N89-15573
Extending the Data Dictionary

for
Data/Knowledge Management

Cecile L. Hydrick
and
Dr. Sara J. Graves
Computer Science Department
University of Alabama in Huntsviile

Abstract

Current relational database technology provides the means for effeciently storing and retrieving large
amounts of data. By combining techniques learned from the field of artificial intelligence with this
technology. it is possible to expand the capabilites of such systems. This paper suggests using the
expanded domain concept, an object-oriented organization, and the storing of knowledge rules within the
relational database as a solution to the unique problems associated with CAD/CAM and engineering data.

I. Introduction

Data management for NASA often involves large amounts of diverse data stored on many different
computer systems and at many different geographical locations. Types of data which must be tracked
include project management data. financial and budgetary data, CAD/CAM data, engineering data, and
documents. The possibility of using a single relational database management system (DBMS) for data
connectivity has been expiored. However, CAD/CAM and engineering data present problems which are
not being currently addressed by existing DBMS products.

Although CAD/CAM and engineering data have the same basic requirements for storage and
retrieval, certain characteristics of the data show why existing DBMS’s fail. Such data (1) tends to be
heterogeneous, consisting of graphical, textual, procedural, and mathematical data; (2) requires a
dynamic schema as entities are created and destroyed; (3) tends to be object—oriented with complex
relationships associated with the objects; and (4) exhibits object-specific relationships which change from
object to object [5].

These characteristics require that a database designed for such applications (1) be able to represent a
wide range of data types. (2) be able to represent complex relationships between data items, (3) and be
able to represent certain "knowledge” about that data [2]. Existing commercial DBMS’s do not at the
present time have those capabilities.

The traditional data dictionary/directory may provide the answer. The data dictionary contains the
"meta~-data” which is the description of the data in the database. By extending the descriptions using
knowledge representation techniques from the field of artificial intelligence (Al), the dictionary can in
effect become the “"knowledge base” for the DBMS, providing both dynamic schema generation and
extended data types.

This paper presents methods for extending the data dictionary in a relational database management
system by extending the domain concept to allow the representation of many different data types. Using
an object-oriented model allows the expression of complex relationships between objects. "Knowledge”
can be stored in the lorm of production rules mapped into a relational table. Combining the extension of
the domain. the object-oriented model, and the storage of production rules in relational tables produces a
data dictionary that is dvnamic and capable of evolving over time, thus meeting the needs of CAD/CAM
and engineering database applications.

PRECEDING PAGE BLANK NOT FILMED 173

I1. Problems with Existing Data Dictionaries

The traditional process of database development resulted in a collection of static record structures
which remained fixed throughout the life of the database applications. Data base administrators typically
regarded data dictionaries/directories as static tools to aid them in the control of information resources
151.

The advent of CAD/CANM and engineering database systems has created the need for data dictionary
definition to occur throughout the life of the application as objects are created, modified, and destroyed.
The data dictionary. if viewed as a "knowledge base” rather than a collection of static records, can play
an active role in this process. Expert knowledge about database design can be stored in the data dictionary
itself, thus allowing for the creation of schemas as data loading occurs.

The key concept in the above scenario is that meta-data inherently contains knowledge which can be
exploited for dynamic schema generation and knowledge management purposes. However, this will
require that future systems be more tightly integrated than at present. In order to take full advantage of
the knowledge inherent in the meta~data, data and meta-data can no longer be functionally separated,
but must be made co-resident in the same "knowledge base”. In this approach, database instances, data
types, operations, and transactions are viewed as "objects”. Two issues must be addressed in designing a
knowledge-based data dictionary: a scheme for knowledge representation and the integration of the data
and meta-data [5].

111. Moving from Data Management Towards Knowledge Management

Current DBMS’s are effective in storing and retrieving large amounts of data. However, while a
typical data dictionary may describe the physical size of the attribute "employee number”, it may have no
way to represent the fact that EMPLOYEE is a subtype of PERSON [11].

