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Abstract 

Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of 
Ada code. Structured analysis is a 
methodology that addresses the creation of complete and accurate system specifications. Structured design takes a 
specification and derives a plan to decompose the system sub-components, and provides heuristics to optimize the 
software design to minimize errors and maintenance. It can also promote the creation of reusable modules. Studies 
have shown that most software errors result from poor system specifications, and that these errors also become more 
expensive to fm as the development process continues. Structured analysis and design help to uncover errors in the 
early stages of development. APSE tools help insure that the code produced is correct, and aid in finding obscure 
coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. 

These tools do not address the entire software development process. 

This paper will describe how an automated system for structured analysis and design, teamwork@, can be 
integrated with an APSE to support software systems development from specification through implementation. 
These tools complement each other to help developers improve quality and productivity, as well as to reduce 
development and maintenance costs. Complete system documentation and reusable code also result from the use of 
these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and 
advantages beyond those realized with any of these systems used by themselves. 

D.4.2.1 



Integrating Automated Structured Analysis and Design 
with Ada Programming Support Environments 

Introduction 

Developing quality software on time and within budget has proven to be a difficult task. Statistics gathered by the 
government and private industry have shown that software development projects are difficult to control [Boehm 81 1. 
This results in software systems that can be extremely expensive with less than adequate performance. 

These problems have fostered several solutions. The U.S. Department of Defense performed an analysis of its 
software applications, concentrating on problems inherent with coding and implementation. This analysis resulted 
in the development of Ada [DoD 811. Other people were addressing problems associated with software 
requirements. The results of this effort has resulted in the development of several software development 
methodologies based on the concept of a software lifecycle [DeMarco 78, Page-Jones 80, for example]. 

The DOD identified a problem specific to the implementation of embedded systems. There were a number of 
languages in use and there was potential that this number would continue to grow. The lack of a standard 
implementation language resulted in money being spent on new compilers (which were not significantly better), 
training and maintenance. The development of the Ada programming language was seen as an answer to this 
problem. In addition, the solution would include a programmer's environment, or toolkit, called the "APSE." 

APSE 

The Ada Programming Support Environment (APSE) was proposed to augment the Ada 1anguagepoD 
80, Stennig 811. It includes tools such as the compiler, language sensitive editor, and debugger. These tools are 
designed with knowledge about the structure of Ada and are focused on the implementation phase of software 
development. The APSE presents a uniform development environment to aid Ada programmers. 

APSEs help solve the problems of implementing embedded systems that were recognized by the DOD. A 
reduction in software development costs can be realized as a result of making the implementation phase more 
efficient. However, the problem still remains that APSEs do not thoroughly address the other phases of software 
development. 

Software Development Lifecycle 

Recent work has focused on gathering statistics from case studies of projects [Ramamoorthy 841. At least half of 
the projects had problems which originated in the requirements or functional specification (see Figure 1). To help 
put this in perspective, we can view the software development process as divided into five (sometimes overlapping) 
phases: analysis, design, implementation, test and verification, and maintenance. 

The analysis phase is concerned with understanding what a system is supposed to do. The result is supposed to be 
an implementation independent description or abstract view of the system to be developed. The product of analysis 
is a requirements specification (sometimes called a functional SpecifKation) that describes the system function and 
important constraints. 

The design phase addresses how the system is to be implemented. It is concerned with the physical aspects of the 
system. The optimal structure of the various software modules and how they interface is determined. Ideally, the 
design information should be complete enough to reduce the implementation effort to little more than a translation 
to a target programming language. 

The implementation phase is concerned with producing executable code. Knowledge of both the design and the 
target environment is incorporated to produce the final system software. All the physical aspects of the system are 
addressed during implementation. 
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Figure 1: Sources of Errors'. 

Information from the previous three phases is used in the testing and verification phase. Test plans can be derived 
from specifications and designs [Boehm 841. The testing phase verifies that the software conforms to the 
specification and that the code is correct. The best that test and verification techniques can do is prove that a 
program is consistent with its specification. They cannot prove that a program meets the user's desires Wulf 803. 
This means that extra care must be taken during analysis to insure that the specification is a complete and correct 
reflection of what the user really wants. This can be accomplished through methods that support checks for 
consistency and clearly communicate system requirements. TeamworklsA supports one such method, and it will be 
discussed later in this paper. 

Bug fmes and adaptations which result from experience with the software are activities of the maintenance phase. 
At this point the software is being used -- the ultimate test Users will come across errors or suggestions as they gain 
experience with the software. Maintenance procedures must handle the orderly evolution of the code. They must 
insure that changes will not have deleterious effects on the system. 

A study by Doehm 841 showed that errors detected later in the development life cycle cost more to fa than errors 
detected during analysis (See Figure 2). Figure 1, discussed previously, showed that the majority of errors in a 
software project can be traced to requirements and specification problems. These facts illustrate the value of 
spending more time at the beginning of a project, performing analysis. This can be diffcult for programmers and 
users to accept as both may be anxious to see code being produced -rthy 841. These ideas have only 
recently become well understood and brought into practice. 

'Adapted from [Ramamoorthy 841 
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Figure 2: Cost of Error Versus When it is Detected2. 

Many approaches and methodologies utilize the concept of the software life cycle. In particular, structured 
analysis (which refers to several methods [Gane 79, DeMarco 78, Ross 771) addresses the beginning phase of 
requirements analysis. 

Structured Analysis 

Structured analysis views a system from the perspective of the data flowing through it. The function of the system 
is described by processes that transform the data flows. Structured analysis takes advantage of information hiding 
through successive decomposition (or top down) analysis. This allows attention to be focused on pertinent details 
and avoids confusion ftom looking at irrelevant details. As the level of detail increases, the breadth of information is 
reduced. The result of structured analysis is a set of related graphical diagrams, process descriptions, and data 
definitions. They describe the transformations that need to take place and the data required to meet a system's 
functional requirements. 

De Marco's approach [DeMarco 781 consists of the following objects: dataflow diagram, process specifications, 
and a data dictionaly (See Figure 3). 

Data flow diagrams (DFDs) are directed graphs. The arcs represent data, and the nodes (circles or bubbles) 
represent processes that transform the data. A process can be further decomposed to a more detailed DFD which 
shows the subprocesses and data flows within it. The subprocesses can in turn be decomposed further with another 

2Adapted from [Boehm 841 
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Figure 3: Analysis Model Objects 

set of DFDs until their functions can be easily understood. Functional primitives are processes which do not need to 
be decomposed further. Functional primitives are described by a process specification (or mini-spec). The process 
specification can consist of pseudo-code, flowcharts, or structured English. The DFDs model the structure of the 
system as a network of interconnected processes composed of functional primitives. 

The data dictionary i s  a set of entries (definitions) of data flows, data elements, files. and data bases. The data 
dictionary enmes are partitioned in a topdown manner. They can be referenced in other data dictionary entries and 
in data flow diagrams. 

Military standard 2167 [MilStd2167 851 requires that systems be specified in a top down manner using a 
structured approach similar to that described above. The high level of process and data abstraction inherent in 
structured analysis is compatible with the objectives of the Ada language. Where it is desirable to take an 
object-oriented approach to designFooch 86,Cox 841, structured analysis helps to define classes and data 
hierarchies or data structure. For procedural approaches, structured analysis works well with structured design. 

Structured Design 

Structured design addresses the synthesis of a module hierarchy [Page-Jones 801. The principles of cohesion and 
coupling are applied to derive a optimal module structure and interfaces. Cohesion is concerned with the grouping 
of functionally related processes into a particular module. Coupling addresses the flow of information, or 
parameters, passed between modules. Optimal coupling reduces the interfaces of modules, and the resulting 
complexity of the software. 
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Page-Jones' approach page-Jones 801 consists of the following objects: structure charts, module specifications 
and a data dictionary. 

The structure chart shows the module hierarchy or calling sequence relationship of modules. There is a module 
specification for each module shown on the structure chart. The module specifications can be composed of 
pseudo-code or a program design language. The data dictionary is like that of structured analysis. 

At this stage in the software development lifecycle, after analysis and design have been performed, it is possible to 
automatically generate data type declarations Pelkhouche 861, and procedure or subroutine templates. 

Automating Structured Analysis and Design 

Hardware CAD/CAM systems have contributed to the development a systems with higher levels of complexity, 
performance and reliability, at costs previously unattainable through purely manual design efforts. This is sparking 
interest in automating the software development process. 

Teamwork is a set of automated tools for systems analysis and design. They can support many simultaneous users 
working on the same project or even many projects. They take advantage of features provided by the latest 
workstation technology, offering complete support of the DeMarco structured analysis techniques and the Page- 
Jones structured design techniques. Graphical diagrams are created using syntax-directed editors that incorporate 
model building rules. Its interactive graphics package supports a high resolution bit-mapped display, mouse and 
keyboard. Modem user interface techniques are used, including a multi-window display and context specific popup 
and pull-down menus. 

Multiple, simultaneous views of a specification or a design can be displayed by teamworklu (See Figure 4). It 
has simple commands for traversing through the various parts of a modeL Model objects may be entered in any 
order. The graphics editors allow diagrams to be easily produced and edited. Diagrams as well as components of 
diagrams are automatically numbered and indexed. These features eliminate many manual, time consuming tasks. 

Project information is retained in a project library, through which individuals can simultaneously share model 
information and computer resources. Team members linked over the network can access the same information for 
review. Multiple versions of model objects are retained in the library. Team members can independently renumber 
and repartition diagrams, which allows exploration of different approaches to describe a system. 

Teamwork's consistency checker detects specification errors within and between data flow diagrams, data 
dictionary entries, and process specifications, and design errors within and between structure charts and module 
specifications. Typical errors and inconsistencies include DFD balancing errors (data flows from one diagram that 
do not match data flows to a related diagram) and undefmed data dictionary entries. The consistency checker uses 
the semantics and rules of structured analysis and structured design. Checking is performed "on-demand, which 
allows the analyst and designer to work top-down, bottom-up, or any other way. It encourages the exploration of 
partial models that may be (during the intermediate stages of building the model) incomplete ar incorrect. The 
speed and depth of checking in teaInW0rk.b helps produce consistent and correct specifications, which can be used 
with the tools provided in an APSE. 
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Integration of Teamwork with APSE 
Teamwork was designed to allow the information it captures to be utilized for many purposes. These include 

packaged specifications, project status reports, configuration management, system documentation, and test plans. 
The information is captured as the specification and design are created. As described above, teamwork helps to 
insure consistency of the information as a system progresses through these phases. The relationships between the 
various representations of processes, data, and modules are recorded in the project library. This information may be 
selectively retrieved and reformatted with post processors which can be developed for a variety of software 
development tasks, such as the following: 

*Producing data type declarations and procedure templates specific to the syntax of any language, 

Generating test plans. 
Generate formatted requirement documents, such as MIL-STD 2167. 

especially Ada. 

In addition, by combining an APSE with teamwork, the complete lifecycle documentation can be consistently 
maintained, from requirements to code listings. If any change is ma& to any piece of a project, that change can be 
reflected in the corresponding parts of the project. 
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Conclusion 

APSES help reduce some of the problems associated with software development., especially during the 
implementation phase. Automated analysis and design environments address the problem associated with poor 
specifications and software system structure. Either tool by itself is better than totally manual development. The 
combination of all these tools can provide automated support for the entire software development lifecycle, insuring 
consistency and reducing mors and developments costs. 
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A Software Development Environment 
U t i l i n g  PAMELA1 

A b6 tract 

Hardware capability and efficiency has increased dramatically since 
the invention of the computer. while software programmer productivity 
apd efficiency has remained at  a relatively low level. A user-friendly, 
adaptable, . integrated software development environment is needed to 
alleviate this problem. The environment should be designed around the 
Ada2 language and a design methodology which takes advantage of the 
features of the Ada language such as the Process Abstraction Method 
for Embedded Large Applications (PAMELA). 

Introduction 

Since the invention of the computer, advances in software 
development productivity have not kept pace with hardware productivity. 
Although the throughput of modern computers has made a 1,000.000-fold 
increase over the last thirty years. software productivity has increased 
only slightly. During the same period, hardware costs have decreased 
dramatically and software costs have skyrocketed. Moreover, the 
complexity of embedded systems is growing exponentially, putting an 
ever increasing demand on software production. 

Many studies have shown that  the major costs in the software 
development life cycle occur after system delivery. Approximately 70% 
of these costs are incurred during the maintenance phase. There are 
several reasons for this: 

1. Personnel costs for software professionals have risen steadily 
over the years. Consequently, for large systems designed to  
last many years, the cost of people becomes a major concern. 

2. Inadequacy of documentation either internal or external to  the 
code is a continual source of increased costs. Frequently on 
large systems. a modification in one routine will affect many 
other routines in unexpected ways. It is not uncommon that a 

1. 
2. Ada is a registered trademark of the United States Department of Defense, 

PAMELA is a trademark of Dr. George Cherry, 

Ada Joint Program Office. 

Reston, Virginia 
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change to correct one error will lead to numerous other errors. 
This is partially because large programs are intrinsically hard to 
understand, but also because inadequate documentation 
hampers understanding. Furthermore. most programming 
languages do not promote greater understanding since they do 
not always enforce good software engineering practices. 

3. Yet  another factor is an inadequate design process. Frequently, 
paper designs are created by systems engineers and then handed 
to programmers for implementation. The programmer often will 
tend to stray from the paper design in order to increase 
efficiency or make changes that are required by the constraints 
of the language employed. 

The real cost of software therefore is  in the maintenance of 
programs - but it originates in the methods and languages used to 
create these programs. 

Current projections show that the cost of developing software is 
likely to continue to increase unless new. more efficient methods are 
employed. If current trends continue there will be a short fal l  of 
programmers by 1990 which may exceed 800,000.3 Such a devastating 
short fall will slow software development to a crawl for many major 
government programs. 

Current trends can be reversed by developing and utilizing standard 
software engineering practices throughout the software industry. These 
practices can be implemented in an expert system that is designed to 
specifically support one design methodology. In addition the methodology 
used must be specific to the language that is supported. The preferred 
language to be used is Ada, and one methodology that is  specifically 
designed for the Ada language is  PAMELA. 

The Ada Language 

Since the software development environment supports development of 
large embedded applications for the Department Of Defense (DOD) 
applications. and incorporate state-of-the-art tools. the language of choice 
is Ada. Ada is a fairly new language developed by the DOD specifically 
for embedded applications. Although Ada is new. the DOD has set a 
requirement that all new software written for the DOD will be done in 
Ada. As the advantages of using Ada as a general purpose programming 

S. Mr. Edward Berard, EVB Systems, ACM SIGAda meeting, Los Angeles, 
California, February, 1986. 
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language become more fully developed. commercial firms will also 
choose Ada for there software needs. Some of the important features 
brought to software engineering are : 

Code Reusability: 

Ada supports code reusability in the form of generic packages, a 
common library of compiled units. and modular coding techniques. With 
these facilities Westinghouse has established a common database of 
program modules a t  the company level. By establishing and using this 
database of reusable software modules. generating software for 
embedded applications has become cheaper and faster. 

Tab king: 

Something new that is supported by Ada and virtually no other 
language, i s  the task unit. This unit is on the same level as a function 
or subprogram with one important difference: a task unit can be declared 
as a type. Because of tasking, generating embedded systems that 
require some form of parallel processing is easier. 

Parallel Development: 

An important feature of Ada, is the ability to do parallel 
development. Ada offers this facility in the form of separate compilation 
units. Westinghouse has found that several individuals can work on 
different sections of the code and not interfere with each other, and that 
code development is not dependant on any special order of 
accomplishment (other than Ada's dependency rules of course). 
Westinghouse has been able to increase software engineering productivity 
by reducing the scope of dependencies within the software application. 

Information Hiding: 

Ada provides the facility to hide the underlying machine dependent 
representation of data items. This discourages the software engineer 
from depending on a machine specific characteristic when implementing a 
section of the software system. It also means that the code generated 
should be transportable to any other machine that supports a validated 
Ada compiler. 

Strong Type Checking Across Separate Compilation Units: 

Ada is a strongly typed language that will not allow nonconformant 
data types to be passed between program units. The purpose of Ada's 
strong type checking is to prevent common errors from occurring when 
calling another software engineer's code. 
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Ada's Place In The Design Of A Software System: 

To be able to take advantage of the state-of-the-art facilities that 
Ada offers, the perception of when the capabilities of the programming 
language that is used is to be considered must be changed. In addition 
a design methodology that implements design concepts specified in MIL- 
STD 2167 and takes into account the improved facilities of Ada must be 
u,tilized. 

Up until now the typical method for designing a software system 
involved specifying requirements. doing a preliminary design. doing a 
detailed design using a PDL and finally selecting a language and 
implementing the design. The primary methodology used when designing 
the system was typically a derivative of Data Flow Diagrams. (see Fig. 
# 1) This approach has worked with other languages (before Ada) 
because they did not provide sophisticated facilities for embedded 
environments such as tasking. Languages therefore, had l i t t le impact on 
the design of the system itself. aside from Ada, 
are sequential in nature. The design methodology used to express a 
system under development in this language is compatible with the 
capabilities of the language used and is sequential in nature. 

All popular languages, 

if Ada is to become an effective alternative. several common 
practices and assumptions used in designing an embedded system must 
change, and a design methodology that is designed to accommodate a 
specific language must be used. To be able to take advantage of the 
advanced features that Ada offers, the methodology must take the 
language features into consideration in the preliminary design phase of a 
software system (see Fig. # 2). This means that consideration of 
language facilities should be an integral part of the preliminary and 
detailed design of the system. If the language considerations are made 
early in the development of the preliminary design. the overall impact 
will be in the areas of coding and integration time. These two areas 
comprise most of a software systems development cost. If however, 
Ada's facilities are not considered early in the preliminary development, 
Ada will offer almost no advantage over any other language. 

The method of considering Ada's facilities in the preliminary and 
detailed design phase is dependent on the methodology used to express 
these designs. The popular methodologies of flow chart's, data flow 
diagrams, etc. will be of l i tt le advantage in the preliminary design phase 
when using Ada. The inability of these methodologies to express the 
unique facilities of tasking. code reusability, modular design, and parallel 
development diminish their usefulness for creating a design based on 
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Ada. It i s  therefore necessary that a design methodology that can 
express parallelism. code reusability. modular design, and parallel 
development be used. It is also necessary that the methodology used in 
the preliminary and detailed design be a direct expression of the Ada 
language. We have found that PAMELA f i ts this description. 

Description of PAMELA 

PAMELA is  a methodology for producing real-time Ada programs 
which utilize Ada tasking. It was designed by Dr. George Cherry 
(Reston. Virginia) to address the needs of Ada users in developing real- 
time programs using Ada's rich variety of language features. 

PAMELA is  a structured methodology that encourages a top-down 
approach, with each step in the method revealing more details than the 
previous step. (see Fig. # 3) It i s  also a graphical methodology which 
produces pictographs of the underlying Ada code. In fact, Ada package 
and task specifications. as well as skeletal package and task bodies, 
can be produced directly from PAMELA graphs. 

PAMELA combines aspects the two most prominent program 
representation methodologies of the past two decades, data flow 
diagrams and control flow diagrams (flow charts). I t 's  pictographs are 
very similar to those produced by structured analysis and structured 
design techniques (data flow diagrams), but it also embodies a certain 
amount of control flow information - primarily because of the well 
defined Ada tasking mechanism. 

PAMELA guides the program designer in the selection of multiple, 
concurrent threads of execution (called processes in PAMELA 
nomenclature). By analyzing the requirements of the problem, and by 
following the process idioms outlined in the method. (see Fig. # 4) the 
program designer identifies which elements of the program should become 
processes. He then determines what kind of data or control signals 
must be passed between processes. Next. he determines which process 
i s  the producer of the flow and which is the consumer. (see Fig. # 5) 
Finally, he determines which of the processes should be single-thread (a 
typical C. PASCAL, or FORTRAN - style program) and which should be 
multi-thread (more than one Ada task). Once the graph has been 
annotated with this information. Ada code can automatically be 
generated (in skeletal form) which implements the design. 
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From the PAMELA graphs. single-thread processes become Ada 
tasks. while multi-thread processes become packages. The package 
body of a multi-thread process contains task and package specifications 
for the lower level single- and multi-thread processes respectively. 

The Problem To Be Solved 

The problem of increasingly large and complex software systems, in 
cQncert with a massive projected shortfall of software engineers in the 
next decade, fueled by spiraling software costs, must be abated. It is 
foolhardy to think that software systems will decrease in complexity: al l  
current trends support the notion that future software systems will be 
very much more complex than those of today. The number of software 
engineers may increase by the next decade, but probably not fast 
enough to meet the challenges of these more complex systems. If 
software engineers continue to be in high demand, there i s  l i t t le  hope 
of abating spiraling software costs. 

The key to the solution of the problem is to substantially increase 
the productivity of software professionals. The primary tool to 
accomplish this goal is a high performance Software Development 
Environment (SDE). The SDE must be designed and built around a 
single specific language and design methodology. Since the DOD has 
mandated that al l  new software written for the DOD will be in Ada. 
Ada is  the natural language of choice for the SDE. There are several 
new Ada based design methodologies such as Object Oriented Design 
(OOD). PAMELA (Process Abstraction Methodology for Embedded Large 
Applications), and Ada Partition Programming Language (APPL). Of 
al l  the new design methodologies we are considering PAMELA, as an 
example, around which to design the SDE. 

The Software Development Environment 

A software development environment (SDE) is  being created a t  
Westinghouse which supports al l  activities associated with the 
development of embedded software systems, as well as software 
management and post deployment support. By integrating al l  of the 
activities involved in software development under the control of one 
expandable, adaptable environment, software development and support 
can be made easier, more cost effective. and more reliable (see Fig. # 
6). 
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Important elements of the environment are: 

R elis bili ty: 

The reliability of programs created under the SDE must  be 
significantly greater than that  of programs generated without such an 
environment. Reliability metrics. when applied to programs created 
under the SDE. should show a measurable and statistically significant 
increase in reliability. This in t u r n  will require that  the SDE itself be 
iqn exceptionally reliable program. We have seen that  by using 
PAMELA, it is relatively straightforward t o  create reliable designs in a 
timely manner. Since the underlying Ada code maps directly to 
PAMELA pictographs, it is only necessary to correctly identify control 
and data flows a t  a high (pictograph) level to insure the reliability of 
the  underlying code. Application of expert system techniques will also 
enhance the reliability of the environment. 

Ease of Use: 

The SDE will encompass a common, multi-level. user friendly 
interface. In particular, the interface will be a s  easy to use for the  
novice a s  for the expert. This will probably be accomplished with a 
multi-window, menu-driven interface which will provide full prompting 
for the novice. a series of function keys and/or control 
keys can be defined (by the environment and/or by the user) to enable 
rapid execution of frequently used command sequences. For others,  on- 
line help and an English-like command interface will be provided. Every 
user will be able to select the  interface he/she prefers and will also be 
allowed to jump to any particular interface level a t  will. 

For the expert. 

PAMELA will support the  ease of use concept since it is graphical, 
and is supported by an interactive, full screen tool which can 
automatically generate executable code. 

Cost Effectiveness: 

The environment should be networked so that  individual 
workstations can be utilized by development and management personnel. 
This means tha t  each individual or team will be able to achieve 
maximum utilization of the  facilities available while avoiding the  typical 
slow down experienced with multi-user super-mini implementations. 
Because of advances in micro-processors, a single user workstation can 
provide an engineer with a more responsive machine than can normally 
be attained with a time-shared super-mini. The resultant increase in 
throughput. can increase productivity substantially. As a side benefit, 
costs incurred due to main CPU down-time can be minimized by 
allowing the  workstations to operate independent from the host. 
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The use of PAMELA should also prove cost effective in that it 
allows for rapid prototyping of the software system within the SDE. 
This allows the program implementors (and designers) to identify and 
correct potential or unexpected problem areas before they actually become 
problem areas. 

Adaptability: 

, The environment will support various tools that will measure 
productivity. quality, maintainability and overall cost. This means that 
management will have the ability to measure all aspects of the evolving 
system in terms of quality. It will also allow 
the measurement of team performance compared to calibration data 
contained in the database. Such measurements can be used to 
recalibrate the system to more accurately reflect real world situations. 

maintainability and cost. 

PAMELA has proven itself  to be quite adaptable. In one particular 
a 7000 line program was re-designed and re-implemented from instance. 

scratch in just three days. 

Design Continuity: 

The environment is an expert system which provides tools that 
enhance al l  phases of the software life cycle. Program requirements are 
entered into a relational data base under the control of the expert 
system. Once a requirement has been entered, a basis is established 
for al l  later phases of the software life cycle. In particular. design. 
coding, and test specifications are derived from the requirements and 
related back to them by the expert system. This provides traceability 
from requirements to code, but also allows the environment to provide 
an impact analysis report for each requirement. 

Software designs (specifically PAMELA designs) are accepted by the 
expert system. Once a design has been entered. it can be verified for 
compliance to the requirements by the environment. 

Tools such as language sensitive editors, compilers. and debuggers 
which facilitate the coding and unit testing process can also be directed 
by the environment. For example, a compiler which produces diagnostic 
information could relate the number and kinds of programmer errors to 
the environment. The expert system could in turn relate this 
information back to a language sensitive editor to help correct 
programmer mistakes as they happen. 

Since al l  requirements and design information are entered into the 
expert environment, test scenarios and/or test cases can be 
automatically generated to verify the design. 



Program Visibility 

The SDE supports al l  levels of management visibility into the 
current status, and projected results of the project. This means that 
the management functions of progress tracking, scheduling. and cost 
information gathering will be provided by the expert system. This 
includes but is not limited to. the automatic generation documentation 
a,nd management reports with l i t t l e  or no human intervention. In 
addition there i s  some capability of the software factory concept in that 
generic, reusable software could be placed in the design by the expert 
system itself. This will alleviate the problem of the software engineer 
overlooking a reusable package that is in the database of reusable 
program modules. 

Projected Environment Layout: 

The environment will be as flexible as possible and support all types 
and sizes of software development. The system will incorporate artificial 
intelligence. networking, database management and some form of 
electronic mail. The hardware of such a system is projected to be 
composed of the following components: 

1. A VAX minicomputer as the central database machine. 

2. Several VAXSTATION 11's as individual workstations. 

3. Several micro computers such as IBM PC/AT's for manager 
workstations. 

4. Some type of clustering system. 

5. Some type of LAN (Local Area Network) system for node 
communications. 

6. Hardware simulators and development stations for hardware 
specific support. 

(see Fig. # 7) 

Potential Problem Arenas 

As is the case with all things, PAMELA is not perfect. There are 
two potential problem arenas associated with PAMELA which affect the 
performance of the SDE. For one thing, PAMELA designs typically 

D.4.3.16 



H 
J 

ORIGINAL PAGE IS 
OF POOR QUALITY 

I 

v) 

w 
tu 
\ u 
Q 

t m 

I 

U 

D.4.3.17 

f 
8 
f 
4 
d 
6 

L, P U 



create too many tasks. This i s  not a fault with the methodology per 
se. but reflects the fact that there are precious few machines out there 
that are made to run Ada. The methodology has been altered 
somewhat to account for this fact. but in so doing. it has lost some 
of i t s  "virtual machine" flavor. 

Another potential problem arena is that of testing. The current 
suggestion is to test each single-thread process using current structured 
techniques. As each is tested, it i s  integrated with the others and an 
integration test is performed. Eventually a multi-thread process will be 
declared valid and it then can be integrated with other processes. 
There is  no method however for verifying that al l  the task rendezvous 
and other task interactions are correct. This is st i l l  a matter of art as 
much as it is of science but may be alleviated somewhat by the use of 
heuristic approaches common in expert systems. It is not clear however, 
whether this will be harmful for large embedded systems. If the paper 
design is solid, the implementation should be as well: but there is 
unfortunately no method for verifying paper designs either. 

Potential Solutions 

' The horizon should not be clouded by the concerns raised above. 
Each problem poses new and exciting possibilities for new technologies 
and new ideas to solve those problems. Each new challenge brings us 
closer yet to another breakthrough. 

The problems posed in the development of a state-of-the-art 
software development environment can be solved by hard work and 
dedication. They should not be attacked alone. but in concert with 
concerned organizations willing to lead us into the next century. 

Conclusions 

In conclusion. the need for a comprehensive, integrated software 
development environment has been demonstrated by the severe lack of 
productivity in developing software as compared to computer hardware. 
The need to automate documentation so that it provides a better picture 
of the program is essential to decreasing the maintenance costs of large 
software systems. An automated, integrated environment supporting a 
single specific language such as Ada and designed around a specific 
methodology such as PAMELA will reduce time and errors in the design 
and testing phases. Since the environment will ensure adequate tracking 
of requirements, design, implementation and testing. the cohesion is 

/ 
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provided to aid management tracking of progress during the software life 
cycle. A common. multi-level, user friendly interface i s  absolutely 
required to insure maximum effectiveness for al l  users of various levels of 
experience and expertise. Finally. PAMELA is an ideal design 
methodology for such an environment. since it is Ada-based. and 
naturally addresses multiple concurrent tasks. PAMELA has been used 
on projects at  Westinghouse and has proven i ts  effectiveness for rapid 
prototyping. ease of design, maintainability and adaptability.' 

4. Some material contained in this document was presented by Rich Connelly and 
Barbara Sullivan at the SigAda conference held in Boston Ma. in Nov. 1985 
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ABSTRACT 

This paper examines an inconsistency in generic 
’top-down’ design methods and standards employed in 
the implementation of reliable software. Many design 
approaches adopt top-down ordering when defining the 
structure, interfaces, and processing of a system. 
However, strict adherence to a top-down sequencing 
does not permit accurate description of a system’s 
error handling functions. The design of a system’s 
response to errors is becoming critical as the 
reliability requirements of systems increase. This 
paper describes how top-down methods such as Object 
Oriented Design and Structured Design do not 
adequately address the issues of error handling, and 
suggests using a bottom-up substep within these 
methods to eliminate the problem. 

1. INTRODUCTION - 
This paper describes the inability of top-down design 
techniques to allow for accurate design of the error handling 
features of a system. The primary concern involves what is 
tentatively termed the ’detailed design phase’ of the software 
development process. This is the portion of the design process 
which provides a description of the system used as input to the 
implementation phase of the software life cycle. We believe 
that this design must accurately describe all the intended 
operations of the system to avoid the risk of ’interpretation’ 
by programmers. Our discussion will make it clear that strict 
top down design techniques do not provide the designer an 
opportunity to specify the error handling features of a system. 
Acknowledging the mounting interest in ’structured design 
methods,’ we must be certain that these methods address all of 
our requirements as designers, and that adopting them would not 
preclude certain design decisions. Additionally, the 
heightened reliability requirements of our systems necessitate 
that design methods provide the opportunity to address error 
handling issues. 
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I 
Section 2 describes the software design environment we are 
considering. Section 3 defines techniques, standards, and 
tools often applied in the detailed design phase. The software 
design process is investigated by examining the activities 
performed during that effort in section 4 .  Section 5 details 
the problem encountered when using generic top-down methods in 
relation to the design of error handling facilities. Finally, 
section 6 describes how a bottom-up substep can be incorporated 
into existing methods to eliminate the problem. 

- 2 .  SOFTWARE DESIGN ENVIRONM%NT 

For purposes of this paper, we will adhere to definitions 
for ’life cycle’ and ’method’ found in [MCDE84]. The software 
life cycle defines a series of system views, each progressing 
from the abstract to the more concrete. A development method 
is concerned with the activities on one or more of these levels 
aad comprises three distinct pieces: notation, guidelines, and 
analysis. The guidelines define rules for transforming the 
system at the previous level to the system at the current 
level. The current level is expressed in the notation defined 
by the method. Analysis is used to verify consistency within a 
level as well as that between levels. 

the 

A software development effort includes selection of a method to 
be applied in each life cycle phase. AB indicated in the 
introduction, we are primarily concerned with the ’detailed 
design phase’ where a representation of the system that can be 
used as a baseline for the coding or implementation phase is 
produced. According to the above definition of ’method,’ few 
design techniques described in the literature today are 
’methods.’ Quite often only guidelines and/or notation are 
defined. Analysis techniques are rarely included. 
Additionally, individual efforts will normally modify the 
notation used baaed on past experience and tool availability. 
For this paper, we will concentrate our attention on the 
guidelines portion of the method. Therefore, we will assume 
that the final notation of the system after this phase is some 
form of M a *  PDL, that a PDL processor or M a  compiler is 
utilized to verify internal consistency, and some sort of 
structured design review is employed to verify the correctness 
of the resulting design in relation to previous design phases. 
We do not preclude the use of graphics during the design 
process, or as an additional output, but it will be the PDL 
that the programming staff utilizes during the implementation 
phase, and therefore this will be the final design notation. 
The final PDL representation of the system typically will 
define the system’s modular structure, its data, and the 
processing to be performed by each module. 

* M a  is a registered trademark of the U.S. Government, A J P O  

D.4.4.2 



The Benefits of Bottom-Up Design 

- 3. SOFTWARE DESIGN TECHNIQUES, STANDARDS, TOOLS 

The software development process is a complex combination of 
techniques, standards, and tools. Techniques are defined by 
the selected method and dictate the design steps. Standards 
are often dictated by contracts and impose additional 
constraints on the process. Tools can be automated aids such 
as editors, or logical tools such as the use of abstraction or 
information hiding. The combination of the various techniques, 
standards, and tools involved in each part of the design 
process can lead to problems like those described below. 

