
NASA Contractor Report 178387

The Computational Structural Mechanics Testbed
Architecture: Volume IV - The Global-Database
Manager GAL-DBM

(EASA-CB-778307) TEE C C ~ P B S I ¶ I C E A L nag-16195
6280CIUBAaL BECHAUCS TESTEED I6Cff;ISECEURE.
YGLDIJE 4: THL C L C E A I - S A P A E A f E i!lAtiA6BP

R e € p CSCL 20K 63/39 0189729
61L-I)Bl! (Lockheed lissiles aEd SFace Co.) Unclas

Mary A. Wright, Marc E. Regelbrugge, and Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

January 1989

National Aeronaiii and
Space Ad minis tratic n

Langley Research Center
Hampton, Virginia 23665-5225

Preface

This Manual describes the late-1986 version of a data manager designed to operate on
global-access data libraries (GALS). Data libraries are components of a global database. A
global database archives data shared by independently executable applications programs,
and survives excution of such programs. The structure of data libraries is hierarchical:
libraries contain datasets, which in turn are collections of records. Records contain the
actual data shared by the applications.

The particular database manager described in this documcnt is called GAL-DBM. The
first version of this manager, known as EZ-GAL, was written in 1980 to support the initial
implementation phase of NICE (Network of Interactive Coiriputational Elwnents). NICE
is an integrated software system for computational mechanics under development a t the
Mechanics and Materials Engineering Laboratory at Lock heed Palo Alto Research Labo-
ratory. NICE consists of architectural utilities and of independently executable programs
called Processors. The architectural utilities support global and local data management,
program-execution control by a command language, and source code maintenance. Op-
erational compatibility is enforced by repltcntrng the global data manager and command
language interpreter in each processor.

GAL-DBM differs from an earlier version named EZ-GAL in that it deals exclusively
with nominal-record capabilities.

I

1

2

3

4

5

0

7

8

9

10

11

12

13

14

15

Contents

Introduction . 1- 1

Data Libraries . 2- 1

Datasets . 3- 1

Indexed Records . 4- 1

Named Records . 5- 1

Library Operations . 6- 1
Basic Dataset Operations . 7- 1

Indexed Record Operations . 8- 1

Named Record Operations . 9- 1

Supplemental Operat,ions . 10-1

Table Information Retrieval . . 11-1

Copy Operations . 12-1

Text Group Operations . . 13-1

Error Handling . 14-1

References . . 15-1.

Appendices

A Glossary .
B Index .

A- 1

. B-1

..
11

1
INTRODUCTION

1-1

I Section 1: INTRODUCTION

$1.1 NICE DATA MANAGEMENT

NICE, a n acronym for Network of Iritcractive Computational Elcrrients. is a database-
coupled, executive-less, integrated softwar’v systt>iri undor dev~~loprr~ t~~ib sill((x 1980 at, the
Mechanics and Materials Erigineeririg Laboratory at the Lockheed Palo Alto Research
Laboratory. NICE consists of architecttiral components discussed in ref. 1, and of compu-
tational elements called Processors that perform the useful work.

The NICE Data Management System (NICE-DMS) is one of three architectural com-
ponents, the other two being execution control and source-code maintenance. NICE-DMS
implements advanced techniques for the administration of scientific databases. Compo-
nents of NICE-DMS are shown in Figure 1.1 interacting with other NICE components.
The functional interaction of these components is discussed in $1.2; the following is just
an overview.

The qualifier “layered” means
that the system consists of separable modules. with low-level modules serving higher-level
ones. The two more important modules are in boxes 1 and 2 of Figure 1.1 , labeled “I/O
Manager” and “GAL-DBM” , respectively.

The basic level of NICE-DMS is the Input-Output Manager (IOM), which is imple-
mented as a package of FORTRAN 77 subroutines (complernented by asscwibly language
subroutines on some computers) called IIMGASP. ‘The IOM functions as a modular in-
terface between direct-access storage facilities (disk, core), and higher data management
levels. Inasmuch as the 1/0 Manager interacts directly with the operating system, it is
machine-dependent; however, this dependence disappears at higher levels. The present
version of the 1/0 Manager is described in detail in ref. 2.

The present document is primarily c0ncernt.d with the Global Database Manager part
of NICE-DMS. A global database (GDB) is an organized collection of operational da ta that
resides on permanent storage devices. These data are used by independently executable but
logically interrelated application programs. Within the confines of the NICE architecture,
these programs are known as Processors.

The NICE global database is constituted by sets of data ltbrartes. The Global Database
Manager of NICE-DhlS is a package of FORTRAN 7T subroutines collectively called GAL-
DBM. The main purpose of this hlanager is to interface NICE Processors wi th global access
ltbrczrtes (GALS). A GAJ, is a data lihrarv tha t resides 0 1 1 a dircc t-access device such as
a disk file (or even main storage) and cornplies w i t h thc technical specifications discussed
in Section 2. GAL-DBM iinplernents operations pertaining to the creation, access and
modification of these libraries. The reader interested in a general functional description of
the global database concept is advised to read ref. 3.

NICE-DMS is a layered data management system.

1-2

51.1 NICE DATA M A N A G E M E N T

Guiding Presence 1

Box 2
_______)

Global Database

Manager GAL-DBM

Box 1 - I/O Manager DMGASP

Global Database

Figure 1.1. Configuration of a NICE Processor, showing
data management and control components

1-3

Section 1: INTRODUCTION

$1.2 UTILIZATION OF GAL-DBM

51.2.1. Making Processors Work Together

The essence of a network of data-coupled prograriis is that the output of one program
becomes the input of another. This is an old idea popularized by the Unix system. NICE
does belong to this very general network class, but it, has its own structural and operational
characteristics dictated by its intended application in computational mechanics.

How does GAL-DBM support the development of NICE Processors? This question is
‘hopefully answered in Figure 1.1 which is a graphical representation of a typical Processor.

Processors have to be controlled in some way, and this is shown by a Guiding Presence.
The Presence may be a human user interacting with a Processor, a command procedure
written by a user, or a command procedure written by another Processor. But it is never
a central executive program.

Interposed between the Processor and the Guiding Presence is the Command Lan-
guage Interpreter Program CLIP (box 3 in figure l . l) , which is described in refs. 4-6.
Interposed between the Processor and the global database is the Global Data Manager,
which is shown separated into the GAL-DBM and DMGASP levels.

The Processor structure is shown in detail. A computational kernel is surrounded by a
shell (similar to Unix). The shell contains four overhead components: Command Interface,
Executive, Tester, and Local Data hlanager. The construction of these shell components
is left to the discretion of the Processor developer.

The Local Database embodies working data structures needed hy the I’rocessor itself
to produce the results required by the Guiding Presence. Most of these data disappears
when the Processor stops. The Local Data Manager is usual ly designed for maximal
computational efficiency, and often custom-fitted to the Proccssor.

1-4

51.3 C O N T E N T S O U T L I N E

I

I
I

l i

$1.3 CONTENTS OUTLINE

Sections 2 ,3 ,4 and 5 explain data libraries, datasets, indexed records and named records,
respectively. These are the three data structure levels that GAL-DBM manages. Readers
already familiar with data-library systems such as those used i n the SPAR and DALPRO
program networks may be able to absorb most of this material fairly quickly. Familiarity
with ref. 2 would also be most helpful.

Section 6 presents library operations: open, close, flush and pack, which affect a data
library as a whole.

Section 7 covers basic operations that affect one or more datasets and that do not
depend on the record structure. For example: put dataset name in TOC (table of contents),
find dataset, delete and enable datasets, list TOC.

Section 8 covers operations on indexed records that reside in positional datasets.

Section 9 covers operations on named records that reside in nominal datasets.

Section 10 covers supplementary and auxiliary operations that do not fit in the pre-
ceding four sect ions.

Section 11 covers information-retrieval functions.

Section 12 deals with copy operations.

Section 13 deals with text group operations.

Section 14 covers error handling in NICE-DMS in general and GAL-DBM in particu-
lar. It lists and explains error messages, and describes entry points that NICE programmers
may use to access status information and to modify error-handling defaults.

1-5

2
T

4 Data Libraries

2-1

Sectlon 2: DATA LIBRARIES

§ 2.1 OVERVIEW

What is a Data Library?
Webster’s 7th Collegiate Dictionary defines it library as ‘‘a place i n which books,

manuscripts, musical scores, or other literary and artistic materials are kept for use but
not for sale”. The pessimist’s view of a library has been quoted as “an organized collection
of obsolete materials”. However, the term library, or more precisely data library, is used
here in a more specialized context. A library is an organized collection of da ta that

I

I possesses the following attributes:

, 1. It is intended (at least in principle) for use by independently executable programs.

2. It can be made available to a running program as a single logical entity.

3. It is oriented to the archival of data, rather than to the processing of data.

4. It provides at least one level of named access to the stored data and preferably more.

5. It is context-free, i .e . , no assumption as to the meaning of the stored data is made.
The qualifier data in data library is occasionally used to reinforce the distinction be-

tween da ta libraries and program libraries. The principal function of a program library is
to catalogue source-code, objec t-code, or execu tahlc-code text. f’rogram libraries are usu-
ally handled through operating-system utilities whereas data libraries are handled through
application-oriented data management systems.

The chief function of data libraries is to serve as components of global databases.
These are organized collections of information that are used as operational data for the
applications system of a particular enterprise (e . g. , engineering analysis). Global database
information is shared by functionally related but independently executable programs, and
survives the execution of such prsgrmns. In a top-down description of scientific database
structures, a data library may be defined as “a named partition of a database” (see ref. 5).

Nomenclature

Data libraries can be categorized according to the access characteristics of their residence
medium into direct-access and sequential-nccess libraries. llirect-access libraries reside on
direct-access storage devices such as disk or main-storage. Seqtienfinl-acces.s libraries reside
on serial-access devices such as niagnt~t ic tapcn.

All library organizations discussed in this document are of direct-access type. The use of
direct-access online devices as a residence medium provides maximum operational flexi-
bility, and is consistent with current computing industry practices. It should be noted,
however, that permanent library files may (and should) be archived on tape during pro-
longed inactivity periods.

I

A data library contains data objects identified by nar ies or numbers. Such da ta objects
are the members or elements of a library. In the library ~)rgatiizations considered here, the

2-2

92.1 OVERVIEW

data structures associated with an individual member are either single records or sets of
records. The term dataset (IBM-originated “computerese” for a collection of similar records
related by spatial or temporal adjacency) will be used to describe such data structures.

Dataset description information such as identifiers, physical location and so on is
usually abstracted into a special section of the data library known as an index, directory,
catalog, data dictionary, or root segment. This section is usually implemented as a table
(a matrix-like arrangement of information), which is then called the Table Of Contents or
TOC.

The main reason for abstracting dataset information from the dataset records proper
is efficiency in library-query operations. TO(: segments can be brought to main storage
through block-read operations arid then searched at high speed. (The reader may think of
the analogous situation in which a person tries to find a book in a public library: scanning
an index is more efficient than walking through book stacks.)

The remainder of Section 2 is devoted to the description of the specific data library
organizations processed by the GAL-DBM package, and to which the operations discussed
in $ 5 6 1 4 pertain.

?

3

2-3

Section 2: DATA LIBRARIES

§2.2 A CONCEPTUAL MODEL

To understand how GAL-DBM works, a conceptual model of data libraries is useful. Think
of a data library as a bookshelf. The datasets are the books, arid the dataset names are
the book titles. For a data library cont.aining three datasets: DENNIS, DELL, EDNA, this
simple model can be diagrammed as:

DENNIS
Dataset DEIIIIIS

D a t ase t FlEL L

D at ase t EDNA

NELL

EDNA

in which the distinction between the dataset name (the book title) and the dataset proper
has been emphasized.

Now, what is a dataset proper? It is a collection of records. We shall define “record”
precisely in 54.1; for the moment you may think of records as book chapters. But how are
chapters identified?

In some books, chapters are merely identified by an index: I , 2, 3, and so on, with
perhaps a Preface, Iritroductioii or Foreword which may be collectively called Chapter 0.
On other books, you will find chapters identified by a name related to the subject matter.
There is a close analogy for datasets. More precisely, datasets may be of two types:
positional and nominal.

I Positional Datasets. Records are identified by their sequence index: 0, 1, 2, ... Records
must be physicaliy contiguous; that is, record 2 rnust immediately follow record 1, and so
on. Record 0 is called the descr ip tor record: its presence in a dataset is optional.

Nominal Datasets. Each record is identified by a nanie. The physical order in which
records appear in the library is irrelevant. Most ncw software devolopinerits make use of
nominal datasets exclusively.

t

L.

2-4

$2.2 A CONCEPTUAL MODEL

To continue the example, suppose that that dataset EDNA contains five named records
identified as LEON, NEDRA, A N I T A , ROLF and NORA:

EDNA
LEON

NEDRA

A N I T A

ROLF

Record LEON

Record NEDRA

Record A N I T A

Record ROLF

Record NORA
NORA

Note that for dataset EDNA we have again emphasize the distinction between the record
name and the actual record.

Can we go deeper? Book chapters are composed of paragraphs, which are composed of
words. A word is the smallest component of our conceptual model, because if we break up
a word into letters it loses meaning. The global-database counterparts to paragraphs and
words are called data aggregates and data items, respectively. (In some cases, the aggregate
level is missing or cannot be discerned.) Example: a full rectangular matrix is stored as
a single dataset record; then the matrix columns are data aggregates while matrix entries
are data items. Now if the matrix collapses to a row vector, aggregates collapse into items.

GAL-DBM is blind to aggregates and items. That i.i, the finest structure it can see is
the record and it is blind to aggregates and items; thesc levels being of interest primarily
to local data managers. All of this can be concisely expressed by saying that a GAL-DBM
database has record granularity.

REMARK 2.1
The term dataset, in its original meaning, should strictly apply only to positional datasets, the
records of which are related by physical adjacency. The proper name for noniinal dataset is
group, which is “a collection of records endowed with an owner or master record called bhe record
directory, and a set of member records” (see ref. 5). But using different, terminology for logically
similar things tends to confuse users to no end. Purism has to give way to common sense, and so
dataset is used. Besides, this frees the term “group” for use in describing a special amalgamation
of named records in 55.

2-5

Sectlon 2: DATA LIBRARIES

$2.3 LIBRARY DEVICES

Data libraries reside on logical storage devices under control of the I/O Manager nhlGASP (cf.
Figure 1.1). Most library devices are disk-resident permanent files, which natura.lly provide the
permanency and direct-access attributes stressed in 52.1. But, as noted in 51.2, libraries can also
reside on scratch devices to fulfill special needs.

The physical structure of library devices is outlined in 52.5, which should be of interest only
to a minority of advanced users. In the following, only logical aspects are covered.

Library Identification

A data library has two identifiers: a name and a number. The nominal identifier is the ezternal
device name of the DMGASP device on which it resides. If the device is a permanent disk file,
the device name either coincides with the file name, or it contains the file name in some fashion.
For details the reader is referred to 52.6 and 53.1 of ref. 2.

The other identifier is t,he Logical Device Zndez (LDI) of DMGASP (see ref. 2). This is an
integer in the range 1 through 30, which is linked to the external name when the library device is
opened. The choice of LDI is arbitrary, but once selected, all subsequent references to the library
are made through the LDI.

REMARK 2.2

GAL-DBM maintains a table of active libraries. The access pointer to t’his table is the logical library
indez (LLI). This index is only used internally, however, and is invisible to the user program. The
decision of concealing the LLI was made to avoid confusing GAL-DBM programmers with the
task of keeping track of several indices: one is eriough. Furthermore, advanced programmers may
sometimes want to access a library device at the 1/0 Manager level (e.g., for a file dump); a
common identifier is then beneficial.

Library Format

The present GAL-DBM can process three da ta library formats or libforms. These are
identified as DAL, GAL80 and GAL82, respectively. The main characteristics of these
libforms are summarized in Table 2.1.

The library form is established when a library file is created and cannot be changed
afterwards. When an existing library is accessed, GAL-DBM can “sense” its form by
scanning the library header.

DAI, libforms are provided for compatihility with the DA r, datahasc. ‘I’hese libraries
can reside only 011 disk filcs, i t r v secfor-atldtc~ssitblc, aiicl can acc.oiiiitiotlal,c only IIA L-
conforming datasets (a special positional datasct consisting o f fixed-length records). Be-
cause of these restrictions, DAL libraries are not suitable for use by NICE processors, but
do serve as a bridge to programs supported by DAL databases.

GAL libforms reside on word-addressable devices (di jk files or core). The GAL80 form
was provided by the original version of GAL-DBM; it can hold only positional datasets.
The GAL82 form is provided by the present version and can hold nominal datasets.

2-6

$2.3 LIBRARY DEVICES

t

Table 2.1. Libforms Processable by GAL-DBM

Format Addressing Residence Datasets
Unit Medium Accepted

Con m e tits

DAL Sector

GAL80 Word

GAL82 Word

Disk I) A L-conform i ng
positional SPAR and DALPRO

Compatible with

Disk or core Positional Original GAL

Disk or core Nominal Latest G A J,

2-7

Section 2: DATA LIBRARIES

$2.4 LIBRARY ACTIVITY OVERVIEW

Activation

GAL-DBM demands that any library to be made available to the user program be explicitly
opened. The open operation, performed by GMOPEN (§6.4), connects a Logical Device
Index to the external device name, and prepares the library for processing. A n open library
is said to be active.

If the library did not exist before the open operation, the open operation effectively
combines creation and opening. A created library may be declared to be permanent if it

l is to survive closing (the most common case), or scratch if it is to disappear upon closing.

Although the Logical Device Index (LDI) ranges from 1 through 30, this does not I
mean that up to 30 libraries may be open a t the same time. The present GAL-DBM
allows up to eight libraries to be simultaneously active.

Write Protection

The access characteristics of the library are those of its resident device. The most com-
mon access restriction consists of making an existing library read-only. Some old-fashioned
operating systems allow catalogued disk files to be declared read-only, so the file is uncon-
ditionally protected against all users. More modern operating systems, such as VAX/VMS,
allow rings of selective protection.

But even if your host operating system does riot provide write protection, read-only
status can be specified a t open time as explained in $3.1 of ref. 2. If so, the I /O Manager
will disallow writes against the device.

~

Run-Abort Protection

The flush-library operation, performed by GMFLUB (§6.3), is used to safeguard new or
modified libraries against abnormal run termination. This operation forces all core-resident
buffers whose alterflag is on to be writ,ten to the library device. I

Packing

Libraries used by heavily interactive programs such as pre- and post-processors tend to
accumulate inaccessible datasets in the form of deleted datasets (53.4). 1,ibrary storage
may be reclaimed by a p a c k operation, which is performed by invoking GMPACK (56.5).

Deactivation

Once the user program is through (permanently or ternpora.rily) with a library, it should
release it with a close operation, which is performed by GR4CLOS ($6.2) . A close operation

I automatically flushes all main-storage buffers assigned to the library.

2-a

52.5 PHYSICAL ORGANIZATION

$2.5 PHYSICAL ORGANIZATION

A data library is usually stored as a permanent file on disk. Such files survive processor
execution and thus provide the operational cont inui ty expected from global databases.

The qualifier “usuallyn means that there are exceptions to the library-storage rule. A
library of any type can reside on a scratch disk file, which disappears when it is closed.
And libraries of GAL form can even reside on “core devices” provided by DMGASP in
blank-common storage. Regardless of storage medium, a library is a hierarchical indexed
organization. It contains a t least two overhead data structures: a Library Header and the
Table of Contents. (“Overhead” means that it is used only for internal administration.) In
GAL82 libraries holding nominal datasets, a third overhead data structure appears: the
Record Access Table (RAT), of which there is one per nominal dataset.

Library Header

The Library Header occupies the first 128 (64) words of the GAL (DAL) device. A short
segment of the Header maintains state information such as the length of the library de-
vice, library format codes, and so on. The remainder contains the addresses of the TOC
segments.

When an existing library is open, its header segment is read into a core-resident header
buffer area, where it resides until the library is closed. If a header item changes as a result
of an operation (e.g., a TOC segment is created) the buf e r is modified and an “alter flag”
is set. Periodically the modified buffer is written (“flush(.d”) to the actual library, and the
alter flag cleared.

Table Of Contents

The Table Of Contents (TOC) maintains information about datasets. For example: dataset
name, date and time of creation, dataset start location, number of records. and so on.

The TOC is not stored contiguously, but is subdivided into segments. Each segment
is 384 words long and stores information about 16 (32) datascts in GAL (DAL) forms.

To process TOC segments, GAL-DBM maintairis a ‘I’OC IJuffer Pool in main storage
with capacity for 2 to 4 segments (this number is declared as a FORTRAN PARAMETER
a t compile time). This (RAT) Buffer Pool is shared by all active libraries. Pool frames are
allocated on demand using a LRU (Least Recently Used) paging policy. Segments altered
as a result of database operations are marked a5 modified but not, written back (“flushed”)
to the library until it becomes necessary to do so. 4

Record Access Tables

Each nominal dataset on a GAL82 library has a Recorc, Access Table (RAT). The RAT
configuration mimics that of the Library-Header/Table-Of-Corit ents pair. More specifi-
cally, the RAT is subdivided into 128-word segments: the segment addresses are stored in
a RAT header that appears in front of the first segmen . Each segment has information
about 16 record entries (one ordinary record, or a recorc’ group).

5

1 Sectlon 2: DATA LIBRARIES

To process RAT contents, GAL-DBM maintains a RAT Buffer Pool in main storage
with capacity for 4 to 8 RAT segments. The Buffer Pool resources are shared by all active
GAL82 libraries and all nominal datasets present in such libraries. As in the case of the
RAT Buffer Pool, RAT segment frames are allocated 011 de~nand, using a LRU policy.
Modified segments are alter-flag tagged, and not written back to the library device until
necessary.

Dataset Storage

Indexed-record datasets occupy a contiguous area of the library device. So given the s tar t
of the dataset allocation, which is kept in the TOC, the location of a member record can be
rapidly calculated if the record offset with respect to the dataset start is known. For record
sets satisfying certain length constraints discussed in $4.2, the offset can be determined
solely from TOC-stored information.

For nominal datasets, one more level is required. The dataset location field in the
TOC points to the RAT Header, which holds locations of RAT segments. The location of
a member record can be calculated from the base address and the item type and length
information maintained in the RAT. This two-level addressing scheme allows member
records to be physically anywhere in the library.

I

I

3
Datasets

3-1

Section 3: DATASETS

$3.1 INDIVIDUAL DATASET IDENTIFICATION

Dataset Names

Datasets are identified by character strings known as dataset names. In its most general
form, a dataset name consists of five components:

Mainkey. Extension. c y c l e l . c y c l e 2 cycle9

where any component but the first may be omitted. Components are separated by periods.
Examples:

MATRIX
A.B.1.3.2
S4-Cl.ASM-STIF(C>.3.65.1307
HELP. ADD
$TEMP$.BUFFER(+8) . . . 4
RESPONSE..45

The total length of t.he name string, including connecting periods, must. not, exceed 4 0
characters .
REMARK 3.1
Two character key (alphanumeric) components and three integer cycle cornponents are provided
for maximum generality and flexibility in the naniiiig of datasets.

Keys

The first two dataset-name components: niainkey arid k e y extetzston, may contain any of
the following characters:

letters A-Z, a-z
digits 0-9
dollar signs
plus a n d rniiiiis signs
left and right, parentheses
underscore

Each key component, excluding connecting periods, is restricted to 16 characters. The key
extension may be omitted, as in the first and last esamt>les above. An omitted extension
is conventionally the same as a blank character string.

3-2

$3.1 INDIVIDUAL D ATAS E T ID EN T I F I C A T ION

REMARK 3.2
Key extensions that consist only of digits are permitted. For example:

MODE. 139

Here 139 is a key extension, although it looks like a cycle number; it is not the same as MODE..139.
To avoid confusing the poor user (or even yourself), please avoid all-digit keys.

REMARK 3.3
Upper and lower case characters are not equivalent. For NICE processors, the use of lower case
characters in dataset names should be avoided, since the command interpreter CLlP normally
converts automatically all character strings to upper case. Consequently, using lower case would
impair the usefulness of command specifications that contain dataset names.

Cycle Numbers

The last three name components are called cycle numbers. As this term implies, a cycle
is a sequence of digits that represents an unsigtted integer in the range 0 through 99999.
Any omitted cycle is assumed zero. Example:

ELEM.STIF.457

The first cycle is 457; the second and third cycles are zero. Similarly, AA.BB is the same
as AA.BB.O.O.0.

Cycle numbers are primarily used for identifying datasets that differ only slightly,
when such difference can be naturally associated with one index, an index pair, or an
index triplet.

3-3

Section 3: DATASETS

§3.2 MULTIPLE DATASET IDENTIFICATION

Certain library operations such as copy, delete, globally-match, list TOC, and print records,
may affect more than one dataset. For such operations, it is often useful to be able
to “bundle” together dataset names that are to participate in the operation. It is also
occasionally useful to refer to things such as “the highest defined cycle number”.

To facilitate these requirements, GAL-DBhl provides tnaskitzg, cyc l e range, and rela-
tioe cycle capabilities. These are summarized in Table 3.1, and explained in the following
subsections.

Name Component Masking

The simplest multiple-name-matching feature is component masking, in which a full name
component is skipped when comparing against stored dataset names. This can be done
with a “wild card” specification, in which a name component is replaced by an usterzsk.
Example:

DATA. * . .*. 2

This matches any identifier whose mainkey is DATA and last two cycles are 2 and 0. For
example:

DATA.EPOXY.33.2
DATA..120.2
DATA. . - 2

If the name ends with an asterisk, i . e . , the next character is a blank, everything that
follows is masked. This is a special case of the trailing-asterisk rilles stated below.

Partial Key Masking

More general masking specifications are possible on the rnainkey and key-extension com-
ponents. These work much like file name masking in the VAX/VMS operating system.
The most common specification involves the IISO of a frat l ing asterisk to match name com-
ponents with the same “root“. For example:

I

F* . RUII .34

This name matches all datasets whose mainkc? begins lvitli F. followed by key extension
RUN, and cycles 34, 0, and 0.

A narne-trui/ittg asterisk (i . e . , the next character is a blank) specifies matching against
any combination of zero or more trailing characters. For example,

3-4

53.2 M U L T I P L E DATAS E T 1 DEN TI F I CATION

matches all datasets whose mainkey begins with F, and

* .GA*

matches any dataset whose key extension begins wit,h CA. Please note that this is not the
same as

which specifies zero cycle numbers. Thus, F U N . GAMES. 3 . 4 is matched by the first form but
not by the second.

In view of the trailing-asterisk rule, the five specifications

are effectively identical, and match all dataset names.

Leading asterisks are occasionally useful. For example,

R U N . * R E . *

matches all datasets whose mainkey is RUN and whose key extension ends with RE; e.g.,
R U N . PROCEDURE or RUM. R E . 6 7 . 8 . The specification

matches all datasets whose key extension contains the letter X i n any position.

R E M A R K 3.4

Asterisks which are neither trailing nor leading a key component (;.e., an embedded asterisk) are
not allowed. For example, NEW. ADV*LAM . 6 is illegal.

Positional Masking

Individual characters at specific positions can be masked with the percent, sign %, exactly
as in VAX/VMS. For example:

DYIJ . RESP%% . *

matches any dataset with mainkey DYIJ and six-character key cxtcnsions beginning with
R E S P , e.g., DYN .RESPOIJ . 5 or DYII . R E S P 0 2 . Notc the diffc mice with

D Y N . R E S P * . :?

3 5

Sectlon 3: DATASETS

which matches zero or more characters after RESP. For example,

DYN . RESPOIJSE

is matched by the second form, but not by the first one.

Cycle Ranges

Partial masking does not carry over to name cycles. For example

RUN. SET. 67*

is meaningless, and will cause an error message to be printed. To match cycles that lie in
a certain interval, the cycle range feature may be used. Example:

RUN.SET.4:67

matches datasets of the form

RUM. S E T . c yc le l

in which cyc le1 is 4 through 67 (inclusive). Cycle-range specifications may appear in more
than one cycle, as in

RUH .SET. 4 : 67.93.0: 8

REMARK 3.5

The single asterisk specification in a cycle coinponerit is equivalent to the ffmatch all” cycle range
specification 0 : 99999.

Relative Cycle Specifications

In contexts where heavy use is made of cycle numbers, it is often useful to have compact
ways of referencing things like “highest cycle number” or “next cycle number”. GAL-DBM
provides three letter symbols: L, H and W , that can app3ar as f irs t character in o n e cycle
field to form a relative cycle specification. The meaning is:

L Lowest cycle 1111 iriber
H Highest cycle nurriber
II Next cycle nuriiber (same as H+l)

These symbols may be optionally followed by a signed iiiteger, as in

L+2 Lowest cycle plus 2
H-12 Highest cycle minus 12

3-6

$3.2 MULTIPLE DATAS E T I D EN T I F I CAT1 0 N

To determine the numeric value of L, H or N, GAL-DBM does a TOC scan with the a.ffected
cycle field replaced by a mask. The appropriate value is substituted in an internal name
string. If no match is made, L and H are conventionally set to zero whereas N is set to one.

Relative cycles may be combined with cycle-range specifications. The following are
legal:

AA.BB.6.L:H
AA.BB.*.L+S:H-2

Relative specifications may not appear on more than one cycle component, however. Ac-
cordingly, the name

AA.BB.H.L+3

is illegal and wiil cause an error condition.

A common application of relative cycles is illustrated by the following example. A
8 NICE processor creates results in a step-wise manner, and stores them in datasets named

RESULT.VEC.1
RESULT.VEC.2
RESULT.VEC.3

. . .
etc.

so that the first cycle identifies the step number. After tompletirig the 32nd step, say, the
program creates the next receiving dataset using the name

RESULT.VEC.N

On receiving a name of th i s form, GAL-DBM scans the TOC for all datasets named
RESULT. VEC. cycle l . 0.0, finds out that the highest cyclel is 31, adds one to produce 32,
and so the dataset name winds up being RESULT. VEC .32.

