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HOT CORROSION OF CERAMIC ENGINE MATERIALS 

. 

Dennis  S. Fox, Nathan S.  Jacobson, and James L .  Smia lek  
N a t i o n a l  A e r o n a u t i c s  and Space A d m i n i s t r a t i o n  

Lewis Research Cen te r  
C l e v e l a n d ,  O h i o  44135 

SUMMARY 

1 
A number of c o m m e r c i a l l y  a v a i l a b l e  Sic and Si3N4 m a t e r i a l s  were exposed t o  

1000 O C  i n  a h i g h  v e l o c i t y ,  p r e s s u r i z e d  b u r n e r  r i g  as a s i m u l a t i o n  o f  a t u r b i n e  
e n g i n e  env i ronmen t .  Sodium i m p u r i t i e s  added t o  t h e  b u r n e r  f l a m e  r e s u l t e d  i n  
m o l t e n  Na2S04 d e p o s i t i o n ,  a t t a c k  o f  t h e  S I C  and Si3N4, and f o r m a t i o n  o f  sub- 
s t a n t i a l  Na20*x (S i02 )  c o r r o s i o n  p r o d u c t .  Room t e m p e r a t u r e  s t r e n g t h  o f  t h e  

Sic, and g r a i n  boundary d i s s o l u t i o n  and p i t t i n g  i n  S i3N4.  C o r r o s i o n  reg imes 

f i e d  i n  r i g  t e s t s  of S i 0 2  coupons. 
i n v e s t i g a t e d  as a s o l u t i o n  t o  t h e  c o r r o s i o n  p rob lem fo r  Sic and Si3N4.  
c o r r o s i o n  o c c u r r e d  t o  c o r d i e r i t e  (Mg2AlqSi5018>,  b u t  some c r a c k i n g  o f  t h e  sub- 
s t r a t e  o c c u r r e d .  

e m a t e r i a l s  decreased.  T h i s  was a r e s u l t  of t h e  f o r m a t i o n  o f  c o r r o s i o n  p i t s  i n  e 
Ln 
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d 
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for such Si -based ceramics  have been p r e d i c t e d  u s i n g  thermodynamics and v e r i -  
P r o t e c t i v e  m u l l i t e  c o a t i n g s  a r e  b e i n g  

L i m i t e d  

INTRODUCTION 

H i g h  tempera tu re  c o r r o s i o n  o f  h o t  s e c t i o n  components becomes a concern  
when gas t u r b i n e s  a r e  o p e r a t e d  i n  c o r r o s i v e  env i ronmen ts .  
when sodium, e i t h e r  as a f u e l  i m p u r i t y  or an a i r b o r n e  c o n t a m i n a n t ,  combines 
w i t h  s u l f u r  i m p u r i t i e s  i n  t h e  f u e l  t o  form sodium s u l f a t e  by  t h e  f o l l o w i n g  
r e a c t  i o n  : 

T h i s  p rocess  o c c u r s  

2 NaCl + SO3 t H20 = Na2S04 t 2 HC1 ( 1 )  

Under c e r t a i n  c o n d i t i o n s ,  l i q u i d  Na2S04 condenses on  ho t -gas -pa th  e n g i n e  compo- 
n e n t s .  T h i s  l e a d s  t o  a c c e l e r a t e d  o x i d a t i o n  and seve re  corrosion. The hot cor- 
r o s i o n  of s u p e r a l l o y s  has been s t u d i e d  a t  l e n g t h  ( r e f s .  1 t o  3). The p rob lem 
must  a l s o  be addressed f o r  ce ramics ,  s i n c e  t h e s e  m a t e r i a l s  a r e  b e i n g  c o n s i d e r e d  
for h e a t  eng ine  components. 
c o r r o s i o n  s t u d y  of s i l i c o n  c a r b i d e  (Sic), s i l i c o n  n i t r i d e  (S i3N4) ,  and c o r d i e r -  
i t e  (Mg2AlqSi5018,  or  MAS) a r e  p r e s e n t e d .  
models  t h e  h i g h  v e l o c i t y ,  h i g h  tempera tu re  env i ronmen t  p r e s e n t  i n  an o p e r a t i n g  
t u r b i n e .  P r e v i o u s  s t u d i e s ,  r e v i e w e d  i n  o t h e r  p u b l i c a t i o n s ,  have shown Sic  and 
Si3N4 t o  be q u i t e  s u s c e p t i b l e  t o  h o t  c o r r o s i o n  ( r e f s .  4 t o  8 ) .  
c o r r o s i o n  s t u d i e s  of c o r d i e r i t e  i s  f o u n d  i n  a n o t h e r  p u b l i c a t i o n  ( r e f .  9 ) .  

I n  t h i s  paper ,  t h e  r e s u l t s  of a b u r n e r  r i g  h o t  

A b u r n e r  r i g  was used because i t  

A r e v i e w  o f  h o t  

A t  t h i s  p o i n t  i t  wou ld  be h e l p f u l  t o  d i s c u s s  b o t h  t h e  f a c t o r s  i n f l u e n c i n g  
h o t  c o r r o s i o n  and t h e  reason  a p r e s s u r i z e d  b u r n e r  r i g  was used i n  t h i s  s t u d y .  
The d e p o s i t i o n  o f  Na2S04 and subsequent  c o r r o s i o n  i s  a f u n c t  o n  o f  t e m p e r a t u r e ,  
p r e s s u r e ,  sodium c o n c e n t r a t i o n ,  and s u l f u r  c o n c e n t r a t i o n .  I n  t h i s  s t u d y ,  c o n d i -  
t i o n s  were chosen so t h a t  d e p o s i t i o n  o c c u r s  on  t h e  t e s t  spec mens. 
of Na2S04 and subsequent  c o r r o s i o n  o c c u r s  i n  a t e m p e r a t u r e  w ndow b o r d e r e d  by  
t h e  m e l t i n g  p o i n t  of t h e  s a l t  (884 O C >  and i t s  dew p o i n t .  

