were treated exactly as blanks. Not so now; see next
Remark.

REMARK 6.9

Here is the parsing of the SET command of Example I:

Type Pre  Value Sep
Character SET
Character TIME =
Floating 0.2407

It is seen that the equals sign is “remembered” as a separator character. which may be retrieved
through the CCLSEP function described in Volume 111

6--12



k6.11 PARENTHESES

§6.11 PARENTHESES

Balancing left-right parentheses serve four special purposes:
1. Argument list delimiters in PROCEDURE and CALL directives (Volume 11). Example:

«CALL SOLVER (A=2/3; FILE=START(3))

Note that the parenthesis pair surrounding 3 is not a delimiter. because it does not bal-
ance the opening parenthesis; thus the item that follows FILE= is parsed as START(3).

2. Argument list delimiters in references to macrosymbols that accept arguments. For
example:

<ifdef(range; <exp(2)> : range)>

3. Grouping in arithmetic expressions (§7.1). where they are also nsed to control the

evaluation sequence.
4. Double list generators (§8.-1)

Outside of these four cases, parentheses are treated like an ordinary nonnumeric character.

For example:
PRINUT OUTPUT+*DAT(4)

OUTPUT*DAT(4) (a legal file name on some archaic computers) is interpreted as a single
character string.

6 13



Section 6: CHARACTERS

§6.12 PERCENT SIGNS

Percent signs have only one special function as integer-divide arithmelic operator (see
§7.4). Aside from this case, percent signs are treated like any ordinary nonnumeric char-

acter.

6-14



$6.13 PERIODS

§6.13 PERIODS

The period (also called dot) has only one special function. Anisolated period is interpreted
as end-of-data-ficld terminator (§5.3). and a period sentinel followed by a blank flags a

comment line (§4.1).
Aside from this case, a period is used as an ordinary character that can appear in

both numeric and nonnumeric items and cxpressions of all kinds.



Section 6: CHARACTERS

§6.14 QUOTES

Quotes are used to delimit quote strings. Quote strings are used to implement mlime
prompting as explained in §8.5. Kxample:

OPEN "Enter filename: "

The quote string Enter filename: will appear on the screen as a prompt. Whatever
you type in response to the prompt will replace the quote string. Thus if you respond
INPUT.DAT then

OPEN INPUT.DAT

will be the actual command processed by CLIP. This technique is often attractive when
scripts and/or command procedures are combined with interactive usage. It makes no
sense in batch mode.

Quotes have a higher precedence than any other character excepl the double minus
hyphen in the cases discussed in §5.3 and a ris a s relationship with the apostrophe:
Quotes inside an apostrophe strings are treated like ordinary characters, but apostrophes
inside a quote string are treated as ordinary characters.

REMARK 6.10

On VAX/VMS you should beware of the following construction, which specilies a file name across
a network:

user"name password"::disk:[directory]filename

The entire pathname should be enclosed in apostrophes to make it one string (note the blank
after name) and to defuse the quotes.

6 16



§6.15 SEMICOLONS
§6.156 SEMICOLONS
Semicolons have two special uses:
1. Default argument delimiter in procedure and macro argument lists; for example
SET TIME = <max(<t>; 25.4)>

2. If prefixed by a blank. and not inside an apostrophe or quote string, il separates
commands written on the same data line (§5.3).

Outside of these two cases, semicolons are treated like ordinary nonnumeric characters.
For example,

PRINT OUTPUT.DAT:d

QUTPUT.DAT;4 (a legal VAX/VMS file name) is interpreted as an ordinary character string.

6-17



Section 6: CHARACTERS

§6.16 SLASHES

Slashes have two important special uses:

1. Qualifier prefix in ordinary commands and directives.
2. Floating division operator in arithmetic expressions.

Currently (see Remark below), slashes are item delimiters only after character strings.
Thus, the expression

+D0/8
represents two items: the character string : D0 and the integer qualifier 8. Another example:
OPEN/NEW/NOMINAL
represents three items: the verb OPEN and the qualifiers NEW and NOMIIAL.
Slashes are not delimiters in expressions such as

(3/8) (1/(2/58))

which represent two floating-point items whose value is 0.375 and 2.5, respectively. Details
are given in §8.4.



§6.17 SQUARE BRACKETS

§6.17 SQUARE BRACKETS

Balancing left-right square brackets have only one special use: delimiters that indicate
formal-argument substitution in the body of a command procedure, as explained in §5 of
Volume 1I. Example:

+PROCEDURE SOLVE (A;B;X)
FACTOR [A]

SOLVE [A] [B] = [X]
+END SOLVE

In this example, [A), [B] and [X] are to be replaced by actual arguiment text when
procedure SOLVE is called.

Outside of this rather special casc. square brackets are treated as ordinary nonnumeric

characters. For example:
TYPE DRDO: (FELIPPA. CLIP]TCL.TES

The item following TYPE is interprefed as a single character string, which the reader will
recognize as a legal VAX/VMS file name.






Data
ltems



Sectlon 7: DATA ITEMS

§7.1 CLASSIFICATION

A data item is a sequence of characters that represents a single and constant value. Each
data item that appears in a command record is categorized by CLIP into one of three
types: integer constant, floating-point constant. or character string.

The first two types are numeric and may be freely converted into cach other when the
processor calls for a numeric value. The last type is nonnumeric and may not be converted
to numeric.

The processing of symbolic items such as macrosymbols and of certain special items
such as list generators eventually reduces to the evaluation of one or more data items. This
is true regardless of the complexity of the intermediate expressions.

This Section explains the formatting rules for data itetns. Special items are covered
in §8 whereas symbolic items are discussed in Volume [I.

