
Extending the Data Dictionary
for

DatdKnowledge Management

Cecile L. Hydrick
and

Dr. Sara J. Graves
Computer Science Department

University of Alabama in Huntsville

Abstract

Current relational database technology provides the means for effeciently storing and retrieving large
amounts ol' clata. By combining techniques learned from the field of artificial intelligence with this
technology. it is possihle to expand the capabilites of such systems. This paper suggests using the
expanded domain concept, an object-oriented organization. and the storing of knowledge rules within the
relational database a s ii solution to the unique problems associated with CAD/CAM and engineering data.

1. Introduction

Data management for NASA often involves large amounts of diverse data stored on many different
computer kptems and at many different geographical locations. Types of data which must be tracked
include project managenienf data. financial and budgetary data, CAD/CAM data, engineering data, and
documents. The possibility of using a single relational database management system (DBMS) for data
connectivity has heen explored. However, CAD/CAM and engineering data present problems which are
not being currently addressed by existing DBMS products.

Although CA D/CAbf and engineering data have the same basic requirements for storage and
retrieval. certain characteristics of the data show why existing DBMS's fail. Such data (1) tends to be
heterogeneous, consisting of graphical, textual, procedural, and mathematical data; (2) requires a
dynamic schema as entities are created and destroyed; (3) tends to be object-oriented with complex
relationships associated with the objects; and (4) exhibits object-specific relationships which change from
object t o object [5 j .

These characteristics require that a database designed for such applications (I) be able to represent a
wide range or data types. (2) be able to represent complex relationships between data items, (3) and be
akle to represent certain "knowledge" about that data [2]. Existing commercial DBMS's do not at the
present time have those capabilities.

The trilditional data dictionary/directory may provide the answer. The data dictionary contains the
"meta-data" which is the description of the data in the database. By extending the descriptions using
knowledge representation techniques from the field ol artificial intelligence (AI), the dictionary can in
effect hecome the "knoivledge base" for the DBbIS, providing both dynamic schema generation and
extended cl;1ta 1ypes.

This paper pre>ents mrihods for extending the data dictionary in a relational database management
system b y extending the domain concept to allow the representation of many different data types. Using
a n object-oriented niodel allow the expression of comples relationships between objects. "Knowledge"
can he stored in the I'orm ol' Ixoduction rules mapped into a relational table. Combining the extension of
the donlain. the object-oriented model, and the storage of production rules in relational tables produces a
clata dictionary that is dynamic and capable of evolving over time, thus meeting the needs of CAD/CAM
a nd en gi n ee ri ng da t ;i kilst. iippl ica ti ons .

PRECEDING PAGE BLANK NUT FILMED 173

11. Problenis w i t h Esisting Data Dictionaries

Tlie traditional process of database development resulted in a collection of static record structures
which remained I'ixed throughout the life of the database applications. Data base administrators typically
regarded data dictionaries/directories as static tools to aid them in the control of information resources
1 5 1 .

The ;Idvent of CAD/CAhI and engineering database systems has created the need for data dictionary
delinition t o occur throughout the life of 'the application as objects are created, modified, and destroyed.
The data dictionary. i f viewed as a "knowledge base" rather than a collection of static records, can play
an active role in this process. Expert knowledge about database design can be stored in the data dictionary
itself, thus allowing Tor the creation of schemas as data loading occurs.

The key concept in the ahove scenario is that meta-data inherently contains knowledge which can be
exploited Tor dynamic schema generation and knowledge management purposes. However, this will
require that future systems he more tightly integrated than at present. In order to take full advantage of
the knowledge inherent in the meta-data, data and meta-data can no longer be functionally separated,
hut must he made co-resident in the same "knowledge base". In this approach, database instances, data
types, operations, and transactions are viewed as "objects". Two issues must be addressed in designing a
knowledge-based data dictionary: a scheme for knowledge representation and the integration of the data
and meta-data [SI.

