
N89- 1 5 5 6 9

Artificial Intelligence Approaches to
Software- Engineering

James D. Johannes, PhD.
James R. Mac Donald

The University of Alabama In Huntsville
Computer Science Department

Huntsville Alabama, 35899

ABSTRACT
This paper examines the artificial intelligence approaches to software engineer-

ing. The software development life cycle is a sequence of not so well-defined
phases. Improved techniques for developing systems have been formulated over
the past 15 years, but pressure continues to attempt to reduce current costs.
Software development technology seems to be standing still. The primary objective
of the knowledge-based approach to software development presented in this paper
is to avoid problem areas that lead to schedule slippages, cost overruns, or software
products that fall short of their desired goals.

Identifying and resolving software problems early, often in the phase in which
they first occur, has been shown to contribute significantly to reducing risks in
software development. Software development is not a mechanical process but a
basic human activity. It requires clear thinking, work, and rework to be successful.
The artificial intelligence approaches to software engineering presented support the
software development life cycle through the use of software development techniques
and methodologies in terms of changing current practices and methods. These
should be replaced by better techniques that improve the process of software
development and the quality of the resulting products. The software development
process can be structured into well-defined steps, of which the interfaces are stand-
ardized, supported and checked by automated procedures that provide error detec-
tion, production of the documentation and ultimately support the actual design of
complex programs.

INTRODUCTION
Artificial Intelligence (AI) approaches to software engineering development as-

sist in establishing a knowledge about techniques and methodologies that improve
the process of software development and the quality of the resulting products. Given
the task of developing a software system, what knowledge is required? To start build-
ing of a system of thousand or maybe a million of delivered lines of source code is a
daunting prospect. No one should begin without a clear understanding about how
the development is to be undertaken. Establishing a software development
methodology when undertaking software development, on no matter what scale, is
required. Every software organization already has some methodology for building

141

software systems. However, while some software is developed using modern
software engineering techniques, most of it is still built in an ad hoc way.

The questions that an AI software engineering system can answer are, what
software engineering techniques are there, which are appropriate to our problem at
this stage of development, and how can we monitor the quality of the products under
development? The knowledge based software engineering paradigm can be sum-
marized as "machine-in-the-loop", where all software project activities are machine
mediated and supported. The approach is to assist the programmers rather than
replace them. The system acts as an active participant in the software system
development process. The system must keep track of details and assist with the
routine aspects of the software development life cycle thus allowing the software en-
gineer to concentrate on the more difficult parts.

SOFTWARE ENGINEERING EXPERT SYSTEM
The knowledge based Software Engineering Expert System (SEES) environment

can be loosely defined as a computer-based collection of tools, programs, algo-
rithms, etc, which aids in the development of software and/or hardware systems
during some phase of the development process. It is a collection of tools, each sup-
porting some part of the software development process, along with tools coordinat-
ing and managing the software engineering process [6,9,12,14]. All system develop-
ment life cycle activities must be machine mediated and supported by the
knowledge-based environment as directed by the manager of the project. These ac-
tivities will be recorded to provide the "knowledge base of software design / program-
ming methods" of the system evolution. These will be used by the SEES to deter-
mine how the parts interact, what assumptions they make about each other, what the
rationale behind each evolutionary step was, how the project satisfies its require-
ments, and how to explain all these to the system developers and management of the
projects involved. Desirable characteristics for a SEES are:

supports software using multiple programming languages
support hardware development for a mixed target-machine complexes
preserve integration with existing programs and data
assist all project members (software engineers, managers, technical writers, secretaries, etc.)
integrated and extensible system knowledge base
supports component reusability
user friendly
supports entire project life cycle with special emphasis on prototyping
Accommodates multiple projects

This knowledge base SEES is dynamically acquired as a by-product of the
development and actual management of each project. It includes not only the in-
dividual manipulation steps which ultimately lead to an implementation, but also the
rationale behind those development steps. This will make it possible to shift more
and more tasks from the software engineer to the machine. To make the process
possible, it is necessary to formalize all life cycle activities. In order for the
knowledge base software engineering environment to begin to participate in the ac-
tivities described in the life cycle of the development process (and not just merely
record them) the activities must be at least partially formalized.