7 2




h7.2 INTEGER CONSTANTS

§7.2 INTEGER CONSTANTS

An integer constant consists of a sequence of digits (0 through 9) possibly preceded by +
or -. Examples:

365 -35767 +174

REMARK 7.1

Integers must be restricted to the legal range allowed by the host computer hardware. This range
is typically _9" 1 40 2""!, where n is the number of bits in & FORTRAN integer word.

REMARK 7.2

Within CLIP, integers are stored as double-precision floating-point. numbers on 32-bit machines
and as single-precision floating-point numbers on 64-bit machines.

REMARK 7.3

The octal integer (recognized by a leading zero in ancient versions of CLIP) has disappeared.

73



Section 7: DATA ITEMS

§7.3 FLOATING-POINT CONSTANTS
Single-Precision

A single-precision floating-point constant consists of an integer part, a decimal point, a
fraction part, an E, and an optionally signed integer exponent. The integer and fraction
part both consist of a sequence of digits. Either the integer part or the {raction part, but
not both, may be missing. Either the decimal point or the E and the exponent, but not

both, may be missing. Examples:
16.07 32. - .0025 129.E+1 0123E+007 4.7E-23

“Borderline” items such as

11+2 -01-03 (both . and E missing)

are also interpreted as floating-point items 1100. and -0.001, respectively.
Double-Precision

A double-precision floating-point constant consists of an integer part, a decimal point, a
fraction part, a D, and a signed integer exponent. The integer and fraction part both
consist of a sequence of digits. Either the integer part or the fraction part, but not both,
may be missing. The exponent mark 1) is mandatory. Examples:

16.07D0 123D+007 23D-6 +.47D-20

REMARK 7.4

CLIP stores all numeric items (integer, single lloating and double floating) in Hoating-point. form
in its internal tables. The internal floating-point precision is double on all 32-bit machines and
single on all 64-bit machines.

74



§7.4 ARITHMETIC EXPRESSIONS

§7.4 ARITHMETIC EXPRESSIONS

Definition

An arithmetic expression is a data item of the form
(e O g er)

in which ¢, through ¢ are integer or floating-point constants (or symbolic expressions that
eventually evaluate to such) and ¢ denotes one of the following one-character operators:

Character Operator
+ addition
- - subtraction
multiplication
/ floating division
% integer division
exponentiation

Examples:

(-2+3) (1/5 3) (47.5) (-4./24+1.2072)

In the absence of internal parentheses, the indicated operations are performed according
to the hierarchical rules of FORTRAN. That is, the operator hierarchy is: exponentiation

(highest), multiplication/division, addition,/subtraction (lowest).

(1+1/3)
evaluates to 4/3 - 1.333333 ... Internal parentheses may be used to override the operator
hierarchy. For example,
((1+1)/3)

evaluates to 2/3 = 0.666666 ... .
Any of the ¢, may bhe a symbolic item {macro svmbol. register. procedure paramefer)

that eventually evaluates to a numeric value.

Result Typing

The type of the final result is cither integer or floating-point. If all component values are
integer and the operator / does not appear, the result is integer. Otherwise the result is
floating-point.

Note that there are {wo division operators: / and %. The slash forces floating-point
division and makes the result floating-point even il dividend and divisor are both integers.

75



Section 7: DATA ITEMS

The percent sign forces integer division as in FORTRAN. Consider for example the two
items

(17/4)  (17%4)

The first item evaluates to floating 4.25 whereas the second one evaluates to integer 4.

If % is used on floating-point operands, both dividend and divisors are converted to
I
integer before the division takes place and the result is typed integer.

REMARK 7.5

In versions of CLIP endowed with the macrosymbol facility, the macro-evaluation delimifer symn-
bols < and > may be used instead of ( and ). respectively. The effect on item parsing and evaluation
is identical. They are not equivalent, however, when “virgin” command lines are retrieved through
the CLGET entry point as discussed in Volume 1. A delailed explanation is given in 8410 of
Volume II.

REMARK 7.6

The exponent following * must be an integer if the base is negative. Thus -2.0°6 . is ilfegal. but
-2.0°b is legal and evaluates to -32.0.

REMARK 7.7
An attempt to divide by exact zero will produce an error diagnostic and the division will be
skipped.

REMARK 7.8

If the result is floating point, the arithmetic work is carried out in full double precision arithmetic
and the result is stored in double precision on 32-bit machines while all arithmetic is done in single
precision on 64-bit machines..

REMARK 7.9

Blanks encountered inside a parenthetical expression are ignored. For example
(2 + 8)

evaluates to 16.0: the blanks before and after + being ignored. But,
2. v 8

does not evaluate to 16.0, and is in fact treated as three items: floating constant 2.0, character
*, and integer 8.

REMARK 7.10

The following differences with previous versions of CLIP should be noted:

1. The exponentiation operator is now ~ instead of 1.
2. Parentheses were not allowed in pre-1983 CLIP versions to control expression evaluation
order.

3. The result was always of Hoating-point type.

76



§7.5 ORDINARY CHARACTER STRINGS

§7.6 ORDINARY CHARACTER STRINGS

A data item that does not qualify as a numerie value is classified as a character string,
or string for short. Ordinary character strings are those not surronnded by apostrophe or

quote delimiters.

The following items are interpreted as ordinary character strings:

1. Any item that contains a nonnumeric character and does not qualify as a symbolic
item or an arithmetic expression. Fxamples:

NODE D66 STIFFNESS.FILE Help 4+R $$$ (1/E4)

2. A data item that contains only numeric characters but is not a valid integer or floating
constant. Examples:

E6 E6 2.3.4 2E3E4 8D.7 8D+.5
REMARK 7.11

All lower case characters present in an ordinary character string are converted to upper case as
they are processed on the VAX, VMS version: they are not converted on the UNIX versions.