Artificial Intelligence research has produced Knowledge Representation Systems (KRS) which attempt
to model the way in which human knowledge is represented and acquired. However, these systems have
not been able to effliciently exploit large amounts of data due to the fact that they tend to be
memory-based rather than disk-based [2]. Because they also tend to have high overhead and have
ienored the issues of backup and error recovery, they have not been considered practical for large
commercial applications [LL].

Recent research has centered around finding ways to combine the best of both the DBMS and the
KRS. There have been four approaches to integrating the two systems:

(1) integrate an existing Al system with a DBMS;
(2) enhance an Al system with data functionality:
(3) dghtly integrate Al and database by designing an entirely new system;

(4) extend a DBMS by enhancing the data model with knowledge representation and other Al
capabilities [2}.

The fourth alternative forms the basis for this paper. This approach actually involves mapping
knowledge into the existing DBMS. Several techniques have been used including the assorted semantic
data models and the mapping of production rules into relational tables. An integrated approach must
combine modelling richness with knowledge rules for inferencing capability. '

174

IV. Expanding Domains in the Relational Model

Wedekind [10] discusses the importance of the domain in the design of conceptual schemata. He
argues that the design process should reflect a learning situation in which single elementary facts about
data are combined (o form more complex knowledge about the data. His approach is a constructive
method in which global domains are used as a basis for building relations in a stepwise fashion.

For example. a domain description such as COLOR = (green, red,blue} might be replaced with the
following elementary sentences:

COLOR is a DOMAIN;
green is a COLOR.

red is a COLOR.

blue is a COLOR;

The fact that COLOR is a domain must be established hefore the members of the domain can be
enumeratect. In the same manner, the members of the domain must be known before an entity can be
described as having that attribute.

In order to implement this concept using the relational model, Wedekind suggests the addition of four
relations to the metadatabase: DOMAIN, ENUM (for enumerated types), and PRE and FUN which are
relations specific to INGRES which allow the use of INGRES predicates and the calling of functions for

validity testing.

Expanding the domain concept in engineering and CAD/CAM databases can provide two distinct
advantages: ([) abstract data typing, and (2) "built-in” integrity constraints. The ability to represent
abstract dala Lypes is necessary because of the heterogeneous nature of the data, while the enumeration of
domain members provides the means of checking data entities for validity.

V. Object-Oriented Organization

One method for ascribing meaning to data is to describe the data in terms of objects rather than static
record structures {5]. Objects can be entities or the relationships between the entities. Both declarative
and procedural information can be included in the model [9].

Objects can be organized into ”semantic nets”. Primitives can include:
1) The class of an object of a certain type;
2) ISA-links which relate subtypes and supertypes;
3) ASA-links stating that a token is a specific type;
4) Primitive maps and functions which provide access to meta-data [5].

Both the object-oriented model and the relational database model share the goal of logical data
independence. hence a natural mapping exists between the two models [9].

An ohject-oriented model that can be mapped into the relational model has been described by
Sheldon Borkin [1]. His model is defined as the "semantic relation data model” and is based on the
premise that the current database state consists of sets of statements describing the current state of the
application. These statements are built from the meanings of natural language sentences which can be
expressed as a verb phrase (predicate) plus several noun phrases.

175

An example of how an object might be mapped to the relational model is shown below. The object in
Figure | has been named "ARCH” and consists of three elementary items named "BEAMI1", "BEAM2",
and "BEAM3". The functional decomposition of this object is shown by the graph in Figure 2. The
relations resulting from the graph are shown in Table |. [t is interesting to note that the relations in Table
1 look similar to the way in which PROLOG states facts - i.e., supports(objectl,object2}.