D e p o s i t i o n  

I 



The NASA-CEC computer  p rogram ( r e f .  10) can be used t o  c a l c u l a t e  dew 
p o i n t s .  The program, based on f r e e  energy  m i n i m i z a t i o n ,  i s  used t o  c a l c u l a t e  
combust ion  p r o d u c t s .  I n p u t s  t o  t h e  program a r e  tempera tu re ,  t o t a l  system p r e s -  
s u r e ,  ca rbon lhyd rogen  r a t i o  and s u l f u r  c o n t e n t  o f  t h e  f u e l ,  o x i d a n t  composi- 
t i o n ,  and sodium c o n c e n t r a t i o n .  When J e t  A f u e l  (0.05 p e r c e n t  s u l f u r )  i s  
burned a t  100 kPa ( 1  atm) t o t a l  s y s t e m  p r e s s u r e ,  w i t h  2 ppm Na added t o  t h e  
f l a m e ,  t h e  dew p o i n t  i s  954 O C .  

The h i g h  p r e s s u r e s  encoun te red  i n  t u r b i n e  eng ines  cause an i n c r e a s e  i n  
t h e  dew p o i n t  o f  Na2S04, wh ich  expands t h e  tempera tu re  range i n  wh ich  depos i -  
t i o n  and subsequent c o r r o s i o n  can o c c u r .  R a i s i n g  t h e  t o t a l  system p r e s s u r e  t o  
400 kPa ( 4  atm) i n c r e a s e s  t h e  dew p o i n t  t o  1020 O C  fo r  t h e  same J e t  A f u e l  and 
2 ppm Na comb ina t ion .  The a p p l i c a t i o n  o f  h i g h  p r e s s u r e  i n  t h i s  s t u d y  produced 
t h e  d e s i r e d  r e s u l t  o f  r a i s i n g  t h e  dew p o i n t  above t h e  t e s t  t empera tu re  of 
1000 O C .  C u r r e n t  t u r b i n e s  o p e r a t e  a t  p ressu res  from -5 a tm t o  -20 atm. 
tempera tu re  range f o r  c o r r o s i o n  would t h e r e f o r e  be even l a r g e r  i n  p r a c t i c e  
because o f  h i g h e r  dew p o i n t s .  

The 

The b u r n e r  r i g  c o r r o s i o n  o f  one t y p e  o f  s i n t e r e d  a-Sic has been p r e v i -  
o u s l y  s t u d i e d  by  Jacobson e t  a l .  ( r e f .  1 1 ) .  A 4 a tm b u r n e r  r i g  f i r e d  w i t h  
J e t  A f u e l  was used,  and 4 ppm sodium was a s p i r a t e d  i n t o  t h e  f l a m e .  Samples 
were hea ted  fo r  13.5 h r  a t  1000 O C ,  a t empera tu re  a t  wh ich  t h e  c o r r o s i o n  k i n e t -  
i c s  a r e  f a s t .  A sodium s i l i c a t e  g l a s s  formed on t h e  s u r f a c e  o f  t h e  s i l i c o n  
c a r b i d e .  Removal o f  t h i s  c o r r o s i o n  p r o d u c t  r e v e a l e d  s e v e r e  p i t t i n g .  An ave r -  
age 32 p e r c e n t  r e d u c t i o n  i n  room tempera tu re  bend s t r e n g t h  was measured w i t h  
r e s p e c t  t o  t h e  a s - r e c e i v e d  m a t e r i a l .  Jacobson and Smia lek  have s t u d i e d  t h e  
f u r n a c e  c o r r o s i o n  o f  t h e  same t y p e  o f  s i n t e r e d  a-Sic u s i n g  t h i n ,  a i r b r u s h -  
a p p l i e d  s a l t  f i l m s  ( r e f s .  4, 5 ,  and 8 ) .  The chemica l  mechanism o f  a t t a c k  and 
mode o f  s t r e n g t h  d e g r a d a t i o n  were b a s i c a l l y  t h e  same f o r  t h e  f u r n a c e  and b u r n e r  
r i g  s t u d i e s .  

Chemical mechanisms have been r e c e n t l y  p roposed f o r  Na2SOq-induced c o r r o -  
s i o n  o f  Si3N4 ( r e f s .  6 and 1 2 ) .  
o c c u r s  more slowly t h a n  t h a t  o f  Sic. T h i s  i s  due t o  t h e  l i m i t e d  s o l u b i l i t y  o f  
N2 ( v e r s u s  CO) i n  t h e  s i l i c a t e .  
has a l s o  been suggested  as a p o s s i b l e  cause f o r  t h i s  d i f f e r e n c e .  
a d d i t i v e s  i n  s i l i c o n  n i t r i d e  have a l i m i t e d  e f f e c t  on  t h e  mechanism and 
k i n e t i c s .  