77



Section 7: DATA ITEMS

§7.6 APOSTROPHE STRINGS
A sequence of one or more characters surrounded by apostrophes, as in

"ABC' '123' ' ' A rather long string’

is called an apostrophe string. Any graphic character enclosed between the apostrophe
delimiters, with one exception, is interpreted as part of the string. The only exception
pertains to the double-minus hyphenator (see h5.3).

To represent an internal apostrophe. repeat it as in FORTRAN 77. For example
‘Don't get me wrong'

represents the string Don't get me wrong.

Lower case characters inside an apostrophe string are not converted to upper case.

78



§7.7 QUOTE STRINGS

§7.7 QUOTE STRINGS
A sequence of one or more characters surrounded by quote marks, as in

"Please say something M

is called a quote string. Quote strings are used to implement inlime prompting. This is best
illustrated by an example. Suppose the following command is present in i seript file or a
command procedure:

OPEN "File to open: " /"OLD, HEW or SCR:"

When this command comes up the two quote strings will appear on your screen as prompts,
and CLIP will wait for your response:

File to open : IIIPUT .DAT
OLD, NEW or SCR: NEW

where the text on the right of the : are your assumed responses. The quote strings are
replaced by your responses, so the command that CLIP will actually process is

OPEN IlIPUT.DAT /NEY

REMARK 7.12

Lower case characters inside a quote string are preserved in the prompt message. Double minuses
are interpreted as ordinary characters il a closing quote appears on the same line; otherwise it is
treated as a hyphenator. Apostrophes are treated as ordinary characters.

REMARK 7.13

Obviously the use of quote strings makes little sense in purely interactive work except as a play-
thing. Its main value is the “filling of blanks” in command procedures or script files. One especially
useful application is in self-documenting procedure call sequences, as illustrated by

«CALL INTEGRATOR ( TBEG "Starting time:."; --
TEND = "Target time:" | --
DT = "Time increment")



Section 7: DATA ITEMS

§7.8 BORDERLINE CASES

This final subsection deals with the fringe elements. Some items are not casy to classify
because they are in the grey zone between numeric and nonnumeric. For example:

+ .+24 3/)

A general rule holds for these cases: when in doubt, assume a character string. Following
are some consequences of this rule.

1. Isolated characters. Any isolated character that is not a digit (0 through 9) is classified
as a character string. For example, the isolated operators

s

This interpretation simplifies the processing of algebraic language statements.

2. Impossible expressions. Constructions such as

( 4/)

are interpreted as character strings.

710



8

Special
ltems



Section 8: SPECIAL ITEMS

There are two types of special items:

1. Record marks, which are used to specify continunation or explicit ending of command

records.

2. Item generators, which can be used as work-saving aids to replicate items or to generate
regular sequences of numeric items.



§8.1 RECORD MARKS

§8.1 RECORD MARKS

The following are character sequernces that function as record marks:

Mark Sequence Function
. blank-period-blank End of record: following text is ignored
++ blank-plus-plus Continue record with item break
-- minus-minus Continue record without item break
: blank-semicolon Separate records on same data line

For a more detailed description of these marks. see 5.3,

83



Section 8: SPECIAL ITEMS

§8.2 ITEM REPETITION

A data item prefixed by n@, where n is an unsigned nonzero integer, is equivalent to
repeating the item n times. Example:

4064 2@DUM 3w(1/2)
This is the same as writing
64, 64, 64, 64 DUM, DUM 0.5, 0.5, 0.5

As the example indicates, the generated item sequence is interpreted as a comma-linked
list. It can therefore be processed by one of the list-loading entry points described in
Volume III.

REMARK 8.1

The item following n@ may be a symbolic item that eventually evaluates Lo an individual value.
The count n can also be a symbolic item that eventually evaluates to a positive nonzero integer
value.

REMARK 8.2

The item following n@ may not be another special item. For example, 68502.5 will thoroughly
baffle CLIP.



§8.3 SINGLE LIST GENERATION

§8.3 SINGLE LIST GENERATION

List Generators

While preparing input data to application programs, there frequently arises the need for
specifying lists of numeric items whose values are arranged in arithmetic or geometric
progression. For example:

1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12
6, 2. -2, -6, -10, -14
8.0, 4.0, 2.0, 1.0, 0.5, 0.25

If the list is fairly long, the use of item list generators can result not only in labor saving
but, more importantly, in reducing the risk of key-in errors through the proven principle
“let the machine do it.”

Item generation of this single kind can be specified with a three-item construction in which
two numeric data items called the end valucs are followed by a special item called the step
generator. The following constructions are permitted:

Stepped arithmetic progression U028
Subdivision into equal intervals rye/m
Geometric progression Uiy Am

Here v, and vy are two numeric items of matching data type (integer or floating), which
together define the first and last value of the generated list. respectively; s is an optionally
signed numeric value of the same type as vy and vy, and i is an unsigned nonzero integer.
Any of these components may he a svmbolic item that evaluates to a numeric valuc.

Arithmetic List: Explicit Step
The form v;:ve:s generates the arithmetic progression

vi, v1 + 8, ... vy + ks, where vt ks < vg vy bkt 1)s if s>0

V1.t 4 8,... v 4 ks, where v ks o ve ~wqy 1 (bt 1)s if <0
Using this construction, the first two example lists above can be abbreviated to
1:12:1 6:-14:-4
The general form of this gencrator is perhaps casier to remember hy thinking of the FOR-
TRAN DO loop
DO label 1,12,1 DO label 6,-14,-4

If the step s is omitted, a unit increment is assumed. Thus1:12:1 may be further shortened
to 1:12.