Many design techniques found in the literature impose a 
top-down order of work within the level or phase where applied. 
The examples we will discuss are Object Oriented Design 
[OBJE85] [BOOC83] and Composite (Structured) Design [AfYER78] . 
Both of these methods are ’top-down’ since they require 
recursive application of the technique on the modules or 
operations that were defined in the previous step. In the case 
of Object Oriented Design, once the objects and operations have 
been defined, the designer must define the interfaces to these 
operations, perform a stepwise decomposition of the highest 
level module, and then repeat the entire design process for the 
newly defined operations. The stepwise decomposition of the 
highest module defines the interaction of this module with the 
newly defined operations. The implementation of these 
operations is not considered; they are ’abstractions.’ 
Structured design incorporates a similar set of tasks for the 
design process, the main difference being the rules 
(guidelines) used to define the modules that ’implement’ the 
current module. In structured design, only the structure of 
the system is defined. No method for defining the algorithmic 
portion of each module is proposed. If the technique employed 
to define each module’s implementation section applies a 
top-down approach, then the entire detailed design phase is 
considered top-down. 

Additionally, DoD standards and guidelines [DOD] for developing 
software systems impose a top-down structure on the development 
process. Unless alternate development techniques are approved 
by the contracting agency (see [SDST85]), top-down design, 
top-down coding, and top-down testing are required. As will be 
argued in the remainder of this paper, the use of a top-down 
ordering of the entire detailed design process is not 
desirable. 

Many design techniques, including the two above, employ 
’abstraction.’ Abstraction is a valuable tool of the software 
engineer, but will be shown to be inappropriate if used 
throughout the entire detailed design phase. Abstraction 
allows designers to ignore the implementation details of 
’other’ parts of the system. This is useful during a 
decomposition process, but will lead to problems when connected 
with the design of a system’s error haudling facilities. 
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We will see how the combination of the above three items, 
top-down design techniques, contractual standards, and the 
utilization of abstraction, leads to problems when designing 
the error handling facilities of a system. A bottom-up 
approach may be applied during one substep of the overall 
detailed design process to eliminate this problem. 

- 4. SOFTWARE DESIGN PROCESS 

Consider the activities that occur during a typical detailed 
design effort. The selected method defines a set of guidelines 
which describe the steps a designer must undertake during the 
design process. As stated above, the design at this level 
typically includes module definitions, their relationships with 
each other, data definitions, and a description of the 
processing each module should undertake. The generic top-down 
design techniques being considered proceed as follows. First, 
select an undefined module and follow the guidelines specified 
by the technique. These guidelines result in additional 
modules and data definitions being defined. Second, determine 
the interfaces of these new modules and data objects. The 
guidelines may then suggest one of two possibilities. In the 
case of Object Oriented Design, stepwise refinement or some 
other technique is adopted to define the processing of the 
module. Once this is accomplished, the method is recursively 
applied to any resulting modules too large to be described as a 
single unit. An alternative approach, which might be found in 
a Structured Design, would be to first repeatedly apply the 
method to any undefined modules, completely defining the 
modular structure of the system and the interfaces to these 
modules. Once the entire system is decomposed, each module’s 
processing is described, most likely in a top-down order. 

Abstraction plays a large role in these top-down techniques. 
Abstraction permits the designer to utilize the interface 
information of other modules in the design of any module’s 
implementation section. A hierarchy of-modules is often viewed 
in a top-down faahion, with each module taking an abstract view 
of lower level modules in its ’implementation section.’ The 
application of abstraction implies that only the interface 
information is needed for correct use of a module. Top-down 
implies that interface information for any module is used prior 
to that module having its implementation section defined. Thus 
we are relying on the premise that the design of any 
implementation section will not alter the interface of a 
module. In the case of error handling, this may not always be 
true. 
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5 .  THE PROBLEM -- 
The problem associated with top-down design techniques and the 
use of abstraction becomes evident when considering the design 
of a module’s processing section. This design will utilize 
prior design work that has identified interfaces and 
functionalities of subordinate modules. In other words, this 
processing section’s design is based on the abstractions 
provided by the subordinate modules. Thus, the correctness of 
this design relies on the premise that these interfaces or 
abstractions will not change. While change is a natural part 
of the design process, attributable to designers’ discovery of 
new information and backtracking to modify prior design 
decisions, change and backtracking should not be a direct 
consequence of the method used. Two assumptions concerning the 
error handling facilities of a module, which will be justified 
below, are that these facilities will not be known until the 
module’s implementation is designed, and that these facilities 
will change the interface of the module. Based on these two 
assumptions, the design of every implementation section may 
change the associated interface. Therefore, the design of the 
processing section described above may become invalid when the 
subordinate modules’ processing sections are defined. Since a 
top-down order of design is being employed, every processing 
section that causes changes in the associated interface, 
invalidates the assumptions used to design the processing 
section of superior modules. 

First, the assumption that the error handling facilities of a 
module will change that module’s interface should be 
considered. Errors can not be handled entirely within the 
module where they are generated. If errors were always handled 
locally, either no real error processing or correction would be 
performed, or each module would require knowledge of its actual 
use or purpose. Thus, either the systems will not be tolerant 
of errors, or the individual software within the system will 
not be general or reusable. For these reasons we will allow 
and even encourage that errors be propagated from modules and 
be handled where it is most appropriate. Now consider that a 
complete design, at the detailed level, will specify the 
potential error situations as well as the desired response to 
those errors. Errors may be propagated into or generated by a 
module. Depending on the error handling facilities provided in 
the chosen language, errors may or may not be gracefully 
handled. Consider the M a  programming language which provides 
extensive error handling facilities. In M a ,  errors may be 
handled by special sections of code, and propagated out of the 
current module. The processing performed in response to errors 
changes the functionality or effect of this module. The 
possibility of errors being propagated out of a module also 
changes the interface of the module. Thus, the error handling 
facilities of a module add to or change the module’s interface. 
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Consider also when the designer will be making decisions about 
the error handling of some module. Abstraction plays an 
important role in the application of the design method. 
Modules are defined in terms of their function and interface, 
while their implementation is not considered. These modules 
are then utili~ed during the design of the processing sections 
of superior modules. During the definition of a module's 
function and interface it is possible to define certain error 
situations that may arise. However, defining the internal 
response to these errors would imply that the designer is 
considering the implementation details of the modules. This is 
a violation of the abstraction principle and is inappropriate. 
Additionally, designers can not be cognizant of all the 
possible errors a module may generate. These errors will be 
discovered during the design of that module's implementation 
section. Accordingly, at the outset, the response to these 
errors will also be unknown. Therefore, there is a 
considerable potential that the interface of a module will be 
changed after that interface has been defined and used during 
earlier design activities. 

The basic flaw described above is a consequence of the 
designer's reliance on the abstractions of other modules. The 
principle of abstraction has proven very useful in defining the 
structure of a system. However, it generally does not apply to 
the entire design process. It is unwise to design the 
implementation section of a module based on a number of 
abstractions if there is a likelihood that the abstractions 
will change. Doing so creates the potential for considerable 
rework and deviation from contractual standards and procedures. 

The assumption made above that "a complete design, at the 
detailed level, will specify the potential error situations as 
well as the desired response to those errors,)l should be 
discussed. The content of a detailed design is a subjective 
decision. The life cycle phase considered in this paper, 
labeled 'detailed design,' was more accurately defined as the 
phase prior to implementation. Thus, the output of this phase, 
a description of the system in the selected notation, will be 
given to a programming staff for purposes of implementation. 
Alternatives to the above assumption are to not specify the 
error handling facilities to be incorporated by the system, or 
to specify them only partly. Consequently, the programmer must 
decide between not including any error handling facilities 
since they were not defined, or in the case of M a ,  providing a 
general error handler that catches any error raised in or 
propagated to a module. Neither of these situations is 
desirable if reliability is a goal of the software. 
Alternatively, the programmer may handle those errors which he 
determines are generated by this module on an individual basis, 
deciding what processing is appropriate for each, and which 
should be propagated to calling modules. This will cause a 
module's implementation to deviate from its assigned function 
and interface. Finally, the programmer may perform the 
necessary work to make the following determinations: 
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1. Which errors may be propagated into the module? 

2. What processing has already been performed in response to 
these errors? 

3. What errors may be generated by this module? 

4.  What processing is necessary in response to both types of 
errors? and 

5. Which errors get propagated out of this module. 

This alternative requires communication between programmers and 
additions to the functionality and interface of the modules. 
None of these alternatives is as attractive as having the error 
handling facilities defined during the design process. 

- -  6. A SOLUTION 

A simple solution to this problem is to design the processing 
sections of a system’s modules in a bottom-up order. As each 
module has its processing section designed, appropriate changes 
can be made to the interface and functional description of the 
module. Thus, higher level modules utilize a more complete 
description of lower level modules. Performing this bottom-up 
substep within a design phase is compatible with both Object 
Oriented Design and Structured Design. This substep only 
requires that implementation sections are not designed until 
the structure and data definitions of the entire system have 
been defined. Once this is accomplished, the bottom-up order 
of processing section design may begin. 

A bottom-up design order does not define any additional 
guidelines for the design of the error handling facilities of a 
system. At most, this will allow the designer the opportunity 
to consider the issue, and specify the required functionality 
prior to when that information is used in other design work. 
This will reduce the amount of change and wasted effort that 
results from basing design decisions on incomplete information. 

- 7 .  SUMMARY 

This paper defines a problem engendered by the top-down 
structure imposed by software design methods and standards 
applied during the detailed design of a software system. 
Designers whose techniques rely on abstract modules defined in 
a top-down order will find that the design of the 
implementation section of these modules will result in changes 
to their interfaces attributable to error situations defined, 
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handled, and propagated. Changes to these interfaces 
invalidate assumptions made by higher level modules’ 
implementation sections. One solution is to design modules’ 
implementation sections in a bottom-up order, making the 
necessary changes to the interfaces of the modules. 

This paper is not meant to criticize current methods imply 
that they should be abandoned. Instead, it criticizes the ways 
in which these methods are applied. What is desired is am 
understanding that application of ’design methods’ does not 
solve all the problems of software design. In addition to 
being executed correctly, design methods must be applied only 
where appropriate. Careful analysis is needed to determine 
what must be accomplished during each phase of the software 
life cycle, and how well the selected method or methods address 
these needs. It will often be found that existing design 
methods can not address all the activities required within even 
a single phase of the life cycle. For this reason, methods 
must be augmented with additional techniques or considerations 
to ensure the design process is complete and correct. The 
example described in this paper demonstrated that the design of 
error handling facilities of a system is not adequately 
addressed by generic top-down methods. Thus, special 
consideration is required to ensure that the overall design 
approach addresses this portion of the software system. 

or 
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A s  sys tems become more complex, t h e  cost of deve lop ing  
s o f t w a r e  is r i s i n g  d r a m a t i c a l l y .  Although the r e q u i r e m e n t s  
phase  h a s  been i d e n t i f i e d  as crucial f o r  t h e  s u c c e s s f u l  
development  of l a r g e ,  r e l i a b l e ,  systems, much of t h e  
s o f t w a r e  e n g i n e e r i n g  e f f o r t  t o  d a t e  has  been i n  improving 
programmer p r o d u c t i v i t y  d u r i n g  t h e  implementat ion phase. 
Compared w i t h  t h e  number of t o o l s  for  d e s i g n  and 
implementa t ion ,  t o o l s  for  use i n  t h e  requi rements  phase a r e  
r e l a t i v e l y  few i n  number. We b e l i e v e  t h a t  a s  sys tems become 
more complex, t h e  need t o  a c c u r a t e l y  c a p t u r e  t h e  system 
requ i r emen t s  f a r  outweighs t h e  need t o  i n c r e a s e  t h e  
e f f i c i e n c y  of t h e  d e s i g n  process .  

T h i s  paper  p r e s e n t s  v a r i o u s  a s p e c t s  of t h e  Ada Objec t  
O r i e n t e d  Approach (AOOA) p r o j e c t  c u r r e n t l y  be ing  conducted  
by Harris. The o b j e c t i v e  of t h i s  p r o j e c t  is t o  p r o t o t y p e  
v a r i o u s  f a c e t s  of a Requirements  S p e c i f i c a t i o n  Language 
(RSL) a d d r e s s i n g  t h e  problems a s s o c i a t e d  w i t h  c u r r e n t  RSLs .  
T h i s  e n t a i l s  t h e  development of an  RSL based upon a 
g r a p h i c a l  o b j e c t - o r i e n t e d  format .  

The d e s c r i p t i o n  of a problem o f t e n  i d e n t i f i e s  a l a r g e  
numbers of e n t i t i e s ,  t h e i r  c h a r a c t e r i s t i c s ,  behavior ,  and 
i n t e r a c t i o n s .  I n  o r d e r  t o  c l e a r l y  r e p r e s e n t  t h i s  
i n f o r m a t i o n ,  AOOA emphasizes  g r a p h i c s  as t h e  most u n i v e r s a l  
means of communication. T h i s  c a p a b i l i t y  is suppor ted  i n  t h e  
form of three t o o l s :  a n  o b j e c t  e d i t o r ,  i n t e r f a c e  e d i t o r ,  
and s c e n a r i o  e d i t o r .  A s  t h e  requirement  eng inee r  e x p r e s s e s  
h i s  concept  u s i n g  t h e  t o o l s e t ,  t h e  r e s u l t i n g  i n f o r m a t i o n  is 
a u t o m a t i c a l l y  stored i n  a Problem S p e c i f i c a t i o n  Database 
(PSD) . 

The i n f o r m a t i o n  s t o r e d  i n  t h e  PSD is g a t h e r e d  d u r i n g  
a l l  phases  of t h e  development l i f e c y c l e ,  from concep t  

maintenance.  From t h i s  f o u n d a t i o n ,  t h e  des ign  team can u s e  
t h e  AOOA too lse t  t o  e l a b o r a t e  t h e  requi rements  i n t o  a des ign  
and implementat ion.  Note t h a t  once t h e  f u n c t i o n a l  
r equ i r emen t s  have been  e l a b o r a t e d ,  t h e  r e s u l t i n g  i n f o r m a t i o n  
b e a r s  a s t r o n g  resemblance t o  an Ada program. Thus,  t h e  
AOOA t o o l s e t  c o n t a i n s  an Ada source code g e n e r a t o r  t o  
t r a n s f o r m  t h e  i n f o r m a t i o n  con ta ined  i n  t h e  PSD i n t o  
co r re spond ing  Ada source code. T h i s  method of g e n e r a t i n g  

I Ada s o u r c e  code allows a p r o j e c t  t o  be ma in ta ined  by 
modifying t h e  s p e c i f i c a t i o n  i n s t e a d  of t h e  code. When f a c e d  

e x p l o r a t i o n  th rough  d e s i g n  and imp1 ement a ti on t o  
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w i t h  changing r e q u i r e m e n t s ,  t h e  r equ i r emen t s  e n g i n e e r  can  
modify t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h e  PSD. A new 
implementa t ion  may t h e n  be g e n e r a t e d ,  r e u s i n g  t h o s e  p o r t i o n s  
of t h e  s p e c i f i c a t i o n  t h a t  d i d  n o t  change. 

The a u t h o r  r e c e i v e d  a BS i n  Computer Sc ience  from 
L o u i s i a n a  Tech U n i v e r s i t y  i n  1981. S ince  j o i n i n g  H a r r i s ,  
t h e  a u t h o r  has  been working as t h e  p r i n c i p a l  i n v e s t i g a t o r  of 
t h e  Ada Object O r i e n t e d  Approach. As t h e  p r i n c i p a l  
i n v e s t i g a t o r ,  t h e  a u t h o r  was r e s p o n s i b l e  for  deve lop ing  t h e  
concep t ,  as w e l l  as i n i t i a t i n g  an i n t e r n a l  r e s e a r c h  p r o j e c t  
from which t h e  i n i t i a l  s e t  of t o o l s  were c r e a t e d .  
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1. I N T R O D U C T I O N  

An object is an abstract software model o f  a problem domain 
entity. Objects are packages o f  both data and operations on 
that data [Goldberg 83, Booch 831. The xaa (tm) package 
construct i s  representative o f  this general notion o f  an object. 
-- ObJect-oriented _________--- ---- design is the technique o f  using objects as the 
basic unit o f  modularity in system design. T h e  Software 
Engineering Laboratory at t h e  Goddard Space Flight Center- is 
currently involved in a pilot project t o  develop a flight 
dynamics simulator in Ada (approximately 40,000 statements) 
using object-oriented methods. Several authors have applied 
object-oriented concepts t o  Ada (e.g., [Booch 83, Cherry 85bl). 
In our experience we have found these methodologies limited 
[Nelson 861. A s  a result we have synthesized a more general 
approach which allows a designer t o  apply powerful, 
object-oriented principles t o  a wide range o f  applications and 
at all stages of design. The present paper provides an overview 
o f  our approach. Further, we also consider how object-oriented 
design fits into the overall software life-cycle. 

2 .  O B J E C T S  AND O B J E C T  D I A G R A M S  

We can model a procedure -------- as a mathematical function. That 
is, given a certain set o f  inputs (arguments and global data), a 
procedure always produces the same set o f  outputs (results and 
global updates). A procedure, for--exampTey c a n n o t  directly 
model an address book, because an address book has ----- memory (a set 
o f  addresses) which can be accessed and updated. Normally, the 
solution t o  this is t o  place such memory in global variables. 

Figure 1 g i v e s  a representation o f  the above situation. 
This diagram uses a notation similar t o  [Yourdon 791 to show 
both data and control flow. The arrow from CALLER t o  PROCEDURE 
indicates that CALLER transfers control t o  PROCEDURE. Note that 
there is an implicit return o f  control when PROCEDURE finishes. 
The smaller arrows in-Tigu?e T-sEow-iEe data flows, which may go 
in either direction along t h e  control arrow. Also, figure 1 
includes an explicit symbol f o r  t h e  GLOBAL DATA. Control arrows 
directed towards this symbol denote data access, even though 
control never really flows into t h e  data, o f  course. This 
convention indicates that t h e  data is always passive and never 
--------- initiates any action. 
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2 
GLOBAL DATA 

FIGURE1 A p r o c e d u r e d  

T h e  use o f  global 

ADDRESS 
MEMORY 

STATE) 
@JTEwI(AL 

FIGURE 2 An ADDRESS BOOK object 

storage leaves data open t o  illicit 
modification. T o - a v o i d  this,-an object packages some memory 
together with all allowable operations on it. We can model an 
object as a mathematical "state machine" with some internal 
state which can be accessed and modified by a limited number of 
mathematical functions. We thus implement an object as a 
packaged set of procedures and internal data, as shown i n  
figure 2. For an address b o o k  object, the internal memory would 
be a set o f  addresses, and the allowable operations would be 
accessing an address by name, adding an address, etc. Unlike a 
procedure, t h e  same arguments t o  an object operation may produce 
--------- different resulfs--at different times, depending on t h e  hidden 
internal state. We will diagram an object showing only its 
operational connections to other objects, as i n  t h e  -- obiect --- 
--- diagram --- o f  figure 3 [Seidewitz 85a]. 

When there are several control paths on a complicated 
object diagram, it rapidly becomes cumbersome t o  show data flows 
or all individual procedure control flows. Therefore, an arrow 
between objects on an object diagram indicates that one object 
invokes --- o n e  -- o r  ---- more of the operations provided by another object 
and is not marked with data flow arrows. -- Obiect --- ------ descrigtions _-_-_ 
for each object on a diagram provide details o f  t h e  data flow. 
An object description includes a list o f  all operations provided 
by an object and, for each arrow leaving the object, a list o f  
operations used from another object. F o r  example, t h e  object 
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-* --- d e s c r i p t i o n  f o r  DATE BOOK f r o m  f i g u r e  3 i s :  

P r o v i d e s :  
N e x t - A p p o i n t m e n t  ( )  NAME t ADDRESS 
G e t  A p p o i n t m e n t  (DATE t TIME) NAME + ADDRESS 
Make A p p o i n t m e n t  (DATE + TIME + NAME)  
C a n c e l - A p p o i n t m e n t  ( D A T E  + T I M E )  

U s e s :  

A D D R E S S  BOOK 
Look-Up 

CLOCK 
Get  D a t e  
Ge t -T ime  - 

D a t a  i n  p a r e n t h e s e s  a r e  a r g u m e n t s  w h i c h  f l o w  a l o n g  t h e  c o n t r o l  
a r r o w ,  w h i l e  u n p a r e n t h e s i z e d  d a t a  a r e  r e s u l t s  w h i c h  a r e  
r e t u r n e d .  

FIGURE 3 A simple schedule organizer 

D. 

FIGURE 4 Parent-child hierarchy 
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3. OBJECT-ORIENTED DESIGN - 

The intent of an object is to represent a problem domain 
entity. The concept o f  abstraction deals with how an object 
presents this representation to other objects [Dijkstra 6 8 ,  
Liskov 74, Booch 831. There is a spectrum o f  abstraction, from 
objects which closely model problem domain entities to objects 
which really have no reason for existence. The following are 
some points in this scale: 

Best 

I 
----- Entity __----__--- Abstraction - An object represents a useful 
model of a problem domain entity. 

------ Action --___------ Abstraction - An object provides a generalized 
set of operations which all perform the same kind of 
function. 

_____-- Virtual ------- Machine Abstraction - An object groups 
toctether oDerations which are all used by some 
sukerior level o f  control or all use some j u n i o r  level 
set o f  operations. 

_____--_____ Coincidental _-__--------- "Abstraction" - A n  object packages a set 
o f  operations which have no relation to each other. 

The stronger the abstraction of an object, the more details are 
suppressed by the abstract concept. The principle of 
____------- information ----- h i d i n g  states that such details should be kept 
secret from other objects [Parnas 72, Booch 831, s o  as t o  better 
preserve the abstraction modeled by the object. 

The principles of abstraction and information h i d i n g  
provide the main guides for creating "good" objects. These 
objects must then be connected together to form a n  
object-oriented design [Seidewitz 85bl. Following [Rajlich 851, 
we consider two orthogonal hierarchies i n  software system 
designs. The parent-child ----------- hierarchy deals with the 
decomposition o f  larger objects into smaller component objects. 
The _____--- seniority hierarchy deals with t h e  organization o f  a set of 
objects into "layers". Each layer defines a ------- virtual ------- machine 
which provides services t o  senior layers [Dijkstra 681. A major 
strength o f  object diagrams is that they can distinctly 
represent these hierarchies. 

The parent-child hierarchy is directly expressed by 
_____-- leveling object diagrams (see figure 4). At its top level, any 
complete system may be represented by a single object. For 
example, figure 5 shows a diagram o f  the complete SCHEDULE 
ORGANIZER o f  the last section. The object SCHEDULE ORGANIZER 
represents the ''parent" o f  the complete object diagram of 
figure 3. The boxes labeled "USER" and "CLOCK" are -------- external 
-------- entities 9 objects which are not included in the system, but 
which communicates with t h e  top level system object. Note the 
arrow labeled '*RUN". Bq convention, RUN is the operation used 
to initially invoke the entire system. 
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FIGURE 5 External Entities Diagram FIGURE 6 Seniority hierarchy 

Figure 3 is t h e  decomposition o f  t h e  SCHEDULE ORGANIZER o f  
figure 5. Beginning at t h e  system level, each object can be 
refined i n  t h i s  way into a lower level object diagram. The 
result is a leveled set o f  object diagrams which completely 
describe t h e  structure o f  a system. At t h e  lowest level, 
objects are completely decomposed into FrrJmitive ------ -- obiects, ---- 
procedures and internal state data stores, resulting i n  diagrams 
similar to figure 2. 

The seniority hierarchy is expressed by t h e  topology of 
connections on a single object diagram (see figure 6). Any 
layer in a seniority hierarchy can call on any operation i n  
j u n i o r  layers, but ----- never any operation in a senior layer. Thus, 
all cyclic relationships between objects must be contained 
within a virtual machine layer. Object diagrams are drawn with 
t h e  seniority hierarchy shown vertically. Each senior object 
can be designed as if t h e  operations provided by junior layers 
were "primitive operations'' in an extended language. Each 
virtual machine layer will generally contain several objects, 
each designed according t o  t h e  principles o f  abstraction and 
information hiding. 

T h e  main advantage o f  a seniority hierarchy is that it 
reduces t h e  coupling between objects. This is because all 
objects in one virtual machine layer need t o  know nothing about 
senior layers. Further, t h e  centralization o f  t h e  procedural 
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and data flow control in senior objects can make a system easier 
t o  understand and modify. However, this very centralization -can 
cause a messy bottleneck. I n  such cases, the complexity of 
senior levels can be traded off against the coupling o f  j u n i o r  
levels. The important point is that the strength o f  the 
seniority hierarchy i n  a design can be chosen from a - spectrum ------ of 
possibilities, with the best design generally lying between the 
extremes. This gives t h e  designer great power and flexibility 
i n  adapting system designs t o  specific applications. 

I n  the simple automated plant simulation system shown i n  
figure 7, the j u n i o r  level components d o  not interact directly. 
This design is somewhat like an object-oriented version o f  the 
structured designs of [Yourdon 791. We can remove the data flow 
control from the senior object and let the junior objects pass 
data directly between themselves, using operations within the 
virtual machine layer (see figure 8). The senior object has 
been reduced to simply activating various operations i n  t h e  
virtual machine layer, with very little data flow. We can even 
remove the senior object completely by distributing control 
among the j u n i o r  level objects (see figure 9). The splitting o f  
t h e  RUN control arrow i n  figure 1 1  means that the three objects 
are activated simultaneously and that they run concurrently. 
The seniority hierarchy has collapsed, leaving a homologous or 
non-hierarchical desiqn fYourdon 791 (no seniority--bTerarchy, 

hierarchy still remains). A design that is; the parent-child 
which is homologous at all 
t o  what would be produced 
[Cherry 85a, Cherry 85bl. 

decomposition levels is very similar 
by the P A M E L A  (tm) methodology o f  

I FIGURE 7 A simple plant automation FIGURE 8 plant simulator with 
simulation system junior-level connections 
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FIGURE9 
FIGURE10 EMS 

Plant simulator, homologous design 

- 
context diagram 

4 .  OBJECT-ORIENTED LIFE CYCLE 

Object diagrams and the object-oriented design concepts 
discussed above can be used as part of an object-oriented life 
cycle. To do this, we must show that a specification can be 
translated into object diagrams, and that object diagrams map 
readily into Ada. We use structured analysis for developing the 
specification [DeMarco 791. The data flow diagrams of a 
structured specification provide a leveled, graphical notation 
containing the information needed to represent abstract 
entities, but in a form emphasizing data flow and data 
transformation. 

_--________ Abstraction --_- analysis __- is the process of making a transition 
from a structured specification to an object-oriented design 
[Stark 861. We will use a simplified version of an Electronic 
Message System ( E M S )  as an example o f  abstraction analysis. 
Figure 10 is the context diagram for EMS, and Figure 11 is the 
level 0 data flow diagram. EMS must allow the user to send, 
read, and respond to messages, to obtain a directory o f  valid 
users to which messages can be sent, and to add and delete users 
from that directory. 

The first step of abstraction analysis i s  to find a central 
----- entity. This is the entity that represents the best abstraction 
for what the system does or models. The central entity is 
identified in a similar way to transform analysis [Yourdon 7 9 1 ,  
but instead of searching for where incoming and outgoing ---- data 
--___ flows are most abstract we look for a set o f  processes and ---- data 
-_____ stores that are most abstract. It may sometimes be necessary to 
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l ook  a t  lower l e v e l  d a t a  f low d iagrams t o  f i n d  t h e  c e n t r a l  
e n t i t y .  EMS i s  a sys tem s e r v i n g  a person  s i t t i n g  a t  a t e r m i n a l  
s end ing  and r e c e i v i n g  messages.  On f i g u r e  11 we have c i r c l e d  
t h e  " c u r r e n t  u s e r "  d a t a  s t o r e  and t h e  p r o c e s s  1 .0  G E T  EMS 
C O M M A N D .  Toge the r  t h i s  p r o c e s s  and d a t a  s t o r e  r e p r e s e n t  t h e  
u s e r  e n t e r i n g  commands a t  a t e r m i n a l .  Thus t h e y  r e p r e s e n t  t h e  
c e n t r a l  e n t i t y .  

Next ,  we need t o  f i n d  e n t i t i e s  t h a t  d i r e c t l y  s u p p o r t  t h e  
c e n t r a l  e n t i t y .  We do t h i s  by f o l l o w i n g  d a t a  f lows  away from 
t h e  c e n t r a l  e n t i t y  and g r o u p i n g  p r o c e s s e s  and d a t a  s t o r e s  i n t o  
a b s t r a c t  e n t i t i e s .  I n  o u r  example t h e  USER DIRECTORY d a t a  s t o r e  
and t h e  t h r e e  p r o c e s s e s  ( 2 . 0 ,  4 . 0  a n d  5 . 0 )  s u p p o r t i n g  i t  form an 
e n t i t y .  The p r o c e s s  3 . 0  ACCESS Q U E U E S  w i t h  t h e  d a t a  s t o r e  U S E R  
Q U E U E  INDEX a l s o  form an e n t i t y .  All  t h e s e  e n t i t i e s  a r e  c i r c l e d  
and l a b e l e d  on f i g u r e  11. We c o n t i n u e  t o  f o l l o w  t h e  d a t a  f lows  
and t o  i d e n t i f y  e n t i t i e s  u n t i l  a l l  t h e  p r o c e s s e s  and d a t a  s t o r e s  
a r e  a s s o c i a t e d  wi th  a n  e n t i t y .  

F i g u r e  12 i s  t h e  ----- e n t i t y  graph -- - f o r  EMS. Squares  r e p r e s e n t  
e n t i t i e s ,  l i n e s  w i t h  a r rows  r e p r e s e n t  f low o f  c o n t r o l  from one 
e n t i t y  t o  a n o t h e r ,  and l i n e s  w i t h  no arrowhead r e p r e s e n t  
i n t e r a c t i o n s  where f l o w  o f  c o n t r o l  i s  n o t  y e t  d e t e r m i n e d .  A 
"most s e n i o r "  e n t i t y  i s  p l aced  i n t o  t h e  d e s i g n  t o  g i v e  an 
i n i t i a l  f l ow o f  c o n t r o l .  I n  t h e  EMS example,  e n t i t y  EMS i s  t h i s  
most s e n i o r  o b j e c t ,  and we have t h e  U S E R  INTERFACE e n t i t y  
" c o n t r o l l i n g "  t h e  e x t e r n a l  e n t i t y  USER. T h i s  f l ow o f  c o n t r o l  

- 
FIGURE 11 EMS level 0 data flow diagram 
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FIGURE 12 EMS entity graph .FIGURE 13 EMS object diagram 

i n t o  U S E R  w i l l  u l t i m a t e l y  b e  i m p l e m e n t e d  as  r e a d  and  w r i t e  
o p e r a t i o n s .  N o t e  a l s o  t h a t  t h e  USER e n t i t y  c o n t r o l s  EMS.  T h i s  
f l o w  o f  c o n t r o l  r e p r e s e n t s  t h e  u s e r  i n v o k i n g  t h e  EMS s y s t e m .  
A f t e r  t h i s  i n v o c a t i o n  c o n t r o l  r e s i d e s  w i t h  EMS u n t i l  t h e  s y s t e m  
i s  e x i t e d .  A l l  o t h e r  p o t e n t i a l  i n t e r f a c e s  a r e  shown b y  l i n e s  
w i t h  no  a r r o w s .  The numbers  i n s i d e  t h e  s q u a r e s  r e p r e s e n t  t h e  
p r o c e s s e s  and t h e  d a t a  s t o r e s  c o n t a i n e d  i n  t h e  e n t i t y .  T h i s  
p r o v i d e s  t r a c e a b i l i t y  f r o m  r e q u i r e m e n t s  t o  d e s i g n .  

The e n t i t y  g r a p h  i s  t h e  s t a r t i n g  p o i n t  f o r  o b j e c t  
i d e n t i f i c a t i o n .  I t  shows e n t i t i e s  w i t h  t h e  h i g h e s t  a b s t r a c t i o n  
p o s s i b l e  and  a l s o  shows a l l  t h e  p o s s i b l e  i n t e r c o n n e c t i o n s  
b e t w e e n  t h e  e n t i t i e s .  S i n c e  we a r e  t r y i n g  t o  b a l a n c e  d e s i g n  
c o m p l e x i t y ,  o b j e c t  a b s t r a c t i o n ,  and c o n t r o l  h i e r a r c h y ,  we w i l l  
a l t e r  t h e  e n t i t y  g r a p h  t o  f o r m  t h e  f i n a l  o b j e c t  d i a g r a m .  I n  EMS 
t h e  e n t i t i e s  a r e  e a s i l y  mapped i n t o  o b j e c t s .  The e n t i t i e s  U S E R ,  
U S E R  INTERFACE, a n d  EMS f o r m  a c y c l i c  g r a p h  and  t h e r e f o r e  a r e  on 
t h e  same v i r t u a l  m a c h i n e  l e v e l .  We c a n n o t  c o m b i n e  an e x t e r n a l  
e n t i t y  i n t o  an o b j e c t ,  b u t  c o m b i n i n g  EMS and  U S E R  I N T E R F A C E  
y i e l d s  a s i n g l e  o b j e c t  t h a t  i s  s e n i o r  t o  U S E R  D I R E C T O R Y  and 
M E S S A G E  CENTER. C o m b i n i n g  t h e  t w o  j u n i o r  o b j e c t s  w o u l d  s i m p 1  i f y  
t h e  d e s i g n ,  b u t  a t  t h e  e x p e n s e  o f  a b s t r a c t i o n ,  a s  t h e  message 
p a s s i n g  m e c h a n i s m s  h a v e  l i t t l e  t o  d o  w i t h  t h e  d i r e c t o r y .  We 
h a v e  a l s o  c h o s e n  t o  make U S E R  DIRECTORY s e n i o r  t o  M E S S A G E  
C E N T E R ,  s i n c e  t h e  d a t a  f l o w s  a r e  f r o m  U S E R  D I R E C T O R Y  i n t o  d a t a  
s t o r e s  c o n t a i n e d  b y  M E S S A G E  C E N T E R .  F i g u r e  1 3  shows t h e  
r e s u l t i n g  o b j e c t  d i a g r a m .  
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Needless t o  say, identifying objects is not always t h i s  
simple. Usually there is a trade-off made between level o f  
abstraction and design complexity, o r  a balancing o f  these two 
considerations and t h e  virtual machine hierarchy. When these 
situations occur it is still t h e  designer’s judgement that must 
determine which side o f  t h e  trade-off matters more f o r  t h e  
application being designed. 