Arch

Beaml
Beam?2
Beam|! Beam3
SUPPORTS

Beam| - | Beam3
N

Figure I: Object Named "Arch” Figure 2: Functional decomposition

b

The object-oriented model has three advantages over the hierarchical, network, and relational
models. First, the database can be viewed as a collection of abstract objects, not simply a group of
two~-dimensional tables. Second, both abstraction (attribute interconnection) and generalization
(subtyping) can be more easily represented. Finally, object-oriented schema provide built-in integrity
constraints {§]

Table 1: Relations for Object " Arch”

—

) CONTAINS(Objectl, Object2)
Archl Beaml
Archl Beam2
Archl Beam3

2) SUPPORTS(Objectl, Object2)
Beaml Beam?2
Beam3 Beam?2

3) DISTANCE>0(Object!, Objectl)
Beam| Beam3

As with most other existing models, trade-offs exist. Potential problems which may occur when using
an object-oriented data model are added complexity and the difficulty in restructuring relationships once
they have been delined [&].

V1. Storing Knowledge Rules for Inferencing

Al databases generally include two types of objects: facts about other objects and knowledge rules for
inferencing [5]. In the data dictionary, facts can be represented using an object-oriented data model.

176

However. in order to maintain the close integration between data and meta-data, a method must be found
for storing the knowledge rules within the database itsell.

Recent work hy Han-lin Li in China has centered on mapping production rules for inferencing into
the relational model. This approach allows the relational DBMS to handle the matching and retrieval of
production rules which have been mapped to the relational model.

Li's work centers around the basic form of the production rule which is "IF condition, THEN action
with certainty [actor CF." "AND” and "OR” operators are allowed to form complex conditions or
actions. Table 2 shows some example production rules.

Table 2: Production Rules Table 3: Relations from Production Rules

R1, a relation containing rules 1 and 2

Rule I: fA=aandB=bandC=c¢ Rule# IF: THEN:
THEN: D = d! with CF(D) = A BC D CF(D) E CF(E)
cdl:
1 abc dl cdl
Rule 2: HA=aandB=bandC=c
THEN: D = d2 with CF(D) = 2 a bc d2 ° cd2

cd2: . .
R2, a relation containing rules 3 and 4

Rule 3: IfA=aand{(B=borC=¢c)

: HEN:
THEN: D = d3 with CE(D) = Rule f B C b EF(D) £ CF(E)
cd3;
Rule 4: fA=a orB=b orC=c 3 : b . 3; zjg
THEN: D = d4 with CE(D) =
cd4: 4 a’ d4 cd4
b’ d4 cdd
c’ dd cdd

The first two rules show that one condition may result in more than one action. Rule 3 shows that
different conditions may result in the same action. Production rules with similar [F conditions form a
relation.

The key for the rule relations is formed by combining the IF conditions for each tuple. This assures
that the resulting relation will be in Fourth Normal Form. Table 3 shows how the production rules from
Table 2 may be mapped into the relational model. Notice that in Table 2 the value of D must be included
in the primary key because of the identical values of A,B,and C [9].

VII. A self-describing metaschema

Mark and Roussopoulos [10] have proposed an active and integrated data dictionary system which
uses Lthe services offered by the DBMS and is flexible enough to control its own evolution. They describe
two orthogonal dimensions of data description: the point-of-view dimension and the intension-extension
dimension.

The point-of-view dimension consists of three levels of data description: the external, conceptual,
and internal schema. These three levels provide data independence.

The intension-extension dimension provides four levels of data description:

177

1) the application data;
2) the application schema which provides information about specilic applications;

3) the data dictionary schema which provides information about the management and use of
data:

4) the metaschema which consists of information about the data model.

Each level of description is the intension of the succeeding description and the extension of the preceding
one. A description of the metaschema is explicitly stored as part of its own extension.

Using the object-role data model, the authors have mapped the core metaschema into
object-oriented tables. The objects in a relational schemata are relations, domains, and attributes. The
relation RELN defines relationships between existing relations and their names. ATTN defines
relationships between attributes and their names. The relation DOMN describes the domains and the
relation RDAS defines the relationships between relations, domains, and attributes. These mappings
allow the metaschema o be stored in the database it defines.

