
NASA Contractor Report 178384

The Computational Structural Mechanics Testbed

Architecture: Volume I- The Language

I_A_A-CI_- 17_3_) _ CCB_U_I(I_AL
_SUC_UEAL H_CI_I_ICS _ESTBEE _PCHI_ECTURE.
LUM I: T_E L_SGSAGE (LockhEed _issiles

and $_ace Cc.) c5 p CSCL 20K

N89-I_472

Unclas

G3/J9 0165G73

CarlosA. Felippa

Lockheed Missiles and Space Company, Inc.

Palo Alto, California

Contract NASI-18444

December 1988

i',lahOn<_! Aeronauh(s and

%pac:e Admlnp?tral,on

Langley Research Center

Hampton. Virginia 23665-5225

Preface

The first three volumes of this five-volume set t,rcsent a language ,'_dled CI,AMP, an

acronym for Command Langllage for Applied Mechanics Processors. As the llalne

suggests, CLAMP is designed to control the flow of execution of Processors written for

NICE, the Network of Interactive Comi)utational Elements, an integrated software

system developed at Lockheed's Applied Mechanics Laboratory.

The syntax of CLAMP is largely based upon that of a 1969 command language called

NIL (NOSTRA Input Language). The language is written in the form of free-field source

command records. These records may reside on ordinary text files, be stored as glol)al

database text elements, or be directly typed at your terminal. These source commands are

read and processed by an interpreter called CLIP, the Command Language Interface

Program. The output of CLIP does not haw' meaning per .+c. The Processor that calls

CLIP is responsible for translating the decoded comman<ts inlo spo(itic actions.

The ancestor of (_LIP, LOI)REC. was patterned after the in_)ut languages of ATI, AS

and SAIL, two structural analysis codes that evolved al llo(,ing in llw late 1960s. M()re

modern language capabilities, notably cotnmand procedures and ttta(:rosytnbols, have been

strongly influenced by the Unix TM operating system and the C l)rogramming language, as

popularized by Kernighan, Plauger and Ritchie in their textbooks. The IInix "shell/kernel"

concept, in fact, permeates the architecture of the NICE system, of which ClAP is a key

component.

NIL and its original interpreter LODREC, which now constittttes the "kernel" of CIAP,

has been put to extensive field testing for over a decade. In fact NIL has been the input

language used by all application programs developed by the anther si_)ce 1969 to 1979.

(NIL also drives the relational data manager RIM developed by Boeing for NASA LaRC.)

During this period many features of varying degree of complexity were tried and about

half of them discarded or replaced after extensive experimentation. ('I,AMP represents a

significant enhancement of NIL, particularly as regards to directive processing, interface

with database management facilities, and interprocessor control. The current version is

therefore believed to be l)owerful, efficient, and easy to UntO, and well suited to interactive

work.

The present Manual is a greatly expanded version of the original March 1980 version,

revised on April 1981. Because of its length, the material has been divided into five

Volunms, which cater to different user levels.

Volume I (NASA CR-178384) presents the basic elements of the (:I,AMP language and

is intended for all users. Volume I1 (NASA CR-178385), which cowers (;LIP directives, is

intended for intermediate and advancedusers. VolumeIII (NASA CR-178386) deals with

the CLIP-Processor interface and related topics, and is meant only h)r Processor devel-

opers. Volume IV (NASA CR-178387)describes the Glol)al Acces_ Library (GAL) and is

intended for all users. Volume V (NASA CR-178388) describes the low-level input/output

(I/O) routines.

All volumes are primarily organized as reference documents. Except for modest at-

tempts here and there (e.g. §3.1 in Volume I and Appendix C in Volume [[I), tile l)resen-

tation style is not tutorial.

ii

Contents

1 Introduction

2 CLIP

8 Commands.

4 Lines of Input

5 Command Records

6 Characters

Y Lists

8 Constant Items

9 Special Items

10 Command Description .

1-1

2-1

3-1

4-1

5-1

6-1

7-1

8-1

9-1

10-1

Appendices

A Glossary

B Ancient tlistory

°°o

III

Introduction

1 1

Section1: INTRODUCTION

§1.1 WHAT IS A COMMAND LANGUAGE?

Readers not previously exposed to interactive software may lind it dilficult to grasp tile

difference between a programming language such as FOWrRAN or l-)asic, and a command

language. The key differences are summarized below.

1. Programming languages are used to construct executable software elements such as

FORTRAN subroutines, Pascal procedures or Adn packages. On the other hand,

command languages are used to guide th(, high-level execution of such software el-

ements. Put it in another way: programming languages are used to specify data

processing and management functions, while command languages are primarily used

for high-level control functions.

2. Programming languages are generally compiled into object code prior to linking and

execution. Command languages are interpreted at run time by control software.

3. Command languages specify actions, which in most cases are carried out immediately

before the next command is read. The do-it-now mode facilitates conversational op-

eration of programs by inte.ractive users, b(,cause these users can enter commands

in response to the observed effect from the previous command. This "improvisa-

tional", continuous-feedback style cannot be achieved with conventional programming

languages.

Some batch-oriented users may be surprised to learn that they have be(,11 using a conlmand

language for some time! The so-called "control cards" in batch operating systems are

nothing more than statements of an operati)) 9 system com)na))d lanquage through which

the user directs the overall job execution of operating system routines. I)! this case, the

software being controlled is (he computer operating system.

A problem-oriented command lon.quage is one through which the user controls the

execution flow of applicatio)) programs. In this case, the thing being controlled is the

application software itself. The qualifier problem-oriented means that the English-like

command syntax reflects the application. For example, a command appropriate for a

finite-element analysis code might be

PRIHT ELEMEHTS 5 TO 24

which is easily memorized. This example clearly shows that command languages tend to be

of higher level than programming languages, because the details of how the print display is

accomplished are concealed and the user simply perceives the results of the PRINT reqtwst.

Or to put it more succinctly: in a command language the task of specifying how is

less important than specifying what.

REMARK 1.1

In the computer science literature, conventional programming languages _uch as FORq't_AN,
Pascal or Ada are sometimes called procedural, whereas higher level c()mmand languages are called

I 2

_1.1 WHAT IS A COMMAND LANGUAGE?

nonprocedural. These adjectives try to convey the idea of how versus what, but. are misleading in

the sense that one may certainly write command language "pr_cedures". (A good [)art of Volume

II is devoted to this topic).

REMARK 1.2

The term ob3ect-oriented programming is currently in vogue to describe software-development

methodologies that emphasize thinking in terms of objects whose actual representation ill the

computer is irrelevant to the user. For example, a tinite element is an object; a subroutine

that prints finite element data is an object, and so on. Command languages combine functional

abstraction (the verb PRINT in the example) with object references (the names that follow the

verb).

REMARK 1.3

Note that the example command was printed in typewriter font,. This v_mvention is used through-

out this Volume set: it means the act_tal comtnand as typed by the ttser. This is different from

a command specification, which is d_me in torms of a metMan.q_taqe described in §10. "['he met-

alanguage specification combines typewriter font for literal items with italir.s font for variabh,
items.

13

Section 1: INTRODUCTION

§1.2 WHAT IS CLAMP?

CLAMP is an acronym for Command Language for Applied Mechanics Processors.

The name conveys the origin and intended application.

In general terms, CLAMP was created to simplify high-level, interactive operation

of application programs and integrated networks of suctl programs. It. offers program

developers ways and means for building l, robl,:m-oriented lang,ages tailored to achieve

specific goals. The language is not tied. however, to any specific application: it is generic.

More specifically, CI,AMP was originally designed and iml)lenwnte(I to support the

NICE system, which has been under deveh)l)m(,nl at. I,ockheed's Appli_'d Mechanics I,al)-

oratory since 1980. But, as noted a|)ove, the scope of CI,AMt' is not limited to Nlf',E

support.

The CLAMP language may be logically viewed (see Remark 1.4 below) as a stream of

free-field command records read from command sources. Command sources may be actual

files or virtual files (messages). "['he source commands are interpreted by a "filter" utility

called CLIP, which stands for Command Language Interface Program. The main

function of CLIP is to produce object records for consumption by its user program. (In

this regard, see Remark 1.5 below.)

Most (but not all) command records are devoid o[meaning a! the CLIP level. That

is, CLIP does not care what the command is for. This is analogous to a data management

system, which does not care about the meaning of the dat.a structures it manages, or a

compiler, which does not care about the purpose of the code it translates. Going back to

the example of §1.1, CLIP interprets the command

PRII,IT ELEMEHTS 5 TO 24

as a sequence of five items: PRINT, ELEMEI[TS, 5, TO and 24. But ('I,IP does not understand

about finite elements, element numbers, and similar probh'm-related things.

The assignation of meaning transmutes object command records into statements.

Statements are the basic building blocks of a problem-oriented language. The language

drives the application program through the statements. A command-driven input envi-

ronment is ideally suited to interactive work, whether carried out in conversational or

spectator run mode. (For precise definition of th_e "run mode" terms, see the Glossary

provided in Appendix A.)

REMARK 1.4

CLAMP represents a significant enhancement of the N()S'FRA Input l,anguage (NIL), which was

developed to support the NOS'I'RA program during the period 1971-1972. llistorically curious
users may read Appendix B.

REMARK 1.5

Not all commands are devoid of meaning at t,hv (_I,IP level: ._2 introd,('es directives, which are

commands executed directly by CLIP. Volurrw [I is entirf, ly devoted 1o directive description.

1 4

§1.3 THREE COMMAND VIEWS

§1.3 THREE COMMAND VIEWS

In modern database management systems three views of the ,_l,ored data are distinguished:

physical, logical and conceptual. A similar three-tier strucl, ure can be distinguished for

command languages:

l° Physical view: data fines. Commands as physical records of characters. This level

relates to the way you get these characters into the program.

, Logical view: command records. Commands as item sequences. This level is also

called the syntactical or 9rammatical level: you learn a set of rules for writing formally

correct commands, e.g., that items are separated by blanks. This level is concerned

with form and not with meaning.

. Conceptual view: statements. (;omman(ls as action agents. This level is also called

the semantic level: you are concerned with what a syntactically correct command will

do for you.

At the physical level CI, IP is simply a free-field data lin,' reader. At the logical level C'I,IP

is a lexical analyzer that parses those data lines into tokens or items. ('l,ll' enters the

conceptual level only for directives. For ordinary commands the conceptual level is left. to

the processor executive.

15

Section 1: INTRODUCTION

§1.4 MANUAL ORGANIZATION ()UTLINE

This document has been written to fulfill two main objectives.

1. To serve as a CLIP User's Manual for d_,v_,lol)_,rs of al)l)li(ation l)rograms (e.g., NICE

processors) that use CLAMP as source input language.

2. To serve as a general Reference Manual for t_I,AMP language sytltax and comrnand

descriptions.

The material covered in Sections 2 through I0 _ll)t)li_,s 1o both obje('l iw,s, nit.hough the last

three sections deal primarily with advan('ed t'ei_tur(,s.

This Manual is not a tutorial docllment.

16

2

CLIP

_- ..]L

Section 2: CLIP

§2.1 CLIP OPERATION

The command language interpreter CLIP interacts with three operational elemeni_: u,_er,

running processor, and global data manager. These three terms are (lefined as follows:

User. The person (or entity) that reaps lhe benefits of the processor activity. In interactive

conversational mode, a human user is in direct. I we-way communication with the processor.

In other situations, such as batch runs, the communication is indirect and occurs through
a prepared command file.

Running Processor. The software element thai produces results for the user. (If the

running processor is a Nl(:E-conforming processor, the noun is capitalized: Processor.)

The processor activity is controlled by the rommand language.

Global Data Manager. The software elernent through which lhc global database is accessed.

The global database is a catalogued collection .f dala produc(,(I by the running l)roce._sor

or other communicating processors. It ('all also sl,Ol'l' ('Olllrnalltt Ja.llgllag(' j)rocedllres alld

help documentation for the interactive user. The global (lala manager for the NI(:I!; sysiem
is called GAL.

During processor execution, (;LIP can operate in three modes: user cotnmand, user di-

rective, or message. The last mode has two variants known an s['lf-message and maill)ox.

These operation modes are summarily described below.

User Command Mode

The standard operating mode of CI,IP is lhe user-commat;d mode, sometimes called the

command mode for short. Commands are directly suppli+,d I)y lhe oser, retrieved from

ordinary card-image files, or extracted fr'onl the global database, and sut)mitled, on requ+'st,

to the running processor. This hie,h, can be diagramtned as

User [
Card-image file

Database entity /

:> (_<)tntt+and lexl :- (_I,IP > l'rocessor

User Directive Mode

In user directive mode, special commands called directives, which are supplied by the user,

read from card-image files, or retrieved from the global database, are processed directly

by CLIP. The processor is "out of the loop". This mode can I)e diagrammed as

User I
Card-image file •

Database entity /
:- I)irective lCX|r _ (;LIP ! ; l)atal)ase]

2 2

_2.1 CLIP OPERATION

where the bracketed term is meant to indicate that processing of the directive may possibly

affect the database state.

Directives are identified by a leading keyword prelixed by an asterisk. Transition from

processor-command mode to directive moth, is automatic. Once lhe directive is processed,

CLIP returns to processor-co_nmand mode unless the direciiw, is _ ('()mmand-l)rocedure

definition. In this exceptional case, (;I,II _ stays in the directiw, mode until the end of

a procedure is detected (procedure definition is lhe only instance of a multi-command

directive).

Directives are used to dynamically change run-environment, l)aram,'_ ers, to process ad-

vanced language construcls such as macrosyml)ols and command procedores, to implement

branching and cycling, and to requesl services of general usefulness.

All CLIP directives are available from any processor thai uses it.

Self-Message Mode

Message mode means that the processor "talks" to (;I,II'. There are, two variants of mes-

sage mode: self-message and mailbox. In self-message mode, the processor supplies a

directive or stream of directives, possibly inlermixed with ordinary commands, to ('.lAP

for immediate processing. This mode may be diagrammed as

Processor - > Message te.rt _ (;i,IP I > I)atahasel

In this mode the user is "ou! of the loop." Transfer to message mode occurs when lhe

processor calls a message-sender entry point, The processor-(:l,II _ ensemble stays in this

mode until an explicit or implicit end-of-message signal is acknowledged 1)y (_'LIP,

Mailbox Mode

This is an advanced variation of the message mode in which the processor supplies a

command procedure to CLII' for downstream consumption by other processors. CLIP

effectively acts as a mailbox through which the command procedur(' is stored in the global

database. This mode can l)e diagrammed as

Processor > (!LIP > l)aial)ase _- ('1,11 > • _. t'rcwes_or

Again the user is "out, of the loop." As above, transfer fronl lhe proc,,ssor-command nit)de

to the message mode is initialed by the runnillg processor calling n nlessage-sending entry

point. The key difference from the previous case is thai the message is not immediately

"opened" by CLIP, but simply saved for use by another processor. The mailbox mode

forms the basis for synchronizing the execution of NICE mini-networks for coupled-system

dynamic analysis or optimization applications.