Sectlon 8: SPECIAL ITEMS

Arithmetic List: Subdivision into Eqnal Intervals

The form v,:vy:/m generates an arithmetic progression by subdividing the interval vy vy
into m parts:

vy, vy b (e - vg)/my g 4 20y vy)ime L v

If m =1 (or m - 0) no generation occurs and the list reduces to the end values.

Using this form the first two example strings may be written
1:12:/11 6:-14:/5

This form is generally preferable to the v;:v:s form if the items are of floating-point type
2 B-1 yp
and the number of subdivisions is more easily visualized than the step value. For example,

typing

1.0:64.0:/25
is less error prone than saying

1.0:64.0:2.52

because rounding errors may cause the last generated item to miss the 61.0 target. Another
advantage is that the user need not be concerned as to whether the resulting step is positive
or negative.

Geometric List Generation

The form vj:vy:+m generates a geometric progression going from v, to v, with the ratio
(v — v1)Y™. The net effect is that m 1 values are inserted. and the interval vy v,
subdivided into m logarithmically identical intervals. For example, the third example list
in §8.3 may be generated by writing

8.0:0.25:+5

In this form. both 1, and 5 should be nonzera and have the same sign: thev are alwavs

interpreted as floating point numbers. If m 1, the list reduces to the end values.

8 6



§8.4 DOUBLE LIST GENERATION

§8.4 DOUBLE LIST GENERATION

The single list generation capability described in §8.3 is equivalent to a one-level DO
construction. The double list generation capability described herein is equivalent to a
two-level (nested) DO construction. This form does not appear as frequently in practice
as single list generation, but it’s handy to have around should the need arise.

Double list generation is best explained by an example. Consider the 10-integer list
3,8, 5,7, 7.6, 9,5, 11,4

This is composed of two interlaced arithmetic progressions: 3:11 :/4 and 8:4:/4. But if
one tries the abbreviation

3:11:/4, 8:4:/4
the result is not what you want:

3,5,7,9,11, 8,7,6,5,4

The interlaced list can be generated by the construction
(3,8):(11,4):/4
The general form is
(Listy):(listy):/m
where the following restrictions apply:

1. list, and listy are numeric lists that contain the same number of numeric items (up
to 16). These items may be specified explicitly or through repeat-item or single-list-
generation constructions.

2. m is an unsigned nonzero integer that specifies the number {(m 1) of intermediate
sublists to be generated. If m 1 the generated list reduces to the end values. This
item must be specified; no default is accepted.

Blanks that occur inside the delimiting hraces are ignored.

The following examples illustrate how this construction works.

(1,2,3):(13,-7,15):/3 t,2,3, 5,-1,7, 9,-4,11, 13,-7,15
(301):(1:11:5):/2 1,1,1, 1,3,6, 1,6,11
((3/2).,0):(-(1/2),0): /4 1.5,0, 1.0,0, 0.5,0, 0,0, -0.5,0

8 7






Lists



Section 9: LISTS

§9.1 WHAT IS A LIST?

The concept of item bList, or simply list, is important for many CLIP-supported proces-
sors. Conceptually a list is a sequence of items bearing a “connection™ relationship. This
relationship is established in two different wavs,

If the items are explicitly typed one by one. the list attribute is conferred by separating
them with commas. If the items are generated through the work-saving constructions
described in §8.2-8.4, the list attribute is conferred implicitly.

There are two types of list: numeric lists and character lists, which are described in

the following subsections.



ﬁQQNUMERKIUSTS

§9.2 NUMERIC LISTS

The usual way of specifying a numeric list is through the comma connective. Example:
1,2.4,8,16,32

This is a list of six integers. Since CLIP keeps internally all numeric data in floating-point
format, floating-point numbers and integers can be freely mixed in a numeric list. Thus

1.0, 2.0, O, 36.0E0, 6/2
is the same as
1, 2, 0.00, 36, 3

Blanks that appear before and after the comma connective are ignored,  Consecutive
commas, Or commas separated only by blanks, generate cero ilems. For example, the
following list

is the same as
1,0,2,0,0,6

Numeric and character-string items cannot normally be mixed in the same list. For ex-

ample:
1,2, ABC, DEF, 6, 7

For normal item loading, there arc actually three lists here:

1,2
ABC, DEF
6.7

The commas after 2 and DEF are irrelevant. But in certain contexts mixed lists are
acceptable; in fact this happens in many of the directives discussed in Volume 11

The numeric item generators described in §8.3-8.4 also generate lists. For example:
0.4, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 8.0, 8.0
can be abbreviated to
0.4, 1.:6., 318
inasmuch as the generated itemns are assumed to be connected by commas.

REMARK 9.1

A numeric list may be loaded by the processor in one of three modes: integer, single-precision
floating, or double-precision floating. CLIP delivers the goods in the requested format after
transforming them as appropriate. Note that it is always the processor that decides on which data
type is best for its own consumption; CLIP simply supplies the data in the form it is told to.

9-3



Sectlon 9: LISTS

9.3 CHARACTER LISTS

Character lists occur less often than numeric lists in practice. They are constructed with
the comma connective. For example

AA, BB, CC, DD, EE

is a five-itemn character list.

In previous CLIP versions, the slash connective was also considered as producing a
character list. Thus

AA/BB/CC/DD/EE

was identical in all respects to AA,BB,CC,DD,EE. However in the present CLIP version,
only the comma-connected form is treated as a character list. The slash-connected form
is treated as character string AA followed hy four character qualifiers: BB, CC, DD and EE.