142

Formalization is the most fundamental basis for automated support. It creates
the opportunity for the environment to undertake responsibility for the performance
of the activity, analysis of its effects, and eventually deciding which activities are ap-
propriate. Not only will individual activities become increasingly formalized, but so,
too, will coordinated sets of them which accomplish larger development steps. In
fact, the development process itself will be increasingly formalized as coordinated ac-
tivities among multiple projects.

Software Engineering Knowledge Base
A formal software engineering model of definitions and rules that permit a

human being to reason about the objects in the this domain, and their interrelations
are most desirable, and perhaps necessary, precursor to any techniques for mechani-
cal reasoning and problem solving in the software engineering domain. The
knowledge base must contain the knowledge and understanding of the software
development process subject matter and incorporate the logical aspect of human in-
telligence. It must be able to generate problem solutions from situations never
before encountered and not anticipated by the software engineering system desig-
ners. It must be able to infer the true state of the system from incomplete and/or in-
accurate measurements. The knowledge concerning each domain must, at least con-
ceptually, be available in the knowledge base that is used by the various tool reason-
ing about the current state of the SEES environment.

The type of knowledge required can be divided into two parts: software engineer-
ing knowledge and application specific knowledge. The first part is conventional ob-
jects of computer science such as control constructs, arrays, sorts, structured
programming techniques and their associated algorithms and implementations
relationships. This knowledge is the type expressed in computer science text books
such as Data Structures and Algorithms [1,15,16,18,23]. The second type is
knowledge required about the world in which the target software application is to
operate. The system is driven by a database of inexact and judgmental knowledge.
Data (knowledge) about the problem domain may be of various forms. Some data
may be applicable to the knowledge base; these are generally called (inference)
rules since their function is to deduce (new) facts about the domain from the existing
data. Other data may take the form of heuristics for deciding when rules or project
data can be usefully applied.

The knowledge must be represented in a fashion appropriate for external use
and must also be represented internally in such a way that it can be accessed, up-
dated, and efficiently maintained. Several external representations are often
desired. For example, the form in which software engineering expert presents
knowledge to the knowledge base may differ drastically from the form in which the
system represent this information to someone who is not a software engineering ex-
pert, a manager, or novice. For the nonexpert, the knowledge would be explained in
lay terms, some aspect of the knowledge about certain objects or situations.

In conventional data processing the programmer determines all the relationships
among the system modules. AI SEES environment techniques allow the environ-

143

ment itself to determine relationships among the software system symbols that were
not made explicit by the programmer. This occurs because the environment has
rules for manipulating relationships among symbols whose meanings have be repre-
sented within the program by the programmer. This manipulation of relationships
among symbols is concerned with preserving not just the data provided but also the
knowledge embodied in the relationships among the software elements.

Knowledge Acquisition
Knowledge acquisition is a bottleneck in the construction of SEES environment

[13,141. The SEES knowledge engineer’s function is to be a go-between and assist
the expert software engineer in building a system that will demonstrate the a level of
expertise about the software development process. One of the most difficult aspects
of the knowledge acquisition task is helping the software development expert to
structure the domain knowledge and to identify and formalize the domain concepts.
Potential sources of knowledge include human experts, reports, data bases, and the
experience of the software engineers. The knowledge of the software engineering
process is subjective, ill-codified, and partly judgmental. The process of extracting
knowledge from an software engineer expert during the development process and
transferring it to a computer program (expert system) is an important and difficult
problem.