---3

Section 2: CLIP

{]2.2 INTRA- AND INTERPRO(:ESS()R (_()NTR()L

The conventional use of a command languagr s_wh as CI,AMI' is t_, g_titl_, the flow of

execution within the running processor: (to this, rio that.. This is called intra-processor

control. The key feature is that tile processor does not stop executing.

In certain advanced network-operation modes a running processor may directly or

indirectly initiate the execution of other processors, put itself to sleep (hyl)ernation) and

resume execution (wakeup). These operations pertain to a higher plane known as inter-

process control.

In addition to its more mundane capabilities, certain versions of CI,IP provide in-

terprocessor control services. These services inchlch, process iniliatioTI.._uspension, task

synchronization through status checking, and wakeup. These services are provided through

ad hoc directives.

The implementation of interl)rocessor control is higllly machir,,-d_'twtTdent, })ccaTaso

ClAP has then to talk directly to the operating system. Remnants of the dependency per-

colate to the processor-developer and processor user. On somv archaic operating systems,

such as Univac's Exec-llO0 and (',l)(','s Scope. these operations arc either impossible or

severely restricted.

On the last account, effective application of intcrprocessor control services is a fairly

advanced and specialized topic and thus it does [lot pertai|l to l he elen_entary exposition

level of this Volume. The subject is dealt with in the "Super('Llt'" chapter of Volume II.

2 4

_2.3 CONFIGURATION OF CLIP

§2.3 CONFIGURATION OF CLIP

Internal Structure

The present CLIP consists of the following (omponent_.

CLIP Shell. Tim implementation of a clo._ed interface between the three internal com-

ponents of CLIP (kernel, directive and dalaba._,,-interface sut)sy._tems), al_d the external

environment. (For the definition of "closed inlerface," _(,(, Appendix A.)

CLIP Kernel Largely based on LOI)RE(: (of. Appendix ll) The workhorse modllle of

CLIP. Performs tasks pertainingto the decoding and parsing t)f command languag(' text.

Directive Subsystem. Controls activities undertaken while in directive mode. For example,

definition and retrieval of command I)rocedures.

Global Database Interface Subsystem. A moduh' that handles communication with the

global database manager GAL for activities thai require transaction._ with the global

database.

SuperCLIP. A module that handles activities lhal l)ertain to iuterl)rocessor control. This

module exists only under certain operating systems.

CLIP Versions

The CLIP master source code {MS(:) embeds all conceivable in._lances ¢)t"(:l,ll', including

machine-dependent code for various computer systems such as VAX/VMS, VAX/IIII,'ix,

SUN/UNIX and CRA'_/UNI(JO_. Virtually all ()f the code is full F()ItTRAN 77 with

some assembly-language sections for VAX/VMS.

The single MSC file also contains ('LIP v(,rsions of varying hlncticma[ity. These ver-

sions are delimited by the MAX distribution keys listed in Tabh, 2.1.

When the MSC file is read through the pr,,processor MAX io ,'xtract cOral)liable

code, specifying all the above distribution keys results in ;_ versiov_ of (;I,IP with its full

functionality. If no keys are specified, a bare-bones (ZI,IP results; this stripped version

(MicroCLIP) is not much more than a fancy free-field reader. Specifying several (but not

all) keys yields versions of intermediate functionality.

2-,5

Section 2: CLIP

Table 2.1. CLIP MS('. Distribution Keys

Key Purpose

COMPRO

EZGAL

MACRO

SUPERMAN

WORKPOOL

Delimits the command procedure facility described in §5 of

Volume II. This is part of the dire(tive subsystem.

Delimits the global data manager interface describ_d in §7 of

Volume II.

Delimits the macrosyml)ol facility described ill _4 of Volume

II.

Delimits the int.erprocessor control facility known as Sul)er-

CLIP, which is described in §9 of V(flum(, il. This is only

presently availabh, under VAX/VMS.

l)elimits the local data manager interface described in §8 of

Volume lI.

2"-6

3

Commands

3-1

Section3: COMMANDS

§3.1 WHAT DO COMMANDS LOOK LIKE?

This section covers the general aspects of tilt' command language CLAMP. Before

launching into technical details, however, let us begin with an overview of what CI,AMP

commands are supposed to look like. If you are already an experienced user of command

languages, you may want to go over this section quickly, just skimming over it. to absorb

terminology.

The following description covers the so-called standard CLAMP/ormat. This is a small

but important subset of the total number of command formats that CI, IP can process.

Reasons for using this particular format are olfered in _3.2.

One-Item Commands

The simplest type of command has only one item. which is usually an action verb. Exam-

pies:

KUII

STOP

An item such as RUt! or STOP is called the command verb. The vc,rb indicates what the

command does. These commands are very easy to remember and quick to type, so lhey

are recommended for highly interactive programs as long as they arc' workable.

Two more advanced but important applications of one-item commands are: to en-

ter and exit processor subsystems, and as components of multilevel commands. The last

function is briefly covered in Remark 5.1.

Abbreviations

One-item commands are so much easier to type that sometimes the command language

designer "cheats" a little bit. Consider

PKIUT TABLE.OF COI,ITEt,ITS

This is a two-item command in which TABLE OF COHTEIITS is a either a parameter of the

PKI_IT command, or a verb modifier, as explained below. If this command happens to be

heavily used by interactive users, the command designer may introduce an abbreviation

such as

TOC

There is no visible verb here; PRI}IT is implied. As a general rule the abbreviation technique

should be sparingly used. as it can get out of hand. It is generally better to let users decide

upon their own "custom" abbreviations.

3 2

,_3.1 WHAT DO COMMANDS LOOK LIKE?

Parameterited Commands

One-item commands are convenient but limited in function.

parameterized in one way or another, l"or ,,xample:

TYPE INPUT.DAT

MosL useful colnnlands are

is a parameterized command that may request thai. the contents of a texl file be displayed

on the user's terminal. Here TYPE is the command verb while IIIPUT.DAT is a parameter.

If you look up the description of the TYPE command on the lTsers Manual or [)rocessnr

Help File, you ought to see a "generic" description such as

"The command

TYPE File.sine

displays the contents of an existing card-image file named ["ile.na, tnr on the user's

terminal."

This description style is typical of (:I,AMt' commands. "l'lw key point is that Filename

is a parameter; hence the use of italics; capitalization of the tirst letter conventionally

indicates that a character string is expected (precise rules to this effect are given in {]10.2).

When the user enters a TYPE command, he or she writes the name of the specific file to be

displayed.

Parameter Lists

Parameters need not be single items. Some commands take parameter lists. A list is a

sequence of items separated by commas. Example:

DELETE 4,17,23,31

The four integers: 4,17,23 and 31 fl_rm a parameter list ['or the DELETE command.

Is the order of list items relevant? It, may or may not he: this depends on the command

function and its implementation. Consultation of the directives manual or Processor Help

File is recommended to deternline exact usage.

Assignment Commands

A more general form of a parameterized conmm nd is one in which a parameter, or param-

eter list, is equated to another parameter, or to a parameter list. Examph,s:

SET SPEED OF SOU_ID = 6125.3

DEFI}IE I{0DELIST = 1,2,3,5,8,13,21

COPY 1,2 = 3,6, ABSTRACT

This command form is typically used to "assign" or "insta||tiate", in some sense, objects

named in the right parameter list to the objects named on the left. Think of the general

form

3-_3

Section 3: COMMANDS

Verb l)cshnahot_ ,

or, if you are mathematically wninded,

Verb Le/thandstde

OTI rc

Ri.qhthandside

in which the Verb clarifies the operation. These are called ossignment commends.

Typical "assignment" verbs: ASSIGN, ATTACH, BIND, CONNECT. COPY, DEFINE, GET,

MAP, MOVE, PUT, RENAME, SET, TRM.ISFER. Note tile similarity with assignment state-

ments in conventional programming languages, for example

Verb Modifiers

A-: B _ X (FORTRAN)

a :-:- b _ x; (Pascal)

Sometime a command verb is actually two words; the second one. called a mtMifier, makes

the first one more explicit:

SET UNIT PRINT = 6

SET UNIT is a compound command verb: UNIT is the modifier. PRINT is the left (receiver)

parameter and 6 is the right (source) parameter.

Qualifiers

So far we have talked about commands whose items arc mandatory; they must not be

omitted and must appear in the order shown. For example, leaving out UNIT in SET UNIT

PRINT = 6produces

SET PRINT = 6

whose meaning is quite different.

ttow can we take care o1 opttotl._? An elegant way. though Iar from the only one, is

through command qualifiers. A qualiticr is a word preceded by a special prefix, which in

CLAMP is usually the slash. Example:

OPEII /I!EI;! IIIPUTFIL

may be a command that opens a new file calb'<! IIIPUTFIL. The blank b_fore the / is often

optional, but it never hurts.

The key feature of a qualifier is that it is optional, which means that there is always

a default interpretation. If you just say:

OPEN INPUTFIL

this must be a legal command for opening IItPUTFIL. (A common default interpretation,

by the way, is open an old file if it exists or else create a new one.)

3 4

!i3,1WHAT DO COMMANDS LOOK LIKE7

In most cases, the position of a qualifier does trot matter as long as it, comes after the

verb. Thus

OPEN INPUTFIL /NEW

will also work. This indifference to position is an asset, in conversational interactive work,

as the need for a qualifier often comes as an afterthought, after one has typed much of the

non-default part.

The slash is the usual default qualifier in (;I, AMP commands, but it may be changed

to another special character through the use of the SET character dire(:tive.

Parameterized Qualifiers

Sometimes qualifiersare followed by a parameter or parameter list,to which they arc

connected by an equals sign. Here isan example: the commaud

0PEI_ IFIPUTFILE /NEW /LIMIT=45000

specifies the capacity of file I_IPUTFIL, which is the maximum size to which the file may

expand after creation; this is necessary on some archaic operating systems. Just saying

/LIMIT would not work; the computer has to be toht "how big it can get." It is perfectly

acceptable to have a default capacity; therefore, LIMIT is a qualifier and not a parameter.

35

Section 3: COMMANDS

§3.2 STANDARD CLAMP FORMAT

Are the commands illustrated in §3.1 the only forn,s accepted by Cl,l])? Far from it,. CI,IP

can process virtually any command format you car(., to think about.

Thus, if you happen to be a c()mnland designer with (;ermanic tastes and would like

to put the verb at the end, so be it. (:I,IP will pass Io your program t,hc l)arsed comnlan(t

and you search for the verb. Similarl,,. you can have three param(,tcr lists ()r transpose the

meaning of = in an assignment command, or replace the by the keyword TO.

Even if you object to CLIP item-parsing rules there is an ultimate solution: you (:an

ask for the "virgin" text, just as the user typed it. and write your own parser. (Voltmm

III explains how to get the command text.)

Why, then, have we talked about a standard format? There are three good reasons

that put together form a compelling cause.

.

.

.

Additional Support. CLIP provides a comprehensive set of utilities for helping you,

as a processor developer, process a standard-format command. For example, you can

ask for a list of all qualifiers and you will receive it. Bu! if your command syntax is

nonstandard you will have to build such ulilities yourselL

Interface Consistency. Components of large program networks sm'h a,_ NICE are writ-

ten by different persons. Adopting a standardizext command format avoids st, rl)rising

users when they move froliI one processor to another.

Agreement with CLIP Directives. As noted previously, directives are special commands

processed by CLIP. Their formal agrees with that described in §3.1. Thus, interface

consistency is further enhanced.

3--6

}i3,3 COMMAND SOURCES

§3.3 COMMAND SOURCES

Source Files

After reading or skimming §3.1, you should have by now an idea of what (;LAMP com-

mands look like. But where do they come from? Well, CLIP normally takes them from a

card-image file. Reasonably enough, this file is (:ailed the command source file.

But wait, you say. Suppose I am happily typing commands at my terminal: what file

are you talking about? Well, there is always a file involved, albeit invisible. Most operating

systems communicate with the outside world of peril)heral devices through actual files, and

a terminal is a peripheral device. Thl,s, the lines you type become in fact records of l,he

system input file. Since CI,IP is inside the computer, it can access your keyboard input

only by reading that file.

REMARK 3.1

On most systems, CLIP accesses the syslem input file through the t_I';AI) (unit,'(A)') st.af.ettlent
of FORTRAN 77.

REMARK 3.2

The system input file has system-dependent names. On the Uniwtc it is calh,d READS; on CDC

it is INPUT; and on VAX/VMS it's SYS$INPUT. But the name is unimportaut. To CLIP this

is called the root command source because of the reasons offered in §.1.2, and its internal name is
either $root; or St;ecru.

REMARK 3.3

Why did we say "normally takes them"? There is the world of messages to worry about. One-line

messages are not implemented as actual disk files, but virtual ones

(;hanging Sources

When CLIP starts up, its input is normally taken from the system inl)ut file. The command

source file can be identified with other files or source of input. (:I,1P can in fact change

the source input for

(A) Reading commands from a "script" or procedure file;

(B) Reading commands from a global dataha_o entity: or

(C) Receiving commands sent by the processor while in the message mode.

A change in the command source ill(, to account for cases (A) and (B) occurs in response

to special directives. In case (C t, the switch occurs in response Io a processor reference to

the message-receiver entry point in t:I,lP. More details on rn_lltisource input are provided

in §4.2.

3 7

Section 3: COMMANDS

§3.4 THE COMMAND STREAM

The sequence of images received by (;lAP from one or sew'ral source files is called the

command source stream, or command stream for short. The command stream is a logical

concept; it reflects the way CLIP kernel "sees" its input:

corutnand I

command2

corn m a n d3

regardless of physical source. Perhaps commandl comes from the terminal, command2

from a script file, command3 from a message. From the receiving end, it does not really

matter.

Following §4, which deals with physical aspects, §5 and _6 focus on the basic organi-

zation of the command source stream. These two sections explain how the basic command

components, called items, mesh together to form command records. Rules to this effect

define the command record syntax. §7 through §9 go deeper and cover rules concerning

individual items.

Basic Characteristics

Some important characteristics of the command stream are listed next.

1. The command stream is partitioned into logical blocks of informalion called command

records.