111. Moving from Data Management Towards Knowledge Management

Current DBMS's are effective in storing and retrievins large amounts of data. However, while a
typical data dictionary may describe the physical size of the attribute "employee number", it may have no
way to represent the fact that EMPLOYEE is a subtype of PERSON (111.

Artificial Intelligence research has produced Knowledge Representation Systems (KRS) which attempt
t o model the way in which human knowledge is represented and acquired. However, these systems have
not been able to efficiently exploit large amounts of data due to the fact that they tend to be
memory-based rather than disk-based [2) . Because they also tend to have high overhead and have
ignored the issues of backup and error recovery, they have not been considered practical for large
commercii1l applications [L 1 I .

Recent reseilrch has centered around finding ways to combine the best of both the DBMS and the
KRS. There have been four approaches to integrating the two systems:

(I 1 integrate an existing AI system with a DBMS;

(2) enhance an A l system with data functionality:

(3) tightly integrate AI and database by designing an entirely new system;

(4) extend ;I DBhlS by enhancing the data model with knowledge representation and other AI
capabilities I?. 1 .

The I'ourth allernative forms the basis for this paper. This approach actually involves mapping
knowledge inio [he existing DBMS. Several techniques have been used including the assorted semantic
data models and the mapping of production rules into relational tables. An integrated approach must
combine modelling ricline44 with knowledge rules for inferencing capability.

174

IV. Expanding Domains in the Relational Model

Weclekind I I O 1 discushes the importance of the domain in the design of conceptual schemata. He
;irgues that the design process should reflect a learning situation in which single elementary facts about
data are combined to form more complex knowledge about the data. His approach is a constructive
method in which glohnl domains are used as a basis for building relations in a stepwise fashion.

For esample. a domain description such as COLOR = (green, red.blue} might be replaced with the
f ol I o w i n 6 ele me n ta ry se n te n ces :

COLOR is ii DOhlAIN;
green is ;I COLOR.
red is a COLOR.
Idue is a COLOR;

The fact tliai COLOR is a domain must be established before the members of the domain can be
enumeriltecl. In the same manner, the members of the domain must be known before an entity can be
described ;is having that. attribute.

In order to implement this concept using the relational model, Wedekind suggests the addition of four
relations to the metadatabase: DOMAIN, ENUM (for enumerated types), and PRE and FUN which are
relations specific io INGRES which allow the use of INGRES predicates and the calling of functions for
validity testing.

Expanding the domain concept in engineering and CAD/CAM databases can provide two distinct
advantages: (I 1 abstract data typing, and (2) "built-in" integrity constraints. The ability to represent
absirilct data types is necessary because of the heterogeneous nature of the data, while the enumeration of
domain members provides the means of checking data entities for validity.

V. Object-Oriented Organization

One method for ascribing meaning to data is to describe the data in terms of objects rather than static
record structures [51. Objects can be entities or the relationships between the entities. Both declarative
and proceclural information can he included in the model [9].

Olijects can he organized into "semantic nets". Primitives can include:

1) The class of an obiect of a certain type;

2 ISA-links which relate subtypes and supertypes:

3) dSA-links stating that a token is a specific type;

4) Primitive maps and functions which provide access to meta-data [5].

Borh the ohject-oriented model and the relational database model share the goal of logical data
independence. hence a natural mapping exists between the two models [9].

An ohiect-oriented model that can be mapped into the relational model has been described by
Slieldon Borkin I 1 1 . His model is defined as the "semantic relation data model" and is based on the
premise that the ciirrent datilbnse state consists of sets of statements describing the current state of the
i1pplic;ition. T h e w statements are built from the meanings of natural language sentences which can be
trxprewxl as ;I terb phr;iw (predicate) plus several noun phrases.

175

.An es;imple of how :in object might be mapped to the relational model is shown below. The object in
Figure I tiah Ixen named "ARCH" and consists of three elementary items named "BEAM I " . "BEARI?,".
and .'BEAM3*'. The functional decomposition of this object is shown by the graph in Figure 2. The
relations resulting from the graph are shown in Table 1. I t is interesting to note that the relations in Table
I look similar t o the way in which PROLOG states facts - Le., supports(objectl,object2).