REMARK 9.2

To make the distinction more precise. here is the parsing of AA,BB,CC,DD,EE as stored in the
Decoded Item Table:

Type Pre Value Sep
Character AA
Character BB ,
Character cc .,
Character DD ,
Character EE

and here is the parsing of AL/BB/CC/DD/EE:

Type Pre Value Sep
Character / AA
Character / BB
Character / cc
Character / DD
Character / EE



10

Commqnd
Description



Section 10: COMMAND DESCRIPTION

§10.1 MOTIVATION

The developer of an application program (for example. a NICI Processor) that uses
CLAMP as source input language needs a mefalanguage for describing legal commands
when a user manual is prepared or an online help file is written. (A metalanguage is a
language used to define another language; natural languages, such as knglish, are in fact
metalanguages.)

The CLAMP metalanguage was originally patterned after the COBOI, metalanguage, par-
ticularly with regard to the use of special symbols such as square brackets and braces.
Since then, the metalanguage evolved into a simpler and more natural form as a result of
experience in preparing NICE help files. Only a few of the original rules have survived.
This Section presents rules for the description of CLAMP conumands in user’s manuals
or help files. These rules also apply to the description of directives, which are covered in

Volume I1.

10 2



§10.2 DESCRIPTION SYMBOLS

§10.2 DESCRIPTION SYMBOLS

Symbols that represent individual data items or item lists are written as alphanumeric
strings. The use of upper or lower case letters in these strings 1s meaningful.

Keywords
Upper case words are mandatory keywords that must be entered as indicated. For example:

RESTART

Keywords can be frequently abbreviated to a non-unique “root™. The convention generally
followed within the NICE system is that if more characters than the root are given, they
must agree with the full spelling. For a full discussion of the subject, see k4 of Volume IIIL.

Unlike previous metalanguage versions. the root is no longer shown explicitly in the
command description. Such refinement was found unnecessary for an interactive system
in which the user can quickly find out about the root by experimentation.

Variable Character Strings

Capitalized lower case words that do not contain a “list™ represent a variable character
string. Example:

DEFINE TITLE = Tex!

Here Text represents the expected text of a title input. which can of course he virtually
anything. In many cases restrictions are placed upon which strings are acceptable. For
example:

SET FREEDOM = Idof

The symbol Idof (freedom identifier in a finite clement program) may be TX, TY, ... etc.
Such restriction must of course be described in the help file or user’s manual.

Numeric Items

Iower case words that do not contain a “liat™ snflix represent a single numeric value,

Example:
DELETE lIODE »

FORTRAN typing conventions are often followed to distinguish integer values from
floating-point values should the distinetion be important (in many cases it is not). This is
a matter of personal style that is not subject to metalanguage rules,

In typeset text (such as this Manual), numeric item symbols are expressed in italics. This
convention makes references to n in the text more vivid. Of course, this is not possible in
computer-stored help text, where one has only typewriter fonts availa ble.

10 3



Sectlon 10: COMMAND DESCRIPTION

Numeric Lists

There are two ways of specifying numeric lists. One is to use a single lower case word that
has a “list” suflix. Example:

DEF NODE »n = roordinate-list
Another is to show the list explicitly:
DEF HIODE n = ry.ro,ra

This works well for short, fixed-size lists in typeset Manuals (like this one) since subscripts
look classy. For variable length lists. one may use the “three-dot™ notation:

DEF NODE n = rj.rq.... Tk
Again this looks best on a typeset page. but is not so good on a computer-stored text file.
Character Lists

This is similar to the numeric list case. One way is to use a capitalized lower case word
that has a “list” suffix. Example:

PRINIT [ Optionlist]
Another is to show the list explicitly:
PRINT Node-switch, Element-switch, Freedom-switeh
DELETE Component,, ... Component;

Framing

Metalanguage statements are often framed to attract attention. Like this:

| DELETE nodelist |

10 4



£10.3 ME TASYMBOLS
§10.3 METASYMBOLS

Optional Items

Square brackets are used to indicate that the intervening expression(s) are optional. x-
ample:

PRINT [Optionlist] Filename

If omitted, appropriate defaults are assumed by the user program. In the standard CLAMP
format described in §3.1, command qualifiers are always optional.

Mutually exclusive options. which may not coexist in the same command. are separated
by vertical bars:

CONNECT DEVICE [BLOCK-IO | FORTRAN-10] = wumif

Mandatory Choices

Curly braces indicate that a choice from the cnclosed expressions (separated by vertical
bars) must be made. Example:

SET MOOD = {TAKEITSERIOUSLY | TAKEITEASY}

Control Characters

Control characters = (assignation) and / (qualifier prefix) are shown in the command
description statement. Similarly, commas must he show if item lists are explicitly specified.

10 5






Glossary



Appendix A: GLOSSARY

§A.1 GLOSSARY

The terms defined below include those used in the present Volume as well as some, like database
and script, which are mentioned in passing in this Volume but figure more prominently in Volumes

II and III.

apostrophe string

architecture

argument

arithmetic expression

arithmetic operator

assignment command

batch run

character

character string
CLAMP

cLip

CLIP operation mode

A character string enclosed between apostrophe marks. All charac-
ters inside an apostrophe string (with the only exception of hyphen-
ation marks) are significant. Lower case letters are protected.

For a software product, the specification of the user interface. F. P.

Brooks in his classical The Mythical Man-Month, defines archi-
tecture of a system as *... the complete and detailed specification of
the user interface. For a computer this is the programming manual,
For a compiler it is the language manual. For a control program it
is the manuals for the language or languages used Lo invoke its func-
tions. For the enlire system it is the union of the manuals the user
must consult to do his entire job”

See macrosymbol, procedure argument.