Finally, suppose that the program is instructed to print the last three result datasets in
the data library. The appropriate identifier is

RESULT.VEC.H-2:H

3-7

Section 3: DATASETS

Table 3.1. Special Dataset Name Constrricts

Name For na Eflect
component

Key * Matches zero or more arbitrary characters

Key % Matches one arbitrary character

Cycle *

Cycle

Cycle

t t l : t 1 2

Matches any cycle number (same as
0 : 99999)

Matches cycle numbers in range
n l to 712 inclusive

H+n o r H-n H is to be replaced by highest cycle number
(zero if none found)

Cycle L+n or L-n L is to be replaced by lowest cycle number
(zero if none found)

Cycle N+n o r N-n 11 is to be replaced by next cycle number
(same as H + 1) __-

c

3-8

$3.3 IDENTIFICATION B Y SEQUENCE NUMBER

$3.3 IDENTIFICATION BY SEQUENCE NUMBER

Each dataset, whether enabled or deleted ($3.4), has a unique sequence number, which is
the ordinal of its occurrence in the data library. Once a dataset is entered in a library, its
sequence number cannot change unless the library is packed.

Most GAL-DBM operations identify a dataset by its sequence number rather than by
name. This has the following advantages:

1. No search of the library Table of Contents is required. Such a search can be expensive
in terms of CPU time and 1 /0 accesses when a library contains over 100 datasets.

2. Datasets with identical names may be told apart, which is useful for “undelete” or
“copy deleted” operations.

3. Sequence number range specifications may be given. These are handy for requests
such as “list the last 10 dataset names”.

4. In interactive command input, small integers can be typed faster than long names.

Connections between names and sequence numbers are usually established through “find
name” search operations.

3-9

Sectlon 3: DATASETS

53.4 DATASET STATES

During its lifetime, a stored dataset may be in one of three states:

Enabled unlocked. A dataset can be accessed and operated upon with no restrictions of
any kind.

Enabled locked. A dataset flagged with access or use constraints (more details below).

Deleted. A deleted dataset is physically present in the data library, but is “transparent”
as regards “find” operations. A deleted dataset cannot be directly operated upon. It can
be rendered accessible only through an explicit “undelete” (enable) operation.

Locking

Access restrictions on enabled datasets may be specified by the user program through a
lock code, which is maintained in the TOC. The lock code of an unlocked dataset has a zero
value, which is the default state, while nonzero values are used to define various protection
levels. Please refer to Table 3.2 for a detailed explanation.

Two situations in which locking is useful should be mentioned.

Questionable data. . A dataset may be produced under abnormal conditions; for example
an iterative solution process may fail to converge, but the last iterate is saved anyway. A
lock code of -1 (cf. Table 3.2) comes handy in this situation.

Be prepared. A NICE processor may want to safeguard valuable information stored in
certain datasets by protecting them against write-in-place, extend or delete operations
performed by itself or by other NICE processors.

REMARK 3.6

The lock code feature has not been fully implemented.

Deletion

The most common source of deleted dataset,s is the insertion of a dataset name that
duplicates an existing name. The general r i l l e is: names of etznbled datasets must be
unique. For example, suppose that dataset DEIINIS is entered thrice in a library. The
logical configuration would then be

*DEN N IS
Dataset DENHIS

Dataset DENNIS

Data.set DEN 14 IS

*DENNIS

DENNIS

in which asterisks flag deleted datasets. If now t4he user Iirogram “undeletes” (enables) the
first dataset, the third one is automatically marked as deleted because of the uniqueness
rule.

3-10

4

4

§3.4 DATASET STATES

Table 3.2. Dataset Lock Codes

0 None Dataset may be extended, rewritten or deleted

1 Read-only Dataset may be deleted, but not extended or

2 Undeletable Dataset cannot be extended, rewritten or

rewritten

deleted

Same as 2 and in addition a lock code can
be subsequently lowered (to 0, 1 or 2) only
by the generating processor. More precisely,
the processor name declared through GMSIGN
must match that stored in the TOC for a lower
protection level be installable

Sanie as 1 and in addition a warning message
is printed each time dataset records are read.
Useful for flagging erroneous data stored in the
global database.

3 Untouchable

-1 Warning message

3-11

Sectlon 3: DATASETS

53.5 DATASET ACTIVITY

Dataset Creation

A dataset is created in a library by a put name operation, which installs the dataset entry
in the TOC. If the dataset is of nominal type, the operation also creates the first segment
of its Record Access Table (RAT) and its Header.

For a positionul dataset, the put-name operation is often followed by a reserve-space
request, which sets aside enough space to hold all of the dataset records. For nominal
datasets, this is never necessary.

Record Transmission

This topic is covered in $4 and §5.

Dataset Deletion

To explicitly get rid of a dataset, a two-step process is necessary. First, the dataset must
be marked as deleted. Then the library is packed. The second step physically removes the
space used by the dataset. In practice, the library-packing step is done only occasionally,
as it is quite expensive.

I

3-12

4
Indexed Records

4-1

Section 4: INDEXED RECORDS

Data libraries are collections of datasets, and datasets are collections of records. Records
hold the applications data that feeds Processors. As noted in 52.2, GAL-DBM has es-
sentially record granularity; so this Manual docs not contain sections explaining data
aggregates and items.

This Section deals with aspects of global data management related to the record struc-
ture of datasets. $4.1 gives an overview of what records are and how record identification
characterize datasets and libraries into positional and nominal. Then $$4.2-4.3 give further
details on indexed records in positional datasets. Named records are discussed in $5.

4-2

$4.1 OVERVIEW

$4.1 OVERVIEW

Definition

The technical definition of dataset record is

A string of data objects that occupies adjacent locations in the library device,
belongs to one and only one dataset, and is identified by nu-mber or by name.

Grasping the concept of “adjacent locations” requires familiarity with the physical
structure of direct-access devices (as explained, for example, in 52 of ref. 2). The GAL-
DBM programmer is generally more interested in the functional characterization:

A dataset record is a string of data that belongs to one and only one dataset,
is identified by number or name, and can be read into main storage as a gapless,
undivided whole.

This is a more useful characterization. Basically, the GAL-DBM programmer wants
to say “write record”, and the record goes away, and then “read record” and the record
comes back unspoiled (PL/1 and Pascal programmers may think of “put” and “get”, but
the effect is the same).

REMARK 4.1

The functional definition does not imply that a dataset record is stored in a single write operation,
although that is often the case. A long indexed record may bc. built “by chunks” provided that no
gaps can occur between the chunks. In more technical terms, the chunks are called record blocks,
and a dataset record built in this fashion is called a block-spanning record, or spanning record for
short.

REMARK 4.2

Dataset records do not have any end-of-record marks. This is in line with the philosophy of
viewing direct-access devices as siniply a linear array of storage locations.

REMARK 4.3

Users of the 1/0 hfanager (1Oh.I) DMGASP may wonder about. t.he reliitinn between TOM records
and dataset records. The answer is that each dataset record is built up of one or more IOM records
(which ie not a t all surprising, since GAL-DBM channels all physical I/O throiigh IIMGASP).
But the converse is not true. Dataset records are closer to t,he logical level than IOM records.

i4.1.2. Classification

It was noted in 52.2 that there are two ways of identifying dat,aset records:

1. Indexed records are physically contiguous, and are identified by sequence number.

2. Nurned records need not, be physically contiguous, and are identified by name.

4-3

Section 4: INDEXED RECORDS

Indexed and named records may not be mixed within the same dataset or even the same
library. Consequently, datasets and libraries are naturally categorized into two types:
positional and nominal. The type is selected when the library is created, and cannot be
changed afterwards.

For a positional dataset, the physical order of records usually corresponds to the
chronological order of acceptance of those records by the data manager. Accordingly, the
record identification is intimately related to the definition order. On the other hand, for a
nominal dataset the order in which records are defined is irrelevant.

The operational characteristics of positional datasets are discussed in the following
subsections. Positional datasets should be used only by programs that are to maintain some

should be preferred, as it offers more flexibility and growth potential.

~

I form of compatibility with DAL databases. Otherwise, the nominal-dataset organization

4-4

54.2 POSITIONAL DATASETS

54.2 POSITIONAL DATASETS

The adjective that best describes a positional dataset is tape-like. Records are defined by
their position within the dataset, and are physically contiguous. Once the next dataset is
installed, a positional dataset cannot be further expanded unless sufficient space has been
reserved in advance.

The most important types of positional datasets are those called DAL-conforming and
GAL-conforming, respectively, which are described below.

t

DAL-Conforming Datasets

A DAL-conforming dataset is an indexed-record stream that meets the following conditions.

1. All records, with the possible exception of the last one, have the same length. The
length of the last record may be equal to or smaller than the others.

2. There is no descriptor record.

3. Records contain items of identical type. (See Remark 4.4).

To illustrate these rules, consider a dataset that consists of six floating-point records whose
lengths are 60,60, 60, 60, 60 and 42 words. This is a DAL-conforming dataset. If the size
of the last records were 61 words or more, it would not qualify. If the first record contained
integers, it would not qualify either.

The internal contents of these datasets is fully described by the type code stored in
the library Table of Contents (shown under “T” in TOC listings). The type code is an
integer that may assume the values listed in Table 4.1.

DAL-conforming datasets are accepted by programs that make use of DAL files for
local or global data management. At the Lockheed Palo Alto Research Laboratory, these
programs include DALPRO, NEPSAP, and SPAR.

DAL compatibility means that these datasets can be copied to DAL files, processed
by utility programs such as DALPRO, and copied back to GAL files without critical loss
of information. Content homogeneity implies that they are comparatively easy to move
from one computer to another, inasmuch as item-by-item conversion is simplified.

REMARK 4.4

The homogenous-data-type rule is largely enforced within tne DALPRO program, which deals
primarily with rectangular matrix structures. However, many datasets used by the SPAR network
do violat,e the rule.

Text Datasets

These are special DAL-conforming datasets that store curd image data. They are identified
by DAL type codes 5 and 6 (Table 4.1). Both types are c,xtensively used by the command
interpreter CLIP (see refs. 1, 4-6) to store command procedures, and CLAMP scripts.

4-5

Sectlon 4: INDEXED RECORDS

Table 4.S. Datatype Codes for DAL-Conforming Datasets

code Data type of record items

0

fl

f2

f3

*4

f5

f6

7-9

10- higher

integer

single-precision real

double-precision real

single-precision complex

alphanumeric (SPAR format)

variable-length-lirie card images
(DALPRO format,)

fixed-lengt h-line card images
(DALPRO format)

reserved for DALPRO use

available to DAL programmers
L

4-6

54.2 POSITIONAL DATASETS

C

*

Data type 5 stores variable-length card images. All rightmost blanks are stripped and
a character counter is stored in front of each image. These images are blocked into records
of equal size (usually 256 or 512 bytes). This storage arrangement is space-efficient but not
suitable for random access of individual images. It is used for CLIP command procedures,
CLIP ADD elements, and DALPRO runstreams.

Data type 6 stores fixed-length card images (80 characters), one image per record. This
arrangement is space wasteful, but simplifies random access to individual card images. It
is used for the "compiled form" of CLIP command procedures, in which the random access
feature is necessary to take care of branching to labeled commands.

GAL- Conforming Positional Da t aset s

A GAL-conforming positional dataset is a stream of indexed records that complies with
the following rules.

1. The first, second, third and last record lengths may be different from the others. The
fourth through the next-to-last record must have 1,he same length. Obviously, any
dataset with five records or less satisfies this constraint.

2. A character descriptor record (record 0) of arbitrary length is permitted.

3. Each record must be either numeric or character. Mixing of character and numeric
data within the same record is forbidden.

4. Mixing of different numeric data types within the same record (for example, integers
and floating-point nurnhers) is permitkt1 but, discouraged.

As an example, consider a 162-record dataset that consists of

Descriptor: 120 characters
Record 1: 20 integers
Record 2: 240 reds
Record 3: 144 integers

Records 4- 161: 642 double-precision floats
Record 162: 288 reds

This is a GAL-conforming dataset.

The record-length rule is the most important one. It aliows the location and size of each
record to be calculated from information stored in the Table of Contents. This information
includes: location, total dataset size, length of descriptor, first, second, third, and last
record. The common length of the fourth-through-next-to-last records, if any, is obtained
by subtracting the sum of other record lengths from the total dataset size (descriptor
excluded) and dividing by the number of records minus four.

4-7

I Section 4: INDEXED RECORDS

The length of numeric records, which form the overwhelming majority, is always ex-
pressed in machine words. The length of character records is expressed in characters, but
internally they are blank-filled to the next machine word boundary.

Because of their greater generality, GAL-conforming positional datasets rely on the
descriptor record and leading control records for self-descri ption. This descriptive infor-
mation, however, has to be interpreted outside GAL-DBM, which leads to problems (see
Context sensitivity below).

GAL-conforming datasets provide more operational flexibility than DAL-conforming
ones. The global manager is still able to access any dataset record with minimal overhead,
simply from TOC-stored information.

REMARK 4.5

The NIFTY-formatting conventions are based on the notion of tempfates (see reference 7). A
template is the storage layout of a GAL-conforming positional dataset proven useful for various
applications. Template datasets do have reserved leading records called control packets, which
store data that describe the logical structure of the records that follow.

Assessment

Advantages of positional datasets center on processing efficiency. In particular:

Low storage overhead. For a positional dataset, the only storage overhead is its T O C
entry, which amounts to 24 words for GAL forms, and 12 words for DAL forms, respectively.
This overhead is independent of the number of stored records.

Low access overhead. If the dataset sequence number is known, as is the case in most
read/write sequences, any record can be accessed with at most two logical device accesses:
one to get the pertinent TOC segment into main storage, and another to get the actual
record. If the TOC segment happens to be in the TOC Buffer Pool, only one logical access
is required. (The number of physical accesses at the I/O Manager level may be less or more
than this, depending on whether the library device is pagcd or not, record alignments, etc.)

Multirecord access. Several adjacent records can be read in one call, tliercby further
reducing access overhead. (This is restricted to word-addressable GAL libforms however,
because in a DAL file, gaps can appear between records.)

1
DAL compatibility. DAL-conforming datasets provide a useful bridge to the SPAR

and DALPRO programs, and their rich set, of utilities (e.g., graphics packages).

Disadvantages of positional datasets center on their proximity to the physical storage level.
More specifically:

Ordering Sensitivity. The tape-like character makes positional datasets difficult to set
up should records be generated in non-sequential order. For example, sirppose that record

4-8

$4.2 POSITIONAL DATASETS

2 is the first one generated by the processor. Then appropriate space for tlie descriptor
and record 1 has to be reserved by writing dummy records.

Extension Difficulties. Appending records is easy if the dataset is tlie last one in the
library. If not, sufficient space has to be reserved in advance to allow worst-case expansion.
For volatile datasets (those whose final size cannot be closely predicted in advance), this
can be a serious problem.

Lack of Internal Self-Description. The generality of GAL-conforming datasets cou-
pled with limited TOC space means that knowledge about data type (such as precision
information) has to be kept outside the data manager. This forces processor developers to
write many specialized utilities. It also makes movement of datasets between heterogenous
computers a cumbersome operation.

Weak typing. Length information about numeric records is expressed in machine words.
Processing multiword items such as double-precision and complex data leads to awkward
interface calls.

Context Sensitivity. The meaning of every piece of data is strictly determined by position.
For homogenous structures such as rectangular matrices and vectors, this feature is irrele-
vant. But for heterogenous datasets, positional sensitivity can be an invitation to disaster.
Just displace an item one slot, and watch a program network collapse.

I

4-9

~

Section 4: INDEXED RECORDS

$4.3 INDEXED RECORD OPERATIONS

This section summarizes the basic operations on positional datasets. The GAL-DBM entry
points named here are discussed in $57-8.

Append

A positional dataset is extended by one record. This takes three steps:

(a) If the dataset sequence number is unknown, find the dataset through LMFIND ($7.5).

(b) Position to end of the dataset through GMFEND or LMFEWD ($8.2).

(c) Write record through GMTRAN or GMTRAC (58.6).

Potential problems: lack of space to receive record. This can be checked before step (c)
by testing the return of LMFEND against the record size. If there is not enough space, copy
the dataset to the end of the library, then repeat steps (a) through (c).

Find

Step (a) is as above. Then position to desired record through GMFIRE or LMFIRE ($8.3).
The latter entry returns the record size, if it exists.

Read

Perform a find-record operation through LMFIIID. If the record exists, ~riove it to main
storage through GMTRAN or GMTRAC (58.6).

I

I

I Rewrite

Perform a find-record operation, as in the read-record case. After checking size if necessary,
follow with write-in-place through GMTRAlI or GMTRAC ($8.6) and the contents are replaced.

4-10

Named Records

5--1

Sectlon 5: NAMED RECORDS

$5.1 NOMINAL DATASETS

Record Identification

A named record is identified by a name rather than by position. The record name consists
of two components: a symbolic key and a cycle, separated by a period. For example:

E D N A . 345

Here EDNA is the record key and 346 is the record cycle.

The key is a string of up to 12 characters. Legal characters are exactly those accepted
for dataset keys (§3.1). The cycle is a nonnegative integer in the range 0 through 99999.

If the cycle is zero, it may be omitted. Thus

L I N D A .O
L I N D A

are the same thing.

All items in a named record should have the same datatype. Across the GAL-
DBM/user-program interface, the datatype is defined by the ezternal one-character codes
listed in Table 5.1. Within the database, the internal integer code specified by the NIFTY7
standard is stored. No provision is made for the type LOGICAL, which is a FORTRAN
anachronism. The “unknown” type is returned to the user program in multiple-record
retrieval operations if accessed records have different types.

Lengths of named records are expressed in logical units, i . e . , by item count. For
example, the length of a named record consisting of 200 double-precision items (external
type D) is 200, rather than 400 words as it would be for an indexed record. Table 5.1
correlates external type codes to physical storage units.

Advantages and Disadvantages

Nominal datasets offer the following operat,ional advanhges over positional ones:

1. Any combination of record lengt,hs can be used, imd will be correct,ly handled by
the data manager. The constraints noted in 54.2 for DAL-conforming and GAL-
conforming datasets do not apply.

2. Records may be defined in any order, as their relative position has no significance.

3. Nominal datasets may be extended with new records at any time (unless the dataset
is locked or deleted) because the records need not be physically contiguous. A new
record is simply stored at the end of the library, and a link to it placed in the Record
Access Table.