The authors further describe a set of operations which control all operations on the data dictionary
schema. They state that the operations specified must be explicitly represented in the metaschema itself
in order for it to remain self-describing. Because object-oriented data models support storage of
procedural information. this task is possible.

VIII. A Proposed Data Dictionary Architecture

In order to satisfly the need for dynamic structuring and closer integration between data and
meta-data, it appears that both rules and facts must be actually stored in the database. With this in mind,
facts about the data can be stored in relations modelled using the "semantic relation data model” and
rules can be stored according to Li’s mapping. These two representations match the way in which
PROLOG defines predicates.

The core metaschema is designed using the base tables described by Mark and Roussopoulos. These
tables have been enhanced by expanding the domain concept as described in section lIf. Figure 3 is the
graph generated by combining these two concepts.

The circles in Figure 3 represent domains. The single boxes represent the actual relations, while the
divided boxes represent the attributes associated with each relation.

The resulting relations are shown in Table 4. The relation DOMAIN has been extended to include
information necessary for defining attributes in ORACLE, which was the relational product used in
developing the prototype. Two additional relations further define the domain: (1) ENU allows
enumerated domains for abstract data types such as objects, and (2) FUN stores the name of processes
for testing and manipulation of the data. A final core relation RULES stores design rules for inferencing.

Other relations are created or dropped as the associated objects are added to or deleted from the
database. When this occurs. the relations RELN, ATTN, and RDAS must be updated, thus ensuring a
dynamic metaschema. The following example shows how an object might be added to the database.

In order 10 add the arch described in Section IV, the user would be asked whether the object was
elementary or a composite of other objects. [If the object is a composite, its components must be first
added and described and discussed in Section III. For example, "BEAM1”, "BEAM2"”, and "BEAM3"
would be considered elementary items and must be stored in the database before the arch can be defined.

178

Rname| Rel Att |Aname

Relation . Attribute

Rel Dom Att

Domain

Dom [Dname| Rep | Base | Dim

Figure 3: Prototype Core Metaschema

Table 4: Core Relations for Prototype

1)RELN(rname, rel) 2)DOMN (dom, dname, rep, base, dim)
RELN rl di relation STA CHAR(c) 2
DOMN rl d2 attribute STA CHAR(c) 2

T : d3 domain STA CHAR(c) 2
3)RDAS(reln, dom, att 4)ATTN{(att, aname) 5)ENU(dom, member)
rl d4 al al rname d8 arch
rt dl a2 a2 rel d8 beam!
6)FUN(dom. process) 7)RULES(condl, cond2, cond3, result)

dil TSTAGE

The three beams are particular instances of the type beam which is a member of the domain object.
A relation OBJECTS can be created to store these ASA links. The resulting relation is shown in Table §.

Once the objects are added to the database, the relationships between them can be added. The two
relationships SUPPORTS and DISTANCE>0 form two relations as shown in Table 5.

A design rule completes the process of describing the arch:

If SUPPORTS(x.2) and SUPPORTS(y,z) and DISTANCE>0(x,y)
then ARCH(x.y,z);

Each condition evaluates to true if the specified tuple is found to exist. Thus application of this rule to the
relations in Table 5 would confirm the fact that the object formed by the three beams is indeed an arch.
The arch can be named and added to the OBJECTS relation and the relation CONTAINS can be added
Lo describe the components of the arch. The resulting relations are shown in Table 6.