A sequence of numeric constants enclosed in parentheses and sepa-
rated by arithmetic operators. Internal parentheses may be used Lo
specify subexpressions and force certain evaluation sequences. An
arithmetic expression evaluates to an integer constant or a floating-
point constant according to the rules stated in §7.4.

One of the symbols +, -, .~ % and /. which are used to specify

operations in arithmetic expressions

A command that specifies a value-assignment action. In the stan-
dard CLAMP format, this is expressed by connecting two parame-
ters {or parameter lists) by an equals sign.

A run mode in which a processor is under exclusive control of an
operating system scheduler. Contrast to interactive mode.

The symbols that comprise an alphabet: letters, numbers (also
called digits or numerals), and marks. Oun the computer, the con-
cept is extended to include control (nongraphic) symbols encoded
according to a standardized scheme.

A data item interpreted as a sequence of characters.

Acronym for Command Language for Applied Mechanics
Processors.

Acronym for Cominand Langunage Interface Program. The
component of the NICE architecture that implements CLAMP.

The plan of action followed by the CLIP kernel in response to the
tvpe of command being processed (ordinary command or directive)
and its sender (user or processor). Operational details are given in
Volume 111.

A2



closed interface
column

command
command language

command record

command source file
command source stack
command stream

comment line

comment sentinel

comment text

continuation mark

conversational run
data
database

data library

data line

tA.1 GLOSSARY

A software systenm interface that forbids global variables,

The index of a data line character, counting from left. to right and
starting at”’l. (Terminology holdover from the days of punched card
input.)

In a command language: an instruction consisting of one or more
items to be interpreted by the program that receives it.

An interpretable language consisting of a stream of commands that
controls the execution of a software element.

The logical representation of a command as a set of items. In
CLAMP, a finite sequence of items terminated by an implicit or
explicit end of record. A command record must contain at least one
item.

The input file from which CLIP reads data lines sent by the user or
the processor.

A stack structure used to implement multiple source input as ex-
plained in §4.2.

The sequence of command records “seen” by CLIP, when abstraction
is made of physical input source.

A data line flagged by a comment sentinel,

A mark in column 1 of a data line that identifies the text that
follows as comment. In CLAMP, the default mark is the period
when followed by a blank or a carriage return.

Text present in the command stream which is ignored by CLIP. The
following are treated as comments: text outside data field; text that
follows a continuation or end of line mark; text on a data line that
contains a comment sentinel; text that follow certain “one liner”
directives described in Volume 1L

One of the special items ++ or --, which specifies that the current
command record continues on the next data line. The double plus
mark must be preceded by a blank and always breaks items; the
double minus mark is a hyphenator and does not break items.

A form of interactive work in which a human user maintains a dialog
with a running progran.

The representation of information on i digital computer as stored
values,

A named collection of stored data organized according to a data

model.

A pamed partition of a database. which can he attached to a run-
ning processor as an entity. A data library normally resides on a
permanent file.

Each physical record read by CLIP from the command source file.
These records do not. normally exceed 80 characters under default
settings.

A3



Appendix A: GLOSSARY

data field

data item

data manager

directive
empty line

end of line

end of record

end of source

fixed-point constant

floating-point constant

GAL

global database

global data manager
hyphen
input file

interpreter

integer

interactive run

The active portion of a data line,

Anitem that is directly translated into a nnmerie or character-string
value.

A software clement that stores, retrieves or maintains data struc-
tures. If the structures form a database, the data manager is called
a database manager.

A special command record that is directly processed by CLIP and
not transmitted to the running processor.

A data line that contains only blanks or comment text.

A special item which terminates a command record and indicates
that the next one begins on another line. In CLAMP, the default
end-of-line mark is the isolated period.

Any character or character sequence that indicates the end of a com-
mand record. The end of the record may be explicitly written with a
special item (for example, end of line or record separator), signalled
by a carriage return mark in terminal input, or implicitly given by
the end of the data ficld being reached without a continuation mark
having been detected.

Any signal that marks the termination of the current command
input source. Examples: an end of file in a seript. & RETURN directive
in a command procedure, a data line containing «® in column |I.

See Iinteger.

A data item that is identitied and decoded as a floating-point value.
A floating-point constant may he written in the usual FORTRAN
style, or be the result of an arithmetic expression

Acronym for Global Access Library. which i< a data library that
conforms to the data model of the NICE global database. Also,
the name of the database manager through which GAL files are
accessed.

A database that resides on perinanent storage and is accessible by
a network of processors.

A data manager through which the global database is accessed.
See continuation mark.
See command source file.

A software element that translates a source language into a target
language on a record-by-record basis under the supervision of an
external control structure.

A data item that is interpreted as a fixed-point value.

A run mode in which the processor is under direct control of a
human user. This can be further classified into conversational run
and spectator or monitor run according to the degree of interaction.

A4



item

item list
log file
kernel

keyword

line
fist

list generator

macrosymbol

mailbox mode

message mode
metalanguage

metasymbols

monitor run
multiline record
numerals

numeric character

5A.1 GLOSSARY

A finite sequence of characters parsed as a token. In CLAMP, items
other than apostrophe strings, quote strings, procedure arguments
or macrosyinbols are delimited by blanks, commas, equals signs,
qualifier prefixes. list-generation prefixes, end-of-record marks or
data field boundaries. Apostrophe and guote strings are delimited
by a matching apostrophe. a matching quote, or the end of the data
field. Arguments and macrosymbols are delinnted as explained in
Volume 11.