5-2


~~~ 

~ ~ 

$5.1 NOMINAL DATASETS 

Table 5.1. Datatype Codes and Storage Units for Named Records 

Datatype of record items External NIFTY7 Storage Units p e r  
code rem&.tem 

Integer I 0 1 word 

Single-precision floating-point S 1 1 word 

Double-precision floating-point D 2 2 words 

Single-precision complex C 3 2 words 

Character A 5 1 character 

Mixed M 1 word - 

- Unknown U 1 word 

5-3 



Section 5: NAMED RECORDS 

4. The record datatype is maintained by the manager. This simplifies context-directed 
display operations, automatic type conversion, and moving data between different 
computers. 

I 5 .  The use of logical lengths leads to more readable coding. 

I 6. The record-transmission interface is cleaner, and yet far more powerful. For example, 
many names can be made to point to the same record, which elegantly takes care of 
things like repeated element stiffnesses in finite element analysis. 

These are certainly attractive features, but they are not without cost. The superior flexi- 
bility of named records is paid for in terms of additional disk storage (8 words per record 
in the worst case), and additional disk accesses incurred in searching the Record Access 
Table. These overhead costs can be considerably reduced, however, through the use of 
record groups and tables, as explained in the following subsections. 

i 

~ 

Record Groups 

Many scientific data structures involve regular record occurrences. More precisely, records 
of equal length and type. In such cases, the records may be grouped under a common key 
to form a Record  G r o u p  or G r o u p  for short. 

A record group is identified by a symbolic key and a cyc le  range. Example: 

ELLEN.66:145 

Here ELLEN is the record-group key whereas 66: 145 specifies the cycle range; 66 is called 
the low c y c l e  while 145 is the high c y c l e .  The example Group contains 145 - 66 + 1 = 80 

length would be 960 items. 

I records of identical size and type. If each record contains, say, 12 items, the total Group 

If the low and high cycles coincide, the record group reduces to an ordinary named 
record. Thus 

LORA. 4 : 4 
LORA . 4  

represent the same thing. 

Individual records within a Group may be accessed as one ordinary record. Thus, for 
ELLEN .66: 145, 

ELLEN. 66 
ELLEN. 88 

identifies the 1st record 
identifies the 23rd record 

Consecutive records may be accessed by specifying a cycle subrange; for example, 

5-4 



$5.1 NOMINAL DATASETS 

ELLEN.76:86 

specifies records 11 through 20 (inclusive) of ELLEN. 66 : 145. 

Why grouping? It offers potentially huge savings in storage and access overhead. A Group 
of n records occupies only one entry in the Record Access Table, rather than n entries. A 
specific case is discussed later in this Section. 

Tables: Basic Concepts 

A table is a two-dimensional, matrix-like arrangement of data. The following simple ex- 
ample will be used to illustrate basic concepts: 

NODE X-COOR Y-COOR 2-COOR 
nl 5 1  Yl z1 

n2 5 2  Y2 z2 

n 3  5 3  Y3 23 

n4 54 Y4 2 4  

n5 55 Y5 25 

50 YG ZG 

The meaning of this table would be obvious to a finite-clement or finite-difference developer, 
but is not relevant to the ensuing discussion. Much of the terminology that follows comes 
from the theory of relational databases, in which tables play a fundamental role. 

Columns of a table are called attributes. Each column is identified by a unique attribute 
k e y .  In the example table, the attribute keys are NODE, X-COOR, Y-COOR and 2-COOR. Matrix 
rows are the table entries. 

The order in which columns appear is irrelevant. For example, the following table is 
equivalent to the previous one: 

Y -COOR NODE X-COOR 2-COOR 
Yl nl 51 21 

Y2 n 2  5 2  22 

Y3 n 3 5 3  23 

Y4 n4 54 24  

Y5 n5 55 25  

YO nG XG 26 

Incidentally, this shows that tables and matrices are not equivalent. Permuting columns 
of a matrix produces a different matrix. 

REMARK 5.1 

A normalized table is a table in which: (a) each table entry is atomic (a nondecomposable item), and 
(b) no two rows are identical. Normalized tables are extremely important in relational database 

5-5 



Section 5: NAMED RECORDS 

theory, where they are called relations. Rows of a riormitlized table are called tuples (pronounced 
to rhyme with couples) in relational database literature. 

GAL-DBM Tables 

The concept of Table in GAL-DBM is quite general and is not restricted to  normalized 
tables (Remark 5.1). A Table (with capital T) is a two-dimensional arrangement 01 named 
records that meets the following requirements: 

1. Column-aligned records have identical size and datatype. 

2. Column-aligned records are identified by the attribute key as a common record key. 

3. 

For example, suppose that the xi, y; and Zi entries of the example table are merged into 
3-item records, and the resulting attribute called XYZ-COOR: 

Rows are identified by the row index used as a record cycle. 

This table is a valid GAL-DBM Table, although no longer a normalized one. Now 
XYZ-COOR.6 means the triple (25, y5, 25). 

REMARK 5.2 

If each record component reduces to one item, and row duplications are precluded, an GAL-DBM 
Table reduces to a Normalized Table. From this it follows that GAL-DBM is suitable as an 
archival system for ordinary relational data managers. But of course it is not restricted to such a 
provincial function. 

Table Representation with Record Groups 

The definition of GAL-nnhl Table suggests immcdia t~ ly  tha t  each Tahlc column he 
identified as a record group. Because of the row-identification rule, the cycle range of 
these Groups must be the same. This motivates the following (indirect) definition. 

A set of record groups with identical c y c l e  range and which resides in the same nominal 
dataset may be logically referenced as a Table whose at tribute keys are the Group keys. 
Thus, to represent the example table of 54.4.4, define the four Groups: 

NODE. 1 :6 
X-COOR.l:6 
Y-COOR.1:6 
Z-COOR.i:6 

5-6 



§5.1 NOMINAL DATASETS 

A segment of a Table is specified by concatenating record keys with the ampersand oper- 
ator, followed by the row range. Thus 

c 

NODE&X-COOR&Z-COOR.2:4 

specifies the following segment of the example Table: 

NODE X-COOR 2-COOR 
n2 5 2  2 2  

n3 5 3  23 

n4 x4 24  

The name 

NODE&X-COOR&Y-COOR&Z-COOR.3 

identifies the 3rd row. Finally, 

NODE&X-COOR&Y-COOR&Z-COOR.l:6 

identifies the complete Table. This naming convention is primarily used when an existing 
Table is accessed for GET and PRINT operations. 

Traneposed Tables 

A table whose attributes are stored row-wise is called a transposed tuble. The transposed 
form of the example table above is 

A column of a transposed table is a data aggregate sometimes called a packet in the 
literature. This term has the connotation that items of different type are “bundled” by 
physical proximity. 

Storing a table in transposed form does not change its intrinsic meaning: it just looks 
different. The transposed arrangement is commonly used in FORTRAN codes to simplify 
the assembly of tables when the number of entries is highly volatile (these are sometimes 
called dynamic tables). This arrangement is a result of FORTRAN array-storage con- 
ventions: appending a column to a two-dimensional array is easier than appending rows 
(which require a change in the first array dimension). 

To save a transposed table as an GAL-DBM Table, rows are made into Record Groups. 
Inasmuch as row items are not contiguous in main storage, an increment specification has 

- 
T 

5-7 



Section 5: NAMED RECORDS 

to be given to the record-group-writer routine. The same goes for reading Group items 
into non-adjacent locations. 

Implementation Considerations 

As noted in $2.5, the Global Data Manager keeps track of named records throiigh a Record 
Access Table (RAT), which is in fact a transposed table. There is one RAT for each nominal 
dataset. The RAT structure strongly resembles that of the Table of Contents (TOC):  it 
is partitioned into segments with a short segment-address header a t  the front of the first 
segment. 

When a new nominal dataset is opened, the RAT header area and the first RAT 
segment are allocated and initialized. As records are defined, they are allocated RAT 
entries called packets. Once a RAT segment is filled, a new segment is allocated a t  the end 
of the library, initialized, and its address placed in the RAT header. 

The Record Access Packet contains the following information: key, low and high cycle 
(these being coincident for an ordinary record), datatype, device address, logical length, 
physical offset, and row dimension. The offset item is only used in Groups and Tables 
to calculate the location of member records. The row dimension is only used for named 
records that are declared as rectangular matrices. 

The mechanics of record accessing can be illustrated with a simple example. Ordinary 
record EDNA.65 is requested, EDNA not being a Group key. To find a record, the Data 
Manager has, in principle, to scan the entire RAT. If any RAT segments for the owner 
dataset happen to be in the RAT Buffer Pool, those are searched first. If not found, RAT 
segments are brought to main storage in chain-like order, and searched. 

Now suppose that the dataset under question contains 3200 ordinary records. If the 
record being searched for is in the RAT and access requests are randomly placed, 1600 
RAT entries will have to be examined on the average, and 100 RAT segments searched. 
This process can add up to a lot of disk accesses. Also note that the 3200 RAT entries 
take up 3200 x 8 = 25600 words of storage (200 disk blocks on a VAX), which is not a 
negligible amount of storage overhead. 

Next, suppose that EDNA.  65 is part of a record group E D N A .  1 : 3200, which is the only 
thing in the dataset. The RAT will contain only one entry, and the record will be found 
on the first try, not 1600. The storage overhead will be only 128 words (one RAT segment) 
rather than 25600, a 2OO:J improvement ratio. 

This example clearly illustrates the dramatic efficiency advantages that can accrue 
from the use of record grouping. 

Record Groups vs. Indexed Records 

Since record groups are simply collections of equal-size records, a perceptive reader might 
ask: why not use indexed records and avoid the KAT overhead completely? 

If a dataset is to contain simply one Group, the ansuer is that it does not make much 
difference, and if you are desperate for maximum efficiencj-, a positional organization might 

5-8 



55.1 NOMINAL DATASETS 

c 

as well be chosen. However, the occurrence of any of the following factors tilts the balance 
toward a nominal organization: 

1. The dataset is to contain several Groups, possibly intermixed with ordinary records 
(e.g., control records). 

2. Full data  self-description is important, for example if the dataset is to be moved to 
another computer. 

3. The final extent of the dataset is not known in advance. 

The last factor is of considerable importance in highly interactive programs such as gra.phic 
pre- and post-processors. Consider the following example. 

An interactive~geometry pre-processor defines sets of points identified by a user number 
(N) and three Cartesian coordinates (X, Y, and Z). The processor developer decides to  
put  all of this information into one nominal dataset with four Groups: 

N.1:n. X . l : n ,  Y . l : n ,  Z.1:n 

in which n denotes the number of points defined by the user. The trouble is, n is not 
known in advance. The developer decides to split these Groups into groups of 100 records 
each. Thus a t  the start of the interactive session, the four Croups 

N.1:100, X.1:100, Y . l : l O O ,  Z . 1 : i O O  

are defined and initialized. When the user defines the 101-th point, four more groups are 
defined: 

N.101:200, x.101:200, Y.l01:200, z.101:200 

and so on. The fact that nominal dataset expansion is trivial, regardless of what other 
database transactions may have occurred in the interim, makes named records particularly 
attractive. 

Note also that each record consists of only one item. If record grouping is not used, 
the overhead would be intolerable, e.g., 6400 words for 200 sampling points! With record 
grouping, the overhead is only  64 words for 200 points, whicli is q u i t e  reasonable. 

5 -9 



6 
c Library 

Operations 

6-1 



Section 6: LIBRARY OPERATIONS 

§6.1 GENERAL DESCRIPTION 

Four GAL-DBM operations: open library, close library, flush library and pack library, 
apply to a data library as a whole ( i . e . ,  are not concerned with individual datasets). 
Associated entry points are alphabetically ordered in this Section by the last four letters 
of the entry point name. A summary list is provided in Table 6.1. 

Most programmers should be familiar with the first two operations. Open makes the 
library device (resident on a disk file or main storage) available for processing and performs 
various initializations. Close terminates library processing and releases associated storage 
resources. 

Flush is a more specialized operation: it forces modified library-table, core-resident 
buffers to be written to the disk-resident library file. This operation is a precautionary 
measure against abnormal run terminations, because a Close operation on normal termi- 
nation automatically flushes all buffers. 

Finally, pack physically eliminates all deleted datasets from a library. This operation 
is the only GAL-DBM operation that may change dataset sequence numbers. Accordingly, 
it should be used with extreme caution if performed by a running program that assumes 
invariance of sequence numbers. 

REMARK 6.1 

Any user-program subroutine that. references one of the following entry points should first identify 
itself by calling GMUSER as explained in $14.4. This  information is used by the central error 
management routine of NICEDMS for traceback prints. 

6-2 



$6.1 GENERAL DESCRIPTION 

Table 6.1 Entry Points for Library File Operations 

Ope rat ion Entry Arguments See 
Point 

Close library CMCLOS LDI, 0 ,  TRACE g6.2 

Flush library CMFLUB LDI. 0, TRACE $6.3 

Open library GMOPEN LDI, EDNAME, DDPARS, LBFORM, TRACE $6.4 
LMOPEN KEY, 0. EDNAME, LIMIT, TRACE $6.4 

Pack library CMPACK LDI, 0 ,  TRACE $6.5 

6-3 



Section 6: LIBRARY OPERATIONS 

$6.2 CLOSE LIBRARY: GMCLOS 

This operation breaks the connection between a Logical Device Index (LDI) and the data  
library. The storage resources are released to the operating system, and cease to exist if 
the library device was of scratch type. 

FORTRAN Reference 

Calling Sequence 

I CALL GMCLOS ( L D I ,  0. TRACE) I 

Input Arguments 

LD I If > 0, Logical Device Index of library device to be closed. If this LDI is 
not active, no operation is performed. 

If zero, close all open libraries. 
L D I  < 0 means conditional close. If the “NICE macroprocessor” fla.g 
has been set to on using GMACRO (510.2), the close request is ignored, 
but the flush is performed. Otherwise device I L D I  I is closed. 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 6.2 

A nonzero second argument is used in internal calls. 

REMARK 6.3 

If the library resides on a permanent disk file, CMCLOS flushes its core-resident buffers by calling 
GMFLUB (s6.3) before closing the file. 

EXAMPLE 6.1 

I This statement closes the library connected to Logical Device Index 7 

EXAMPLE 6.2 

CALL GMCLOS (0, 0, 1800) 

This statement closes all open libraries. 

6-4 



$6.2 CLOSE LIBRARY: GMCLOS 

Directive Reference 

If ldi is specified, this directive closes the library attached to Logical Device Index LDI. If 
omitted, zero is assumed and all active libraries are closed. A negative ldi has the same 
interpretation as in the FORTRAN reference. 

EXAMPLE 6.3 

CALL CLPUT ( ’  *CL ’ 1  

This message causes all active libraries to be closed. 

Close Message 

The DMGASP close service (see ref. 2, §3)  writes an informative message on the bulk-print 
file. For an auxiliary-storage device, the format is typified by the example 

CDM> CLOSE, LDI: 8, File: RES.GAL 

which is self-explanatory. 

REMARK 6.4 

As in the case of the OPEN message ($6.4), the CLOSE message i s  written out, before t-he service is 
actually performed, and an error diagnostic may conceivably follow. However, close-file errors are 
comparatively rare. 

REMARK 6.5 

On Univac, the message format for a Block I /O device is different,: it will show the @FREE image 
submitted to the Exec-1100 operating system. For FORTRAN 1/0 devices, the message has the 
standard form shown above. 

REMARK 6.6 

In the case of a conditional close, no message appears if the operation is skipped. 

0 

REMARK 6.7 

Open and close messages may be altogether suppressed by calling GMSOCM (810.9). I 

6-5 



Section 6: LIBRARY OPERATIONS 

§0.3 FLUSH LIBRARY: GMFLUB 

This operation forces a new or modified library to be properly configured, meaning that 
the Library Header, Table Of Contents, and Record Access Tables stored in the library 
file reflects the current library state. To achieve conformity, CMFLUB scans the TOC and 
RAT Page Buffer Pools, and writes altered pages to the library device. The library is not 
closed. 

FORTRAN Reference 

Calling sequence 

I CALL GMFLUB (LDI, 0, TRACE) I 

Input Arguments 

LD I If LDI > 0, Logical Device Index of library device to be flushed. 
If L D I  = 0, all open libraries are flushed. 

TRACE A posit ive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 6.8 

A nonzero second argument is reserved for internal calls. 

REMARK 6.9 

No operation is performed if the library has not been written on since the last GMFLUB call, or the 
library-open operatioil, whichever occurred last. 

REMARK 6.10 

If the library resides on a scratch file, or on a core device, the flush operation is ignored. 

EXAMPLE 6.4 

I CALL GMFLUB (8, 0, 1600) 

This statement flushes the library connected to Logical Device Index 8. 

EXAMPLE 6.5 

CALL GMFLUB (0. 0, 1600) 

This statement flushes all open libraries. 

6-6 



$6.3 FLUSH LIBRARY: GMFLUB 

Directive Reference 

If Id: appears in the directive, CMFLUB is called to flush the library connected to that LDI. 
If omitted, all active libraries are flushed. 

6-7 



Section 6: LIBRARY OPERATIONS 

$6.4 OPEN LIBRARY: GMOPEN/LMOPEN 

This operation opens (activates, assigns, declares) a data library resident on a disk file or 
main storage, and connects it to a Logical Device Index (LDI). A library must be opened 
before any 1/0 activity is attempted on it. 

I FORTRAN Reference for GMOPEN 

Culling sequence 

CALL GMOPEN (LDI, EDNAME, DDPARS, LBFORM, TRACE) 1 
Input A rg u m e n t s 

LD I If LDI  > 0, Logical Device Index assigned to a library device. All sub- 
sequent references will be done through this LDI. Should this LDI be 
active, the old device is closed first. This interpretation applies if the 
“NICE Macroprocessor” flag defined using GMACRO ($10.2) is 0 or 1. 

If L D I  = 0 on entry, scan the Logical Device Table for an already ac- 
tive EDNAME. If found, its LDI is returned in this argument (which must 
therefore be a variable in the calling program), and the open operation 
skipped. If not found, then search DMGASP’s Logical Device Table 
(ref. 2) for the first inactive LDI, set L D I  to this value, and continue as 
in the L D I  > 0 case. 

If L D I  < 0, begin as if L D I  = 0, but if  an act,ive EDNAME is not found, set 
L D I  = I L D I  I and then proceed as in the L D I  > 0 case. The absolute 
value is returned in the argument. (Note that if I L D I  I happens to be 
active on entry, the old device will be closed first.) 

If the NICE Macroprocessor flag is 2, then L D I  > 0 is interpreted as 
L D I  < 0, i .e . ,  all opens are conditional. 

EDNAME A character string that contains the ezternnl dettice nonze described in 
s2.7 of ref. 2. This textstring must be supplied left-adjusted and blank 
filled. The natne is assumed to be ferniinated by the f i r s t  occurrence of 
a blank character, or by the implied leiigth of EDNAME, whichever occurs 
first. The reader is referred to 552.7.1-2.7.3 of ref. 2 as regards legal 
device names for specific computers. 

If a blank value is specified for this argument ( ; . e . ,  EDMAME = ’ ’), a 
default name is selected following the rules set forth in Table 2.8 of ref. 2. 

. 

DDPARS A four-word int,eger array that supplies the device descriptor parameters 
discussed in $2.5 of ref. 2. 

6-8 



$6.4 OPEN LIBRARY: GMOPEN/LMOPEN 

DDPARS(1) = TYPEX: device type index: an integer in the range 0 
through 6. These are listed in Table 6.2, which reproduces Table 2.1 
of ref 2. For the distinction between 3 and 4,  see Table 2.2 of ref. 2. 

DDPARS(2) OPTX: device options index: an integer in the range -6 
through 12. The most useful ones are listed in Table 6.3, which repro- 
duces Table 2.3 of ref. 2. 

DDPARS(3) = LIMIT: device capacity limit in words if a new or scratch 
device. If zero, the default size specified in Table 2.6 of ref. 2 is assumed. 

For a core-resident library (TYPEX = 6), LIMIT is the effective blank- 
common length allocated, starting at the offset prescribed in DDPARS(4). 

DDPARS(4) = XPRU for an auxiliary storage device TYPEX < 4, or BCOFF 
for a core (blank-common-resident) device (TYPEX = 6). 

For an auxiliary storage device: 

XPRU > 0: external PRU size in words. A value greater than 1 is only 
useful for DAL files, which are sector-addressable. 

XPRU = 0: select XPRU = 1 (word addressing). 

XPRU = -1: select XPRU = 1 atid do Paged 1/0 to this device if a Page 
Buffer Pool (PBP) has been previously declared using GMPOOL (510.7). 
If no PBP has been declared, XPRU = -1 is the same as 0 or 1. 

In summary: For GAL files, select either -1 if you want a Paged 1/0 
device, or 0 if you do not. For DAL files, set XPRU to 28 on Univac, 32 
on VAX or IBM, 64 on CDC Cyber. 

For a core device, BCOFF is the blank-common offset in words of the 
device storage allocation. If BCOFF = 0, the device allocation is to start 

at the first word in blank common. For these devices, XPRU = 1 is 
implied. 

LBFORM A two-word integer array specifying the library format when opening a 
NEW or SCRATCH device, as set forth in Table 6.4. For additional 
details, see Table 3.1. 

This argument is ignored if opening an  existing library, as GAL-DBM 
can sense the format by scaririiiig its header. 

TRACE A positioe integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

6-9 



Sectlon 6: LIBRARY OPERATIONS 

Table 6.2 The Device Type Index (TYPEX) 

. _. -_ ______. TYPEX Deoice t y p e  

0 Block 1/0 on disk 

1 Reserved for future use 

2 Reserved for future use 

3 9 4  FORTRAN direct access 

5 “Core device” in blank common 

Table 6.3 The Device Options Index (OPTX) 

OPTX Optzons - 

0 Open scratch device 

3 Open existing device as read-only 

4 Open existing device allowing writes 

6 Open new device and cat,alog as 
permanent file (public on Univac) 

-5 Same as OPTX = 3 if file exists, else same as OPTX = 6 

-6 Same as OPTX = 4 if file exists, else same as OPTX = 6 

6-10 



$6.4 OPEN LISRARY: GMOPEN/LMOPEN 

Table 6.4 The Library Format Array LDFORM 
- 

_ _ - - ~ - -  LBFORM Lib j o  t m Features 

0, 0 GAL80 Holds positional datasets 
0,  1 GAL82 Holds nominal datasets 
1, 0 DALPRO Compatible with DALPRO, SPAR 



Section 6: LIBRARY OPERATIONS 

FORTRAN Reference for LMOPEN 

LMOPEN is a variant of GMOPEN that has a more human-engineered calling sequence. It is 
equivalent to a call to GMOPEN with LDI = 0. 

Calling Sequence 

Input arguments 

KEY 

EDNAME 

LIMIT 

TRACE 

Function value 

LMOPEN 

EXAMPLE 6.6 

I LDI = LMOPEN (KEY, 0 ,  EDNAME, L I M I T ,  TRACE) I 

A character string that specifies, in  symbolic form, those attributes 
conveyed by arguments DDPARS and LBFORM in  GMOPEN. It consists 
of a mainkey optionally followed by qualifiers. For example: KEY = 
'NEW/DAL '; here NEW is the mainkey while DAL is a qualifier. A list of 
valid mainkeys and qualifiers appears in Table 6.5. 

External device name, as for GMOPEN. 

Device capacity limit in words if opening a new or scratch device (same 
as DDPARS (3) f o r  GMOPEN). 

Same as for GMOPEN. 

Returns the assigned LDI if open operation was successful. The pro- 
cedure followed is identical to that followed by GMOPEN when argument 
LDI is zero on entry. 

Create a GAL80 library to reside on permanent file TEXT*LIBRARY (a Univac file name) and connect 
it to Logical Device Index 3 using the default LIMIT: 

INTEGER DDP(4), LTYP(2) 
DATA DDP /0,6,0,0/, LTYP /O,O/ 

CALL GMOPEN (3, 'TEXT*LIBRARY ' ,  DDP, LTYP, 2500) 

Note the blank character terminator after the file name. 

6-12 



~~- ~ - ~~ 
~ 

56.4 OPEN LIBRARY: G M O P E N / L M O P E N  

Table 6.5 KEY Argument (Mainkeys and Qualifiers) for LMOPEN 

Mainkey Root Effect 

NEW N Open new library device and catalog as permanent 
OLD 0 Open existing library device allowing writes 
ROLD R Open existing library device as read-only 
SCR S Open scratch library device 
COLD C Open OLD if device exists, else NEW 
none COLD assumed unless BC qualifier given in which case SCR 

Qualifier Root Valid for Eflect 
mainke ys 

BC 
BIO 

DAL 
F1 
F2 
GAL80 
GAL82 
PI0 

BC 
B I  

D 
F1 
F2 

GAL80 
GAL82 

P 

SCR 
a l l  

NEW, SCR, COLD 
a l l  
a l l  
HEW. SCR 
NEW, SCR 
all h u t  SCR/BC 

Blank-common device, with BCOFF = 0 
Block 1 /0  device (default if 
available, else default is Fl) 
Create DAL libform 
FORTRAN 1/0 device with TYPEX=3 
FORTRAN I/O device with TYPEX=4 
Create GAL80 lihform 
Create GAL82 libform (default) 
Paged 1/0 device (default: Unpaged) 

6-13 



Sectlon 6: LIBRARY OPERATIONS 

EXAMPLE 6.7 

Repeat the above example with LMOPEN. 

LDI = LMOPEM ( 'NEW/GAL80 ' , 0, 'TEXT*LIBRARY ' , 0, 2600) 

In this case the LDI is picked by GAL-DBM, and will not necessarily be 3. 

Directive Reference 

This directive is described in detail in ref. 6. 

Open Message 

When a library file is opened, an  informative message is normally written by the 1/0 
Manager to the bulk-print file. For a library resident on auxiliary storage, the message 
format is typified by the example 

<DM> OPEN, L D I :  8, File: RES.GAL, Attr: Block I / O ,  NEW, Paged 

which is largely self-explanatory. The message above is for a Paged Block 1/0 device, 
created on permanent file RES. GAL (a VAX file name) and which will be referenced through 
LDI number 8. For a FORTRAN 1 / 0  device, the logical unit number will be shown before 
the Attributes text. 

The open message for a core-resident library is more concise. For example, 

<DM> OPEN, L D I :  12 ,  BC( 30001: 75000) 

This message says that Logical Device Index 12 will point to  a core device that occupies 
word locations 30001 through 75000 of blank common. No device name is given. 

REMARK 6.11 

The message is written out j u s t  before the open request is submitted to either the operating system 
or the FORTRAN 1/0 library. Thus, the appearance of the message does not necessarily mean 
that the operation was successful. If an error condition is detected, a diagnostic will immediately 
follow (assuming, of course, that the error-file unit is the same as the bulk-print-file unit). 

REMARK 6.12 

On the Univac version, the message given for Block I/O devices has a different format. It is the 
image of the QASG request submitted to the Exec-1100 system, followed immediately by the 
image of the OUSE request that links the external and internal file names. For FORTRAN 1/0 
devices, the message has the standard format shown above. 

8-14 



96.4 OPEN LIBRARY: GMOPEN/LMOPEN 

REMARK 6.13 

If the case of a conditional open (LDI <_ 0), no message appears if the operation is skipped because 
EDNAME is already open. Otherwise the message will display the actual LUI chosen by the 1/0 
Manager DMGASP. 

REMARK 6.14 

Some NICE programmers view these messages as nuisances, especially in highly int,era.ctive graphic 
processors when the bulk-print-file unit is assigned to the screen. The messages may be suppressed 
(forever or temporarily, as desired), by calling entry point GMSOCM ($10.9). 

8-15 



Section 6: LIBRARY OPERATIONS 

$6.5 PACK LIBRARY: GMPACK 

This operation compacts a data library in situ by physically removing all deleted datasets. 
The sequence number of active datasets may change as a result of this operation. 

FORTRAN Reference 

Calling sequence 

CALL GMPACK (LDI, 0. TRACE) 

Input Arguments 

LDI 

TRACE 

Logical Device Index of library device to be packed. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 6.15 

The second argument is presently a dummy parameter. 

REMARK 6.16 

The present implementation of the pack operation is primitive. A scratch library file is opened, 
and all active datasets copied to it; then the contents of the  original library arc replaced by those 
of the scratch library, which is closed. 

EXAMPLE 6.8 

Pack library 3 in place. 

CALL GMPACK ( 3 ,  0, 1600) 

Directive Reference 

I*PACK Idi I 
where Ida is the Logical Device index of the library to be packed. 

6-16 



7 
Basic Dataset 

Operations 

7-1 



Sectlon 7: BASIC DATASET OPERATIONS 

$7.1 GENERAL DESCRIPTION 

This section describes basic operations that affect one or more datasets identified by name 
or sequence number, and that do not depend on the record infrastructure. Associated 
entry points are alphabetically ordered by the last four letters of the entry point name 
(Le., common roots GM and LM are disregarded). A summary entry point list is provided 
in Table 7.1. 

This Section does not address the following subjects: 

1 

1. Operations at  the record level (covered in 858-9). 

2. Auxiliary operations such as building dataset names (covered in 510). 

3. Information-retrieval entry points (covered in 5 11). 

4. Copy operations (covered in $12). 

REMARK 7.1 

Any user-program subroutine that references one of the entry points listed in Table 7.1 should 
first identify itself by calling GMUSER as explained in $14.4. This information is used by the central 
error management routine of NICEDMS for traceback prints. 

7-2 



$7.1 GENERAL DESCRIPTION 

Table 7.1 Entry Points for Basic Dataset Operations 

Ope rat ion Entry Arguments See 
Point 

Globally match name CMATCH L D I  , DSNAME, LOOK , LIST , M L I S T  , $7.2 
K L I S T .  TRACE 

Delete CMDELD O P L ,  L D I ,  DSNAME, I D S N .  T R A C E  57.3 

Enable CMEMAD O P L ,  L D I ,  DSNAME, I D S N ,  T R A C E  57.4 

Find first occurrence L M F I N D  L D I  , DSNAME, T R A C E  57.5 

Find next occurrence L M F I N X  O P L .  L D I .  DSMAME, I D S N O ,  T R A C E  $7.6 

Get name GMGENT L D I ,  DSNAME, I D S N ,  M R ,  T R A C E  $7.7 

Directory C M L I N T  L D I ,  DSNAME, L O P T ,  T R A C E  57.8 
C M L I S T  L D I ,  I D S N 1 ,  I D S N 2 ,  L O P T .  T R A C E  

Set lock code GMLOCK L D I ,  IDSN. L O C K ,  T R A C E  57.9 

Open GMOPED O P L .  L D I ,  DSIJAME, IDSN, MR. T R A C E  57.10 

Put name CMPUNT L D I ,  DSNAME,  I D S N ,  M R ,  T R A C E  57.1 1 
LMPUNT L D I .  DSNAME, TRACE 

Reserve space CMREDS L D I  , IDS11 , I ICHDES , NWRES, T R A C E  57.12 

Rename CMREND O P L ,  L D I ,  DSIIAM1. I D S l l ,  DSNAM2,  T R A C E  $7.13 

Set datatype code CMTYPE L D I ,  I D S F I ,  T Y P E ,  TRACE $7.14 

7-3 



Section 7: BASIC DATASET OPERATIONS 

$7.2 GLOBALLY MATCH DATASET NAME: GMATCH 

Entry point GMATCH scans the complete Table of Contents of a data library for datasets 
that  match a given name, and returns a list of their sequence numbers. The given name 
usually has masking and/or cycle-range specifications. 

FORTRAN Reference 

Calling sequence 

[ CALL GMATCH (LDI, DSNAME, LOOK, LIST, MLIST, KLIST. TRACE) I 

Input arguments 

LD I 

DSNAME 

Logical Device Index of library device. 

Dataset name to be matched. Generally contains mask or cycle-range 
specificat ioris. 

LOOK Search qualifier : 

1 
-1 

0 Look for active and deleted datasets. 1 

Look for active datasets only. 

Look for deleted datasets only. 

LIST An integer array dimensioned MLIST or larger, that  is to receive the 
sequence numbers of matched datasets. 

MLIST Maximum number of dataset sequence numbers that ma.y be placed 
in LIST. Usually equal to the dimension of array LIST in the calling 
program. 

TRACE A positive integer used as identifying label in error tracehack prints. 
Do not use a zero or negative valuc here; these values are reserved for 
internal use. 

Output Arguments 

LIST Receives KLIST sequence numbers of matched datasets. 

KLIST Count of sequence numbers placed in LIST. (May be zero, but cannot 
exceed MLIST). 

REMARK 7.2 I 

I No diagnostic is given if not a single match is made (KLIST = 0 ) .  

I 7- 4 



57.2 GLOBALLY MATCH DATASET NAME: GMATCH 

REMARK 7.3 

The Table of Contents is searched from the beginning (sequence nurnber 1).  Thus entries placed 
in array LIST will be always in strictly ascending order. 

EXAMPLE 7.1 

Find all datasets (up to 100) with mainkey STRUCTURE in library 3: 

CALL GMATCH (3. 'STRUCTURE. * ' , 0, LIST, 100. KLIST, 2600) 

EXAMPLE 7.2 

Find all deleted datasets (up to 200) in library 4: 

CALL GMATCH (4. ' * . *  ' ,  -1. LIST, 200. KLIST. 2500) 

Directive Reference 

None. 

7-5 



Section 7: BASIC DATASET OPERATIONS 

57.3 DELETE DATASET: GMDELD 

Entry point CMDELD marks one or more datasets as deleted. The dataset, qwrification may 
be by sequence number or by name. In the latter case, the name argument often contains 
key-masking or cycle-range specifications. 

F 0 RTR AN Refer en c e 

Calling sequence 

I CALL GMDELD (OPL, LDI, DSI.IAME, IDSN. TRACE) I 

Input arguments 

OPL Option letters string. Presently: 

W Issue a warning diagnostic if a named specification does not match 
any existing active dataset. 

LD I Logical Device Index of library device. 

DSNAME If nonblank, name that controls the deletion process. If less than 40 
characters in length (28 for GAL80 libraries), it should be terminated by 
a trailing blank. Masking and cycle-range specifications are permitted. 

IDSN If DSNAME is blank, sequence number of dataset to be deleted. 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.4 

GMDELD can delete by S C ~ I I C I ~ C C ~  and by I I R I I ~ ( ’ .  

REMARK 7.5 

If opt,ion lett.er W is not, given, no warning diagnostic is given if no dat i iwt  name i s  matdied 
by argument DSNAME, or if the lock-code value of any such dataset precludes deletion (see next 
Remark). 

REMARK 7.6 

Deletion is precluded if the dataset lock code is 2 or higher (see Table 3.2). 

EXAMPLE 7.3 

Delete dataset STAR. SHIP in library 14: 

CALL GMDELD ( ’  ’, 14 ,  ’STAR.SHIP ’ ,  0 ,  1700) 

7 -6 



$7.3 D E L E T E  DATASET: G M D E L D  

EXAMPLE 7.4 

Delete from library 14 all datasets whose key extension ends with X, and issue a warning if none 
exist: 

CALL GMDELD ('W', 14, ' : k . * X . *  ' ,  0 ,  1700) 

EXAMPLE 7.5 

Delete from library 7 all datasets of the form RESPOI1SE.VECTOR. cycle1  . O  .O, except for the one 
with highest cycle1 (this is analogous to VAX/VMS's PURGE command): 

CALL GMDELD ( '  ', 7. 'RESPOI1SE.VECTOR.L:H-1 ' ,  0 ,  1700) 

EXAMPLE 7.6 

Delete dataset at sequence 68 in library 11: 

CALL GMDELD ( '  ' ,  11, ' ' ,  68, 2660) 

Directive Reference 

To delete by sequence range: 

*DELETE ldi, i d ~ t i l : i d s n 2  

To delete by name: 

For details, see ref. 5. 

EXAMPLE 7.7  

Delete all datasets whose mainkey is SOLVE through a message: 

CALL CLPUT ( '  *DEL 3,SOLVE.* ' 1  

EXAMPLE 7 .8  

Delete all datasets in sequence range 23 through 44 through a message: 

CALL CLPUT ( '  *DEL 3,23:44 ' 1  

7-7 



Sectlon 7: BASIC DATASET OPERATIONS 

57.4 ENABLE DATASET: GMENAD 

Entry point CMENAD enables one or more datasets. The dataset identificat,ion may be by 
sequence number or by name. In the latter case, the name may contain masking characters 
and/or cycle-range specifications. 

FORTRAN Reference 

Calling sequence 

I CALL CMENAD (OPL, LDI, DSNAME. IDSM, TRACE) I 

Input arguments 

OPL 

LDI 

DSNAME 

IDSN 

TRACE 

String of option letters. Presently: 

match a t  least one existing deleted dataset. 
W Print warning message if a named dataset specification does not 

Logical Device Index of library device. 

If nonblank, name of dataset(s) to be enabled. If less than 40 characters 
in length (28 for GAL80 libraries), it should be terminated by a trailing 
blank. Masking and cycle-range specifications are allowed. 

If DSNAME is blank, sequence number of dataset to be enabled. 

If DSIJAME is nonblank, this argument is ignored. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.7 

This entry point replaces GMENAB, which was restrict,ed to enabling by sequence number. 

I REMARK 7.8 

No diagnostic is given if the dataset does not exist (sequence number is out of range) or is already 
enabled. 

REMARK 7.9 

Before enabling a deleted dataset, GAL-DBhl scans the TOC to check whether there is an enabled 
dataset by the same name. If so, the latter is marked as deleted because names of enabled datasets 
must be unique. If the lock code of the already-enabled dataset precludes deletion, the operation 
aborts. 

7-8 



I f  

I 

I 4  
I 

57.4 ENABLE DATASET: GMENAD 

EXAMPLE 7.9 

Enable dataset at sequence number 162 in library 12: 

EXAMPLE 7.10 

Enable all datasets whose mainkey ends in Z in library 14: 

CALL CMENAD ( '  ' ,  14, '*Z.* ' ,  0 ,  1750) 

Directive Reference 

Enable by sequence range: 

*ENABLE ldi. idsnl[:idsn,%'] 

Enable by name: 

EXAMPLE 7.11 

CALL CLPUT ( '  *ElJAB 3,66 '1  

CALL CLPUT ( '  *ENAB 3,COME.BACK '1  

7-9 



Section 7: BASIC DATASET OPERATIONS 

57.5 FIND DATASET: LMFIND 
LMFIND is the standard entry point for finding an individual 
name. If found, the dataset sequence number is returned as 

FORTRAN Reference 

dataset in a library given its 
the function value. 

I Calling sequence 

I Input arguments 

LD I 

DSNAME 

TRACE 

Function Return 

LMFIND 

Logical Device Index of library device. 

The name of the dataset to  be located. If less than 40 characters in 
length (28 on GAL80 libraries), it must be terminated by at least one 
blank. See Remark 7.12 as regards the presence of masking characters 
or cycle ranges. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

If the name DSNAME matches that of an active dataset, its sequence 
number is returned here. Otherwise LMFIND returns zero. 

REMARK 7.10 

On successful return from this operation for a positional dataset, the library file is positioned at  
the start of record number 1 (not  at the descriptor start). This facilitates immediate retrieval of 
the first record. For a nominal dataset, the library position is unpredic.tfable. 

REMARK 7.11 

LMFIHD ignores deleted datasets. 

REMARK 7.12 

The dataset name may contain masking characters or cycle range specifications. If so, the search 
begins at the TOC start (sequence number l ) ,  and t.he first dataset matched is reported. 

REMARK 7.13 

If the dataset name does not contain masking characters or cycle range specifications, the TOC 
search is not necessarily sequential, but is affected by the pattern of paging activity in the TOC 
Buffer Pool. 

7-10 



$7.5 FIND DATASET: LMFIND 

EXAMPLE 7.12 

Search library connected to LDI = 7 for dataset CONFUCIUS. SAYS .O .O .O and return its sequence 
number in IDSN if found: 

IDSN = LMFIND (7 ,  'COI!FUCIUS.SAYS ' ,  1300) 

EXAMPLE 7.13 

If no dataset with mainkey SYSTEM is in the library with LDI = 8, jump to subroutine DEFSYS: 

IF (LMFIND ( 8 ,  'SYSTEM.* ' ,  1400) .Eq. 0) CALL DEFSYS 

Directive Reference 

~ 

I *FIND DATASET Id;, Dataset-name [/SEQ=Mucrosyrnbol] 1 

For details, see ref. 5 .  

EXAMPLE 7.14 

CALL CLPUT ('*FIlID DATASET 7,COlIFUCIUS.SAYS /SEq=IDSN ' 1  

7-1 1 



Sectlon 7: BASIC DATASET OPERATIONS 

$7.6 FIND NEXT DATASET OCCURRENCE: LMFINX 
I LMFINX is similar to LMFIND (described in the previous subsection), but it commences the 

search after a specified sequence number. It is normally used to find all datasets that 
match a masked name, as GMATCH (s7.2) does, but with a return-to-user-program after 
each match. Additionally, LMFINX can find deleted datasets. 

I FORTRAN Reference 

~ Calling sequence 

I IDSN = LMFINX (OPL, LDI, DSNAME, IDSNO, TRACE) I 
Input arguments 

OPL 
LDI 

Option letters string. Presently D means do not skip deleted datasets. 
Logical Device Index of library device. 

DSNAME The name of the dataset to be located. If less than 4 0  characters in 
length (28 on GAL80 libraries), it must be terminated by a t  least one 
blank. Generally contains masking and/or cycle-range specifications. 

IDSNO Specifies that TOC search is to begin at  sequence number (IDSNO+I). 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

Function Return 

LMF I NX If name matches that of an  active dataset, its sequence number is re- 
turned here. Otherwise LMFINX returns zero. 

Directive Reference 

None. 

7-12 



57.7 GET NAME F R O M  TOC: GMGENT 

!7.7 GET NAME FROM TOC: GMGENT 

Entry point GMGENT is the inverse of GMPUNT (57.11). Given the lilwary device LDI and 
the dataset sequence number, it returns the stored dataset name a~id a positional/nominal 
indicator. 

FORTRAN Reference 

Calling sequence 

I CALL CMCENT (LDI, DSNAME, IDSN, MR, TRACE) I 

Input arguments 

LD I Logical Device Index of library file. 

IDSN Dataset sequence number. 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

Output Arguments 

DSNAME A character string that receives the stored name of the IDSNth dataset. 
The string should have a length of 40 characters (28 for GAL80 libraries) 
or more in the calling program to avoid potential truncation. 

If IDSN is out of range, or some other error condition occurs, DSNAME is 
blanked. 

MR Returns the value of MR (Maximurn Record Access Packets) specified 
when the dataset name was installed using GMPUNT (57.11). If the dataset 
is positional, MR returns zero. 

EXAMPLE 7.15 

Access dataset at  sequence 142 of library 12, and get its name into character string DSN: 

CHARACTER*40 DSN 

CALL CMGEIIT (12, DSll, 142, M, 2300) 

7-13 



Section 7: BASIC DATASET OPERATIONS 

Directive Reference 

I *GET DATASET ldi ,  idsn [/NAME=MacrosymbolJ I 
For details, see ref. 5 .  

7-14 



$7.8 LIST DATASETS: GMLINT/GMLIST 

$7.8 LIST DATASETS: GMLINT/GMLIST 

CMLINT and GMLIST produce a list of datasets stored in the Table of Cont.ents (TOC) of a 
data  library. The list may be limited to datasets that match an  input name (GMLINT), or 
to datasets in a sequence range (GMLIST). Various list formats, controlled by option letters, 
are provided. Other formats may be added in the future. 

FORTRAN Reference for GMLINT 

Calling sequence 

ICALL GMLINT (LDI, DSMAME, LOPT, TRACE) I 

Input arguments 

LD I 
DSNAME 

Logical Device Index of library device. 

Dataset name that specifies the print range. If less than 4 0  characters in 
length (28 for GAL80 files), it should be terminated by a blank character. 
Masking and cycle-range specifications are permitted. 

An option letter that may be used to control the list format. See Table 
7.2. 

LOPT 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

FORTRAN Reference for GMLIST 

Calling sequence 

/CALL GMLIST (LDI. IDSNl, IDSIIZ, LOPT, TRACE) I 

Input arguments 

LDI Logical Device Index of library device. 

IDSNl If positive nonzero, sequence number at  which TOC print is to start .  

If zero, IDSIJI=l is assumed (first dataset). 

If negative, list the last I IDS141 I datasets in reverse order (IDS142 is then 
ignored). 

IDSN2 If positive nonzero, sequence number at  which TOC print is to stop (if 
greater than the highest sequence number, print will stop there). 

If zero, list ends at  last dataset in library. 

7-15 



Section 7: BASIC DATASET OPERATIONS 

If the effective IDSN2 happens to be less than IDSN1, their role is re- 
versed, and the TOC is listed backward. 

LOPT An option letter that may be used to control the list format. See Table 
7.2. 

TRACE A positive integer used as identifying label in error traceback prints, 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.14 

Deleted datasets that fall in the print range or match DSMAME are shown. They are flagged by  an 
asterisk immediately following the sequence number. 

EXAMPLE 7.16 

Conventional TOC print of all datasets in library 6 whose mainkey starts with ISM$: 

CALL CMLINT (6, 'ISM$*. * ' , ' ' , 1600) 

EXAMPLE 7.17 

Dated brief TOC print of the highest two first-cycles of datasets named SHELL. VELOCITY. * . 0 .O 
in library 12: 

CALL CMLIIJT (12, 'SHELL.VELOC1TY.H-1:H ' ,  'D', 1800) 

EXAMPLE 7.18 

Conventional listing of the full TOC of library 8: 

EXAMPLE 7.19 

SPAR-formatted TOC print of last 16 datasets in library 4: 

CALL GMLIST (4,  -16, 0, 'S', 2400) 

7--16 



$7.8 LIST DATASETS: GMLINT/GMLIST 

Directive Reference 

where *PRINT TOC may be abbreviated to *TOC. For details, see ref. 5, 

EXAMPLE 7.20 

CALL CLPUT ( '*TOC l , R U N . *  ' 1  

where *PRINT TOC may be abbreviated to *TOC. For details see ref. 6. 

EXAMPLE 7.21 

CALL CLPUT ( '*TOC 6 ,  -10 ' )  

7-17 



~ ~ 

Sectlon 7:  BASIC DATASET OPERATIONS 

Table 7.2 TOC List format Codes 

LOPT List format 
Argument 

blank Conventional: sequence number, date and time of 
installation, lock code, words stored, record count, 
generating processor name, type code, dataset name 

B Brief: sequence number and dataset name 

D Dated brief: sequence number, date and time of 
instaliation, dataset name 

M DALPRO “Matrix” style (DAL files only) 

P Physical: sequence number, dataset start address, 
descriptor size, first record size, extent and 
capacity (in PRUs), dataset name 

S SPAR style (DAL files only) 

7-18 



§7.9 SET LOCK CODE: GMLOCK 

57.9 SET LOCK CODE: GMLOCK 

Entry point CMLOCK is used to set or change the lock code of a dataset identified by sequence 
number. 

FORTRAN Reference 

Calling sequence 

[ CALL GMLOCK (LDI, IDSII, LOCK, TRACE) I 
Input arguments 

LD I Logical Device Index of library file. 

IDSN Dataset sequence number. 

LOCK Dataset lock code value. Refer to Table 3.2 for detailed explanation. 

TRACE A posit ive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.15 

Dataset locking is not fiilly implemented. 

REMARK 7.16 

If GMLOCK is never called, the lock code is zero. 

REMARK 7.17 

A stored code of 3 or higher can be reduced to 0 or 1 only by the processor that installed the 
dataset (see Table 3.2 for the details). If this constraint is not met, an error occurs and the 
operation aborts. 

REMARK 7.18 

GAL-DBM provides only lock-by-sequence. If you need lock-hy-name, writ.e a subroutine using 
LMF IIJX. 

EXAMPLE 7.22 

Make dataset at sequence number 142 read-only. 

CALL GMLOCK (12, 142, 1,  1900) 

Directive Reference 

None. 

7-19 



Section 7: BASIC DATASET OPERATIONS 

$7.10 OPEN DATASET: GMOPED 

The open-dataset operation is a “conditional GMPUNT”. If the dataset name is already 
the library, no operation is performed. Otherwise, the name is illstalled rising GMPUNT. 

FORTRAN Reference 

Calling sequence 

I CALL GMOPED (OPL. LDI. DSNAME. IDSN. MR. TRACE) I 

Input arguments 

OPL 
LD I 

Options letter string. Preseiitly none. Set to blank. 

Logical Device Index of library device. 

DSNAME Name of dataset t o  be installed. If less than 40 characters in length 
(28 in GAL80 libraries), it must be terminated by a blank character. 
Masking or cycle-range specifications are not permitted; if present, an 
error message will result and the operation aborts. Relative cycle spec- 
ifications, on the other hand, are allowed (and frequently used). 

MR See GMPUNT 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

Output Arguments 

IDSN If dataset already exists, scquence number of existing dataset. If dataset 
did not exist and the install operation was successful, sequence number 
assigned to new dataset. If an error occurred, it. returns zero. 

7-20 



37.11 P U T  NAME IN T O C :  GMPUNT/LMPUNT 

$7.11 PUT NAME IN TOC: GMPUNT/LMPUNT 

Before records can be stored in a new dataset, its name must be installed in the Table of 
Contents (TOC). This operation is accomplished through entry points GMPUNT and LMPUNT. 
Note that LMPUNT can only be used to  install positional datasets, while GMPUNT can install 
both positional and nominal datasets. 

FORTRAN GMPUNT Reference 

Culling sequence 

I CALL GMPUNT ( L D I ,  DSNAME, I D S N ,  M R ,  TRACE) 

Input arguments 

LDI  Logical Device Index of library device. 

DSNAME Name of dataset to be installed. If less than 4 0  characters in length 
(28 in GAL80 libraries), it must be terminated by a blank character. 
Masking or cycle-range specifications are not permitted; if present, an 
error message will result and the operation aborts. Relative cycle spec- 
ifications, on the other hand, are allowed (and frequently used). 

MR This argument is relevant only for nominal datasets, in which case 
MR > 0: MR is an upper bound on the number of Record Access Table 
entries to be used. See Remark 7.19. 

If installing a positional dataset (GAL80 library), set MR to zero. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

TRACE 

Output Arguments 

IDSN If t.he operation is successful, sequence number of new dataset, ot.herwise, 
it is zero. 

REMARK 7.19 

To come up with a value for MR, do the following. Estima1,e (1)  number of ordinary records to 
be stored, and (2) number of record groups to be stored, add the t w o  together and round up to 
the next 16-multiple. As discussed in the next rernark, the estimate can be very coarse. 

REMARK 7.20 

The value of MR is used to size up the RAT Header at one word for each 16 RAT entries. 
Accordingly, a coarse estimation is sufficient. For example, going from MR = 160 to 320 makes a 
difference of 10 words, which is not very significant. 

7-21 



Section 7: BASIC DATASET OPERATIONS 

FORTRAN LMPUNT Reference 

Function Reference 

I IDSN = LMPUNT (LDI. DSNAME. TRACE) I 

Input arguments 

The input arguments have the same meaning as for CMPUNT. Note the absence of the MR 
argument precludes the installation of nomirial datasets with LMPUNT. 

EXAMPLE 7.23 

Install positional dataset CONFUCIUS. SAYS in library 7: 

CALL GMPUNT (7, ‘CONFUCIUS. SAYS ’ , IDSN, 0, 1300) 

EXAMPLE 7.24 

Install dataset RESPOUSE .VEC. N ~9 nominal dataset name in library 11 with an MR estimate of 48 
RAT entries: 

CALL GMPUNT (11, ‘RESP0NSE.VEC.N ’ ,  IDSN, 48, 1000) 

Directive Reference 

I *PUT DATASET ldi ,  Uutaset-name [/MR=mrutl [/SEQ=Mucrosymbol] I 

For details, see ref. 5. 

EXAMPLE 7.25 

CALL CLPUT ( ’ *PUT DATA 1, lJEW. START. IJ ’ ) 

7-22 



57.12 RESERVE DATASET SPACE: GMREDS 

$7.12 RESERVE DATASET SPACE: GMREDS 

Entry point CMREDS is used to force GAL-DBM into reserving physical space for a positional 
dataset just installed using GMPUNT or LMPUNT. The operation has no meaning for nominal 
datasets. 5 .  & A  ‘ 

FORTRAN Reference 

Calling sequence 

CALL GMREDS ( L D I .  IDSM, NCHDES, MWRES, TRACE) I 

Input arguments 

LD I Logical Device Index of library device. 

IDSN Dataset sequence number ret,urned by GMPUNT or LMPUNT. 

NCHDES Number of characters to  be reserved for the descriptor record at the 
dataset start .  This space, rounded up to  the next “covering” word, is 
filled with blanks. 

If NCHDES = 0, no descriptor reservation is made. 

NWRES 

TRACE 

Number of words to be reserved for dataset proper. A negative value 
requests that. the INWRESI space be physically filled with zero words. 

If NWRES = 0, no space is reserved. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

0 u t p  ut A rg u m e tits 

NCHDES If GMREDS is not successfuI, HCHDES is set to zero. 

NWRES If CMREDS is not successful, IiWRES is set to zero. 

REMARK 7.21 

This operation is confined to positional datasets. If it is tried on a nominal library, the operation 
is ignored. 

REMARK 7.22 

CMREDS replaces function entry point LMPURS, described in the previous version of this document. 
LMPURS combined the functions of LMPUNT and CMREDS. 

7--23 



Sectlon 7:  BASIC DATASET OPERATIONS 

EXAMPLE 7.26 

Install positional dataset LOW. PROFILE .6 in library 11,  and reserve 240 characters for the descrip- 
tor and 52000 words for the dataset proper. 

CALL GMPUNT (11, 'LOW.PROFILE.6 ' ,  I D S N ,  0, 1300) 
CALL GMREDS (11, I D S N ,  240, 62000, 1400) 

Directive Reference 

None. 

7-24 



I 

$7.13 RENAME DATASET: GMREND 

$7.13 RENAME DATASET: GMREND 

Entry point GMREND changes the name of one or more datasets. The dataset specification 
may be by sequence number or by name. 

FORTRAN Reference 

Calling sequence 

I CALL GMREND (OPL. LDI. DSNAMl. IDSN. DSNAM2. TRACE) I 

Input arguments 

OPL 

LD I 

DSNAMl 

IDSN 

DSNAM2 

TRACE 

Options letter string. Presently W = print warning if DSNAMl is non-blank 
and there are no matches. 

Logical Device Index of library file. 

If non-blank, dataset name(s) to be renamed. Ignored if blank. If less 
than 40 characters in length (28 for GAL80 libraries), it must be termi- 
nated by a blank character. 

If DSNAMl is blank, sequence number of dataset whose name is to be 
changed. Else ignored. 

New dataset name. If less than 40 characters in length (28 for GAL80 
libraries) it must be terminated by a blank character. Fully masked 
components allowed. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.23 

Hefore the name is changed, (;A1,-1lDM scaris the  entire ’I’OC; for matches. Any active dataset 
whose name matches that of the new iianie arguiiicrit is deleted. 

EXAMPLE 7.27 

Rename dataset 68 in library 14 to PHOEHIX.ASH.11: 

CALL CMREIID ( ’ ’ , 14, ’ ’ , 68, ’PHOENIX. A S H . N  ’ , 1900) 

Directive Reference 

I *RENAME DATASET Idi,instz = Uataset-namw I 
For details, see ref. 5. 

7-25 



Sectlon 7: BASIC DATASET OPERATIONS 

j7.14 SET DAL-DATATYPE CODE: GMTYPE 

Entry point GMTYPE is used to set the datatype code of a DAL-conforming dataset identified 
by sequence number. 

FORTRAN Reference 

Calling sequence 

Input arguments 

LDI 

IDSN 

TYPE 

TRACE 

I CALL GMTYPE ( L D I ,  IDSN, TYPE, TRACE) I 

Logical Device Index of library file. 

Dataset sequence number. 

DAL-datatype code value (Table 4.1). 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 7.24 

Before GMTYPE is called, the datatype code of a positional dataset is zero. A nominal dataset does 
not have a type (its records do). 

REMARK 7.25 

These datatype codes are only useful for DAL-conforming datasets (54.2.1). For other positional 
datasets (e.g., GAL-conforming) a nonzero type code may be stored through GMTYPE, but it is 
innocuous. I 

REMARK 7.26 

If the dataset is of nominal type, this operatinn is ignored. 

EXAMPLE 7.28 

Identify dataset a t  sequence number 81 of library 9 as a variable-length-image text dataset (DAL- 
PRO type 5): 

CALL GMTYPE (9, 81, 5 ,  2300) 

I Directive Reference 

None. 

7-20 



8 
rr 

Indexed Record 
Operations 

8-1 



Sectlon 8: INDEXED RECORD OPERATIONS 

$8.1 GENERAL D E S C R I P T I O N  

This section covers operations for handling indexed records resident in positional datasets. 
These operations are illegal or meaningless if tried on nominal datasets. 

Presentation of indexed-record operations is alphabetically ordered by the last four 
letters of the entry point name ( i . e . ,  common roots GM and LM are disregarded). A 
summary entry point list is provided in Table 8.1. 

REMARK 8.1 

Any user-program subroutine that references one of the following entry points should first identify 
itself by calling GMUSER as explained in 514.4. This information is used by the central error 
management routine of NICEDMS for traceback prints. 



$8.1 GENERAL DESCRIPTION 

Table 8.1. Entry Points for Inctexed-Record Operations 

Ope rat ion Entry Arguments See 
Point 

I 

Find end 

Find record 

Position and 
read characters 

Position and 
read numerics 

Position and 
write characters 

Position and 
write numerics 

Print records 

Transfer characters 

Transfer numerics 

GMFEND 
LMFEND 

GMFIRE 
LMFIRE 

GMPORC 
LMPORC 

GMPORN 
LMPORN 

GMPOWC 
LMPOWC 

GMPOWI? 
LMPOWN 

CMSHOP 

GMTRAC 

GMTRAN 

LDI, IDSN, TRACE 
LDI, IDSN, TRACE 

LDI, IDSN, IREC, IOFF, TRACE 
LDI, IDSN, IREC. IOFF, TRACE 

LDI. IDSN, IREC, A ,  I I ,  IOFF, TRACE 
LDI. IDSN, IREC, A ,  M. IOFF, TRACE 

LDI, IDSN, IREC, A, I ? ,  IOFF, TRACE 
LDI, IDSEI, IREC, A, 1.1, IOFF, TRACE 

LDI, IDSI.1, IREC. A ,  N, IOFF, TRACE 
LDI, IDSEJ, IREC, A ,  N ,  IOFF, TRACE 

LDI, IDSH, IREC, A. 11, IOFF. TRACE 
LDI, IDSII, IREC, A, bJ, IOFF, TRACE 

OP, LDI, IDSM, IREC1, IREC2, 
PFORM, M, IOFF, TRACE 

OF, LDI, A. N. TRACE 

OP. LDI, A ,  N ,  TRACE 

$8.2 

$8.3 

$8.4 

$8.4 

$8.4 

$8.4 

$8.5 

$8.6 

$8.6 

8-3 



Sectlon 8: INDEXED RECORD OPERATIONS 

$8.2 FIND DATASET END: GMFEND/LMFEND 

Two entry points: CMFEND and LMFEND may be used to position the library device to the 
end of an indexed-record dataset. This operation is nornially done as a prelude to an 
append-record operation using GMTRAN o r  GMTRAC. 

GMFEND is referenced as a subroutine whereas LMFEHD is referenced as an integer fiinc- 
tion. Both take as inputs the Logical Device Index and dataset sequence niimber. LMFEND 
returns, as function value, the number of words that can be appended to the dataset. 

FORTRAN GMFEND Reference 

Calling sequence 

. 

1 CALL GMFEHD ( L D I ,  IDSH, TRACE) I 

Input arguments 

LD I Logical Device Index of library device. 

IDSN D a t  ase t sequence number . 

TRACE A positive integer used as ident.ifying label i n  error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 8.2 

On error-free return from this operation, the IDSIl”’ dataset is the act,ive dataset, and the library 
device is positioned at the dataset end. 

REMARK 8.3 

This operation works correctly for all types of indexed-record datasets, whether GAL-conforming 
or not. 

REMARK 8.4 

This operation, as well as LMFEIlD below, is illegal for nominal datasets, since t7he t,erm “dataset 
end” is then meaningless. 

REMARK 8.5 

The main use of GMFEND is t.0 make the IDSN”‘ dat,aset, the act,ive one. 

a-4 



$8.2 FIND DATASET END: GMFEND/LMFEND 

FORTRAN LMFEND Reference 

LMFEND performs exactly the same job as CMFEMD, but is referenced as an integer function: 

I MORE = LMFEND ( L D I ,  IDSN. TRACE) I 

Input urguments 

The three input arguments are identical to those of GMFEND. 

Function return 

LMFEND Number of words that can be appended to the dataset. 

A zero return value means one of three things: 

(a) the dataset cannot be expanded; 

(b) the dataset is locked as read-only (Ta.ble 3.2); or 

(c) an error was detected. 

REMARK 8.6 

LMFEND is generally preferable to GMFEND, as the example below makes plain. GMFEND should be used 
only if you are sure, beyond a reasonable doubt, that nothing can go wrong with the subsequent 
record append. 

EXAMPLE 8.1 

Append a 250-word record in array B to dataset A A A .  BBB. 3 .O .O of library 6 if there is enough 
room to do so. If there is not enough room, move the dataset to the end of the data library and 
append the record. 

1200 IDSN = LMFIND (6, 'AAA.BBB ' , 1300) 
I F  ( I D S N  . G T .  0) THE11 

I F  (LMFEND (6. I D S H .  1700) . L T .  250) THEN 
CALL GMCOPS (6, IDSII ,  6, . . . 
I F  (LMERCD(1ERR) . H E .  0) CALL ERROR ( I E R R )  
GO TO 1200 

END I F  
CALL GMTRAN ( ' W / A ' ,  6 ,  B, 250, 1500) 

END I F  

8--5 



Sectlon 8: INDEXED RECORD OPERATIONS 

58.3 FIND INDEXED RECORD: GMFIRE/LMFIRE 

GMFIRE and LMFIRE are used to position the library device to the start  of an indexed record. 
GMFIRE is called as a subroutine while LMFIRE is referenced as an integer function. 

The inputs are the Logical Device Index, dataset, sequence number, record index and 
offset from record start .  If the record exists, its size is returned by LMFIRE as function 
value. 

This operation is guaranteed to  work correctly only for DAL- and GAL-conforming 
positional datasets. (see Remark 8.9 for more details). 

FORTRAN GMFIRE Reference 

Calling sequence 

I CALL GMFIRE (LDI, IDSN, IREC, IOFF, TRACE) I 

Input arguments 
~ 

LD I 

IDSN 

IREC 

IOFF 

TRACE 

Logical Device Index of library device. 

Dataset sequence number. A zero implies the active dataset. 

The record index. IREC = 0 calls for the descriptor record. See Remark 
8.10 for the effect of an out-of-bounds IREC. 

Record-offset, argument: IOFF = 0 positions to record start. If nonzero, 
position GAL library at IOFF words from the record start. For restric- 
tions on the use of nonzero IOFF, see Remarks 8.11. 

A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negativc value here; these values are reserved for 
internal use. 

REMARK 8.7 

This operat,ion is illegal for nominal datasets. 

REMARK 8.8 

On successful return from this operation, the library device is positioned at record start if 
IOFF = 0, otherwise, at IOFF words from it. 

REMARK 8.9 

This operation works correctly only if record leiigtlis rneet, the constraints outlined in 54.2 for 
GAL-conforming datasets (which include DAL-conforming datasets as  a special case). For more 
general record-length distributions (the so-called ‘(wild datasets”), GhlFIRE will position correctly 
to records 0, 1, 2, 3, last and next-to-last, but not necessarily otherwise. As GAL-DBM tacitly 
assumes that all positional datasets are GAL-conforming, incorrect positioning is undetectable. 

8-6 



$8.3 FIND INDEXED R E C O R D :  GMFIRE/LMFIRE 

, 

REMARK 8.10 

If the record index is too large (exceeds number of stored records), the library is position to 
the dataset end, just like GMFEND (58.2). IOFF is then ignored. 

REMARK 8.11 

A nonzero IOFF should not he used for character rrwrds, because the results will generally be 
unpredictable. If you must offset, consider using GMPORC/GMPOWC ($8.4). 

REMARK 8.12 

A nonzero IOFF should not be used for DAL libraries, because t,hese have sector addressability 
and cannot “remember” word offsets. 

FORTRAN LMFIRE Reference 

LMFIRE performs exactly the same job as GMFIRE, but, is referenced as an integer function: 

I SIZE = LMFIRE (LDI, IDSlJ, IREC, IOFF. TRACE) I 

The five arguments have the same meaning as for GMFIRE. The function output is: 

LMF IRE Zero if record is not in dataset, or an error was detected. Otherwise size of 
record. Size is given i i i  words i f  IREC 2 1, or in characters i f  IREC is zero. 

REMARK 8.13 

The function form is handy when the record size return is only to be used in an IF statement for 
testing the presence or absence of a record, as i r i  the example below. 

EXAMPLE 8.2 

If dataset AAA . BBB. 0.0.0 is in library 7, read its second record into array B: 

IDSW = LMFIND ( 4 ,  ’AAA.BBB ’ , IDSH, 1300) 
IF (IDSIJ .GT. 0) THE11 

N = LMFIRE (4, IDSIJ, 2, 0, 1700) 
IF (l? .GT. 0) THEli 

END IF 
CALL GMTRAIJ (’R’, 4, B, 11, 1500) 

END IF 

8-7 



Sectlon 8: INDEXED RECORD OPERATIONS 

EXAMPLE 8.3 

If dataset STIFFNESS.MATRIX in library 3 has no second record, write a 60-word zero-filled record 
in the second record. 

IDSFJ = LMFIIJD ( 4 ,  'STIFFWESS .MATRIX ' , IDSlJ ,  1300) 
I F  ( I D S N  . G T .  0) THEN 

I F  ( LMFIRE ( 4 ,  IDSI? ,  2 ,  0 ,  1700) . E q .  0) THEN 

END I F  
CALL GMTRAN ('W/F', 4 ,  0 ,  60, 1500) 

END I F  

8-8 



$8.4 POSITION AND READ/WRITE: GMPOzz /LMPOzs  

58.4 POSITION AND READ/WRITE: G M P O ~ ~ / L M P O P ~  

Entry points GMPOzz and LMPOss, where sz = RC, RN, WC or WN, combine library 
positioning and physical data  transfer in a single operation. They can be used to read or 
rewrite existing records or segments of existing records. They cannot be used to create new 
records, or to eztend the last record, a job which is reserved to GMTRAN/GMTRAC ($8.6). 

The eight entry points are collectively described here, as they share the same calling 
sequence. The dataset record, or segment thereof, is defined by Logical Device Index, 
dataset sequence number, record index, and offset from record start. The main-storage 
array is defined by its address and length. Record lengths and offsets are reckoned in words 
for numerical records and characters for character records. 

These operations are legal only on pm”I’cma1 datasets rcsident in word-addressable 
GAL devices. They are illegal on DAL files, or on nominal datasets. 

FORTRAN GMPOzs References 

The calling sequence for the four entry points is: 

The  entry-point name combinations are: 

GMPORC 
CMPORN 
GMPOWC 
GMPOWN 

Position and read character data. 

Position and read numeric d a h .  

Position and write character data. 

Position and write numeric data. 

Input Arguments 

LD I Logical Device Index of library device. 

IDS1,I Dataset sequence number. 

I REC Record index. 

A zz = RC: character array that rewives record. 

PZ = RN: numeric array that receives record. 

IZ = WC: character array to bt. stored. 

ZT = WN: numeric array to be stored. 

N The absolute value of I! is the iiiaxir~iiini niiriiber of characters (zz = RC 
or WC) or words (JT -= R N  o r  \I”) to lw read (TJ -: HC or RN) or 
written (zs = WC or W N ) .  A negative value of 14 assures that the read 
or write will not extend hcyond t,he borinrlary of the dataset. A positive 

8-9 



Section 8: INDEXED RECORD OPERATIONS 

value of N assures that  the read or write will not extend beyond the 
boundary of the I R E C t h  record. A value of zero for N will cause CMPORIJ 
and GMPOWN to  position only, and CMPORC and GMPOWC to use the implicit 
length of A for N .  

If the calling program needs to find out how many characters or words 
have been actually transferred, the function entry points L M P O z z  dis- 
cussed below should be used instead. 

I IOFF zz = RC: offset in characters a t  which read is to  begin. 

zz = RN: offset in words a t  which read is to  begin. 

zz = WC: offset in characters a t  which write is to  begin. 

zz = WN: offset in words at  which write is to begin. 

TRACE A positive integer used as identifying label in error traceback prints. 
Do not use a zero or negative value here; these values are reserved for 
internal use. 

REMARK 8.14 

If the library device is of DAI, form, or the IDSH”’ dataset, is noniirial, a11 error exit is taken. 

REMARK 8.15 

On exit from any of these operations, the library position is unpredictahle. 

REMARK 8.16 

If the record does not exist, or if IOFF puts the read or write totally out-of-bounds, no data 
transfer occurs. This condition is not reported as an error condition. 

FORTRAN LMPOzz References 

The four entry points discussed in this section may also bc invoked as integer functions: 
~~~~ 