I t  was found  t h a t  t h e  c o r r o s i o n  o f  Si3N4 

The presence o f  an Si2N20 d i f f u s i o n  b a r r i e r  
S i n t e r i n g  

The purpose o f  t h i s  s t u d y  was t o  c h a r a c t e r i z e  t h e  b u r n e r  r i g  c o r r o s i o n  of 
a b road  range o f  c o m m e r c i a l l y  a v a i l a b l e  S I C  and Si3N4 m a t e r i a l s .  
map c o r r o s i o n  reg imes f o r  such Si -based ceramics  i s  a l s o  d e s c r i b e d ,  as i s  a 
p r o j e c t  t o  de te rm ine  t h e  e f f e c t i v e n e s s  o f  c o r r o s i o n - r e s i s t a n t  m u l l i t e  c o a t i n g s .  
C o r d i e r i t e  (Mg2AlqSi5018) ,  a p o s s i b l e  r e g e n e r a t o r  m a t e r i a l ,  was a l s o  i n v e s t i -  
g a t e d .  These m a t e r i a l s  were i n v e s t i g a t e d  i n  t h e  Advanced Gas T u r b i n e  (AGT)  
p r o j e c t  ( r e f s .  13 and 1 4 ) .  T h i s  paper  summarizes t h e  more d e t a i l e d  i n f o r m a -  
t i o n  f o u n d  i n  t h r e e  a s s o c i a t e d  papers  ( r e f s .  9 ,  15, and 1 6 ) .  

A s t u d y  t o  

CORROSION REGIMES 

I t  has been shown t h a t  t h e  h o t  c o r r o s i o n  o f  Sic and Si3N4 can be q u i t e  
severe  under  c e r t a i n  c o n d i t i o n s  ( r e f s .  4 t o  8 ) .  C o r r o s i o n  r e s u l t s  from t h e  
d i s s o l u t i o n  o f  t h e  p r o t e c t i v e  s i l i c a  l a y e r  found  on t h e  s u r f a c e  o f  these  mate- 
r i a l s .  SO3 i s  a p r o d u c t  o f  t h e  r e a c t i o n :  

2 



It would be beneficial i f  one could determine under what conditions such disso- 
lution occurs. This can be done using thermodynamics. 

Na2SOq-induced corrosion regimes for Si02-protected ceramics have been 
calculated as a function of temperature, pressure, sodium concentration and 
sulfur concentration (ref. 16). The results are corrosion "maps" like those 
shown in figure 1 ,  calculated for the NASA Mach 0.3 burner rig operating at 
1000 OC and 4 atm with 2 ppm added Na. Both number 2 diesel (0 .5 percent S )  
and Jet A (0.05 percent S )  fuels were used. 

First consider the horizontal axis, which indicates the temperature range 
for deposition of liquid Na2S04. 
Na2SOq (884 OC> and the dew point of the salt. 
NASA-CEC computer program is used to determine the dew point as a function of 
pressure, sodium concentration, and sulfur content of the fuel. The dew point 
is the highest temperature at which liquid Na2S04 can condense. 

This occurs between the melting point of 
As previously described, the 

Next consider the vertical axis, which describes the partial pressure of 
SO3 required for dissolution. At high partial pressures of SO3, the reaction 
will be forced to the left (eq. (2)). In this case, dissolution of Si02 would 
not occur. However, at lower partial pressures of SO3, the reaction will pro- 
ceed to the right as written, and corrosion will occur. Critical partial pres- 
sures at each temperature form the curved line marked with the circles. The 
area below this line, lying between the melting temperature and dew point of 
Na2S04, is the predicted corrosion regime. 
in figure 1 .  
lations, although the same answer results. 

These are the cross-hatched areas 
The partial pressure o f  SO2 can also be used in the above calcu- 

The NASA-CEC program can then be used to determine the partial pressure 
of SO3 above the deposit in the combustion (e.g., turbine engine) environment. 
This is plotted as the lines through the square markers in figure 1 .  Dissolu- 
tion of the protective silica scale is predicted in the region where these 
lines intersect the corrosion regime. Similar diagrams have been generated for 
a variety of conditions (ref. 16). It has been found that corrosion regimes 
are limited. However, when corrosion does occur it can be quite severe, as 
will be discussed. 

To substantiate the predictions, high purity Si02 (quartz) coupons were 
exposed in the burner rig. It should be noted that these specimens were purer 
than that which would form on Sic or Si3N4. 
sure of SO3 resulting from the use o f  number 2 diesel fuel is predicted to 
limit corrosion (point A in fig. l(a) lies outside the regime). However, when 
low sulfur Jet A fuel is used, corrosion is predicted at 1000 OC (point B in 

tests (ref. 16). Negligible dissolution took place in the former case, while 
considerable corrosion occurred in the latter. 

At 1000 OC, the high partial pres- 

? fig. l(b> lies inside the regime). These predictions were verified in the rig 

C 

EXPERIMENTAL PROCEDURE 

The commercially available materials used in this study are listed in 
table I. The sintered cordierite samples were produced at NASA Lewis Research 
Center using a Ferro Corporation powder. Sample sizes were approximately 2.50 



by 0.55 by  0 .27  cm fo r  S ic ,  2 .50  by  0 .64  by  0.34 c m  f o r  Si3N4, and 2 .50  by  0.50 
by 0.25 cm f o r  c o r d i e r i t e .  The m a t e r i a l s  were c o r r o d e d  i n  t h e  b u r n e r  r i g  shown 
s c h e m a t i c a l l y  i n  f i g u r e  2 .  The ends o f  t h e  samples were h e l d  i n  g rade  A l a v a  
( a l u m i n o  s i l i c a t e )  h o l d e r s .  The samples ( 4 / r u n >  were p o s i t i o n e d  h o r i z o n t a l l y  
w i t h  t h e i r  t h i c k n e s s  f a c i n g  t h e  f low. J e t  A f u e l  (0.05 p e r c e n t  s u l f u r )  was 
burned a t  a f u e l - t o - a i r  r a t i o  o f  0.021+0.002, p r o d u c i n g  a sample tempera tu re  
o f  100025 O C .  