2. On first cut, command records may be categorized into ordinary commands and di-

rectives. Ordinary commands are processed by CLIP for eventual use by the running

processor and become obiect command records on output. Directives are for internal

consumption by CLIP, although indirect effects may he felt by the processor. (A more

refined classification takes into account the command ._ender: user or processor.)

3. Each call to the "get next command" entry point by the running processor loads one

and only one ordinary command record. This rule is never violated.

4. Any directives interspersed between two ordinary commands, say (;= and (:2, are pro-

cessed by CLIP when the processor calls for (:2. "l'hc number of inlerw'ning directives

is irrelevant. It can be one or one thousand. A procedure-definition block (introd||ced

by a PROCEDURE directive and terminated by an EI.ID direct.ire) counts as one diroctive.

3--8

4

Lines of
Input

4 L

Section 4: LINES OF INPUT

§4.1 DATA LINES

Each physical record of the command sour(:c strear_l is said I,_ IH, a data fine or simply litre.

Character positions within a line are som(,I, int(,s called cohtmns, a terminology holdover

from the good old days of punched-card inpul.

How are data lines created? If commands are entered directly from an online keyboard

device, lines are composed "on the spot" by the interactive _lser and sent to ClAP when

the carriage-return key is pressed. If inpu! is Iobc read from an existi.l_ card-image file,

data lines are prepared in advance (for exarIIph', with a lext editor) and then (;I,IP is told

the file name. In the case of punched-card input for a batch run, each c_rd is effectively
one data line.

Data Field

The data field is the "active" portion of a data line. It is the portion examined by CLIP

for command items. The extent of the data field is governed by a simple rule: the data

field extends from column 1 through the end-of-line mark, or column 80, whichever occurs

first. (See Remark 4.1 below for a generalization).

End-of-line marks may be explicit or implicit. This topic is taken ,ip in detail in §5.

Sentinels

The first character of each data line may haw, a special significance, in which case it is

called a sentinel character. The following two sentinels are presently rc('ognized:

(period) If followed by a blank, it. flags a comment line (which may be echoprinted,

but is otherwise ignored).

@ (at) Causes an end-of-source condition dete('tat)le t)y tim data line reader.

REMARK 4.1

The standard 80-column line width limit may be widened or contracted through the directive SET

WIDTHdirective described in §53 of Volume [I.

REMARK 4.2

The period i._ the default commof_t line sentinel I_ may be changed toanotht, r special character
through the SET CHARACTERdirective discussed in §53 of Wohllne 11.

REMARK 4.3

In batch mode, the image of each data line is immediately printed upon being read by CI,IP. This
echo display can be suppressed, howew,r, with the SET ECHO directive (li_cussed in Volume II. In

the interactive mode, the echo display is normally turned off, but ('all I)e turtwd on with thv SET
ECHOdirective.

4-2

,_4.2 MULTIPLE SOURCE INPUT

§4.2 MULTIPLE SOURCE INPIlT

Multiple source input occurs frequently in notltrivial operation of CLIP. Therefore, il's

important that prospective users get a _,wtvt;t[i(h,;, of how l hi_ ¢ap;tl,ilitv wt,kx so lhat

they can make informed decisions about data prcl)aration for (-mtlpl(,× t_r()t)h, ms.

The Command Source Stack

CLIP keeps track of multisource input through a _'om,tar_d ._¢,,r,'r ,_htck (('.SS), the top of

which points to the active input sour(e. The (:SS op('ration is best th,s('rihed by working

through an example.

Assume that a NICE Processor is activated and that the first, thing it does is to call

a CLIP entry point and state: "give me the first (:ommand". When (;I,IP receives this

request, it tries to read the first data line. since the first, command is presumably within

the data line. But where is the first line?

CLIP normally assumes that the first, dale lin,' arrives from the root rommand source

file. The term "root" relates to the apt,_aranc,, of lhis so,rt-e at the ba._,: of lhe command

source stack. Within CLIP this file is conventionally known as ._t)llrt-e mtmber {) (zero)

and has the internal name Sroot for I,alch or Slmclalor-interactive w,)rk or $term for

conversational-interactive work. In the exatnples belt)w w,, assume ih,, latter. (As t_oted

in §3.3, for interactive operation, this s<)ut't'e is the us,,r's t('rtt_inal, wh,,rcas for hatch it is

the system-defined card-image input file.) So at ruNstart the (iS/c(_tltaitls only one entry:

Stack lerel ,_;'ourcc no. ,qottrce ttamc

0 0 $term (|)

After some commands have been processed, an ADD directive tells (_,LI P to <)pen the existing

"script" file INPUT.DAT, and begin reading commands from it. (:[,1P connects this to an

internal FORTRAN unit, let's say 32, and places this source on top of the CSS:

Stack level ,_;o.rce no. Source name

i 32 INPUT. DAT

0 0 $term (2)

Data lines stored in unit 32 are s(,q,er_lially accessed lhrottgh I"()ltTI{AN reads, ;_nd

commands contained in those]itws prot'_,sst'tJ. ,qUl)I)ose a ('all It) procedure ITERhTE is

encountered.

As noted in §2, command procedures may reside on ordinary (editahh') card-image files

or on data-library files readable through the global dat.abase manager (;All,. Assume it's

the latter. Data library files are internally identifie(I I)y Logical l)evice Indices (LD[), which

range from 1 through 30. The data library that contains the procedure is PROCLIB.GAL,

and its LDI is 3. Once CLIP begins reading data from the (:ommand procedure, the CSS

looks like:

4 3

Section 4: LINES OF INPUT

Stack level Source ,o. Source name

2 3 ITERATE

1 32 IHPUT. DAT

0 0 $term (3)

Two points should be noted: (1) CI,IP stores the negative of the LI)I in tile CSS to

distinguish a procedural source from a non-pr,we,l,ral source such as unit 32, and (2) the

name recorded in the CSS is ITERATE, not PROCLIB. GAL. ([lad th(' procedure been resid_;nt

on an ordinary file, the name of the file ITlust bc ITERATE, so ill such a case there is no

dichotomy.)

Now suppose that procedure ITERATE contains an ADD ,lirectivq' that opens another

existing script file MAKEITGO.DAT, connects il to unit ?,3, and dir(,cts subsequent reads to

it. The CSS now contains four entries:

Stack let'el St,,trce no. So,roe name

3 33 MAKEITGO.DAT

2 3 ITERATE

1 32 INPUT.DAT

0 0 Sterm (4)

Eventually the end-of-file (EOF) on ,nit 33 is rt,achod. (;I,IP then closes unil 33 and "pops"

the stack that is, CLIP discards th," top lewq of the last-in-first-o||t (I, IFO) queue. We

are back to the three-h,vel cot|liguration (3), an(I C[,IP ('onlitu.,s r_'a(tit_g t,h[' comm_nd

procedure. When the end of ihe proc_'(lur(, is (let(,ct(,d, or ,_ r(,turJl-fr_)ttl-l)rocedure tak(,|t,

the stack is popped again, to the two-level config||ratio|| (2), and reading continues from

unit 32. On end-of-file on ,nit 32, tim CSS rew,rls to its one-h'vel ori_,inal configuration

(1) and input is back to the root command source. Should an end-of-fil(, I)e detected at

this point (for example, an inU'ractive user enters an (¢_in c¢lltltttn t), (II,1P notices that

the stack is exhausted, and calls the run-termination routint, EHDRUN de,scribed in Volume

III.

REMARK 4.4

The command source stack contains _dditio.al infformation nlq)t described here. The complete

"packet" of information is called a C.q,q frame,. Frames may b,, displayed lhro||gh the SHOWCSS

directive covered in §54 of Volume I1.

REMARK 4.5

The first data line seen By CLIP may actually come fr,)m tit(" prore_u,,r rather tim. unit 0 if tit,.

processor starts up execuliot| by sending a me._sagf,. This is fairly c,)||t|non in NICE l'rcwessors,

where the message may be used to sel "_tarl,Hp" options. ()n lhe VAX il. is also possible tha! the

first line comes from the processor itwocation ;,s a h_reign I)('1, c_ottl,z_Jr,t.

44

_,4,2 MULTIPLE SOURCE INPUT

REMARK 4.6

Nothing prohibits the root input source from appearing more tharl .nee in the (:,q,q. For example

Stack level Source no. ,qource name

5 .I PRIIITALL

4 0 Sterm

3 3;3 MAKEITGD. DAT

2 -3 ITERATE

1 32 IIlPUT. DAT

0 0 $term

This sample configuration may appear in interactive mode if a cornmand read from procedure

ITERATE asks for user's feedback, and in response the user has called upon procedure PRINTALL,

Repetition of non-procedural source units such as 32 should Jmt occur, however, because such

files are read sequentially, and a multiple-positioning conflict would occur. On the other hand,

repetition of procedural sources is not only feasible but common in practice: for example, a

procedure may call itself.

REMARK 4.7

The CSS concept permits uniform imph,mentatiori of m_dl, ilin_, uws,_ag_,._ a,_ il_t,f,rnal ADD files,

and of procedural recursion (a command procedure may rail itsf,lf dir_,ctly or iudirectly).

Summarizing

The use of an input stack allows uniform treatment of heterog_,neous comrnand sources.

These sources may be procedural or non-procedural. There are few restrictions on the

order in which sources can appear. The stack depth is limited to {3 levels but in practice

2 or 3 is rarely exceeded. An end-of-file or return-from-procedure always acts as a ret, urn

to the previous input source as long as at least one remains in the stack. If none remains,

an end-of-file acts as a normal run stop.

¸--5

Section 4: LINES OF INPUT

§4.3 RESERVED SOURCE UNITS

The use of units 32 and 33 in the example of §4.2 is not accidental. FORTRAN logical

unit numbers 30 through 40 are in fact reserved for usage by CLIP.

Unit 30 is a reserved unit used for dynamic connection to non-command sources such

as help files. Unit 31 is a reserved scratch tile where C,I,li) saves romnmnd-procedure

header and state tables. The running process(Jr should not tamper with these two units.

Units 32 through 40 are available for connection to llon-procettural card-imaKe files

named in hDD directives. These unils dr) not have ttJ b(, IJre-assigne(t. h_)wever, because

they are automatically connected and dis('_)nnected by (II,IP as 11_,ede,I. %election of this

particular sets of units minimizes the ch_,ce of clashing with fih,,_ I,ii(tf'r corll, r()l of the

global data manager GAL.

REMARK 4.8

On some operating systems, unit number constraints may force a different block t,o be reserved,

4 6

5

Command
Records

5_.1.

Section5: COMMANDRECORDS

§5.1 COMMAND STRUCTURE

In this section, we rise from the physical view of data lines to a higher plane - the logical

level. In §3.4 it was stated that the source stream is logically subdivided into command

records. A command record is a block of symbolic inft)rmation processed by CLIP as a

whole. In the case of an ordinary command, CLIP does not return control to the running

processor until the entire command record is interpreted.

It was also noted in §3.4 that a command record can be an ordinary command or a

directive. Directives are treated exhaustively in Volume II. Conseq,ently, in this and fol-

lowing sections of this Volume, attention is directed to ordinary commands unless otherwise

noted.

An ordinary command record is a sequence of items l,ermirlated t)y an explicit or

implicit end-of-record. These records are interpreted by (_LIP and presented to the running

processor, which is supposed to carry out the action(s) specified I)y the command.

A command record, whih" subje(l to the size limitations statvd irl !i5.2, may extend

over any number of data lines. Conversely, several con,mand re(or(is may be written on

the same line if space allows.

REMARK 5.1

There is generally a one-to-one correspondence between processor actions and command records,

but sometimes several command records may be used to compose one sl,al.ement. The most

common instance of this is detailed prompting. For example, take up again the sample statement
of §1.1:

PRINT ELEMEI,ITS5 TO 24

If this is a common command, the processor may allow it to be "broken up'" lc_ help a begimwr
User:

Enter command: PRIHT

Prin t what: ELEMEI,IT$

Range: 5 TO 24

The text on the left of the : is prompting text written to the sort,co, and lhv text on the right is

the user's response. In this example, the PRIHT statement is made up by three command records.

5 2

, §5.2 ITEMS

§5.2 ITEMS

Command records are formed by components calh'd items. An ih, m is a string of printable

characters appearing on the data fieht, ltenls are delimited I)y blanks, commas, special

delimiters, or data field boundaries, and may be written anywhere inside the data field,

i.e. in free-field form. (A complete description of item (Milnit_,rs is provided in §6).

The interpretation of a command by (_1,11' is essentially a pro('ess of' item evahtation,.

Evaluation means looking at what the user has typed and liguring o11t the approl)riate

interpretation in terms of primitive data types such as integer, floating-point, or character

string.

An ezpression is an item or a combination of items that eventually evaluates to a

single value.

Item Categorization

Items can be categorized into three types:

1. Data Item: an item whose value can I)e determined directly from the characters entered

by the user. For example:

ABC 432 1.765E+6

2. Special Item: work-saving constructions such as

I:i01:I0 35_2.5

which specify numeric list generation and item repetition, resl)ectively, or marks used for

special purposes such as delimitation of command records.

. Symbolic Item: an item or expression thai, has to go through a string-replacement l)ro-

cess for evaluation. In some cases, the replacement prc)('ess may be quite complicated

and involve multilevel nesting. The final product is one or more data items. CI,IP

handles two types of symbolic items: procedure argur, r.nts, and macrosymbols. As the

use of both types depends heavily on the notion of directives, they are not described

in this Volume.

REMARK 5.2

Previous versions of CLIP (and its ancestor I,()DREC') incorporated since 1972 a third symbolic

item type: the register, which has disappeart,d from the present w,rsion. Its function (primar-

ily that of controlling loops in comm.,tntl procedures) has l:wen taken ow,r by a special form of

macrosymbol described in §4 of Volume II.

Data Items

Data items may be numeric or nonmlmeric. The latter are called Htaracter strings and

often function as command keywords a l the processor level. Numeric items may be inl('ger

or floating-point constants. These types are extensiw4y studied in _7.

5 3

Sectton 5: COMMAND RECORDS

Further material on the classilicat ion and interpretation of special il,en,s and symbolic

items is provided in §8-9 of this Volume, and in Volunle 11.

Size Limitations

The present version of CLIP allows up to 512 data items to appear on an ordinary command

record. If this limit is exceeded, an informative diagnostic is issued and the excess items

are discarded. The item count does not include symbolic or special items per se, but does

include data items generated as a result of the processing of synlholic or special items.