1 NX = L M P O z z (L D I , IDSN, I R E C , A , 11, IOFF , TRACE) I

where zr is again RC, RH, WC o r W t l . ‘ I ’ l i (1 s w ~ ~ r i i~rgllttl(~Iit,s h a v c ~ idcritical rrwaning. ‘[’he
function value returns the number of characters or words actually transferred. This value
may be zero if an error occurs or if the read/write is totally out of dataset bounds.

REMARK 8.17

If the record does not exist, or if IOFF puts the read or write totally out-of-bounds, no datja
transfer occurs. The function returns zero.

8 - - l o

98.5 PRINT RECORDS: GMSHOP

$8.5 PRINT RECORDS: GMSHOP

GMSHOP provides a type-directed display of the contents of positional dataset records.

FORTRAN GMSHOP Reference

Calling sequence

I CALL GMSHOP (OP, LDI, IDSN. IRECl, IREC2, PFORM, M , IOFF, TRACE) I
~ ~ _ _ _

Input arg u m e nt s

OP

LDI

IDSW

IREC 1

IREC2

PFORM

M

IOFF

TRACE

A character string that specifies print options.

D
R
X Suppress title line.

V Force TTY print.

W

Place dataset name in label.

Place record ID in label.

Give warning i f no rc>cords found.

Logical device index of library file.

Dataset sequence number.

Index of first record to be printed (2 0)

Index of last record to be printed (2 0)

Print format specification. If blank, CMSHOP will try to think of some-
thing.

If M > 0, limit record print to M items.

Offset to first printed item. Applies to all records. Normally zero.

Error traceback argument. 110 not iise a zcro o r negative value here;
thcw vnIric.s i i t ~ r (w r v (d fo r i i i t (~ r i i ; i I us(%.

EXAMPLE 8.4

Print the first 3 records of dataset number 6 on l ibrary IO.
.

CALL GMSHOP(’DR’,10,6,1,3,‘ ‘,O,O,lOO>

8-11

Section 8: INDEXED RECORD OPERATIONS

$8.6 TRANSFER DATA: GMTRAs

GMTRAz, where z = C or N , are standard entry points for reading or writing indexed records.
GMTRAC is used for character records whereas GMTRAN is used for numeric records. Both
require appropriate prepositioning of the library device to the location a t which the read
or write is to take place.

GMTRAs consolidates the functions of a number of ent.ry points treated in the pre-
vious version of this document: GMREAD , GMREAC, GMWRIN , GMWRIB, GMWRIT, GMWRIC ,
GMWRIZ. LMRDES and LMWDES.