Sample tempera tu re  was measured w i t h  two Type R thermocoup les .  Gas v e l o c i t y  
ac ross  t h e  samples was 9423 m/sec (310210 f t / s e c > .  
a s p i r a t i n g  a NaCl/H20 s o l u t i o n  i n t o  t h e  f l a m e .  The exposure  t i m e  was 40 h r .  
The r i g  was p r e s s u r i z e d  t o  400 kPa ( 4  atm) by  c l o s i n g  down an exhaus t  c o n t r o l  
v a l v e .  

C o r r o s i o n  k i n e t i c s  a r e  q u i t e  f a s t  a t  t h i s  tempera tu re  ( r e f .  5 ) .  

Two ppm Na was added b y  

The morphology of t h e  c o r r o s i o n  p r o d u c t  was observed u s i n g  scann ing  e l e c -  
t r o n  m ic roscopy  ( S E M ) .  
s i t i o n .  
a l l o w e d  oxygen mapping. 
l a y e r  o f  copper  on  t h e  c o r r o d e d  samples, moun t ing  them i n  epoxy and p o l i s h i n g  
them t o  a 1 pm f i n i s h  w i t h  diamond. 
c a n t  t o  p r e s e r v e  any wa te r  s o l u b l e  phases p r e s e n t  i n  t h e  c o r r o s i o n  p r o d u c t .  
T r i c h l o r o e t h a n e  was used as a s o l v e n t .  

An e l e c t r o n  m ic rop robe  was used t o  d e t e r m i n e  i t s  compo- 
The p robe  was equ ipped w i t h  a wave length  d i s p e r s i v e  s p e c t r o m e t e r  wh ich  

Cross s e c t i o n s  were p r e p a r e d  b y  s p u t t e r  c o a t i n g  a t h i n  

H i g h - p u r i t y  kerosene was used as a l u b r i -  

Chemical a n a l y s i s  was conducted  on t h e  c o r r o s i o n  p r o d u c t  a f t e r  i t  was 
removed from t h e  samples. For Sic and Si3N4, t h i s  removal  i n v o l v e d  a 2 hr 
l e a c h  i n  h o t  (90 OC) wate r  f o l l o w e d  b y  a 2 h r  l e a c h  i n  warm ( 6 0  O C )  10 p e r c e n t  
HF/H20. For c o r d i e r i t e ,  a warm (60 O C )  50 p e r c e n t  HCl/H20 was used. E lemen ta l  
a n a l y s i s  o f  t h e  s o l u t i o n s  i n v o l v e d  b o t h  i n d u c t i v e l y  coup led  p lasma ( I C P )  a t o m i c  
emiss ion  and X-ray f l u o r e s c e n c e  s p e c t r o m e t r y .  

To observe  t h e  a t t a c k  morpho logy  of t h e  Sic s u b s t r a t e ,  t h e  e n t i r e  c o r r o -  
s i o n  p r o d u c t  was removed from a f e w  c o r r o d e d  samples by  d i s s o l u t i o n  i n  a h o t  
( 9 0  O C )  10 p e r c e n t  HF/H20 s o l u t i o n  f o r  2 h r .  
t h a t  i n  t h e  p r e c e d i n g  p a r a g r a p h . )  
p r o d u c t s  and d i d  n o t  a t t a c k  t h e  Sic s u b s t r a t e .  

(No te  t h a t  t h i s  e t c h  d i f f e r s  from 
T h i s  s o l u t i o n  c l e a n l y  removed t h e  c o r r o s i o n  

I n  remov ing  t h e  c o r r o s i o n  p r o d u c t  from t h e  Si3N4 samples w i t h  HF,  s p e c i a l  
An c a r e  was r e q u i r e d  so as n o t  t o  e t c h  away any g l a s s y  g r a i n  boundary phases. 

e t c h  sequence was conducted  on  a s - r e c e i v e d  samples p o l i s h e d  t o  a 1 pm f i n i s h .  
T h i s  was t o  d e t e r m i n e  t h e  c o r r e c t  t i m e  and t e m p e r a t u r e  to  be used i n  t h e  t r e a t -  
ment of t h e  c o r r o d e d  Si3N4 samples. The chosen 10 p e r c e n t  HF e t c h  c o n d i t i o n s  
(60 O C ,  1 5  min)  r e v e a l e d  o n l y  a f a i n t  d e l i n e a t i o n  o f  t h e  g r a i n  b o u n d a r i e s  i n  
t h e  a s - r e c e i v e d  m a t e r i a l .  HF a t t a c k s  c o r d i e r i t e ,  so a warm (60 O C ,  2 h r )  
50 p e r c e n t  HCl/H20 s o l u t i o n  was used t o  remove c o r r o s i o n  p r o d u c t s  from t h a t  
m a t e r i  a1 . 

The room tempera tu re  s t r e n g t h s  o f  b o t h  a s - r e c e i v e d  and c o r r o d e d  Sic and 
Si3N4 were de te rm ined .  
1 .9  cm (0 .75  i n . )  and an i n n e r  span o f  0.95 cm (0 .375 i n . )  was used. The load -  
i n g  r a t e  was 0.05 cm/min (0 .02  i n . / m i n > .  S ince  sample a l i g n m e n t  i n  t h e  t e s t  
f i x t u r e  i s  c r i t i c a l ,  t h e  c o r r o s i o n  p r o d u c t s  were p o l i s h e d  f l a t  t o  p r o v i d e  a 
smooth sample su r face  on  b o t h  t h e  t e n s i l e  and compress ive  s i d e s .  T h i s  was 
accompl ished by  p o l i s h i n g  t h e  samples w i t h  600 g r i t  Sic paper ,  f o l l o w e d  by  45 
and 1 5  pm diamond. A smooth l a y e r  o f  g l a s s  from 10 t o  50 pm t h i c k  remained 

A f o u r  p o i n t  bend f i x t u r e  h a v i n g  an o u t e r  span o f  
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after polishing. Fracture origins were observed by SEM. The cordierite sam- 
ples were not strength tested. 