Once t h e  object diagrams are drawn w e  can identify t h e  
operations provided and used by each object. In t h e  c a s e  o f  2.0 
USER DIRECTORY t h e  operations are identified by examining t h e  
primitive processes contained within processes 2.0, 4.0 and 5.0 
on figure 1 1 .  The data exchanged are identified by looking at 
data flows crossing t h e  object boundaries, with t h e  detailed 
information about the data being found in t h e  data dictionary. 
T h e  object description is produced by matching t h e  operations 
and t h e  data. T h e  description generated for 2.0 USER DIRECTORY 
is a s  follows: 

Provides: 
List Names ( )  LIST-OF NAMES 
Add user (USER NAME +-PASSWORD) 
Delete User (USER-NAME) 
Signon-(USER-NAME + PASSWORD) VALIDITY - FLAG 

Uses: 
3.0 MESSAGE QUEUES 

Reset Queue 
C r e a t e  - New - Queue 

Using t h e  subset data flow diagram o f  processes and data 
stores that an object contains, t h e  process o f  object 
identification can be repeated t o  produce a child object 
diagram. T h e  only difference is that entities are identified 
based on how they support t h e  object’s operations, not by 
finding a central entity. This process is used until t h e  lowest 
level o f  data f l o w  diagrams is exhausted. 

T h e  transition from an object diagram t o  Ada i s  
straightforward. T h e  relationship between object diagram 
notations and Ada language features is: 

-- ObJect --- --- Diagram --- 
Object 
Procedure 
State 
Arrow 
Actor 

Ada Construct 
Package 
Subprogram 
Package o r  t a s k  variables 
Procedure/function/entry call 
Entries/Accepts 

(not covered in this paper) 

--- -__-----_ 

Package specifications are derived from t h e  list o f  operations 
provided by an object. For t h e  EMS USER DIRECTORY object t h e  
package specification is: 
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package User-Directory is 

subtype USER-NAME is STRING(l..EO); 
subtype PASSWORD i s  STRING(1..6); 
t y p e  LIST - -  O F  NAMES is array (POSITIVE r a n g e  c > )  o f  USER-NAME; 

procedure Signon (User: in USER-NAME; PW : in PASSWORD; 

procedure Add-User (U: in USER NAME; PW : in PASSWORD); 
procedure Delete-User (U: in USER-NAME); 
function List-Names return LIST-OF-NAMES; 

Valid-User : out Boolean); 

end User-Directory; 

The package specifications derived from t h e  level 0 object 
diagram are placed i n  t h e  declarative part o f  t h e  top level Ada 
procedure a s  follows: 

procedure EMS is 
package User-Interface is 

procedure Start; 

end'User - Interface; 

package User - Directory i_s 

end User - Directory; 

package Message-Queues is 

end Message - Queues; 

package body User Interface is separate; 
package body User-Directory is separate; 
package body Message-Queues is separate; 

User 1nterface.Start; 

. . .  

. . .  

begin 

end EMS; 
for lower level object diagrams t h e  mapping is similar, with 
package specifications being nested in t h e  package body o f  the 
parent object. States are mapped into package body variables. 
This direct mapping produces a highly nested program structure. 
To implement t h e  same object diagram with library units would 
require t h e  addition o f  a package to contain data types used by 
two o r  m o r e  objects. This added package would serve as a global 
data dictionary. 

T h e  process o f  transforming object diagrams to Ada is 
followed down all the child object diagrams until w e  are at the 
level o f  implementing individual subprograms. If t h e  mapping is 
done without explicitly creating library units t h e  lowest level 
subprograms will all be implemented as subunits, rather than by 
embedding t h e  code in package bodies. 
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5. EVALUATION OF THE METHODOLOGY 

T o  measure how well abstraction analysis w o r k s  a s  a 
methodology w e  must first define o u r  criteria f o r  a good 
methodology. W e  will use Barry Boehm's "Seven Principles o f  
Software Engineering" [Boehm 761 as a basis o f  comparison. 
These principles are: 

Manage using a sequential life c y c l e  plan 
Maintain disciplined product control 
Perform continuous validation 
Use enhanced top down structured design 
Maintain clear accountability f o r  results 
Use better and fewer people 
Maintain a commitment t o  improve t h e  process 

Abstraction analysis supports all these principles. .The 
---- life c y c l e  plan is supported by providing t h e  abstraction 
analysis method for producing object diagrams, which are in turn 
mappable into Ada. This also provides a means o f  disciplined 
Froduct control by tracing how Ada software implements an object 
orienxed--&%Tsn, and also tracing h o w  t h e  design meets t h e  
specification. This traceability allows a manager t o  see that 
software meets its specification, and allows maintenance o f  
specifications, design, and software t o  be consistent. Grady 
Booch's [Booch 831 work influenced o u r  methodology, but did not 
provide a sufficient means o f  specifying large systems. Another 
drawback is that Booch does not define a formal mapping from a 
specification t o  a design. 

T h e  graphic notation supports a top down approach t o  
software development. T h e  leveling o f  both -&fafTow-aiagrams 
and o f  object diagr.ams allows t h e  designer to start at a high 
level and w o r k  top-down t o  a design solution. The use o f  
graphics also supports continuous validatioc by making design 
walkthroughs and iterative changes easier tasks t o  perform. 
Both Booch and Cherry [Cherry 85b] use graphics, but'Booch's 
notation w a s  not designed for large applications, and Cherry's 
methodology stops graphing after all t h e  concurrent objects have 
been identified. The graphics used by structured analysis 
[DeMarco 791 provide t h e  best analogy t o  how graphics are used 
i n  t h e  object diagram notation. 

T h e  life cycle model we have defined also supports the 
remaining three principles. Objects a r e  defined i n  t h e  design 
phase and implemented as separate Ada compilation units. Tools 
such as unit development folders can be used t o  maintain 
------------- accountability f o r  completion of t h e  design, implementation, and 
testing o f  objects. It is hoped that t h e  object-oriented 
approach and t h e  use of Ada will enhance both productivity and 
software reliability. T h i s  assertion will be tested by 
measuring t h e  outcome of t h e  pilot project in t h e  Software 
Engineering Laboratory at Goddard S p a c e  Flight Center. The 
success o f  t h i s  methodology would allow ------ better --- and ----- fewer people -- -- 
to concentrate more effort on producing a good design. 
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Finally, w e  a r e .  certainly committed t o  improving 
process. T h e  object diagram notation-and--absfraction analysis 
ha?e-aiready seen much change since t h e  initial versions were 
defined. Further refinement will be t o  define criteria for 
using parallelism, criteria for choosing between library units 
and t h e  nested approach defined above, and to generate object- 
oriented approaches t o  software specifications and software 
testing. 

6.  CONCLUSION 

Object diagrams have been used t o  design a 5 0 0 0  statement 
team trainging exercise and to design t h e  entire dynamics 
simulator. They are also being used t o  design another 50,000 
statement Ada system and a personnal computer based system that 
will be written i n  Modula 11. O u r  design methodology evolved 
out of t h e s e  experiences as well as t h e  limitations o f  other 
methods w e  studied. Object diagrams, abstraction analysis and 
associated principles provide a unified framework which 
encompasses concepts from [Yourdon 791, [Booch 831 and 
[Cherry 85bl. This general object-oriented approach handles 
high level system design, possibly with concurrency, through 
object-oriented decomposition down t o  a completely functional 
level. We are currently studying how object-oriented concepts 
can be used in other phases of the software life-cycle, such as 
specification and testing. When complete, this synthesis should 
produce a truly general object-oriented ------ development ---- methodology. 

TRADEMARKS 

Ada is a trademark of t h e  US Government (Ada Joint Program 
Office). 

PAMELA is a trademark o f  George W. Cherry. 
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SOME DESIGN CONSTRAINTS REQUIRED 
COMPONENTS: THE INCORPORATION 

FOR THE ASSEMBLY OF SOFTWARE 
OF ATOMIC ABSTRACT TYPES 

INTO GENERICALLY STRUCTURED ABSTRACT TYPES 

Charles S. Johnson 

ABSTRACT 

It is nearly axiomatic, that to take the greatest advantage 
of the useful features available in a development system, and to 
avoid the negative interactions of those features, requires the 
exercise of a design methodology which constrains their use. A 
major design support feature of the Ada language is abstraction: 
for data, functions, processes, resources and system elements in 
general. Atomic abstract types can be created in packages 
defining those private types and all of the overloaded 
operators, functions and hidden data required for their use in 
an application. Generically structured abstract types can be 
created in generic packages defining those structured private 
types (i.e. lists, trees), as buildups from the user-defined 
data types which are input as parameters. A study is made of 
the design constraints required for software incorporating 
either atomic or generically structured abstract types, if the 
integration of software components based on them is to be 
subsequently performed. The impact of these techniques on the 
reusability of software and the creation of project-specific 
software support environments is also discussed. 

INTRODUCTION 

The reusability of Ada software developed in support 
environments will be wholly dependent upon the quality of those 
environments. The ability of programmers that are relatively 
inexperienced in Ada to generate reusable software will be 
enhanced by an environment rich in already reusable software 
components, which act as models f o r  good design. In an analogy 
to a factory, components which are tooled to fit can be easily 
assembled. Atomic abstract types define objects which represent 
the discrete phenomena that are the subjects of the system 
development. Generically structured abstract types organize the 
objects of the system in a manner representing the relationships 
between those objects. If atomic and generically structured 
abstract types are defined according to some general design 
goals and constraints, then the subsequent assembly of these 
software components is made considerably easier. 

BRIEF BACKGROUND 

Kennedy Space Center/ Engineering Development/ Digital 
Electronics Engineering Division is in the process of 
prototyping distributed systems supporting I & T applications, 
particularly the Space Station Operations Language (SSOL) 
System, which is the I & T subset of the User Interface Language 
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(UIL) for the Space Station. The discussions in this paper were 
developed from the results of systems designed and developed in 
Ada to demonstrate the general feasibility of creating 
software support environments which maximized the reusability of 
software components. The Ada environment used was that of VAX 
Ada under VAX/VMS. 

OBJECT DEFINITION IN ADA 

The design and development of software components that meet 
the needs of the user community can be viewed largely as an 
effort to define and refine the definition of abstract objects 
and their associated operations in computer systems. The 
definition of objects in these systems is akin to a simulation 
effort. There is a direct correlation between the effectiveness 
of programs and the fidelity with which objects in those 
programs simulate the behavior of the external phenomena they 
are intended to represent. For example, an element in a 
scheduler queue, representing a process awaiting execution, must 
reflect the correct state of the process (priority, blocked for 
I / O ,  etc.) for the scheduler to function properly. The element 
must be distinguishable from other elements and not lose 
identity or integrity during operations. 

As in simulation efforts,  the goals and objectives for 
defining an object in a system should be specified at the 
outset. The system functional requirements should drive the 
process, while the scope of the system concept constrains 
development to areas that are productive. 

SIMPLE TYPES 

An object is characterized by it's attributes and the 
operations which mediate it's interactions with other objects in 
the environment. In the Ada language, the process of object 
definition begins with selection of base type or the creation 
of a composite type. 

Objects whose behavior is simple enough to be modeled by a 
numeric value, can be represented by subtypes or derived types, 
of numeric or discrete types. The subtype definitions can 
include range constraints, and in the case of non-discrete 
numeric types (UNIVERSAL-REAL, UNIVERSAL-FIXED) , they can 
include limits of precision for the representation. Declared 
objects of subtypes are, however, compatible with their base 
type and subtypes of the base type, which can allow erroneous 
combinations by operations allowable in the base type (adding 
MINUTES to HOURS, for example) . 

If the allowable operations of these base types are 
unsuitable, they can be restricted by the use of a derived type, 
which inherits the operations of the base type, but only for 
declared objects of the derived type (incompatible with the base 
type). This can yield dimensional errors, however, for 
multiplies and divides of objects of the same type (FT * FT = 
FT, instead of FT squared). In these cases subtypes and derived 
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types are too simple in behavior to correctly represent the 
objects in applications, and composite types must be used. [l] 

COMPOSITE TYPES 

Objects which are characterized by collections Of 
components or attributes are defined in Ada by the use of 
composite types: arrays and records or by access types 
which designate composite types. Objects which are collections 
of compatible components are represented by arrays, whereas 
objects which have various kinds of attributes are represented 
by records or access types designating records. Objects with 
attributes, and which have complex interactions with other 
objects in the system, would seem to be the more useful, 
although these are the most complex to define. 

Objects with attributes interact with each other by the 
means of those attributes, under the control of the allowable 
operations of the objects. These interactions can produce 
modifications and deletions of the objects or creation of new 
and different kinds of objects. In Ada, the operations are 
defined as subprograms (functions and procedures) with 
parameters of the object type or subtype. 

The operations which correspond to functions can be 
overloaded onto the set of computer math symbols for the given 
types. A function producing a scalar dot product from two input 
vectors could be given the name for instance. At the same 
time, a function producing a vector cross product from two 
vectors, could also be named The compiler would resolve 
these two operations from the type of the returned object. The 
compiler cannot, however, resolve these operations when the type 
of return is unknown. Vector products defined in this way could 
not then be embedded in longer equations, where they would 
generate intermediate results of indeterminate type. 

DIFFERENTIATION 

There are different levels of definition f o r  a 
system, it's objects and operations. Definition of the gross 
structure of a system can typically be generated, in a fairly 
simple manner, by the object-oriented or functional 
decomposition methods. Definition of the fine structure of 
the system involves different methods, which produce results of 
greater complexity. One proposed second-stage method is 
differentiation. 

If the definition of an object is found to be too amorphous 
to yield the correct behavior, differentiation can produce 
separate and more distinct types of object. The differentiated 
types will tend to be closely coupled and capable of interacting 
with the same operations that the undifferentiated type allowed 
for interactions of objects of that type. Where they differ in 
behavior is that area of operations or attributes that required 
the split. This type of tightly coupled interaction between 
different types is produced automatically in subtypes of the 
same base type, through inheritance. Subtypes, however, are very 
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tightly coupled, and can only differ from each other in terms of 
ranges (numeric or discrete subtypes), numbers of components 
(constrained array subtypes) or discriminant values (constrained 
record subtypes). 

If the differentiation is more extensive, requiring objects 
of differently structured base types, then all of the allowed 
interactions between the objects must be defined more 
laboriously. The rewards of this diligence, which are unique to 
Ada, are the isolation of system complexity to a package 
defining all the closely coupled interactions, while the 
programming using these types and operators can proceed at a 
higher level. 

OBJECT LIFE CYCLE 

Definition of a system down to the fine structure produces 
a definition that is no longer intuitive, and requires some non- 
intuitive method for it's verification. The life 'cycle of an 
object may prove to be useful in providing a path to follow, in 
the analysis of complex objects. 

All objects have their own life cycle, however brief, in 
the system environment. They are created and deleted by an 
operation or system event, either explicitly or implicitly. 
During their life they interact with other system objects, with 
results dictated by the appropriate operations. 

The verification of the results of object definition can be 
performed by a "walkthroughll of the object life cycle. During 
this process, the defined attributes and operations of the 
object can be evaluated in the light of the events it 
experiences: creation, interactions and demise. If, under 
these circumstances and within the scope of the requirements, 
the abstract object behaves similarly to the phenomena which it 
is intended to represent, then the object with it's attributes 
and operations can be expected to reliably support the 
development of applications concerning that phenomena. 

The Ada language features which directly support the 
definition of objects are packages and private types. Packages 
contain the definition of the object and allowable operations, 
which are visible, and the implementation, which is hidden. 
Private types further close the window of visibility, allowing 
only higher-level or interface attributes of the object 
definition to be visible 

TWO CLASSES OF ABSTRACT TYPES 

For the purposes of the assembly of software components, 
there appear to be two broad classes of private types. The types 
which support the definition of objects as discussed above are 
called, only for the purpose of distinction, atomic abstract 
types. These types represent the discrete phenomena which are 
the subjects of system development, and are defined in 
packages as private types. They have the indivisible property of 
atoms, and can be incorporated into the second class of types: 
the generically structured abstract types. 
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Generically structured abstract types are managed by 
generic software components (packages or subprograms), and are 
built-up from application-defined types which are contained as 
components of the generic structure. These structured abstract 
types organize the objects of the system in a manner 
representing the relationships between objects, and they shall 
be discussed first. 

GENERICALLY STRUCTURED ABSTRACT TYPES 

These structures, built-up from application-defined 
atomic abstract types and managed by generic packages, support 
the basic organization of the elements of the system. The 
organization of objects in a structure is a representation of 
the relationships between those objects, which can be either 
static or dynamic in nature. 

The specification of a generic package is parameter driven. 
The generic formal parameters of a generic package are the basis 
and controlling factor in the reusability of the package. The 
use of generic software has implications, however, for the 
design of atomic abstract types which are later to be used in an 
‘instantiation of that software. The benefits of reusability can 
only be fully realized if the design of atomic abstract types 
follows distinct lines. 

Taking an example of a generic sorting routine, it can 
readily be seen that the reusability of the routine is dependent 
upon the initial typing of the generic formal parameters and the 
matching rule for generic formal parameters. If the parameter is 
typed as simply private, then the maximum reusability is 
achieved, because it will match nearly everything (except 
discriminant or limited private types). However, if the 
parameter is typed as a real (digits <>) or integer (range <>), 
the operations that are consistent with those types will be 
available to the internals of the generic, but at the expense of 
only allowing those types as parameters. 

It should be noted here, that although a generic formal 
parameter of the limited private type would extend the 
generality of the generic software component, it is not useful 
due to the lack of both assignment and compare for equality 
within the generic. Without assignment, components of the 
structure cannot be set, or initialized to any value. 

The concept of generic programming turns private types and 
visibility inside out. In the case of a generic package, the 
structure of a type passed as a formal parameter is not visible 
to the package which manipulates it. 

In the support of generic structures, typically all that is 
needed is the assignment function @@:=I@ , the compare for equality 
function It=)I , and an ordering function @I>@@. The assignment and 
compare functions are available with type private parameters, 
and the ordering function I@>@@ can be passed as another formal 
parameter. With no other details or operations, structures like 
lists, queues, indexes, and hierarchical tree structures 
containing objects of the generic formal parameter type can be 
defined and maintained by the package. 
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ATOMIC ABSTRACT TYPES 

The atomic abstract types are the components which fit into 
the generically-structured abstract types, during the assembly 
of software components. As such they must be crafted to fit 
easily into the generic structure. 

As has been noted, generic formal parameters of the maximum 
range of applicability are those of the private type. The 
problem then is to design atomic abstract types that match the 
simple model of the private type: assignability and 
comparability. 

Discriminant types, although very useful on their own for 
the development of objects with constraining attributes, are 
fairly disfficut to use in conjunction with generic software. 
Very quickly it is found that, to match a discriminant type with 
a generic formal parameter, the types for each individual 
constraint must first be passed as generic formal parameters. 
Then the discriminant type must be passed with it's 
constraints. Unconstrained types are not allowed. Generic 
formal parameters of this combination should be fairly difficult 
to match with any type other than the type initially matched, 
making for extremely reduced reusability. 

Access types, which are the foundation of the dynamic 
structure of generically structured abstract types, are of 
little use in constructing atomic abstract types. They 
perform the assignability function more or less according to the 
simple model of private types, however they do not create a copy 
of the designated object (object pointed to), but instead copy 
the access object value (pointer address) onto the new object. 
This creates a shared object, with a certain loss of object 
identity, and could cause integrity problems inside the generic 
structure which incorporates the access object as a component. 

The ordering function used to order the elements of a 
generic structure (index, tree), can be defined by overloading 
the O>lV function for the access object, to create a function 
comparing the designated objects values (for a string access 
type, the lV>I1 would compare the designated strings). 

The compare function VI=11 is another matter, however. It 
exists for access types, but compares the values of the access 
objects to see if they designate the same designated object. 
The )l=II can only be overloaded if the abstract access type is 
declared as limited private instead of private. When this is 
done, however, the assignment operation is lost (and cannot 
be overloaded), which is needed for internally manipulating the 
generic structure inside the generic package. 

Embedding the access type in a non-discriminant record 
would not change the reference nature of the contained object, 
and the problem of compares. 

Embedding discriminant types, however, is very successful. 
AS long as the constraint is not needed for data validity, this 
technique can hide the discriminant type within a non- 
discriminant record. The non-discriminant record will match a 
generic formal parameter of type private. This allows, for 
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instance, a variable string (unconstrained array type), to be 
contained within a non-discriminant record, and passed to 
generic procedures easily. 

DESIGN GOALS AND CONSTRAINTS FOR ATOMIC ABSTRACTION 

In the process of feasibility prototyping for the 
generation of application independent software support 
environments, the following design goals and constraints were 
found to yield, for packages supporting atomic abstract types, 
the maximum in abstraction, flexibility, and potential for 
generic 

1. 

2 .  

3 .  

4 .  

5 .  

6 .  

structure incorporation: 

Package-def ined atomic objects being declared in the 
application software should, where possible, be 
defined as abstract types, that is, made private. 

If the operations of an object are analogous to those 
of standard objects already in the system, overload 
the same names for the operations. This enhances 
readability and learnability of the application 
software support environment. Do not, however, 
overload names with non-analogous functions. 

The functions performed by the operations of an 
object should be intuitive. The action 
performed by an operation should be predictable from 
the context of the application software. 

The outcome or result of operations of an object 
should be intuitive. The kind of object produced by 
operators, for example, should be predictable from 
the context of the application software. 

Maximize the completeness of the application interface 
to the atomic type defined in the package. Give the 
application developer all of the operations required 
to manipulate and combine objects, in an easy-to-use 
yet well controlled manner. 

Maximize the potential use of reusable software 
incorporating the abstract atomic type into 
generically structured types. This can be accomplished 
by defining types that perform simply under the 
operations of assignment and comparison (not 
discriminant types or access types, which follow a 
more complex model). 

DESIGN GOALS AND CONSTRAINTS FOR GENERIC ABSTRACTION 

In the process of feasibility prototyping for the 
generation of application independent software support 
environments, the following design goals and constraints were 
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found to vield the maximum in reusability and flexibility for 
packages 

1. 

2 .  

3 .  

4 .  

5 .  

6 .  

7 .  

ianaging generically structured abstract types : 
- 

Package-managed generic objects that are declared in 
the application software should, where possible, be 
defined as abstract types, that is, made private. 

Maximize the generality of the package. This comes 
from the use of formal generic parameters, 
particularly for types, that match the widest variety 
of application input types (type private instead of 
digits -3, for example). 

Maximize the usability of the application interface to 
the package. Extend, as far as possible into the 
application domain, access to the structures managed 
in the package, without violating the integrity of the 
internals, or the independence of the application 
from the generic software component (generality). 

Maximize the completeness of the application interface 
to the package. Give the application developer all the 
operations required to access and manipulate the 
internal structures, in a package-controlled manner. 

Support, if possible, multiple objects with the same 
package. This limits the need to re-instantiate the 
package several times within the same scope, for 
processing of multiple objects. 

Design for flexibility: a single tool, suited to a 
wide range of applications, is more likely to be 
remembered, and used by developers. 

Cover the infrequent failure modes. Most failures of 
algorithms and processing logic in programs occur at 
the extremes of their domain of applicability. 
Testing should cover the ends of ranges and the 
infrequent states of the application. If the software 
component is reusable, it will be used in a wider 
range of applications, and the infrequent failure 
modes will occur more frequently. 

PACKAGES SUPPORTING GENERICALLY STRUCTURED ABSTRACT TYPES 

The index package, described as a list of elements ordered 
by another set of associated elements or keys, will be used as 
an example for a package supporting a generically structured 
abstract type. The index structure itself should be a private 
type. It should be defined in the package specification, not 
hidden, so that it can be declared as an object in the scope of 
the application. The package should be capable of accessing and 
managing several objects of type INDEX, so there should be a 
USE-INDEX function, which selects the appropriate object, and 
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sets a package-internal access object to the same value as that 
passed as the USE-INDEX parameter. Then there will be two 
access objects pointing to the index structure internals, one in 
the application scope, one in the package scope. 

Since the access object in the application scope cannot be 
changed, neither can the access object in the package scope 
(unless there is a subsequent USE-INDEX call). They must stay 
aligned. This means that the INDEX access object cannot 
designate the head of the index-list, but must instead designate 
an access object that designates the head of the index-list. 
This is in case an insert must be made at the head of the index, 
and the access object that designates it must be modified. 

The importance of having the index object in the scope of 
the application is in the flexibility of use of the object at 
the application level. The developer should be capable of 
passing the object as a parameter to subprograms developed at 
the higher level. If the object of type INDEX is hidden, this 
flexibility is not there. 

The indication of success or failure of an operation 
(add/delete, search, etc.) should be available for the 
application, for the purpose of logical tests and conditional 
branching. It should be contained in the package scope, visible 
in the package specification, and it can be called STATUS. 
Values contained in status can be defined in the package 

FOUND, etc.) . specification to show conditions (END-OF-LIST, ELEMENT-NOT, 

CURRENT-NODE POINTER FACILITY 

One question about package operations that must be answered 
before the design phase is about the context-sensitivity of 
operations. Higher level operations, like those involved in 
command languages, are typically constrained to be context 
insensitive, on a line-by-line basis. This means that the 
interpreter of the command or function requires no information, 
other than that in the command, to interpret it completely. 
There is no contextual bas i s .  

This can be effectively at a high level of application, but 
is difficult for the implementation of any complex 
functionality. For the package managing a complex structure, it 
is really necessary for the package to keep a contextual 
indication of the current position of the search through the 
structure in between calls. A USE-INDEX call to a new index 
would reset this position indicator, of course, as would any 
search, add/delete, or sequential positioning call. This 
prevents the need for a node search upon every call. This 
position indication variable can be called CURRENT. 

CURRENT is of necessity an access object. If CURRENT is 
kept in the application scope, it must be passed in the 
subprogram interfaces of every operation. Also, being in the 
application scope, synchrony can be lost between USE-INDEX calls 
(pointing to the wrong INDEX designated structure). 

If CURRENT is kept in the package, the package can track 
application context, and reset CURRENT upon USE-INDEX 
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invocation. Also, it should be hidden, because it would be 
difficult for the application to interpret it anyway. 

With these design issues decided, a generic package for 
managing INDEX objects can be developed. 

REUSABILITY ISSUES 

Reusability is generally discussed in terms of taking 
software written at other sites, and not necessarily on the same 
machine, and porting it for use in an application. There is a 
context here, which can be called inter-project reusability. 
This kind of reusability is based on two types of software 
development. 

In the first type of reusable software, software components 
or interfaces to non-Ada components are produced for general 
application support areas, like DEMS, user interface software, 
graphics, communications, data reduction and others, even AI. 
These will certainly be necessary to include, as they are more 
expensive to develop than to buy. They will also be the most 
commercially available. 

In the second type of reusable software, and with far less 
availability, software components are written targetting the 
application area of interest. These will probably be less of a 
fit to the specific application, with fewer packages to choose 
from . 

In the I & T area, high performance software is hard to 
obtain, and will be in the future. This is due to the narrow 
market and the very high degree of system dependence of the 
applications developed. In application domains with parameters 
like those of I & T, the major gains in Ada reusability will be 
those derived from software designed and developed in the same 
project . 

This kind of reusability can be called intra-project 
reusability, and comes from design by abstraction. High level 
software can be produced for specific application domains by the 
production of packages tailored to support those 
domains. 

Packages implementing private types can be developed that 
support the objects and operations representing the phenomena 
which are the subject of system development. If these objects 
and operations simulate the behavior of those phenomena well 
(within the purposeful domain), then the applications developed 
using them will be higher level, and generally more effective 
and maintainable. 

Generic packages can also be developed supporting the 
static and dynamic relationships between objects in the system. 
If these packages can be made flexible and with maximum 
reusability, then the objects of the system can be organized 
by instantiation of those packages, allowing the system 
relationships to be established on a high order level in a 
logical way. 

The reuse of both sets of software can be enhanced by 
establishing design constraints on each, so that the software 
components of the system can be assembled with maximum 
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likelihood. The design goals and constraints on Ada software can 
not be effectively left as an afterthought. 

PROJECT-SPECIFIC SOFTWARE SUPPORT ENVIRONMENTS 

The effectiveness and reusability of software generated by 
relatively inexperienced Ada programmers will be directly 
related to the project-specific software environment that 
exists when they first enter the project. It will always be 
found that it is easier, quicker and more reliable to construct 
anything from pre-fabricated components that fit together as 
well as Leg0 blocks do. Two things are required to build a good 
set of blocks. 

First, the objects (the logical atoms and molecules of the 
system) and their operations must be represented well by 
packages supporting those atomic abstract types and all of their 
support functions. Secondly, the relations organizing the 
objects of the system must be supported with generic packages 
that are flexible and easy to use. 

In the internals of both of these packages can be buried 
the hidden complexity of the system, and some of the system 
dependencies as well. In this way, technology insertion into the 
system can be accomplished directly, without negatively 
affecting the applications of the system. [2] 

Finally, a good set of blocks is not sufficient to build a 
system. The builder has to know what he is building to be 
effective. There is no substitute for Requirements Analysis and 
Functional Decomposition using data flows and similar techniques 
to express what a system does in a manner traceable back to the 
original User Requirements. The development of Ada and 
the object-oriented design methodologies which Ada directly 
supports will eventually prove, however, to be a large step on 
the way to cracking the problem of what to do after the System 
Requirements are assigned to the top-level components of the 
system. 

ACKNOWLEDGEMENT 

I gratefully acknowledge the support given by the Kennedy 
Space Center/ Engineering Development/ Systems Integration 
Branch in supplying the computer facilities for the feasibility 
studies that provided the basis of this work. I also thank my 
wife, Bronwen Chandler, for her support. 

REFERENCES 

1. Johnson, C., 1986. "Some Design Constraints Required for 
the Assembly of Software Components: The Incorporation of 
Atomic Abstract Types into Generically Structured Abstract 
Types", Proceedings of the First International Conference 
On Ada* Programming Language Applications For The NASA 
Space Station, F.4.4. 

E. 1.1.11 



2. Johnson, C., 1986. IISome Design Constraints Required for 
the Assembly of Software Components: The Incorporation of 
Atomic Abstract Types into Generically Structured Abstract 
Typesv1, Proceedings of the First International Conference 
On Ada* Programming Language Applications For The NASA 
Space Station, B . 4 . 3 .  

E. 1.1.12 



~ I F ' I C A T I O N  OF ADA ='IS FOR REUSE 

Gregory A. H e n * ,  
General DymiCs, lkta Systms Division, San Diego,CA 

S.D. Sgaulding, General Qmics, Eats Systans Division, San Diego, CA 

Gl-i Edgar, Gemral Dymics, Data Systems Division, San Diego, CA 

* Curenfly anplcyed Qy the Software Engimering Inst i tute ,  
Carnqi.e-&llon UniverSiQ, Pittsbur&, 

J nt r odu ct ion 

OIle a€ the claims ma& by propnents of Ada is tha t  Ada software i s  
highly reusable. The f a c t  t h a t  specif icat ions are ampiled and 
accessible would make reusability seen easily acfiiwahle. However, 
s c e c i f i c a t i o n s  s i v e  on ly  a l imi ted  amount aE information a b u t  a 
pkkage; moreover-, a s p d f i c a t i o n  cannot help deternine whether a 
p c k a g e  %worked", or h w  w e l l  it worked. 

This problem has led t o  t he  concept of "certifying" Ada p r t s  for  
reuse; t h a t  is, determining the worthimss of a p r t  as a reusable  
component. This p p r  adiiresses issues that are critical t o  reuse: 
the &aracter izat ion of p r t  performance, design f o r  reuse, and 
correct u t i l i z a t i o n  of prts. %e p p r  w i l l  then address current  
areas of study bene f i c i a l  i n  the developnent of a c e r t i f i c a t i o n  
process. 
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I. a!€- 

Ada has two features which support reusabi l i ty:  specificaticm 
aompdlation and the ab i l i t y  t o  Qclare ins t an t i a t ions  of generic 
units. Ada specifications allw a p r t ' s  interfaces to  be defirred, 
but are not sufficient for Mining reuse. It is important t o  have 
information about a p a r t ' s  performance i n  a reuse operation to  
determine amplltational requirements, accuracy a€ cdlculations, etc. 

Performance is mt sanething that is eas i ly  quantified; however, 
attributes associated w i t h  performance are *finable. A pr t ' s  
performance is defimhle & its behavior, or intended fmc t ion ,  and 
t h e  computational resources it extracts from the system when 
executing. mese a t t r ibu te s  are d i r e c t l y  related, and not  
independent. They m u s t  be considered i n  the scope a€ both mrmal 
proaessing and exception handling. 

Ihe explicit separation of -#ion handling and normal processing 
i s  es sen t i a l  for modularizaticm. Without exceptions, mstedf l ags  
are required fo r  error  recovery management. This leads t o  the 
intermingling of e r ror  (i. e. exceptions) and normal pcooessing, 
which leads to umraMgeahle mde. Ada provides fo r  the  separation 
of except im handling and mmal wooessing, and this aeprat ion is 
mandiatary for pr t s  reuse. 

Exception handling oonsists of three steps: exception detection, 
c o r r e c t i o n ,  and recovery. These steps should be handled a t  
different places i n  a software system. The exceptions t h a t  are 
raised, and t h e  method of handling those exceptions, are not 
oontaimd i n  a pickage specification. This irdarmation is essential 
to  the p r t  certifioation prooess. 