For the current GAL-DBM version, GMTRAC and CMTRAN provide the only way to
perform the following operations: (1) appending indexed records to GAL or DAL datasets;
(2) reading, writing or rewriting DAI, records.

FORTRAN GMTRAz Reference

Calling sequence

I CALL CMTRAz (OP, L D I . A , 11. TRACE) 1

The entry-point name combinations are:

GMTRAC Transfer character data.

GMTRAN Transfer numeric data.

Input arg u m e nt s

OP A character string that specifies the operat,iori to be performed. It con-
sists of a mainkey optionally followed by qualifiers. For example:

OP = ’WRITE/FILL’

Here WRITE is the mainkey whereas F I L L is a qualifier. A list of valid
mainkeys and qualifiers appears in Table 8.2.

Mairikcys arid qualifi~rs niay Iw ;ll)hrc~viiitd to tfhe ((root8s” shown in
‘1’aI)le 8.2.

L D I

A

Logical Device Index of library device.

z = C, OP = ‘ R ’ : character string that receives record.

s = C, OP = ’R/D’: character string that receives descriptor record.

5 = C, OP = ‘ W / A ’ : character string to be appended as new record.

r = C, OP = ‘W/D’: character string to be written to descriptor record.

z = C, OP = ‘W/F’: A(1: l) is f i l l character.

z = C, OP = ’W/U’: character string t,o be rewritten at ciirrent. locatmion.

.

8-12

$8.6 TRANSFER DATA: G M T R A z

N

z = N , OP = ’R’: numeric army that receives record.

z = N , OP = ’W/A’: numeric array to be apperided as new record.
I = N , OP = ‘W/F’: A (l) is f i l l word.

z = N , OP = ’W/U’: numeric array tjo be rewritten a t current location.

s = I?, OP = ‘W/X’: numeric array to be appended as last-record exten-
sion.

z = C: number of characters to be read or written. If 1,J = 0, LEN(A) is
used.

r = N: number of words to be read or written.

TRACE A positive integer used as identifying label in error traceback prints.
Do riot use a zero or negative value here; these values are reserved for
internal use.

Library Preposit ioning

Unlike the GMPOzz entry points (§8.4), tlie calling seyuence of GMTRAs contains no dataset
or record identifiers. These items are i m p l i c i t l y defined by prior operations on the target
data library, and by the OP argument.

It follows that references to GMTRAC or GMTRAH cannot occnr in isolation, but must be
appropriately prepared. The preparation procedure is called l ibrary prepositioning. Table
8.3 lists recommended prepositioning procedures corresponding to common OP settings.
These procedures are safe in the sense that it is sometimes possible to take shortcuts and
get away with it, but subsequent modifications in the user program may cause problems.

REMARK 8.18
The omission of dataset and record identifiers from GMTRAz is not, by the way, accidental. The
resulting low processing overhead makes these routines very efficient for sequentially reading or
writing indexed record streams. This situation is precisely the k i n d of situation in which positional
datasets hold a definite edge over nominal datasets.

EXAMPLE 8.5

See Examples in 358.2-8.3.

8-13

~ ~
~

Section 8: INDEXED RECORD OPERATIONS

Table 8.2. OP Argument (Mainkeys and Qualifiers) for GMTRAz

___ Mainke y Root Effect

READ R Read; see qualifiers for details
WRITE W Write; see qualifiers for details
none READ assumed

Qual ifi e r Root Valid for E f e c t
__ __ -- niainke ys

APPEND A W Append new indexed record
DESCRIPTOR D R ,w Read or write descriptor; CMTRAC only
FILL F w Fill with A (1)
UPDATE U w Rewrik a t current location
XTEND X V! Extend last record; CMTRAIJ oiily
none R Read at c wren t locat ion
none W W/A if library is positioned at end of

dataset; else W/U

8-14

!8.6 TRANSFER DATA: GMTRAx

Table 8.3. Library Prepositioriirig for GMTRAz

OP Argument Prepositioning

R Call LMFIRE or GMFIRE to set target record arid
offset. Successive calls to GMTRAs to read con-
secutive records, or segments of one record, are
permitted.

R/D Call LMFIRE o r GMFIRE with IREC=IOFF=O.

W/A or W/A/F Call LMFEWD or GMFEHD to position to dataset
end. (This may be dispensed with if (a) this is
record #I and (b) the previous GAL-DBM ref-
erence is a call to GMPUtlT (or GMPUNT/CMREDS)
to install dataset.) Successive calls to GMTRAs
to write-append consecutive dataset records
are permitted.

W/D Call LMFIRE o r GMFIRE with IREC=IOFF=O.
(This may be dispensed with if the previous
reference to GAL-DBM is a call to GMPUNT (or
GMPUMT/GMREDS) to install dataset.)

W/U or W / U / F Same as for R.

W/X or W/X/F ICssentially t h v same its for W/A, brit more corn-
plicated. O n l y c>xiwricnced iiscrs should IISC'

the X qualifier.

8- 15

9
Named Record

Operations

9-1

Sectlon 9: NAMED RECORD OPERATIONS

$9.1 GENERAL DESCRIPTION

This section covers operations OH named records. The generic opcralioiis are g e t arid put,
which together take care of initialization, space reservation, retrieval, seeking, storage and
updating of named records.

Complementing the basic get/put operations a r e infornialion retrieval cnt,ry points to
get attributes such as record group high/low cycles, etc, print RAT, print records, delete
and rename records. Nominal-dataset display operations are: list Record Access Table and
print record contents. The record or record(s) subject of these operations are identified by
name; consequently, these operations are illegal on positional datasets.

The presentation of named-record operations in this Section is alphabetically ordered.
A summary entry point list is provided in Table 9.1.

REMARK 9.1

Any user-program subroutine that references one of the following entry points should first identify
itself by calling CMUSER as explained in 814.4. This information is used by the central error
management routine of NICEDMS for traceback pr int s .

9-2

$9.1 GENERAL DESCRIPTION

Table 9.1 Entry Points for Named-Record Operations
_ _ _

Ope rat ion Entry A rgu tn e n ts See
Point __ - ____.

Delete record(s)

Get Group cycles

Get Key Attributes

Get record(s)

List RAT

Print record (s)

Rename record(s)

Put record (s)

GMDERT

GMGECY

GMGEKA

GMGETx

GMLIRT

GMSHOR

GMRERT

GMPUTx

OP, L D I , IDSII, RIIAME, TRACE

OP, L D I , IDSII, RKEY, MREC, I L , I H . TRACE

OP, LDI. IDSII. RKEY. RTYPE, N. M . TRACE

OP, L D I , IDSII, RNAME, TYPE, A , N , M .
IGAP. IOFF , TRACE

OP. L D I , IDSII, RKEY, LISTYP, TRACE

OP, L D I , IDSII, RllAME, PFORM, M , IOFF ,
TRACE

OP, L D I , IDSII, OLDKEY, IIEWKEY, TRACE

OP, L D I , IDSII, RNAME, TYPE, A , N, M ,
IGAP, IOFF , TRACE

$9.2

59.3

$9.4

$9.5

$9.6

$9.7

$9.8

$9.9

.

9-3

Section 9: NAMED RECORD OPERATIONS

§9.2 DELETE RECORD(S): GMDERT

Entry point GMDERT marks one or more named records as pt.rt,aining t,o a datmet as deleted.
Deletion is performed by removal or modification of packcbts of the Itccorcl Access Table
(RAT) of the dataset. If the operation results in the removal of a packet., a RAT compres-
sion may ensue.

Unlike datasets, deleted records cannot be enabled back to an active status. Space
occupied by deleted records can be reclaimed on a pack operation.

FORTRAN Reference

Calling sequence

I CALL GMDERT (O P , L D I , I D S N , RHAME, TRACE) I
Input Arguments

OP

LD I

I D S N

RNAME

TRACE

A character string containing operation specifications. Presently:

records having that key are deleted. Cycles disregarded.

packets being vacated.

K Delete by key. Argument RNAME is then a record key, and all

Compress RAT if rclcord deletion results in one or more RAT

Print warning if nothing deleted.

P

W

Logical Device Index of library device.

Sequence number of owner dataset.

A name that identifies the record(s) to be deleted. Thc specification
takes different f o r m according to whether option K is specified in argu-
ment OP. I f K is not specified, the general form is

Key. t i l : t i2

and all records that intersect with this specification are deleted. An
error condition may occur if one tries to delete intermediate cycles from
a record group (see Rcrnark 9.2) . hlasking specifications o n the record
key are acceptable if the cycles art cxplicitly given. If the K option is
given in argument OP, only the key needs to be given. Specifying RllAME
= ’ * ’ in conjunction with OF = ’ K ’ results in all records being deleted.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; t,hese values are reserved for
internal use.

$9.2 DELETE RECORD(S) : GMDERT

REMARK 9.2
Deleting cycles from a record group may be a risky business. For exitrriple, stil)l)ose that record
group Z. 10:45 rises a R A T packet, and consider the effect o f rcqwsting the d t + a r ion o f

Z.1:25
Z. 35: 50
Z. 20: 30

The first two specifications are legal. Upon return from GMDERT, the record group is truncated
to Z.26:45 and Z. 10:34, respectively. But the last request is illegal because it would result in a
split record group, which cannot, be managed from a single packet, and an error condition will be
reported.

9-5

I Section 9: NAMED RECORD OPERATIONS

59.3 GET GROUP CYCLES: GMGECY

Entry point GMGECY returns the lowest and highest defined cycles of a record group, given
the record key. The record group may be unsegmented or segmented.

FORTRAN Reference

Calling sequence

I CALL GMGECY (OP, L D I , IDSN, R K E Y , I+REC, I L , I H , TRACE)

I Input A rgu m e nt s

I OP A character string containing operation specifications. Not presently
used.

LD I Logical Device Index of library device.

IDSN D a t ase t seq ti e nc e nu m b er .

RKEY Record Group key.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
intern a I use.

Output Arguments

NREC Number of records found. If key is undefined, MREC = 0.

I L , I H If IIREC >* 0, low and high record cycles, respectively. For an unseg-
mented record group, NREC = I H - I L + 1 is guaranteed; riot so, however,
for a segmented one if cycle gaps occur.

I If NREC = 0, I L = I H = -1.

EXAMPLE 9.1
I Retrieve low and high cycles of unsegmented recorcl group keyed NODES, located in dataset

GEOMETRIC. TABLES of library 7:

IDSN = LMFIIID (7 , 'GEOMETRIC. TABLES ' , 1600)
CALL CMCECY (' ' , 7 , I D S l J , 'IJODES ' , KREC, I L O , I H I , 1700)

9--6

59.4 G E T KEY ATTRIBUTES: GMGEKA

i9.4 GET KEY ATTRIBUTES: GMGEKA

CMCEKA is a “key attribute” retriever. It is given as input R record key and t , h library arid
dataset in which it resides. It returns as outpub tlie attribirt,ca that are irivnri;mt across all
records with that key, namely data type, item length, and first dimension value.

FORTRAN Reference

Calling sequence

*

>

I CALL GMGEKA (OP, LDI, IDSN, RKEY, RTYPE, 11, M, TRACE) I
Input Arguments

OP .4 character st.ring cont,aining operation specifications. Presently this is
a dummy argument, so it should be set t,o ’ ’.

LDI Logical Device Index of library device.

IDSN Dataset sequence number. A zero implies the active dataset.

RKEY A character st,ring containing the record kcy left-justified. If the num-
ber of characters is less than the maximum key length, it should be
terminated by blank-fill.

TRACE A positive integer used as idt!nt,ifying latwl in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

RTYPE If records identified by RKEY exist, then their da ta type is RTYPE (as
defined in Table 5.1). Otherwise blank.

II If records identified by RKEY cxist,, then thcir logical length is N. Other-
wise zero.

M I f rccorcls irlentificd l y RKEY c\?tiqt. thcri t hrir first. m a t r i x dimension
attribute is h.1. Otherwise zc’ro.

EXAMPLE 9.2

Retrieve attributes of record key VELOCITIES in d;lt,aset at, scqucrirt~ numb 181 in library con-
nected to LDI 15:

4

CALL CMGEKA (’ ’ , 15, 181, ’VELOCITIES ’ , RT, L, M, 1700)

where RT is a CHARACTERal variable.

9- 7

Section 9: NAMED RECORD OPERATIONS

§8.6 GET NAMED RECORD(S): GMGETz

GMGETN (get numerics) and GMCETC (get characters) are the standard entry points for
accessing ending named records. “Accessing” means reading or finding. Reading means
that stored-record data is transferred in to a niaiii storage array, w l i c r ~ ~ a s fi tding implies
that the dataset is searched to acquire length and type information albeit 110 data transfer
occurs. The operation may involve a single record, a record group, or a table.

The two entry points are collectively described here as they share the same calling
sequence. An operation key specifies various options. The database record(s) are described
by the Logical Device Index, dataset sequence number, and a record name; the latter
may involve key concatenation and cycle ranges. If records are to be read, a destination
main storage array is specified, as well as variables to receive record size and type. Size
constraints may be specified on input.

I

FORTRAN Reference

Calling sequence
I

1 CALL GMGETs (OP. LDI. IDSN. RNAME. TYPE. A . P I , M. IGAP. IOFF. TRACE) I

The entry-point names are:

CMGETC Get character record(s).

GMGETN Get numeric record(s).

Input Arguments

OP A character string that specifies the operation to be performed. It con-
sists of a mainkey optionally followed by one or more qualifiers. For
example:

OP = ’READ/LENGTH’
Here READ is the mainkey while LENGTH is a qualifier. There can be only
one mainkey but several qualifiers (or none). A list of valid mainkeys
and qualifiers appears in Table 9.2. Mainkeys and qualifiers may be
abbreviated to the one-letter “roots” shown there.

LD I

IDSIJ

RNAME

TYPE

Logical Device Index of library device.

Datsset sequence nurnher. A zero irriplies the active datitset.

A character string containing the name of the record, record group,
or table to be accessed. This string should be terminated by a blank
character for safety.

M’hat if no records by this name are found? See Remark 9.4.

If OP mainkey is READ, external dat,atype code (Table 5.1) of variable or
array that will receive data (the argument A) . Generally this type should

.

9-8

s9.5 GET NAMED RECORD(S): GMGETz

A

N

match that of the record(s) you want to retrieve. However, GMGETN will
do certain numeric conversions for you; thc ones presently allowed are
shown in Table 9.3. If the datatype iriisiriatcfi is not, o t i c of these, the
operation aborts. See remark 9.6 below for TYPE = ’ ’
If OP mainkey is FIND, TYPE is an output argument (see below).

If OP mainkey is READ, array that will receive record, Record Group, or
Table. For GMGETC, A must be a character string or character array. For
GMGETN, A must be a numeric array of thc type specified by TYPE. For
multi-record read, see IGAP below.

If OP mainkey is FIIJD, A is a drimrny argument. If you are calling GMGETIII,
put a zero here. If you are calling CMGETC, put a blank character here.

If OP is READ and LENGTH appears as qualifier, N is an input-output
argument. The input value of I? may be positive or negative.

An input H > 0 tells GMGETr: “do not read more than N items”. This
limit usually reflects the main-storage allocation of A in the calling pro-
gram and is specified as a safety factor against array overspill.
An input III < 0 tells GMGETz: “do not read more than IN1 items per
record”. This has some applications when reading record groups or ta-
bles; see example. For individual record retrieval, +N and - N are equiv-
alen t .
If LENGTH is not a qualifier, I1 is only an output argument.

M A dummy integer argument* unless (1ualific.r MATRIX appears, in which
case M is an output argument (see below).

IGAP If OP qualifier is READ, this argument is applicable to multi-record trans-
fer as follows: skip ICAP items in array A when increrrienting the cycle
number; but leave no gap if IGAP = 0. See examples.

If OP mainkey is READ: begin record read at IOFF items from record start . IOFF

If OP mainkey is FIIJD, IOFF is a dummy intcger argument.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

TYPE If OP mainkey is FIIID, external datatype code (Table 5.1) of stored
record(s). (Should be declared CIJARACI’ERtl in calling program.)

I f REIAME specifies a ‘l’ahlc, atid rccortls a r c foriritl l o lw o f different t y p w ,
TYPE = ’ M ’ (Mixed) is rcturricd.

9---9

Sectlon 9: NAMED RECORD OPERATtONS

A If OP mainkey is read, A receives record data found by GMGETC or GMGETN.
The configuration of A upon rnulti-record read (Rxcord (:roup or Table)
is illustrated by Examples 9.3 through 9.12.

N If OP mainkey is READ, II returns total number of illerris rc?ad into A.

If OP mainkey is FIND, N retiirns total number of items found.

If no record is found, or an error is detected before the record search
starts, N returns zero.

M If qualifier MATRIX appears, M returns the “first matrix dimension” stored
by GMPUTz.

REMARK 9.3

The use of mainkey FIND is admittedly rare now that information-retrieval entry points GMGEKA
and GMGECY are available. These entry points are not so comprehensive but have a simpler calling
sequence.

REMARK 9.4

GMGETz produces no diagnostics if a record specified hy RHAME is not found, or even if nothing is
found. The user program may check the out,put 11 to make sure that the requested data is there.
For example, suppose that RllAME = ‘QUERCUS. 1:60 ’, where each record is 10-items long, brit
only q U E R C U S . 3 : 6 are actually st.ored in the dataset,. Only 1 records will be read, and the exit M
= l o x 4 = 40.

REMARK 9.5

If it is important to determine in advance whether a record or record group exists, call GMGETz
with OP = ’FIND’, To find out the cycle range of a record group, use GMGECY (59.3). See example
for a realistic application of these “query” routines.

REMARK 9.6

If TYPE is declared unknown (U) on a GMGETN read operation, numeric records of any datatype
will be moved to A withorrt conversion. (This mimics the modus operandi of positional datasets.)
But this is not allowed for character records; these have to be read using GMGETC, and the input
datatype must be A .

,

9-10

$9.5 G E T NAMED RECORD(S) : GMGETz

Table 9.2. OP Argument (Mainkeys aiicl Qualificm) for GMC:ETz

.___-I____ I__

Muinkey Root Egec t

FIND F Find record(s) and return information.
READ R Read records into argument array.
nOne---READassnmed. .--__ ________.____

Qualifier Root Valid for Efec t
mainkeys - ____

LENGTH L READ I1 is an iriput-output argrirnerit
MATRIX ___ __.___._ M R E A D , FIlJD Retuu fret n_la_tKix dimension i i i M.

Table 9.3. Mixed Datatype Handling by GMGETs

11 a t a base: In t eg e r S-Joa 1 /)-j7ont C o t n p l ex Ch n roc t e r

_ _ ~ ____ ______I_

Argument

In teger J’es N o N o N O N O

S- Float N O YW \rCY N 0 No
D- Float N 0 Yes YCS N O No
Compl ez No N O N 0 Yes No
Character No No N O No Yes
Ynknawn-- &.- Yes .- Yes __ l ’ C f - - - N Q

9--11

Section 9: NAMED RECORD OPERATIONS

I EXAMPLE 9.3

To illustrate the use of GMGETN and GMGETC, the following 'J'itl)le-r.onipat ible four record
groups are assumed to be present in dataset, 55 of library 7:

S J XYZ ABCD
S I j~ X I ~ Y I , Z I ~ ~ t , b i , ~ i . d i
s2 j2 52,~2,z2 a2,62,~2,d2
s3 j 3 5 3 , ~ 3 , z 3 a 3 , b 3 , ~ 3 , &

s4 j 4 ~ 4 , ~4 1 2'1 a4 64, c4, d4
s5 j 5 x ~ , Y ~ , z F ~ a~,b51~5,&
s o JG 5 6 , YG, zn an, be, cn. d n

S . l : 8 contain 8-character records, J . l : 6 contains 1-item integer records, XYZ . l : 6 contains 3-item
double-precision records, and ABCD. 1 : 6 contains 4-item double-precision records. Each record of
ABCD may be viewed as a 2 x 2 matrix:

should a matrix interpretation be requested.

EXAMPLE 9.4

Read j2 into integer variable JVAL.

CALL GMGETN ('R', 7 , 55, ' 3 . 2 ' , ' I ' , J V A L , 11, 0, 0, 0, 1200)

On successful exit: JVAL = j 2 , N = 1.

EXAMPLE 9.5

Read 53, y3,23 into double-precision array XYZC:

DOUBLE P R E C I S I O N XYZC(3)

CALL GMGETlJ ('R', 7 , 55, ' X Y Z . 3 ' , ID', XYZC, 11, 0 , 0 , 0 , 1200)

On successful exit: XYZC = (. ~ g , y 3 , z3), tr = 3.

EXAMPLE 9.6

Read only x3, y3 into XY (1 : 2) .

DOUBLE PRECISIOIJ XY (2)

N = 2
CALL GMGETtJ (' R / L ' , 7 , 55 , ' X Y Z . 3 ' , I D ' , XY. 11, 0, 0, 0. 1200)

On successful exit: XY = (x3,y3) , 1J = 2.

I 9--12

39.5 GET N A M E D RECORD(S): GMGETz

EXAMPLE 9.7

Read XYZ. 1 : 6 into single-precision array XYZ dimensioned 3 x 6 i i i hhe calling program.

REAL XYZ(3.6)

CALL GMGETIJ ('R', 7, 55, 'XYZ.1:6 ' , I S ' , XYZ, 11, 0, 0. 0, 1200)

Note that IGAP = 0 because retrieved records are compactly stored in XYZ. On successful exit,
XYZ(l:3,z) = (zi,y,,z,.),z = 1, ... 6; N = 18. GMGETII automatically converts double-precision to
single-precision.

EXAMPLE 9.8

Read XYZ. 1 : 4 into first t h e e rows of single-precision array CTAB dinierisiotied 8 x 6 in the calling
program.

REAL CTAB (8,s)

CALL GMGETN ('R', 7, 55, 'XYZ.1:4 ' , 'S', CTAB, 11, 0, 5. 0, 1200)

The IGAP argument is here 8 - 3 = 5. On successful exit: CTAB(l:3,?)== (xi , ... d ,) , ; = 1, ... 4; 11 =
12. GMGETN automatically converts double-precision to single-precision.

E X A M P L E 9.9

Read S . 1 : 4 into a character array CS dimensioned CS (4) *24.

CHARACTER+24 CS(4)

CALL GMGETC ('R', 7 . 55, 'S.l:4 ' , 'A', CS, I J , 0, 16, 0, 1200)

IGAP is 24 - 8 = 16. On successful exit: CS(z) (1 :8) = s,, z = 1 , 2 , 3 , 4 ; 11 = 32.

E X A M P L E 9.10
Read XYZ . 1 : 6 and ABCD. 1 : 6 into first seven rows of single-precisiori array CTAB dimensioned 8 x 6
in the calling program.

REAL CTAB(8,6)

CALL GMGETM ('R', 7, 55, 'XYZkABCD.1:6 ' , IS', CTAB, IJ, 0, 1. 0, 1200)

The IGAP argument is now 8 -. 3 -- 4 = 1. On successful exit: CTAB(1 : 7, z > := (r , , y, ... ci , d ;) , 2 =
1, ... 6; N = 42, GMGETN autorriatically converts double-precision to siiigle-precision.

9-13

Section 9: NAMED RECORD OPERATIONS

This example illustrates key-concatenation retrieval. The general rules are:
(a) keys run faster than cycles, and
(b) no gaps between records with same cycle.

Observe that had the key specification been

items would have been retrieved in the order a , , b , , c,, d,, x,, y,, 2,.

ABCDdrXY Z

EXAMPLE 9.11

(Advanced.) Read the yi item only of XYZ. 1 : 6 i n t o the second row of double-precision array XYZ
dimensioned 3 x 6.

DOUBLE P R E C I S I O N X Y Z (3 , 6)

N = - 1
CALL GMGETN ('R/L'. 7 , 5 5 . 'XYZ.1:B ' , 'D', XYZ(2.1). !I. 0 . 2 . 1, 1200)

I Here I G A P = 3-1 = 2 , I O F F = 1. On successful exit: X Y Z (2 , i) = yi, 2' = 1 , . . . ,6 ; N = 6.

EXAMPLE 9.12

Find out all there is to know about record group key ABCD.

CHARACTER RNAM*20, RTYP* 1

CALL GMGECY (' ' , 7 , 65 , 'ABCD ' , HR, I L O , I H I , 1600)
I F (NR . G T . 0) THEN

. . .

CALL CMCORN (RHAM, ' ABCD ' , I L O , I H I)
CALL GMGETN ('F /M ' , 7 , 5 5 , RNAM, RTYP, 0, 11. M , 0, 0, 1600)

END I F

I (CMCORN, construct a record name string; it is described in 810.6.)
' A B C D . 1 : 6 ' , R T Y P = ' D ' , H = 24,M = 2 .

On GMGETM exit: RNAM =

9-14

$9.6 LIST RECORD ACCESS TABLE: GMLIRT

$9.6 LIST RECORD ACCESS TABLE: GMLIRT

GMLIRT lists the Record Access Table (RAT) of a norninal dataset.

FORTRAN Reference

Calling sequence

Input Arguments

OP

LDI

IDSN

RKEY

LISTYP

TRACE

Option letter string. Presently D to list deleted records.

Logical Device Index of library file.

Dataset sequence number. A zero requests the active dataset.

If nonblank, a generally-maskcd rccord key that, limits RAT display to
packets with that key.

A one-letter string that specifies the list format.

F Full listing

S imp I i fied 1 is t in g . *

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

9-15

Sectlon 9: NAMED RECORD OPERATIONS

59.7 PRINT RECORD CONTENTS: GMSHOR

GMSHOR prints the contents of a record, record group or table according to user-program
formatting specifications. This routine replaces CMPRIN.

FORTRAN Reference

Calling sequence
~ ~~~ I CALL GMSHOR (OP, L K , IDSN, RNAME, PFORM, M , IOFF, TRACE) I

I Input Arguments

OP Print options string.

D
K
R
X Suppress t.itle line.

V

Place dataset name in label.

Print by key (all cycles).

Place record id in label.

TTY print with RV i f on a VT-100 display t.erminal

LD I Logical Device Index of library file.

IDSN Sequence number of owner’s dataset.

RNAME Record name, possibly with masking specifications.

PFORM Print format specification.

M If IvI>O, print a t most M items per record.

IOFF Offset to first printed item; presently ignored.

TRACE Error hawback argument.

9 - l G

§9.8 RENAME RECORD(S): G M R E R T

58.8 RENAME RECORD(S): GMRERT

Entry point CMRERT lets you rename record keys. Record cycles remain unchanged.

FORTRAN Reference

Calling sequence

I CALL CMRERT (OP, LDI, IDSN, OLDKEY. NEWKEY. TRACE) I
Input Arguments

OP A character string containing operation specifications. Presently W to
print a warning if no records matched.

LD I Logical Device Index of library device.

IDSN Dataset sequence number. A zero requests the active dataset.

OLDKEY A character string containing the old record key left-justified blank-filled.

NEWKEY A character string containing the new record key left-justified blank-
filled.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

EXAMPLE 9.13

,
CALL GMRERT (' ' , 12, 173, 'VELOCITY' , 'SPEED ' , 1700)

9-17

Section 9: NAMED RECORD OPERATIONS

59.9 PUT NAMED RECORD(S): GMPUTs

GMPUTN (put numerics) and GMPUTC (put characters) are the standard entry points for
creating or updating natned records. The operation tiiay involve a single rword or a record
group, but not a table.

The two entry points are collectively described here as they share thc same calling
sequence. An operation key specifies various options. The database record(s) are described
by the Logical Device Index, dataset sequence number, and a record or record group
name. The source main storage array is specified by its address, length and datatype.
Miscellaneous specifications include gaps between group records in the main-storage array,
and a matrix dimension.

FORTRAN Reference

Calling sequence

I CALL GMPUTs (OP, LDI, IDSN, RIJAME, TYPE, A, E J , M , IGAP, I O F F , TRACE) 1
The entry-point names are:

GMPUTC Put character record(s).

GMPUTN Put numer ir record (s) .
The arguments (all input) are:

OP A character string that specifies the operation to be performed. It con-
sists of a mainkey optionally followed by one or more qualifiers. For
example:

QP = ’WRITE/REPEAT’

Elere WRITE is the Iriainkey while REPEAT is a qualifier. A list of valid
mainkeys and qualifiers appears in Table 9.4. Mairikeys and qualifiers
may be abbreviated to the “roots” shown there.

L D I Logical Device Index of library device

IDSN Dataset, sequence number.

RNAME A charactcr string containirig t h (3 I I ~ L I I I C ~ of t Ilc rm-orcl o r rcwml group to
be written to. Table specifications (concatenated keys) are not permit-
ted. For safety, the name should be terminated by a blank character.

Record-update rule if qualifier U is not given. If a record or record group
by this name already exists in the dataset, it is rewritten if (a) datatype
agrees, and (b) length fits. Otherwise the existing record(s) are marked
as deleted and new one(s) created.

Record-update rule if qualifier U is given. If update of existing record(s)
is feasible, do it, otherwise skip.

9-18

,

59.9 PUT NAMED R E C O R D (S) : GMPUTz

TYPE

A

N

M

IGAP

IOFF

TRACE

The one-letter external datatype code (see Table 5.1) of record or record
group to be stored. Code U (Unknown) and M (Mixcd) are not permitted.

If OP ixiainkcy is WRITE, source array cotitaining rocortl(s) to be wri t -
ten. For a record group, successive records are adjacent if IGAP = 0, or
separated by IGAP items if IGAP > 0.

If the REPEAT qualifier appears, only the first, record needs to be given.

If OP mainkey is FILL, only A (1) matters so this can bc a constant or
single variable. The value of A (1) is used to initialize the record(s).

For a single record, its length in items (according to TYPE).

For a record group, a positive I J is the total number of items to write. A
negative N implies that the length of individual records is the absolute
value of FJ.

If record(s) to be stored are to be viewed as rectangular matrices, set M
to the first matrix dimension. Otherwise, set M to zero.

This value may be later retrieved using CMGETs ($9.5) if so desire?, but
has otherwise no bearing on the inner workings of GAL-DBM.

Only meaningful if OP mainkey is WRITE with no REPEAT qualifier and
RIIAME specifies a record group. In this case. ICAP is item gap in array A
between successive records.