Figure I : Object Named "Arch" Figure 2: Functional decomposition

The object-oriented model has three advantages over the hierarchical, network, and relational
models. First. the database can be viewed as a collection of abstract objects, not simply a group of
two-dimensional tables. Second, both abstraction (attribute interconnection) and generalization
(,subtyping) can he more easily represented. Finally, object-oriented schema provide built-in integrity
constraints [8 I

Table I: Relations for Object "Arch"

I) CONTAINS(Object1, Object2)
Archl Beaml
Archl Beam2
Archl Beam3

2) SUPPORTS(Object1, Object2)
Beaml Beam2
Beam3 Beam2

3) DISTANCE>O(Object I , Object?,)
Beam1 Beam3

A s w i t h rno5t oilier existing models. trade-offs exist. Potential problems which may occur when using
an okiect-oriented data model are added complexity and the difficulty in restructuring relationships once
they hare I w r n defined ISl.

VI. Storing Knowledge Rules for lnferencing

h l dittalTiIse5 generally include two types of objects: facts about other objects and knowledge rules for
In lie clnta dictionary. facts can be represented using an object-oriented data model. inferencing 151.

176

However. in order to maintain the close integration between data and meta-data, a method must be round
for storing t l ie knowledge rules within the database itsell.

Recent work hy Han-lin Li in China has centered on mapping production rules [or inferenciny into
the relational model. This approach allows the relational DBMS to handle the matching and retrieval ol
production rules which have been mapped to the relational model.

Li's work centers around the basic form of the production rule which is "IF condition, THEN action
"AND" and "OR" operators are allowed to form complex conditions or with certainty [actor CF."

actions. Table 2 shows some example production rules.

Table 7,: Production Rules

Rule I: 11' A = a and B = I> and C = c
THEN: D = d l with CF(D) =
cd I :

Rule 2: I f A = n and B = b and C = c
THEN: D = d2 with CF(D) =
cd2:

Rule 3: I t A = n and (B = b or C = c)
THEN: D = d.3 with CF(D) =
cd3;

Rule -I: I f .4 = ;I' or B = b' or C = c'
THEN: D = d-l with CF(D) =
c d l :

Table 3: Relations from Production Rules

RI , a relation containing rules 1 and 2

Rule# IF: THEN:
A B C D CF(D) E CF(E)

1 a b c d l cd I

2 a b c d2 . cd2

R2, a relation containing rules 3 and 3

IF: THEN: Rule#
A B C D CF(D) E CF(E)

3 a b d3 cd3
a C d3 cd3

I a' d-i cdJ
b' d3 cdJ

C' d-I cdJ

T h e first two rules show that one condition may result in more than one action. Rule 3 shows that
dil'ferent condiiions may result in the same action. Production rules with similar IF conditions form a
relac ion.

The key for the rule relations is formed by combining the IF conditions [or each tuple. This assures
that tlie resulting relation will be in Fourth Normal Form. Table 3 shows how the production rules from
Table 7, mily be mapped into the relational model. Notice that in Table 2 the value of D must be included
in the primary key because of the identical values of A,B.and C [SI.

VII. A self-describing rnetaschema

Mark and Roiiw)poiiIos I I O l have proposed an active and integrated data dictionary system which
uses the service.< offered h y the DBMS and is flexible enough to control its own evolution. They describe
two orthogonal dimensions of data description: the point-of-view dimension and the intension-extension
dimension.

T h e poini-ol'-\.ie\\, dimension consists of three levels of data description: the external. conceptual,
and internal wtiemri. Tl~ese three levels provide data independence.

Tlie intension-extension dimension provides four levels of data description:

177

I ttie application data;

2) the application schema which provides information about specific applications;

3) ttie data dictionary schema which provides information about the management and use of
dara;

1) the metaschema which consists of information about the data model.

Each level of description is the intension 'of the succeeding description and the extension of the preceding
one. A description of the metaschema is explicitly scored as part of its own extension.