A sequence of items separated hy comnas.
A file on which CLIT® writes a transcript of the commands it reads.
In a NICE Processor, the software that performs the useful work.

The kernel is surrounded by the shell. which interfaces it to the
architecture. (Terminology suggested by the Unix system.)

A character string that triggers a specific action or response from
the command interpreter on account of its spelling.

See data line.
Sce item list.
A special-item construction such as 1:15:2 that cevaluates to a nu-
meric list the items which are an arithietic or geometric progres-

sion. Generation may be one-dimensional (single list generation) or
two-dimensional (double list generation)

A character string that stands for another character string. The
replacement process is called macro expansion and may involve
argument-passing and recursion. This process is explained in Vol-
ume 11

An advanced variant of the message mode in which the running
processor uses CLIP as a “Inailbox” to send commands to another

processor.

An operating mode in which the processor “talks” to CLIP by calling
a “message” entry poinl.

A language used to define another language. The CLAMP metalan-
guage is used to describe command records processable by CLIP.

Special characters used in the metalanguage to specify logical prop-
erties but which are not part. of the command as written. For ex-
ample, square hrackets are metasymbols used to indicate that the
intervening expression(s) are optional.

See spectator run.
A command record that extends over more than a data hine.
Characters O through 9.

A character that may legally appear in iteger or floating-point con-
stants: numerals 0 through 9, +. -. ., E or D (E and D may not be
the first character).

A



Appendix A: GLOSSARY

open interface

operator

ordinary command

parameter

problem-oriented language

processor

processor directive
procedure

procedure arguments
procedure body

procedure header

prompt

qualifier

repeated item

running processor

script

sentinel character

shell

A software system interface that admits global variables such as

FORTRAN commaon blocks.
See arithmetic operator.

A command that is not a directive. An ordinary command is not
conceptually interpreted by CLLP, but passed along to the processor.

In a command language, a data item whose value is not specified
in the command description, but is assigned when the command is
written.

A command language that directs the activity of an application
program or a network of such program, and that consists of domain-
specific statements.

A software element that receives and produces data structures. In
the NICE systemn. a Pracessor (capitalized) is a software element
that produces results for the user and conforms to certain opera-
tional rules.

A directive submitted by the processor as a message.

A set of command records delimited by a procedure header and
terminator and which may be paramcterized by arguments specified
in a calling sequence.

A list of parameters specified in the procedure header and that may
be used to control a call-by-name text-replacement mechanism,

The set of commands comprised between the procedure header and
terminator.

The directive that initiates the definition of & command procedure.

In conversational operation of a processor, text that CLIP writes to
the screen to indicate that it is ready to accept a command.

Anitem (normally a character string) preceded by a qualifier prefix,
which is by default the slash. Qualifiers are used to implement
command options.

Anitem of the form n@item, where n is a positive integer and 1tem
a valid data item. This is equivalent to a list of n dentical items.
The at-sign is the default repetition character

The processor that is under execution and calls CLIP for commands.
A file of commands that is prepared in advance and then inserted
in the command stream by an ADD directive. A seript differs from a
procedure in that it cannot be parameterized or executed in nonse-
quential order.

A character that assumes a special role by appearing on column |
of a data Linc.

In a NICE Processor, the software that sitrrounds the kernel and

commumnicates with the NICE architecture software. (Terminology
suggested by the Unix system.)

A6



software element

software system

source

special item

spectator run

splash line

statement

string

symbolic item
text dataset

textstring

user
user command

user directive

KA1 GLOSSARY

Any piece of software that can be distinguished and identified for
functional purposes. This may range from primitive subroutines to
complex packages such as a database manager.

A software element or set of software elements packaged within a
common architecture.

See command source file.

A character sequence that does not evaluate directly to a numeric
or character string value but is used for special purposes.

A form of interactive work in which the user does not actively inter-
act with the running processor. Instead the user starts execution,
designates input sources where the commands are prepared in ad-
vance, and “sits hack™ to watch the processor do its thing. Also
called monitor run.

An explanatory line (or lines) of text that is optionally printed by
CLIP before the prompt to guide the user in commmand selection.

The conceptual representation of a command. More specifically, a
command record or a set of command records when viewed as an
element of a problem-oriented language. The view is in terms of
actions in the domain of applications.

A finite sequence of symbols that helongs to a common class. Also
short, for character string.

An item that stands for another item or an iem st
A database entity that consists of a sequence of card-image records.

A “passive” character string interpreted as data; for example a line
of text or a plot title. Contrast to keyword, which is an “active”
character string that controls program actions,

The beneticiary (normally a human) of the processor activity.
An ordinary command submitted by the user.

A directive submitted by the user; contrast to processor directive.






B

Ancient
History



Appendix B: ANCIENT HISTORY

§B.1 HOW CLIP CAME UNTO BEING

An INMlustrious Ancestor

The kernel of CLIP is LODREC. The inmtial version of LODREC was written by the anthor
in 1969 while at the Stress Research Group of Boeing’s Commercial Airplane Division (Seattle,
Washington). The program was largely based on a punched-card free-ficld reader written by
Lawrence Schmit, one of the architects of Boeing's ATLAS system.}

The first Univac version of LODREC was the result of converting the CDC’ version when the
author moved to Lockheed’s Palo Alto Rescarch Lahoratory in 1971. This version was documented
in April 1971. Since then. successive versions of LODREC have been used as utility modules for
processing the source input data of all of the application software writien by the author. In fact,
the author has not had the occasion of using a formatted READ for input data since 19691

A major revision and expansion of LODREC took place during 1971 1972 while work on
the now defunct NOSTRA (NOnlinear STRuctural Analyzer) program was underway. Many
of the syntactical features which are now part of CLAMP took shape It was decided to label
the underlying language as NIL (NOSTRA Input Language), a designation that survived the
NOSTRA code proper until 1978. A detailed dociimentation of NIL was published in 1973

Another major revision of LODREC took place in 1976-1978. In 1976, the concept of directive
was introduced as a way of implementing “service commands” intended for internal consumption
by LODREC, and hence invisible at the user program level. The most important class of directives
pertains to the definition and handling of command procedures, a concept implemented in late
1976. Further refinement of this feature occurred in 1978, when the ability for directly interfacing
LODREC with a library-oriented database management system was established. The command-
procedure concept proved to be so powerful that it led to the dropping of other experimental
features (e.g. inline command generation), which are now more naturally presented in a procedure
framework.