111 all other situations, IGAP is a d u m m y integer argument.

Oi i ly meaningful if OP niairikq i.; WRITE wit11 UPDATE qualifier given:
I q i n updated-record writes IOFF itcriis af1c.r rc.cord st,art.
I n all other situations. IOFF is it durnniy i l i l c y y r nrguiriciit.

A posifiroe iritegcr iised as i(lcnt ifying lal)oI i n error t racchack prints.
Do not USC a zero or negative va lue herc; tlicse values are reserved for
internal use.

EXAMPLE 9.14

The following examples illustrate the use of CMPUTII arid GI4PUTC for creating and updating the four
record groups already used in $9.5:

Section 9: NAMED RECORD OPERATIONS

Table 9.4 O P Argurrierit (Mainkeys arid Qualifiers) for GMPUTs
- ___. . __ ____ ___

___. _._____ Matnkey Root Effect

FILL F Initialize records with A(1) as f i l l item.
RESERVE R As FILL, but do not initialize.
WRITE w Write records from array A to library.

.. ___

Qualifier Root V d z d for Effect
rnainkey

REPEAT R WRITE All records of a record group are identical.
UPDATE U WRITE Force update; skip i f recortf(s) not found.
APPEND A WRITE Force append by deleting all existing records

--..---tfiaLIIldfllLfXduIllarne._

ORIGINAL PAGE IS
OF POOR QUALITY

$9.9 PUT NAMED RECORD(S) : GMPUTx

The owner dataset is a t sequence number 55 of library 7. S. 1 : 6 contain 8-c l ia ra r t~~ records, J .1: 6
contains 1-item integer records, X Y Z . 1 :6 cont,ains 3-item double-precision records, and ABCD. 1 :6
contains 4-item double-precision records. Each record of ABCD may be viewed as a 2 x 2 matrix:

should a matrix interpretation be request.ed.

EXAMPLE 9.15

Create J. 1 : 6 and initialize it to zero.

CALL GMPUTN ('F', 7, 55, 'J.1:6 ' , 'I', 0, 1, 0, 0, 0, 1200)

EXAMPLE 9.16

Store JVAL = j, into J - 2 :

CALL GMPUTlJ ('W', 7, 55, '5.2 ' , '1', JVAL, 1 , 0, 0, 0, 1200)

EXAMPLE 9.17

Create X Y Z . 1 :6 initialized t o - 1 . O . arid tticri store T : : , y:?, z:?, wliirti are held i r i double-precision
array XYZC(3).

p

D O U B L E P R E C I S I O I I X Y Z C (3)

CALL GMPUTIJ (IF', 7, 55, ' X Y Z , l : 6 ' , 'D', -1.ODO. 3 . 0. 0, 0. 1200)
CALL CMPUTII ('W', 7 , 55, ' X Y Z . 3 ' , 'D', XYZC, 3. 0, 0, 0 , 1200)

EXAMPLE 9.18

Create ABCD. 1 :6, the eiitries of which happcri t o bc in array A2D(2,2.6).

DOUBLE PRECISIOII A2D (2,2,6)

CALL CMPUTII ('W', 7, 55, 'ABCD.l:6 ' , 'D', A2D. 4 . 2, 0, 0, 1200)

Sectlon 9: NAMED RECORD OPERATIONS

EXAMPLE 9.19

Create S . 1 : 6, which is to consist of six ideritical 8-character records saying 'Not liing '.

CALL GMPUTC ('W/R ' , 7, 5 5 , 'S.1:6 ' , ' A ' , 'Nothing ' , 8 , 0, 0, 0, 1200)

EXAMPLE 9.20

Replace all six y, itenis in X Y Z . 1 :6 (which is assumed to exist), by the second-row values of
double-precision array X Y Z dimensioned 8 k 0 .

DOUBLE PRECISION XYZ(8.6)

CALL GMPUTI? (' W / U ' , 7, 5 5 , 'XYZ.1:6 ' , 'D', XYZ(2,1), -1, 0, 5, 1 , 1200)

?

9-22

10
Supplemental

0-p e ration s

Section 10: SUPPLEMENTAL 0 P E RAT1 0 N S

$10.1 GENERAL

This section describes “oddball” operations that do not fit neatly within tlie previous foi r
Sections. Examples: building datasets and rccord naincs, scatt.ing processor-triode flags,
controlling output volume, and so on.

Associated entry points are alphabetically ordered by the last four letters of the entry
point name. A summary entry point list is provided in Table 10.1.

Note that none of these entry poinh has a TRACE argument. Consequently, they fall
outside the scope of the NICE-DMS error handler (DMSERR, 814) and checks on correctness
of input arguments is minimal or nonexistent.

10-2

510.1 GENERAL

Table 10.1 Entry Points for Siippleii~cmt~al Operatioils

Ope rat ion Entry A r g u m e t z l s See
Point _ _ ____ -.

Set macroprocessor flag CMACRO MF $10.2

Break up dataset name CMBUDII DSNAME, KEY1, K E Y 2 , I C 1 . I C 2 , I C 3 $10.3
GMUXDH XIIAME, M O K , MKC, K E Y , I C Y C , I R E L ,

I C O L , I R C , M A N Y , I B A D

Break up record name

Construct dataset name

Construct record name

GMBURM RIIAME, R K E Y , L C Y C , HCYC $10.4
GMUARN OP, RNAME, NKEYS, KEYS, M A S K , N C Y C S ,

C Y C S , COLONS, I R E L C , R E L C Y C . I B A D

GMCODIJ DSllAME, K E Y 1 , K E Y 2 . I C I . I C 2 , I C 3 $ 10.5

CMCORIl RIIAME, K E Y , I L , I H 5 10.6
GMCARIl RIIAME, KEYS, H K , L H X , IICYCS

Declare Page Buffer Pool CMPOOL P B . L P . IJP $10.7

Enter processor signature CMSICIJ PRllAFlE 510.8

Suppress open/close messages CMSOCM M 5 10.9

10.- 3

Sectlon 10: S U P P L E M E N T A L 0 PER A T I 0 N S

$10.2 SET MACROPROCESSOR FLAG: GMACRO

GMACRO can be used to turn the “NICE macroprocessor” flag t o a specific value. Setting
this flag to a nonzero value affects the outcome of conditional open-library ($6.4) and
close-library ($6.2) operations.

FORTRAN Reference

Calling sequence

I CALL GMACRO (MF) I

Input argum etat s

MF 0 : turns macroprocessor Rag off.

1 : turns macroprocessor Rag on. Library files tagged for condi-
tional close ($6.2) will not be closed.
2 : as 1, plus all library-open operations ($6.4) will be conditional.

R E M A R K 10.1

The default value of this flag, on processor start, is zero.

R E M A R K 10.2

At the 1 / 0 Manager level (see ref. 2) , this e n t r y point is called DMACRO.

10-4

510.3 BREAK UP DATASET NAME: GMBUDN/GMUXDN

$10.3 BREAK IJP DATASET NAME: GMBUDN/GMIJXDN

GMBUDN receives a dataset name, and proceeds to divide it up into its five components: two
character strings (mainkey and key extension) and three integers (cycles). This operation
is the inverse operation to GMCODN (510.5). SCMUXDH performs a detailed breakdown of an
external dataset name that may contain ~nasking, cycle range. arid relative cycle specifi-
cations. This entry point is too specialized for most applications. It is described here for
completeness.

FORTRAN GMBUDN Reference

Gal l i n g sequence

ICALLCMBUDlI (DS1,JAME. KEYl, KEY2. IC1, IC2. IC31 1

Input A rg u ni e nt s

DSNAME A character string that contains the dataset name left-justified
blank-filled. If the name is less tlian -10 characters long, it should
be terminated by a blank.

Output Arguments

KEY1, KEY2 Character strings that receive mainkey and key extension, respec-
tively. left-justified blank-fillcd. Eacli .;houId be dcclared to be al
least 16 character long in the calling program.

IC1, IC2, IC3 Integers that receive thc three cycle nilmbcrs.

REMARK 10.3

Masking characters i n the mainkey and key exleiision of DSIIAME are perrnitted arid will be correctly
stored i n KEYl and KEY2; see Example 10.1 below.

R E M A R K 10.4

Masking, cycle-range or relative-cycle specificat ions on cycle cornprierits will not be correctly
processed.

EXAMPLE 10.1

CHARACTER KEY1*16, KEY2.1.16
IlJTEGER I, J , K

CALL GMBUDll ('STAR.SHIP.3.8 I , KEY1, KEY2. I, J , K)

The outputs will be KEY1 = 'STAR ' , KEY2 = 'SHIP I = 3, J = 8 arid K = 0.

10-5

I
I Section 10: SUPPLEMENTAL OPERATIONS

EXAMPLE 10.2

CHARACTER KEYl*l0, KEY2*16
INTEGER I, J, K

CALL GMBUD13 (' P R O C * . * . ' , KEY1, KEY2, I, J , K)

The outputs will be KEY1 = 'PROC* ', KEY2 = I , I = J = K = 0.

I FORTRAN GMIJXDN Reference

I Calling sequence

CALL GMUXDN (XNAME, MOK, MKC, KEY, I C Y C , I R E L , I C O L , IRC, MANY, I B A D)

Input Arguments

XNAME External dataset name.
MOK One-character string. M if masking and cycle-range specifications

are permitted, otherwise blank.

Maximum characters retained in keys: 4 if DAL, otherwise 1 6 . MKC

Output Arguments

KEY (1) Ahinkey left-justified blank-filled.

KEY (2) Key extension left-justified blank-filled.

I RC

I C O L

I C Y C A (3,2) integer array of unpacked cycle data:

I C Y C (K , 1) Lower bound for K-th cycle (K = 1 , 2 , 3)

I C Y C (K . 2) l!ppcr bound for K - t h cycle (K- 1,2,3)

(3,2) integer array of r.c.lative-cyclo spccs:

I R E L (K , 1) Relative-cycle-spec for I C Y C (K . 1) ()=none, l = L (low-
est), 2=H (highest), 3-N (next).

I R E L (K ,2) likewise. for I C Y C (K ,2). Nonzero flags may appear only
for one K.

Relative cycle indicator. If a relative cycle specification for the K - t h
cycle is detected, I R C = K . Else I R C returns zero.

3-integer array riiarking appearance of colons in cycle fields: I C O L (K)
is nonzero if colon appcars in K-tli cjcle spec. else 0.

I R E L

MANY

I B A D

1 if a masking or cycle-range specification appears, otherwise 0.

Zero if 110 errors detect.ed. Ot,lierwisc I B A D is set to index of char-
acter at which parsing stopped.

10- -6

$10.4 BREAK UP RECORD NAME: GMBURN/GMUARN

§10.4 BREAK UP RECORD NAME: GMBUR,N/GMUAR,N

GMBURN receives a record name, and proceeds to divide it into its three primitive compo-
nents: key, low cycle and high cycle. CMUARN is the most general record name unpacking
routine, as it handles the case of multiple keys and/or cycles connected through the am-
persand operator. For the single-key, single-cycle case, GMBURN should be used as it is more
efficient.

FORTRAN GMBIJRN Reference

Calling sequence

CALL GMBURM (RIIAME, RKEY, LCYC. HCYC)

Input Argument

RNAME Record name.

Output Arguments

RKEY Character string to receive record key

LCYC Integer to receive low cycle.

HCYC Integer to receive high cycle.

FORTRAN GMUARN Reference

Calling sequence

CALL CMUARH (OP, RIIAME, IJKEYS. K E Y S ,
C Y C S . COLOIIS. I R E L C . RELCYC. I B A D)

Input A rgum e t i t s

OP

RNAME

Output Arguments

NKEY S

KEYS

Options letter string:

(1 : l) A if “anded” keys permitted.

(2:2) M if masking pcrniitted,

(3 3) H convert ’ in cycle spec to L : H .

Record name.

Nuniber of keys storcd i n a r ray KEYS.

Record key (if I I K E Y S - - I) or key array (i f IIKEYS>I). Keys must not
exceed 12 characters.

10 -7

Sectlon 10: SUPPLEMENTAL OPERATIONS

MASK MASK(1) is set to 1 if masking character (*’ or %) detected in the
I-th key (I = l , ... NKEYS), otherwise 0.

NCYCS Number of cycle specs decoded into CYCS.

CYCS A 3 by NCYCS integer array. Rows 1 and 2 get. lower and upper
cycle, respectively, row 3 gets the increment.

co L 0 NS COLOiiS(1) is the numbcr of colons ill cycle specifications (0, 1, or
2).

I R E L C 1 if relative cycle specifications detected, otherwise 0.

RELCYC A 2 by IICYCS array of relative cycle specifications; same marking
scheme as used by GMUXDN.

IBAD Index of illegal character if one such detected, otherwise 0.

/
10-8

$10.5 CONSTRUCT DATASET NAME: GMCODN

$10.5 CONSTRUCT DATASET NAME: GM(:ODN

GMCODN receives five components of a dataset tiarne: two character strings (rnainkey and key
extension) and three integers (cycles), and proceeds to pack them into a single character
string suitable for presentation to entry points that receive a dataset name argument.

FORTRAN Reference

Calling sequence

I CALL GMCODII (DSMAME, KEY1, KEY2, IC1, IC2, IC31 I
Input Arguments

KEY1 , KEY2 Character strings containing mainkey and key extension, respec-
tively. If any of these is less tlian 16 characters long, the string
must be terminated by a blank.

IC1, IC2. IC3 The three cycle numbers (integers).

The only output is:

DSNAME A character string that receives the packed record name left-justified
blank-filled. Allocated length in calling program should be a t least
40 characters for safety.

REMARK 10.5

Masking characters in the kcy-string arguments (KEY 1 and KEY2) are permitted; see example below.

REMARK 10.6

Masking, cycle-range, or relative-cycle specifications on cycle components cannot be specified with
this routine.

EXAMPLE 10.3

CHARACTER DSIJAME b40

CALL GMCODII (DSIJAME, 'STAR ' , ' S H I P ' , 3 , 8 , 0)

The output name will be DSNAME = ' S T A R , S H I P , 3 . 8 ', with right hlank-fill.

EXAMPLE 10.4

CHARACTER DSIIAME*40

CALL GMCODII (DSIIAME, 'PROC. ' , ' . ' , 0, 0, 0)

The output name will be DSIIAME = 'PROC*. 'k . I . with right h l a n k - f i l l .

10- 0

Section 10: SUPPLEMENTAL OPERATIONS

$10.6 CONSTRUCT RECORD NAME: GMCORN/GMCARN

GMCORN receives components of a record name: a key, a low cycle and a high cycle, and
proceeds to pack them into a single character string suitable for presentation to GMGETs
or GMPUTz entry points discussed in $9. CMCARH is a more general version of CMCORN. It
receives a key array and an low/high/increment, cycle array, and proceeds to pack all of
this information into a record name.

FORTRAN GMCORN R.cferrwcc

Calling sequence

I CALL GMCORN (RMAME, K E Y , I L O , IHI) I

Input Arguments

KEY

ILO, IHI

The only output is:

RNAME

Record key. KEY must not exceed 12 characters.

Low and high record cycle, respectively.
If IHI does not exceed ILO, IHI is ignored, and will not appear in
RNAME.

If IHI = ILO = 0, both cycles are dropped from RNAME.

A character string that rtwives t h c . packctl record name. Allocated
length in calling program shoiild riot be less than 20 characters for
safety.

E X A M P L E 10.5

CHARACTER RIIAME J; 20

CALL GMCORIl (RHAME, 'SIG-XX ' , 4 , 0)

The output. name will he RllAME = 'SIG-XX.4'. w i t t i right blarik-f~!!

FORTRAN GMCARN Refereiiw

Calling sequence

I CALL GMCARII (RIIAME, K E Y S , I J K , LHX, I iCYCS)]

Input Arguments

KEYS Record key (if f I K = l) or key array (if I I K > l) . KEYS must not exceed
12 characters.

10.- 10

510.6 CONSTRUCT RECORD NAME: GMCORN/GMCARN

NK

LHX

NCYCS

Output Arguments

RNAME

Number of keys supylicd in array KEYS.

IIK = 1: ordinary record name.

N K :. 1 : naxncd record group.

N K = 0: blank key assumed (has special uses).

A 3 by NCYCS array of cycle bounds and increment cycle specifica-
tions. See CMUARH for details, glO.4.

Number of cycle specifications (may be 0).

A character string that returns the packed record name left-justified
blank-filled. Length should exceed 13*14K + 16*NCYCS characters for
safety.

E X A M P L E 10.6

CHARACTER RIIAME'38, RIIKEY (3) 4 12
INTEGER LOHI (3)

RMKEY(1) = 'SIG-XX'
RNKEY (2) = 'SIG-YY'
RMKEY(3) = 'SIG-ZZ'
LOHI(1) = 7
LOHI(2) = 22
LOHI(3) = 1
CALL GMCARH (RIJAME, RllKEY, 3 , LOHI, 1)

The output name with right blank-fill will be

RIlAME = 'SIG-XXkSIG-YYkSIG-ZZ. 7 : 22'

Sectlon 10: SUPPLE M EN TAL 0 P ERATl O N S

!j10.7 DECLARE PAGE BUFFER POOL: GMPOOL

Entry point CMPOOL declares a Page Buffer Pool (PBP) for subsequent iise iir paged I j O
support. Refer to $2.3 and $4.6 of ref. 2 for details.

FORTRAN GMPOOL Reference

Calling sequence

I CALL CMPOOL (PB, LP. IIP) I
where all arguments are input:

PB

LP

N P

A n integer array di~nensioricd

L P * W + 2*IIP + 2 words

which will be used by the I/O manager as workspace for Page Buffer
Pool (LP*HP words) and Page Buffer Table (2*lI.JP words). Two
words are used to store protection data.

Page length in words. Must be an esact multiple of the internal
PRU size (52.2.4 of ref. 2) for optimal I/O efficiency. Best results
are generally achieved when LP is 4 to 16 times the internal PRU
(see Appendix D of ref. 2.)

If LP 5 0, the Page Buffer Pool (PHI’) tlcclaration is ignored, and
no diagnostics are given.

The number of pages in the buffer. AS a very rough guide, NP should
be of the order of 10 times the number of paged I /O devices that
may be siInultaneously active.

If IJP 5 0, the PRP declaration is ignored, and no diagnostics are
given.

REMARK 10.7

GMPOOL must be called before any paged 1 / 0 device is opened. A good place to put thc call is at
the start of the user program.

REMARK 10.8

Assuming that LP > 0 and 1IP 3. 0, CbIPOOL performs the following actions: saves LP and UP,
computes and saves the blank-common address of PB (\vtiich. tion.ever, does not have to be in
blank common), clears the workspace, and stores protection keys .

REMARK 10.9

Once the PB array is specified using CMPOOL, the user program shoiild nevcir tamper with it,. To
do so would simply invite disaster.

10-12

s10.7 DECLARE PAGE BUFFER POOL: GMPOOL

REMARK 10.10

At the 1 / 0 Manager level (ref. Z), this entry point is called DMPOOL.

c

10-13

Section 10: SUPPLEMENTAL 0 P E RAT1 0 NS

510.8 SET PROCESSOR SIGNATURE: GMSIGN

GMSIGN specifies the processor name that will be “signed” into all datasets created by
the user prograrti. The p r t x * t i w of a uniq~ic~ sigtliitttrt: is c~xI.rc:t~ic~ly important for high-
level operation of the NICE system, but less iiiiportant for rion-network systems that use
GAL-DBM.

FORTRAN Reference

Calling sequence

1 C A L L GMSIGH (PRHAME) I

where

PRNAME Character string containing the processor name. Up to eight char-
acters are perniit.ted.

REMARK 10.11

For ordinary NICE processors, this entry point should be cal1c.d once at Llie processor start,. The
name will be stored into all datasets then crealed by the processor.

REMARK 10.12

For NICE macroprocessors, it is usually preferable to let each component processor sign the
dataset it creates. In such a case there may be several calls to GMSIGN.

REMARK 10.13

If GMSIGN is never called, the processor-riame field in the Table of Contents is filled with question
marks.

EXAMPLE 10.7

Specify SKYPUL82 as processor name:

CALL GMSIGIJ (‘SKYPUL82’)

10- -- 14

$10.9 SUPPRESS OPEN/CLOSE MESSAGES: GMSOCM

$10.9 SUPPRESS OPEN/CLOSE MESSAGES: GMSOCM

Entry point GMSOCM may be used to suppress permanently or temporarily informative
messages printed by the 1/0 manager when opening and closing logical devices (gs6.2,
6.4).

Calling sequence

I CALL GMSOCM (14) 1
where M is the number of subsequent messages to be suppressed.

M If M > 0, suppress the next. M messages. For permanent suppression,
make M large, e.g., M = 10000.

If M = 0, print is restorecl.

REMARK 10.14

At the I/O Manager level (ref. 2) . this entry point is cilllctf DMSOCM.

10-15

Table
Information

Retrieval

11--1

Sectlon 11: TABLE INFORMATION RETRIEVAL

511.1 GENERAL DESCRIPTION

The Global Data Manager GAL-DBM provides a set of entry points that return state
information maintained in its internal tables. Entry points that return an integer value
are referenced as integer functions of the form LMxzz~, where zizz is a mnemonic identifier.
Entry points that return character information or integer arrays are referenced as CMszzz.

Table 11.1 lists, alphabetically ordered by the four letters of their name, entry points
which are described in $11.2 and following. IJsers should note that none of these functions
check for legal input arguments: the calling program is assurried to insure that. If invoked
with illegal argurri~tits, such as a n 1,111 out of range, thc roturned rcsrilt, will he meaningless.

REMARK 11.1

Information retrieval functions pertaining to error-handling, such as LMERCD, are covered in Section
14.

11-2

511.1 GENERAL DESCRIPTION

\

Table 11.1 Entry Points for Infor~nat~ioii-Retrieval
_____ -. - . _______

Ope rat ion Entry A rgu m c ttf s See
PO& -_ .__ _ _ __

Retrieve dataset creation date/time

Retrieve deleted dataset count

Retrieve library format

Retrieve dataset record keys

Retrieve LDI information

Retrieve active library devices

Retrieve dataset lock code

Retrieve dat ase t name

Retrieve library name

Retrieve number of datasets

Retrieve numlier of records

Retrieve nuniher of record keys

Retrieve dataset type code

Retrieve dataset update date/ time

CMCDAT

LMDEDS

GMFORM

CMGERK

GMLDI

GMLIBS

LMLOCK

GM I J AhlE

GMLtl AM

LMIIODS

LMIIORD

LM H 0 RK

LMTY PE

CMUDAT

LDI. IDSIJ, IDT

LDI

LDI, FORM

OP. LDI, IDSN, M K E Y ,
RKEY, NKEY, TRACE

LDI. FORM

LDILIB, I < , M

LDI, IDSIJ

LDI, IDSII, DSHAM

LDI. ED11

LD I

LDI, IDSIJ

LDI, IDSII

LDI, IDSII

LDI, IDSII, IDT

$11.2

$11.3

$11.4

$11.5

§11.6

$11.7

$11.8

§11.9

$11.10

$11.11

§12.12

$11.13

$11.14

511.15

11-3

Sectlon 11: TABLE INFORMATION RETRIEVAL

§11.2 RETRIEVE DATASET CREATION DATE & TIME: GMCDAT

Entry point GMCDAT returns the creation date and time (in integer format) of a positional
or nominal dataset.

FORTRAN Reference

Calling Sequence
,

Input Arguments

L D I

I D S M

Output A rgumetits

I D T

[C A L L CMCDAT (L D I , I D S H , I D T) 1

Logical Device Index of library device.

Dataset sequence number.

where IDT is a two-word integer array:

I D T (1) Creation date in YYMMDD

I D T (2) Creation t,irne in HHMMSS

If L D I does not point to a library device, or either argument is out
of range, the value rcturncd is nieaiiinglcss.

11-4

$11.3 RETRIEVE D E L E T E D D A T A S E T COUNT: LMDEDS

511.3 RETRIEVE DELETED DATASET COUNT: LMDEDS

Function LMDEDS returns the number of deleted datasets present in a data library device.

FORTRAN Reference

Calling Sequence

I NDS = LMDEDS (LDI) I

Input Arguments

LD I Logical Device Index of library device.

Function Return

LMDEDS Number of deleted datasets in the library (may be zero).

If LDI does not point to a library device, or is out of range, the
value returned is meaningless.

11-5

Sectlon 11: T A B L E INFORMATION RETRIEVAL

$11.4 RETRIEVE LIBRARY FORMAT: GMFORM

Entry point CMFORM returns a library format identifier given the Logical Device Index.

FORTRAN Reference

Calling Sequence

I CALL GMFORM (LDI. FORM) 1

Input Arguments

LD I Logical Device Index of library devicc.

Output A rgnme nts

FORM A character string (dimensioned a t least CHARACTER*G). If LDI is
not connected to a library device, or is out of range, a blank value
is returned. If the input LDI is connected to a library, FORM returns
one of the library format keys listed below.

DALPRO DALPRO compatible
GAL80 Positional GAL
GAL82 Nominal G A L

11-6

511.5 R E T R I E V E R E C O R D KEYS: GMGERK

511.5 RETRIEVE RECORD KEYS: GMGERK

GMGERK scans the Record Access Table of a noniinal dataset arid returns i i list of all record
keys presently in i t .

FORTRAN Reference

Calling Sequence

I CALL GMGERK (OP, L D I , IDSIJ, MKEY, RKEY, IJKEY, TRACE) I
Input Arguments

OP

LD I

I D S N

MKEY

TRACE

Output Arguments

RKEY

NKEY

Operation qualifier : presently igiiored.

Logical Device Index of library device.

D a t ase t sequence number.

Maximum nuiiiber of keys 1 hat can hc rcsturned.

Error traceback argument. Do not put a zero or a negative value
here; these values are reserved for internal use.

Character array containing ari alphabetically sorted list of NKEY
record keys.

Numbcr of keys returned (may he zero).

11--7

I Section 11: TABLE INFORMATION RETRIEVAL

i i l l .6 RETRIEVE LDI INFORMATION: GMLDI

Entry point CMLDI is similar to GMFORM if the given Logical Device Index is connected to a
library. If not, it returns a 4-character error key.

I FORTRAN Reference

Calling Sequence

I CALL GMLDI (LDI, FORM) 3
I Input Arguments

LDI Logical Device Index of library device.

Output Arguments

f

FORM A character string (dimensioned a t least CHARACTER*6). If the input
LDI is connected to a library, FORM returns one of the library format
keys listed below. If the LDI is not connected to a library or is out
of range, a four character error key is returned.

DALPRO DALPRO wtnpatible
GAL80 Posit,ional GAL
GAL82 Nominal GAL
ILDI LDI out of range
ItIDI LDI inactive
tILDI LDI active, not connected to a library

11-8

311.7 R E T R I E V E LIBRARY DEVICES: GMLIBS

$11.7 RETRIEVE LIBRARY DEVICES: GMLIBS

Entry point, CMLIBS returris i1 c o u n t of art,ivc> li l jrary r l ~ w i c ~ ~ ant1 il list of their Imgical
I)t!vict! Indices. I his cwt,r.y-poirit, rc!pIiic'w LMLIBS. ,.
FORTRAN Reference

Calling Sequence

Input Arguments

M

I CALL GMLIBS (LDILIB, K, M) I

The maximum number of libraries that can be active. Usually this
is the dimension of array LDILIB in the calling program.

Output Arguments

LDILIB A integer array of dimonsion M or greater. The Logical Device
Indices of the active libraries are storwl in the first K array locations;
the remaining (M - K) c1itric.s are set to zero. If no libraries are active
(K = 0), all 11 locatioris are cleared.

K Count of active library devices (may be zero).

Sectlon 11: TABLE INFORMATION RETRIEVAL

811.8 RETRIEVE DATASET LOCK CODE: LMLO<:K

Function LMLOCK returns returns the lock code for a tlatasct idcntifictl by st’qiimce number.

FORTRAN Reference

Integer Function Reference

Input Arguments

LCODE = LMLOCK (LDI, IDSII)

LD I Logical Device Index.

I IDSN D a t ase t sequence nu m her.

Function Return

LMLOCK Returns the dataset lock code; see Table 3.2 for details.

If LDI is not a library device, or if either argument is out of range,
the value returned is meaningless.

REMARK 11.2

Dataset locking is not fully implemented.

I

11- 10

fj11.9 RETRIEVE DATASET NAME: GMNAME

511.9 RETRIEVE DATASET NAME: GMNAME

Entry point GMNAME returns the stored name of a dataset given the Logical Device Index
of its owner library and the dataset sequence number. I t is prelerable to use GMCENT as
documented in 57.

FORTRAN Reference

Calling Sequence

CALL GMHAME (L D I , I D S I l , DSNAM)

Input A rgu men t s

L D I Logical Device Index of library device.

IDSN Dataset sequence number.

Output A rg u m e nt s

DSNAM A character string that receives the dataset name left-justified
blank-fill. Passed lengtli i s assumed; consequently, the name may be
truncated if the string length in t h e calling program is insufficient
to receive the full dataset name.

11-11

Sectlon 11: TABLE INFORMATION RETRIEVAL

$11.10 RETRIEVE LIBRARY NAME: GMLNAM

Entry point CMLNAM returns the external device name of a library file given the Logical
Device Index.

FORTRAN Reference

Calling Sequence

Input Arguments

LD I

Output Arguments

EDN

I CALL CMLNAM (L D I . EDN) I

Logical Device Index of lihrary device.

A character string that rcceives the external device name left-
jristificd blank-fill. I’asstd lcngt h i s assurncd; consequently, the
narIiC may be triiricatcd i f the string Icwgth in the calling program
is insufficient to receive the full device name.

11- 12

$11.13. RETRIEVE NUMBER OF DATASETS: LMNODS

511.11 RETRIEVE NUMBER OF DATASETS: LMNODS

Function LMNODS returns the number of datasets present in a library device. The count
includes deleted datasets.

FORTRAN Reference

Int ege r Function /le f e re ti ce

1 -NDS = LMHODS (LDI) I
I 1

Input Arguments

LD I Logical Device Index of library device.