Using the object-role data model. the authors have mapped the core metaschema into
object-oriented tables. The objects in a relational schemata are relations, domains, and attributes. The
relation R E L N defines relationships between existing relations and their names. ATTN defines
relationships between attributes and their names. The relation DOMN describes the domains and the
relation RDAS defines the relationships between relations, domains, and attributes. These mappings
allow the metaschema to be stored in the database it defines.

The authors further describe a set of operations which control all operations on the data dictionary
schema. They state that the operations specified must be explicitly represented in the metaschema itself
in order for it to remain self-describing. Because object-oriented data models support storage of
procedural information. this task is possible.

VI 11. A Proposed Data Dictionary Architecture

In order to satisfy the need for dynamic structuring and closer integration between data and
meta-data, it appears that both rules and facts must be actually stored in the database. With this in mind,
facts ahout tlie data can be stored in relations modelled using the "semantic relation data model" and
rules can be stored according to Li's mapping. These two representations match the way in which
PROLOG defines predicates.

The core metaschema is designed using the base tables described by Mark and Roussopoulos. These
tables have been enhanced by expanding the domain concept as described in section 111. Figure 3 is the
graph generated b y coml7ining these two concepts.

The circles in Figure 3 represent domains. The single boxes represent the actual relations, while the
divided boxes represent the attributes associated with each relation.

The resulting relations are shown in Table 4. The relation DOMAIN has been extended to include
information necessarv for defining attributes in ORACLE, which was the relational product used in
developing tlie prototype. T w o additional relations further define the domain: (I) ENU allows
enumerated domains Cor ahwact data types such as objects, and (2) FUN stores the name of processes
for testing iind manipulation of the data. A final core relation RULES stores design rules for inferencing.

- -._.

Other relations :ire created or dropped as the associated objects are added to or deleted from the
datalxise. K'hen this occurs. the relations RELN. ATTN, and RDAS must be updated, thus ensuring a
dynamic mmscliema. The following esample shows how an object might be added to the database.

In order io add the arch described in Section IV, the user would be asked whether the object was
elementary or ;I composire o l other objects. If the object is a composite, its components must be first
added and described and discussed in Section 111. For example, "BEAM I" , "BEAklZ", and "BEAM3"
would be considered elementary items and must be stored in the database before the arch can be defined.

178

Figure 3: Prototype Core Metaschema

Table 4: Core Relations for Prototype

I)RELN(rname. rel)
RELN r l
DONN r?

3)RDAS(reln. dom, att
r l d4 a1
r l d l a2

d)FUN(dom. process)
d l I TSTAGE

2) DOMN(dom, dname, rep, base, dim)
d l relation STA CHAR(c) 2
d2 attribute STA CHAR(c) 2
d3 domain STA CHAR(c) 2

1)AlTN(at t , aname) 5)ENU(dom, member)
a t rname d8 arch
a2 re1 d8 beam 1

7)RULES(condl, cond2, cond3, result)

The three beams are particular instances of the type beam which is a member of the domain object.
A relation OBJECTS can he created to store these ASA links. The resulting relation is shown in Table 5 .

Once the ol7,iecta are added t o the database, the relationships between them can be added. The two
relationdiips SC'PPORTS and DISTANCE>O form two relations as shown in Table 5 .

A design rule completes ihe process or describing the arch:

I f SUPPORTS(s.z) and SL!PPORTS(y,z,I and DISTANCE>O(x,y)
then A R C H (s . y , z) ;

Each condition evaluates to true i f the specified tuple is found to exist. Thus application of this rule to the
relations in Tnhle 5 rvould confirm the fact that the object formed by the three beams is indeed an arch.
The arch can he named and added to the OBJECTS relation and the relation CONTAINS can be added
t o descrihe the componenis of the arch. The resulting relations are shown in Table 6.