179

Tahle 5: Relations after Adding Beams Table 6: Relations after Design Rule
1) OBJECTS(oname, otype) 1) OBJECTS (oname, otype)
Beam! beam Beam! Beam
Beam2 beam Beam2 Beam
Beam3 beam Beam3 Beam
Arch!l Arch
2) SUPPORTS(onamel, oname2) 2) CONTAINS (onamel oname2)
Beam| Beam2 Archl Beaml!
Beam3 Beam2 Arch2 Beam2
3) DISTANCE>0(oname!l oname2) Arch3 Beam?
Beam! Beam3

I1X. Conclusion

CAD/CAM and engineering applications have special needs which are not presently being met by
commercial DBMS's. These needs include the ability to represent abstract data types, relationships
between the data items, and certain knowledge about the data.

Extension of traditional data dictionaries may be able to meet some of these needs. Extending the
concept of domains allows the expression of abstract data types. Storing knowledge rules within the
DBMS and using an object-oriented data model allow the representation of complex relationships.

Application of artificial intelligence techniques will allow the data dictionary to become a knowledge
manager rather than a data manager. Only then will CAD/CAM and engineering databases be truly
effective.

X. References

. S. Cammarata and M. Melkanoff, "An Interactive Data Dictionary Facility for CAD/CAM Data
Bases.” Expert Database Svstems: Proceedings from the First International Workshop, ed. Larry
Kerschberg. Benjamin/Cummings. Reading, Mass., pp.423-440.

2. D.J. Harwzband and F.J. Maryanski, "Enhancing Knowledge Representation in Engineering
Databases.” Computer. Vol. 18, No. 9, Sept. 1985, pp. 39-48.

3. C.J. Date. An Introduction to Database Systems, Addison-Wesley, Reading, Mass., 1986, p. 39.

4. C. Zaniolo et al.. "Object Oriented Database Systems and Knowledge Systems,” Expert Database
Sysiems: Proceedines from the First International Workshop, ed. Larry Kerschberg, Benjamin/Cummings,
Reading. Mass.. 1986, pp. 50-65.

5. J. Sowa. Conceprual Structyres: Information Processing in Mind and Machine, Addison-Wesley,
Reading., Mass.. 1984, p. 304,

6. C. Kellogg. "From Data Management to Knowledge Management,” Computer, Vol. 19, No. 1, Jan.
1986, pp. 75-84.

7. M. Brodie et al.. "Knowledge Base Management Systems: Discussions from the Working Group,”
Expert Database Svstems: Proceedings from the First International Workshop, ed. Larry Kerschberg,
Benjamin/Cummings, Reading. Mass., 1986, pp. 19-33. : '

180

§. H. Wedekin, "Supporting the Design of Conceptual Schemata by Database Systems,” International
Conference on Data Engineering, Apr. 1984, pp. 434-438.

9. A. Shepherd and L. Kerschberg, "Constraint Management in Expert Database Systems,” Expert
Database Svitems: Proceedings from the First International Workshop, ed.Larry Kerschberg,
Benjamin/Cummings, Reading, Mass., 1986, pp. 309-331.

10. S. Borkin, Data Models: A Semantic Approach for Database Systems, MIT Press, Cambridge, Mass.,
1980, pp. 63-93.

f1. R. King, "A Database Management System Based on an Object-Oriented Model,” Expert Database

Systems; Proceedings from the First Interpational Workshop, ed Larry Kerschberg, Benjamin/Cummings,
Reading. Mass.. 1986, pp. 443-468.

12. H. Li, "To Develop a Data-knowledge Base Management System by Utilizing Relational Database
Management System”, in Proceedings of Applications of Artificial Intelligence IV, (A Conlerence on
15-16 April 1986 in Insbruch, Austria).

13. M. Morgenstern. "The Role of Constraints in Databases, Expert Systems, and Knowledge
Representation,” Expert Database Systems: Proceedings from the First __ Internatiopal Workshop, ed.
Larry Kerschberg, Benjamin/Cummings, Reading, Mass., 1986, pp. 351-368.

14. L. Mark and N. Roussopoulos, "Metadata Management,” Computer, Vol. 19, No. 12, Dec. 1986,
pp. 26-36.

181