The Survival of the Fittest

During its nearly 10-year existence, LODREC has processed several million command records,
New features were incorporated and tested almost every year. Only ahout half of those features
have survived to date, as witnessed by the following list which covers LODREC and CLIP.

1. Multiple cornmand per line (1969 to date)

2. Multiline commands (1969 to date)

3. Text records (1970 1974)

4, Parenthesized comments (1970 1972)

5. PL/1-like comments (1970 1972)

6. Starred character strings (1971 1974)

7. Packed-bit items (1971 -1972)

8. Record generation by «+k (1970-1976). superseded by 23.
9. Item generation by +k--n s (1971 1978)

t An evolved version of the first LODREC is still used as mput data interpreter for ATLAS,
which however runs only on CDC Cyber machines. Yet another derived version now drives
the data management system RIM. developed by Boeing for NASA Langiey.

B 2



NASA

Nationa Apronautics anc
3040 Adrmimstiation

Report Documentation Page

1. Report No. 2. Government Accession No.

NASA CR-178384

3. Reciplent’s Catalog No.

4. Title and Subtitle
The Computational Structural Mechanics Testbed Architecture
Volume I - The Language

5. Report Date
December 1988

6. Performing Organization Code

7. Author(s)
Carlos A. Felippa

8. Performing Organization Report No.
LMSC-D878511

9. Performing Organization Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street
Palo Alto, California 94304

10. Work Unit No.
505-63-01-10

11. Contract or Grant No.
NAS1-18444

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes
versity of Colorado, Boulder, CO 80309-0429

Langley Technical Monitor: W. Jefferson Stroud

Current affiliation: Carlos A. Felippa, Center for Space Structures and Controls, Campus Box 429, Uni-

16. Abstract

This is the first of a set of five volumes which describe the software architecture for the Computational
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed
Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the
command language interpreter (CLIP), and the data manager (GAL). Volumes I, II, and III (NASA CR’s
178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface.
Volumes IV and V (NASA CR’s 178387 and 178388, respectively) describe GAL and its low-level I/O.
CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control
the flow of execution of processors written for NICE. Volume I presents the basic elements of the CLAMP

language and is intended for all users.

17. Key Words (Suggested by Authors(s))
Structural analysis software

Command language interface software
Data management software

18. Distribution Statement
Unclassified—Unlimited

Subject Category 39

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages |22, Price
93 A0S

NASA FORM 1628 OCT se

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171




§B8.1 HOW CLIP CAME UNTO BEING

10. Item repetition by n + item, then nitem (1970 to date)

11. Mandatory data line sentinels (1972 1978)

12. Composite floating-point constants (1972-1984), superseded by 29.
13. Apostrophe textstrings (1972-to date)

14. Numeric local variables (1972-1979), superseded by 25.

15. Local symbols (1973-1980), superseded by registers.

16. Transfer to indexed record (1974 1976), supcerseded by 21.

17. Record group repetition (1974-1976)

18. Hollerith textstrings (1974 1981)

19. Directives (1976-to date)

20. Command procedures (1976 to datc)

21. Transfer to labels (1976-to date)

22. Colon-delimited itemn generators (1977 -to date)

23. Record generation by DO directive (1977 1084), superseded by GEN.
24. Interface to global database manager (1978 to date)

25. Macrosymbol facility (1979 to date)

26. Registers (1979-1984), superseded by local macrosymbols.

27. Quote strings (1982 -to date)

28. Structured directives IF THEN ELSE, WHILE DO (1982 to date).

29. Arithmetic expressions (1981 to date)

The acid test for survival of a new feature has been its usefulness and muemonic quality in
interactive work. If a person sitting at a terminal has to think for awhile before using a certain
feature, doubts about its survival in the next version arise. Features found useful over several
years may also disappear as a subsequent improvement is developed; for example, numeric local
variables replaced by registers replaced by macrosymbols.

The transmutation of LODREC into CLIP took part in two stages. Functional requirements were
identified as a result of the top-down design of the NICE architecture in the period March, 1979
through February, 1980. As the design evolved, it hecame evident that the command interpreter
would have to be configured as a Unix-like “shell” surrounding the basic kernel (the old LODREC)
as well as satellite subsystems for command-pracedure handling, database management interface,
etc. This ensemble was identified as CLIP.

The second stage involved the implementation of CLIP on the VAX 11780 computer in the
FORTRAN 77 language. The bulk of this work was carried out from March through August 1980.
In retrospect, the decision of going with FORTRAN 77 (then just available on the VAX but not
on Univac) was fortunate. The powerful FORTRAN 77 character-string processing capabilities
allowed machine-independent coding of critical subroutines, and resulted in a productivity increase
estimated at 3:1 over a similar effort that would had mixed FORTRAN 66 and assembly language.
And over 90% of CLIP is character processing.