There are two other size limitations that pertain to character count:

1. The total length of a command record, ezeluding in-line colummtls or interspersed

comment lines, may not _,xceed 2,t00 cilaracters. ()bviously this limit is only relevant

when you have lots of continuation lines (at least 30). If thi._ limit is exceeded, CI,IP

first tries to squeeze out multiple blanks from all data li,les read so I_lr. If this d_wice

fails an informative diagnostic is printed and trailing continuation lines are ignored.

2. The sum of the character lengths of all character-string data item._ may not exceed

480. If this limit is exceeded, an ilfformative diagnostir is giw,n and excess characters

are discarded.

5 4

_5.3 RECORD MARKS

§5.3 RECORD MARKS

Termination

A command record can be terminated explicitly or implicitly.

Explicit termination. The following special character _equen(es are iuterl)reted as erphcit

end-of-record marks:

blank-semicolon

blank-period-blank

The semicolon mark is used to separate short records written on the some data line.. This

saves space on prepared command files (scripts or procedures) that are to be archived, but

offers no special advantages in conversational work.

An isolated period indicates that the next command record begins on another line:

text following this end-of-line terminator is ignored. This feature may be exploited to insert

inline comments in nonvolatile command files such as scripts or command procedures that

are to be archived for some time.

Implicit termination. A command record is implicitly terminated when the right data. field

boundary (column 80 or carriage return mark) is reached without a continuation mark

being encountered.

REMARK 5.3

Implicit termination is by far the most common in conversational interactive work, where pressing

the return key is equivalent to ending the data field. In conversation_,l mode all command source

input is usually volatile, i.e. disappears upon processing by CLIP; I,|ll_s explicit termination marks

serve no useful purpose and just add keystrokes.

REMARK 5.4

If the isolated period is in column 1, the whole line is treated as a comment line (see §4,1).

REMARK 5.5

Both the record separator and the end-of-line mark may be t:harlged to atlOlher character via the
SET CHARACTF._directive.

Continuation

A long command record may be exiended over the next dala line by' writing one of the

continuation marks:

++ hlank-plus-plus

-- tninus-t))inus

before the right data field boundary is reached.

5-5

Section 5: COMMAND RECORDS

The double-plus mark must be preceded by a blank to be recognized, and is ignored if

inside an apostrophe string (._7.6) or a quote string (_7.7). This mark i_ always an item

delimiter, i.e. items cannot be contiHued inl.o i he nexl line.

The double-minus mark may be used as a hyl,h,;,ation mark to continue a long item

into the next line, and is recognized even inside an apostrophe string or a quote string.

This property is occasionally useful for things such as very long textstrings, e.g.

'If I have all the eloquence of men or of angels,

but speak without love, I am simply a gong boom--

ing or a cymbal clashing'

A double-minus is not treated as a hyphenation mark inside an apostrol,hc or quote string

that is closed on the same line. For cxamph':

TITLE = 'This is the way it was -- and will be'

The double minus sign is not a hypheuator here because llwre is a matching apostrophe

in the same line.

There is no a priori limit on the number of continuation lines: however, the limitations on

number of items, total record size and characler-string-sum size stated in _5.2 should be

kept in mind when writing very long command records.

REMARK 5.6

Both continuation marks may be changed to another character pair (or be ,lis,bled) via the SET

CI-_RACTER directive explained in Volume 11.

Examples

To illustrate the most important rules sta.ted above. ¢ousido,' lhe following command

record:

LOAD It]PUT CASES 6 TO 9 LEVEL 32.4 one record

This command record coniains eighl data iiems, lit,ms 1, 2. ?,. 5 and 7 arc' character

strings. Items .I anti 6 are tlxe,t-l)oitd c,)n_tants (int,,_ers}. l'eln X is a floatinK-point

constant. The isolated-period end-of-line is not counted as a data item. Next, consider

LOAD I}iPUT ; CASES 6 T0 9 ; LEVEL 32.4 three records

We now have three command records written on the same data line. Note that semicolon

separators must be preceded by al least Olt(' blank: otherwise lhe_, w,,,ld be treated as

part of the pre¢eding item. Finally,, consider

LOAD INPUT ++ First line

CASES 6 TO 9 ** Second line

LEVEL 32.4 Third and last line

5 6

!i5.3 RECORD MARKS

This represents one command record that extend,s over three data lines. (Double-pluses

may be replaced by double-minuses with identical etfect in this examph'.) Observe that

anything appearing after a continuation mark or an end-of-line mark is l,reai,ed as comment

text.

5 7

Section 5: COMMAND RECORDS

§5.4 EMPTY LINES

An empty line is one that contains only zero or more blanks, or one <)r more blanks followed

by an inline comment. Unless told otherwise (see Rernark 5.6), <'.I, IP ignores all empty

lines, just as it ignores comment lines.

The most visible effect of this feature is in conversational mode. Suppose that you

start up a processor and get the following prompt oil the screen:

Enter something:

If you respond to this request with a carriage return, you will see the same prompt come

up instantly: CLIP is still waiting! If you type one thousand carriage returns in a row,

you will get a thousand prompts bu! nothing else will happen.

The same thing will happen if you space over and type a carrial4e r('lurtl, or just enter

an inline comment:

Enter sr,mething:

Enter something:

I am not ready!

Empty continuation lines are also ignored. Example:

BEGIN LIST = 1, 2, 3, --

this is an empty continuation line

4, 5, 6, --

7, 8, 9

This input sequence has the same effect as

BEGIN LIST =

4, 5. 6. --

7. 8. 9

1, 2, 3, --

Note that the continuation mark does not have to appear Cxl,liritly in (,rnpty contint,ati+)n

lines.

REMARK 5.7

The "ignore empty lines" behavior is the normal one. CLIP may be told to pay attention to empty
lines through the SET MODE directive discussed in Volume l[. The non-default interpretation is

useful for batch-oriented processors that use a multilevel command language and key on an empty
line for detecting the end of an input block. This interpretation is not. recommended, however,

for interactive processors because accidentally typing blank lines is a common occurrence.

5 8

Characters

6 !

Section 6: CHARACTERS

§6.1 THE CHARACTERS Y()I! TYPE

(_ouunand_ are charac:ter sl, r,,ams, s_)(:!,11' i_ illli,,,,lely a,,lU;,i;_l,,_l with I.hv w,,I,I ,)l

characters. This ,qection focuses ell lhe characler._ _ou type I.o fl,rrl, c_mlrllands, arid lhe

special attributes that some of these characters enjoy.

CLIP is not tied to any particular characler set, but all of its imph'nlentations so far

have been on ASCII machines. (ASCII stands for American Standard Code for Information

Interchange.) The only serious competitor to ASCII is presently EI]CI)IC, which is used

on IBM mainframes. So for the sake of specificily the text below refers to characters that

you will normally find on the so-called AS(ill keyboards.

The ASCII Character Set

ASCII is a 7-bit integer code, which spans 0 through 127 inclusive. 11 has 94 visible

characters, which are internally coded 33 to 126, inclusive. There is also the blank or

space, which is coded 32. Visible characters and the blank are called display, visible or

printable characters. Each of the printabh, symbols should be oT1 your keyboard.

The remaining ASCII characters, coded 0 t,o 31 and 127, are control or nonprintable

characters. They are used to send signals tt) the operating system, to format your screen

displays, etc. With a few important excel)tions su('h as escal)e, delet[, and return, these

characters do not have dedicated keyboartl keys, and must be created t)3 control sequences.

For example, on a VAX running under VMS, <control-Y:, creates a process-interrupt

character.

Printable Characters

The set of 95 printable characters include three families:

Letters: A-Z and a-z. As explained in more detail in ._6.3 and ,_7.6. upper and lower case

letters are usually equivalent because (_I,IP interually conw, rts tlw lalter to the former

unless the letters are "protected" with enclosing apostroph(,s. Th(, choice between lower

and upper case is therefore largely a matter of personal style.

Nvmhers: 0-9. No amhi_uiiy here.

Non-alphanumerics. The remaining printable symbols are

" # $?, k @ * + - =

plus the blank.

Special Characters

: ; _' () <> [] { }\/ I " ''

Some of the non-alphamlmeric characters shown abow, assume special significance in

CLAMP, and so they are the primary subject of the following sections. These charac-

ters are covered in alphabetic order, as l)er the tabh':

6 2

,_6.1 THE CHARACTERS YOU TYPE

Character See

Angle brackets §6.2

Apostrophes §6.3

Arithmetic Operators ._6.,!

Asterisks !i_;.5

At Signs ._'L6

Blanks anti (_onlmas _6.7

Colons _6._

Dollar ,qigns _6.!)

Equals Signs _6.10

Parentheses ._(i.1 1

Percent Signs _6.12

Periods _(i. 13

Quotes ,_6. I,i

Semicolons _6. I 5

Slashes ,_6.16

Square Brackets ,_6.17

REMARK 6.1

The following non-alphanumeric characters do not have special signifirance in the present, imple-

mentation of the language:

_-, _ ' #\{}

and remain available for user-defined ch,_res. Paraphrasing I,uigi Pirandello. we might call them

characters in search of a purpose. ()he p.ssihh, use is sllhstitiH,ing one of l he at)eve character,_ for

a special character in present use throt_gh the SV-T (7ttllt,_C'I'ERdirective.

6-3

Section 6: CHARACTERS

§6.2 ANGLE BRACKETS

Balancing left-right angle brackets functio, as delimiter pairn For macr.._ymbol ref_,rences

(§.1 of Volume lI). For example:

<SOLVE(mtxt; mtx2; result; LOADS=l.2,1.45,1.52,1.6)>

Angle brackets should not be used/or ..y other/nlrpo.qe un,h:,qs i.._ide a/,,_strop/tc or quote

strings. Otherwise, CLIP will complain about undefined macrosymbols.

64

,_6.3 APOSTROPHES

§0.3 APOSTROPHES

Apostrophes are character-string delimiters of higher precedence tha,l any other except

hyphenation marks in the case discussed in §5.3. More precisely: with the exception of

the double-minus hyphenation mark not followed by an apostrophe in the same line, any

character that appears within apostrophe marks, including blanks, commas, equal signs,

and the like, is considered part of the string. Examph.:

'1. 2. 3. 4, 5'

This is a 13-character string and not a list of integer items. An apostr(q)he ('an be repre-

sented as part of the string l)y repeating it as in FORTRAN 77; for exanlple:

'Don't get me wrong'

represents the string Don't get me wrong.

A common use of apostrophes is the specilication of long textsl, rings for labelling print

or plot output.

Apostrophe delimiters enjoy another special property on computers where the char-

acter set distinguishes between upper and lower case letters (this is true of all modern

computers except. CDC Cybers). CLIP automatically co, t,erts all lower-case letters to up-

per case, unless such letters are enclosed in apostrophes. This strategy aims at protecting

lower-case letters for things such as print titles or plot h.'gends, as in

PLOT XLABEL = 'Circular Sampling Frequency omega*h'

while simplifying keyword decoding by the processor (because keywords need be tested

only against upper-case strings).

6-5

Section 6: CHARACTERS

{}6.4 ARITHMETIC OPERATORS

The following six characters:

^

/

_t(,ri_k

_aret or hat

illinll_

percent sign

plus
slash

are used as operators in tile specification of the arithmetic expressions discussed in _7.,4.

The asterisk, percent sign and slash have other special uses discussed in §6.5, §6.12

and §6.16, respectively.

66

_6.5 ASTERISP;S

§6.5 ASTERISKS

The ubiquitous asterisk was used as a nmltil>url>ose Sl>_'cial character in old versions of

CLIP and even more heavily in its ancestor I,OI)RF(:. In the present version, however,

asterisks [lave only two special uses:

1. Prefix of directive verb (Volume !1). Examph,:

*SHOW ARGUMEHTS

2. Multiplication operator in the arithmetic expressions treated in .I}7.,i. For example,

SET LIMIT = (<pi>:_(2^0.5))

The expression above, by the way. evaluates to 7r\/2.

Aside from these two cases, asterisks are now treated as an or(lim_ry uonnumeri(chara(ter.

For example:

A*B. 4:, 6_. 4:_. 124

This is a list of five character strings: A,B, :i, 6_, _ and *24. In older (pre-1982) C],|P

versions, the last four would have been treated as special items.

6-7

Section 6: CHARACTERS

§6.6 AT SIGNS

The at-sign character _ has two special uses:

1. Item repeater when prefixed by an integer. Examph_:

4©(1/3)

means tl_at item (1/3) is to be repeated fi)ur limes.

2. End-of-command-source sentinel, as described in ._4.1.

Aside from these two cases, tile at-sign is treated as an ordinary nonnumeric character.

REMARK 6.2

In pre-1983 CLIP versions, the asterisk served as an item repeater, in a construction that mimicked

the value repetition in FORTRAN DATA statements. This invited co||f|tsion when arithmetic

expressions were introduced, as further discussed in Remark 7.13.

REMARK 6.3

The second use of __ has historical roots: the extensive use of IA)I)REC on the lJnivac 1100 from

1971 to 1980. On that machine, an at-sign .n column I iHdica./es a "control statement" and

terminates a data deck. The custom has survived thP Univac name (the machine is now called

Sperry).

6"-8

, _6.7 BLANt',,S AND COMMAS

§6.7 BLANKS AND COMMAS

Blanks are the conventional "white space" item delimiters. In tacl, (:i,11' ignores any blank

not comprised between higher-precedence delimiters such as alms! rophes or quotes.

Commas delimit items just as blanks do, but serve an additional function: specifying

item lists. Example:

1234 S

1,2,3,4,5

In the second form, integers ! through 5 are logically connected to fi)rm a five-integer

list. This association does not exist iu the first form. The distinclion has implications as

regards use of the list-loading entry points described in Volume Ill.

REMARK 6.4

The precise meaning of commas is as fl_llows. Each data item pror_,._sed I_y ('rL|P is stored in a

Decoded Item Table that remembers its lype (hdeger, t]oaling, or charon-let), its valtle, and two

characters called prefix and separator. The live ilems: 1,2,3.4.5 arc st,ored in that table as

follows:

Type Pre l'hlue

Integer 1

Integer 2

Integer 3

Integer 4

Integer 5

Sop

P

Thus, commas are "remembered" as sel)arators. Supposo Ihat the processor t,hen asks for this

particular list. CLIP delivers items to the processor until a separator other than a comma is
found.

REMARK 6.5

The presence of commas does not affect individual it_.n_ retrieval, t"or example, the proce._sor

may call for the third item in 1,2.3,4,5 and the value 3 is returned regardless of the presence

or absence of commas. 3"he underlying philosophy is: prcwide higher I,,vel fnnct.ions such a_ list,

retrieval, but do not, block processor dew, lopers thai, want to do more primiliv, t,hings.