Software engineering knowledge acquisition involves problem definition, im-
plementation, and refinement, as well as representing facts and relations acquired
from the software development process. The software engineering expert must inter-
act with the SEES environment to build the expertise of the expert system. The
main advantages of building an expert system knowledge base are transparency and
flexibility. A software engineering expert system knowledge base is developed in
two main phases. The first phase is to identify and conceptualize the problem.
Identification includes selecting and acquiring a software engineer expert,
knowledge source, resources, and clearly defining the software development
problem. Conceptualization includes uncovering the key concepts and relations that
are needed to characterize the problem. What is the knowledge that software en-
gineers know, and how can it be effectively represented in an SEES? When is the
divide and conquer strategy appropriate? For the specific application is the mer-
gesort, the quicksort or selection sort the proper implementation ? The expertise to
be elucidated is a collection of specialized facts, procedures, and judgmental rules
about a narrow domain area rather than general knowledge about the domain or
common sense knowledge about the software development process. The following
questions must be answered before proceeding with the next phase:

What types of data are available?
What is important in the data interrelations?
What is given and what is inferred?
What does a solution look like and what concepts are used in it?
What aspects of human expertise are essential in solving software development problems?
What is the nature and extent of “relevant knowledge” that underlies the human solutions?
Are there identifiable partial hypotheses that are commonly used?
How do objects in the domain relate?

144

Can a diagram of the hierarchy, casual relation, set inclusion, part whole relations, etc., be built?
What processes are involved in the problem solution?
What are the constraints on these processes?
What is the information flow during the software development process?
Can the knowledge needed to solve a problem be identified and separated from the knowledge
used to justify a solution?
Are the data sparse and insufficient, or plentiful and redundant?
Is there uncertainty attached to the information?
Does the logical interpretation of data depend on their order of occurrence over time?
What is the cost of data acquisition?
How are data acquired or elicited? What classes of questions need to be asked to obtain data?
Are the data reliable, accurate, precise; or are they unreliable, inaccurate, or imprecise?

The purpose of knowledge acquisition is to identify and obtain the knowledge
needed from a particular software application to be embodied in the SEES environ-
ment which is to solve some problem in that application domain. As such,
knowledge acquisition is related to the requirements definition phase of a software
project. In a traditional software project it is possible to define the proposed
system’s requirements fully before beginning the design of the software architecture.
However in an SEES project this knowledge is not readily available in the same
sense as it is in a traditional software project. AI techniques are being employed lar-
gely because these techniques lend themselves well to extensive iterative acquisition
and refinement of the knowledge from the software engineering and the application
domain [3,4,13,14].

The problem that remains, then, is how to minimize the time needed for
software system development, and how to make the software development process
as effective as possible? Making the process effective involves ways to maximize the
amount of knowledge acquired, to maximize the accuracy (in terms of applicability
to the project) of the knowledge, and to minimize the effort needed to set up and
maintain the software development process. The minimization of software develop-
ment knowledge acquisition time can be encouraged by providing an environment in
which changes are easy, code re-use is easy, turn-around time for changes is quick,
and the system is guided down few (if any) dead-end paths during its development.
To help focus on the needed knowledge and to maximize accuracy of the knowledge
obtained, an early emphasis should be placed on both the overall system’s eventual
performance and on the knowledge needed to evaluate that performance.

Software Life Cycle Support
A SEES environment must support the software development life cycle. Which

system development life cycle should the expert system support? It is very popular
to view the software development procedure using the term life cycle [5,8,19,25,26].
The phase seems to be almost a fad or buzz word. There are many representations
of the life cycle. Each industry has its own (or several) representations, and each of
these tends to be modified somewhat for specific projects. In many cases, the con-
cept of ’life cycle’ was used in the sense of ’a suggested ordering of activities in
software development, assuming ideal conditions’. This could be the art of program-
ming by trial and error (’hacking’); a method that is unacceptable in professional

145

software engineering. It also covers MIL-STD-490, MIL-STD-l52lA, and IEEE
Standard for Software Quality Assurance Plans (Std. 730-1981) [17,18]. Life cycle
models are used to emphasize different aspects, e.g. process of development, roles
of people involved, etc.. In each case, a life cycle model describes a sequence of
steps which may be activities (for instance design, coding, testing, etc.), or is used to
clarify the roles for management in the software production process.