179

T;ihle 5 : Relarions after Adding Beams

I) OBJECTS(oname. otype)
Beam I beam
Beam2 beam
Beam3 beam

2) SUPPORTS(oname I, oname2)
Beam1 Beam2
Beam3 Beam2

3) DISTANCE>O(oname 1 oname2)
Beaml Beam3

Table 6: Relations alter Design Rule

1) OBJECTS (oname, otype)
Beaml Beam
Beam2 Beam
Beam3 Beam
Archl Arch

2) CONTAINS (oname 1 oname2)
Archl Beaml
Arch2 Beam2
Arch3 Beam3

I X . Conclusion

CAD/CAM and engineering applications have special needs which are not presently being met by
These needs include the ability to represent abstract data types, relationships commercial DBbIS's.

between the data items, and certain knowledge about the data.

Extension of traditional data dictionaries may be able to meet some of these needs. Extending the
Storing knowledge rules within the concept of domains allows the expression of abstract data types.

DBMS and using an object-oriented data model allow the representation of complex relationships.

Application of artificial intelligence techniques will allow the data dictionary to become a knowledge
Only then will CAD/CAM and engineering databases be truly manager rather than a data manager.

e ffective.

X. References

I . S. Cammarata and h.1. Melkanoff, "An Interactive Data Dictionary Facility for CAD/CAM Data
Bases." ce Systems: Prore -5t 1 W-, ed. Larry
Kerschberg. Benjamin/Cummings. Reading, Mass.. pp.423-440.

2. D.J. Hartzband and F.J. Maryanski, "Enhancing Knowledge Representation in Engineering
Databases." Computer. Vol. IS. No. 9, Sept. 19S5. pp. 39-48.

3. C.J. Date. X n n n to D m h d b k m s , Addison-Wesley, Reading, Mass., 1956, p. 39

4. C. Znniolo et al.. "Ohject Oriented Database Systems and Knowledge Systems,'' w ? S e .
Pr0-L *< f rvm 111e First Intern;ttlonal, ed. Larry Kerschberg. Benjamin/Cummings,

Reading. hla5s.. 19Fh. pp. 50-65.

h. C. li;rllogg. "From Dala hlanagement to Knowledge Xlanagement," Computer, Vol. 19, No. I , Jan.

Discussions from the Working Group,"
\,<1rm<* rocee First lnternntlonal W o w , ed. Larry Kerschberg,

19Sh. 1711. 75-84.
7 . M. Brodie et ai.. "F;nowledge Base Management Systems:

Benjamin/Cumrning,<, Rending. Mass., 1956, pp. 19-33.

180

8.
Conl'erence on Data Engineering, Apr. 1984, pp. 134-438.

H . Wedekin. "Supporting the Design of Conceptual Schemata by Database Systems." International

9 . A . Shepherd and L. Kerschberg, "Constraint Management in Expert Database Systems," E.uoert
ZZUJhme . . s v m s : e First Inlernatlonal W-, ed.Larry Kerschberg.
Benjnmin/Cummin~s. Reading. Mass.. 1986, pp. 309-331.

I O . S. Borkin. Patn illorlrlc: .4 $, MIT Press, Cambridge, Mass.,
10811. pp. 63-03.

I I . R . King, " A Database Management System Based on an Object-Oriented Model,"

Reading. Mass.. IYPh. pp. 443-468.
the F W W o w , ed Larry Kerschberg, Benjamin/Curnmings,

12. H. Li, "To Develop a Data-knowledge Base Management System by Utilizing Relational Database
blanngemenc System", in Proceedings of Applications of Artificial Intelligence IV, (A Conference on
15- I6 April 1986 in Insbruch. Austria).

13. M. Morgenstern. "The Role of Constraints in Databases, Expert Systems, and Knowledge
Representation," -we S v m : Prore- the &st lnternatinnalWorkshoo, ed.
Larry Kerschberg, Benjamin/Cummings. Reading, Mass., 1986, pp. 35 1-368.

14. L. hlark and N. Roussopoulos, "Metadata Management," Computer, Vol. 19, No. 12, Dec. 1986,
pp. 26-36.

181

