
. .

Distributed Ada :
Methodology, Notation, and Tools

Greg Eisenhauer
Rakesh Jha

J. Micheal Kamrad, I1

Honeywell Systems and Research Center

Abstract

The task of creating software to run on a distributed system brings with it many problems
not encountered in a uni-processor environment. The designer, in addition to creating a
solution to meet the functional requirements of the application, must determine how to dis-
tribute that functionality in order to meet the non-functional requirements such as perfor-
mance and fault tolerance. In the traditional approach to building distributed software sys-
tems, decisions of how to partition the software must be made early in the design process
so that a separate program can be written for each of the processors in the system. This
design paradigm is extremely vulnerable to changes in the target hardware environment, as
well as being sensitive to poor initial guesses about what distribution. of functionality will
satisfy the non-functional requirements. The paradigm is also weak in that no compiler
has a cornplete view of the system. Many of the advantages of using a powerful language
system are lost in a one-program-per-processor environment. This paper will present
another approach to the development of distributed software systems, Honeywell's Distri-
buted Ada program.

Our Approach

The goal of Distributed Ada is to develop methodology and tools which will significantly
reduce the software design complexity for reliable distributed systems. We believe that
the functional specification of a system (what it will do) can and should be separated from
its non-functional specification (how it will be mapped onto the underlying system). The
functional specification can be developed and expressed in Ada. To this is added the
specification of the non-functional at'xibutes of the system. Separating the problem space
into two smaller problems means that the designcr can concentrate on solving each of
them in turn rather than attacking them together. It also allows software development to
proceed before hardware final design is complete and enhances the portability of the func-
tional specification.

'Ada is a rcRiclercd trademark of the U.S. Govcmmcol Ada Joint h g n m Office.

B.3.2.1

...-_..-.

The software development paradigm we advance is described by the following scenario.
The designer develops a functional solution to the problem in Ada using uni-processor
development tools. With a functional solution in hand, she then creates a specification of
the non-functional characteristics of the solution (more details on the nature of this
specification will be given later). Using the tools being developed under our program,
these two specifications can be used to create the distributed solution incorporating the
non-functional attributes. At this point, the distributed solution can be tested for accepta-
bility according to non-functional criteria and modified if necessary to meet non-functional
requirements.

The advantages of this and similar approaches over the traditional approach of up-front
distribution dezisions are self-evident. When non-functional specification is separated
from functional specification, software development can proceed with limited knowledge
of final hardware configuration and will be little impacted by changes in the underlying
system. We believe, however, that the granularity of distribution and the mechanism of
specification employed in our approach separate our work from that done by other
researchers.

As opposed to other projects which limit the unit of distribution to the Ada library uni t
and limit remote access to tasks and subprograms in the visible part of remote units [Inv
85, Sch 81, Sof 84, Vol 851, we believe that an effective and extensible non-functional
specification should allow distribution of all subprograms, packages, tasks and objects in
the Ada specification. A narrower stand on the objects of distribution requires the
designer to be more conscious of the non-functional requirements while searching for the
functional solution. While i t can be argued that a designer who is aware of all the

requirements of an application will produce a more efficient solution, we believe that the
tools he uses to produce the distributed solution should impose as few constraints as is
possible. Constraints imposed at this level directly impact portability and robustness of a

given functional solution in the face of a changing hardware environment.

Many researchers argue that the PRAGMA construct in Ada should be used for non-
functional speciC, ations such as distribution of entities [Inv 85, Vol 851. We have chosen
another approach for several reasons. One concern is that an approach involving PRAG-
MAS will not be extensible to specification of non-functional attributes such as dynamic
relocation of objects or fault tolerance strategies. Pragma-based schemes for specifying
distribution are complicated already, attempting to extend these schemes to additional
domains might prove unwieldy. We also consider it a disadvantage that the pragmas
would be embedded in the source and scattered throughout the Ada specification, This

B.3.2.2

.

makes sharing of library units between applications difficult or impossible. It also
impedes manipulation of the specification of distribution. If this specification were con-
centrated in one location rather than dispersed throughout the code, it would be easier to
form a global picture of system distribution. We also observed that the function to be per-
formed by these notations was to establish a structuring hierarchy distinct from that of
Ada. This led us to create a separate specification notation, the Ada Program Partitioning
Language (APPL) [Cor 84, Hon 85, Jha 861.

Ada Program Partitioning Language (APPL)

The goal of the APPL design process was to produce a compact, convenient notation for
specifying the non-functional attributes of a program. APPL addresses issues of distribu-
tion of Ada entities, and dynamic relocation and replication of those entities. Extensions
to APPL to cover fault tolerance specification are under consideration. For brevity, this
discussion will consider only APPL in general and static distribution in specific. The
reader is referred to the APPL Reference Manual for a more detailed and formal descrip-
tion.

It is useful at this point to introduce some terms.
A FRAGMENT is a user-specified collection of entities, such as packages, subprograms,
tasks and objects, from the Ada source program. Every entity belongs to one and only
one fragment. Membership in a fragment is attained either implicitly, as a result of de-
fault rules, or explicitly, as a result of inclusion in an APPL fragment declaration.