Hcrw exceptions are handled determines the  behavior of an Ada part 
and a f f e c t s  the performance of t h a t  part. The de tec t ion ,  
correction, and reawery @~ilosophy of a system has direct bearing 
on the computational requirenents of that  q s t e m ,  as &es frequency 
of excepticm. Subjects such as recovery vs. restart and process 
s y n c h r o n i z a t i o n  m u s t  be a d d r e s s e d .  Exception handl ing  
standardization could be an important factor i n  the c e r t i f i c a t i o n  
prooess. 

Generic programing seems t o  provide a logical approach to the 
certif ication of reusable software. Hwever, some obstacles  t o  
r e u s a b i l i t y ,  s u c h  as  e x c e p t i o n  h a n d l i n g ,  s t i l l  e x i s t .  
e c i f i c a t i a n s  for generics give m more infomation mncerning the  
b e h a v i o r  or per fo rmance  of t h e  cor responding  body than 
specifications of pckages, sukprograns, or tasks. Since Ada does 
n o t  a l l o w  e x c e p t i o n s  t o  be passed as  parameters  f o r  the 
instantiation of generic parts, the use of a generic as a reusable 
p a r t  is somewhat constraiMd. The usual exception declaration 
interfaoe between a system and a generic package is the package 
specif icat ion.  Thus the  ident i ty  and meaning of the exception is 
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determined by the generic package, not the host program. This 
constitutes a reversdl of acceped top down design techniques. 

Another way of interfacing excegtions and reusable generic parts is 
t o  have  both  the system and t h e  g e n e r i c  u n i t  depend on a 
specifactioll package of exception declarations. This technique 
would be oonsistent w i t h  top dDwn methodologies, but would require a 
high degree of cooperation between system implementers and the 
designers of reusable prts. 

A t h i r d  technique of except ion i n t e r f a c i n g  i n v o l v e s  t h e  
implementation of subprograms which raise exceptions. The 
subprogram would be elaborated i n  t h e  sys tem's  d e c l a r a t i v e  
env i ronmen t  and  p a s s e d  a s  a c t u a l  parameters t o  g e n e r i c  
instantiations. *s technique solves the poblen, but a t  the mst 
uf efficiency, elegance, and desicp clarity. 

Another factor affecting certification of reusable pr ts  is the hard 
timing requirenents of a part. 'Ihis infamatian is not extractable 
f r an  a package qecification, and varies fran qstem to wstem. In  
early oomputef architectures, timing w a s  a fa i r ly  easily calculated 
q u a n t i t y .  However, m u l t i t a s k i n g  so f tware  systems and new 
architectures which use cache, f loa t ing  point accelerators, and 
other features, have direct influence on timing. ~n fact, I Y ) ~  

pckage oonstraints such as context switch times have become as 
important as pckage timing itself. 

Since parts can be viewed as  tree structures with many branches; 
where except ion  handl ing and t iming must be considered, the 
characterization of a p r t ' s  perfmance and its c e r t i f i c a t i o n  are 
i n d e e d  v e r y  c o m p l e x .  
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I1 . 
The design of aoftware p r t s  m u s t  be done i n  a aontext independent 
manner; that is, no assumptions s h o u l d  be made about  i n p u t  
mnditions. All pssible error Conditioas should be a n t i u p t e d  and 
treated as exceptions. !the exception handling implenentation m u s t  
be explicitly docunented. 

Ihe Ada mnpiler r m  time default error hecking features should not 
be used, except as a redpldant he&. If r m  time error hecking is  
turned off for speed reasons, then flaws potent ia l ly  exist i n  the 
qsten.  Therefore, error aonditims m u s t  be handled & the package. 
'Ihis *ilosoFhy, mfartmately, can lead to  sped impacts within the 
systen. 

If there are time cons t ra in ts  placed upon a part, then a "costw 
analysis m u s t  be performed on that p r t  wiar to its implanentatim, 
and the results of that a m l y s h  mlnst be captured f o r  later use. A 
hierarchical f m t i o m l  demnpsitim methodology, sud~ as data flow 
ar Fetri mts, can be used i n  the ana lys is  process. As w i l l  be 
discussed later, expert system technology can be amied t o  the 
perfo~manoe d ~e moost" analysis. 

It should dlso be mentioned that there exists a potentially large 
nunber of specific ooding and design practices that can adversely 
impact reusability a t  both the gtstem and part level. Tb fully 
ickntify these Factiaes and address their relative impact w i l l  take 
time and experience, and such a discussion is beyond the scope of 
t h i s  p a p e r .  
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Ideally,  a oertified "part" should be a reusable pr t .  Hwever, it 
is Fobnble #at p r t s  that are oonsidered t o  be 100% c e r t i f i e d  are 
going t o  be mall aegnents of a>& with limited aFplication. Ihe 
proaess of aertifying large segnents of oode is extranely oomplex. 

This paper has made several points amcerning the  reuse of Ada 
prts: 

o Ada specif icat ion packages are insuf f ic ien t  f a  determining 
reuse 

o Behavior and perfmance af a part m u s t  be exp l i c i t l y  defined 
and extractahle 

o Exception handling is an imprtant factor i n  both behavior and 
perf mane 

o Generics offer a logical appraacfi t o  oertification of reusable 
p r t s  hut have certain oonstraints 

o Hard timing requirements must  be stated, and are subject t o  
variations created b~ hardvare and software envirommts 

o Run time hplenenta t ions  must be considered as influencing a 
par t ' s  behavior 

Artificial Intel l igence can provide sane tecfimlogy to reace the 
mplexity of analysis  for  reuse. In particular, expert system 
technology and object-oriented design can be aFplied to  the problen. 
Object-oriented design is  a term used t o  define a methodolgy of 
software development i n  which &ta itens i n  a software systen are 
defined i n  terms of their  attributes, as w e l l  as i n  terms of their 
relat ionship t o  other data items i n  the system. Object-orientation 
has led t o  the Oonoept of "franes", which are used extensively i n  
expert systems for knowledge representation. If software p r t s  are 
thought of as objects, a frame-based system can be b u i l t  which 
contains declarative and procedural infarmation about plrts. 

The knowledge contained i n  such a frame would be symbolical ly  
stated, using a f m a l  graranar. %e grarmrar of the frane w i l l  state 
the fmction of #e p r t ,  sucfi as nmber and types of exceptions, 
real-time requirements,  accuracy, etc. If a h i e r a r c h i c a l  
representation is used t o  describe the qirsten, attributes of parts 
can be " i n h e r i t e d "  f r a n  other parts a t  a higher level i n  the 
h i e ra rchy .  An expert system can then be b u i l t  t o  compare 
requirements t o  information about plrts, yielding a probabalistic 
measure of a p p l i c a b i l i t y  of a part t o  a problem. The more 
informat ion  a v a i l a b l e  about a part, the better a measure of 
a e i c a b i l i t y  can be determined. 

Another technology that can be applied t o  reusability is that of 
Arcfietyping. (1) Archetype comes f ran  the l a t i n  for 
" f i r s t  molded as a pattern; exemplary". In  t h i s  case, software 

E.1.2.5 



specialists capture software =on after it has been tested and 
delivered, work w i t h  users of the software qsten,  and sketch out 
future requirements for systems of this type . Thus, a team of 
software and domain experts develops a pattern fran w h i c h  future 
systems can be generated. The result of an archetyped software 
system is a tenplate that requires a tool to "fill in  the blanks" t o  
custanize the software for an application. One such tool is the 
CARTS technology, offered ty General 4.mics. ArchetyFed software 
overoanes all the limitations fomd w i t h  Ada generics. Archetyped 
part elements, acmbined w i t h  a formal grarrmar, w i l l  gcovide antext- 
sensitive expansion of specifications in to  compilable Ada source 
a&. 

It is the amclusion of this -per that absolute oertification is a 
desirable b u t  extremely d i f f icu l t  t o  achieve goal. Partial 
certification is a more realistic goal and i s  attainable w i t h  
existing tecfimlogies. 

mreover, i n  order to L L S ~  p r t s  "as is", they must be kept anall and 
uncomplicated, otherwise the process of certification kccanes very 
axnplex. A methodology, such as archetyping, combined w i t h  the 
proper tools, ciin make p r t s  adaptable, r a c e  aomplexity, and allow 
for reuse of larger bodies of mde. 

The concepts described i n  t h i s  paper reflect research being 
performed a t  General Dynamics Data Systems Division, San Diego, 
California. 

(1) Pnytylinski, S. "ArchetYping- A Knowledge-Baaed Ftee Paradign" 
April, 1986 
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ABSTRACT 

A u s a b l e  p r o t o t y p e  Ada 
p a c k a g e  l i b r a r y  h a s  b e e n  
d e v e l o p e d  a n d  i s  c u r r e n t l y  
b e i n g  e v a l u a t e d  f o r  u s e  i n  
l a r g e  s o f t w a r e  d e v e l o p m e n t  
e f f o r t s .  T h e  l i b r a r y  system 
is  comprised of a n  Ada-orien- 
t e d  d e s i g n  l a n g u a g e  u s e d  t o  
f a c i l i t a t e  t h e  c o l l e c t i o n  of  
r e u s e  i n f o r m a t i o n ,  a r e l a -  
t i o n a l  d a t a  base  t o  s t o r e  
reuse i n f o r m a t i o n ,  a s e t  o f  
r e u s a b l e  Ada c o m p o n e n t s  a n d  
t o o l s ,  and a set  of g u i d e l i n e s  
g o v e r n i n g  t h e  s y s t e m ' s  use. 
The prototyping exercise is 
d i s c u s s e d  a n d  t h e  l e s s o n s  
l e a r n e d  a r e  p r e s e n t e d .  O u r  
e x p e r i e n c e s  i n  deve lop ing  t h e  
p r o t o t y p e  l i b r a r y  and l e s s o n s  
l e a r n e d  f r o m  it h a v e  l e d  t o  
t h e  d e f i n i t i o n  o f  a compre-  
h e n s i v e  t o o l  set t o  f a c i l i t a t e  
s o f t w a r e  reuse. 

* Ada i s  a trademark o f  t h e  
U . S .  D e p a r t m e n t  o f  D e f e n s e  
(AJPO)  . 

W i t h  t h e  r i s i n g  demand 
f o r  c o s t - e f f e c t i v e  product i o n  
o f  s o f t w a r e ,  s o f t w a r e  r euse  
h a s  b e c o m e  i n c r e a s i n g l y  
i m p o r t a n t  a s  a p o t e n t i a l  
s o l u t i o n  t o  l o w  p rogrammer  
p r o d u c t i v i t y .  I n  t h e  A d a  
programming l anguage ,  e x p l i c i t  
s u p p o r t  i s  p r o v i d e d  f o r  
s o f t w a r e  r e u s e  t h r o u g h  t h e  
" p a c k a g e "  a n d  " g e n e r i c "  
l a n g u a g e  f e a t u r e s .  Unfo r tu -  
n a t e l y ,  t h e  c o n c e p t  o f  Ada 
s o f t w a r e  r e u s e  i s  n o t  a 
p a n a c e a  f o r  our c u r r e n t  
s o f t w a r e  p r o d u c t i v i t y  p r o b -  
l e m s .  The n o t i o n  of s o f t w a r e  
r e u s e  h a s  b e e n  p o p u l a r  f o r  
d e c a d e s .  B u t  i m p l e m e n t i n g  
h i g h  d e g r e e s  o f  r e u s e  h a s  
u s u a l l y  f a i l e d ,  w i t h  t h e  
e x c e p t i o n  o f  some e f f o r t s  i n  
f a i r l y  narrow areas ( b u s i n e s s  
a n d  c o m p i l e r  a p p l i c a t i o n s )  . 
T h e  c h a l l e n g e  t h e n ,  i s  t o  
r e c o g n i z e  t h e  c o n t r i b u t i o n s  
t h a t  t h e  Ada l anguage  can  make  
t o  a s o f t w a r e  reuse e f f o r t  
w h i l e  a t  t h e  s a m e  t i m e  
i d e n t i f y i n g  a n d  r e s o l v i n g  
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language-independent  problems.  
Based  on t h e  p r o m i s e  o f  t h e  
Ada programming l a n g u a g e  we 
undertook t h e  development of a 
p r o t o t y p e  Ada package l i b r a r y .  

T h e  p r o t o t y p i n g  e x e r c i s e  
i n c l u d e d :  

0 .  a n  e x a m i n a t i o n  o f  t h e  
r e a s o n s  f o r  low s o f t w a r e  
reuse i n  t h e  p a s t ,  

o i d e n t i f i c a t i o n  o f  
a c t i v i t i e s  a n d  t o o l s  
w h i c h  w o u l d  s u p p o r t  a 
r e u s e  m e t h o d o l o g y  t h a t  
s p a n s  t h e  s o f t w a r e  
d e  v e 1 opmen t 1 i f  e - c y c l e  
from r e q u i r e m e n t s  t h rough  
m a  i n  t enance  , 

o t h e  d e v e l o p m e n t  o f  a 
p h  a s e d  i m p 1  emen t a  t i o n  
p lan  f o r  s o f t w a r e  reuse 
t h a t  d e f i n e s  a d e v e l o p -  
ment  p a t h  from p r o t o t y p e  
t o  a n  o p e r a t i o n a l ,  
mu l t i - company ,  geograph- 
i c a l l y  d i s t r i b u t e d  
sys t em,  

o d e v e l o p m e n t  of a p r o t o -  
t y p e  f o r  t h a t  m e t h o d -  
o l o g y ,  

o t h e  d e v e l o p m e n t ,  acqui-  
s i t i o n ,  and e v a l u a t i o n  of 
r e p r e s e n t a t i v e  p a c k a g e  
e n t r i e s ,  and 

o a n  e x a m i n a t i o n  of user 
i n t e r f a c e  t e c h n i q u e s  t h a t  
c o u l d  be used t o  maximize 
communica t ions  between a 
r e u s e  s y s t e m  a n d  i t s  
users.  

A s  d i s c u s s e d  a b o v e ,  
s o f t w a r e  reuse i s  n o t  a new 
c o n c e p t .  S i g n i f i c a n t  e f f o r t s  
h a v e  b e e n  underway s i n c e  t h e  
e a r l y  1 9 6 0 ' s  t o  i m p r o v e  
s o f t w a r e  d e v e l o p m e n t  produc-  
t i v i t y  th rough  reuse ( c o n s i d e r  
t h e  e a r l y  o b s e r v a t i o n s  o f  
McI l roy  a b o u t  t h e  b e n e f i t s  of 
reuse p r e s e n t e d  a t  t h e  NATO 
S o f t w a r e  E n g i n e e r i n g  mee t ing  
i n  G a r m i s h  i n  1 9 6 8 )  
ISTANDISH83 J . An a n a l y s i s  of 
t h e  p r o b l e m s  a t t e n d i n g  reuse 
h a s  l e d  t o  t h e  i d e n t i f i c a t i o n  
of  s e v e r  a1 p o t e n t  i a1 h i n d r  an -  
c e s  t o  r e u s e  JSTANDISH83, 
BROID0851. These impediments  
t o  reuse can  be c a t e g o r i z e d  as  
t e c h n i c a l ,  e c o n o m i c ,  a n d  
p o l i t i c a l  o b s t r u c t i o n s .  Some 
t y p i c a l  p r o b l e m s  t h a t  h i n d e r  
reuse i n c l u d e :  

o l a c k  o f  u n i v e r s a l  
s t a n d a r d s  f o r  component  
c o m p o s i t i o n ,  l e v e l  o f  
d o c u m e n t a t i o n ,  c o d i n g  
t e c h n i q u e s  , t e s t i n g ,  
etc. ,  

o d i f f i c u l t y  i n  t r a n s f e r -  
r i n g  a n  u n d e r s t a n d i n g  of 
t h e  pu rpose  of a s o f t w a r e  
r o u t i n e  f r o m  t h e  a u t h o r  
t o  t h e  p o t e n t i a l  reuser, 

o h i g h e r  i n i t i a l  d e v e l o p -  
m e n t  c o s t s  a n d  l o n g e r  
s c h e d u l e s  , 

o r i s k  m a n a g e m e n t  i s sues  
s u c h  a s  w a r r a n t y ,  
l i a b i l i t y ,  a n d  a c c o u n t -  
a b i l i t y  , 
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o t h e  " n o t  i n v e n t e d  h e r e "  
syndrome, and 

o t h e  l a c k  o f  p r i d e  
t y p i c a l l y  e x h i b i t e d  when 
r e u s e  h a s  been  s e l e c t e d  
i n  a s o f t w a r e  development 
p r o j e c t  o v e r  o r i g i n a l  
development .  

W h i l e  t h e  p r o b l e m s  
i m p e d i n g  r e u s e  a r e  s i g n i -  
f i c a n t ,  t h e  l a r g e  s i z e  a n d  
c o s t  o f  a m a j o r  s o f t w a r e  
d e v e l o p m e n t  e f f o r t  p r o v i d e s  
s u b s t a n t i a l  m o t i v a t i o n  t o  
i m p r o v e  p r o d u c t i v i t y  through 
reuse.  Although Ada p r o v i d e s  
a n a t u r a l  v e h i c l e  f o r  encour-  
a g i n g  s o f t w a r e  e n g i n e e r i n g  
reuse, t h e  same t e c h n i c a l  and 
p o l i t i c a l  o b s t r u c t i o n s  t h a t  
have l i m i t e d  reuse i n  t h e  p a s t  
a r e  l i k e l y  t o  o n c e  a g a i n  
impede t h e  s h a r i n g  of s o f t w a r e  
e n g i n e e r i n g  p r o d u c t s  a c r o s s  
p r o j e c t s .  T h e  S o f t w a r e  
T e c h n o l o g y  D e p a r t m e n t  w i t h i n  
I n t e r m e t r i c s  i s  a c t i v e l y  
i n v e s t i g a t i n g  t h e  p r o b l e m s  
t h a t  h i n d e r  r e u s e .  We a r e  
d e t e r m i n e d  t o  f i n d  s o l u t i o n s  
t o  t h e s e  p r o b l e m s  a n d  t o  
c o l l e c t  a n d  reuse Ada pack- 
ages. 

A l o n g  t h e s e  l i n e s ,  w e  
have d e f i n e d  a phased approach  
t o  t h e  d e v e l o p m e n t  o f  a 
r e u s a b l e  p a c k a g e  l i b r a r y  
s u i t a b l e  f o r  u s e  on l a r g e  Ada 
a p p l i c a t i o n s  projects.  R a t h e r  
t h a n  d e f i n e  a n  e l a b o r a t e  reuse 
f a c i l i t y  a n d  i m p l e m e n t  t h e  
l i b r a r y  i n  a s i n g l e  s t e p ,  w e  
a r e  c u r r e n t l y  p r o t o t y p i n g  
p a r t s  o f  t h i s  f a c i l i t y  t o  
i n v e s t i g a t e  t h e  p o t e n t i a l  

REUSE U 
F i g u r e  1. R e u s e  p r o c e s s  

ove r v  i e w  . 
u t i l i t y  of o u r  a p p r o a c h .  A 
c o m p l e t e  d e s c r i p t i o n  of t h i s  
p h a s e d  d e v e l o p m e n t  p l a n  i s  
o f f e r e d  i n  [BURTON85]. The 
i n i t i a l  e f f o r t  on t h i s  p r o j e c t  
h a s  b e e n  f o c u s e d  o n  t h e  
c r e a t i o n  o f  a n  Ada S o f t w a r e  
CATalog (ASCAT) . 

An overview of  t h e  ASCAT 
p o r t i o n  o f  t h e  Ada p a c k a g e  
r e u s e  s y s t e m  is s h o w n  i n  
F i g u r e  1. The sys tem h a s  besn 
i m p l e m e n t e d  u s i n q  B y r o n  , 
I n t e r m e t r i c s '  A d a - b a s e d  
program d e s i g n  l a n g u a g e ,  and a 
commercial  r e l a t i o n a l  d a t a b a s e  
management system. C e n t r a l  t o  
t h e  s y s t e m  is t h e  a b i l i t y  of 
Byron t o  s u p p o r t  d e f i n i t i o n  
a n d  u s e  o f  u s e r - d e f i n e d  
keywords. 

Software Classification and 
Data Element Selection 

One key t o  t h e  success of  
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any r e u s e  scheme i s  t h e  t y p e s  
of c l a s s i f i c a t i o n s  a s s i g n e d  t o  
e n t r i e s .  T h e  p r imary  pu rpose  
of  t h e s e  c l a s s i f i c a t i o n s  is  t o  
f a c i l i t a t e  r e t r i e v a l ,  b u t  t h e y  
may a l s o  be used t o  assist i n  
d e f i n i n g  s t o r a g e  s t ra teg ies  as  
w e l l  . 

S e l e c t i n g  t h e  c l a s s i f i -  
c a t i o n s  t o  be used  is r e a l l y  a 
s u b s e t  o f  a l a r g e r  
q u e s t i o n :  w h a t  d a t a  elements 
d o  w e  w a n t  t o  be a b l e  t o  
r e t r i e v e  a b o u t  a p a r t i c u l a r  
e n t r y ?  The l i s t  of s t o r a b l e  
e l e m e n t s  seems i n  ou r  o p i n i o n  
t o  be h i g h l y  i n f l u e n c e d  by t h e  
s i z e  of t h e  l i b r a r y  (number of 
program u n i t s  s t o r e d )  and t h e  
d e g r e e  o f  c o o p e r a t i o n  ( o r  
p o t e n t i a l  a n t a g o n i s m )  among 
t h e  users  of  t h e  l i b r a r y .  An 
i n i t i a l  c u t  a t  s u c h  a l i s t  was 
prepared [BROID085] from t h e  
p e r s p e c t i v e  o f  o u r  u l t i m a t e  
( m u l t i p l e  s i t e s ,  m u l t i p l e  
o r g a n i z a t i o n s ,  m u l t i p l e  usage  
t y p e s )  system. Over 60  items 
which c o u l d  p o t e n t i a l l y  affect  
t h e  s u i t a b i l i t y  of  a n  e n t r y  
were named i n  s e v e n  m a j o r  
c a t e g o r i e s :  i d e n t i f i c a t i o n  ( 3  
i t e m s )  , d e s c r i p t i o n  ( 1 6  
i t ems) ,  component pa r t s  ( 2 0 ) ,  
e n v i r o n m e n t / u s a g e  ( 9 )  8 

o r d e r i n g  i n f o r m a t i o n  ( 7 ) ,  'and 
r e v i s i o n  h i s t o r y  (11) . Even 
a t  t h i s  l e n g t h ,  we r e c o g n i z e  
t h a t  t h e r e  a r e  u n d o u b t e d l y  
many o t h e r  items which c o u l d  
be added. 

T h i s  l i s t  was f a r  t o o  
large f o r  our  p r o t o t y p e ,  s o  w e  
examined t h e  c o n t e x t  i n  which 

* B y r o n  i s  a t r a d e m a r k  o f  
Intermetrics,  I n c .  

t h e  p r o t o t y p e  would o p e r a t e .  
We c h a r a c t e r i z e d  our i n i t i a l  
envi ronment  as f o l l o w s :  

0 

0 

0 

0 

A l l  t h e  u se r s  would be 
f r o m  t h e  same company,  
a l t h o u g h  t h e r e  would be 
s e v e r a l  d i v i s i o n s  u s i n g  
t h e  c o m m o n  l i b r a r y .  
T h u s ,  no r e s t r i c t i o n s  on 
access  would need  t o  be 
s u p p o r t e d .  

A l l  i n i t i a l  e n t r i e s  would 
be w r i t t e n  (when  pos- 
s i b l e )  i n  m a c h i n e - i n d e -  
p e n d e n t  A d a ,  s o  t h e  
c o m p i l a t i o n  and e x e c u t i o n  
e n v i r o n m e n t s  w o u l d  be 
we l l -de f ined .  

S o u r c e  code would. a lways  
be a v a i l a b l e ,  s o  u se r s  
c o u l d  d o  t h e i r  o w n  
t a i l o r i n g  ( n o  " b l a c k  
b o x e s " ) .  Suppor t  i n  t h e  
f o r m  o f  c o r r e c t i o n s  and 
t r a i n i n g  ( o t h e r  t h a n  b\ 
r e a d i n g  t h e  s o u r c e  c o d e )  
would n o t  be p rov ided .  

E m p h a s i s  was c e n t e r e d  
a r o u n d  t h e  c o l l e c t i o n  of 
r e u s a b l e  Ada p a c k a g e s  
r a t h e r  t h a n  c o m p l e t e  
p r o g r a m s .  Two f a c t o r s  
i n f l u e n c e d  t h i s  d e c i -  
s i o n .  The f i r s t  is t h a t  
mos t  of  t h e  p a c k a g e s  w e  
wanted t o  i n c l u d e  a l r e a d y  
e x i s t e d  p r i o r  t o  t h e  
s t a r t  of ou r  e f f o r t s ,  and 
c o h e r e n t  d e s i g n  documents 
were n o t  a l w a y s  a v a i l -  
ab l e .  The second f a c t o r  
was t h e  w i d e l y  d i s t i n c t  
s e t  o f  u s e r s  we were 
a d d r e s s i n g ;  t h e y  do n o t  
sha re  t h e  commonality of 
p u r p o s e  w h i c h  m a k e s  
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d o m a i n  a n a l y s i s  a n  
e f f e c t i v e  t o p - d o w n  
a p p r o a c h  . T h e  d e c i s i o n  
t o  c e n t e r  o u r  d e s i g n  on 
p a c k a g e s  e n a b l e d  u s  t o  
d e f i n e  a s t a n d a r d  header  
f o r  e a c h  p a c k a g e ,  based 
on  t h e  r e q u i r e m e n t s  of  
o u r  B y r o n  p r o g r a m  
p r o d u c t .  F o r m a l i z e d  
r e q u i r e m e n t s  and d e s i g n  
documen  t a t  i o n  were n o t  
r e q u i r e d .  

T h i s  d e c i s i o n  causes  t h e  
l i b r a r y  t o  b e  m o r e  
s u p p o r t i v e  of "bottom up" 
s o f t w a r e  c o n s t r u c t i o n  
t e c h n i q u e s  t h a n  most of 
t o d a y ' s  t o p - d o w n  
m e t h o d s .  T h e  top-down 
m e t h o d s  r e f l e c t  a n  
a t t i t u d e  of d e f i n i n g  what 
would be a p e r f e c t  system 
a n d  d o  n o t  a d e q u a t e l y  
r e c o g n i z e  t h e  i n f l u e n c e  
o f  e x i s t i n g  t o o l s  
( i n c l u d i n g  c o d e )  s h o u l d  
h a v e  o n  r e q u i r e m e n t s  
f o r m u l a t i o n  i n  t h e  
p r e s e n c e  o f  r e a l  c o s t  
c o n s t r a i n t s .  (Note t h a t  
t h e  " o b j e c t  o r i e n t e d  
d e s i g n "  s t r a t e g i e s  t h a t  
a r e  e m e r g i n g  w i t h  Ada 
r e f l e c t  a t e n d e n c y  away 
f rom s t r i c t  t o p - d o w n  
methods.)  

o No a p r i o r i  n a m i n g  
c o n v e n t i o n s  were e s t a -  
b l i s h e d ,  a l t h o u g h  a n  
i n f o r m a l  g u i d e l i n e  was 
prompted by t h e  technica l  
m o n i t o r  o f  o n e  o f  t h e  
c o n t r i b u t i n g  programs. 

o C o n f i g u r a t i o n  management 
was n o t  r i g i d l y  e n f o r c e d ,  
e x c e p t  w i t h i n  t h e  rules 

i m p o s e d  b y  A d a .  I n  
p a r t i c u l a r ,  no computer- 
i z e d  l i s t  of o u t s t a n d i n g  
u s e r s  ( p e o p l e  o r  p r o -  
g r a m s )  o f  t h e  l i b r a r y  
r o u t i n e s  was ma in ta ined .  

o T h e  p r o g r a m s  w h i c h  were 
i n t e n d i n g  t o  t a k e  
a d v a n t a g e  of t h e  l i b r a r y  
p r o v i d e d  n o  e x p l i c i t  
f u n d i n g  f o r  t o o l  s u p p o r t  
o r  t o  e n s u r e  t h a t  any new 
p a c k a g e s  c r e a t e d  w e r e  
g e n e r a l i z e d  and o t h e r w i s e  
s u i t a b l e  f o r  f u t u r e  
reuse.  Package  h e a d e r s  
a n d o t h e  r p r o g  r a m m e  r - 
s u p p l i e d  i n f o r m a t i o n  had 
t o  be e a s y  ( i n  bo th  time 
and  d i f f i c u l t y )  f o r  t h e  
programmers t o  supp ly .  

o V a r i o u s  s t a n d a r d s  were 
e s t a b l i s h e d  f o r  t h e  d a t a  
items we would c o l l e c t .  
S i n c e  we were a t t e m p t i n g  
t o  c a t a l o g  packages which  
h a d  b e e n  p r e v i o u s l y  
c r e a t e d  t o  s u p p o r t  
s e v e r a l  d i f f e r e n t  
p r o j e c t s ,  I t  w a s  
n e c e s s a r y  t o  r e t r o f i t  
m a n y  o f  t h e  s e l e c t e d  
p a c k a g e s  t o  i n c l u d e  t h e  
r e q u i r e d  Byron comments. 
P a r t  o f  our e v a l u a t i o n  
w i l l  b e  t o  t r y  t o  
i d e n t i f y  t h e  d i f f i c u l t i e s  
c a u s e d  b y  " l o o s e "  
d e f i n i t i o n s  o f  e s s e n -  
t i a l l y  n a r r a t i v e  f i e l d s  
( e . g .  , o v e r v i e w s ) .  I n  
a d d i t i o n ,  n o  common 
m e t h o d o l o g y  h a d  b e e n  
e s t a b l i s h e d ,  s o  t h e  
d e g r e e  of  f o r m a l i t y  and 
t h e  l i s t  o f  a v a i l a b l e  
s u p p o r t  items ( r e p e a t a b l e  
t e s t  c a s e s  , p r e v i o u s  
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s a m p l e  o u t p u t ,  u s e r  
documenta t ion ,  e tc . )  a l s o  
v a r i e d  c o n s i d e r a b l y  . 
We f i l t e r e d  t h e  o r i g i n a l  

l i s t  down t o  t h e  f o l l o w i n g  
d a t a  items f o r  t h e  d a t a b a s e  
( o t h e r s ,  s u c h  as  t h e  c a l l i n g  
c o n v e n t i o n s  and  p a r a m e t e r s  , 
would be a v a i l a b l e  f r o m  t h e  
s o u r c e  c o d e  i f  n o t  g i v e n  i n  
t h e  overv iew)  : 

1. 
2. 
3 .  
4 .  
5. 
6. 
7. 

8. 
9 .  

1 0 .  

11 . 
12.  

13.  

1 4 .  

Uni t  name 
Author 
Uni t  s i z e  
Source  language  
Date c r e a t e d  
Date l a s t  updated  
C a t e g o r y  c o d e  (see 

below) 
Ove r v  i ew 
Algo  r i t  hm descr ip- 

t i o n  
E E  r o  r s / e x c e p t  i o n s  

g e n e r a t e d  
Up t o  5 k e y w o r d s  

( f o r  r e t  r i e v a l  ) 
Machine dependenc ie s  
( i f  a n y )  
Program dependenc ie s  
( i f  a n y )  
Notes 

O u r  r e t r i e v a l  s t r a t e g y  
was b a s e d  upon a combina t ion  
o f  two a l t e r n a t e  mechanisms. 
The  f i r s t  mechanism was t h e  
a s s i g n m e n t  o f  a h i e r a r c h i c a l  
c a t e g o r y  c o d e ,  w i t h  t h e  
h i e r a r c h y  d e f i n e d  a h e a d  o f  
time a n d  c h a n g e a b l e  o n l y  a t  
w e l l  s e p a r a t e d  t i m e  i n t e r -  
v a l s .  T h i s  scheme is similar 
i n  c o n c e p t  t o  t h e  ones  used by 
Cornputins Reviews [ACM85 J and 
t h e  I M S L  l i b r a r y  [IMSL76]. 
B u t  it was n e c e s s a r y  t o  i n v e n t  
o u r  own c l a s s i f i c a t i o n  scheme 
s i n c e  n e i t h e r  of t h o s e  two was 

s u i t a b l e  t o  our  p u r p o s e s .  Our 
scheme has  t h e  advan tage  t h a t  
eve ryone  knows w h a t  t h e  c o d e s  
a r e  and can  use a n  e f f e c t i v e l y  
f i n i t e  p rocedure  f o r  s e a r c h i n g  
t h e  e n t r i e s .  D i s a d v a n t a g e s  
i n c l u d e  a g r o w i n g  l i s t  o f  
v a s t l y  d i s s i m i l a r  "misce l -  
l a n e o u s "  e n t r i e s  a n d  t h e  
i n a b i l i t y  o f  t h e  o r i g i n a l  
h i e r a r c h y  d e s i g n e r s  t o  p r o v i d e  
s u f f i c i e n t l y  d i s c r i m i n a t o r y  
c a t e g o r i e s  t o  p r o v i d e  e f f e c -  
t i v e  r e t r i e v a l  ( n o t  t o o  many 
o r  t o o  few c a n d i d a t e s ) .  