A problem exists in representing the coexistence of important aspects of
software development. For example, the technical production phase, the manage-
ment production control, and a step into the application area such as prototype ex-
periments can not be represented. Another problem which some models try to solve
is that of directed backtracking. With each phase a set of decisions is associated, of
which only one is taken at a given point in time. The decisions, taken in the several
phases, are not independent of each other. For both the ongoing development and
the maintenance phase it is important to know which decisions belong to a specific
stage and where they were taken. As yet, no one has developed a knowledge base
project environment that supports a multitude of software life cycles. Most of the
systems reviewed in the literature [11,14,24] have their own unique software develop-
ment life cycle that would have to be integrated into the developers, particular
development methodology.

Throughout the reports written on knowledge based software engineering
[11,12,14,20,22], there tends to be a severe trivialization of the problem associated
with the actual task of translating the specification into code. A significant and dis-
turbing issue brought out in the Kestrel report is that it will take 3 to 6 months of
practice before a competent software engineering professional can work with the
Knowledge Based Software Assistant (KBSA) system [12]. It appears, based on this
statement, that Kestrel Set Theoretic approach leaves much to be desired. Kestral’s
approach in the KBSA development over the next 3-5 years is minimal and show lit-
tle thought about the tasks involved in the creation of a reliable knowledge-based
system used to develop reliable software systems of the future. The Kestral KBSA
system should be able to take advantage of a ten year development cycle. The
progress of the hardware revolution will continue (cheaper memory, faster / smaller
/ interconnected machine’s) allowing the KBSA to take advantage of these advances.

Attacking the problem from its high-level esoteric aspects will generate a well
thought out specification. The automatic transformation of a high-level prototype
into something that can be used as a real system is difficult to imagine. Unfortunate-
ly, rapid prototyping rarely discovers those hidden data structures and relationships
that are necessary to make a real system operate. Even in sophisticated implementa-
tions designed to deal with each aspect of the system’s operation, the end result will
still rely on the software engineer to design an algorithm that does the job effectively.

People are the highest cost driver attributes in the software development life
cycle [7,18]. Shortage of software engineers personnel is between 50,000 and
100,000 people. The suppliers (primarily university computer science departments)
do not have sufficient resources to meet the future demand. The demand for a
knowledge based SEES environment to aid people in performing their task and coor-

146

dinating their activities with other members of the team through the knowledge in
the system is apparent.

The current life cycle paradigm arose in an era where computers were more ex-
pensive than people. There is a need to create a software life cycle paradigm based
on automation of the steps within the life cycle. In life cycle models described in the
literature, the production phases design, implementation, and test are considered.
Phases for requirements analysis and maintenance are often missing. The manage-
ment of software development is given little or no consideration is almost all life
cycle models, with the exception of the first phase of the project planning. The life
cycle models look like mappings of three aspects namely management, technical
production, and system application or preparation of application. These may be
visualize as three simultaneous line of activities, onto one sequence of activities
from project conception to system use and maintenance.

Modern programming methodology addresses the difficulties of implementing
the chosen application system, not of determining the right system to implement.
This has resulted in a batch-oriented development cycle concept predicated on
fixing the requirements prior to beginning implementation. This approach assumes
that the problem can be correctly determined in detail before a solution is ever seen
by the customer. While this approach has been very successful in working around
the problems associated with large system implementation efforts which confounded
programming teams in the sixties, it avoids the reality dealing with legitimate situa-
tions wherein the character of a good solution is itself ill-defined in advance.

The prevailing standard development practices in industry use redundant descrip-
tions to ensure that description mismatches are detected and to guarantee that the
implementation corresponds exactly to the original specifications. This serves to
freeze the implementation and make it hard to change by accident. It also serves to
make the implementation hard to change on purpose if the original specifications
are found to be in error.