Consecutive commas, or commas separated only by blanks, gel_erate interspersed zero

items; see §9.2 for additional details.

69

Section 6: CHARACTERS

§6.8 COLONS

Colon delimiters are used to separatt, components or llilFllC'ric list generators described in

§8.3. Thus

1:15:2

generates the integer list

1, 3. S. 7, 9. 11. 13. 15

Colons are not delimiters within character strings; for exanlph,

PROC:FOKPRC.MSC

(a VAX/VMS file name) is a single character string.

REMARK 6.6

A character string prefixed by a color= is interpreted as a label in vomman.d pr,cedure constructions

that involve nonsequential command execution, such as hranching and looping. A label carl occur

only as an isolated item on a data line, or i, thv body .f certain directives such as DO and IF.

These labels are actually removed in the "procedure compilation" process, so that CLIP in fact

never sees them when reading a procedure. I)t, tails on this rather advanced topic are given in §6

of Volume II.

6 10

§6.9 DOLLAR SIGNS

§6.g DOLLAR SIGNS

The dollar sign is used as a special character in one instance: as prefix of the argument

counter in the "definition body" of macrosymbols that admit arguments (,_4 of Volume lI).

This function was previously performed by the percent sign.

REMARK 6.7

In previous CLIP versions t,he dollar sign served as a special character in two instances.

1. As prefix for registers, which were special integer items identified ms $1, $2 $8.

2. When prefixed and followed by a blank, it acted as an end-of-data-field terminator (§5.3),

and also as a comment line marker when used as sentinel (§4.1).

6 -11

Section 6: CHARACTERS

§6.10 EQUALS SIGNS

Equals signs, like blanks and commas, are item terminators but serve t,o specify a._sign-

ments, as discussed in §3.1. They also terminale lists. The following two examples illustrate

typical uses.

Example 1:

SET TIME = 0.2407

Here SET is an assignment commaud. The equals sign separates th(, destination item TIME

from the source item O. 2407.

Example 2:

SET II_ITIAL /TIME=6.7 /HEIGHT= -0.34

Here the equals signs are used in the parameterization of qualifiers TIME and HEIGHT.

REMARK ft.8

In pre-1983 CLIP versions equals signs were treated exactly as blanks. N{_I, so now; see next
Remark.

REMARK 6.9

Ilere is the parsing of the SET command of Example I:

7_pc /'re [,hlue _cp

Character SET

Character TIME =

Floating 0.2407

It is seen that the equals sign is "remend)ere(t" as a Sel)aral,(w chara('lvr, which may be relrieve(I

through the CCLSEP function (h'scrit)ed irk Volunle IIi.

O -12

§6.11 PARENTHESES

Balancing left-right parentheses serve four sprcial purposes:

1.

§6.11 PARENTHESES

Argument list delimiters in PROCEDURE and CALL dirvctiv,,s (Volume, !1). Examl)h':

*CALL SOLVER (A=2/3; FILE=START(3))

Note that the parenthesis pair surrounding 3 is riot a (le)imiter, })(,(:a u._e it does not bal-

ance tile opening parenthesis; thus the item thai follows FILE= is pars_,d as START(3).

2. Argument list delimiters in references to ma('rosymbols that accept arguments. For

example:

<ifdef(range; <exp(2)> ; range)>

3. Grouping in arithmetic expr(,ssions (_7.1), wht, re they ;ire also used to control the

evaluation sequence.

4. Double list generators (§S.-t)

Outside of these four cases, parentht,ses are tr(,ated like an ordinary nonnumeric character.

For example:

OUTPUT*DAT (4)

character string.

PRIIIT OUTPUT !DAT(4)

(a legal file name on some archaic comput(,rs) i_ interl,r('ted as a single

6 L3

Section 6: CHARACTERS

§6.12 PERCENT SIGNS

Percent signs have only one special function as integer-divide arithnwtic operator (see

§7.4). Aside from this case, percent, signs are treated like any ordinary nonnumeric char-

ac ter.

6 -14

_6.13 PERIODS

§6.13 PERIODS

The period (also rallied dot) has only one spa'civil function. Arl i_olaled periled is interpreted

as end-of-data-field terminator (§5.3), and ;i l)eriod senlin[,I followed by a blank ila_4s a

comment line (§4.1).

Aside from this case, a period is l_sed as an ordinary character lh;_t rail apt)_,;_r in

both numeric and nonnumeric items and _,xpressions of all kinds.

6 15

Section 6: CHARACTERS

§6.14 QUOTES

Quotes are used to delimit quote slri,_fl._.

prompting as explained in §8.5. |",xarrlt)h,:

Quol,, ._lr'in_s are usc(I I,o in_l)lerlmnt tnH..r

OPEN "Enter filename: "

The quote string Enter filename: will appear ol] the screen as a prompt. Whatever

you type in response to the prompt will replace the quote string. Thus if you respond

INPUT. DAT then

OPEN IIIPUT.DAT

will be the actual command processed by (:I,IP. This te('hni(llw is ot'l_,n altractive when

scripts and/or command l)rocedures are coml)ined with intera('tiw, II_;l_(,. It makes no

sense in batch mode.

Quotes have a higher precedence than any other character ('xcepl the double minus

hyphen in the cases discussed in ._5.3 and a ris a _,ix relationship with the apostropht,:

Quotes inside an apostrophe strings are treated like ordinary characters, but apostrophes

inside a quote string are treated as ordinary characters.

REMARK 6.10

On VAX/VMS you should beware of the following ('onstruction, which specilies a file name across
a network:

user"name password" ::disk: [directory]filename

The entire pathname should be enclosed in apostrophes to mak(. it one string (not.,, the blank

after name) and to defuse the quotes.

O 16

§6.15 SEMICOLONS

Semicolons have two special uses:

_6.15 SEMICOLONS

1. Default argument delimiler ill prore(lur(" and macro argumen! lists; for example

SET TIME = <ma:.:(<t>;25.4)>

2. If prefixed by a blank, and no1 inside an apostropho or quol<' sit'inK, i|, separates

commands written on the same data line (!i5.:_).

Outside of these two cases, semicolons are treat('d like ordinary notmumeric characters.

For example,

PRIIIT OUTPUT. DhT ;4

OUTPUT .DhT ;4 (a legal VAX/VMS ill(, name) is interpreted as an ordinary character string.

6 _17

Sectlon 6: CHARACTERS

§6.16 SLASHES

Slashes have two important special uses:

l. Qualifier prefix in ordinary commands and directiw,s.

2. Floating division operator in arithmetic expressions.

Currently (see Remark below), slashes are item delimiters only after character st,rings.

Thus, the expression

*DO/8

represents two items: the character string _DO and the integer qualifier _. Another examlHe:

0PEI'I/ IIEW/ 1,10MI I.IAL

represents three items: the verb 0PEt.! and the qualifiers _IEWand _]0MIIIAL.

Slashes are not delimiters in expressions slwh as

(318) (11(215))

which represent two floating-point items whose value is 0.:175 and 2.5, respectively, l)elails

are given in §8.4.

6 18

_i6.1-F SQUARE BRACKETS

§6.17 SQUARE BRACKETS

Balancing left-right square brackct_ bay(, only on(, ._pecial use: (lelirniters thai. indicate

formal-argument substitution in the bo<ly of a command prec,,d.c,', as explained i)) !i5 of

Volume II. Example:

'PROCEDURE SOLVE (A;B;X)

FACTOR [A]

SOLVE [A] [B] = IX]

_EHD SOLVE

In this example, [A], [B] and [X] are to I)(, rel)ia('ed I)y actual argument text when

procedure SOLVE is called.

Outside of this rather special cas(,, square hracket,_ are t reatecl as ordin_)ry nonnunleric

characters. For example:

TYPE DRDO:[FELIPPA.CLIP]TCL.TES

The item following TYPE is interl)reted as a si._l(, rharart('r string, whi('h l he r('ader will

recognize as a legal VAX/VMS tik, n_m('.

6 19

Data
Items

7 I

Section 7: DATA ITEMS

§7.1 CLASSIFICATION

A data item is a sequence, of character._ that represevlts a smqle and cm_stant value. Each

data item that appears in a command r_'cord is categorized by CI, II' into one of three

types: integer constant, floating-poin! const, anl. or clmra('ter ,_t,ring.

The first two types are numeric and m_y Iw fr_'ely converted inl,o each other when the

processor calls for a numeric value. The lasl lype is nonnumeric and may r_,l, be converted

to numeric.

The processing of symbolic items such as macrosymbols itlld o[certain special items

such as list generators eventually reduces to the evaluation of one or more data items. This

is true regardless of the complexity of the intermedivle expressions.

This Section explains the formatting rules for data items. ,qpecial ilk,ms are covered

in {}8 whereas symbolic items are discussed in Volunw II.

7 2

_7.2 INTEGER CONSTANTS

,_7.2 INTE(;ER ('()NSTANTN

An integer constant consists of a sequen(:e of (li_il_ ({) thr_mgh 9) i)os,_il)ly l)re('_,(h'd I_y +

or-. Examples:

365 -35767 +174

REMARK 7.1

Integers must be restricted to the legal range allowed hy Ih,' host (:O¢lli_llL(,r har(Iware. This ral'lge

is typically -2 '''1 to 2 '''_, where n is the numl)er ¢)f bits ill a F()RTRAN integer word.

REMARK T.2

Within CLIP, integers are stored as double-precision floa(.ing-point rlumbers on "_2-bit machines

and as single-precision floating-point numbers on 6l-bit machines.

REMARK 7.3

The octal integer (recognized by a leading zero in an,'ii, nt versi()ns ,}f (.?i,ll') t,a_ disappeared.

7 3

Section 7: DATA ITEMS

§7.3 FLOATING-POINT CONSTANTS

Single-Precision

A single-precision floating-point constant _'onsists of an integer part, a decimal point, a

fraction part, an E, and an optionally signed integer exponent. The integer and fraction

part both consist of a sequence of digits. Either the integer part or the fraction part, but

not both, may be missing. Either the decimal point or the E and the exponent, but not

both, may be missing. Examples:

16.07 32. .0025 129.E+! 0123E÷007 4.7E-23

"Borderline" items such as

11+2 -01-03 (both. arm E mi_irlg)

are also interpreted as floating-point items 1100. and -0.001, rq,._peclivcly.

Double-Precision

A double-precision floating-point constant consists of an integer part, a decimal point, a

fraction part, a D, and a signed integer exponent. The integer and fraction part both

consist of a sequence of digits. Either the integer part. or the I'raction pari, but not both,

may be missing. The exponent mark 1) is mandatory. Examph,s:

16.07D0 123D÷007 23D-6 +.47D-20

REMARK 7.4

CLIP stores all numeric items (integer, single Iloat.ing and dould,, final ing) ill IhDating-I)oint form

in its internal tables. The internal floating-point precisiolJ is doubh.-n all :;2-bit machines and

single on all 64-bit machines

7 4

§7.4 ARITHMETIC EXPRESSIONS

_7.4 ARITHMETIC EXPRESSIONS

Definition

An arithmetic expression is a data item of the form

c I (') c2... ") t'l,.)

in which ct through ck are integer or |]oat, ing-I)()int ('onsl,allls (or syml)oli(expressions that

eventually evaluate to such) and ¢:) denotes one of the following mw-cbaracl,er operators:

Character Operator

+ addition

- subtract h)n

: multiplication

/ floating division

% integer division

ex i)(m en I,ia titre

Examples:

(-2,3) (1/5 3) (4^ .5) (-4./24,1.20"2)

In the absence of internal parentheses, the indi('atcd ()l)eraiions are i,crft)rmed accordin.q

to the hierarchical rules o/FORTR,.IN. That is, the operal¢,r hierarchy is: (,xponentiali(m

(highest), multiplication/division, addition/subtraction (lowest).

(1+1/3)

evaluates to 4/3 - 1.333333... Internal parentheses may be used it) override the operator

hierarchy. For example,

((1+1)/3)

evaluates to 2/3 =- 0.666666

Any of tim c, may 1)o a syml)r4ir it,'m (,uarr,) svu0,)l, r_,_Nt,,r, pr, wc,l,,'e I)ar:)rn,'l,'r)

that eventually evaluates to a numeri(value.

Result Typing

The type of the final result is either integer or th)ating-i)oini.. Ir ,11 compotwll! vahu,s are

integer and the operator / does not appear, the result is inleger. ()l.hcrwise l he result is

floating-point.

Note that there are two division operators: / and ?.. The slash forces [toating-point

division and makes the result floating-point even if dividend and divisor are both integers.

7 5

Section 7: DATA ITEMS

"['tie percent sign forces inle_yr division as in F()I{Ti{AN. (:onsider for exami_le the two

!toms

(17/4) (17_,4)

The firstitem evaluates to floating 4.25 whereas the second one evaluates to integer 4.

If Z is used on floating-point operands, Imtb dividend and diviscms arc converted to

integer before the division takes place and ih(, result is tyl)cd integer.

REMARK 7.5

hl versions of CLIP endowed with lhe n|acro_)mlml facility, tlw nlacro-evahlal i_bt! delimil pr sym-

bols < and > may be used instead of (and). respeclivel._. The effect m! item parsing and evaluation

is identical. They are not. equivalent, however, when "virgin" command lines are re! rieved through

the CLGET entry point, as discussed in Volume Ill. A detailed exl)lanati_m is given in !i.l.l|) -f
Volume lI.

REMARK 7.6

The exponent following " nltnsl be an inleger if the ba_e is npl_ative. 'l'lms -2.0"5. is ilh,gal, but

-2.0"6 is legal and evaluates to -32.0.

REMARK 7.7

An attempt to divide by exact zero will produce an error diagnostic and the division will be

skipped.

REMARK 7.8

If the result is floating pot!l, the arit,hmetie _c_rk is carried ollt, in full d_mbh, precision arithmetic

and the result is stored in double precision on :'2-1fit machines while all arithmetic is rhine in single

precision on 64-bit machines..

REMARK 7.9

Blanks encoutltered inside a pare!!helical expression are ignored. For example

(2' 8)

evaluates to 16.0: the blanks berlin, and after _, I_eing ignored But

2. _ 8

does not evaluate to 16.0, and is in fa,'l treated as three items: floating e_mstant 2.0, character

*, and integer 8.

REMARK 7.10

The following differences with previtm,, versions of (:I, ll' should be mfl.ed:

I. The exponent!at!on operator i_ ,,ow instead of , ,.

2. Parentheses were not allowed in pre-198:l (3,11' w,rsions to c4mtr, d expression evall!atiort

order.