RESULTS AND DISCUSSION 

Silicon Carbide 

The corrosion of the four types of SIC was very similar. The analysis of 
just one material, Carborundum Hexoloy sintered a-Sic, is therefore presented 
in detail. When this material is exposed in the burner rig with out adding 
sodium, it is unattacked according to visual examination. Figure 3 illustrates 
the result of a burner test on Hexoloy sintered a-Sic with 2 ppm sodium added. 
A substantial glassy corrosion product was formed after 40 hr at 1000 OC and 
400 kPa pressure. The subsonic burner gases drive the corrosion product toward 
the trailing (or downstream) edge of the sample. This suggests that the corro- 
sion product is liquid at 1000 OC. The glass was quite friable and spalled 
easily. Bubbles that are evolved and lead to the fragile nature of the corro- 
sion product are seen macroscopically. A similar type of corrosion involving 
the formation of a friable, glassy corrosion product occurred with the three 
other SIC materials. 

A mechanistic model for hot corrosion was developed in the previous burner 
rig study of Hexoloy a-Sic (ref. 11). Polished cross sections of the corroded 
material were examined using an electron microprobe. 
the Si, 0, and Na maps that the corrosion product consisted primarily of sodium 
silicate. Very low concentrations of sulfur were detected, indicating little 
Na2SO4 was present in the product layer. From these results and that of corre- 
sponding furnace tests (ref. 5 > ,  a reaction scheme for the Na2S04 hot corrosion 
of Sic at 1000 O C  has been determined. It is a continuous process involving 
oxidation of the carbide and dissolution of silica to form sodium silicate: 

It was determined from 

SiC(s> + 312 02(g> = SiO2(s> + CO(g> (3) 

Equation ( 4 )  is thermodynamically favorable at low SO3 partial pressures. 
The reaction proceeds to the right because SO3 is purged by the Mach 0.3 burner 
gases. It is the evolution of CO and SO3 that produces the bubbles observed 
in the corrosion product. Salt-enhanced oxidation of Sic occurs quite readily 
as compared to straight oxidation. This is because the corrosion product is 
liquid sodium silicate at 1000 OC, rather than solid silica. 

The results of the room temperature strength tests on the four Sic materi- 
als are listed in table 11. Figure 4 illustrates these results. The materials 
are ranked according to highest percentage of retained strength. The range of 
attack is due to various factors which include differing processing techniques, 
material morphologies, and additives. Note that the post-corrosion strengths 

b of the first three types of Sic are nearly the same at about 300 MPa (44 ksi). 
The highest degree of strength reduction occurred in the injection molded sil- 
iconized K X O l  material. Pure silicon initially corrodes much faster than Sic 
(ref. 12). It is possible that the free silicon in this material was preferen- 
tially attacked, resulting in the large strength decrease. 
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Hot c o r r o s i o n  enhances t h e  o x i d a t i o n  o f  Sic due t o  t h e  presence o f  l i q u i d  
Na20.x (S i02) .  A f r a c t u r e  o r i g i n  i n  co r roded  Hexo loy  a-Sic i s  shown i n  f i g -  
u r e  5 ( a > .  The en la rgement  ( f i g .  5 ( b ) >  shows t h e  p o i n t  o f  f a i l u r e  t o  be a 
l e a d i n g  edge s u r f a c e  p i t  fo rmed d u r i n g  b u r n e r  r i g  exposure .  G lassy  c o r r o s i o n  
p r o d u c t  f i l l s  t h e  p i t .  T h i s  g l a s s  e x h i b i t s  l i t t l e  l o a d  c a r r y i n g  c a p a b i l i t y  
compared t o  t h e  Sic s u b s t r a t e .  The s t r e n g t h  o f  ce ramics  i s  q u i t e  dependent  on  
f l a w  s i z e .  The observed c o r r o s i o n  p i t  i s  much l a r g e r  t h a n  any i n t r i n s i c  f l a w  
and w i l l  degrade s t r e n g t h  ( r e f s .  8 ,  1 1 ,  and 17) .  Removal o f  t h e  g l a s s  w i t h  HF 
r e v e a l s  t h e  f u l l  e x t e n t  o f  a t t a c k  ( f i g .  5 ( c ) > .  Note t h e  50 pm deep p i t  and 
exposed i n d i v i d u a l  g r a i n s .  F r a c t o g r a p h y  o f  t h e  o t h e r  t h r e e  S ic  m a t e r i a l s  a l s o  
r e v e a l e d  c o r r o s i o n  p i t s .  These a c t e d  as t h e  source  o f  f a i l u r e  i n  28 o u t  o f  t h e  
t o t a l  35 samples examined. 

S i l i c o n  N i t r i d e  

The b u r n e r  r i g  h o t  c o r r o s i o n  of t h e  t h r e e  t ypes  o f  Si3N4 ( t a b l e  1) was 
v e r y  s i m i l a r  t o  t h a t  of  Sic.  
t e s t i n g  and was b lown toward  t h e  t r a i l i n g  edge o f  t h e  samples by  t h e  h i g h  
v e l o c i t y  b u r n e r  gases. T h i s  a g a i n  i n d i c a t e s  t h e  c o r r o s i o n  p r o d u c t  i s  l i q u i d  
a t  1000 O C .  The p r o d u c t  was n o t  as f r i a b l e  as t h a t  f ound  on  S I C ,  a l t h o u g h  gas 
bubb les  ( e v i d e n t  from f r a c t o g r a p h y )  d i d  e v o l v e  d u r i n g  c o r r o s i o n .  Because t h e  
corrosion of t h e  t h r e e  t y p e s  of Si3N4 was q u i t e  s i m i l a r ,  j u s t  one m a t e r i a l  
(GTE AY6) i s  d i s c u s s e d  i n  d e t a i l .  