A STATION designates a computational resource in the underlying system. Typically,
this is a node in a distributed system.

MAPPING a fragment to a station causes all entities in that fragment to reside on that sta-
tion at runtime.

A PROGRAM CONFIGURATION refers to a specific partitioning of a program into a
collection of fragments, and the specific mapping of the resulting fragments onto stations.

An APPL specification completes a Program Configuration and consists of two parts. The
first of these, the configuration specification, specifies the fragmentation of the Ada pro-
gram, while the latter, the configuration body, specifies the mapping of fragments to sta-
tions.

The configuration specification provides a mechanism for specifying Ada entities to be
bundled together as a fragment. With a few exceptions, such as within unnamed blocks,
these entities can be selected from within any declarative region in the program. As a
convenience, APPL semantics implicitly declare a fragment for every library unit which
make up a program. It also provides a mechanism for further bundling fragments into

B.3.2.3

fragment groups. Fragment groups, like fragments, arc mutually exclusive and are treated
like fragments in mapping.

The configuration body is a simple section specifying a conespondcnce between fragments
and stations.

AS an example to illustrate the use of APPL, consider the following Ada text.
with TEXT-IO, REAL OPERATIONS; use REAL-OPERATIONS;
package EQUATION SOLVER is

procedure QUADRATIC EQUATION;
procedure LINEAR-EQUATION;

end;

package body EQUATION-SOLVER is

end EQUATION-SOLVER;

with EQUATION SOLVER;

begin
procedure MAIN is

end MAIN;

Also consider the following configuration specification.
with MAIN, EQUATION-SOLVER, REAL-OPERATIONS;
configuration PROTOWE is

fragment QUAD-EQUATION is
use EQUATION SOLVER;
procedure QUA~RATIC-EQUATION;

end QUAD-EQUATION;
end PROTYPE;

Recall that APPL implicitly declares a fragment for each library unit involved. Thus the
implicitly declared fragments are: MAIN, EQUATION-SOLVER, TEXT - IO, and
REAL - OPERATIONS. QUAD-EQUATION is an explicitly declared fragment containing
the procedure QUADRATIC-EQUATION from the library unit EQUATION - SOLVER.
An example configuration body is shown below.

B.3.2.4

configuration body PROTOTYPE is
map EQUATION-SOLVER, MAIN, TEXT-IO onto !3TATION-1;
map QUAD-EQUATION onto STATION 2;
map REAL-OPERATIONS onto STATIO%-3;

end PROTOTYPE;

An APPL specification, together with the Ada source, constitute a description of a distri-
buted software system. It is the function of the tools we are developing to actually pro-
duce this system.

Distributed Ada Tools

In order to avoid spending a large amount of development time on issues not strictly
related to distributed systems, we have chosen the approach of modifying an existing Ada
language system rather than creating one from scratch. Two major tools in any Ada
language system are the compiler, which maintains the Ada program library and produces
object code for strings of compilation units, and the linker, which must determine and gen-
erate code for library unit elaboration and actually assemble the final executable image. In
the compilation environment, these tools are the most drastically affected by retargeting to
a distributed environment.

Modifications to the compiler are perhaps the most dramatic. Obviously, the compiler
must be made aware of the fragmentation and mapping specified by APPL. Therefore, the
first phase of distributed compilation consists of modifying the intermediate representation
(DIANA, for our purposes) of the Ada library units and their secondary units by adding a
"fragment" attribute to the DIANA nodes. This allows the compiler to determine the sta-
tion of residence for that entity.

From the modified DIANA representation of a compilation unit, a linearizer generates
intermediate language (IL) code for the compilation unit. This linearizer, in particular,
must be significantly more complex than i t is required to be in a uni-processor compiler.
It must now produce an IL code module for each of the stations to which fragments of the
compilation unit have been mapped. Of even more significance, is the fact that it must
generate proper code to reference entities on remote stations. This task is simplified
somewhat, because the problems associated with distributed Ada tasking will be dealt with
by the runtime environment (discussed in the next section) and will be invisible to the
compiler. However, most every other aspect of IL generation is affected. Fetches and
stores to remote variables, for example, will require calls to special runtime primitives for
remote data access.

B.3.2.5

As another example of the issues involved in this stage, consider the problem of parame-
ters to a remote subroutine call. In a uni-processor system, it is efficient to pass large
parameters by reference rather than by value. A pass-by-reference mechanism could be
employed in remote subroutine calls bj adding a station address to the parameter address.
But this would mean that every reference to the parameters of a procedure that could be
called remotely would involve the remote data access mechanisms. Since parameters are
likely to be heavily utilized in computation, this appears to be an undesirable situation.
Our solution to this problem involves the generation of local 'stubs' whose purpose is to
package the parameter values and L msmit them to the remote system. The runtime
environment on the remote station will disassemble the package and call the procedure in
question. Since this call looks just like any purely local call, the code generated for the
called procedure is unchanged. (Note: This mechanism cannot be applied to access types.
They must be handled by a reference mechanism similar to that mentioned above.)