For  t h e  second mechanism, 
w e  a l l o w e d  t h e  s u b m i t t e r s  t o  
s u p p l y  up t o  f i v e  keywords t o  
be a s s o c i a t e d  w i t h  e a c h  
package.  These keywords a r e  
n o t  a s s o c i a t e d  (as i m p l i c i t l y  
o c c u r s  w i t h i n  t h e  h i e r a r c h y  of 
c a t e g o r i e s )  8 a l l o w  f o r  
o v e r l a p p i n g  t o p i c s  ( t h e  
p a c k a g e s  d o  n o t  c o n v e n i e n t l y  
f a l l  i n t o  s t r i c t  t r e e  c l a s s i -  
f i c a t i o n s ) ,  a n d  c a n  g r o w  
( w i t h o u t  reprogramming o r  an  
a l l - k n o w i n g  d a t a b a s e  admin i s -  
t r a t o r )  w i t h  t h e  needs  of t h e  
p r o j e c t s  t h e y  a r e  c r e a t e d  
f o r .  A scheme s imilar  t o  t h i s  
h a s  been  employed  o n  N A S A ' s  
C O S M I C  ( C o m p u t e r  S o f t w a r e  
Management I n f o r m a t i o n  C e n t e r )  
s y s t e m  on c o m p l e t e  programs,  
a l t h o u g h  t h e  keywords a l lowed  
a r e  s u g g e s t e d  by t h e  program 
a u t h o r s  a n d  f i l t e r e d  by  a n  
a c c e p t a n c e  team. 

One of t h e  a u t h o r s  is a 
member of  t h e  A p p l i c a t i o n s  
P a n e l  o f  t h e  D e p a r t m e n t  o f  
D e f e n s e ' s  S o f t w a r e  Technology 
f o r  A d a p t a b l e  , R e l i a b l e  
S y s t e m s  ( S T A R S )  Program. An 
i m p o r t a n t  o p e n  i s s u e  s u r -  
r o u n d i n g  t h e  f o r m a t i o n  o f  a 
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p o t e n t i a l  Ada package l i b r a r y  
t o  b e  a v a i l a b l e  a s  G F E  
m a t e r i a l s  f o r  DoD c o n t r a c t s  is 
d e f i n i n g  t h e  q u a l i t y  of  t h e  
e n t r i e s .  On t h e  o n e  h a n d ,  
some peop le  a d v o c a t e  i n c l u d i n g  
o n l y  i t e m s  o f  t h e  h i g h e s t  
q u a l i t y ,  w i t h  f u l l  DoD 
s t a n d a r d  d o c u m e n t a t i o n  a n d  
e v e n  f o r m a l  i n d e p e n d e n t  
v a l i d a t i o n  and  v e r i f i c a t i o n  
( I V & V )  r e q u i r e d  o n  n e w  
en t r i e s .  G t h e r s  p r e f e r  t o  l e t  
a more f l e x i b l e  scheme a p p l y ,  
w i t h  a " t r u s t  l e v e l "  a s s o c i -  
a t e d  w i t h  e n t r i e s .  T h i s  
l a t t e r  s c h e m e  e n c o u r a g e s  
" p r o m o t i o n "  o f  e x i s t i n g  
e n t r i e s  from "buyer  beware" t o  
h i g h e r  t r u s t  l e v e l s ;  a f t e r  
a l l ,  u s i n g  i n f o r m a l l y  qual i -  
f i e d  d e s i g n s  and code and t h e n  
a d d i n g  f o r m a l  t e s t i n g  a n d  
d o c u m e n t a t i o n  c a n  s t i l l  take  
l e s s  t ime  ( a n d  o f t e n  r i s k )  
t h a n  i n v e n t i n g  from s c r a t c h .  
For  t h e  p r o t o t y p e ,  we dec ided  
t o  l e t  a l l  s u b m i t t e d  e n t r i e s  
be a c c e p t e d  and t h e n  e v a l u a t e  
t h e  impact  of t h i s  d e c i s i o n .  

Reuse Information Extraction 
Hechan i sm 

Another  c r i t i c a l  phase  i n  
t h e  d e v e l o p m e n t  o f  a n  Ad'a 
package l i b r a r y  involves  the 
e x t r a c t i o n  mechanism used t o  
c o l l e c t  r e u s e - o r i e n t e d  
i n f o r m a t i o n .  The e x t r a c t i o n  
mechanism u t i l i z e d  i n  a n  Ada 
p a c k a g e  l i b r a r y  m u s t  even-  
t u a l l y  p r o v i d e  s e v e r a l  
d i f f e r e n t  c a p a b i l i t i e s  t o  
i n s u r e  e f f i c i e n t  o p e r a t i o n .  
T h e s e  r e q u i r e d  c a p a b i l i t i e s  
i n c l u d e :  

o s u p p o r t  f o r  a u t o m a t i c  
data c o l l e c t  i o n ,  

o s u p p o r t  f o r  i n s u r i n g  
s t a n d a r d i z a t i o n  o f  d a t a  
e n t r i e s  , 

o s u p p o r t  f o r  a s s u r i n g  
c o n t i n u i t y  a n d  c o n s i s -  
t e n c y  o f  r e u s e  i n f o r -  
m a t i o n  a c r o s s  t h e  
S o f t w a r e  Development L i f e  
Cycle  (SDLC) 8 

o s u p p o r t  f o r  c h e c k i n g  
c o m p l e t e n e s s  and reason-  
a b l e n e s s  ( e . g .  , d a t e s ) ,  
and 

o s u p p o r t  f o r  r e u s e  
i n f o r m a t i o n  examina t ion .  

T h e  r e u s e  i n f o r m a t i o n  
e x t r a c t i o n  a p p r o a c h  u t i l i z e d  
i n  ou r  Ada package l i b r a r y  is  
d e t a i l e d  i n  F i g u r e  2 .  An 
a n a l y s i s  o f  t h i s  f i g u r e  
r e v e a l s  t h a t  e a c h  o f  t h e  
e l e m e n t s  p r e v i o u s l y  i d e n t i f i e d  
f o r  d a t a  c o l l e c t i o n  h a s  been 
m a p p e d  i n t o  p r e d e f i n e d  o r  
u s e r - d e f i n e d  keywords f o r  t h e  
Byron d e s i g n  t o o l .  A Byron 
t e m p l a t e  p r o g r a m  was s u b s e -  
q u e n t l y  d e v e l o p e d  t o  au tom-  
a t i c a l l y  e x t r a c t  t h e  
r e u s e - o  r i e n t e d  i n f o r m a t  i o n .  
T h i s  i n f o r m a t i o n  i s  p l a c e d  
i n t o  a f i l e  t h a t  c a n  b e  
d i r e c t l y  p r o c e s s e d  i n t o  t h e  
ASCAT da ta  base. 

-In- 
ADA 

PACKAQES 

F i g u r e  2. E x t r a c t i o n  mechanism 
overv iew 
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T h e  u s e  o f  a 
B y r o n - o r i e n t e d  reuse i n f o r -  
m a t i o n  e x t r a c t i o n  m e c h a n i s m  
p r o v i d e s  most of t h e  r e q u i r e d  
c a p a b i l i t i e s  e n u m e r a t e d  
above.  T h i s  approach  p r o v i d e s  
a m e a n s  f o r  a u t o m a t i c  c o l -  
l e c t i o n  of d a t a  s t a n d a r d i z e d  
i n  f i e l d  name  a n d  f o r m a t .  
S i n c e  t h e  Byron d e s i g n  f i l e  is  
i n t e n d e d  t o  t r a n s i t i o n  i n t o  
t h e  implementa t ion  w i t h  r e u s e  
d a t a  i n t a c t ,  s u p p o r t  i s  
o f f e r e d  t o  assure i n f o r m a t i o n  
c o n t i n u i t y  a c r o s s  m u l t i p l e  
phases  of t h e  SDLC. 

W h i l e  t h i s  e x t r a c t i o n  
a p p r o a c h  h a s  many p o s i t i v e  
f e a t u r e s ,  i t  i s  n o t  w i t h o u t  
i t s  shor tcomings .  The lack of 
p r e d e f i n e d  reuse a t t r i b u t e s  
w i t h i n  Byron f a i l s  t o  s u p p o r t  
d i r e c t  e x a m i n a t i o n  of reuse  
d a t a  i tems for c o m p l e t e n e s s ,  
c o n s i s t e n c y ,  a n d  r e a s o n -  
a b l e n e s s .  The i n c l u s i o n  o f  
r e u s e - o r i e n t e d  i n f o r m a t i o n  
i n t o  t h e  B y r o n - p r o d u c e d  
p r o g r a m  l i b r a r y  r e p r e s e n t s  a 
s i m p l e  p o t e n t i a l  improvement 
t o  ou r  approach  t h a t  c o u l d  a i d  
i n  t h e  e x a m i n a t i o n  o f  t h e  
reuse data  items. 

Software Ca t a l o a  I m D l e m e n -  
tation 

The s o f t w a r e  c a t a l o g  f o r  
t h e  reusable  p a c k a g e  l i b r a r y  
was i m p l e m e n t e d  t h r o u g h  t h e  
use of a commercial  r e l a t i o n a l  
d a t a  base management package. 
The d a t a  d e f i n i t i o n  c a p a b i l i t y  
used f o r  f i e l d  d e f i n i t i o n  and 
t h e  b u i l t - i n  d a t a  b a s e  
p rogramming  l a n g u a g e  f a c i l i -  
t a t e d  t h e  examina t ion  of reuse 
d a t a  f o r  l i m i t e d  c o r r e c t n e s s  
and c o n s i s t e n c y  checking .  The 

u s e  of a d a t a  base a l s o  a i d e d  
i n  t h e  r a p i d  development  of an 
i n t e r f a c e  between t h e  s o f t w a r e  
c a t a l o g  a n d  p o t e n t i a l  Ada 
p a c k a g e  u s e r s  t h r o u g h  t h e  
u t i l i z a t i o n  o f  p r e d e f i n e d  
r e p o r t s  and s u p p o r t  f o r  ad hoc 
u s e r  q u e r i e s .  N o n e t h e l e s s ,  
t h e  user i n t e r f a c e  r e p r e s e n t s  
a w e a k  l i n k  i n  o u r  p r o t o t y p e  
package  l i b r a r y .  The p r e s e n t  
i n t e r f a c e  i s  v e r y  l i m i t e d  i n  
t h e  s e n s e  t h a t  i t  o f f e r s  no  
c o n t e x t - s p e c i f i c  s u p p o r t  f o r  
c o m m u n i c a t i o n  b e t w e e n  t h e  
reuse system and i t s  u s e r s .  

T h e  p r e s e n t  s o f t w a r e  
c a t a l o g  i s  l i m i t e d  i n  i t s  
i n t e r a c t i o n  w i t h  t h e  u se r .  
F o r  e x a m p l e ,  c o n s i d e r  t h e  
s c e n a r i o  o f  a s o f t w a r e  
e n g i n e e r  p e r f o r m i n g  a n  
a p p l i c a t i o n  s o f t w a r e  d e s i g n  of 
a r o u t i n e  t h a t  r e q u i r e s  a 
s o r t i n g  p a c k a g e .  I n  t h e  
p r e s e n t  s y s t e m ,  t h e  s o f t w a r e  
e n g i n e e r  w o u l d  n e e d  t o :  1) 
e x i t  t h e  e d i t o r ,  2 )  e n t e r  t h e  
s o f t w a r e  c a t a l o g  d a t a  base  
s y s t e m ,  3 )  e n t e r  a q u e r y  t o  
i d e n t i f y  t h e  a v a i l a b l e  s o r t i n g  
p a c k a g e s ,  4 )  s e l e c t  t h e  
d e s i r e d  p a c k a g e ,  a n d  5 )  
r e - e n t e r  t h e  e d i t o r  and issue 
t h e  n e c e s s a r y  commands t o  draw 
t h e  d e s i r e d  package (des ign / -  
c o d e )  i n t o  t h e  a p p l i c a t i o n s  
program d e s i g n .  

T h i s  i n i t i a l  p r o t o t y p e  
s o f t w a r e  c a t a l o g  can r e a d i l y  
be improved t o  enhance t h e  way 
i n  w h i c h  i t  i n t e r a c t s  w i t h  
u s e r .  I n  F i g u r e  3 ,  t h e  
p r e s e n t  mode of  i n t e r a c t i o n  is  
d e p i c t e d .  I n  F i g u r e  4 ,  
a n o t h e r  p o t e n t i a l  s c e n a r i o  is  
shown. I n  t h i s  s c e n a r i o ,  a 
multi-window envi ronment  
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i s  u s e d  w h e r e  t h e  user  may 
p e r f o r m  t h e  s o f t w a r e  c a t a l o g  
i n q u i r y  a n d  c o n c u r r e n t l y  
e x a m i n e  s e v e r a l  p r o m i s i n g  
p a c k a g e s  w i t h o u t  e x i t i n g  t h e  
e d i t o r  . 

A t h i r d  p o s s i b l e  ope ra -  
t i o n a l  s c e n a r i o  o f  t h e  
s o f t w a r e  c a t a l o g  i s  n o t  
p i c t u r e d .  I n  t h i s  t h i r d  
approach ,  t h e  data  base que ry  
language  would be r e p l a c e d  by 
a n a t u r a l  l anguage  f ron t - end ,  
t h e  s o f t w a r e  c a t a l o g  search 
would be a s s i s t e d  by an  e x p e r t  
sys t em,  and t h e  multi-window 

A ronmg rouliru m 
rwuuw. ~ a m o  
waor. I~VOLUIIU 
ASCAT dea b.u 
sys~om and antw 
.ppropnato quwy. 

swrF4ckalpmu 
n*lllno&or. uu 
odmormu-uso-, 

p.dugr-. 
W h '  and cab IO 

F i g u r e  3 .  C u r r e n t  ASCAT 
o p e r a t i o n a l  
s c e n a r i o  

approach  would be s u p p o r t e d  by 
a language-  and c o n t e x t - s e n s i -  
t i v e  e d i t o r .  T h e  t h i r d  
a p p r o a c h  i s  f e a s i b l e  w i t h  
i n v e s t i g a t i o n  i n t o  i t s  
i m p l e m e n t a t i o n  o c c u r r i n g  i n  
s e v e r a l  c u r r e n t  p r o j e c t s  

[ANDERSON851 . 
Intermetr ics  is  c u r r e n t l y  

i n v e s t i g a t i n g  t h e  implemen- 
t a t i o n  o f  t h i s  t h i r d  a p p -  
r o a c h .  We a r e  i n t e g r a t i n s  a 
c o m m e r c i a l  n a t u r a l  l a n g u a g e  
l a n g u a g e  f r o n t - e n d  on o u r  
r e u s e  d a t a b a s e  a n d  a r e  
d e s i g n i n g  a n  e x p e r t  sys tem t o  
f a c i l i t a t e  e v a l u a t i o n  a n d  
s e l e c t i o n  o f  a l t e r n a t i v e  Ada 
p a c k a g e s .  A l t h o u g h  i t  i s  
p r e m a t u r e  f o r  s i g n i f i c a n t  
c o n c l u s i o n s  o n  o u r  e x p e r t  
s y s t e m  e f f o r t s ,  w e  have made 
s e v e r a l  o b s e r v a t i o n s  a b o u t  t h e  
a d v a n t a g e s  a n d  d i s a d v a n t a g e s  
o f  t h e  N a t u r a l  L a n g u a g e  
Front-End (NLFE) . 

O u r  p r e l i m i n a r y  f i n d i n g s  
on t h e  NLFE a r e  n o t  s u r p r i -  
s i n g .  A s  e x p e c t e d ,  w e  found 
t h e  NLFE t o  be s i g n i f i c a n t l y  
e a s i e r  t o  u s e  t h a n  t h e  
t r a d i t i o n a l  d a t a b a s e  q u e r y  
l a n g u a g e  s u p p l i e d  w i t h  o u r  
DBMS. On t h e  n e g a t i v e  s i d e ,  
w e  f o u n d  t h a t  t h e  n a t u r a l  
l a n g u a g e  i n t e r f a c e  w a s  
s u b s t a n t i a l l y  s lower  t h a n  our  
t r a d i t i o n a l  d a t a b a s e  q u e r y  
language .  O u r  i n i t i a l  f i g u r e s  
s h o w  a p e r f o r m a n c e  p e n a l t y  
a s s o c i a t e d  w i t h  t h e  NLFE which 
r a n g e d  from a f a c t o r  of f i v e  
f o r  r e l a t i v e l y  simple queries 
t o  a f a c t o r  of  t e n  f o r  f a i r l y  
complex queries. 

O u r  p r e l i m i n a r y  q u e r y  compo- 
s i t i o n  compar isons  and i n i t i a l  
p e r f o r m a n c e  e v a l u a t i o n s  show 
t h a t  t h e  NLFE a p p r o a c h  i s  a 
v i a b l e  a l t e r n a t i v e  t o  t r a d i -  
t i o n a l  da t abase  q u e r y  l a n g -  
u a g e s .  We a r e  c u r r e n t l y  
a d d r e s s i n g  t h e  p e r f o r m a n c e  
issues t h a t  p l ague  t h e  NLFE 
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F i g u r e  4. Improved ASCAT o p e r a t i o n a l  s c e n a r i o  

a p p r o a c h .  We f e e l  t h a t  t h e  
a p p l i c a t i o n  of  NLFE and e x p e r t  
s y s t e m  t e c h n o l o g y  t o  t h e  
s o f t w a r e  l i b r a r y  a r e a  w i l l  
s i g n i f i c a n t l y  s i m p l i f y  t h e  
o p e r a t i o n  o f  a s o f t w a r e  
l i b r a r y  a n d  s u b s t a n t i a l l y  
i m p r o v e  t h e  p r o d u c t i v i t y  o f  
t h e  s o f t w a r e  l i b r a r y  u s e r s .  

LESSONS LEARHE D 

The development ,  c o l l e c -  
t i o n ,  e v a l u a t i o n ,  and c a t a l o g -  
i n g  of r e u s a b l e  components and 
t o o l s  u n d e r t a k e n  i n  t h e  
development of a n  Ada package 
l i b r a r y  h a s  l e d  t o  s o m e  
i n t e r e s t i n g  o b s e r v a t i o n s  
c o n c e r n i n g  Ada package reuse. 
U n f o r t u n a t e l y ,  w e  do n o t  y e t  
have enough e x p e r i e n c e  t o  
e v a l u a t e  t h e  s e l e c t e d  c a t e g o r y  
scheme, keyword r e t r i e v a l  

c a p a b i l i t y ,  o r  t h e  l i s t  of  
c o l l e c t e d  d a t a  elements. 

During t h e  p a s t  y e a r ,  w e  
h a v e  d e v e l o p e d  a s e t  of t e s t  
and a n a l y s i s  t o o l s  w r i t t e n  i n  
A d a  a n d  i n t e n d e d  f o r  Ada 
s o f t w a r e  d e v e l o p m e n t  
e f f o r t s .  T h e  f i x e d - p r i c e  
n a t u r e  of  t h i s  c o n t r a c t  a n d  
t h e  f a c t  t h a t  i t  r e p r e s e n t e d  
t h e  f i r s t  m a j o r  Ada develop-  
m e n t  c o n t r a c t  w i t h i n  o u r  
d i v i s i o n  m o t i v a t e d  u s  t o  
e m p h a s i z e  reuse  of  e x i s t i n g  
Ada p a c k a g e s  a s  a c o s t  a n d  
r i s k  r e d u c t i o n  measure. Based 
o n  t h e  r e s u l t s  o f  t h a t  
c o n t r a c t  w e  found t h a t  reuse 
o f  e x i s t i n g  g e n e r i c  s u p p o r t  
p a c k a g e s  s i g n i f i c a n t l y  
i m p r o v e d  o u r  p r o d u c t i v i t y ,  
w i t h  o v e r  3 3 %  o f  t h e  c o d e  
compr ised  of r e u s e d  packages.  
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On t h e  n e g a t i v e  s i d e ,  w e  
f o u n d  t h a t  s e v e r a l  o f  t h e  
t o o l s  i n i t i a l l y  e x h i b i t e d  poor 
p e r f o r m a n c e .  I n  a l m o s t  e v e r y  
ins tance ,  we found t h e  g e n e r a l  
n a t u r e  of t h e  reused packages  
t o  c o n t r i b u t e  h e a v i l y  t o  t h e  
performance problems.  We a l s o  
f o u n d  t h a t  t h e  g e n e r i c  Ada 
p a c k a g e s  o f f e r e d  much  more 
f u n c t i o n a l i t y  than  required i n  
o u r  a p p l i c a t i o n .  The e x t r a  
f u n c t i o n a l i t y  r e s u l t e d  i n  a 
s i z e  p e n a l t y  w i t h  r e s p e c t  t o  
t h e  e x e c u t a b l e  code. The  use 
of  a performance a n a l y z e r  and 
t a i l o r i n g  o f  t h e  r eused  code 
f o r  t h e  c u r r e n t  a p p l i c a t i o n  
s u b s t a n t i a l l y  improved  t o o l  
per formance  IRATHGEBER861 . 

We a l s o  s t u d i e d  t h e  
problem of composing reusable 
a p p l i c a t i o n s  p a c k a g e s  f rom 
e x i s t i n g  r e u s a b l e  
components. A s  p a r t  of a n  A i r  
F o r c e  s t u d y ,  w e  compared t h e  
p e r f o r m a n c e  o f  two d i f f e r e n t  
i m p l e m e n t a t i o n s  of reusable  
Kalman f i l t e r  r o u t i n e s .  One of 
t h e  r o u t i n e s  was w r i t t e n  i n  
Ada : q e n e r  i c  Ada mathemat ics  
packages  were h e a v i l y  used i n  
i t s  d e v e l o p m e n t .  T h e  o t h e r  
r o u t i n e  was w r i t t e n  i n  FORTRAN 
a n d  s p e c i f i c a l l y  des igned  t o  
s o l v e  a s p e c i f i c  Kalman f i l t e r  
p r o b l e m .  A p e r f o r m a n c e  
compar i son  of t h e  g e n e r a l i z e d  
A d a  p a c k a g e  a g a i n s t  t h e  
c u s t o m - t  a i l o r  e d  F O R T R A N  
r o u t i n e s  showed t h e  FORTRAN 
r o u t i n e  t o  e x h i b i t  s i g n i f i c a n t  
speed  a d v a n t a g e s  ove r  i t s  Ada 
c o u n t e r pa r t . Th is pe r f o rmance 
d i f f e r e n c e  i s  p r o b a b l y  due  t o  
t h e  r e l a t i v e  immatu r i ty  of t h e  
Ada c o m p i l e r  u s e d  i n  t h i s  
s t u d y  and a l s o  t o  t h e  g e n e r a l -  
i z e d  n a t u r e  o f  t h e  A d a  

p a c k a g e s .  An i m p o r t a n t  
c o n c l u s i o n  o f  t h e  s t u d y  i s  
t h a t  t h e  per formance  problems 
a s s o c i a t e d  w i t h  i n c l u d i n g  a 
g e n e r a l i z e d  r e u s a b l e  Ada  
p a c k a g e  i n t o  a n  a p p l i c a t i o n s  
p r o g r a m  a r e  s u b s t a n t i a l l y  
c o m p o u n d e d  when a n  e n t i r e  
s y s t e m  i s  c o m p r i s e d  o f  
r e u s a b l e  components w h i c h  a l s o  
c o n s i s t  o f  r e u s a b l e  compo- 
n e n t s .  

A l t h o u g h  m a n y  o f  o u r  
l e s s o n s  l e a r n e d  have n e g a t i v e  
i m p l i c a t i o n s  f o r  t h e  use o f  
Ada reusable  p a c k a g e s ,  t h e r e  
i s  some l i g h t  a t  t h e  e n d  of 
t h e  t u n n e l .  R e u s e  was a b i g  
a i d  i n  i n c r e a s i n g  our produc-  
t i v i t y  i n  t h e  development  of 
Ada t e s t  a n d  a n a l y s i s  t o o l s .  
We a l s o  found  t h a t  reuse can  
be s u c c e s s f u l l y  employed  i n  
t h e  d e v e l o p m e n t  o f  e f f i c i e n t  
Ada  s y s t e m s  i f  s u f f i c i e n t  
t h o u g h t  i s  p u t  i n t o  how t h e  
packages a re  t o  be r eused  and  
i f  t h e  p r o p e r  t o o l s  a r e  
a v a i l a b l e  ( e . g . 8  s u c h  a s  a 
per formance  a n a l y z e r ) .  

CONCLUSIONS 

I n  a c c o r d a n c e  w i t h  o u r  
p r e v i o u s  p l a n ,  w e  h a v e  
completed a proto type  mech-  
a n i s m  f o r  e x t r a c t i n g  reuse  
i n f o r m a t i o n  f r o m  p a c k a g e s  
deve loped  i n  t h e  normal c o u r s e  
o f  b u s i n e s s .  W e  a l s o  have a 
p r i m i t i v e  m e c h a n i s m  f o r  
e n t e r i n g  t h a t  d a t a  i n  a 
c a t a l o g  a n d  s e a r c h i n g  t h e  
c a t a l o g  f o r  e n t r i e s  t h a t  are  
p o t e n t i a l l y  u s e f u l  o n  new 
p r o j e c t s ,  T h e  a p p r o a c h  
c e n t e r s  o n  t h e  d e s i g n  a n d  
i m p l e m e n t a t i o n  phases,  s i n c e  
t h e s e  a r e  t h e  o n e s  t o  w h i c h  
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r e u s e  c o n c e p t s  may m o s t  
r e a d i l y  be a p p l i e d  i n  t h e  
g i v e n  envi ronments  . 

We h a v e  c o n f i r m e d  w i t h  
a c t u a l  experience our  e a r l i e r  
a s s e s s m e n t  t h a t  s u c c e s s f u l  
i m p l e m e n t a t i o n  o f  a r e u s e  
me thodo logy  r e q u i r e s  t h o u g h t ,  
a c t i o n  and  management d i r e c -  
t i o n  and  s u p p o r t  t h r o u g h o u t  
t h e  s o f t w a r e  l i f e  c y c l e .  
T h i s ,  h o w e v e r ,  may r e q u i r e  a 
managemen t  r e o r i e n t a t i o n  t o  
t h e  view of s o f t w a r e  deve lop-  
ment  a s  t h e  a c q u i s i t i o n  of a 
l o n g - l i v e d  c o r p o r a t e  a s s e t  
r a t h e r  t h a n  as o n l y  t h e  work 
r e q u i r e d  t o  p r o d u c e  t h e  
cur r e n t  d e l i v e r  ab le  [WEGNER8 4 ,  
Y E H 8 5  J . C o m p l e m e n t i n g  t h e  
reuse e f f o r t s  be ing  conducted  
by t h e  STARS o f f i c e ,  which  a r e  
t a r g e t e d  a t  l o n g  r a n g e  
o b j e c t i v e s ,  o u r  a p p r o a c h  
p r o v i d e s  u s e f u l  t o o l s  wh ich  
c a n  be u t i l i z e d  immedia te ly .  

We h a v e  a c h i e v e d  s o m e  
success  i n  a p p l y i n g  s o f t w a r e  
r e u s e .  E f f e c t i v e  u s e  of t h e  
p a c k a g e s  f o r c e d  u s  t o  d e f i n e  
s u b s e t s  o f  t hem which subse- 
q u e n t l y  r e q u i r e d  pe r fo rmance  
t u n i n g .  T h i s  p o i n t s  o u t  t h e  
v a l u e  of d e v e l o p i n g  a compre- 
h e n s i v e  r e u s e  m e t h o d o l o g y ,  
w i t h  adequate s u p p o r t  t o o l s  t o  
f a c i l i t a t e  t h e  development of 
e f f i c i e n t  s y s t e m s  comprised of 
r e u s a b l e  components. 

The Ada l anguage  and t h e  
m e t h o d o l o g i e s  g r o w i n g  u p  
around it p r o v i d e  a good s t a r t  
t o w a r d  a c h i e v i n g  l a r g e r  scale 
r e u s e  t h a n  w e  have a c h i e v e d  i n  
t h e  p a s t .  B u t  t h e y  a r e  n o t  
e n o u g h  by t h e m s e l v e s .  Even 
w i t h  A d a ,  t h e r e  a r e  s t i l l  

p l e n t y  of o b s t a c l e s  t o  r e u s e .  
A management  commitment  a n d  
d e s i r e  t o  improve p r o d u c t i v i t y  
when c o u p l e d  w i t h  a compre-  
h e n s i v e  reuse methodology and 
t h e  p r o p e r  t o o l s  o f f e r  
s u b s t a n t i a l  p r o m i s e  f o r  
improvement . 
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A DESIGN FOR A REUSABLE ADA LIBRARY 

I 

John D. Litke 

Grumman Data Systems Corporation 

1000 Woodbury Road 
Woodbury, New York 11797 

ABSTRACT 

A goal of the Ada language standardization e f fo r t  is to promote 
reuse of software,  implying the  existence of substantial soft- 
ware libraries and the  storage/retrieval mechanisms to support 
them. W e  propose a searching/cataloguing mechanism t h a t  
permits full or partial distribution of the  database, adapts  to a 
variety of searching mechanisms, permits a changing taxonomy 
with minimal disruption, and rninimizes the  requirement for 

specialized cataloguer/indexer skills. The important observa- 
tion is tha t  key words serve not only as a n  indexing mechanism, 
but also as a n  identification mechanism, especially via concat-  
enation and as support for a searching mechanism. By deliber- 
a te ly  separating these multiple uses, we achieve the  modifiabil- 
i t y  and ease of growth t h a t  current libraries require. 

Extensive reuse of software is a goal that industry has found diff icult  to reach. 

Arnon,: t he  many issues to be solved before extensive reuse is a reality is the  design 
and construction of a software pa r t  storage facility. The requirements fo r  such a 
system exceed those normally found in a conventional software management system 
and thus demand a new design approach. This paper proposes a new design for  a 
crit ical  component of a software library, t h e  searching and cataloguing mechanism. 

All libraries have a common set of functions to  perform. Some well known examples 
a r e  storage of information, accession, discard of materials, and searching and retrieval 
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of information. Most of these functions for  a computerized software pa r t s  library c a n  
use known computer science or library science methods. However, t h e  function of 

searching and retrieval has proven difficult and i t  is in this a r e a  t h a t  we propose a new 
design. 

As in any library, t he  function of a searching mechanism is to  retrieve any information 
relevant to a query, not just a precisely specified fact. This means that  context  and 

meaning a r e  important e lements  in t h e  query interpretation process. Furthermore,  t h e  
information in a library is not s ta t ic ,  but rapidly changing both in scope and in 
terminology used to describe t h e  relevant topics. 

A useful searching/retrieval mechanism for a library of software would support inquiry 
from at  least  three different points of view. First ,  it should support t h e  more 

conventional inquiry by keyword matching to select  i tems by language, machine, 
author, etc. Second, i t  should allow searching by conventional topical descriptions in a 
va r i e ty  of areas,  such as aeronautics, electrical engineering, etc. Third, it should 
allow searching by algorithmic content,  ra ther  than by intended function. For 

example, we should be able  to find a n  algorithm both by t h e  topical "edge enhance- 
men t  techniques", and t h e  algorithmic, "fast fourier transforms." If t he re  were a 
universal topical and algorithmic specification nomenclature, we would need a n  
elaborate,  but conventional index. However, a l l  engineering fields have different  
topical indexing styles that  do  not map one to one to each  other. Further,  their  
algorithmic nomenclature is also not congruent t o  t h e  nomenclature of other  fields. 
Hence, a complete indexing/classification scheme must contain synonyms, see alsos, 
analogous references,  etc. 

If t h e  resulting classification system were stable, t h e  problem is complex enough. 

Furthermore,  not only is t h e  conventional taxonomy unclear and dependent on the  
engineering field of t h e  user, but also t h e  information t h a t  we are indexing is 
unformatted with an  uncontrolled vocabulary. 

A superficial solution to  this searching and retrieval problem is to  propose a computer 
based database system, complete  with proven query languages and report  writers. 
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However, t h e  problem is not one of retrieval of information by unique key word, but 
retrieval of relevant information given a set of partially applicable key words or 

phrases. The  differences a r e  so substantial t h a t  a distinct field of information 
retrieval has evolved t o  address t h e  issues as distinct from database technology. A 

review of t h e  current  problems in t h e  field will illuminate t h e  nature  of t h e  problem 
and t h e  import of our  proposed solution. 

Current research in this field of information retrieval can  b e  summarized in four  
cat ego r ies (BAR T8 5): 

Automatic Indexing 
Information Structures 
Query Formulation 
Query Evaluation. 

The  workers in t h e  area of automatic  indexing are trying to find a way to convert  
unforrnatted information with an unstable vocabulary into a formatted,  s table  vocabu- 
lary tha t  can  b e  served with conventional indexing systems of t h e  database community 
(ABBE75). The hear t  of t h e  problem is to determine t h e  content  of a document by 
analysis of i t s  text.  This problem is analogous to t h e  problems faced by t h e  automatic  
language translation e f for t s  and has proven very difficult. 

The  information s t ructures  a r e a  is trying to determine ways to represent t h e  
information contained in documents and t h e  ways t h a t  documents re la te  to one  
another. There a r e  th ree  principal approaches. The  first seeks to develop useful and 
comprehensive classification mechanisms to apply to al l  documents. This approach is 
t h e  established, classic approach of libraries. The  second seeks to develop thesauri  
t ha t  cap ture  not only meaning, but relationships in a limited vocabulary of terms. The  
principal d i f fe rence  of a thesaurus and a classification system is t h e  inclusion of 
relationships into t h e  scheme, such as "part of", or t h e  narrowedbroader relationship 
of classes, and o ther  ordering relations. Finally, a system tha t  emphasizes relation- 
ships will t a k e  on t h e  appearance of a semantic  ne t  or other  network structures. At  
this  end of t h e  spectrum, more meaning is in t h e  relationship between terms, and so 
t h e  problem of synonyms and partially related te rms  becomes important. 
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The  query formulation a r e a  is not independent of t h e  query evaluation area,  although 
it does contain an important component of human interface in addition to t h e  selection 
logic mechanism. To d a t e  the re  has not been a great  deal of success with e i ther  
boolean logic based systems tha t  allow t h e  formation of "this and tha t  but  not t h e  
o the r  thing" type  of queries, or with combinatoric systems tha t  allow "similar to this 
or that" type  of queries. There a r e  two major difficulties with t h e  boolean logic 

approach. First ,  t h e  inquirer must know t h e  allowable vocabulary and indexing scheme 
so t h a t  t h e  query will b e  well formed. For large, complex systems like a library, this 
is unlikely for  a casual inquirer. Second, boolean logic makes it difficult to specify 
major/minor selection cr i ter ia  (BART85), (CROF8 l), (BOOK85). The combinatoric 
approach cannot represent boolean constraints easily, of ten leading to poor selectivity, 
and difficulty indexing uncertain information. 