Function Return

LMNODS Returns number of datasets in the library (may be zero).

If LDI does not point to a library device, or is out of range, the
value returned is meaningless.

11-13

Section 11: TABLE INFORMATION RETRIEVAL

$11.12 RETRIEVE NUMBER OF DATASET RECORDS: LMNORD

Function LMNORD rc4,urns t l i c ~iiitribcr of rt-cords i t i ;I posit i o i i a l o r 1ioliiitiilI dittasct,. This
entry - poi n t rep I ac. (3s LMREC S .

FORTRAN Reference

Integer Function Reference

I FIRECS = LMlIORD (LDI, IDSII) I

Input Arguments

LD I

IDSN Dataset sequence number.

Logical Device Index of library device.

Function Return

LMNORD The number of records stored in the dataset.

For positional datasets, this count always ezcludes the descriptor
record.

For nominal datasets, the count includes both ordinary records and
record groups.

If LDI does not, point to a library device, or if either argument is
out of range, the value returned is meaningless.

11--14

$11.13 RETRIEVE NUMBER O F RECORD K E Y S : LMNORK

jj11.13 RETRIEVE NUMBER OF RECORD KEYS: LMNORK

Function LMNORK ret,urns the number of record keys iii IISC for ;I giwii tioriiiiial dataset.

FORTRAN Reference

Int eg e r Function Ref e re nce

I IlRK = LMHORK (L D I , IDSII) 1
Input A rgu tn e nt s

LD I
IDSN Dataset sequence number.

Logical Device Index of library device.

Function Return

LMNORK Number of Record Access Packets in use.

If L D I is not a library device, or if either argument is out of range,
the value returned is nioaiiiiigless.

11-15

Section 11: TABLE INFORMATION RETRIEVAL

fj11.14 RETRIEVE DATASET TYPE CODE: LMTYPE

Function LMTYPE, referenced as an integer function, returns the da ta type code of a dataset
identified by Logical Deviccb Index arid sequcwce number. 'l'hc data typct is relevant to
DAL-conforming datasets only.

FORTRAN Reference

Integer Function Reference

ICODE = LMTYPE (L D I , IDSIJ)

Input A rgu m e nts

LD I Logical Device index.

IDSN D a t ase t sequence numb e r .
Function Return

LMTY PE Dataset type code.

If the LDI device is not a library, or if either argument is out of
range. the value returned is meaningless.

11-16

$11.15 RETRIEVE DATASET LAST-UPDATE D A T E & TIME: GMUDAT

511.15 RETRIEVE DATASET LAST-UPDATE DATE & TIME: GMUDAT

Entry point CMUDAT returns the last-update date and time (in integer format) of a nominal
dataset.

FORTRAN Reference

Calling Sequence

I CALL CMUDAT (L D I , I D S I J , I D T) I

Input Arguments

L D I Logical Device Index of library device.

I D S N Dataset sequence number.

Output Arguments

IDT where IDT is a two-word integer array:

I D T (1) Last-update date in YYMMDD
I D T (2) Last-update time in HHMMSS

If the L D I does not point to a library device, or if either argument
is out of range, or if the library is positional, the value returned is
meaningless.

REMARK 11.3

The date and time of last update is maintained in GAL82 libraries, brit not i i i GAL80 or DAL
libraries .

11-17

12
Copy Operations

I

12- 1

Sectlon 12: COPY OPERATIONS

512.1 GENERAL
Transfer operations involve copying datasets f rom olic library to another arid records from
one dataset to another. Entry points for copy operations are suiTiii i i irizfid ir i 'I'able 12. I .

12-2

512.1 GENERAL

?'able 12.1. Entry Points for Copy Operations

Operation Entry Arguments See

Copy by name

Copy nominal record

Copy by sequence

Copy indexed record

GMCOPII LDIS, DSMAME, LDID, IACT, 0, $12.2
TRACE

CMCOPR OPL, LDIS, IDSIIS, RNS, L D I D ,
IDSND, R N D , TRACE

GMCOPS LDIS, IDSNl , IDSNZ, LDID ,
IACT, 0, TRACE

$12.3

$12.4

GMCOPZ LDIS, IDSWS, IRECS, SIZR, OFFS, $12.5
LDID, IDSIJD, IRECD, TRACE

Copy arid rename dataset(s) GMCORD OPL, LDIS, DHAMS, IDSN , 512.6
LDID, DNAMD, TRACE

12-3

Section 12: COPY OPERATIONS

§12.2 COPY DATASETS BY NAME: GMCOPN

GMCOPN copies one or more datasets from one da ta library to another, or to the same
library. Datasets to be copied are identified by name. Copied datasets arc appended to
those existing in the destination library. The operation may be qrialificd to apply to active
or deleted datasets only.

FORTRAN Reference

Calling sequence

1 CALL GMCOPll (L D I S , DSHAME. L D I D , I A C T , 0, TRACE) I
where all arguments are input:

L D I S Logical Device Index of source library.

DSNAME Name identifying dataset(s) to bc copied. Often contains masking and
cycle-range specifications.

L D I D Logical Device Index of tlest.ination library. L D I D = L D I S is permitted.

I A C T D a t ase t activity qua 1 i fi e r :

1 Copy active dat8asets only.

-1 Copy deleted datasets only.

0 Copy both active and clelctetl datasets.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

R E M A R K 12.1

The fifth argument is present,ly inactive

R E M A R K 12.2

Datasets are copied on a record-by-record basis.

REMARK i2.3

If deleted dataset,s are copied, tlicy will be riiarkctl as tl(*lot8ed in thv d&inat#ion library.

REMARK 12.4

If the destination library contains datasets wi th riatiies rnatching t,hosr of copied elements, the
original datasets are marked as deleted.

REMARK 12.5

Copying indexed-record datasets from GAL to DAI, may result. i n loss of information, The loss
may include one or more of the following: long dataset keys, GAL-only TOC fields, descriptor
record.

12--4

$12.2 COPY DATASETS BY NAME: GMCOPN

REMARK 12.6

Named-record datasets can only be copied from a GAL82 file to another. If the destination library
is not GAL82, an error will result.

$12.1.2. GMCOPN Usage Examples

EXAMPLE 12.1

Copy all active datasets of library 3 to library 7:

CALL GMCOPN (3 . '*..': ' , 7 , I, 0. 2500)

EXAMPLE 12.2

Copy all active and deleted datasets of library 3 wliose key extension is FORCE to library 7:

CALL GMCOPN (3, '*.FORCE.* ' , 7, 0 , 0 , 2600)

12-5

Section 12: COPY OPERATIONS

512.3 COPY NOMINAL RECORDS: GMCOPR

GMCOPR copies a nominal record or record group from a source dataset to an existing
destination dataset. The destination record may be renamed. Datasets may be in the
same library or on different libraries.

FORTRAN Reference

Calling sequence

CALL GMCOPR (O P L , L D I S , I D S I I S , RNS. L D I D , I D S l d D , RIJD, TRACE)

where all arguments are input:

O P L Option letter string. Presently: K copy by key. W give warning message
if no records found.

Logical Device Index of source library.

Sequence number of source dataset.

Name of source record or record group.

Logical Device Index of destination library.

Sequence number of dest incztiori dataset.

Name of destination record or record group.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

L D I S

IDSNS

RNS

LDID

I D S N D

RIID

TRACE

812.4 COPY DATASETS BY SEQUENCE: GMCOPS

$12.4 COPY DATASETS BY SEQUENCE: GMCOPS

GMCOPS copies one or rnore datasets from one (lata library 1x1 a t i o t h r , or 1,o t I i c same library.
Datasets to be copicd are idcri t ifietl by soqiicii(~(~ rilllgc). (hpicd cl;~l.;rsc~ts :I IT appc?nded too

those existing in the destination library. The operation may be qualified to apply to active
or deleted datasets only.

FORTRAN Reference

Calling sequence

I CALL GMCOPS (LDIS. IDSN1, IDSlI2, L D I D . IACT. 0. TRACE) I

where all arguments are input:

LDIS Logical Device Index of source library.

IDS111
*

Sequence number of first dataset, to be copied. If zero, IDSNl = 1 is
assumed.

IDSNZ Sequence number of last dataset to be copied. lf zero, IDSNZ = IDSNi is
assumed. If IDSlJ2 exceeds the number of datasets in the source library,
the copy process stops at, the last dataset.

L D I D Logical Device Index of destination library. L D I D = LDIS is permitted.

IACT Dataset activity qualifier:

1 Copy active datasets only.
-1 Copy deleted dataset.s only.

0 Copy both active and deleted datasets.

TRACE A positive int,eger used as identifying label in error traceback prints.
Do not use a zero or negat.ive value here; these values are reserved for
internal use.

REMARK 12.7

The s i x t h argument is presently inactive

REMARK 12.8

Datasets are copied on a record-by-record basis.

REMARK 12.9

If deleted datasets are copied, they will be marked as deleted in the. destination library.
?

REMARK 12.10

If the destination library contains datasets wi th names matching those of copied elements, the
original datasets are marked as delet,ed.

12-7

Section 12: COPY OPERATIONS

REMARK 12.11

Copying indexed-record datasets from GAL to DA1, may result in loss of inforriialinn. The loss
may include one or more of the following: long dataset keys, (:AL-only ‘RN! ficlds, descriptor
record.

REMARK 12.12

Named-record datasets can only be copied from a GAL82 file t.o another. If the destination library
is not GAL82, an error will result.

EXAMPLE 12.3

Copy dataset 14 of library 3 to library 7:

CALL GMCOPS (3, 14, 0, 7 , 0. 0, 2500)

EXAMPLE 12.4

Copy all active datasets in sequence range 10 through -12 (inrlrisive) of library 4 to library 7:

CALL GMCOPS (3 , 10, 42, 7 , I . 0. 2700)

12 -8

512.5 COPY INDEXED RECORDS: GMCOPZ

$12.5 COPY INDEXED RECORDS: GMCOPZ

GMCOPZ copies an existing positional dataset record to another existing dataset. Source
and destination datasets may be in different libraries. The record rnay be appended to the
destination dataset, or overwrite an existing record. Record leiigth arid offset specifications
may be given.

FORTRAN Reference

Calling sequence

I CALL GMCOPZ (LDIS, IDSBIS, IRECS, SIZR, OFFS, LDID, IDSND, IRECD, TRACE) I

where all arguments are input:

LDIS Logical Device Index of source library.

IDSMS Sequence number of source dataset.

IRECS Source record index.

SIZR If nonzero, size of record to be transmitt,ed. If zero, the TOC size minus
offset will be used.

OFFS Dest,ination record offset. in words.

LDID Logical Device Index of destination library.

IDSND Sequence number of destination dataset..

IRECD I f .: 0, index of destination rccortl t,o be replaced. If -1, append record.

TRACE A positive integer used as identifyirig label in error traceback prints.
Do not use a zero or negat,iv:e value here; t,hese values are reserved for
iiiternal use.

12 9

Sectlon 12: COPY OPERATIONS

512.6 COPY AND RENAME DATASET(S): GMCORD

GMCORD copies frorn a library to another datawls that match a given liillnc, or a single
dataset a t a given sequence. source and destination library may coalesce. The copied
datasets may have different names. An input option permits restricting the copy operation
to active datasets, deleted datasets, or both. Generally invoked with wild-card keys or
characters in the name.

FORTRAN Reference

Calling sequ e nee
- - __ - - - - - __ - -- I CALL CMCORD (O P L . LDIS, D N A ~ ~ . IDSII , L D I D . DMAMD, T R A C E ~ - - - -__I__ ___

where all arguments are input:

O P L Options letter string.

A

D

= only active datasets will be copied
= only deleted datasets wi l l be copied

* ’ = all datasets will be copied

L D I S

DNAMS

Logical Device Index of source library.

If non-blank, name identifying dataset(s) to be copied. Often contains
masking and cycle-range specifications.

If DNAMS is blank, sequence number of source dataset.

Logical Device lndex o f dcstiiiation library. L D I D = L D I S is permitted.

If nonblank, specifies name of destination dataset(s). Usually has mask-
ing specs.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

I D S N

L D I D

DNAMD

TRACE

12 -10

13
Text Group
Operations

13-1

Section 13: TEXT GROUP OPERATIONS

513.1 GENERAL

A text group is a record group of card images. More precisely, each record of a text group
is a character string.

This Section presents entry points that operate on text grorips arid on t h e old-fashioned
positional text datasets. A summary entry point. list is providcd in Tahlo 1 3 . 1 .

13--2

$13.1 GENERAL

3

Table 13.1. Ent,ry Points for Text Group Operations

Ope rat ion Entry Arguments See
Point ___. __ -

Get Text Group CMXCET OP, L D I . 1DSI.I . RKEY. L U N I T . N X , TRACE $13.2

Put Text Group GMXPUT OP, L D I , I D S I I , RKEY, L U N I T , R L , TRACE $13.3

13-3

Sectlon 13: T E X T GROUP OPERATIONS

$13.2 GET TEXT GROUP: GMXGET

GMXGET copies a text datasct o r text group to a card-irnago F'OIUII A N-wadable, text-
editable symbolic &ita file.

FORTRAN Reference

Calling sequence

I CALL CMXCET (OP, L D I , I D S l l , RKEY, L U I I I T , MX, TRACE) I
where all arguments are input:

OP Options letter string. Presently:

H = write heading

V = use reverse video if LUIJIT = 0

W = print warning if nothing found

L D I

IDSN

RKEY

LUlJ I T

1IX

TRACE

Logical Device Index of soiirce library.

Sequence of dataset in wliich Text Group or Dataset resides.

If library is GAL82, name of Text Group to be copied, otherwise a
dummy blank argument.

Logical unit number of destinatiori FORTRAN file. If LUI\IIT>O, must be
open a t time CMXGET is called. If L U H I T = O . system print file is assumed.
GbIXCET does not close (or endfile) this file.

If 1, insert blank carriage cont,rol (1 X) when on LUIJIT>O.
LUIIIT=O or NX=O.

Ignore if

A positit-e integer used as ideiit if'ying lalwl i n error traceback prints.
I)o not iisc a zero or ricgativv value. hew; t,Iicso valucs are reserved for
i 11 tern a I i i w .

13.- 4

513.3 P U T T E X T GROUP: GMXPUT

$13.3 PUT TEXT GROUP: GMXPUT

GMXPUT copies a card-imago, F0R'I'R.A N-roacl;iI)l(~ (1;ltii l i l t* i r i1 .o a t l i j 1 ;I library, wI1c.w it
becoriies a text diltilscat (i f library is p(>siIrioliill I . (' . , l)Al, o r (;AIM)) o r i i I,VXI, group (i l
library is nominal - i . e . , GAL82). The file is copied until an end-of-filo (12OF) is found.

FORTRAN Reference

Calling sequence

I CALL CMXPUT (OP, L D I , I D S I I , RKEY, L U I I I T , R L , TRACE) I
Input Arguments

OP

LD I

I D S N

RKEY

L U N I T

R L

TRACE

Operation option letters. Presently,

F
Z

Make fixed-length-image text dataset (type 6)

First text group cycle will be zero if it is a one-line statement.

Logical Device Index of source library.

Sequence nuriiber of clatasclt that, will contain tlic. t,oxt group. Must exist
a t the time CMXPUT is called.

If library is GAL82, name of text group to he created, otherwise a
dummy BLANK argument.

Logical unit number of source FORTRAN file. Must be open at time
GMXPUT is called. GMXPUT does not close this file.

-4pplies to Type-6 text dataset or text, group only. If R L > O make stored
record length equal to RL characters (usually 80).

If RL=O, prescan L U l l I T image lengths itnd adopt minimum covering
rvord-aligned character courit . 'I'his process usually saves disk storage,
but takes longer to process.

A positive integer usctl as idcntifying labc~l i n error traceback prints.
Do not use a zero or iiegat i v c i \ ' i t 1 1 1 ~ I i c w ; thcw values are reserved for
in t,er ria I u sc .

13- 5

14
trror

Handling

.

14-1

Sectlon 14: ERROR HANDLING

814.1 GENERAL INFORMATION

Any GAL-DBM operation invoked through an entry point that contains a TRACE argument
may be aborted or only partially executed on account of error conditions detected within
GAL-DBM proper, by the 1 /0 Manager DhlGASP, or by tht. operating system.

This section covers error processing, explains error messages, and describes entry
points that NICE programmers may use to store and retrieve error-related information,
and to modify default error handling. These entry points are listed in Table 14.1.

R E M A R K 14.1

The term error, used in the present context,, means lack of siicccss ir i performing an action. A
more accurate word would be failure. However, we shall conform here to the commonly-used term,
error, because that usage is universally accepted and because failiirr has a11 extreme connotation.
Computer systems and baseball players commit errors.

R E M A R K 14.2
Much of this Section’s material parallels that of !$ in ref. 2. This similarity is not accidental,
as GAL-DBbI and the I/O h/fanager DhlGASP share t he si l i i i (’ error-t iai idl i i ig facilities. The
duplication is made in the interest of saving renders the trouble o f going back arid forth between
two manuals.

14- -2

514.1 GENERAL I N F O R M A T I O N

Table 14.1 Error-Handling Entry Points
- - . .-

Ope ration Etit r y A rgume ti t s S e e
Point -.__-_____

Identify user subprogram CMUSER SUBIIAM 514.4

Test error condition LMERCD IERR $14.5

Extract error information CMEINF OPL, IERR, EMSC, K $14.6

Retrieve 110 status LMIOST J 14.7

Defuse fatal errors CMEASY KERR $14.8

Specify error terminator GMETER UPCERR $14.9
. -_ .. __ __ --

14.- 3

Sectlon 14: ERROR HANDLING

$14.2 ERROR PROCESSING OVERVIEW

Err or C la s s i fi c a t, ion

The Global Database Manager GAI,-DnM finds 011 t a l ~ o u t c r ror condit,ioiis in three ways:

1. A validity check within GAL-DBM fails.

2. A validity check within t.he 1 / 0 Manager DhfGASP fails.

3. An error indication is received frorii the 1 /0 component of the operating system.

Regardless of source, GAL-DBM (or DMGASP) calls the central error nianczgernent sub-
routine DMSERR, which serves the whole of NICE-DMS. DMSERR first logs a short message
on the error print file (normally unit, 6) . These error messages are listed and explained in
514.2.

Next, errors are classified into three types:

Warning-only. Control ret u rns tjo the call ing
user program may, at this poiiit, inttlrrogaic
propriate action.

Fatal. Program execution is terIriiiiated after

1 .

2.

progra r i i , a 11 d cxecu tioii continues. The
as to t h o ('rror condition, and take ay-

more detailed printout. If the user pro-
gram has specified an error-termination routine, DMSERR calls it,. (Error termination
routines are useful for cleanup operations such as buffer-flushing and file closing.)

3. Catastrophic. The run is aborted immediately. Even i f an error-termination routine
has been specified, it is not called.

Catastrophic errors are those that may reflect serious problems in the user program logic.
For example: destruction of internal tables caused by array overspill. For obvious reasons,
this error type is not controllable by the user program or affected by the run environment.

Classification of noli-catast ropliic errors into Lit i l l and wiirrlillg-ollly depends on three
factors: the run environment, user-program speczficcl~iot~s, and operation contest. If the
user program has specified nothing, thc IORI IISCS 1'1111 e i iviror i incnt arid opclration context
as classification criteria:

Interactive Run. A non-catastrophic error i s t r c a t (d iis jvarriirig-only, urilcss a total error
count maintained b y DMSERR exceeds an interiialll set l i r ~ i i t (usually 5 0) . If the error count
limit is exceeded, a fatal error exit is taken.

Batch Run. A non-catastrophic error is treated as fatal for niost operations. Exception to
this rule involves errors detected by print routincis (e . q . , "list 'I'OC"). as t8hese are generally
harmless.

How does NICE-DMS know about the run environrrient? On first entry, it queries the
operating system for such information, and savcs t hc ansvt'r in its internal tables.

14-4

$14.2 ERROR PROCESSING OVERVIEW

The preceding “default” treatment can be modified, within certain l i~nit~s, by the user
program through entry points CMEASY (5 14.8) and GMETER (5 14.9).

14- 5

I Sectlon 14: ERROR HANDLING

Error code An integer value which is set to a nonzero value when an error
condition occurs.

Error key A four-letter character string that> uniquely specifies the error type.

Error message The diagnostic text placed by DMSERR on the error print file.

Error truce stack The ETS is a data structure optionally Inaintained by NICE-DMS,
and which records the tree of internal calls. (The presence or ab-
sence of ETS depends on parametrization of the GAL-DBM and
DhlGASP hlaster-Source-C:ode preprocessing prior to compilation.)

ria status An integer value. or set o f integer values. returned by the operating
system to identify crrors detc*ctt!d i t i a 1 1 1 / 0 transaction. The I/O
Manager saves this valuc (or va1ut.s) in an internal array.

14- G

514.3 ERROR DIAGNOSTICS

$14.3 ERROR DIAGNOSTICS

Error Message Format

Error messages issued by DMSERR are of the form

DM Subnam: EKEY. diagnostic text

where Subnam is the name of the siibroutine that calls DMSERR (often tlie same subroutine
that detected the error), EKEY is a four-letter crror key, arid “diagnostic text” is a short
explanatory message. This message may be followed by one or two additional lines that
furnish additional details such as the 110 status value.

Note the disappearance of error code ttunibers from the message. In t h e present NICE-
DMS, error codes have less importance than in previous versions.

List of Error Messages

All possible DMSERR error messages are listed below in key-alphabetical order. Those
labeled as “IOM level errors” are native to DMGASP and included here for the reader’s
convenience.

In the following messages, items in i t d i c s dcnote variable names or numbers that are
printed as part of the error mcssage.

CFDS, Cannot find dataset

An operation was specified on an individual t l a t , i ~ (~ t , which was not found in tlie library.
This error cannot happen with operatioris such as “Find tlat8aset” or “Match dataset”)
which explicitly return an absence indicator. For most situations, this error is viewed as a
warning-only error.

C R T B , Character record too big

A character record to be read or written through GIv~OVEC, GMPORC or GMPOWC,
exceeds the size of GAL-DBM buffers that take care of byte addressing.

DCLE, Device close error, file: File n a m e

lOhP level error. The operating systerii has rvport ot l an v r r o r during a device-close op-
eration. This error is a very unusual cotidit ion. ‘I’lack t l i ~ 1,’U stat,iis code for further
de t ai Is.

DCOE, Device connect error, filc: Ft le ucrtne

IOM level error. This error can only occur for ITAX ’\‘AIS Illock I;O tlt.vices and is very
unusual. The RMS level has reported an error condition when trying to carry out a
file-connect service. Track the 110 status code in to the IlRIS hlaiiual for further insight.

14--7

Sectlon 14: ERROR HANDLING

DEXE, Device extend error, file: File m i n e

Not presently active; reserved for fu t u rt> inip 1c.r 1itw t a l , ioris.

DINE, Device inquire error, file: File t m n e

IOM level error. A device-existence query pt:rforIried tlirougli a FOlt’L’ftAN INQUIRE
statement caused an error return. Not a common one.

I DIRO, Device is read-only

IOM level error. A write-record operation W R S attcinpted oti a device olwricd in read-only
mode. The operation is ignored.

~

DNCL, Device not connected to library

The Logical Device Index (LDI) specified in the call to an GAL-DBM entry point is active,
but is not connected to a library device.

DNDA, Device is not direct access

The device t.ype index (TYPEX) in a Gh4OPEN call is negative. Negative TYPEX values
are used to request sequential-access devices a n d are therefore illegal for holding da ta
I i braries.

DN WA, Device is not word addressable

The ext,ernal PR.U size parameter (X P R U) i n a GMOF’EN call to open a CiAL device was
greater than 1. GAL devices must be word-addressable, so the only valid XPRU are 1, 0
or -1 (read 55.3.1 for details).

I DOPE, Device open error, file: File name
I IOM level error. A device-open operation failcd. This is a coinrnon error, especially in

interactive work. If declaring an existing (OLD) file, the most likely causes are:

1. Illegal file name.

2. File does not exist.

3.

4.

If file is created by the open operation (NE\1’ or SCItA’I’CII):

I. Illegal file name.

2.

File is write-locked by the iiscr program, or ariotlier program.

Access perrriission denied by file owner.
I

On some operating systems such as Cf)c’*s NOS: f i l ~ iiatnc duplicates that of ari
existing catalogued file.

3. On VAX: file creation was attempted 011 a dircctorp t ha t denies writc permission.

If the error cause is not evident, look up the status code printed on the next line in the
appropriate system manual.

I 14-8

614.3 ERROR DIAGNOSTICS

DOVF, Device overflow

IOM level error. An write-record operatmion would have excceded the device capacity limit.
, The operation is aborted.

DQEX, Disk quota exceeded

IOM level error. A write-record operation is ahort,ctl hy tho operating system as the disk
quota would be exceeded (VAX).

DSCX, Dataset capacity exceeded

Installation of a new dataset would overflow the TOC capacity (approxirnately 1800
datasets). As this limit is more than enough for practical applications, this error is likely to
be caused by an infinite dataset-creation loop in the user program. Thus, it is considered
a catastrophic error.

DSNT, Dataset is not text

A get-text operation using GMGETX names a dataset which is in the library, but is not
a text dataset.

DTNA, Device type not available

A device type is not available on the IOM vcwion being used.

DTNC, Device type not creation's

A library device resident on a disk file was created with one TYPEX and reopened with
another. For example: creation TYPEX = 3 (FORTRAN 11'0) and reopened with TYPEX
= 0 (Block I /O). This error will be reported only if GAL-DBM was able to read the library
header record (in which the creation's TYPEX is stored) despite the TYPEX mixup. For
certain combinations, however, an error will occur at the operating system or FORTRAN
Run-Time Library level; in such a case the 110 Manager will report it as DOPE, Device
open error. For example, 011 the VAX or Uiiivac a FORTRAN file can I)e read with Block
I /O, but the converse is not true.

FACD, File already conncctod t o otlicr LDI

A device opened with OLD status is already active on ; t r io l l i v r LDI. 'I'll(> device-open is
aborted. Declaring on the aonze LI)I is pcririitfcd. t i o n w c > r . iis the prcwious device is
automatically closed. Declaring N E W or S C I ~ ~ ~ ' l C 1 1 is also ptwiiitted 011 computers like
the VAX, as the system simply increments the file cycle 01 vfv ion number.

4

%
FNGD, File not GAL or DAL

GMOPEN has been directed t,o open an existing file, but tlic file is not, ii library. This is
noted from a header prescan. The file is closcd, and the I,J)I remains inactive.

Sectlon 14: ERROR HANDLING

ILDP, Illegal device position

IOM level error. The result, o f a positioning opcral.iori via l)Ml’OS‘l’ or 1)Ml’AST would
result in the new device position being eitlicr ric’gilf ivo or o v ~ thc tlovicc. capacity limit.
The new position is not stored.

ILDI, Illegal LDI

1/0 Manager or GAL-DBM level error. A Logical Device Index (LDI) is outside the legal
range 1 through 16. A very common error in interactive work.

ILDS, Illegal dataset name Dsnarne

A dataset name does not comply with the rules stated i n 52.

ILOI, Illegal OPTX index

IOM level error. The device-assignment options index (OPTX) supplied to either DMOPEN
or DMDAST is outside the legal range -6 to +14. The device-open operation is aborted.

ILOP, Illegal operatmion

An illegal operation key was supplied in thc calling sequcncc! of Suhttanz.

ILRS, Illegal record size

IOM level error. The size of a record presented to a record-transfer entry point is zero or
negative.

ILSN, Illegal sequence number

The sequence number supplied to C;AI,-L)HM is out. of bounds.

ILTI, Illegal type index

I IOAl level error. The device type index (TYt’EX) presented to DMOPEN or DMDAST is
outside the legal range -4 to + 5 .

ILXP, Illegal external PRU

1OA.i level error. An external PRIJ size prcsoritcd i o 1)hIOI’b~N or DM1,AST does not
exactly divide the internal PRU size (e.g. , illternat PI{[- I28 words, cxternal PRU 24
words). This can never happen if the ~\~or.tl-~ddressa~.,le default is used, which is the
recommended setting.

INDI, Inactive LDI

IOM level error. An 1 / 0 operation is atteniptcd on a tlevict that has not been previously
opened.

14- 10

$14.3 E R R O R DIAGNOSTICS

LDTD, Logical Device Table destroyed

IOM level error. A protection key stored in front of the auxiliary storage tables has been
destroyed. This is considered a catastrophic error.

LDTF, Logical Device Table full

IOM level error. Open-device request refused because all 16 slots in the Logical Device
Table are in use.

MIRE, Miscellaneous read error
MIWE, Miscellaneous write error

IOM level errors. These are "catch-all" errors for data-transfer situations that cannot
be easily categorized. Typically the following happens. The J/O Manager instructs the
operating system or FORTRAN Runtime Library to move a particular record, and back
comes the reply: that it cannot be done. There may he many reasons behind the refusal,
ranging from hardware malfunction to poor software. If the cause is not immediately
apparent, and usually is not, the recommended path is to write down the 1/0 status code
printed on the next line on a piece of paper, and proceed to consult the appropriate system
manual.

MROL, Modification of read-only library ignored

An operation that would have modified the contents of a library attached in read-only
mode has been attempted and caught at the GAL-DBM level. For example, marking a
dataset as deleted. The operation is ignored.

NRFD, No room for descriptor

An attempt was made to install or modify a descriptor record in an indexed-record dataset,
but there is no space to do so. The operation is skipped.

ODDS, Operation on deleted dataset

An operation was specified on a sequence nuniher that corresponds to a deleted dataset.
This is an error only when a specific sequence number is prescribed, for example: find
record 5 of dataset 124. It does not apply to sequence range operations (e.g., list datasets
30 to 5 5) , in which deleted datasets are automatically ignored.

PBPD, Page Buffer Pool destroyed

IOM level error. A protection key stored in front of the Page Buffer Pool has been altered.
This is considered a catastrophic error.

RBEI, Read beyond end of information

IOM level error. A read operation through DhiREAD or DMRAST specifies a record that
extends beyond the end of information (NEXT). The operation is ignored.

14 -11

Section 14: ERROR HANDLING

RBTS, Record buffer too small

The size of the GAL-DBM utility buffer is insufficient to do certain high-level operations.