Phased SEES Development
A possible direction to take is the incremental improvement in each portion of

the existing software life cycle for software development. This approach would be a
conservative, evolutionary approach described in the 'Software Technology in
1990's: Using a New Paradigm" [2]. Because this approach is based on existing
software life cycles, the evolutionary approach is limited by any weakness of that life
cycle. Existing life cycles are not considered to be good candidate for an SEES en-
vironment because of two fundamental flaws that aggravate the maintenance
problem. There appears to be no technology formalism associated with managing
the knowledge intensive activities that constitute the software development process.
The life cycle models reviewed in literature are informal, labor intensive, and largely
lack formal documentation. Information about what specific process occurred
during each phase of the development and the rational behind each decision is cru-
cial for the maintenance process. During the software development process
programming skill is applied to optimize the source code. This optimization over
time makes the maintenance problem harder by making the software harder to un-

147

derstand [21]. The increasing dependencies among the components and scattering
related design decision information about the development process over time re-
quires machine mediation.

In the SEES approach of supporting the current life cycle models, rather than
making a major revision to the activities and products of the life cycle, the existing
life cycle elements and their interaction are examined for possible use of knowledge
based tools. Carnegie Group and Boeing Computer Services are building a
knowledge based software development environment based on this approach [20].
The environment supports the software engineer and project management using ar-
tificial intelligence. The system will provide a framework in which conventional
software tools can be integrated with tools based on AI. The objectives of these ef-
forts is to increase software engineering productivity. Currently the knowledge base
software engineering environments are in their infant stages of development.

Software project management has the responsibility for planning, controlling and
coordinating software life cycle activities. Currently, project managers are hampered
by the informal and undocumented nature of the activities, and the fragmentary, ob-
solete, and inconsistent data available. More effective project management requires
not only improved management techniques, but also a better software development
environment that captures the total project life cycle activities and the rational be-
hind the development process for a project. The knowledge base SEES is an intel-
ligent environment (or collection of environments) which aids personnel in perform-
ing their tasks, and coordinates their activities with other members of the team.

TRW’s Distributed Computing Design System (DCDS) provides an integrated
set of environments for development of real-time distributed software systems [101.
The primary focus of DCDS is to improve system reliability, software productivity,
and to minimize schedule and cost risks. Unlike the work done at Kestrel, the DCDS
is strongly focused on those aspects of distributed processing involving component
interaction, function architecture pairing, data distribution, deadlock avoidance and
system recovery. The approach to DCDS is to define the different phases of the
software development life cycle in terms of different languages, with each language
specifically designed to support that aspect of each life cycle process. Information is
passed between these languages through a common database and interface specifica-
tion. The DCDS design is currently based on five languages and methodologies,
specifically designed to attack: System requirements, Software requirements, Dis-
tributed design, Module development, and Test support. DCDS has two key aspects
that it shares with Knowledge-based systems: the central database that collects all
documentation form requirements to code and test cases, and the use of specialized
languages designed for specific problems. Knowledge based systems support both a
central knowledge base and a very high level but wide spectrum language. If the
DCDS languages are taken together, they form the basis of a wide spectrum lan-
guage.

148

CONCLUSION
This paper has examined an artificial intelligence approach to software engineer-

ing. The software development life cycle has been presented as a sequence of not so
well-defined phases and as such presents a major hurdle in SEES development. Im-
proved techniques for developing systems have been formulated over the past 15
years, but shortcuts continue to be exercised in attempts to reduce current year
costs. In this sense, software development technology seems to be standing still. The
SEES approach will reduce the software development problem areas that lead to
schedule slippages, cost overruns, or software products that fall short of their desired
goals.

A knowledge based SEES approach to the software development process will
someday become a reality. However, many industry practitioners are crating new
problems in trying to solve old ones. The selection of a new specific life cycle model
for software development has the danger of making the problem just as unsolvable
after its introduction as it was before. Will new paradigms for software development
give the necessary productivity gain? Will the cost of their implementation cause the
total development cost to exceed that of the development via the traditional
models? These knowledge base software engineering systems will not be trivial to
learn. Training, on the order of weeks months will be required to achieve acceptable
efficiency in the production of software systems. The results will be a higher system
reliability and maintainability as well as present less risk to the system developer.