A g l a s s y  c o r r o s i o n  p r o d u c t  formed d u r i n g  r i g  

E lementa l  maps o f  a p o l i s h e d  c r o s s  s e c t i o n  o f  c o r r o d e d  AY6 Si3N4 show t h e  
c o r r o s i o n  p r o d u c t  t o  be p r i m a r i l y  Na20 .x (S i02> .  
o f  Si3N4-NazS04 t h i n  f i l m  f u r n a c e  c o r r o s i o n  s t u d i e s  ( r e f .  121, t h e  f o l l o w i n g  
r e a c t i o n  scheme has been d e t e r m i n e d :  

From these  r e s u l t s ,  and t h a t  

x S iO2(s)  + Na2S04(1> = N a 2 0 + x ( S i 0 2 > ( 1 )  + SO3(g) (6) 

T h i s  mechanism i s  s i m i l a r  t o  t h a t  o f  Sic.  
enhanced because t h e  c o r r o s i o n  p r o d u c t  i s  l i q u i d  a t  1000 O C .  I n  t h i s  case N2 
r a t h e r  t h a n  CO i s  e v o l v e d .  
bubb les  p r e s e n t  i n  t h e  c o r r o s i o n  p r o d u c t .  

Aga in ,  o x i d a t i o n  o f  t h e  Si3N4 i s  

I t  i s  t h e  e v o l u t i o n  o f  N2 and SO3 t h a t  c r e a t e s  t h e  

To d e t e r m i n e  a t t a c k  morpho logy ,  t h e  c o r r o s i o n  p r o d u c t  was removed b y  m i l d  

The a t t a c k  

The m a j o r  

t r e a t m e n t  ( 1 5  min ,  60 O C )  i n  a 10 p e r c e n t  HF/H20 s o l u t i o n .  T h i s  was done ca re -  
f u l l y  so as n o t  t o  remove any g r a i n  boundary phase i n  t h e  Si3N4. 
morphology i s  q u i t e  d i f f e r e n t  from t h a t  o f  Sic. 
genera l  p i t t i n g  as was obse rved  on  t h e  s u r f a c e  o f  c o r r o d e d  a-Sic. 
mode o f  a t t a c k  i s  d i s s o l u t i o n  o f  t h e  g r a i n  boundary  phase. 
o c c u r r e d  on  t h e  two o t h e r  Si3N4 m a t e r i a l s .  

There i s  an absence o f  t h e  

S i m i l a r  a t t a c k  

Room tempera tu re  s t r e n g t h  t e s t s  were conducted  on  b o t h  a s - r e c e i v e d  and 
co r roded  Si3Nq samples. 
u r e  6. Note t h a t  a l l  t h r e e  m a t e r i a l s  e x h i b i t e d  an approx ima te  30 p e r c e n t  
r e d  c t i o n  i n  s t r e n g t h .  F r a c t u r e  o r i g i n s  were more d i f f i c u l t  t o  f i n d  w i t h  t h e  
S E M  because deep, h e m i s p h e r i c a l  p i t s  were not as p r e v a l e n t  i n  c o r r o d e d  Si3N4 
as n Sic. Those p i t s  t h a t  were obse rved  were much w i d e r  and s h a l l o w e r .  The 
r e s  dua l  g l a s s y  s c a l e  on t h e  s u r f a c e  of a f r a c t u r e d  AY6 sample i s  shown i n  f i g -  
u r e  7 ( a ) .  An en la rgement  of t h e  s h a l l o w  ( 3 0  pm deep) p i t  shows mass ive  bubb le  
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f o r m a t i o n  ( f i g .  7 ( b > > ,  w i t h  Si3N4 need les  v i s i b l e  a f t e r  HF d i s s o l u t i o n  
( f i g .  7 ( c > > .  S i m i l a r  o b s e r v a t i o n s  were made fo r  t h e  o t h e r  s i l i c o n  n i t r i d e  
m a t e r i a l s .  

C o r d i e r i t e  

C o r r o s i o n  of Mg2AlqSi5018 i s  q u i t e  d i f f e r e n t  t h a n  t h a t  o f  S ic  or Si3N4 
( r e f .  9 ) .  Na2S04 can r e a c t  w i t h  n o t  o n l y  S i 0 2 ,  b u t  MgO and A1203 as w e l l .  
Also n o t e  t h a t  o x i d a t i o n  w i l l  n o t  be p a r t  o f  t h e  r e a c t i o n  p r o c e s s .  

Three c o r d i e r i t e  samples were exposed i n  t h e  b u r n e r  r i g  u s i n g  t h e  same 
c o n d i t i o n s  as for t h e  S i -based ce ramics ,  e x c e p t  t h a t  number 2 d i e s e l  f u e l  
(0 .5 p e r c e n t  s u l f u r )  was used. A f t e r  40 h r  a t  1000 O C  w i t h  2 ppm Na added, a 
d e p o s i t  and p o s s i b l e  c o r r o s i o n  was obse rved  ( f i g .  8 ) .  A p o l i s h e d  c r o s s  s e c t i o n  
of a co r roded  sample i s  shown i n  f i g u r e  9.  U s i n g  e l e c t r o n  m i c r o p r o b e  a n a l y s i s ,  
t h e  c o r r o s i o n  p r o d u c t  was de te rm ined  t o  have a l a y e r e d  s t r u c t u r e .  The t o p  
l a y e r  (-10 pm> appeared t o  be Mg2SiO4. 
(-100 pm) was de te rm ined  t o  be NaAlSiOq. 