3. The result was always of floating-point type.

76

_7.5 ORDINARY CHARACTER STRINGS

§7.5 ORDINARY CHARA(',TER STRIN(;S

A data item that do,'s not qualify as a nUlllvrir valuv is _lnssiliv,I _,s n character string,

or stri.,y for short. ()rdinary rharac'tt.r strings ;ll't, lh<)_l, it<_l ._urr,m,b,h'_l I_y ;tl)O._l,rol_hc or

quote delimiters.

The following items are interpreted as ordil_ary character sl rings:

. Any item that contains a nonnunwrir character and does not quali[y as a symbolic

item or an arithmetic expression. Exalnph,s:

NODE D66 STIFFNESS.FILE Help 4+R $$$ (I/E4)

. A data item that contains only numeric characters but is no! a valid integer or floating

constant. Examples:

E6 E6 2.3.4 2E3E4 8D.7 8D+.5

REMARK 7.11

All lower case characters present in an ordinary ¢hara(:fcr siring arv coliv+,rr,,<l ¢o upper ('a_v as

they are processed on the VAX,:VMS versiorl: tl'lq?y ar,' not cmlw,rt,,I., ih,' tlNIX vvrsiuns

7-7

Section 7: DATA ITEMS

§7.6 APOSTROPHE STItIN(;S

A sequence of one or more characl,cr.n s||rrou||ded by almnir()phc._, a._ in

'ABC' '123 A rather long string'

is called an apostrophe string. An)' graphic character vnclosed betwc,,n the apostrophe

delimiters, with one exception, is intcrpreled ns part of th,, string. Th,' only exception

pertains to the double-minus }|yphcnator (._ee !i5.:').

To represent an internal apostrophe, rcpval il as ill Ft)RTR AN 77. For exam/tic

'Don't get me _;rong'

represents the siring Don't get me wrong.

Lower case characters inside an apostrophe slring are not ('onv(,rle,I _o upper case.

78

._7.7 QUOTE STRINGS

§T.T QUOTE STRINGS

A sequence of one or more character,_ surrounded by quote marks, as in

"Please say something ..."

is called a quote string. Quote strings are used t,) impl,'mellt z'h.,: t,roml,l_.9. This is bc,_t

illustrated by an example. Suppose the h_llowiTl_ ('ommalld is l),'esc,||t in a script lih' or a

command procedure:

OPEN "File £o open: " /"OLD. flEW or SCR:"

When this command comes up the two qt,ote st rings will appear on your screen as prompts,

and CLIP will wait for your response:

File to open :

OLD, NEW or SClt:

If;PUT. DAT

IIEW

where the text on the right of the : are your assumed responses, The quote strings are

replaced by your responses, so the command thai. CI,IP will actually process is

OPEII IIIPUT.DAT /NEV.:1

REMARK 7.12

Lower case characters inside a quote slr,ng are preserved ill l, lw proml_t, lwte_sag,'. I)onl)le tnil_tlSeS

are interpreted as ordinary characters if a el,,sing quol.e appears olt Ibe sam,, line; otherwise it, is

treated as a hyphenator. Apostrophes are treated as ordinary characters.

REMARK 7.13

Obviously the use of quote strings makes litt, h, sense in purely interacl, ivc work except as a play-

thing. Its main value is the "filling of blanks" in command procedures or script files. One especially

useful application is in self-documenting procedure call sequences, as illustrated by

*CALL INTEGRATOR (TBEG = "Starting time:"

TEIID = "Target time:" ;

DT = "Time _ncrement")

p

"'¸9

Section 7: DATA ITEMS

§7.8 BORDERLINE CASES

This final subsection deals wit.h the fringe' _,h,mq,nl._. Sore,. it,'m._ a r_' m)l [,asy l.,) ('lassify

because they are in the grey zone t)etwee,I numeric a,,,I llOnllunleric, l"or example:

+ .+24 (3/)

A general rule holds for these cases: whe, n in doubt. ,._s_lme a character string. Following

are some consequences of this rule.

1. Isolated characters. Any isolated charatter tilat is not a digit (0 througil 9) is classified

as a character string. For example, the isolated operators

+ - / :

This interpretation simplifies the processing of algebraic language stalemenls.

2. Impossible ezpressions. (;onstruclions such as

(41)

are interpreted as character strings.

7 10

8

Special
Items

8 I

Section 8: SPECIAL ITEMS

There are two types of special items:

1. Record marks, which are used t.o simcily contillu;Itiotl ,,r explicit i,Ii,lillg of c'o,lm_lnd

records.

2. Item generators, which can be used as work-saving _i(is to rcplicat.e_ items or to generate

regular sequences of numeric items.

83

._8,1RECORDMARKS

§8..I. RE(IORD MARKS

The following are character sequenr.es that fun('t, ion as recor(I marks:

Mark Sequence

blank-period-blank

' blank-p/us-plus

- - minus-minus

; blank-semicolon

b'unctiolt

Etzd of record:/bllowing text: is ignored

(:oT|tinlle record wi(h item break

(_ontivlue record wi(hou! it,evn break

Separate re_:ords on name data line

For a more detailed description of these marks, see _5.3.

8"3

Section 8: SPECIAL ITEMS

§8.2 ITEM REPETITI()N

A data item prefixed by n(9, where n

repeating tile item n times. Example:

4((_64

This is the same as writing

64. 64.

is an ..signed .o.zero inleger, is equiwh..t to

2tCi'DUM 3',= (1/2)

64, 64 DUM, DUM 0.5, 0.5, 0.5

As the example indicates, the generated item sequence is i.lerpreled as a comma-linked

list. [t can therefore be processed by one 4)t" the list-loading entry points described in

Volume III.

REMARK 8.1

The item following n@ may be a symbnlic item that eve.tually evaluates I,. a. individual val.e.

The count n can also be a symbolic item that ew,ntually evaluates 1.o a po_itiw, .onzero irHeger
value.

REMARK 8.2

The item following nO may not be anolher special item.

baffle CLIP.

For exa.q_le. 6_552.5 will thoro.ghly

8-4

/

§8.3 SINGLE LIST GENERATION

§8.3 SINGLE LIST GENERATION

List Generators

While preparing input data to application progranls, there frequently arises the need for

specifying lists of numeric items whose values are arranged ill arithmeti(' or geometric

progression. For example:

I, 2, 3, 4, 5, 6, 7, 8, 9. tO, II, 12

6, 2, -2, -6, -I0, -14

8.0, 4.0, 2.0, 1.0, 0.5, 0.25

If the list is fairly long, the use of item Its! generators can result not o,ly in labor saving

but, more importantly, in reducing the risk of key-in errors through the proven principle

"let the machine do it."

Item generation of this sin.qle kind can be specilled wiih a three-item constroction in which

two numeric data items called the emt t,ahlcs are followed by a special item cMled the step

generator. The following constructions are permitted:

Stepped arithmetic progression

Subdivision into equal intervals

Geometric progression

Pl :I_-, :/TT_

ttere vl and v2 are two numt'ric items of matching data I vpe (integer or tloating), which

together define the first and last value of the generated list. rt, spectiw,ly; ._ is an optionally

signed numeric value of the same type as vt and re, and m is an unsig_md nonzero integer.

Any of these components may be a symbolic item that ewduates to a numeric value.

Arithmetic List: Explicit Step

The form vl:v_:s generates the arithmetic progression

vl, vl+s,.., vl _-k,s, where _'t _ ks'-:v_,. _'l _ (k _ 1)s if s>O

el,el + .%...el _ ks, where _'1 I ks ." v2 - vl I (k _ I)s if s -_ 0

Using this construction, the first, two exarnph' lists above can b(' abbreviated to

1:12:1 6:-14:-4

The general form of this generator is perhaps easier to ,',,m,,ml,,,r by t.hiw_king of the FOll-

TRAN I)O loop

D0 label 1.12.1 DO labH 6.-14.-4

If the step s is omitted, a unit increment is assumed. 'rh,s 1 : 12:1 m;Lv be further shorl('m,d

to 1:12.

8-5

Section 8: SPECIAL ITEMS

Arithmetic List: Subdivision into Equal Interwds

Tile form vt :v2:/m generates an arithnwti¢ prot_rcssi-, by subdividing tile interval ¢'2

into m parts:

vl, _'1 t (v._ 1,1)/,-, _,, _ 2(,.., _._),/,,_ ,,.

1_ I

If m = 1 (or m • i O) no generation re'curs and the lisl n,dl,ces to the end values.

Using this form the first two example strings may be written

1:12:/11 6:-14:/5

This form is generally preferable to the _'t :t'2:._ form if the items are of floating-point type

and the number of subdivisions is more easily visualized than the step value. For example,

typing

1.0:64.0:/25

is less error prone than saying

1.0:64.0:2.52

because rounding errors may cause the last gen(,rated il.em to miss the 13.1.0 target. Another

advantage is that the user need not be concerned as to whether the resulting step is positive

or negative.

Geometric List Generation

The form vl:v_:*m generates a geometric progression going from _,, to ,_ with the ratio

(t'2 - t'l) 1/'_. The net effect is that m I values are inserted, and the interval t,2 vi

subdivided into m logarithmically identical intervals. For example, the third example list

in §8.3 may be generated by writing

8.0:0.25:_5

In lhi._ ff)rm, hoth I'1 and ;:_ _houl,I hr, llnnT,,rr_ ;_t_,l h;_vv the _atne sit, n: Ihev aro alwaw

interpreted as floating point nlimbers. If m I, the list, reduces to the end values.

86

_8.4 DOUBLE LIST GENERATION

§8.4 DOUBLE LIST GENERATION

The single list generation capability des('rit)cd in _.3 is ('(luivah.Tit t,) a one-level I)O

construction. The double lisl generation rapatfility des('r'ilwd I.,rein is _'quivah'nt to a

two-level (nested) DO construction. This form dtws trot app[,ar :_s frequently in practice

as single list generation, but it's handy to haw, around should the, need arise.

Double list generation is best explained t)y an example. (]onsider the 10-integer list,

3.8. 5.7. 7.6. 9.5. 11.4

This is composed of two interlaced a.rithmctic progressions: 3:11 :/4 and 8:4 :/4.

one tries the abbreviation

3:11:/4. 8:4:/4

the result is not what you want:

3,5,7,9,11, 8,7,6,5,4

The interlaced list can be generated by the construction

(3,8):(11,4) :/4

The general form is

(list,):(li._t.z):/m

where the following restrictions apply:

°

,

Hul if

listl and list2 are numeric lists that ('ordain tlw _ame numh(,r o1 humeri(" items (up

to 16). These items may be specified [,xplicitly or through r(q_,,at-il('m or single-list-

generation constructions.

rn is an unsigned nonzero integer that Sl)(,tifi(,s ih(' nutnber (m l) c_f i.ltermcdiate

sublists to be generated. If m I the generated list reduces to the end values. This

item must be specified; no default is accepte(I.

Blanks that occur inside the delimiting braces art, ignored.

The following examples illustrate how this construction works,

(1,2,3):(13,-7,15):/3

(3@1) : (1:11:5) :/2

((3/2) ,o) : (- (1/2) ,o):/4

1,2,3, 5,-1,7, 9.-4.11. 13.-7.15

1.1.1. 1.3.6. 1.6.11

1.5,0, 1.0,0, 0,5,0, 0,0, -0.5,0

8 7

9

Lists

9 1

Section g: LISTS

§9.1 WHAT IS A LIST?

The concept of item list, or simply list, is iml>orlanl for ma,ly (!l,ll'-._ltpported proces-

sors. Conceptually a list is a _eqtnence of itcm_ be_lrinl2; a "coutneclitm'" rclationshil_. This

relationship is established in two diffcren! wav._.

If the items are explicitly typed one, by one, the li._l, attril_ut, e is confcrrod by separating

them with commas. If the items are getwrated through the work-sa.ving constructions

described in _8.2-8.4, the list attribute is conferred implicitly.

There are two types of list: numeric lists and character lists, which are described in

the following subsections.

9 2

._9.2 NUMERIC LISTS

§9.2 NUMERIC LISTS

The usual way of specifying a numeric list is through the comma r(mm'rtive. Examl)h':

1,2,4,8,16,32

This is a list of six integers. Since (:I.IP k(._,ps in(ernally all _T,inwric dal. in floating-p,fin!

format, floating=I)oint numbers and integers can be freely mixed in a numeric list,. Thus

1.0, 2.0, 0, 36.0E0, 6/2

is the same as

I, 2, 0.00, 36, 3

Blanks that appear before and after the comma connective are igm)r¢'d. (;onsecutive

commas, or commas separated only by blanks, generale zero items. For example, the

following list

is the same as

1,, 2, ,,6

1,0.2.0,0,6

Numeric and character-string items ('annol m,rm.[[!l t)_, mixed in tlw _awu(' list. J"o|' ex-

ample:

1,2, ABC, DEF, 6, 7

For normal item loading, there are actua]Jy three lists here:

1,2

ABC, DEF

6,7

The commas after 2 and DEF are irrelevant. [lJllt in (:ertain ('ontext,,4 ;nixed lists are

acceptable; in fact this happens in many of the dire(:tives discussed in Volume II.

The numeric item generators described in _8.:| a,.I also generate lists.

0.4, 1.0,

can be abbreviated to

2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 8.0,

0.4, I.:6., 3_'i_8

inasmuch as the generated items art, assumed 1o I)e ctmnecl(,d by ('¢)mnJa_.

For example:

8.0

REMARK 9.1

A numeric list may be loaded by the processor in one c)f t.hrec modes: inleger, single-precision

floating, or double-precision floating. CLIP delivers the goods in the requested format after

transforming them as appropriate. Note that it is always the process.r that decides on which data

type is best for its own consumption; CLIP simply supplies the data in the fi_rm it is told to.

9_'3

Section g: LISTS

§9.3 CHARACTER LISTS

Character lists occur less oftcu than nu,wrh li_t_ ill practh:e. Tlwv arc, ronstructvd with

the comma connective. For example

AA, BB, CC, DD, EE

is a five-item character list.

In previous CLIP versions, the slash conm'rtiw' was also considvr,,d as producing a

character list. Thus

AA/BB/CC/DD/EE

was identical in all respects to AA.BB.CC.DD.EE. However in the l,rv._ent CI,IP version,

only the comma-connected form is treated as a character list,. "l'hv ,_la,_h-connect, ed form

is treated as character string AA followed by follr charact_,r tlualiliors: BB, CO, DD and EE.

REMARK g.2

To make the distinction more precise, here i_ the par,_i.g of AA,BB,CC.DD.EE as stored in the

Decoded Item Table:

Character AA .

Character BB .

Character CC .