Once these multiple intermediate code modules have been produced, object code. genera-
tion on each of them should continue in a fairly normal manner and the final object files
can be passed on to the linker. In the Distributed Ada environment, our scenario involves
the production of multiple executable images, one for each station in the system. This
will require modifications to the linker, which will have to resolve symbols between multi-
ple executable images, something which no uni-processor linker would ever have to do.
Fortunately, these linker modifications are not conceptually difficult and represent only an
engineering problem.

Run time Environment

The execution environment considered consists of a network of stations and a copy of the

runtime system on every station. The runtime system makes the underlying hardware
appear to the distributed application as an Ada virtual machine.

There is a minimum set of facilities that must be provided by the distributed runtime sys-
tem, independent of the granularity with which an Ada program is partitioned. It must pro-
vide reliable inter-station communication and synchronization, a consistent view of distri-
buted state information at each station, a globally consistent view of time, and means to
deal with partial failures in the underlying system.

The overall complexity of the distributed runtime system depends on the support i t pro-
vides for binding the application fragments together dynamically, for making the applica-
tion fault-tolerant by masking station and network faiiures from it, and for representation
conversion between heterogeneous stations.

0
B.3.2.6

There is a spectrum of possible binding times. If binding is done statically before execu-
tion time, it is not possible to reconfigurc an application during execution by remapping
one or more of its fragments. Dynamic binding is the most flexible. The mechanism can
bc used effectively by the runtime system to reconfigure an application as a means of pro-
viding fault-tolerance, or of changing the configuration as resource requirements change
during execution. If the underlying system is heterogeneous, the binder must also insert
representation conversion filters for values that an passed between the remote fragments
that it binds together.

The complexity of the runtime system is only marginally affected by the choice of the set
of Ada entities that can be distributed. The apparent similarity between concurrency in
Ada tasks and concurrency of execution on a network of processors may initially suggest
that tasks be made the unit of distribution. However, a close examination will quickly
show that this restriction does not really simplify the runtime support needed.

The allowed granularity of partitioning has a greater impact. For the sake of an example,
consider the case where Ada library units are the unit of distribution. The runtime system
must support calling of remote subprograms, reading and writing remote data, and tasking
operations on remotely located tasks. Since Ada task dependencies do not cross library
unit boundaries, the semantics for task termination can be implemented in a manner that
gainfully uses the knowledge that the task dependencies cannot cross station boundaries.
This simplification is not available if a finer granularity of partitioning is allowed. I n
application areas where the size and efficiency of the runtime system are critical, we think

that the specific requirements of the application domain shodd be taken into consideration
when deciding the granularity of program partitioning.

Project Status and Plans

Honeywell’s Distributed Ada project was started in 1982. A preliminary version of APPL
was defined in 1983 [Cor 841. A prototype implementation based on source-to-source
transformation and an unaltered uni,,processor compiler was built during the following
year. i n 1985, the structure of APPL was changed and the language revised and forrnal-
ized won 85, Jha 861. Current development focuses on creating the specialized tools and
runtime environment described above. In order to manage the implementation, we have
divided its development into several stages. Phase 1, which we are currently working
under, calls for a fully functional system, limited to homogeneous systems and static dis-
tribution of objects declared in the visible portion of library units (and the units them-
selves). We hope to complete this phase of development by the end of 1986. We are

B.3.2.7

using the VERDIX Ada Development System (VADS*) as the baseline compiler from
which to create the Distributed Ada system and arc operating in a simulated network

e n h n m e n t using processes under Unix3. Future development phases call for support for
heterogeneous systems, dynamic reconfiguration, object replication and fault tolerance.

References
[Cor 841 D. Cornhill, "Partitioning Ada Programs for Execution on Distributed SyS-

tern," IEEE 1984 Proceedings of the International Conference on Data
Engineering.
"Honeywell Distributed Ada Project," 1985 report.
P. Inverardi, F. Mazzanti, and C. Montangero, "The use of Ada in the design
of distributed systems," Ada in Use Proceedings of the Ada International
Conference, Paris, 14-16 May, 1985.

[Jha 861 R. Jha, J.M. Kamrad, D. Cornhill, "Ada Program Partitioning Language: A
Notation for Distributing Ada Programs," submitted for publication.

lLRM 831 "Reference Manual for the Ada Programming Language," ANSUMIL-STD-
1815A, U.S. Department of Defense, 1983.

[Sch 811 S. Schuman, E.M. Clarke, and C. Nikolau, "Programming distributed applica-
tions in Ada: A first approach," Proceedings of the 1981 International
Conference on Parallel Processing.

Softech, "Programming distributed applications in Ada," December 1984.

R.A. Volz, T.N. Mudge, A.W. Naylor, and J.H. Mayer, "Some problems in
distributing real-time Ada programs across machines,'' Ada in Use Proceed-
ings of the Ada International Conference, Paris, 14-16 May, 1985.

Won 851

Dnv 851

[Sof 84)

Wol 851

*VADS and VERDIX r n regisled lrademarkd of the VERDIX Corponlion.
'Unix in I registered lndcmrk of ATkT Dell Labs.

0

B.3.2.8