PROPOSED SOLUTION 

T h e  sof tware library searching and retrieval design has several  key constraints. First, 
t h e  automatic  classification of entr ies  is beyond a commercially viable solution at 
present. Since t h e  library will become large, we  must minimize t h e  classification 
e f for t  required until automated solutions are available. Second, t h e  information 
s t ruc tures  tha t  are desirable are not yet  known. Because a library is intended to have 
a long life, we must minimize t h e  impact of modifications to t h e  information s t ruc ture  
or t h e  classification/retrieval structure. Further, i t  is desirable to distribute widely 
t h e  classif ication/retrieval mechanism t o  t h e  user community to encourage a uniform 
approach to nomenclature/classification. To make such a distribution practical ,  t h e  
classification mechanism must be separable f rom t h e  actual  documents t h a t  it 

classifies. Finally, a mechanism must be found to classify t h e  subject documents 
without extensive services f rom a professional indexer. Since automatic  classification 
systems are still experimental, this implies a reliance on t h e  help of t h e  submit- 
ter/author,  a heretofore  not totally sat isfactory source of indexing information. The  
solution we propose is not a final solution, but ra ther  an archi tecture  t h a t  will se rve  
t h e  present and grow gracefully into t h e  future. 
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Our solution to this problem uses three k e y  ideas supported by three interrelated 
databases. First ,  a precis is required from all submitters to minimize t h e  indexing 

work of the  library staff. Second, the classifications required of t h e  author  by t h e  
precis a r e  guided by a database system supplied by the  library to ensure t h a t  
classifications a r e  reasonable and correct.  Furthermore,  classification cross  refer- 
ences  and see alsos a r e  maintained by the  library staff, and a r e  not expected of t h e  
author. Third, t he  searching mechanism is separated from . the  storage/retrieval 
mechanism t o  make future modifications to ei ther  easier. 

The largest  of t h e  three interrelated databases is a conventional configuration 

management system and holds the full t e x t  f i les of a l l  information in the  library. (See 
Figure 1 .) Other  than indices required by the  configuration management  function, 
i t ems  a r e  identified by a unique accession number. 

TOPICAL 
OUERIES 
, 

J 
QUERY FORMING 

DATABASE 
KEYWORD 
OUERIES 

PRECIS DATAEASE 

~~ 

Architecture of the Library System 

Figure 1. 
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The second database holds a precis of each logically unique cluster of documents in t h e  

library. I t  

serves as a brief reference document to a collection of related documents t h a t  are 
logically indexed as one. Such a collection might include the  specification, functional 
design, code, test driver, and test da ta  for a particular module. The precis represents 
the finest  level of granularity tha t  a user can see from the  indexing system. Note t h a t  
t he  configuration management system is free t o  control t he  configuration of such a 
collection ei ther  as a unit, or as separate documents. The design of a precis itself is 

discussed separately below. The second database is organized conventionally in e i ther  
a hierarchical or relational model, supporting conventional keyword query mechanisms. 

This precis requires certain information such as author, language, etc. 

The third database contains the  indexing/classification system and serves as a query 
f ron t  end to the precis database. This database supports complex query forms on the  

classification system, not on tile documents t h a t  a r e  classified, and enables t h e  user to  
easily construct complex queries for eventual submission to the precis database. This 
separation of the  querying process f rmn  the underlying data containing system will 
allow change in e i ther  mechanism without rewriting the  other. I t  allows users t ha t  a r e  
satisfied with conventional keyword access to use a conventional system, while 
allowing independent development of more elaborate searching/retrieval mechanisms. 

There a r e  three important properties of this solution. First, separation of t h e  

databases allows smaller, indexing databases to be distributed widely without t h e  high 
cost of distributing large quantities of da t a  in t h e  configuration management database. 
Second, the version control and dependency relationships a r e  removed from the  
searching/indexing mechanism to simplify t h e  design and maintenance of t h e  data- 

bases. Third, the topical relationships a r e  separated from the  precis information. This 
topical information is stored in a separate,  logical tree organization so t h a t  variable 
depth indexing and class/subclass relationships can  be maintained with a fixed record 
and fixed key size indexing scheme. (This was t h e  same problem t h a t  led t h e  

GRIPHOS database designers to separate  the indexing and retrieval mechanism in a 

similar way.) 
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This design rests  on a plausible, but untested assumptions t h a t  t he  da t a  to be classified 
is regular enough that: 

1. 

2. 

3. 

Typical relationships between indexable topical te rms  a r e  sufficiently generic 
t ha t  the relationships and the data  a r e  separable without introducing excessive 
retrieval error. 

Classification can be done sufficiently well t h a t  t h e  number of false identifica- 
tions is  tolerable. This implies t ha t  classification with a fixed vocabulary is 

possible. 

The subject mat te r  is sufficiently regular t h a t  classifications can be usually 

identified with a pre-existing taxonomy and tha t  separable relationships a r e  

sufficiently generic t h a t  significant classes of objects a r e  formed. 

A small database is being construct'ed to test the validity of these assumptions. 

PRECIS DATABASE 

One of the  difficulties with conventional keyword approaches to database access is 

tha t  the keyword vocabulary must be controlled to eliminate misspellings, synonyms, 
etc. Further,  t he  indexing terms a r e  not readily expanded or changed without 
structural  database changes. For these reasons, t he  precis database will be indexed 
with commonly agreed keys t h a t  have a finite, known range and represent quantifiable 

machine, language, operating system, etc. This information will be obtained from 
each submitter to the database by requiring the submission of summary information 
according to a specified style. From this summary information, a trained indexer will 
prepare a precis with a controlled vocabulary for inclusion in the precis database, and 
t h e  original summary information will be retained in the  configuration managed 
database. 

cha rac t e r i s t i c s .  F o r  example ,  we  will index on  module name,  vers ion,  au tho r ,  
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To form a connection between the  precis database and t h e  query forining database,  t h e  
author must supply up to five classification codes. These codes will be selected by 

using t h e  query forming database itself to explore t h e  classification space and will be 
critiqued by a professional indexer for suitability. The classification codes need not be 
at a uniform depth of classification. 

QUERY FORMING DATABASE 

The query forming database bears t h e  responsibility to support sophisticated inquiry 
into the  precis database. There a r e  two problems to be solved, while honoring several 
constraints. First, we must devise a n  indexing and classification system t h a t  will 
allow flexible searching of the  precis database. Second, we must design a n  e f f ec t ive  

human interface to t h e  query forming mechanism t h a t  does not require extensive 
knowledge of the underlying classification system. 

To be a n  e f f ec t ive  tool, t h e  solution must also honor several constraints. First ,  it 

m u s t  support multiple views of algorithm classification for a variety of engineering 
disciplines. (The notions of subset/superset classifications are especially varied among 
disciplines.) Second, it must allow retrieval at uniform levels of detail  so t h a t  broader 
scope documents a r e  not retrieved together with narrower scope documents uninten- 

tionally. Third, it must grow gracefully with minimal or no re-classification of 
existing software. Fourth, i t  must be easy to provide classification guidance to 

submitters of software so tha t  they can  provide effect ive aid to t h e  professional 
indexers. 

The solution t h a t  we propose establishes a relationship among classification systems in 
t h e  query forming database and not among items in the  precis database. Thus 
relationships among library modules are represented implicitly via the  classification 

system and not via explicit links in t h e  precis or configuration database. W e  require 
t h e  explicit relationships between elements  to be maintained by t h e  management 
database,  since such a r e  more static, while t he  more dynamic classification relation- 
ships are maintained in t h e  classification system itself. 
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To obtain a classification t h a t  is familiar and useful to a wide variety of engineers, we 
propose a hierarchy of overlapping classification systems, whose inter-relationships 

are determined and maintained by expert  indexers. The top level classification system 
will use the  taxonomy of Dissertation Abstracts for field identification. Under each 
field, t h e  indexing scheme customary to t h a t  field will be used. For example, 
mechanical engineers would use the  scheme of the  Applied Mechanics Reviews, 
Computer Scientists would use Computing Reviews, etc. The depth of t h e  indices will 
vary from field to field. Since some a reas  of knowledge such as algorithms a r e  found 
very frequently in software systems, a finer classification resolution such as t h a t  
provided by the CALCO system will be needed. I t  will be up to the  professional 
indexing staff to provide cross references and see also relationships among and 
between the  classifications. The only change t h a t  will be made to the  adopted 
classification system is to apply a more uniform numbering system to  adjacent  levels. 

This allows the  database retrieval mechanism t o  refer  t o  any classification with a 
unique code. 

This design allows multiple classification schemes to  exist  and be interrelated with no 

overt  cooperation from authors. The scheme can be revised and extended with l i t t le 
or no alteration of existing software. Deleted classification te rms  a r e  simply 
translated by automated means into designated al ternate  categories, while new te rms  
require reclassification only incrementally. (The simultaneous deletion of a n  old 
classification and re-assignment to a variety of new ones would require some re- 
classification.) 

The system allows a user to self classify a module in his/her own vocabulary, while 

automatically supplying the cross references to other  vocabularies and fields. Since 
t h e  classification database is physically separate from t h e  precis database, users can  

choose to use printed versions of the  classification schemes and more laboriously 
search t h e  precis database by conventional keyword selections. Finally, since a 
mechanism is provided to search the  classification system itself, t h e  classification can 
be made much more elaborate and precise without making t h e  searching job harder. 
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Since t h e  whole intent of t h e  query forming database is to enable t h e  user to more  

readily search t h e  library, t h e  quality of t h e  user in te r face  will be highly dependent on 

good physical implementation as well as a good match  to people's searching strategies.  
W e  envision t h a t  t h e  user will be able  to select categories and sub-categories as s h e  

navigates freely through t h e  classification system, a b l e  at any t i m e  to retr ieve some  

or all of t h e  precis implicitly selected, refine t h e  query by elaboration, deletion, or 

addition of additional keyword specific qualifiers (such as language) as required. A 

modem, menu driven system with mouse and optional text entry is a candidate  

in te r face  paradigm. 

Each entry in t h e  classification database will contain a count of t h e  number of entr ies  

in t h e  precis database t h a t  are indexed by t h a t  classification. This will allow a user to 
sharpen t h e  query procedure without necessarily accessing t h e  large precis database. 

I tems  can  also be classified to any depth t h a t  t h e  author deems appropriate. 

Exhaustive precision in classification is not required. 
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Designing Generics for 
Compatibility and Reusability 

Introduction 
Many desirable features may be achieved by implementing a consistent design in generic 

libraries. The techniques discussed here are not exhaustive, but can form the basis for a 
design. In addition, a few of the simpler uses of generics will be touched on. 

One of the major goals of generics is reusability. It is toward this end that most of these 
techniques are directed. Reusability is desirable not only across applications, but also across 
data structures; i.e. a process applied to a linked list should be available for an array also. 
With this in mind, most of the applications of the generic library should treat the data 
structure as a Sinale entitv and provide routines to apply to that data structure. 

It is difficult to understand generics without using them. Consequently, these 
discussions are directed to those who have some practical experience with generics. In 
addition, it is recommended that the reader take the time to try his hand at some of the more 
difficult examples continuing to look for more ways to turn the specific into the generic. 

Exporting refers generally to any visible component of a package. This includes types, 
objects, procedures, functions, (sub)packages, and generics. Specifically for generics, any 
item that becomes visible at instantiation is considered exported. Along the lines of the 
notation suggested by R.J.A. Buhr, this can be represented graphically [BUHR], 

package "NG 

Exported E M  

lmoortinq 
Importing most often refers to the use of items from another package made visible 

through a with clause. However, this paper will refer to parameters required for 
instantiation of the generic as imported during instantiation. Importing can be similarly 
represented graphically. 

package "G 

Imported rEM 

Notation 
Each box represents not only what is imported and exported, but also the order in which 

the individual structures are available. In the case of the generic, all items must be available 
for importing before they can be exported. In addition the name of the module appears at the 
top. 
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package 

type LIxAL_KEy 
3 type EMS 

- - 

A vaila bilitv 

package T4EE-MN.WEFI - - type KEY 
- type E M S  

A feature that may be overlooked by a first glance at generics is that the functions and 
types visible in a generic are immediately available after an instantiation to be used in 
further instantiations. Assuming the existence of a linked list package and an array 
manipulation package, an array of linked lists can be created: 

package LINKED-LIST 

- - 

I 

function WAX function UXXW 
function PACK function NSERT 

- - 

package AFIRAY-LET 

type ITEM 

Array of Linked Lists d AHWY-WPE I ' Embeddinq 

with TABLEMANAGER; 
generic 

type ITEMS is private; 

subtype LOCAL-Wis INTEGER; 

package LOCAL-TABLE is newTABIEMANAGER( LOCA-KEY, 

function UNPACK ( KEY : LOCAL-KEY) return ITEMS 

function PACK ( ITM : ITEMS) return LOCAL-KEY 

packagecoMPREssis 

ITEMS ); 

mames LOCAL-TABELOOKUP; 

renames LOCAL-TABEINSERT; 
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In fact, any imported item may be used in further instantiations. Constants, functions, 
procedures, etc. can all be used to instantiate an embedded generic. 

The only restriction in the Language Reference Manual is the use of recursive 
instantiations as discussed in section 12.3. However, there is a way of using the results of an 
instantiation in the instantiation itself. This will be discussed later. 

Exoortina Generics 
Exporting generally refers to any data type, object, function or procedure that is visible 

in a package. Specifically, generics themselves can be exported from generics. As opposed to 
embedding, exporting makes a generic visible for further instantiation. The most obvious 
example is a generic used to operate on the whole data structure which has been given the 
process to APPLY to each item. 

VARIABLE-ARRAY 

type E M S  

type EM-ARRAYS 

procedure APPLY 

procedure PRXESS 
procedure INITIALIZE 

generic 
type ITEMS is private; 

type ITEM-ARRAYS is array( POSITIVE range O) of ITEMS; 

generic 
with procedure PROCESS ( ITEM : in out ITEMS); 
with procedure INITIALIZE ( ITEM : in out ITEMS); 

procedure APPLY( ITEM-ARRAY : in out ITEM-ARRAYS); 

package VARIABLEARRAY is 

end; 

For flexibility, the exported generic can easily consist of default parameter values. 
This precludes the necessity for constantly writing null procedures and functions to match 
generic arguments. If you like, the default procedures and functions can actually be 
instantiations themselves. 
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'7 
procedure b type E M S  bb type E M S  

package VARMLE-AJWW 

1 procedure 
type I I E M - ~ B  

procedure DEFAULT-INrIIALlZE 

procedure APPLY - 
procedure p#xTss 

procedure INITIALIZE 

generic 

procedure DEFAULT-PROCEDURE( ITEM : in out ITEMS); 
-begin - null; 
-end; 

type ITEMS is private; 

with DEFAULT_PROCEDURE; 
generic 

type ITEMS is private; 

type ITEM-ARRAYS is array( POSITIVE range e) of ITEMS; 

procedure DEFAULT-INITIALIZE is new DEFAULT-PROCEDURE( ITEMS); 
--This procedure could be inline 

package VARIABLEARRAY is 

generic 
with procedure PROCESS ( ITEM 
with procedure INITIALIZE ( ITEM 

is DEFAULT-INITIALIZE; 
procedure APPLY( ITEM-ARRAY : in out 

end; 

in out ITEMS); 
in out ITEMS) 

TEM-ARRAYS); 

Indirect Recursive Instantiations and Mutual Dependencv 
One of the big problems in handling data structures is the inability of generics to handle 

different data structures. Normally, a generic to handle arrays is different from the generic 
to handle linked lists, even though the two generics may do functionally the same thing. There 
is a way to remove this structure dependency from the generic. 

It is easier to introduce the technique with an illustration. The first example introduces 
a problem in compilation order. 
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with LINKED-LIST; 

type EMPLOYERS; 
type EMPLOYERS-PTR is access EMPLOYERS; 

package EMPLOYEE-LIST is new LINKED-LIST( EMPLOYERS-PTR); 

type EMPLOYERS is 
record 

end record; 

NAME : STRING ( 1..32); 
EMXIYES : EMPLOYEE-LH.NODE; 

procedure DUMP( EMP : EMPLOYERS-ITR) is 
begin 

end; 

PU-LINE ( EMP.NAME); 
DUMP-LIST( EMP.EMPLOYEES); -Not a visible routine yet 

procedure DUMP-LIST is 
new EM PLOY EE-LI ST. APPLY( DUMP) ; 

Notice that there is a way around this interdependency by deferring the procedure 
definition. This will lead us to a solution to the basic problem of manipulating data structures 
in a generic. The goal is to use a function or procedure from a generic within a function or 
procedure that is used by the generic. Graphically, 

(TT procedure U P  

generic APPLY 

procedure 

procedure 

To achieve such interaction, the corresponding incomplete declarations of procedures 
and functions can be used: 1) the actual function is declared, 2) the instantiation of the 
generic which uses the actual function is done, (making any functions or procedures in the 
generic available.) 3) Now the actual function can be completed, using any routines available 
from the generic. 
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procedure DUMP( EMP : EMPLOYERS-PTR); 

procedure DUMP-LIST is 
new EMPLOYEE-LlST.WPLY( DUMP); 

procedure DUMP( EMP : EMPLOYERS-PTR) is 
begin 

end; 

PUT-UNE ( EMP.NAME); 
DUMP-UST( EMP. EMPLOYEES); 

At this point, a significant distinction can be made between the normal procedure and the 
procedure achieved through instantiation-- DEFERRED DEFINITION! Deferred definitions 
allow normal procedures to interact with each other in ways that instantiated procedures 
cannot. However, there is a way that this feature can be added to instantiations. 

Using essentially the same technique, hide the point of interaction inside a procedure and 
defer its definition. Remember, although the declaration of an instantiation cannot be 
deferred, it can be hidden inside an actual procedure which can! 

generic APPLY_to_node hh procedure string procedure PW-LINE 
procedure DUMP 

procedure list 
procedure 

generic APPLY-to-list I b procedure 9 procedure 

generic 

procedure APPLY( EMP : EMPLOYERS-PTR); 

with procedure APPLY-TO-NAME ( STR : STRING); 
with procedure APPLY-TO-EMP ( LST : EMPLOYEE-LISLNODE); 

procedure DUMP( EMP : EMPLOYERS-PTR); 

procedure DUMP-LIST is 
new EhnPLOYEE-UST.APPLY( DUMP); 

procedure DUMP( EMP : EMPLOYERS-PTR) is 

begin 

end; 

procedure INTERNAL-DUMP is new APPLY( PUT-LINE, DUMP-LIST); 

INTERNAL-DUMP( EMP); 
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Data Structure Independence 
One of the goals toward compatibility has been reached--removing data structure 

dependency from the generic. The resulting generic is derived by recognizing the only actual 
parameter to the application: the procedure applied to the string component of the record 
structure. 

The resulting code is deceptively simple. Almost all of the techniques discussed to this 
point, and then some, are being used here. In addition, the parameter passed to the generic is 
actually hidden from the APPLY-TO-LIST procedure. This technique will be discussed more 
generally later. 

generic APPLY-to-de 

pr oced u re APPLY-TO-ME 
procedure APPLY-TO-LET 

LJ procedure I 
generic 

procedure APPLY( EMP : EMPLOYERS-PTR); 

procedure APPLY( EMP : EMPLOYERS-PTR) is 

new EMPLOYEE-LIST.APPLY( APPLY); 
begin 

APPLY-TOME ( EMP.NAME); 
APPLY_TO_IST ( EMP.EMPLOYEES); 

with procedure APPLY-TO-NAME( STR : STRING); 

procedure AP PLY-TO-L I ST is 

if EMP /= null then 

end if; 
end; 

Compatibilitv 
In the previous example, the data structure supplied by the generic is now independent 

of the implementation. If arrays were the hidden implementation inside the linked list 
package, there would be no code change. But then that is not what is really desired. 
Preferably if a change is needed, then the instantiation uses a different package. So now the 
issue of compatibility needs to be addressed. 

Compatibility for generics can mean different things. The intent of the application must 
obviously match the functionality of the generic. This may not be enforcable by the language 
and therefore must be left to design considerations. But for generics that are functionally 
equivalent, some language features define another meaning for compatibility. 

Parameter profile matching and general type matching are required for instantiation. 
Compatibility occurs when the profiles match as described in the Language Reference Manual 
6.6. Keeping a consistent format allows the results from a generic instantiation to be used in 
another instantiation. It also allows switching between generics with minimal d e  changes. 
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In the cases where generics cannot keep such a consistency, the alternative is to 
overload the routines from a generic to be both in a procedural form and a functional form. 
Such overloading then allows the programmer to continue plugging the routines into other 
generics since Ada will resolve to the compatible form. Additional overloading and default 
parameters can provide even more versatility. 

D. Doualas - Smith 

Profile Conversion 
Even when parameters are not compatible, generics can provide a quick solution. A set 

I 1 
of profile conversion generics can come in handy: 

I I generic CawWsrrJ 

type I-I-EM 
function 

1-I procedure I 
generic 

procedure PROCEDURAL_PROCESS( ITEM : in out ITEMS); - begin - ITEM := PROCESS( ITEM); - endpRocEss, 

type ITEMS is private; 
with function PROCESS( ITEM : ITEMS) return ITEMS; 

I generic 

type TYPE-1 
type TYPE-2 

procedure \IKIoNG_FoF;M 

I l  Drocedure 

generic 
type TYPE-1 is limited private; 
type TYPE-2 is limited private; 

with procedure WRONG-FORM( PRGl : in out TYPE-1 ; 
pRG2 : in out TYPE-2); 

procedure SWITCH-ARGUMENTS( PRGl : in out TYPE-2; 
ARC2 : in out TYPE-1); 

Parameter Hidnq 
Unfortunately, as data structures interact, parameters can get lost in the design. Again, 

embedding a generic instantiation within a procedure can preserve both the parameter and the 
needed compatibility. 
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procedure APPLY-Wrm-EXlRA-ARGUvlENT 

arg-1 : list-type 
arg-2 : extra-argument r 

procedure COMPATIEuEK)R-M~l lON l r  u 

procedure 

package INTEGER-PACKAGE is new LINKED-LIST( INTEGER); 

procedure DUMP( FILE : FILE-TYPE; 
LST : INTEGER-PACKAG€LlST-TYFE) is 

procedure INTEGER-DUMP( INT : INTEGER) is 
begin 

end; 
PUT( FILE, INT); 

procedure INTERNAL-DUMP is 

INTERNAL-DUMP( LST); 

 ne^ INTEGER-PACKAGEAPPLY( INTEGER-DLIMP); 
begin 

end; 

Namina Conventions 
Since one of the goals of compatible design is to have interchangeable modules, an 

otherwise unimportant consideration becomes very important. If the functionally equivalent 
items in one package do not have the same name, then extensive code modifiction will be 
required to do the conversion. Renaming is an alternative, but obviously a clumsy one. 

An example might be a length function provided by a LINKED-LIST package and a 
TABLEMANAGER. By using the name LENGTH in both packages, they can be interchanged 
without modification to every occurrence of the function. 

By designing the generics with a consideration toward consistent naming and parameter 
profiles, switching the implementation becomes trivial--instantiate with the other package. 
Since the package name does not change, even full dot notation( which is preferable) can 
remain unchanged. Change the instantiation in the previous example and notice that nothing 
should change if consistent naming conventions are used. 

package INTEGER-PACKAGE is new VARIABLEARRAY( INlEGER); 
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Off The Shelf 
The desire to change processing for different data structures and designs indicates that 

families of generics may be desired to handle the various intentions of the software designer; 
recursive lists, arrays, ordered lists, ordered arrays, etc. 

In fact we can look at it as "plug compatible" software; Le. the parameter profiles from 
one generic instantiation match the arguments to another generic. There is still a need for 
careful design in terms of the application desired. The plugs may fit, but the wrong process 
may occur. 

Conclusion 
In all of the discussions so far, the application and the implementation have been 

general. The techniques apply across a large range of generics such as linked lists, variable 
arrays, circular lists, ordered lists, etc. 

We can now partition the generics into four groups: 

1) Generics that create and handle a data structure and in turn provide 
generic APPLY procedures for treating the data structure as a logical 
entity. 

2) Generics that perform a particular process on any data structure (such 

3) Generics to manipulate a data structure, processing the data structure for 
an application that must exploit the internal structure of the data, such 
as using employee-list.apply in handling the hierarchical nature of the 
employer data. 

4) Generics to handle profile conversion and parameter hiding for 
compatibility if needed. 

as SEQUENTIAL-to). 

Through the use of generics, designed for compatibility and partitioned correctly, a few 
instantiations can create the application desired. With consistent naming conventions and 
compatibility, an application can switch from one implementation to another with minimum 
impact. 

Two of the major benefits to a library designed to use these features are maintainability 
and reliability. Maintainability is enhanced by simply reducing the amount of code to maintain 
and allowing for interchangable modules. Reliability is enhanced by not only reusing 
previously tested code, but actually testing the code across many different applications and in 
different environments. 

With these techniques and concepts in mind, a set of generic libraries can more easily be 
meshed into a compact, compatible unit. Generics can then apply across a greater range of 
software solutions and integrated into a design effort. 
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Abstract 
This paper discusses two important considerations that precede the design of Ada reusable 
packages - commonality and programming standards. First, the importance of designing packages 
to yield widespread commonality is expressed. A means of measuring the degree of applicability 
of packages both within and across applications areas is presented. Design considerations that 
will improve commonality are also discussed. Second, considerations for the development of 
programming standards are set forth. These considerations will lead to standards that will 
improve the reusability of Ada packages. 

jntroduc tion 
By 1990, the cost of software will outpace the cost of hardware by a ratio of five-to-one. 
According to the United States Department of Defense, the cost of software will rise to $32 
billion by 1990, up from $2.5 billion in 1980. The primary responsibility for these high costs 
can be attributed to the maintenance phase of the software development cycle. 

One promising method of reducing these costs and improving the supply is to use what is 
becoming known as reusable software. Reusable software can be defined to be specifications, 
designs, data, code, test cases, and documentation that are reused in the same or in a different 
software program with little or no modifications. Reusability yields a reduction in man-hours 
required for design, development, testing, and, particularly, maintenance. This reduction in 
man-hours leads to a reduction in software costs. Since "tried and true" software is used over 
and over again while bugs are discovered and eradicated, increased reliability is also accrued. 

Why hasn't reusable software found widespread acceptance and use by now? The major problem 
has been the lack of a set of universally accepted standards and a single programming language 
supporting the design of reusable software. Furthermore, even today, few accept the idea that 
reusable software could possibly work. Some feel that it is unworkable since a lack of standard 
and understandable documentation encouraging the use of reusable software exists. Individyal 
company proprietary interests encourage a reluctance to share developed software with other 
concerns. 

Ada is a registered trademark of the U.S. Government - Ada Joint Program Office 
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Frequently, others are reluctant to use software developed for other applications since the 
software would not serve their current needs. 

Portability is, of course, another reason for not accepting the concept of reusable software. Code 
developed on one machine might not run on another without extensive modifications. 

Finally, standards used by one company in the development of their software may differ from 
another company. This lack of standardization makes it difficult to share software with 
confidence. 

What has occurred to change the picture and begin to turn around the lack of community-wide 
acceptance of the idea of reusable software? First and foremost, the escalating cost of software is 
driving the change. As pointed out, these costs are rising to unmanageable proportions! This fact 
drove the Department of Defense to development and declare the use of Ada as the official 
programming language for mission critical embedded systems. Reusable software can now be a 
reality for two reasons: (1) a common language, and (2) a language that supports the theoretical 
basis for reusability. 

We now find both government and private industry seriously considering reusable software 
systems. For example, the Department of Defense Software Technology for Adaptable Reliable 
Systems (STARS) is currently working with members of private industry to establish criteria 
for the design of a reusable software system. Such considerations as the library system 
approach, parts design, metrics, and incentives for participants are being explored. The output 
from the team will be a reusability guidebook. 

The authors have previously described a reusable software system (Reference 11). 
Commonality was mentioned as a key element for its design. In Reference 12 some design 
requirements for commonality were described. This paper now ties together both commonality 
and standards as considerations for the design of reusable software packages. 

Considerations for the Desian o f Reusable Pac kaaeg 
Regardless of the form that the reusable software system will take, software packages must be 
designed so that they exhibit certain qualities associated with reusability. If a package is 
designed with reusability in mind, it will be used again and again. The amount of reuse is a 
metric that the designer will want to maximize in order to realize the economic advantages of 
reusable software. 

One way of increasing the degree of reuse of software packages is to take specific steps to 
increase what we call the domain of applicability or the commonality associated with a software 
package. That is to say, steps must be taken to design software packages that will not only be 
applicable within a specific applications area, but will also be applicable across applications 
areas. 
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Another consideration is to design into the package the basis for reusability and portability. 
Standards requiring enforcement of these two concepts must be set up a priori to ensure code 
design that is indeed reusable and portable. 

Commonality and standards will now be explored separately to show their importance in the 
development of reusable software packages. 

C o m m o w  
Commonality is two dimensional. Software reuse can be measured by the degree of applicability 
of the package both within and across applications areas. Applications areas imply distinct 
industrial groupings. For example, different applications areas could include missiles, aircraft, 
spacecraft, weapons, ships, lasers, commandlcontrol, radar, etc. The economic advantages of 
reusable software can be diminished if packages developed for a reusable software system do not 
have the widest range of applicability. If the designer is satisfied with a very narrow range of 
applicability, or does not consider extending the range of applicability either within the 
applications area or across applications areas, the reusable software library will begin to bulge 
with an overabundance of software from a very narrow domain of applicability. Since each 
package represents development and maintenance costs, it would be economically beneficial to 
ensure that the designer develop each reusable Ada package with the maximum possible degree of 
commonality. Furthermore, the proliferation of packages within the reusable software library 
could create a problem in classification and retrieval of software. 

The space shuttle is an example of the non-reuse of software. Of the millions of lines of code 
developed, not one line was planned for any reuse on any other project. Hopefully, this will not 
occur for the software developed for the space station. First of all, a common language, Ada, now 
makes it feasible to develop reusable software. Second, more sensitivity to the need for creating 
reusable software now exists. However, what is being suggested here is to take a quantum leap in 
thinking. To develop reusable software within applications areas is not enough even though it 
would be a step in the right direction. Reusable software that has had every possible bit of 
commonality designed into it must be developed. This commonality must cross the boundaries of 
applications areas if we are indeed to reap the economic benefits of reusable software on a large 
scale. 

Increased commonality needs to be a design consideration up front. The designer must consider 
how to increase the domain of applicability across applications areas. There must be a reluctance 
to settle for application-specific packages. For example, a program to add two integers together 
does not have as wide a domain of applicability as an Ada generic package that provides the choice 
of variable types. 

ACommonalitv M a U  
To place the two dimensions that pertain to the domains of applicability into a visual 
perspective,the commonality matrix is shown on Figure 1. 
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Figure 1 Commonality Matrix 
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The domain of applicability is rated from very narrow to very wide in four steps, both across 
and within applications areas. Software measured against this matrix has a commonality rating 
from 0 to 6. The higher the rating, the larger the domain of applicability as measured both 
across and within applications areas. 

Software can be classified within the matrix based upon the expected amount of reuse. In order to 
estimate this, a detailed domain analysis must be performed to identify the possible users 
within and across all domains. 

The objective of the commonality matrix is to identify a point of departure from which steps can 
be taken to improve and to expand the domain of applicability as an integral part of the design. 
The first step is to properly classify the software in order to see the possibility of expanding its 
domain of applicability. If software is thought of as application-specific, such as spacecraft, 
aircraft, missile, etc., it will be difficult to think in terms of expanding the software's degree of 
commonality. However, if functions are thought of rather than applications, the range of 
possible users enlarges. For example, a sort routine for a spacecraft's downlink data also can be 
used by the accounting industry. In this case, the mind-set should be focused toward the function 
"sort" rather than the application "spacecraft". Another reason for doing this is to ensure that 
the library software's classification does not mask the wide range of applications. The sort 
routine, classified and buried under a spacecraft application would not be discovered by the 
accounting industry. In this case, the reuse of one sort routine would be diminished while the 
library would be expanded by another sort routine from the accounting industry. The economic 
benefits of the reusable software library will decrease1 

The economic benefits that can accrue to an industry taking the time, effort, and money to 
develop truly reusable packages, can be enormous. A spacecraft industry that has developed 
reusable sort packages can now market its software products in new applications areas1 

E.1.6.4 



As an example, assume that a domain analysis of a navigation function within the spacecraft 
industry resulted in a commonality rating of very wide applicability. On the other hand, 
considering the applicability of navigation functions to other areas such as aircraft, accounting, 
etc., a domain analysis resulted in a rating of narrow. The overall rating for this navigation 
function as evaluated from the commonality matrix would be 4 which is found at the intersection 
of very wide within the application area and narrow across applications areas. This type of 
analysis can then be performed with other functions such as math functions, process functions, 
mission functions, system outputs, and system inputs, etc. - 4 

The next question that arises is "what can be done to improve the commonality rating of a 
software package?". A non-reusable package can be thought of as containing application 
dependent input transformations, application dependent output transformations, and application 
dependent processes. The package can also contain application independent input and output 
transformations as well as application independent processes. 

One technique would be to create two separate packages. One package would become part of the 
reusable software library and would contain the application independent input and output 
transformations as well as the application independent processes and functions. Any 
transformation or process analyzed to have a narrow range of applicability even within an 
applications area would be relegated to the non-reusable package. This package would contain 
application-specific software and would not become part of the reusable software library. 