Character DD ,

Character EE

,¢,'ep

and here isthe parsing of AA/BB/CC/DD/EE:

7_I,,: l'r_ l)d.,'

Character / AA

Character / BB

Character / CC

Character / DD

Character / EE

,_'vp

94

10

Command
Description

10 I

Section 10: COMMAND DESCRIPTION

§10.1 MOTIVATION

Tile developer of an applicalion program (for examph', a NI(;i'_ l'r_.',_,_or) that uses

CLAMP as source input language needs a mctala_yua.qe for de,_cribing legal commands

when a user manual is prepared or an online Ilelp ill,, is written. (A metalanguage is a

language used to define another language; natural languages, such as English, are in fact

metalanguages.)

The CLAMP metalanguage was originally palferrwd after the CO[I()i, m_q.aJanguage, par-

ticularly with regard to the i,se of special symbf)ls stwh as square brackets and braces.

Since then, the metalanguage evolved into a simpler and more nattlral form as a result of

experience in preparing NICE hell) files. Only a f[,w of the original rules haw, survived.

This Section presents rules for the description of (;I,AMP commands in user's manuals

or help files. These rules also apply to the descriptiou of directives, which are covered in
Volume 11.

1{) 2

§10.2 DESCRIPTION SYMBOLS

§10.2 DESCRIPTION SYMBOLS

Symbols that represent individual data ilems or item lists are writt('n as alphanumeric

strings. The use of upper or lower" case letters in lhese strings i._ meaningful.

Keywords

Upper case words are mandatory keywords that mu._I Iw entered a'_ indicated. For example:

RESTART

Keywords can be frequently abbreviated to a non-unique "root.". The c_mw, ntion generally

followed within the NICE system is that if more characier._ tha11 the r_,ot are given, they

must agree with the full spelliug. For a full discus._ion of the subj(,ct, _(,e [i'l of Volume IlI.

Unlike previous metalanguage versions, the root is no longer shown explicitly in the

command description. Such refinenwnt was found ut_necessary for an interactive system

in which the user can quickly find out about the ro_)! by exl)t, rimentation.

Variable Character Strings

Capitalized lower case words thal do not contain a "list." represeld. _t v;_riable character

string. Example:

DEFINE TITLE = 7_zt

Here Text represents the expected text f)f" a till,, input, which can (ff course be virtually

anything. In many cases restriction._ are placed upon which strings ;_re acceptabh,. For

example:

SET FREEDOM =Ido/

The symbol ldof (freedom identilier in a linile ('lem_'ut program) rt_av I., TX, TY

Such restriction must of course be described irl the help file or user's umrlual.

Numeric Items

etc.

Lower case words that do riot contain a "li_l" _.fNx r,,pr,,se_l! a si.t_l,, n,lmeric value.

Example:

DELETE IIODE n

FORTRAN typing conventions are oft_,n follow,,,I t,) distinguish i_,leger values from

floating-point values should tire (list iucl ion I)e iml)Otlanl (in tna ILVca._.._ il is not). This is

a matter of personal style that is rlOl s_l,j,wt to rlwt;,la_u_uag, e rules.

In typeset text (such as this Manual), numeric ilem ._ynll,ol_ ar_' ('xl,re_('d ill italic._. This

convention makes references to , in the lext lnore vivid. ()f course, this is not possible in

computer-stored help text, where ore. has only typ(,writer fonts availabh'.

10 3

Section 10: COMMAND DESCRIPTION

Numeric Lists

There are two ways of specifying nuul_,ric list_. ()n_' i_ to us,, a singh, Iow_,r case word that

has a "list" sutlix. Examl_hu

DEF I'IODE t_ = r'oordit_de-list

Another is to show the list explicitly:

DEF IIODE tt = .rl..r:_, ;r::

This works well for short, fixed-size lists it, typeset Manuals (like this ore') since subscripts

look classy. For variable length lists, one may us_, lhe "three-dol" notation:

DEF NODE tt = .r t,.r., xk

Again this looks best on a typeset page. but is nol so good on a coVr.l_uter'-stored text file.

Character Lists

This is similar to the numeric list ca_c. ()no way is to use a Caldtaliz,'d lower case word

that has a "list." suffix. [_]xamph':

PP, T lIT [OptiozJi._t]

Another is to show the list explicitly:

PRINT Node-switch, l_,lem,',ttt-switrh, Freedottt-swilrlt

DELETE (;ontpotlenll ('ompotlentk

Framing

]kletalanguage statements are often framed to attrac! altention, lake this:

-

10 4

!i10.3 Mf!TASYMBOLS

§10.3 METASYM]]OLS

Optional Items

Square brackets are used to indicate that the iutcrwuting expression(s) arc optional. Ex-

ample:

PRIIIT [Optionh'st] Filenamc

If omitted, appropriate defaull._ are assumed by the, .s_,r program. I. thv _latldard (:I,A MP

format described in §3.1, command qtmh'fiers _lr_, alway_ ¢_ptional.

Mutually exclusive options, which may not co,.xisl in the same ,ommar_d. are s,q,arated

by vertical bars:

CONI'IECTDEVICE [BLOCK-IO J FORTRAII-IO] = ,ttit

Mandatory Choices

Curly braces indicate that a choice from the enclosed expressions (separated by verlical

bars) must be made. Example:

SET MOOD = {TAKEITSERIOUSLY I TAKEITEASY}

Control Characters

Control characters = (assignation) and / (qualifier prefix) arc showy, it) the command

description statement. Similarly, cotnma_ must be show if itettl lists are ,,xplicitly specified.

10 5

A

Glossary

A L

Appendix A: GLOSSARY

§A.I GLOSSARY

Tile terms defined below include those used in the l,resent Volume as well as _,une, like database

and script, which are mentioned in passing in this Vohune but figure more I,rominently in Volumes
II and lII.

apostrophe string

architecture

argument

arithmetic expression

arithmetic operator

assignment command

batch run

character

character string

CLAMP

CLIP

CLIP operation mode

A characler string enclosed between apostrophe marks. All charac-

ters inside an al-_slrophe string (_'it, h the only (,xception of hyphen-

ation marks) are significant, l,ower case h,tters are protected.

For asoftware product, the specification of the lls,,r interface. F. P.

Brooks in his classical The Mythical Man-Month, defines archi-

tecture of, syslem as "... the complete and th:loilrd specificatio, of

the user interface. For a eompuh r thi,s is the programming manual.

Pbr a compiler it is the language manual. For a control program it

is the manuals for th,: language or language's u.s_d to int, okc it.s func-

tions. For tile entire sy'slem it is the. ,,i,m of the tnanual's the u'ser

must consult to do hi's entire job."

See macrosymboL procedure argument.

A seqtlellc(" of illllneric COllSl,alll,S enclosed ill parentheses and sepa-

rated by arithmetic operators. Internal parent, heses may be used I,o

specify subexpressions and force certain evaluation sequences. An

arithmetic expression evaluates to an integer constant or a floating-

point constant according to the rules stated in hT.,t.

One (,f th(' symbols +, -, !, ", 7, and /. which are used to specify

ol)erations in arilhm,,lic ,,xpres'_iml_

A ('(m)man_l lhal Sl)ecilies a, value-assignmenl a('lion, hi the st,all-

(lard ('.I,AMP format, this is expressed hy conlw('l.ing two parame-

ters (or paranwter lisls) h) an equals sign.

A run ln(_de iil which a processor i'_ under excl,lsive control oF an

operating _;yslem scheduler. ('.ontraM. 1,_ interactive mode.

The symhols thai, comprise an alphabet: h,l.lers, numbers (also

called digits or numerals), and marks. ()n the computer, the con-

ccpl is extended to include control (nongraphic) symbols encoded

according t.o a standardized scheme.

A data item interpreted as a se(Inence of characters.

Acronym for Command Language for Applied Mechanics

Processors.

Acronym for (',ommand Langnago Intorfae.. Program. The

componenl of lhe N IC[': archilecturc lhal imph,nwnts C.I,AMP.

The plan of aclion f,_ll,_we,I h) Ihe (3,1P kernel m response to l.he

type of command being processed (ordinar_ c_m]mand or directive)

and its sender (user or pr.cessor). ()perat.ional details are given in

Volume III.

A 2

closed interface

column

command

command language

command record

command source file

command source stack

command stream

comment line

comment sentinel

comment text

continuation mark

conversational run

data

database

data library

data line

!iA. 1 (gLOSSARY

A s,)ft.w+u'e syslenl, iwdvrl'm'e that h,rlfids gh,hal va,iahles.

The index of a data line charavt.er, c,)unting I'r_m, h,fl t,oright and

starting at'l. ('l'ernfirmh_f4y holdover from the day_ of punched card

input.)

In a command language: all inslruction col|sisting of one or more

items to be int.erl)reled hy the program I llal. receive,_ it.

An interprelabh, lanlzuage orals|sting of a stream of commands that

controls the execut, i{m of a software element.

The logical representation of a command as a set of items. In

CLAMI', a finite seqtl('llCe of itenls terminated by an implicit or

explicit end of record. A command record must contain at least, one
item.

The input file from ,_'hi('h CIviC reads data lines sent, by the user or

the processor.

A stack structure used to implement multiph, source input as ex-

plained in _.I.2.

The sequence of c+m.nand records "seen" hy (:1,I P. when abstraction

is made of physical input s.,trce+

A data line |lagged hy a ('t_ltlrn(,tl! selllh|++l.

A mark in cohunh I of a c|at+a line tha! idpntities the text that,

follows as commenl. [n (_I,AMP, the default mark is the period

when folh_wed by a blank or a ('arrial_e rPturn.

Text present in the command st ream whwh is ignored by CIAP. The

following are treated as comments: text out, side data field; t,e×t that

follows a continuation or end of line mark; text. on a data line that

contains a comment selltinel; text, that follow certain "one liner"

directives described in Volume !1.

One of the special |Ictus ++ or --, which specifies thai the current

comtnand record c.nt, intms o, the llPX| <ta[;-i, line+ The double pltm

mark must be preceded by a blank and ahvay_ breaks items; the

dmtblc minus mark is a hyphenator and does n,fl, break items.

A form .f interactive work in which a human user maintains a dialog

with a rm=ning l+r<_gr';ittt.

The rt'pre_erll,ati<m of illf()rlnathm orl a ¢ligil+_l <'onq>ul,er as stored

valllC_.

A named colh.ctiorl of stored tlal,a .rganized according tc_ a data

model.

A named l)arlJtj(m of a dalabase, which cml I., all,ached to a run-

ning process<_r a_ an entity. A dala lil_rar._, normally resides on a

permatwnt lile.

Each physical record read by CI, IP fronl the ,-,,mlnand Sotlrce file.

These records do not normally exceed 80 characters under defiuflt

settings.

A 3

Appendix A: GLOSSARY

data field

data item

data manager

directive

empty line

end of line

end of record

end of source

fixed-point constant

floating-point constant

GAL

global database

global data manager

hyphen

input file

interpreter

integer

interactive run

The active l>ortitm of a data line

An item that, is ¢llrect ly t ran,dal,ed inl,o a .ttnwrir or charact,er-siring
value.

A software eiellWItl, Ilia! sl,or,_s, retrieves or IllitillLili|ls dat,a st, rllc-

tures. If !,he st,ru('Lures f.rm a dal, al)ase, t l,e dat, a manager is called

a dat, ahase manager

A special comnmnd record that; is directly processed by ClAP m_d

not, t,ransnfitled Io tiw rtsnlling processor.

A data line that conl+.ins only blanks or comnwnl, text.

A special item which terminates a com.m.d record and indicates

that the next ore. begins on re,other line. In (:I,AN, II'. the default,

end-of-line mark is tile isolated period

Any character or character sequence thai indicates tile end of a com-

mand record. The el_<l of the rerord may be explicitly writ.t.en with a

special item (for example, end of line or record separator), signalled

by a carriage return mark in termi.al i111mt. , or implicitly given by

the end of tlw <lata field being reached witho.t a continuation mark

having been detected.

Any signal that marks the termmat, iotl of t,lw curretfl, command

inf.q,lt source, l'.'xamph,s: a;1 end of file in a script, a RETUEI'! directive

in a commanc] procedure, a daLa line containing; ere in column I.

See integer.

A data item t,hat, is ident,itied alld decoded as a floating-point value.

A floating-point consta|+t may Iw writtt'n in the _lsual I"()RTI_AN

style, or h,, t,he rem_l!, of an arit, htnet, ic ('xl>re.ssi,m

Acronym fi_r (;lobal Acec.ss Library. which i_ +, data library that

conforms t. the data model of the Nlt'f'3 gl-hal database. Also,

the name ,ffthe dat,al)a,_e manager thro_lgll _hich (.;AI. files are

accessed.

A database that resides on permanent st¢_r+,g,, aml is accessible by

a twLwork <ff pr,)cessors.

A data manager thr.llgh which lhe _lohal ,tats, hasp is acce,_sed.

See continuation mark.

See command source file.

A soft, ware eleltwlH, l.haI, l.rallslatt,s a source language into a target,

larlguage on a re,'ord-I}y-r(,cord hasis trader t,he supervision of an

I'X|PPIIHI l'l)lll l'(li Sil'tll+l,llrl',,

A data iteln that+ is inlerpreled as a tixed-I)Oiltl vahle.

A run mode in which the processor is .mh.r direct, conLrol of a

human u_er. This can be further classified into conversational run

and spectator or monitor rffn m'cnrqli.tz, to l,he ch,gree of hfl,eraction.

A 4

item

item list

log file

kernel

keyword

line

list

list generator

macrosymbol

mailbox mode

message mode

metalanguage

metasymbols

monitor run

multiline record

numerals

numeric character

!iA. 1 (_LOSSAR.Y

A finite sequence of ,'haracters l)arsed as a token. In C[,AMP, items

other than al)ostrol)he st rings, (lll(ile sl, riIl_gs, procedure arguments

or macrosyml).ils are delimited by l)lanks, rolnmas, equals signs ,

qualifier prefixes, list-gc.neralion prefix,,_, elld-of-r(.('or(l marks or

data field boun(larie_ ,,Xl._slrol)he and _tll_l,qr ' strings are (lelinuted

by a matching apc)sl r,phe, a real ching ClHt)te, or the end of the dala

fiehl. Argumenls all,1 tnacr.synd_ols arv ,h,lillule, l as explaine,| in

Volunle II.

A se(lllenl'e (if ill'IllS separilled l_y ('()lnvIlilx.

A file cul wt,ich (?i,11' writes a trauscripl +if the c.lmnands it reads.

In a NI('E i'r()c,,ss.r, Ill,, software thal perfilrms the useful work.