RODS, Read outside dataset Usname

A read-record operation would fall partially or completely outside the boundaries of the
active dataset. Faulty positioning or incorrect record size is usually to blame. The read
operation is skipped. A very common error.

SONA, Sequential operation not available

IOM level error. An operation other than open or close has been specified on a sequential-
access device, i .e . , one opened with a negative TYPEX.

TMOL, Too many open libraries

The number of simultaneously active library devices exceeds an internal parameter (nor-
mally 8). The open request is ignored.

WODS, Write outside dataset Dsnanae

Same as RODS, but now it applies to a write-record operation. Commonly caused by
trying to append data to a “closed” dataset,.

14-12

I '

814.4 IDENTIFY USER SUBPROGRAM: GMUSER

§l4.4 IDENTIFY USER SUBPROGRAM: GMUSER,

FORTRAN Reference

Calling sequence

I CALL GMUSER (SUBNAM) I

where

SUBNAM A character string of up to eight characters that identifies the user-
program subroutine (normally the subroutine name).

REMARK 14.3

This name will appear at the "base" of E'rS (Error Trace Stack) printouts.

REMARK 14.4

At the 1/0 Manager level, this entry point is known as DMUSEII (56.3 of ref. 2), which has
identical effect and the same calling sequence.

REMARK 14.5

Before a n y call to GMUSER (or DMUSER) is made, NICE-I)hfS assurnes USRPRG as ETS-base identifier.

EXAMPLE 14.1

SUBROUTIlJE OPEMDL (L D I , FILHAM, . . . 1

CALL GMUSER (' OPEIJDL '

CALL GMOPEII (L D I , FILIJAM, . . .)

RETURIJ
END

14--13

Sectlon 14: ERROR HANDLING

$14.5 TEST ERROR CONDITION: LMERCD

Entry point LMERCD, referenced as an integer function, furnishes the means of testing for
error conditions after a error-sensitive refcmx1c.c to t h 1 / 0 Miiriagor.

FORTRAN Reference

Function reference

I IERR = LMERCD (IERR) I

If an error condition has been detected in the previous IOM operation, a nonzero value is
returned as both argument and function value. The double setting facilitates the use of
LMERCD in conditional branching statements such as

IF (LMERCD(K0DE) .WE. 0) CALL ERROR (KODE)

REMARK 14.6

There is no longer any significant correlation between the error code and a specific error type. On
the contrary, the relation will frequently vary as iiew error conditions are introduced in NICE
DMS, because these are internally sorted (by an ad-hoc Inhl~~-t~i~i lding program) alphabetically
on the error key. The error code serves only thvo purposes: indicates the presence of error by
a nonzero value; and works as a “hook” for retrieving error keys and messages through GMEINF
($14.6).

14--14

$14.6 E X T R A C T ERROR INFORMATION: GMEINF

\

~

i

$14.6 EXTRACT ERROR INFORMATION: GMEINF

Entry point GMEINF is used to extract tlie w r o r key atid error triessag(’, giveii the error
code.

FORTRAN Reference

Calling sequence

I CALL GMEIFlF (OPL, IERR, EMSG, K) I

where the input arguments are:

OPL Operation letter. Currently M to return error message in EMSG.

IERR Error code returned by LMERCD.

and the outputs are:

EMSG A character string that receives the error key in its first 4 locations,
followed by a cornrna and a diagnostic message. The total length of tlie
text string is returned in K. If IERR is zoro or is not a proper error code,
ESMG is blanked and K set to zero.

K The length of the message returned in EMSG. If t8he passed length of EMSG
is insufficient to hold the whole message, it is truncated to that value,
and K set to LEN(EMSG1.

REMARK 14.7

In most cases the user program will be interested only i n retrieving and testing the error key. The
following illustrates a typical construction that t,ests for a device-open error.

CHARACTEW4 KEY

CALL GMOPEIJ (L D I , EDIJAME, DDPARS, LBTYP , 2000)
I F (LMERCD(1ERR) . N E . 0) THEIJ

CALL GMEI11F (’Id’ .IERR, K E Y , K)
I F (KEY . E q . ’DOPE’) THEIJ

END IF
EllD IF

14---15

Sectlon 14: ERROR HANDLING

514.7 RETRIEVE 1 / 0 STATUS CODE LMIOST

Entry point LMIOST, referenced as an integer fiiiiclioti, rc%tririis a I/O status code in effect
since the last 1/0 operation.

FORTRAN Reference

Function reference

I ICODE = LMIOST (J) I

where

J Index to the 1/0 status array maintained by the I/O manager. Normally
J = 1.

LMIOST J-th entry of the I /O status array.

I REMARK 14.8
These values are not only machine-dependent, but, depend on wlwt,tier FORTRAN 1 / 0 or Block
1/0 was used. In the case of FORTRAN I/O, the FORTRAN 77 standard (see ref. 7) describes
a few details about 1/0 status codes.

14-16

$14.8 DEFUSE FATAL ERRORS: GMEASY

$14.8 DEFUSE FATAL ERRORS: GMEASY

Entry point GMEASY (named after “take it easy”) may be used to specify that the following
fatal errors are to be treated as warning-only.

FORTRAN Reference

Calling sequence

1 CALL CMEASY (KERR)]

where

KERR If KERR > 0, treat next KERR fatal errors as warning only.
If KERR is zero, the standard error treatment of fatal errors is enforced.

If KERR < 0, treat next IKERRl fatal errors as warning-only and suppress all
diagnostic messages. For experienced programmers only.

REMARK 14.9

Each entry to DMSERR counts as one error for the purposes of decrementing KERR.

REMARK 14.10

This entry point is primarily useful for batch runs

REMARK 14.11

The treatment of catastrophic error conditions is not affected.

REMARK 14.12

At the 1 / 0 manager level, this is called DMEASY.

14-17

Section 14: ERROR HANDLING

514.9 SPECIFY ERROR TERMINATOR: GMETER

Entry point GMETER may be called to specify an error terrriination routine to be called in
the event of a fatal error termination.

FORTRAN Reference

Calling sequence

I CALL GMETER (UPGERR) I
where UPGERR is the name of the error termination routino. This iianie niiist be declared
EXTERNAL in the subprogram that calls UPCERR.

In the event of a fatal error condition, DMSERR calls DMFATE, which checks whether an
error-termination routine has been specified via GMETER. If so, it issues the equivalent of
the calls

CALL UPCERR (* NICE-DMS * , EKEY)

where EKEY is the error key.

R E M A R K 14.13

UPGERR must not execut<e a RETIJRN. It will bci fritilc, anyway. i l s t,he next statement, in DMFATE
is a call t.0 unconditionally abort the run.

R E M A R K 14.14

UPGERR should not call DMSERR or DMFATE

R E M A R K 14.15

At the 1 / 0 manager level, this entry point is called DWETER.

14-18

15
References

15-1

Sectlon 15: REFERENCES

1. Felippa, C. A.: Architecture of a Distributed Analysis Network for Computational
Mcchanirs. (hn iputers arid ,Slrrrcturcs, v o l . 13, 1!)8 I , pi'. 406-4 13.

i
2. Felippa, C. A.: The Cotnprrtcltion.cd Slrttclttral A.lechurtics Testbed Archil erture: Vcd-

utne V - The Input-Output Manager DMG'ASP, N A S A CK-178388, 1989.

3. Felippa, C. A , : Database Management in Scientific Computing, 11: Data Structures
and Program Architecture. Computers and Structures, vol. 12, 1980, pp. 131-145,

4 . Felippa, Carlos A.: The Conaputationnl Structural hlechnnics Testbed Architecture: I

Volume I - The Language. NASA CR-178384, 1988.

5. Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
I'olume I I - Directives. NASA CR.-lT8385, 1989.

6. Felippa, Carlos A.: The C'ontpntationnl Structural i\lechnnics Testbed Architecture:
Volume III - The Interface. NASA CR-178386, 1988.

7. Loden, W . A.: The N I F T Y Standard: 1;olume I1 - Dataset Templates. Report No.
LAISC-DO59188, Lockheed Missiles and Space Company, Sunnyvale, CA, June 1982.

8. Programming Language FORTRAN, ,4NSI S.9.9-1978. N e w I'ork: Anierican National
Standards Institute.

15--2

APPENDIX
GLOSSARY

Appendix A: GLOSSARY

The following quick-reference list collects ternis and acroriyiris that, oftcii appear in the
present documeri t.

Access method

Active dataset

Addressing

Auziliary storage

Block

Block I /O

Catalogued f i l e

Closing (a device)

Core device

Current device locd ion

Data

Database

Database manager (DBM)

The set of procdures for arcc:ssing and 1 ransferring da ta
structures from a residence medium to another. In the
literature, the term is often used in relation to stored data-
bases.

The dataset specified in the last reference to a record-level
operation.

The procedure by which a storage address a t which a sub-
sequent act,ivity is to take place is specified.

Storage facilities of lower cost and slower access than main
storage; generally connected to the central processor by
data channels.

A generic term that denotes a string of storage objects such
as characters, words, PR,Us, etc., which are considered as
a storage unit for some purpose.

An Input-Ou t put process that involves direct (unbuffered)
transfers of blocks of data between main storage and a disk
volume. Available from many operating systems through
special service entry points.

Sperry terminology for permanent files whose names are
maintained by the system on a Master File Directory.

See device closing.

A word-addressable, scratch device that resides on blank-
COITlfllOll St,Or;lgt’.

A storage atltlrcss maintainwl hy t.hc 1/0 h?lanager for each
active logical device, and which identifies the location at
which the next read or write operation is to take place.

Information recorded on a storage device.

An organized collection of operational data needed for the
completion of an activity. The term is usually reserved for
activities a t the task or project level.

A data management system that interfaces a database
with its user environment.

A-2

(14.9 SPECIFY ERROR TERMINATOR: GMETER

Data library A named partition of a, database.

Data management system A software module that centralizes activities pertaining to
the manipulation of a class of data structures.

Data manager

Dataset

Dataset block

Dataset descriptor

Dataset record

Duta space

Datu structure

Descriptor

Device

Device closing

Device declarutioti

Device opening

The decision-making component of a data management,
system.

A record, or sot of records, t.hat is a named element of a
data library.

In a DAL-file organizat,ion, a block of machine words trans-
mitted to and from a dataset through Block 1 / 0 requests.
A 1)ALdatasct block may contain one or rnore logical
records. Thc) distinctioil hetwecn blocks and records is
important in DAL files because of the presence of inter-
record “gaps”.

In CAL-file organizations, which are word-addressable,
the distinction between blocks and records disappear.

An optional character record stored in a CAI, dataset, and
which contains descriptivc information about its contents.
In an indexed dataset, the descriptor is st,ored ahead of
the dataset proper, arid is assigned record index 0. In a
nominal dataset, the descriptor may be stored anywhere.

An array of Inachine words characterized by physical ad-
jacency within a dataset, and identified by index, or (key,
index) pair.

See storage space.

A set of interrelated data ol>,jects viewed as a single logical
entity.

See dataset d e s c r i p t o r

See I,/O d e v i c e . logical dvtu’ce.

A process b j wliicli facilities assigned to a logical device
are released (returned) to the operating system. A freed
device is inactive. If t h e device was opened as a scratch
device, its conicrits disappear.

See device opening.

A--3

Appendix A: GLOSSARY

Deuice option inner (OPTX)

Device type index (TYPEX)

Direct-access storage

DMGASP

I Dynamic

Ext e nt

External detv’ce name

External f i l e name

External PRU

Facilities

File

File name

Flushing (a data library)

requested to the operat.ing systcrii. A n open device is said
to be active.

An index that chnrncterizt~s perrtiaiicncy arid accessibility
attributes of a logical device a t time of opening.

An index that describes residence and granularity at-
tributes of a logical device a t time of opening.

A type of storage that is capable of processing da ta a t sep-
arate locations without, passing over the intervening data.
Also known as rotidom-access storage, connoting the prop-
erty that items of data can be stored or retrieved eificiently
in a random order.

The 1 / 0 Manager iniplemeiit~ed for NICE-DMS.

A qualifier applied to certain actions, such as the declara-
tion and freeing of storage facilities, which are performed
on command from a running program. (Contrast to static,
in which sucli actions are performed bcfore or after run-
ning the program.)

A contiguously-addressed storage region; also the size of
any such region.

The symbolic identifier of a logical device given to the 1/0
manager by the user program. For disk-resident devices,
this identifier contains the external file name, and often
is simply the file name. T h e external device name is only
used at device declaration I iiiie; from then on the device
is identified by itas Logical Device Index (1,DI).

The identifier by which facilities for residence of a file
structure arc’ requested to the operating system.

The Physical Record Unit. (P I t U) by which the user of the
1 /0 manager addresses a direct-access logical device.

The idtmt,ifier(s) hy w1iic.h a logical file is known to the
operating system.

The process of writing altered header/TOC: buffers to a

A-4

$14.9 SPEC IF Y ERR 0 R T E R M IN A T 0 R : GM E T E R

library file to ensure conformity of contents.

Global Access Library (GAL)

Global database

Hardware PR U

Indexed record

In for mat ion

Information structure

I/O Device

I/O Manager (IOM)

hternal f i le name

Internal PRU

Library

Local database

Local f i l e

Locat ion

The standard data-library organization marlaged by GAL-
DBM. I1 is a direct-access file organizatioii characterized
by word-addressing, data descriptors, VAX-like dataset
identifiers, indexed- or named-record access, and clear sep-
aration of logical and physical daba description levels.

A database residing on permanent storage, and which is
accessible by a network of communicating programs.

A Physical Record Unit (PRU) that corresponds directly
to t,he mechanical and/or electronic access characteristics
of the storage medium.

A dataset record identified by its position within the
dataset.

Quantifiable know ledge.

An organized collection of iriforrnation viewed as a logical
entity.

A storage device connected to the central processor by a
data channel.

The component of a multilevel data management system
that is responsible for the access method.

The identifier by which a file structure is referenced by a
running prograrn. I t is linked to the external file name
(and t,he Logical Device Index) at time of opening.

The I’ll C1 sizc. usccl hy t Iio l /O rr1;lnagc.r for requesting
physical-record transfers. For Block 1 / 0 devices, it co-
incides with thc hardware l’ll!l. For POR‘I’RAN J/O de-
vices, it is the Fixed Record Length declared for direct-
access devices.

See data library.

A database atstached to a running program, and which
disappears when t he program stops.

CDC terminology for temporary f i l e ,

An addressable component, of a storage device.

A-6

Appendix A: GLOSSARY

Logical device

Logical Device Index (LDI)

Logical Device Table (LDT)

Logical f i le

Logical name

Logical record

Logical unit

Main storage

hf a n age r

Mass storage

Named record

Nominal dataset

Online storage

Open (a device)

Page Bufler Pool

I

Paged I/O

A partition of an I/O device that is managed as a logical
entity for resource-allocation and administ3ration purposes.
For auxiliary storagts devices, the term is equivalent to
logical f i l e .

An integer that identifies a logical devicc? entered in the
Logical Device 'L'ahle (LD'T) of the 1 / 0 manager.

A table of logical devices maintained by the 1 / 0 Manager.

The description niechanism by which logical devices re-
siding on auxiliary storage are iriariaged I)y the operating
sys tern.

DEC term for internal f i l e name.

A record st,ruct.ure as seen by the applications program-
mer.

The mechanism by which the applica.tions program(mer)
refers to a logical file.

Random-access storage facilities hardwired to the central
processing unit, and may be referenced hy machine-code
addresses.

A soft.ware clement, that, i s primarily engaged in the ad-
ministration of coinpu tin g resoii rces.

CDC term for online, largc-capacity auxiliary storage fa-
cilities allocatable for public use.

A dataset record identified by name.

A dataset that, consists o f named records.

Storage uIidcr direct control of the central processing unit.

See dev ice opening.

An area of main storagc set aside for the realization of
Paged I /O.

An in~pletricrilat,iori of h i i l f t w t l 11'0 i n wl~ich data trans-
fers Iwtiveeri t h c . user-pr.ogi.alr1 workspacv and a n auxiliary
storage device take in to accounb the prescnce of a Page
Buffer Pool in main storage.

A-6

$14.9 SPECIFY ERROR TERMINATOR: G M E T E R

Permanent f i l e

Permanent f i le name (PFN)

Physical device name

Physical f i l e

Physical record

Physical record unit (PRU)

Positional dataset

Positioning (a device)

Random-access storage

Record

Record Access Table

Record Group

Scratch f i l e

Sector

Sequential-access device

A file structure that survives the exectition o f the process
that created or modified it. A permanent file exists until
it is specifically t l t ~ l (~ t c d t)y its o w n w , o r (i f lapsed) by the
operat i ng s y s t t i i 1 I .

CDC term fo r ex te rna l f i l e name of a catalogued file.

DEC term for e z t e r n d f i l e name

An area or set of a.rcas of main or auxiliary storage nian-
aged by reference to a common identifier.

A record structure as presented to the operating system
services.

The addressing unit “granule” for direct-access devices.
Varies according to iisage level: see ex te rna l PRU, hard-
tunre 1’111J. iv ter t tcr l 1’111’. scctor.

A dataset that consists of indexed records.

The insertion of a storage address into the Logical Device
Table to update the current device location.

See direct-access storage.

A set of data items characterized by physical adjacency,
which constitutcs the basic transaction u n i t in the trans-
mission of data between main and auxiliary storage.

A directory of records held within a norriinal dataset.

A set of naiiied records of identical length and da ta type,
resident in tlici Sittllt‘ norllinill tlat aset, and which are iden-
tified by a coiiitriori kt>y i I I I (I iI rionerripty cycle range.

A file structiirc t h a t disappears when the process that cre-
ated it stops, or when the file is explicitly closed.

The smallest addressahlo unit by the operating system on
a rotating direct-access storage device such as drum or
disk. It may be a true equipment, characteristic (in which
case it coincides wilh a Iiardware PRU) or the result of
simulation by the operating systeni.

A type of st,orage i n which t t i c data can be accessed only
by followiiig the order in which i t was stored.

A-- 7

I
Appendix A: GLOSSARY

Spanned record

Storage

~

Storage address

Storage device

Storage pe r iph e ral

Storage space

Storage unit

Table of Contents (TOC)

Temporary f i l e

Text dataset

Track

Unit

Volume

Word

A record buiIt,-iip a s a seqiitwce o f hlock writes, and which
can be read back as a singlc record with no internal gaps.

Any device that is capable of retaining information over a
period of time and of delivering it on reqriest.

A label, name, or number that identifies the place at which
data are recorded on a storage device.

A subset of the storage facilities that is treatpd as a.n oper-
ational cntity for piirposos of' nlloc,ating o r releasing stor-
age rcsourcc's during the execution of a riin or process.

A readily detachable part of tjhe storage facilities; for ex-
ample, a magnetic tape unit or a removable disk volume.

The region allocated or attributed to a storage device or
a logical partition thereof. The size of a storage resource.

See storage space.

A directory of datasets maintained in a da ta libra.ry. Phys-
ically, the TOC is a matrix-like arrangement of informa-
tion that is split into segments for paging purposes.

A file structure that disappears when the job that cre-
ated it terminates, or when its facilities are released. (On
Inany syst8ems, tcniporary and scratch filcis are indistin-
gu i s h a b I e.)

A dataset that stores card-image information.

The portion of a meclianical storage device such a drum,
disk, or tape, which is accessible to a given read/write
stat ion.

See logical t i n i t , stornge uu i t .

The storage space associated on a one-to-one basis with a
separallle seg~nent of the storage facilities; e . g . , a magnetic
tape reel, riiountable cart,ridge or disk drive.

The standard main-storage allocation unit for numeric
data. Convcnt ionally. it word holds a single-precision
floating-point. value. (Tlowevc~r. this charact(erization is not
universally agreed upon in t h e world of minicomputers and
microcomputers.)

A-8

APPENDIX B
INDEX

Appendlx B: INDEX

CLIP, 1-4, 3-3, 4-5
cycle

dataset, 3-2, 3-3, 3-4, 3-6
high, 5-4
low, 5-4
record, 5-2, 5-4, 5-6

database, 1-2, 2-6, 4-4, 5-5
global, 1-2, 1-4, 2-2, 2-5, 2-9, 5-2
local, 1-4

database manager
global, 1-2, 1-4
local, 1-4

creation, 3-12
DAL conforming, 2-6, 4-5, 5-2
deletion, 3-10, 3-12
GAL conforming, 4-7, 5-2
lock codes, 3-10
locking, 3-10
nominal, 2-4, 2-6, 2-9, 2-10, 3-12, 4-3, 5-2,

positional, 2-4, 2-6, 2-10, 3-12, 4-2, 4-3,

sequence number, 3-9
storage, 2-10
text, 4-5

dataset name, 2-4, 2-9, 3-2, 3-3
break up operation, 10-5
construct operation, 10-9
masking, 3-4

copy and rename. 12-10
copy by name, 12-4
copy by sequence, 12-7
delete, 7-6
enable, 7-8
find, 7-10, 7-12
get name, 7-13
match name, 7-4
open, 7-20
put name, 7-21
rename, 7-25
reserve space, 7-23
set datatype code, 7-26
set lock code, i -I9

deleted, 2-8, 3-10

dataset, 2-2, 2-4, 2-5, 4-2, 4-3

5-6, 5-8

4-5, 4-7, 4-8, 5-2

dataset operations

dataset state

cwhled, 3- 10
locked, 3- 1 0

datatypc corlc~
DAL, '1-5
external. 5-2
NIFTY, 5-2

dtwire
core, 2-0
direct access, 1-2, 2-2, 4-3
name, 2-6, 2-8
scratch. 2-6
serial-access, 2-2
storage. 1-2, 2-6
word-ad~lressable, 2-6

DhlCASP, 1-2, 1-4, 2-6, 2-9, 4-3, 14-2

error
classi fica f,ion, 1 4-81
rode, 14-5
diagnostics, 14-6- 14- 1 1
handling, 14-2, 14-4
I/O st,atus, 14-5
key, 14-5
messages, 11-2, 14-5
trace stack, 14-5

defuse fatal errors, 14-16
extract error information, 14-14
identify user subprogram, 14-12
retrievr 1/0 status, 14-15
specify error termination routine, 14-17
test error condition, 14-18

error handling operations

C;/IIrDBiVl, 1-2, 1-4, 1-5, 2-3, 2-4, 2-5, 2-6,
2-5. 2-9, 3-4, 3-6, 3-7. 3-9, 4-2

I-:;. 1-8. c i - I O , 5-2, 5-6, 5-7, 14-2, 14-4
G h1 I\ 'RO. 10-4
~ ; 4 l l Y r (' l I . 7-1
Ghll3UI)N. 10-5
GhlUUItN. 10-7
GMCAHN, 10-10
GhiCDAT, 1 l-.i
GbICLOS. 2-8, 6-4
GhlCODY, 10-9
GhICOPN, 12-4
GhICOPR, 12-6
GhlCOPS, 12-7
GRICOPZ, 12-9
GblCORI>. 12-10

i

2

514.9 SPECIFY ERROR TERMINATOR: G M E T E R

GMCORN, 10-10
GMDELD, 7-6
GMDENT, 7-6
GMDERT, 9-4
GMDEST, 7-6
GMEASY, 14-16
GMEINF, 14-14
CMENAB, 7-8
GMENAD, 7-8
GMETER, 14-17
GMFEND, 8-4
GMFIRE, 8-6
GMFLUB, 2-8,6-6
GMFORM, 11-6
GMGECY, 9-6
GMGEKA, 9-7
GMGENT, 7-13
GMGERK, 11-7
GMGETC, 9-8
GMGETN, 9-8
GMLDI, 11-8
GMLIBS, 11-9
GMLINT, 7-15
GMLIRT, 9-15
GMLIST, 7-15
GMLNAM, 11-12
GMLOCK, 7-19
GMNAME, 11-1 1
GMOPED, 7-20
GMOPEN, 2-8, 6-8
GMPACK, 2-8, 6-15
GMPOOL, 10-12
GMPORC, 8-9
GMPORN, 8-9
GMPOWC, 8-9
GMPOWN, 8-9
GMPRIN, 9-16
GMPUNT, 7-21
CMPUTC, 9-18
GMPUTN, 9-18
GMREDS, 7-23
GhlREND, 7-25
GMRENT, 7-25
GMRERT, 9-17
GMREST, 7-25
GMSHOP, 8-11
GMSHOR, 9-16
CMSIGN, 10-14

GMSOCM, 10-15
GMTRAC, 8-12
GMTRAN, 8-12
GMTY PE, 7-26
GMUARN, 10-i
GMt1I>AT, 11-17
GMIJSER, 1.1-12
GMUXDN, 10-5
CiMXGET, 13-4
GMXPUT, 13-5

1 / 0 Manager. 1-2, 2-6, 2-8, 4-3 , 4-8
i tide xed record operat io1 is

copy, 12-9
find end, 8-4
find record, 8-6
position arid read cliaracters, 8-9
positioii and read numerics, 8-9
position and write characters, 8-9
position arid write numerics, 8-9
print, 8-1 1
transfer characters, 8-12
transfer numerics, 8-12

LDI, 2-8
liniit8, 2-8
range, 2-6

library
close, 2-8
data, 1-2. 2-2, 2-4, 2-6, 2-8, 2-9
tl irec t8-access, 2-2
flrlsll, 2-8
global access, 1-2
header. 2-9
open, 2-8
pack, 2-8
sequeiitial-access, 2-2

library format, 2-6
J):IT,, 2-6, 2-7
GAL80, 2-6, 2-7
GAL82, 2-6, 2-7, 2-9

library oprratioiis
close, 6-4
fl l lS11, 6-6
o p w , 6-8
park , 6- I :i

LhIIIEDS. I I-:i
LhIGRC’I). 11-13
I,MFk;NI>. 8-,I
I,MFlNIl, 7-10

B-3

Appendlx B: INDEX

LMFINE, 7-12
LMFINX, 7-12
LMFIRE, 8-6

LMLIBS, 11-9
LMIOST, 14-15

LMLOCK, 11-10
LMNODS, 11-13
LMNORD, 11-14
LMNORK, 11-15
LMOPEN, 6-8
LMPORC, 8-9
LMPORN, 8-9
LMPOWC, 8-9
LMPOWN, 8-9
LMPUNT, 7-21
LMRECS, 11-14
LMTYPE, 11-16
Logical Device Index. See LDI.

macroprocessor flag, 6-4, 6-8

messages
set operation, 10-4

suppress operation, 10-15

named record operations
COPY, 12-6
delete, 9-4
get, 9-8
get group cycles, 9-6
get key attributes, 9-7
print, 9-16

rename, 9-17
put, 9-18

Network of Interactive Coinputational Ele-
ments. See NICE.

NICE, 1-2, 1-4
NICEDMS, 1-2

page buffer pool

palindrome, 2-5
processor signature

protection

declare operation, 10-12

enter operation. 10-14

dataset, 3-10
run-abort, 2-8
write, 2-8

ItlZT, 2-9

record, 2-4
list operation, 9- 15

descriptor, 2-4, 4-5, 4-7, 4-8
group, 2-9, 5-4, 5-6, 5-8, 5-9
indexed, 1-5, 4-2, 4-3, 4-7, 4-8, 4-10, 5-2,

5-8
name, 2-5
named, 1-5, 2-4, 2-5, 4-2, 4-3, 5-2, 5-4, 5-6,

5-8, 5-9
Record Access Table. See RAT.
record name, 5-2, 9-8

break up operation, 10-7
const.ruct. operat,ion, 10-10

‘ I ’ t h k o f C ‘ o n t r n t s . See T O C ’

text group. 13-2
text group operations

get, 13-1
put, 13-5

tal>lps, 5-4. 5-5. 5-7, 5-8

TOC, 2-3, 2-9, 2-10, 3-4, 3-6, 3-7, 3-10, 3-11,
3-12, ,I-5, 4-8, 4-9, 5-8

list operation, 7- 15

creation date/time, 11-4
dataset name, 11-11

number of record keys, 11- 15
nuniber of records, 11-14
rrcord k r y s . 11-7

u l ~ l a t c , tliit (./time, 11- 17

art ivc Iil)rary dwiccs, I I-!)
forillat. 1 1 - 6 , 11-8
riarnr. 11-12
r i u ~ r i t ~ r of dataset,s, 11-1 3
number of deleted datasets, 11-5

TOC ret r i w e dataset inforrriation operations

lock code, 11-10

tJ I”’ clXl(~, I 1-16

‘IYX; r c ~ t r i c ~ v c ~ library inforniation operatinns

D-4

ORIGINAL PAGE IS
OF POOR QUALITY

NASA CR-178387

Report Documentation Page

The Computational Structural Mechanics Test bed Architecture
Volume IV - The Global-Database Manager GAL-DBM

January 1989
6. Performing Organization Code

7. Author(s)

Mary A. Wright, Marc E. Regelbrugge, Carlos A. Felippa 8. Performing Organization Report No.

1, !LIS C- D 8 78 5 1 1

Langley Research Center
Hampton, VA 23665-5225

19. Security Clmsif.(of this report)
Unclassified

14. Sponsoring Agency Code

I

20. Security Classif.(of this page) 1 2 1 . NO. of Pages 22. Price
Unclassified 1 207 A10

15. Supplementary Notes
Mary A. Wright and Marc E. Regelbrugge, Lockheed Missiles and Space Company, Inc., Research and
Development Division, 3251 Hanover Street, Palo Alto, CA 94304.
Carlos A. Felippa, Center for Space Structures and Controls, University of Colorado, Boulder, CO 80309-
0429.

- Langley Technical hlonitor: W. Jefferson Stroud

This is the fourth of a set of five volumes which describe the software architecture for the Computational
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed
Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the
command language interpreter (CLIP), and the data manager (GAL). Volumes I, 11, and I11 (NASA
CR’s 178584, 178385, and 178386, respectively) describe CLXXlP and CLIP and the CLIP-processor
interface. Volumes IV and V (NASA CR’s 178387 and 178388, respectively) describe GAL and its low-
level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed
to control the flow of execution of processors written for NICE. Volume IV describes the nominal-record
data management component of the NICE software. I t is intended for all users.

16. Abstract