Another technique would be to create an Ada generic package containing the input 
transformations, output transformations, and processes that have widespread commonality. This 
package would become part of the reusable software library. An application-specific 
instantiator would then be written. The function of this package would be to instantiate the Ada 
generic library package and endow it with all of the application-specific information stored in 
the instantiator. The instantiator can also be provided with a sequencer in order to instantiate 
several packages (i.e., input, output, and process). 

An example of the first technique is a non-reusable scaler-checker whose function is to take 
analog and discrete inputs and give messages and scaled data as outputs. The software performs 
input acquisition, checks for range and limits if the input is analog, checks for desirable states 
if the input is discrete, scales the inputs, and sends appropriate messages. These functions are 
supported by a table of ranges, limits, scaling, and messages. By separating the 
application-specific tables and the conversion to common data types function from the 
non-application-specific functions performed, a reusable module consisting of range and limit 
checking, validity checking, and message select functions is formed. The non-reusable module 
consists of the tables, messages, and conversions to common data types. 
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Pros ra mm ina S tanda r& 
Another consideration for the design of Ada reusable packages is programming standards. In all 
software development projects, standards are set, documented, implemented by developers, and 
audited for compliance by a standards auditing team. Typically, programming standards deal with 
documentation, naming conventions, restricted language statements, anomalies, interfaces, and 
the like. 

If an Ada reusable software library is to be set up, new standards specifically dealing with the 
design for reusability must be developed. These standards must exist alongside the standards 
usually written for software development. Each standard must describe a method of 
implementation that specifically tells the designer or programmer how to comply. Furthermore, 
a method of compliance control must exist. Compliance control describes the methods that ensure 
compliance such as automated techniques or auditing procedures. 

Many standards are set up merely as guidelines. Typically these standards are not audited. Other 
standards are set up as mandatory. They must be followed and automated or audited for 
compliance. 

Reusable software will require both standards that heretofore were not a consideration as well 
as standards that typically have driven software development in the past. 

Naturally, reusable software must be be readable and understandable. To ensure this, the source 
code must follow prescribed templates so that the user will recognize the same format in all 
packages. Considerations, such as letter case of types, variables, and subprogram names must be 
established ahead of time. 

Standards for formatting must be in place. The reader must see a familiar format from one 
reusable package to another. Typically for reusable software, information hiding is a 
requirement. The method of implementation is hidden from the user. This prevents the user 
from changing the implementation or becoming confused by it. These standards for reusability 
must apply to the specification part of the package, the part the user will see. Other standards 
can be set up to deal with the body. For example, such characteristics as indentation, alignment, 
and spacing must be written. Comments must accompany all code to improve readability. 

Typing and declarations must follow a template. Variables should be in a particular order decided 
upon a priori. For example, all inputs followed by all outputs. 
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- There are many considerations unique to reusable software. It is beyond the scope of this paper 
to cover all standards required to build reusability into the software. Some of the important ones 
to be discussed here are: 

(1 ) Accuracy dependency 
(2) range dependency 
(3) operation order dependency 
(4) side effects - 

Target machine dependency has an effect upon reusability because of differences in available 
character sets, differences in exceeding bounds, differences in dynamic allocation and timing 
effects, the effect upon real-time tasking due to differences in instruction execution time, and 
differences in accuracy. Factors such as accuracy that affect the portability and reusability of 
software and should be formalized as programming standards. Floating point operations cannot 
rely upon the accuracy of the implementation if the code is to be portable. For example, 
conditional responses cannot rely upon the accuracy of a comparison that can change between 
implementations. Accuracies must be declared and adhered to. The required accuracy should not 
exceed that required for a specific application in order to ensure portability to smaller targets. 
It is a good idea to declare the accuracy of even predefined types to ensure implementation 
independence. Inequalities using Ada attributes based upon model numbers such as EPSILON, can 
be used since the same accuracy can be expected with any implementation. Another approach to 
making "accuracy" implementation independent, is to declare integer and real constants as named 
numbers of universal type. This leaves it up to the implementation to set the accuracy. 

Ranae DeDe ndency 
Range constraints for integer and floating point types should be limited so that the ranges will be 
independent of implementation. This includes integer literals used for discrete ranges. These 
literals, unless constrained in the declaration could be out of range on some machines. 

The use of attributes that are not model numbers, such as FIRST and LAST, should not be used as 
a range constraints since these attributes are not implementation independent. Furthermore, 
values of real types that are outside the range of model numbers cannot be handled by every 
implementation. Thus if these numbers are used for decisions or exception handling, problems 
will certainly arise. 

It is tempting to handle exceptions by using such declarations as NUMERIC-ERROR and 
CONSTRAINT-ERROR. Unfortunately, the exact conditions causing these exceptions to be raised 
depend upon the implementation. Reusability would be better served by programming these 
exceptions directly into the code. 
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Orde r of Evaluat ion or Elaboration 
The order of evaluation of an expression or the order of elaboration of a declaration can be 
different from implementation to implementation. Standards must be established to ensure that 
errors do not arise because of differences in the order of elaboration between implementations. 
The pragma ELABORATE can be used to obtain the same order of elaboration regardless of 
implementation. 

Subexpressions can be evaluated in different ways. Some implementations may evaluate 
expressions in such a way that causes the subexpression to overflow. Standards must be 
established to ensure that subexpressions will not overflow under some implementations since 
range checking cannot be relied upon for intermediate values. One of the ways of accomplishing 
this task is to limit the number of operators contained in an expression. 

Ada generic packages, which will be housed in the reusable library, require special 
considerations of their own. Code sharing should be avoided. If one package requires code from 
the other package, the order of compilation will determine if this sharing is possible. Under 
some implementations this sharing would not even be permitted. 

Side Effects 
Another consideration in improving reusability and portability, is the elimination of side 
effects. Side effects are caused by functions that modify variables which are not local to the 
expression. A reusability problem arises if these non-local variables are used in the function 
itself. The reason for the problem is simple. The order of evaluation is essential to create the 
correct value for the function. Since the order changes between implementations, it is unknown 
whether the value of the variable used in the function was the one before or after the execution 
of the function. Establishing standards that set forth the order of variable assignment can 
prevent the problems associated with side effects. For example, if the right hand side of an 
expression is completely evaluated prior to the assignment to the left hand side, the previous 
copy of a variable can be relied upon under all implementations. 

Summarv 
This paper described two important considerations for the design of Ada reusable packages: (1) 
commonality and (2) programming standards. It was shown that reusable packages will bring 
about economic improvement in software development It is imperative that each reusable 
package be designed to cover the maximum possible domain of applicability. This maximization 
implies the designing of the package for applications areas outside of that originally intended. 
Maximizing commonality can be accomplished by thinking in terms of functions rather than 
applications areas and partitioning application-specific software 'from the functions that cut 
across many applications areas. Developers could realize economic gains by extending software 
sales outside of their own applications area. 
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Another consideration of this paper was programming standards. It was shown that many 
standards, previously not required, must be developed to solve the reusability design problem. 
The areas of concern covered in this paper was the effect of accuracy, range, order of evaluation, 
and side effects upon reusability. This does not imply that these are the only considerations, This 
paper attempted to point the way toward new types of programming standards that will be 
required for the reusable software of the future. 
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Abst rac t  

There are  many problems associated w i t h  d i s t r i b u t i n g  an Ada program 
over a loose ly  coupled communication network. Some o f  these problems 
invo lve  the  va r ious  aspects o f  the  d i s t r i b u t e d  rendezvous. The problems 
addressed i n  t h i s  paper invo lve  suppor t ing the  "delay" statement i n  a 
s e l e c t i v e  c a l l  and suppor t ing  the  "else" c lause i n  a s e l e c t i v e  c a l l .  
Most o f  these d i f f i c u l t i e s  a re  compounded by the  need f o r  an e f f i c i e n t  
communication system. The d i f f i c u l t i e s  a re  compounded even more by con- 
s i d e r i n g  the  p o s s i b i l i t y  o f  hardware f a u l t s  occu r r i ng  w h i l e  the  program 
i s  running. With a hardware f a u l t  t o l e r a n t  computer system, i t  i s  pos- 
s i b l e  t o  des ign a d i s t r i b u t i o n  scheme and communication so f tware  which 
i s  e f f i c i e n t  and a1 lows Ada semantics t o  be preserved. An Ada des ign 
f o r  t he  communications sof tware o f  one such system w i l l  be presented, 
i n c l u d i n g  a d e s c r i p t i o n  o f  the  serv ices  prov ided i n  the  seven laye rs  o f  
an I n t e r n a t i o n a l  Standards Organizat ion (ISO) Open System In te rconnec t  
(OSI) model communications system. The system c a p a b i l i t i e s  (hardware 
and software) t h a t  a l l o w  t h i s  communication system w i l l  a l s o  be 
descr ibed. 

Background 

There a re  many reasons f o r  us ing  d i s t r i b u t e d  computer systems. Key 
among these i s  the  a b i l i t y  t o  recover when a f a u l t  occurs i n  one o f  t he  
computing s i t e s .  Other reasons inc lude increased throughput and sepa- 
r a t e  subsystem development by d i f f e r e n t  con t rac to rs  (or t h e  a b i l i t y  t o  
buy o f f - t h e - s h e l f  subsystems). 

The Ada p r o g r a m i n g  language has the  concept o f  p a r a l l e l i s m  b u i l t  i n  
( i n  the  form o f  tasks) .  To expand t h i s  concept t o  i nc lude  runn ing  one 
Ada program on m u l t i p l e  computers, w i t h  communication t a k i n g  p lace  over 
some network, c rea tes  a number o f  problems. One must consider how t o  
spec i f y  the  l o c a t i o n  o f  processes, t h e  d i s t r i b u t e d  e l a b o r a t i o n  o f  t h e  
program, whether the  va r ious  so f tware  engineers invo lved a re  ab le  t o  
t e l l  where va r ious  components w i l l  be located, what should happen i n  t h e  
case o f  hardware f a u l t s ,  and how t o  implement t h e  va r ious  communication 
mechanisms a v a i l a b l e  i n  Ada. 
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I n  t h e  i n t e r e s t  o f  space, t he  focus of t h i s  paper w i  1 1  be i n  the  
area o f  t he  d i s t r i b u t e d  Ada rendezvous. I n  a rendezvous, one task c a l l s  
an "en t ry "  i n  another task. The f i r s t  task then wa i t s  f o r  t he  server  
task t o  "accept" t he  c a l l .  Conversely, i f  the  server  task at tempts t o  
accept the  c a l l  be fo re  i t  i s  made, i t  w i l l  w a i t .  When t h e  c a l l e r  and 
server  bo th  have a r r i v e d ,  t h e  rendezvous occurs, w i t h  parameters passed 
t o  the  en t r y ,  a b lock  o f  code executed, and any ou tpu t  parameters passed 
back t o  the  c a l l e r .  The two tasks a re  then f r e e  t o  execute aga in  i n  
para1 l e l .  

That i s  t he  simblc rendezvous. Ada also prov ides  s e l e c t i v e  c a l l s  
and s e l e c t i v e  accepts, t imed c a l l s  and timed accepts, and guarded 
accepts. 

A s e l e c t i v e  c a l l  i s  a c a l l  which must be accepted immediately. I f  
any o the r  task i s  be ing  served, o r  t he  server  task i s  anywhere i n  i t s  
execut ion  except w a i t i n g  a t  the  accept statement, t h e  c a l l  i s  cancel led.  
The language requ i res  t h a t  t he  server task be checked t o  determine if 
the  e n t r y  i s  ava i l ab le .  I t  i s  necessary, there fore ,  for two messages t o  
be sent  over the  network t o  o b t a i n  the  in fo rmat ion .  The f i r s t  message 
w i l l  ask f o r  t he  rendezvous; t he  second w i l l  e i t h e r  be a message say ing 
the  rendezvous could n o t  be accepted o r  e l s e  the  second w i l l  c o n t a i n  the  
r e s u l t  o f  t he  rendezvous. 

A t imed c a l l  i s  one which must  be accepted w i t h i n  a g iven amount o f  
t ime. The c a l l  w i l l  be cance l led  i f  i t  i s  no t  accepted w i t h i n  t h a t  t ime. 
The semantics o f  a t imed c a l l  a re  d i f f e r e n t  depending on t h e  va lue  o f  
t he  delay.  I f  the  de lay  i s  zero or  i s  negat ive,  the  semantics o f  a 
s e l e c t i v e  c a l l  w i l l  be fo l lowed.  A t  l e a s t  two c o m u n i c a t i o n  messages 
must be sent  over t h e  network. However, i f  the  de lay  i s  p o s i t i v e ,  and 
the  rendezvous i s  known, by t h e  c a l l e r ,  no t  t o  be ab le  t o  occur w i t h i n  
the  de lay  per iod,  i t  i s  n o t  necessary t o  even at tempt  t h e  rendezvous. 
A l l  t h a t  i s  necessary i s  t o  w a i t  t he  delay pe r iod  be fo re  g i v i n g  c o n t r o l  
back t o  t h e  c a l l i n g  task. No communications over t h e  network w i l l  be 
requ i red  i n  t h i s  case. 

A s e l e c t i v e  accept a l l ows  a server task t o  accept a c a l l  t o  one 
e n t r y  a r b i t r a r i l y  from among a l i s t .  

A t imed accept a l l ows  a server t o  w a i t  o n l y  a f i n i t e  t ime f o r  a task 
t o  c a l l  one o f  i t s  e n t r i e s .  A t  t h e  end o f  t he  t ime per iod,  i f  no task 
has ca l l ed ,  t h e  server  task  w i l l  r e g a i n  c o n t r o l ,  and w i l l  execute a l t e r -  
na te  code. 

A guarded accept a1 lows a server  t o  accept, i n  a s e l e c t i v e  accept, 
one o f  a l i s t  o f  e n t r i e s  based on cond i t ions .  The c o n d i t i o n s  on accept-  
i n g  t h e  va r ious  e n t r i e s  w i l l  be checked a t  run-time, and one of the  
"open" e n t r i e s  w i  1 1  be p icked.  

The s e l e c t i v e  accept, t he  timed accept and t h e  guarded accept can 
a l l  be managed on t h e  server  t a s k ' s  processor, w i t h o u t  any network com- 
municat ion.  
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To a designer of a distributed computer system, these built-in con- 
structs raise a number of issues: 

0 Should one even allow the use of the Ada constructs when communi- 
cating between two tasks on different computers? Specific commu- 
nication packages could be provided instead, with pragmas used to 
make the Ada constructs "erroneous". The assumption used here is 
that the Ada constructs should be used so that the application 
does not need to know where various tasks are. 

0 What happens if a task does a timed entry call, but the computer 
of the called task fails at some time before the rendezvous 
occurs? It is possible to send enough messages to ensure that 
the Ada semantics are followed, even in the case of failures, but 
the time involved in transferring the messages is large. If the 
rendezvous is extremely inefficient, it is not usable. 

0 The rendezvous semantics specify that once the rendezvous has 
started, it must complete before the calling task can continue. 
What should happen if the processor running the server task fails 
during the rendezvous? 

The AIPS Project 

For the Advanced Information Processing System (AIPS), reliability 
is the most important issue, with efficiency also being a priority 
issue. The NASA sponsored AIPS project will produce a flexible, fault 
tolerant, distributed, real-time computer system. It has been designed 
in terms of "building blocks", such that different applications, such as 
deep space probe or a manned space station, could use the components. 

The building blocks include the following (this is not an exhaustive 
list. It only includes those blocks pertaining to intertask communi- 
cat ion) : 

Fault Tolerant Processors (FTPs). One FTP consists of two 
(duplex) or three (triplex) microprocessors, each executing iden- 
tical instructions. A triplex FTP has the ability to mask a sin- 
gle fault from the rest of the system. A duplex FTP can determine 
that a fault exists. 

A fault tolerant Intercomputer' (IC) network. This network is a 
triplicated circuit-switched nodal network with sufficient links 
in each network to be able to reach all FTPs on the network after 
experiencing a single fault in the network. Because the network 
is triplicated, it is possible to have reliable communication 
with multiple faults. 

Systems software flexible enough to handle an arbitrary number of 
FTPs connected to the network. The network management process 
must be able to recognize faults in the network, and reconfigure 
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i t  au tomat i ca l l y  (and i n v i s i b l y  t o  a p p l i c a t i o n s  processes).  The 
communications so f tware  must a l l o w  f o r  any number o f  FTPs t o  com- 
municate. Systems management sof tware must be ab le  t o  recon f ig -  
u r e  the  system ( f u n c t i o n a l l y  "move" a group o f  tasks from one FTP 
t o  another) i f  extreme f a i l u r e s  occur. Local FTP management 
so f tware  must be a b l e  t o  recon f igu re  the  FTP in  t h e  presence o f  
processor f a i l u r e s  (downmode t o  a duplex from a t r i p l e x ,  for 
exampl e) . 

0 Local Operat ing System (OS) sof tware capable o f  work ing a lone 
(s implex) ,  i n  duplex or i n  t r i p l e x .  The l o c a l  OS i s  concerned 

w i t h  the  tasks on one FTP ( the l o c a l  scheduler,  l oca l  rendezvous 
software,  etc.) . 

F a u l t  T o l e r a n t  D i s t r i b u t e d  Ada 

I n  the  absence o f  f a u l t  to lerance,  i t  i s  d i f f i c u l t  t o  des ign a ren-  
dezvous scheme between tasks on d i f f e r e n t  computers w i thou t  m u l t i p l e  
t ransmiss ions over the  network t o  ensure processors remain a c t i v e  
throughout the  w a i t  f o r  t h e  rendezvous. A message would need t o  be sent  
to request  a rendezvous. An acknowledgement would be necessary w i t h i n  
some t ime l i m i t  i n  t he  case o f  a timed o r  s e l e c t i v e  c a l l ,  t o  make sure 
t h e  c a l l  has been rece ived and pu t  on the  queue. Another message would 
need t o  be sent  s t a t i n g  t h a t  t he  e n t r y  i s  accept ing the  c a l l .  I f  t h e  
c a l l e r  i s  making a t imed c a l l ,  and the  delay runs out be fo re  t h i s  mes- 
sage i s  received,  a message cou ld  be sent  t o  take the  c a l l  o f f  t h e  
queue. F i n a l l y ,  t h e  r e s u l t s  o f  t he  rendezvous can be sent  back t o  t h e  
c a l l e r .  

These messages make up a minimal se t  o f  t ransmiss ions over t h e  ne t -  
work a t  t h e  h ighes t  l e v e l .  There might  be o ther  t ransmiss ions a t  a lower 
l e v e l  t o  make c e r t a i n  t h a t  each complete message i s  rece ived c o r r e c t l y .  

I n  the  f a u l t  t o l e r a n t  A I P S  system, t h e  problem of unknown processor 
f a i l u r e s  does no t  e x i s t .  I f  one o f  t he  processors i n  an FTP f a i l s ,  t h e  
f a u l t  i s  detected.  I f  p o s s i b l e  ( i n  a t r i p l e x  FTP, f o r  example), proc- 
ess ing  cont inues normal ly .  If i t  i s  n o t  p o s s i b l e  t o  i s o l a t e  the  f a u l t ,  
t he  System manager w i l l  r econ f igu re  such t h a t  f unc t i ons  on the  f a i l e d  
FTP a r e  run on a d i f f e r e n t  FTP. 

For t h i s  type  o f  system, i t  i s  poss ib le  t o  des ign an e f f i c i e n t  com- 
mun ica t ion  s e r v i c e  t o  implement the  Ada rendezvous. Because the  tasks  
invo lved a r e  v i r t u a l l y  assured o f  con t inu ing  execut ion  throughout t h e  
rendezvous, 1 i t t l e  e r r o r  d e t e c t  i o n  needs t o  be done i n  t h e  communi - 
c a t i o n s  so f tware  o f  t h e  processor con ta in ing  t h e  c a l l i n g  task.  

For t h e  case o f  t he  t imed rendezvous, w i t h  a p o s i t i v e  de lay  value, 
t h e  des ign c a l l  s f o r  t h e  opera t i ng  system on the  c a l  l ed  processor t o  
t ime the  wa i t ,  i f  the  de lay  va lue  i s  l a rge r  than the  m in imum necessary 
t o  t r a n s m i t  t he  rendezvous request and rece ive  a response back. I f  t h e  
e n t r y  i s  n o t  accepted w i t h i n  the  g iven amount of time, a message w i l l  be 
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sent back to the calling processor, and the calling task can execute 
alternate code. The only messages that need to be sent would be the 
initial message that the caller wants to communicate, and the final mes- 
sage that the server is finished (for whatever reason) . If the delay 
amount is smaller than the minimum needed to transfer messages, no com- 
munication is needed. The calling task can be given control back after 
the specified delay. 

If the delay amount is zero or negative, or if it is a conditional 
call, the messages still must be sent, and the rendezvous might occur. 

The IC network services will keep track of whether the called task 
is moved from one FTP to another. It is also possible that the network 
will be reconfigured while the tasks are waiting to communicate. All of 
this will be transparent to the application program. 

The design for the intertask communication has been subdivided into 
two parts, the local communication and the interprocessor communication. 
The 1 oca 1 commun i cat i on cons i s ts of the "norma 1 I' rendezvous between two 
colocated tasks. The interprocessor communication consists of doing the 
same thing across an IC network. 

The Ilglue" between these two services is cal led the "context manag- 
er". Its function is to determine, for each attempted rendezvous, 
whether the called entry is on the same processor as the calling task. 
If it is, the local communication service is invoked. If the called 
entry is on some other processor, the IC network service is invoked. 

The design of the context manager includes a table of locations of 
what are known as "migratables". As was mentioned above, when a fault 
is detected, tasks can be transferred to another FTP. The tasks will be 
grouped into large units. All the tasks within a migratable unit will 
always be colocated; if they are moved, they will move as a block. 
Therefore, the table of locations can be organized hierarchically. This 
will allow a fast algorithm to be designed to determine in which FTP a 
called task is being run. 

The network services are organized into layers, as in the IS0 Open 
Systems Interconnect model. The highest layer, the Application layer, 
will provide the interface between the context managers on the FTPs, and 
the IC network. 

The interface between the context manager and the IC network has 
been designed to be as similar as possible to the interface between the 
context manager and the local communication service. This is not a 
necessity, but since the context manager is a potential bottleneck, 
there should be no translation of data to support different interfaces. 

The Application layer is responsible for the Ada rendezvous seman- 
tics. When a rendezvous is with a task on another FTP, this layer must 
make sure the semantics are followed. With a fault tolerant system, 
this layer i s  fairly simple. A t  system initialization, a table of task 
to task communications is used to create logical connections between 
each pair. When the rendezvous is actually requested by the caller, 
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this layer sends the input parameters, along with the timeout value, to 
the Application layer on the server's FTP. The server's Application 
layer calls the server with the appropriate delay (adjusted to take into 
account communication delays). When the rendezvous is complete, the 
Application layer returns output parameters. If an exception is raised 
or the call times out, a message is sent back to the caller specifying 
the problem. The Application layer on the caller's FTP then either 
gives control back to the caller at the appropriate point or raises the 
specified exception to the caller. 

The other layers, except the lowest software layer (the Network 
layer), are designed to support general network services (not just Ada 
communication), and are not affected by the fault tolerance of the sys- 
tem. 

The Presentation layer is responsible for translating data when the 
format on the receiver is different from that on the sender. The system 
being bui 1 t (the proof of concept, or POC, system) has a1 1 processing 
sites identical; therefore no transformation routines will be coded. 

The Session layer is responsible for verifying the legitimacy of the 
communication. It is possible for users (in some anticipated appl ica- 
tions) to attempt to communicate with tasks to which they should not be 
allowed access. A table of allowed communications will be checked for 
all connections. 

The Transport layer is responsible for determining the hardware des- 
tination of the communication. It will have a table of locations for 
the various tasks. If a communication destination is changed (if a task 
is moved to another processor), this layer will be notified so that com- 
munication can continue. 

The Network layer is responsible for detecting and masking hardware 
faults. On a triplex FTP, each processor is connected to one of the 
three IC networks for transmission. Each processor has receivers all 
three networks. Masking faults is not trivial when receiving messages 
from processors which: are not fault tolerant, are duplex FTPs or are 
triplex FTPs. It is, however, still much faster than detecting faults 
through multiple acknowledgments at the Application layer. In fact, in 
the usual case of no faults, a triplex FTP's Network layer needs to do 
very little processing to obtain (reliable) data for each of the three 
processors. It is only in the presence of faults that extra processing 
needs to be done. 

The Datalink layer is responsible for sending packets across the 
network. It contends with the other FTPs for the network using a modi- 
fied Laning poll which allows one triplex FTP to win the triplicated 
network in the presence of a single fault. This protocol is somewhat 
more complex than is necessary for a single network. This added com- 
plexity, on the POC, adds a 10% overhead on each transmission. The 
Datalink layer uses the HDLC protocol to transmit data over each net- 
work . 
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The Hardware l aye r  has two b i t - p r o t o c o l s :  t he  data b i t  and the  p o l l  
b i t .  

Conclusion 

I n  t h e  presence o f  f a u l t s  on a system which i s  no t  f a u l t  t o l e r a n t ,  
i t  i s  d i f f i c u l t  t o  des ign an e f f i c i e n t  communication system t o  suppor t  
the  Ada rendezvous. For the  f a u l t  t o l e r a n t  A I P S  computer system, howev- 
er, i t  i s  much eas ie r  t o  des ign the  upper l aye rs  o f  the  IS0 O S 1  communi- 
ca t i ons  model. The Network layer  and the  Da ta l i nk  layer  each have more 
process ing t o  do f o r  each comnunication, but the  amount o f  process ing i s  
small when there  a r e  no e r r o r s  occur r ing ,  and the  number o f  communi- 
ca t i ons  can be reduced t o  two a t  t he  A p p l i c a t i o n  layer .  

The r e s u l t  i s  an extremely r e l i a b l e ,  e f f i c i e n t  communication system 
a l l o w i n g  Ada tasks t o  communicate as i f  they were on the  same FTP. 

D i s t r i b u t e d  systems have many bene f i t s .  The d i s t r i b u t i o n  a l l ows  the  
system t o  r u n  i n  p a r a l l e l ,  g i v i n g  more throughput than i n  a n o n d i s t r i b -  
u ted  system. The d i s t r i b u t i o n  a l lows the  system t o  be reconf igured  i n  
the  presence o f  f a u l t s .  The d i s t r i b u t i o n  a l l ows  the  system t o  be ab le  
t o  cont inue i n  the  presence o f  damage, by p u t t i n g  the  va r ious  computers 
i n  d i f f e r e n t  p a r t s  of t he  veh ic le .  Adding hardware f a u l t  t o le rance  com- 
plements the  d i s t r i b u t i o n  by a l l o w i n g  the  sof tware t o  i s o l a t e  f a u l t s  and 
i n  many cases t o  mask t h e  f a u l t .  Th i s  a l lows sof tware systems such as 
the  communication system t o  be much s impler  than i n  systems which are  
no t  f a u l t  t o l e r a n t .  
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Abstract 

Twenty-five years of spacecraft onboard computer development have resulted in a better understanding 
of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight 
flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Viking, Voyager, Galileo) and three research 
programs (Digital Fly-By-wire, STAR and the Unified Data System) are useful in projecting the computer 
hardware configuration of the Space Station and the ways in which the Ada programming language will 
enhance the development of the necessary software. This paper reviews the evolution of hardware 
technology, fault protection methods, and software architectures used in space flight in order to provide 
insight into the pending development of such items for the Space Station. 

1. Introduction 

During the 25 years since the first flights of manned and unmanned spacecraft carrying onboard 
computers, the tasks assigned to the machines have grown in complexity and pervasiveness until now it 
is impossible to consider designing a spacecraft without including substantial computing power. As with 
any mission critical component, the reliability of computers has to be ensured. NASA's efforts to use 
computers onboard spacecraft resulted in the development of various methods of fault tolerance. 
Development of computer systems for unmanned and manned spacecraft have largely followed separate 
tracks. Systems onboard manned spacecraft used increasing numbers of redundant processors as the 
primary method of protection. Those on unmanned spacecraft, though redundant, were more innovative 
in terms of distributing tasks and processing power. The Space Station project provides an opportunity to 
merge the two tracks, taking from the manned programs experience with using high level languages, 
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software synchronization, and hrge-scale software devebpment, and from the unmanned programs use 
of distributed systems and microprocessors. This synthesis creates a system that lends itself to the use of 
Ada as the onboard software devebpment language if the problems of implementing the language on 
distributed systems can be sotved. 

2. A Taxonomy of Spacecraft Computer Systems 

A review of previous onboard computer systems is in otder to provide a basis for discussing a 
computer architecture for the Space Station. Since all previous systems have used redundancy in some 
form for fautt tolerance, a taxonomy can be established by considering the nature of the various 
redundancy schemes. Four types of systems can be identified: simplex, multiplex, functional distribution 
with full redundancy, and functional distribution with virtual redundancy. Both simplex and mttiplex 
schemes have examples in both the manned and unmanned programs, while the latter pair of types 
presently have only unmanned spacecraft systems as members. 

21. Simplex Systems 

Simplex onboard computer systems are identified by the absence of redundancy. They are also 
characterized by being part of a single subsystem of the spacecraft, specifically the guidance and 
navigation subsystem on manned spacecraft and the commanding subsystem on unmanned spacecraft. 
If the simplex computer system failed, its tasks would be suspended when possible, or taken over by a 
backup with reduced functionality. Crew and spacecraft safety would be maintained, but mission 
objectives would be compromised. Three simplex systems were developed in the 1960s: the 
programmable sequencer onboard the later Mariner missions, the Gemini Digiial Computer and the 
Apollo Guidance Computer. 

2.1 .l . Marinefs Programmable Sequencer 

Prior to the Mariner Mars 1969 flyby missions, unmanned interplanetary spacecraft camed hardwired 
sequencers. Essentially these sequencers monitored a counter that was constantly updated by pulses 
from a clock. When an appropriate time interval had elapsed, some spacecraft adiviiy would be initiated. 
For example, after the cruise period to a planet, at a time precalculated and put into the sequencer’s 
bgk, the spacecraft would orient itself and activate experiments to be done during the encounter with the 
planet. This meant that very accurate preflight navigation calculations had to be made, and that the 
sequences could not be c h a m  after liftoff. 

Mariner Man 1969 was to be a double flyby of the Red Planet. tf the spacecraft could be fitted with 
programmable sequencers, then the tarpeting and camera aiming of the second spacecraft could be 
chanoed to follow up on d i e r i e s  made by the first flyby. For instance, if a particularly interesting 
terrain feature was found, the second spacecraft could have fts encounter sequence reprogrammed from 
the earth to obtain more imaging in that area. Wdh a t ied sequencer this would have been impossible. 
Accordingly, a programmable sequencer with 128 words of memory was included. Later expanded to a 
512 word memory, this machine controlled two Mars flyby missions, two orbiters (1971), and the Venus 
and Mercury flyby mWon in 1973. The latter demonstrated the flexibility of the machine because the 
mission was so complex one software bad was too small to do the pb. Therefore, a seriis of complete 

E.2.2.2 



software bads were prepared and sent up to the spacecraft as the mission progressed [Hooke 19731. 
Subsequently, in flight reprogramming became a planned and common feature of interplanetary missions, 
greatly reducing memory requirements and increasing flexibility. 

Backup to the programmable sequencer was the same hardwired sequencer used in the early Mariner 
missions. If the programmable sequencer had failed, then the mission could continue, but only with 
preprogrammed sequences. Switching to the backup resulted in reduced functions. A similar situation 
existed in the two sirnplex manned spacecraft systems. 

2.1.2. The Gemini Digital Computer 

The Gemini program was more than a tW0-rf-m folkwon to the Mercury spacecraft. It was a test bed 
for guidance and navigation techniques considered essential for the Apollo lunar landing program. Two of 
the more diffiilt of these were rendezvous and computerantrolled reentry. A small onboard computer 
customdesigned and programmed by IBM Corporation provided real-time calculations of maneuvers for 
the astronauts. During a rendezvous operation, required vekcity changes would be displayed and the 
astronauts would fire thrusters and maintain attitude during powered maneuvers. The spacecraft had 
lifting capability suffiiient to adjust the landing point within a rectangular footprint 500 miles long and 40 
miles wide. The computer was programmed to target within the footprint. Each major function was 
contained in separate single software modules. By using a rotary switch and the start button, a program 
could be selected. When the machine was not needed, such as during coasting in orbit, it could be shut 
Off. 

If the computer failed, its tasks would either be abandoned or done by less effective means. A 
rendezvous could be canceled. Computer controlled reentry could be replaced by pilot control, such as on 
the Mercury missions. Either way, crew safety was maintained, but mission objectives were not 
accamplis hed . 

2.1 3. Apollo’r Simplex Systems 

NASA contracted with the Instrumentation Laboratory (now the C. Stark Draper Laboratory) of the 
Massachussetts Institute of Technology for the Apolb guidance system. A computer first built for the 
Polaris submarine launched ballistic missile was redesigned as the Apollo GuMance Computer. Software 
for the computer functioned as a priority-interrupt system with some cyclic characteristics. Jobs were 
scheduled and monitored by an executive program. Code was executed by an interpreter. A typical 
software bad consisted of several dozen “programs” which could be activated by the crew. Key mission 
phases such as lunar orbi insertion, landing, lunar orbii rendezvous, and entry into the earth’s 
atmosphere were computer intensive activities. 