The kernel is surr_lt,nded hv the shell, which il_lerf'aees it, to the

architecture. (Tertninol.g.v _;uggesl, ed b)' l,he I Jnix system.)

A character string lhat triggers a specific aeti.m t)r response from

the corI_man(l int.erpr(,ter tltl at:court/ of its spcllin_;.

,gee data line,

,gee item list.

A special-ilelzl ('4)llStrll('|iOll sllell ;in 1:15:2 lhilt (.vaIuate._ to a nil-

merit list, lh(, ilelns which ar,, an aril.hlnpl,ic _,r _e_mlet, ric proy_,res-

sion. (;('neral, i_Ptl slay be orw-dit_lensic_nal (si,ue, h' list general, i(.1) or

tv,'ll-dimerlsional (do.hh' list _eneration)

A character string that stands fi_r another ch.r_cler string The

repla('elnellt prg)i'es_ is calh,d Inacr_ ('XpallSi¢lll i|ll(| rllay inv(l]ve

arg, lnnenl-passing and recursion. This process is explained in Vol-
ume II.

An advanced variant of the message Ill()de ill which the running

processor ttses(:I,lP as ;, "mailbox" to send <'otutHands to an¢ither

processor.

All operating nmde in which the processor "talks" to CLIP by calling

a "tnessage'" entry point.

A langual_e used to d,'fim' another language. The (_I.AMP metalan-

gu;tge is used t,o de_cril.' c_,mmand rect,rds i)rocessable by CI,IP.

Sl)e_'ial characters n_ed in the Inetalal'IKllaKe to _l)ecify logical prop-

erfies but which are fluff, part. of the comnland as written. For ex-

a1,1)le, sqlJare brackets ;let, nmtasy;,l)ols _sed I. i_di('ate that the

inlerw,ning exllression[s) are (q)t,ional.

See spectator r.n.

A cotnmand rec(ird that (,xt(.rl_JS over lit(ire Ihiill a data lille.

(.;harac'ler_ II t.hroul,,h _.1.

A charact_,r that n_Lv legall) ;q)pear in _nllegvr 4_r [hi;d.ing-poinl, con-

stants: numerals 0 Lhrot_gh g, +, -,., E t_r D (E and D may not be

the first eharact,er).

A-5

AppendixA: GLOSSARY

open interface

operator

ordinary command

parameter

problem-oriented language

processor

processor directive

procedure

procedure arguments

procedure body

procedure header

prompt

qualifier

repeated item

running processor

script

sentinel character

shefl

A software .,4v_Ipl'il illterfa¢'e that. admit,s ghdml variabh.s such a,s
FORTI_AN COmli.,N hl,.k'<

See arithmetic operator.

A command that is Iml a directive. An ordinar) command is not

conceptually interl_reted by (:I, IP, bul, pas_¢,_l ahmg t,o Lhe processor.

In a comnmlld lailgu;,gr, a data item whose value is not, specified

in the collimarid description, I_ut, is assigned whell the cotnmalid is

written.

A command lanl4uage that directs the aciivi!.) of an application

program or a m,iwork of such program, arid l.hal consists of dor.ain-

specific st, atetuents.

A soft, ware element lhat receiw,s and prodm'es data sl, ructures. In

the NICE ,;ysi.etn. a l)rncessor (capitalized) i,; a software element

that produces results ft_r the tiger and coil!or'ins t,o ccri,aill opera-

tional rules.

A direct!so' subrnittp_l by the processor as it ,ie-;snge.

A set, ¢lf colnlnand records delimited h.,, _ l_r_ce¢ture header and

terminator and which may b_, iJaranlelerized by argurnent, s specified

in a calling seqlience.

A list of parameters specified in the procedilre header and that slay

be used to c.ntrol a call-by-name text,-rt3Jlaceulent mechanism.

The set. of conlrnands comprised bet.weell the procedure header and

I,erminator.

The directive that initiai,es l;he definition of a command procedure.

Ill collw,rsaiiollai Ol,,rat.mrl of a processor, I,exi, !,hat CLIP writ, es to

the screen to illdicai.e l.hat it is rvady to accepl a command.

Arl it,enl (normally a charactx,r st, ring) preceded hy a qualifier prefix,

which is by defaull the slash. Qualifiers are used t.o implemerlt

command opt.ictus.

Arl iieul _ff the fi_rln nc(e_tet,, where n is a posit iw, integer and itett_.

a valid data itelti. 'l'itis is equivalent 1.- a list c_f _t identical it,eros.

The at-sign is the d,.falJlt repul it i_lu characi.er

The processor thai is under exe¢'llli.rl and calls ('.I,IP For comnlands.

A tih, of comnutnds (:hat, is prepared in advalwc, and then inserted

in Hie i:oinlilali_l st rl,alii tl) an ADD direci, iw,. A script differs from a

procedure ill !hal, it I"alllHit lip paranlel, erized ¢lr execllted ill nonse-

querit ial order.

A character thai assilliu,s a special roh, by appearillg on coltiillll 1

of a data lille.

In a NI('E Processor, the soflv, are Iha! sllrrounds t.he kernel and

c_lrnlluinicat.e'; xvii.h the N I(ii7] arciiii.ec'iI,r,, nofl v, ;ire. (Terminology

Stll_gestPd by thr llnix .,,)',,,Ipln.)

A 6

software element

software system

source

special item

spectator run

splash line

statement

string

symbolic item

text dataset

textstring

user

user command

user directive

!iA.1 (;L()SSARY

Any piece of software thai ran be distingttished and identified for

functional purposes. This tnay range frets pritnitive subroutines to

complex packages such as a (latal)ase manager.

A software element or sol of sofl.ware elenwnts packaged within a
common architecture.

,%,e command source file.

A character sequence that does n<fl evaltlal,e [lirecl,ly l,o a riulneric

or character string value bu! is used for _l)ecial purl_oSeS.

A form c_f interael ire work in whi(h the user (h..s not actively inter-

act with lhe running processor. Instead the user _tarts execution,

designates input sources where the commands are prepared in ad-

vance, and "sits back" (.o watch the processor ,h) its thing. Also
called monitor run.

At, explanatory line (or lines) of text, that is <fl_li[mally printed by

(',I,IP boil)re the l>rtmq)t to guide the tnscr in cotnmand seleeti.n.

The concel_ttml rel+resen/.alkm .r a c(_tnmat_<l. M,+re specifically, a
command record or a set of ('onlnutnd recllrds when viewed as an

element of a problem-oriented languag[.. The view is in terms of

actions in the domain <ff at)plicati[ms.

A finite uequence c)t' sytnhnls that belongs I[) a c[munon clams. Also

sht,rl, for character _trin_+

An item that stands for ancflher item or a. il('lll list.

A database enl ily that cmlsists of a sequence c)f card-image rec.rds.

A "passive" character st ring interpreted as data; f+_r example a line

of text or a I)1OI title. (;ontrast to keyword, which is an "active"

character string that+ controls program actions

The beneliciary (normally a human) of the pro<essor activity.

Atl ordinary cotnrnand std+rnitted by the tlser.

A directive sul)mitled I)y the user; c.ntrast f,o processor directive.

A 7

B

Ancient
History

Appendix B: ANCIENT HISTORY

§B.I HOW (;LIP CAME IJNTO BEIN(g

All Illustrious Ancestor

The kernel of (3,1I" is I,()I)RE('.. The initial v,,rsion (,1" I,()I)I{E('. was wril.t(,rt I)y tlw alathor

in 1969 while at, the Stress Research (,roul) (ff Boeing's (Jonuner('ial Airplane I)ivision (Seattle,

Washington). The program was largely based on a punched-card free-field reader written by

Lawrence Schmit, one of the architects of Boeing's ATLAS system._

The first Univac version of I,ODRF, C was the result of converting the CI)(I version when the

author moved to Lockheed's Pale Alto Research Laboratory in 1971. This vc,r_ion was documented

in April 1971. Since then, successive versions of I,()I)RE(! have been IIs('(i as lltility modules for

processing the source input data of all c_fthe application software written I)y the author, fn fact,

the author has not had the occasion ()f using a formatted READ for input data since 1969!

A major revision and expansion of I,OI)RE(; took place during 1971 1!)72 while work _m

the now defunct NOSTRA (N()nlinear STRuctural Analyzer) program was Iinderway. \1any

of the syntactical features which are now part of CLAMP took shape. It, was decided to) label

the underlying language as Nil, (NOSTRA Input I,anguage), a designation that survived the

NOSTRA code proper until 1978. A detailed documentation of NIL was published it} 1973.

Another major revision of I,ODREC tt_ok place hi 1976-1978. In 1i)76, the c_)ncept of directive

was introduced as a way of implementing "service commands" intended for internal consumption

by LODREC, and hence invisible at, the user program level. The most imlmrlant class of directives

pertains to the definition arid handling of command procedures, a concept imph,mented in late

1976. Further refinement of this feature occurred in 1978, when the ability for directly interfacing

LODREC with a library-oriented datai)ase management system was establishe,|. The command-

procedure concept proved to be so powerful that, it led to the dropping of other experimental

features (e.g. iuline command generation), which are now more naturally I)res_'nled in a procedure
framework.

The Survival of the Fittest

During its nearly 10-year existence, LODREC has processed several milliotl ('onmmnd records.

New features were incorporated and tested almost every year. Only about half of l.ht)se features

have survived to date, as witm._sed by the following list, which covers I,t)I)I;tE(: an_l ('.I, IP

1. Multiple command per line (1969 to date)

2. Multiline commands (1969 to date)

3. Text records (1970 1974)

,1. Parenthesized conmwnts {I(.)7q) 1972)

5. PL/1-1ikecomments (1970 1972)

6. Starred character strings (1971 1974)

7. Packed-bit items (1971 1972)

8. Record generation by _ f k (197(|-1976), sllper_eded by 23.

9. Item generation by _k-: tt _._ (1971 1978)

t An evolved version of tl,e first f,t)I)RE(: is still used as in[)_lt d_llH interpreter for ATI,AS,

which however runs only (in (_'!)(_ Cyber machines. Yet, another deriw.d version now drives

the data management, system RIM. developed by Boeing for NASA I,angh'y.

B 2

Report Documentation Page
_at_J_J_ A_vonau_s d_

1.NAsAReport CR-178384N°" [2. Government Accession No. 3. Reclpient's Catalog No.

4. Title and Subtitle

The Computational StructuralMechanics Testbed Architecture

Volume I- The Language

7. Author(s)

Carlos A. Felippa

5. Report Date

December 1988

6. Performing Organization Code

8. Performing Organization Report No.

LMSC-D878511

10. Work Unit No.

505-65-01-10

II. Contract or Grant No.

NAS1-18444

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

9. Performing Organisation Name and Address

Lockheed Missiles and Space Company, Inc.

Research and Development Division
3251 Hanover Street

Palo Alto, California 94304

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

15. Supplementary Notes

Current affiliation: Carlos A. Felippa, Center for Space Structures and Controls, Campus Box 429, Uni-

versity of Colorado, Boulder, CO 80309-0429

Langley Technical Monitor: W. Jefferson Stroud

16. Abstract

This is the first of a set of five volumes which describe the software architecture for the Computational

Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed

Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the

command language interpreter (CLIP), and the data manager (GAL). Volumes I, II, and HI (NASA CR's

178384, 178585, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface.

Volumes IV and V (NASA CR's 178587 and 178388, respectively) describe GAL and its low-level I/O.

CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control
the flow of execution of processors written for NICE. Volume I presents the basic elements of the CLAMP

language and is intended for all users.

17. Key Words (Suggested hy Authors(s))
Structural ualysis software

Command language interface software

Data management software

19. Security Cl_siL(of this report)

UnclsssiEed

18. Distribution Statement

Unclusified--Unlimited

20. Security Clusif.(of this page)Unclassified

Subject Category 39

21. No. of Pages 22. Price93 A05

NASA FORI'_ 1626 OCT ,e

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

§B.1 HOW CLIP CAME UNTO BEING

I0. Item repetition by n _ item, then n!_itcnl (197ll to (late)

11. Mandatory data line sentinels (1972 1978)

12. Composite floating-pNint constants (1972-198,t), suI,'rseded I_y 2!).

13. Apostrophe textstrings (1972-to date)

14. Numeric local variables (1972-1979), superseded hy 25

15. Local symbols (1973-19_0), supersede(t l)y regislers.

16. Transfer to indexed record (1974 1976), superseded by 21.

17. Record group repetition (1974-1976)

18. Hollerith textstrings (1974 1981)

19. Directives (1976 to date)

20. Command procedures (1976 to date)

21. Transfer to labels (1976-to (late)

22. Colon-delimited item generators (1977 to, date)

23. Record generation by DO directive (1977 1984), superseded by GEII.

24. Interface to global database manager (1978 to date)

25. Macrosymbol facility (1979 to date)

26. Registers (1979-1984), su perseded by local nlar rosymbols.

27. Quote strings (19824o date)

28. Structured directives IF THEII ELSE, WHILE DO (1982 to date).

29. Arithmetic expressions (1981 to date)

The acid test for survival of a new feature has been its usefulness and mnemonic quality in

interactive work. If a person sitting at a terminal has to think for awhile before using a certain

feature, doubts about its survival in the next version arise. Features found useful over several

years may also disappear as a subsequent improvement is developed; for example, numeric local

variables replaced by registers replaced by nlacrosymbols.

The transmutation of [,(_-)DR EC into CI,IP took part in two stages. Functional requirements were

identified as a result of the top-down d,:sign of the NICE architecture in the period March, 1979

through February, 1980. As the design evolved, it became, evident that the r,mmland inlerpreter

would have to he configured as a Unix-like "shell" surrounding the basic kerl,'l (l lie oht I,()l)R E(;)

as well &,_ satellite snhsystems for command-procedure handling, dataha.sf, mana_en..nt interface,

etc. This ensenlbh' wan identified as (',1,11'.

The second stage involved the iltl_lt>,ttltYtlttllttllll Of (',1,11' till I,he VAX II 7Sll [.Olnlllll, er in the

FORTRAN 77 language. The I_lilk of ihis w.rk was carried out front March I.hrllugh Augnsl. 1980.

In retrospect, the decision of going wil h I"()R3'RAN 77 (then just availahh, i)ll the VAX bill. not,

on Univac) was h_rlunate. The powt,rflll FIiRTRAN 77 character-string pr.cessing capahilities

allowed machine-independent coding of crii ical subruul, ines, and resulted in a productivity increase

estimated at 3:1 over a similar effort that would had mixed FORTRAN 66 and assembly language.

And over 90% of CLIP is character processing.

ILl 3