The much t h i c k e r  u n d e r l y i n g  l a y e r  

These r e s u l t s ,  p l u s  t h a t  from chemica l  a n a l y s i s  and X-ray d i f f r a c t i o n ,  
have been used t o  d e t e r m i n e  t h e  c o r r o s i o n  r e a c t i o n :  

4 NaAlSiOq(s)  + MgzSiOq(s> + 2 S02(g)  + 0 2 ( g >  (7) 

Both  c o r d i e r i t e  and t h e  s o l i d  r e a c t i o n  p r o d u c t s  a r e  s i l i c a t e s .  The r e a c t i o n  
may t h e r e f o r e  i n v o l v e  s i m p l e  s t r u c t u r a l  changes. 

There was ev idence  o f  c r a c k i n g ,  s i m i l a r  t o  t h a t  shown i n  f i g u r e  9, i n  a l l  
of t h e  m i c r o s t r u c t u r e s  examined. 
s c a l e  t o  t h e  s u b s t r a t e .  T h i s  i s  a p o t e n t i a l  p rob lem because t h e  r e g e n e r a t o r  
has a t h i n  w a l l  honeycomb s t r u c t u r e .  A p o s s i b l e  e x p l a n a t i o n  f o r  t h i s  c r a c k i n g  
i s  t h a t  sodium causes d e v i t r i f i c a t i o n  o f  g r a i n  boundary  g l a s s  i n  t h e  c o r d i e r -  
i t e .  T h i s  c o u l d  l e a d  t o  a new phase and cause volume expans ion  d i f f e r e n c e s .  
Another  p o s s i b i l i t y  i s  t h a t  sodium s u l f a t e  p e n e t r a t e s  t h e  c o r d i e r i t e ,  c a u s i n g  
c r a c k s  on  c o o l i n g .  A d d i t i o n a l  s t u d y  of r e g e n e r a t o r  m a t e r i a l s  appears  
war ran ted .  

These c r a c k s  e x t e n d  t h r o u g h  t h e  c o r r o s i o n  

PROTECTIVE COATINGS 

A s t u d y  i s  b e i n g  conducted  t o  d e t e r m i n e  t h e  e f f e c t i v e n e s s  of c o r r o s i o n -  
r e s i s t a n t  c o a t i n g s  a p p l i e d  t o  Sic and Si3N4.  
a r e  b e i n g  a p p l i e d  t o  Hexo loy  Sic samples by  S o l a r  T u r b i n e s ,  I n c . ,  u s i n g  p lasma 
s p r a y i n g .  
Ano the r  f a c t o r  was i t s  good the rma l  expans ion  match w i t h  Sic ( 5 . 1  ve rsus  
4 . 3 ~ 1 0 - ~ / ~ C > .  
f o r  t e s t i n g  i n  t h e  b u r n e r  r i g .  C o a t i n g  t h i c k n e s s  ranged  from 250 t o  500 pm. 
The samples were t e s t e d  (1000 O C ,  4 atm, 2 ppm Na, number 2 d i e s e l  f u e l )  f o r  
20 h r .  S p a l l i n g  o f  t h e  c o a t i n g  and subsequent  c o r r o s i o n  o f  t h e  S I C  o c c u r r e d  
i n  some p l a c e s .  I t  i s  l i k e l y  t h a t  s a l t  p e n e t r a t i o n  t h r o u g h  r e s i d u a l  p o r o s i t y  
i n  t h e  m u l l i t e  was t h e  cause. Good r e s i s t a n c e  t o  c o r r o s i o n  was n o t e d  where 

M u l l i t e  (3A1203.2Si02) c o a t i n g s  

M u l l i t e  was chosen because o f  i t s  l i m i t e d  r e a c t i o n  w i t h  Na2S04. 

To d a t e ,  one s e t  o f  samples has been d e l i v e r e d  t o  NASA Lew is  
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the coating remained intact. This study is ongoing. Plasma spray parameters 
are currently being optimized to achieve more dense mullite coatings. 

SUMMARY AND CONCLUSIONS 

Burner rig testing for 40 hr at 400 kPa ( 4  atm) total system pressure, 
with 2 ppm Na added, results in deposition of sodium sulfate and corrosion of 
Sic and Si3N4 at 1000 OC. 
Si3N4 and dissolution of Si02 to form Na20*x(Si02). Accelerated scale growth 
occurs because the silicate is liquid at 1000 OC. Longer exposures would 
totally destroy the materials. Gas evolution (SO3, CO, N2) accounts for the 
formation of bubbles in the glassy scale. Extensive pitting causes strength 
reductions o f  -30 percent in three types of Sic and -50 percent in siliconized 
Sic. Chemical attack of grain boundary material and the formation of wide pits 
results in a strength reduction of -30 percent for the three Si3N4 materials 
studied. 

The continuous process involves oxidation of Sic or 

Sodium sulfate corrosion regimes have been calculated for Si02-protected 
ceramics such as Sic and Si3N4. This information can be used as guidance for 
turbine designers. Mullite is being investigated as a protective coating for 
Sic. This shows promise as a possible solution to the corrosion problem. The 
corrosion of a regenerator material (cordierite) was also studied, and limited 
reaction was found to occur with Na2S04. Cracking is observed in the material 
after rig exposure. 