A primary difference between artificial intelligence and more traditional ADP
approaches is summarized by the slogan "In the Knowledge Lies the Power." The
operative word is knowledge, rather than data or processor speed. Knowledge inten-
sive systems attempt to model the imperfectly-understood decision processes of the
domain practitioner and, like the human practitioner, make decisions with less than
certainty.

BIB LlOG RAPHY
1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Addison-Wesley,
1983.

2. Balzer, R., et al., "Software Technology in the 1990's: Using a New Paradigm", IEEE Computer,
November 1983.

3. Barr, Avron and E.A. Feigenbaum, "The Handbook'of Artificial Intelligence, Volume 1, William
Kaufmann, Inc., Los Altos, Ca., 1981.

4. Barr, Avron and E.A. Feigenbaum, "The Handbook of Artificial Intelligence, Volume 2, William
Kaufmann, Inc., Los Altos, Ca., 1982.

5. Boehm, B. W. "Software Life Cycle Factors," TRW Software Series, Jan 1981.

6. Boehm, B. W., et al., "A Software Development Environment for Improving Productivity", IEEE
Computer, June 1984.

149

BIBLIOGRAPHY (Continued)
7. Bruce, P. and S. M. Pederson. " The Software Development Project: Planning and Manage-
ment", NY: John Wiley and Sons, 1982.

8. Daly, E., "Management of Software Development," IEEE Transactions on Software Engineer-
ing, May 1977.

9. Davis, C. G. and C. R. Vick, "The Software Development System," IEEE Transactions on
Software Engineers,

10. --,DCDS A Unified Environment for System Software Development", Summary Description,
Volume 1, TRW, Huntsville, AL., January 1987.

11. Goldberg, A. "Knowledge-based Programming: A Survey of Programming Design and Construc-
tion Techniques", Kestrel Institute, Palo Alto ,Ca., July 1986.

12. Green, C. et al., "Report on a Knowledge-based Software Assistant", Kestrel Institute, Palo Alto,
Ca., June 1983.

13. Hayes-Roth, F., et al., "Building Expert Systems", Addison-Wesley Publishing Company, Inc.,
1983.

14. Harandi, M. T., " Applying Knowledge-Based Techniques to Software Development," hxqxx-

15. Horowitz, E., Sahni S., "Fundamentals of Data Structures", Computer Software Press, Inc., 1982.

16. Horowitz, E., Sahni S., "Fundamentals of Computer Algorithms", Computer Software Press, Inc.,
1984.

17. IEEE Computer Society. IEEE Standard for Software Quality Assurance Plans, Ny: IEEE,
Inc, 1982.

18. Jensen, R. and C Tonies, "Software Engineering", Englewood Cliffs,NJ: Prentice-Hall, 1979.

19. Kerola, P. and P. Freeman, "A Comparison of Lifecycle Modles," IEEE Computer Society,
Fifth International pp 90-99. Siler
Spring, MD: IEEE, Inc,1981.

20. --,"Knowlege-based Software Development Envrionment, Carnegie Group Inc., Augest 1985.

21. McClure, C., " Managing Software Development and Maintenance", NY, Van Nostran Reinhold
Ltd, 1981.

22. Smith, D.R., et al.,"Research on Knowledge-Based Software Environments at Kestral Institute",
IEEE Transactions on Software Engineering, November 1985.

23. Sommerville, I. "Software Engineering", London: Addison- Wesley Publishers Limited, 1982.

24. Swanson, E. B. "The Dimensions of Maintenance," Tutorial; Automated Tools For Software
Engineering, NY: IEEE Inc, pp 240-245.

25. Teichroew, D., "Improvements in the System Life Cycle," Tutorial on Software Design Techni-
ques, San Framcisco: IEEE, Inc, 1976 pp 64-70.

26. Zvegintzov, N., "What life? What cycle?" AFIPS Conference Proceedings, 1982 National Com-
puter Con-ference,Houston, 1982, pp 561-568. Arlington, Va: AFIPS Press 1982.

Jan 1977, vol3, num 1.

e in CampUting, 6(1), 14-21,1986.

Conference on Software Enginerring , San Diego, 1981,

150