In conclusion, it is clear that Na2SOq-induced hot corrosion is a serious 
problem for ceramics in certain combustion applications. Engine designers 
should therefore be aware o f  this problem and its possible occurrence. 
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TABLE I .  MATERIALS 

- 

S i l i c o n  n i t r i d e  

F e r r o  C o r d i e r i t e  (MAS) 

I S i l i c o n  c a r b i d e  

Carborundum Hexoloy SASC 
General E l e c t r i c  R - S i c  
Kyocera SC 201 
Carborundum K X O l  

4526 

4327 

43+7 

30214 

TABLE 11. - ROOM TEMPERATURE STRENGTHS OF AS-RECEIVED AND CORRODED S i c  

23 

27 

33 

51 

Carborundum Hexoloy SASC 

General E l e c t r i c  &S ic  

Kyocera SC 201 

Carborundum K X O l  

5 

5 

As-received 

Number Mean MOR 

401255 5828 

406227 5924 

451231 6524 

431261 63k9 

Number 
o f  

b a r s  

5 

5 

5 

A f  

Number 
o f  

b a r s  

7 

13 

12 

15 

Mean MOR 

MPa+ob k s i + o  

668536 9725 

872267 126510 

814+55 11828 

7 509278 74211 

S t r e n g t h  
r e d u c t i o n ,  

Mean MOR p e r c e n t  

24 

MPa+o I ksi+o I 

12 

13 

308242 

297+50 

299246 

1 206294 

I 

6275103 91215 28 

54751 16 79217 33 

aMach 0.3 r i g ,  1000 OC, 40 h r ,  400 kPa p r e s s u r e ,  2 ppm Na. 
bWhere o i s  one s t a n d a r d  d e v i a t i o n .  

TABLE 111. - ROOM TEMPERATURE STRENGTHS OF AS-RECEIVED AND CORRODED Si3N4 

Toshi ba 

aMach 0.3 
bWhere o 

- 
k 
n 

A f t e r  c o r r o s i o n a  S t r e n g t h  

Number Mean MOR p e r c e n t  
r e d u c t i o n ,  

b a r s  
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, - ! I  P(SO3) 0.5% S FUEL 
~-2-8 MAX P(SO3) FOR CORROSION *-D- P(S03) 0.05% S FUEL c -2 -3 c 

850 950 1050 1150 1250 

TEMPERATURE. OC 

(A )  NUMBER 2 DIESEL FUEL. (B) JET A FUEL. 

FIGURE 1. - CALCULATED CORROSION REGIME (SHADED AREA) FOR S i 0 2  AS A FUNCTION OF TEMPERATURE AND SO3 PARTIAL PRES- 
SURE FOR ( A )  NUMBER 2 DIESEL FUEL AND (B)  JET A FUEL. 
SECT THE SHADED AREA AT 1000 OC (POINT A) - CORROSION DOES NOT OCCUR. 
SECTS THE CORROSION REGIME AT 1000 OC (POINT B) - CORROSION DOES OCCUR. 
WHERE THE P(S03) L I N E  INTERSECTS THE SHADED AREA. 

WITH NUMBER 2 DIESEL FUEL, THE P(SO3) L I N E  DOES NOT INTER- 
WITH JET A FUEL, THE P(SO3) L I N E  INTER- 

CORROSION OCCURS AT ALL TEMPERATURES 

ORIGINAL PAGE IS 
OF POOR QUALITY 

FIGURE 3.  - CARBORUNDUM HEXOLOY SINTERED a -S iC  EXPOSED FOR 40 H AT 
1000 OC, 2 PPM Na, 400 KPA (A IR  FLOW LEFT TO RIGHT). 

THERMOCOUPLES 

/ \  

'\ PRESSURE 
CONTROL 
VALVE -. 

ACCESS ' \  

\ PORTS - ' 
\ \  Y' 

I .  

\\\ I;' \ 
L \ -  - LAVA 

SAMPLES SAMPLE 

SALT 
SOLUTION AND 
ATOM1 Z ING 
A I R  I N  HOLDERS 

FIGURE 2. - SCHEMATIC OF NASA-LERC MACH 0 . 3  FOUR ATMOSPHERE.BURNER 
RIG. 
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FIGURE 4. - ROOM TEMPERATURE FOUR-POINT BEND STRENGTH OF AS- 
RECEIVED AND CORRODED SILICON CARBIDE (40 H, 2 PPM Na, 
1000 Oc, 400 KPA PRESSURE). 

ORIGINAL PACE E 
OF POOR QUALITY 

( A )  CRACK LINES RADIATING FROM CORROSION P I T .  

(B) ENLARGEMENT SHOWING GLASSY PRODUCT AT THE ORIGIN. 

( C )  P I T  V I S I B L E  AFTER HF TREATMENT. 

FIGURE 5 .  - FRACTURE ORIGIN AT LEADING EDGE OF CORRODED 
HEXOLOY a - S i c  (0 = 341 MPA). 
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FIGURE 6. - ROOM TEMPERATURE FOUR-POINT BEND STRENGTH OF AS- 
RECEIVED AND CORRODED SILICON NITRIDE (40 H, 2 PPR Na, 
io00 Oc, 400 KPA PRESSURE). 

( A )  CRACK LINES RADIATING FROM CORROSION P I T  

( B )  ENLARGEMENT OF CORROSION PRODUCT AND BUBBLES I N  THE 
P I T .  

(C) P I T  REVEALED AFTER HF TREATMENT. 

FIGURE 7. - TRAILING EDGE FRACTURE ORIGIN OF CORRODED GTE 
AY6 Si3Nq (0  = 624 MPA). 
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FIGURE 8. - CORDIERITE EXPOSED FOR 40 H AT 1000 OC. 2 PPM Na. 400 KPA (AIR FLOW RIGHT 
TO LEFT). 
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FIGURE 9. - POLISHED CROSS SECTION AND ASSOCIATED ELEMENTAL DOT MAPS FOR THE MIDDLE CORD- 
IERITE SPECIMEN IN FIGURE 8. 
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