The Apolb was a two-part spacecraft: command module and associated propulsion, and the lunar 
module. Each module had a computer, with, of cou~se, different applications programs, but the same 
interpreter and executive. If the command module’s computer failed, the mission would be aborted and 
return to earth would be handled by doing maneuver calculations on the ground and sending instructions 
to the crew. If the lunar module’s computer failed, it had an onboard backup. The backup computer was a 
small device built by TRW Corporation that could guide the ascent portion of the lunar module to a 
rendezvous with the command module. That was its wle function, so a computer failure during lunar 
descent would have caused an abort of the landing attempt. 
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The o b v i s  shortcoming of simplex systems is that a single computer failure severely damages the 
mission. This is apparent even in the systems described here, even though their use was limited to one 
subsystem. As NASA entered the 1970s, spacecraft that depended on computers for more than one 
function were being designed. On those spacecraft, computer failures would greatly affect crew and 
spacecraft safety. The first method of reducing the impact of such failures was the development of 
multiplex systems with full redundancy. 

22. Multiplex Systems 

Three spacecraft designed in the first half of the 1970s used fully redundant computers. The Viking 
unmanned Mars orbiters and landers and the Skylab orbiting space station both had duplex systems, 
while the Space Shuttle orbiter and its aircraft predecessor had more than two computers. The 
introduction of redundancy as a method of fault tolerance necessitated the addiiion of management 
software absent from the simplex systems. 

2.2.1. Viking and Skylab: Dual Redundancy 

The Viking missions to Mars were, in many ways, the most Complex unmanned flights yet attempted. A 
two part spacecraft was placed into Martian orbit, whereupon the orbiier portion began a search for a 
landing site. When one was chosen, the lander portion descended to the Martian surface. Each part of 
the spacecraft functioned for years, the ofbiier mapping the planet and conducting experiments best done 
from space, the lander doing chemical and biological analyses of the Martian soil and sending detailed 
images of the surface back to earth. Both the orbiter and lander had dual computer systems. Each could 
support its part of the mission independently, or could work cooperatively on separate tasks. The orbiter 
computers were primarily a replacement for the programmable sequencers carried on Mariners, with the 
same command and control functions. The lander computer had to control the descent and later the 
operation of the surface station. The Jet Propulsion Laboratory, whiih built the orbiter, designed a special 
purpose processor for its spacecraft. The lander, built by Martin-Marietta Corporation, used an existing 
Honeywell computer. 

Skylab's dual computers were also commercially available, coming from the IBM line of 4Pi processors 
that were derived from the 360 architecture. The Skylab computers were related to their manned 
spacecraft predecessors in that they were part of a single subsystem, in this case attitude control. This 
space station used a complex set of control moment gyros for stabilization and attitude maintenance. The 
computers were programmed to execute scheduled tasks cyclically, including a set of self-tests. Each 
cycle the primary computer would deposit a Wit status word to a special register in a common section 
of the system. Thii register and its associated logic were constructed of triple modular redundant circuits 
for r e l i i l i .  If the secondary computer detected that the primary was failing its self-tests, it would take 
the status word from the common section before the failing computer could corrupt it, and shut down its 
partner. Such a failure never occurred during the lifetime of the Skylab, but a manual switchover was 
done to prove that the system was reliable no matter w h i i  machine was designated primary. 

Even though the Viking and Skylab computers were fully redundant and provided a high degree of 
reliability, a dual system is insufficient for manned operations. If bne half of a dual system detects a failure 
in the other half, it follows that the failing computer might well detect a failure in the good computer, and 
will try to shut it down. Also, there is a possibility that the computer detecting the failure is actually the one 
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failing, and that the detection k incorrect. An obvious solution to this dilemma is to add more computers, 
each running identical software-the solution chosen for the Shuttle. 

2.29. Redundancy for Digital Fly-by-Wim AetospacraR 

NASA's Space Shuttle is different from all the other spacecraft so far discussed in that the onboard 
computers have tasks outside of a single system or small set of systems. The Shuttle computers control a 
large number of spacecraft functions, including such mundane items as the opening and closing of the 
cargo bay doors. Most importantly, the Shuttle has a digital fly-by-wire control system. This means that 
where mechanical linkages exist in conventional aircraft control systems, the Shuttle has electrical and 
eledronic connections between the controlling devices, the computers, and the control surfaces. When an 
astronaut moves the hand controller in the Shuttle, signals are generated and transmitted to the 
computers, which then generate signals to the actuators at the control surfaces. Therefore, a software or 
hardware failure makes the control system inoperable, and even a short loss of control in a critical 
mission phase wouM be disastrous. Since early research showed that the most likely source of failure in 
an avionics system would be the computers, NASA chose to increase the levels of redundancy of the 
primary computer system to provide sufficient protection. 

At first, the level of protection was what has been termed "fail-operationaVfail-operationaWail-safe." If 
one computer fails, then the spacecraft is still operational, if a second fails, it is operational, but should 
return to earth because it has reached fail-safe level, at which another failure would mean seriius danger. 
The fail-safe level escalated to three computers to avoid the standoff situation. The sum of ths is that five 
computers were necessary and NASA accordingly acquired five IBM AP-101 machines for each orbiter. 
Later adjustments to the design reduced the level of redundancy to failoperational/fail-safe, but the fifth 
computer was kept on the spacecraft as a backup f l iht system that could be activated by the crew in 
case of a catastrophic failure of the primary. The backup can only control the ascent and descent of the 
orbier, and by itself can not complete a mission. 

Of central concern to the Shuttle designers was the development of a redundancy management 
scheme. Fortunately, NASA was already engaged in a research program that could shed direct light on 
the subject. The Dryden Flight Research Center at Edwards, California, had been conducting a digital 
fly-by-wire test program using a modified VougM F-8C aircraft. A single Apollo Guidance Computer was 
installed in the aircraft to provide flight control. An electronic analog system acted as a backup, but it 
never was needed. Dryden's research team realized that a simplex system would never be acceptable for 
routine use, 60 il was exploring a dual computer system when officials at the Johnson Space Center 
contacted them about installing three of the same computers to be used in the Shuttle in the F-8 and thus 
tryino out methods of integrating multiple machines into an avionics system. Dryden agreed, and three 
AP-101s were installed and flown on the F-8. Several single computer failures occurred during flight, none 
of which endangered the aircraft. 

The primary problem in managing multiple computer systems is failure detection. It was reasoned that 
if the software could be compared at regular intewals, then a failing computer would be obvious because 
its results would be different from the results of its partners. Comparing checksums consisting of the 
components of a number of parameters is a simple way of doing this; however, due to dfferences in the 
computer clocks, the machines would quickly reach the point where they were out of step, and anomalies 
would show up in the checksums even though the machines had not failed. To overcome this problem, 
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the machines had to be synchronized. Each time the software executes an input operation, output 
operation, or changes the module being executed, a three-bl discrete signal is sent on a dedicated bus to 
the other computers. The sending computer waits up to four milliseconds for its partners to check in with 
an identical signal. If the signals do not agree, of if the time limit expires, the computer which failed to 
check in properly is indicated to be failing, and the computer that detects this error goes on. Due to fear of 
generic errors, the computers are not capable of shutting each other off, only the crew can do that in 
response to the failure signals. 

Basically, multiplex systems provide fault tolerance by layers of redundancy. The disadvantages of this 
are that entire systems must be replicated at least three times and more reasonably four times to provide 
the reliability needed by mission critical systems. In a computationally intensive environment, such as that 
on the proposed Space Station, so many processors wouM have to be replicated that the increase in 
power consumption and other resources devoted to the computers would be prohibitive. Other forms of 
reliability insurance developed for the unmanned flight programs may provide more sensible solutions for 
the Space Station. 

2.3. Functional Distribution with Full Redundancy 

NASA's longest lived interplanetary spacecraft are the two voyagers launched in 1977 and still working 
successfully, as proved by the recent flyby of Uranus. The Voyagers carry a functionally distributed set of 
three pairs of redundant computers. Probably most of the reason why this computer configuration was 
chosen is the structure of the Jet Propulsion Laboratory. Different sections of the Laboratory contribute 
different components to a spacecraft. In the case of Voyager, the section that builds the command system 
reused the computer developed for the Viking orbiier with an almost identical software structure. The 
attitude control system developers used a speeded up version of the command computer and the flight 
data system had a newly developed machine. Each of the three groups independently determined that 
the inclusion of a computer system was the best way for the specific tasks involved to be accomplished. 

One change caused by adopting functional distribution was the need to communicate with other 
computers instead of hardwired logic devices. Most intercomputer communication consisted of 
commands and signals relating to internal tests. More complex communications were required by the next 
level of unmanned spacecraft systems. 

2.4. Functional Distribution with Virtual Redundancy 

The next major interplanetary spacecraft designed after Voyager was Galileo, a Jupiter atmospheric 
probe and orbiter. Galileo cames a dual computer system for attitude control and pointing that uses an 
off-the-she! microprocessor, the ATAC-16, and is programmed in a hgh level language, HAUS. Its 
command and data system also uses commerically available microprocessors, six RCA 1802s in two 
strings of three. This system was derived from research sponsored by the Jet Propulsion Laboratory 
concerning reliable computer systems for unmanned spacecraft. 

Beginning in the early 1 9 6 0 ~ ~  the Laboratory sponsored the design of a computer called STAR (for Self 
Testing and &pair) that consisted of collections of multiple copies of each major component (Avbienis 
19681. For instance, memories, inputloutput devices and the like were triplicated. A special piece of 
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hardware called the Test and Repair Processor, or TARP, had five copies. When the computer was 
operating, one of each subcomponent and three TARPs were powered up and running. If the TARPs 
voted that a component was failed, they activated one of the spares. If the vote had not been unanimous, 
the dissident TARP would be shut off and another activated. In this way no more than the minimum 
number of components would be powered at any given time. The weakness of ths scheme is that a 
failure of the switches used to turn off bad components and turn on ones would negate the fault 
tolerance. However, the concept of a single computer with virtual redundancy wwived to the next round 
of research. 

Research initiated after STAR led to the construction of the Unified Data System in the early to mid 
1970s [Rennels 19781. Here the emphasis was on several processors working cooperatively. Certain 
processors, called High Level Modules, would communicate only with other processors, called Terminal 
Modules. The Terminal Modules would deal with spacecraft systems or the outside world. Conceptually, 
by carrying several High Level and a larger number of Terminal Modules, each communicating by means 
of multiple busses, and sharing numerous memory modules, the system coukl function with a variety of 
combinations of modules, memory, and bus connections. This way a single processor failure would result 
in a change of the configuration, but no degradation of performance unless a number of different failures 
OCCUKed. 

Designers of the Galileo command and data system did not fully adapt the concept, even though they 
adapted the terminology. Two 1802s are assigned as High Level Modules, four are Low Level Modules. 
Several memories and redundant busses are part of the system. However, it is fundamentally separated 
into two redundant strings. Even so, the software is constructed in what are termed ”virtual machines” and 
is distributed over the several processors. From the Unified Data System and the actual Galileo software 
some hints for a possible Space Station computer architecture can be derived. 

3. Computer Architecture for the Space Station 

The Space Station will be different from any previous manned spacecraft in tens  of its computational 
needs. In fact, It will be much cbser to an unmanned spacecraft. This is primarily because the guidance 
and navigation tasks on a Space Station are minimal compared to what a spacecraft like the Shuttle 
requires for active flight control. However, considerable computational capability in the areas of data 
acquisition and analysis, altitude control, lire support, and spacecraft health monitoring will be necessary. 
Wfih ths variety of tasks, It is logical to imagine that the final configuration of the computers onboard the 
Space Station will be a distributed system, with physical processors embedded in the hardware built to 
accomplish each function. Thus the Station’s computer systems will resemble the functional distributions 
used on Voyager and Galileo, rather than the centralbed systems used on the Shuttle.- Questions of 
redundancy can then be handled at the local level. Some systems such as life support are so critical as 
to require fault protection to the same degree as fliiht control, and will require multiple dedicated 
processors for redundancy. Other systems can be virtually redundant in that their tasks can be transferred 
to another processor in another system in case of a failure. Perhaps a common pool of processors can be 
made available to host tasks offbaded from failed machines. In any case, the intent of a hardware 

“ A h o h  the Shuttle has locep ccmwtem on ?he main engines and on payloads. Ihe Data proceedng System, with its muttipkx 
conliguraiion, does ail other mputetional operaiions. 
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architecture for the Space Station should be to provide fault tolerance relative to the importance of the 
systems, and to avoid carrying large numbers of resource-hungry multiplex systems. 

4. Implementing Space Station Onboard Software with Ada 

Since Ada has already been designated as the devebpment language for the Space Station, its 
strengths and weaknesses in implementing software for its potential computer architecture are of interest. 
Ada's strengths in developing this type of system lie in its inherent ability to handle concurrency, both in 
terms of data sharing and Synchronization, and in hiding mechanisms of concurrency in the programming 
language. Fundamentally, the entire sohare bad for the Station could be created as a set of tasks, 
some of which will run individually on separate processors, some of which will share a single processor, 
but all of which can be considered as part of a lbrary of related programs. This was impossible in 
previous distrikrted systems in which the software for each computer was written separately in different 
languages, sometimes in a mix of high level and low level languages, and interconnected with great 
difficulty. The chief weakness of Ada at this point in time is not the language itself, but the lack of 
implementations of it that make use of its full range of features, particularly those most applicable to the 
Space Station. 

4.1. Ada Features Most Useful for Distribution and Fault Tolerance 

Since the original purpose of designing Ada was to serve the devebpment of large and real time 
systems, several features of the language are directly applicable to programming the heterogenous 
machines on the Space Station. 

4.1 .l. Tasks 

Using Ada, programs can be made up of a variety of units, inctuding tasks. A task is a program unit 
that runs in parallel to other tasks, and to the main pmgram, which is implicitly also a task. Moreover, it 
can run either interleaved with other tasks in one physical processor or as a single process on a machine 
in a multicomputer system. Tasks on the Space Station would have varying degrees of interaction. For 
instance, a task monitoring spacecraft health would periodically wish to receive signals from processes 
throughout the Station in order to make sure everything is still functioning. These messages would be far 
less frequent than three computers running identical tasks as part of a mission critical, locally redundant, 
synchronized subsystem. Regardless of the level of communication, the information to be exchanged can 
be abstracted in the task body, hiding the complexity of the interior of a task from programmers working 
on associated tasks. 

4.1 9. Rendezvous 

Previous parallel ~mputations in spacecraft shared information by message passing or common data 
pools. On Voyager, messages are sent between the command computer and attitude control computer as 
single units. On the Shuttle, the high level language HAVS provides for the dedaration of common data 
shared by several scheduled parallel processes. M a  provides for wnunon data using pragmas for 
shared information, but the most common form of information exchange on the Station would probably be 
message passing, usable for simple data exchange or for synchronization. Message passing is 
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implemented in Ada using the rendezvous, in which a task will be bbcked while attempting to send or 
receive a message. When both sender and receiver reach the point in their respective task bodies where 
they are ready to do the exchange, a rendezvous occurs, data is transferred, and both tasks continue. 
These rendezvous can take place between widely distributed tasks. 

4.1.3. Exception8 

One Ada feature critical for Space Station systems is the abi l i  to gracefully handle predictable errors. 
Even though most Space Station subsystems could have short duration failures without endangering the 
crew, actively handling the failures as opposed to reacting to existing conditions is almost always 
preferable. Exception handlers can be part of each task, and, used creatively, can eliminate complete 
shutdowns of subsystems. 

4.1.4. Modularity 

Since the Space Station is expected to operate over a long period of time, with many changes in its 
component modules, the software used on it must be easily modifiable. Ada’s ability to separately compile 
tasks that have been added or modified and include them in the existing software bad is a significant 
advantage. NASA has made good progress in reusing software in preparing Shuttle flight loads. 
Consciousness of reusability can be easily transferred to the Space Station project since the development 
language directly supports such techniques through the use of generics. 

4.2. An Example: Implementing Shuttle-Like Computer Failure Detection in Ada 

As an example of tasks, rendezvous, and exception handling, the Ada code in Figure 1 on the next 
page implements the Shuttle computer failure detection and synchronization scheme in a two processor 
system. 

5. Summary 
Ada has many characteristics that support the development of software that implements fault tolerance 

schemes developed for previous spacecraft. Also, the ability to run on distributed systems essentially 
transparently to programmers working on the Space Station software means that a variety of redundancy 
configurations can be used. This, of course, depends on continued research and development concerning 
implementing Ma. Although some attempts have been made to implement Ada on several cooperating 
processow, the nuances of doing so are still not all understood [Ado 19841. Also, the progress of Ada 
development environments, though picking up steam, is still behind original expectations. Adoption of 
existing Ada development technobgy by the Space Station project coupled with support of efforts 
designed at multiprocessor implementations provides the safest route to completion of Space Station 
software in the early 1990s. 
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ABSTRACT : 

The Ada programming language and the associated Ada Programming 
Support Environment (APSE) and Ada Run Time Environment (ARTE) 
provide the potential for significant life-cycle cost reductions 
in computer software development and maintenance activities. 

,The Ada programming language itself is standardized, trademarked 
and controlled via formal validation procedures. Though 
compilers are not yet as production-ready as most would desire, 
the technology for constructing them is sufficiently well known 
and understood that time and money should suffice to correct 
current deficiencies. 

The APSE and ARTE are, on the other hand, significantly newer 
issues within most software development and maintenance efforts. 
Currently, APSE and ARTE are highly dependent on differing 
implementer concepts, strategies and market objectives. Complex 
and sophisticated mi.ssion-critical computing systems require the 
use of a complete Ada-based capability, not just the programming 
language itself; yet the range of APSE and ARTE features which 
must actually be utilized can vary significantly from one system 
to another. As a consequence, the need to understand, 
objectively evaluate, and select differing APSE and ARTE 
capabilities and features is critical to the effective use of 
Ada and the life-cycle efficiencies it is intended to promote. 
Methodologies for dealing with dissimilar APSE/ARTE systems are 
also in sore need of definition and understanding: particularly 
for industry contractors who will be developing similar 
capabilities (e.g., missile and air/space craft navigation, 
guidance, throttle control) for differing customers (e.g., Army, 
Navy, Air Force, NASA, Boeing, Airbus). 

It is the selection, collection, and understanding of APSE and 
ARTE which provide the deeper challanges of using Ada for 

* Ada is a registered trademark of the United States Government 
(Ada Joint Program Office) 
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real-life mission-critical computing systems. This paper 
discusses some of the current issues which must be clarified, 
often on a case-by-case basis, in order to sucessfully realize 
the full capabilities of Ada. 

1. INTRODUCTION 

In the early 1970's, the Department of Defense (DOD) recognized 
several problems related to the acquisition of software for 
major defense systems. Software systems were too frequently 
late, unreliable, and more expensive than planned. 
Additionally, there was a steadily rising trend in software 
costs while, at the same time, computer hardware costs were 
decreasing significantly. 

At the time, the primary cause of these problems was identified 
as a deficiency in the computer programming process; 
particularly in the area of programming languages. There were 
over 450 general purpose languages and dialects being used for 
DOD systems with no single point of control for each. Many of 
these languages were poorly suited to their application, and/or 
did not take advantage of nor support good programming 
practices . The DOD was also beginning to recognize the 
long-term life-cycle advantages of using higher order languages 
(HOL'S) rather than assembler code. By 19748 each of the 
military services was independently proposing development of a 
standard HOL for their service's mission-critical software 
development. 

In January, 19758 a joint services HOL working group began 
identifying and defining requirements for all DOD HOL'S and 
individual service efforts were halted. The "Strawman" document 
issued in April, 19758 started a multi-year effort which 
culminated in 1981 and 1983 with the establishment of 
ANSI/M1L-STD-1815A8 "Reference Manual for the Ada Programming 
Language," as a single DOD standard for all future 
mission-critical computer software development efforts. 

Unfortunately, durinq the six years required to produce the Ada 
standard, the understanding of the problems of developing large, 
complex software systems evolved. While the programming process 
was still important, newer full-life-cycle models of software 
project activities reduced programming's overall significance to 
only 20% of the whole; much less than was thought in the early 
1970's. 

In response to this changing perception, the HOL working group 
began to recognize that the new common DOD HOL alone would not 
be sufficient to ensure DOD'S desired improvements in software 
development. The programming environment within which Ada would 
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operate needed significant improvement. 

Following two years of work, an Ada Programming Support 
Environment (APSE) was defined in the 1980 "Stoneman" document. 
Even though this document provides criteria for assessment and 
evaluations of programming environments, it is not a standard 
and, as such, implementers of Ada tools are not bound by any 
hard and fast requirements. Rather, implementers are free to 
choose any of the four "Stoneman"-defined levels of Ada 
programming support. More importantly, they are also free to 
select, as they see fit, specific tools within each of the 
levels. Thus, while Ada, the language, is tightly controlled, 
APSE'S are not controlled at all and vary significantly from one 
implementer's products to another's. 

In a similar manner, an Ada Run Time Environment (ARTE) can also 
vary significant3.y. Once the necessities of the Ada language 
standard are satisfied, implementers are free to produce a wide 
varietv of operating executives. In fact, ARTE development is 
even less constrained than development of an APSE; no assessment 
and evaluation document such as "Stoneman" even exists for run 
time requirements. 

In response to the absence of APSE and ARTE system 
standardization, projects using Ada must, on a case-by-case 
basis, identify those features most necessary to their specific 
requirements. Once this is done, evaluation of the numerous 
implementer offerings is required in order to select the 
critical environmental capabilities which will be used. The 
following sections describe the key issues affecting selection 
of Ada Programminq Support and Ada Run Time environments. 

2. ADA PROGRAMMING SUPPORT ENVIRONMENT 

An Ada Programming Support Environment (APSE) consists of a 
number of individual tools which provide software support to 
write, test and maintain Ada language programs. An APSE can 
also be used to provide orderly program development methodology. 
Tools within an APSE will vary from implementer to implementer; 
however, most implementers conform at some level to the 
"Stoneman" document. The cooperating ability of tools with each 
other, as opposed to merely "Stoneman" tools-database 
interfaces, can, however, vary significantly. 

Typically, an APSE will consist of at least the minimum tool 
levels described in "Stoneman": an operating system, a Kernal 
APSE (KAPSE), and a Minimal APSE (MAPSE). With the exception of 
a debugger, it is virtually impossible to utilize Ada without 
the MAPSE tools: a compiler, linker/loader, editor, 
configuration manager, and job control language processor. 
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Additionally, a full APSE (i.e.8 anv Ada Programming Support 
Environment with tools in excess of those called for by MAPSE) 
may consist of any number of augmenting tools such as a pretty 
printer, cross reference generator, test generator, program 
design language processor, source code control system, problem 
reporting system, etc. 

Evaluation of an APSE is required in order to determine which 
available environment best fits the needs of a specific 
Ada-based project. This minimally requires analyzing the tools 
in a given APSE to determine their effectiveness, and where 
possible, to directly compare them to similar tools in other 
APSE’ s . 
While quantitative methods can be used to examine many tools, 
this is not always possible. First, even though two (or more) 
t001.s perform the same function on the same computer using the 
same operating system, their performance characteristics may 
vary significantly based on computer load factors at the time of 
testing. Even if these factors can be controlled or mitigated, 
design parameters of the tools themselves can cause fluctuating 
performance data depending on individual account and session 
situations. In general, modern virtual memory multi-component 
computer systems can play havoc with what appear to be 
straiqht-forward quantitative evaluations. 

The second reason is that quantitative evaluation methods are 
not always applicable. Discussions of such factors as “user 
friendliness” do not realistically lend themselves to 
quantitative accumulation. Even so, these factors can be 
significant issues when determining the overall effectiveness of 
a tool. 

While individual tool evaluations are important, even more 
critical is extending any evaluation to the integration and 
cooperation of all of the tools which comprise an APSE. It is 
not uncommon for individual software tools to be efficacious as 
stand-alone entities, yet efforts to use the results of one as 
grist for another fail totally. Such an overall view of APSE 
effectivity and suitability cannot be obtained by simply summing 
the results of individual tool evaluations. An APSE must be 
reviewed as an integrated (or non-integrated) whole to determine 
if it fulfills a project’s software development needs. 
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3. ADA RUN TIME ENVIRONMENT 

An Ada Run Time Environment (ARTE) is the collaboration of 
program object code conventions with data structures used to 
interface to the underlying run time system. This system, in 
turn, consists of a series of library and/or executive routines 
that are necessary to support execution of Ada programs. 
Typical functions of an ARTE include general operating system 
services as well as Ada-specific features such as tasking, 
dynamic memory management, exception handling, interrupt 
processing and any other needed support deferred from a 
compiler’s code generation phases. 

Even though the Ada language is standardized, the ARTE for 
different computers and operating systems can vary widely. This 
can be due to differences in computer hardware, operating 
systems, compiler impl-ementations of Ada semantics, or, the most 
frequent case, a combination of all of these. Additional 
variations can result from trade-offs for reasons of ARTE or 
program size, speed, overhead, capability, or portability. 

In rare cases, a specific project using Ada will find one or 
more ARTE implementations which are universally best suited to 
its needs. Usually, however, compromises between various 
implementations in terms of project priorities will be required. 
Given the characteristics of most mission-critical software 
programs, the best ARTE may turn out to be the one that is 
easiest and safest to modify on a case-by-case basis. 

Evaluation of ARTE elements depends on the depth to which a 
project is required to delve. Some elements (e.g., code size, 
coding language, implemented pragmas) are readily apparent by 
simple examination of external characteristics or implementer 
documentation. Others (e.g., subprogram call timing, arithmetic 
implementations) can be found throuqh test program executions. 
Still others (e.g.8 delay overhead, task dispatch algorithm) can 
only be determined by detailed analysis (or even experimental 
modifications) of the run time code itself. 

4. ENVIRONMENTAL PROLIFERATION 

Even though the Ada programming language itself is standardized, 
trademarked, and controlled via formal validation procedures, 
Ada Programming Support Environments (APSE) and Ada Run Time 
Environments (ARTE) are not. The U. S. Army has already taken 
delivery of its APSE/ARTE system: the Ada Language System 
(ALS). The Air Force continues to make progress on key 
components of its support environment: the Ada Integrated 
Environment (AIE) and its supporting Ada Compilation System 
(ACS) .  Within the past few months, the Navy has let a contract 
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for its version of the ALS: ALS/N. NASA has also established 
its policy calling for an integrated Software Support 
Environment to support use of Ada for Space Station operational 
software. 

Thus far, with the partial. exception of ALS and ALS/N, none of 
the existing APSE/ARTE systems are compatible with each other; 
even though they execute on identical host and target computers. 
When systems on the drawing boards plus commercially available 
products (e.g., Systems Designers' "Perspective", Verdix's 
"vADS") are added to the list, the proliferation of dissimilar 
capabilities, facilities and functions will reach significant 
proportions. The late 1980's have all the potential to become 
highly reminiscent of the 1970's programming language 
proliferation which led to Ada in the first place (Figure 1). 

ORGAN1 ZATION 1970's - HOL 1980's - APSE 
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NASA 
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ALS 

ALS/N 

SSE 

Perspective 
VADS 
ADE 
etc. 

Figure 1. Organizational Standards Proliferation 

The potential proliferations in late 1980's APSE/ARTE are the 
well-intentioned result of attempts to "graft" enhancements onto 
the Ada programming language, which is in turn, the solution to 
the 1970's perception of the software development problem. Ada 
was initially designed to correct difficulties in programming. 
Current, 1980's, estimates a l l o t  only 20% of the software 
development cycle to programming, and consequently, Ada needed 
to be expanded to fit a newer, better, full-life-cycle model. 
Unfortunately, the "Stoneman" grafts have been done 
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"on-the-fly", and have, in turn, recreated a mutant of the 
initial problem. The Ada Language is standardized. APSE'S and 
ARTE's are not. Moreover, differing organizations are beginning 
to require use of their incompatible APSE/ARTE even as 
full-life-cycle model methodologies for software development are 
beginning to coalesce (e.g. , DOD-STD-2167) . 

5 . CONCLUSION 
The use of Ada and its associated Ada Programming Support 
Environment (APSE) and Ada Run Time Environment (ARTE) continues 
to provide a high potential for significant life-cycle 
methodology improvements and cost reductions in software 
development and maintenance activities. In order to move the 
significant advantages of Ada from potential to actual, several 
concurrent efforts must be completed. The first, development of 
high quality compilers and optimizing code generators, is 
already well underway. Over a dozen organizations currently 
offer Ada compilers and some form of minimal programming support 
tools. The technology necessary to improve these offerings has 
been in existence for over a dozen years. Time and incentive 
should produce the needed production quality compilers. 

Development of full-function, integrated, APSE'S is the second 
needed effort. While the qoal of this effort is conceptually 
clear, the steps necessary to reach it remain unacceptably 
vague. Full scale software development environments have been 
proposed for years, but no universally usable one yet exists. 
Using Ada as a vehicle for producing such a capability has much 
merit and the "Stoneman" document provides some necessary 
guidance. Unfortunately, these items are not yet enough. 
Significant research into programming environment requirements 
and solution sets, particularly those dealing with human factors 
and expert systems, remains to be accomplished. 

The third effort needed to move Ada from potential to actual 
usage is the development of a configurable ARTE. Ada is 

These intended for "mission-critical" computing systems. 
systems can range from ground-based surveillance and tracking 
systems (air, space, sea) to in-flight avionics (manned, 
unmanned) to simple sensor/actuator systems, and much much more. 
Even though all of these mission critical systems can be 
considered as "real time," many other widely varying 
characteristics can affect their execution environment 
constraints. A great deal of research and development remains 
to be done. The need for an ARTE criteria and evaluation 
document is barely even recognized. Yet, the ultimate key to 
mission-critical computing is its performance in the field; 
under "production" conditions. 
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Finally, and most difficult, is the need to recognize and begin 
to resolve the issue of incompatible APSE/ARTE systems. Using 
the full-life-cycle model demanded of today's software 
development process, the proliferation of differing services' 
tool sets can clearly become counter-productive; particularly 
for organizations performing similar work for different 
customers . 
The work of many individuals and organizations will be required 
to complete the efforts described in this paper. The 
definition, rationalization, implementation and integration of 
APSE and ARTE into the Ada language to create complete software 
development environments are now the deeper challanges of using 
Ada. Only when they are accomplished will Ada be able to meet 
the ultimate goals for which it was created. 

ACKNOWLEDGEMENTS : 

The work of many individuals is necessary not only to answer the 
questions raised in this paper, but to raise and clarify them in 
the first place. Several members of Boeing's Ada Project have 
contributed ideas and concepts which led to this paper. Special 
recognition belongs to two: James B. Unkefer for his work on 
Ada Programming Support Environments, and Ruth A. Maule for her 
clear, effective approach to the enigmas of Ada Run Time 
Environments. Thanks are also due to Maretta Holden of Boeing 
Military Airplane Company who continues to see into the future 
farther than most of us. 

REFERENCES : 

1. AJPO, "Kernal Ada Programming Support Environment (KAPSE) 
Interface Team Public Report," Volumes I-V. 

2. ARTEWG, "Draft Charter for the Ada Runtime Environment 
Working Group," July, 17, 1985. 

3. ARTEWG, "Ada Implementation Dependencies," November 12, 1985 
(draft) . 
4. United States Air Force, "Preliminary Program Manager's 
Guide to Ada," document numbers ESD-TR-83-255 and WP-25012, 
February, 1984. 

5. United States Department of Defense, "Ada Methodologies: 
Concepts and Requirements (METHODMAN)," November, 1982. 

E.2.3.8 



6. United States Department of Defense, "Interim DoD Policy on 
Computer Programming Languages," Memorandum to Secretaries of 
the Military Departments, et. al., from Under Secretary of 
Defense Robert DeLauer, June 10, 1983. 

7. United States Department of Defense, "Proposed Military 
Standard Common APSE Interface Set (CAIS), Version 1.4," October 
31, 1984. 

8. United States Department of Defense, "Reference Manual for 
the Ada Programming Language," ANSI/MIL-STD-l81SA, February, 
1983. 

9. United States Department of Defense, "Requirements for Ada 
Programming Support Environments (STONEMAN)," February, 1980. 

BIOGRAPHY: 

David A. Feinberg, C.D.P., is a specialist in the development 
and use of software engineering tools and environments. He is 
employed by The Boeing Company and is currently in charge of the 
company's Ada Project. During the past twenty-three years, Mr. 
Feinberg's assignments have included creation of a software 
development facility used for the construction of commerical 
electric power distribution and control ptoducts; large scale 
network operations and communications management; and compiler 
and operatinq systems construction. He is the author of over 
twenty-five papers, essays and articles. Mr. Feinberg is a 
member of ACM, IEEE Computer Society and DPMA, and holds an 
M.S.A. degree from The George Washington University and a B . S .  
degree from Stanford, 

E.2.3.9 



N89-16339 

AN ADA IMPLEIHENTATION FOR FAULT DETECTION, 
ISOLATION AND RECONFIGURATION USING 

A FAULT-TOLERANT PROCESSOR 

Gregory L. G d e y  

The Charlm Stark Draper Laboratory 
666 Technology Square 

Cambridge, Massachueetts, 02139 USA 
(817) 268-2482 

Abstract 

This paper covers the design and implementation, in Ada, of the Fault Detection, Isolation 
and Reconfiguration (FDIR) Manager for the triply redundant, tightly synchronized, Fault 
Tolerant Processor 0. It also examines the suitability of Ada, in the context of the FTP, for 
real time control tasks. This paper explains the operational concepts behind the FTP, and 
discusses the structure of the resultant Ada code. 
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1. Draper Laboratory’s Fault Tolerant Processor 

1.1 Background 
In April of 1983, the Charles Stark Draper Laboratory undertook the design and 

construction of a “distributed, fault and damage tolerant, real time information processing 
system” for aerospace vehicle control [21 [l l .  This proof-of-concept system is known as the 
Advanced Integrated Processing System (AIPS). The goal of the project is to make a fault 
tolerant network of fault tolerant computers behave as a single highly reliable system. The AIPS 
system is composed of several Fault Tolerant Processors that are linked together via two 
networks: an inter-computer (IC) network, and an inputoutput (VO) network. 

The inter-computer network is used for communication among the FTP’s. This network 
allows the FTP’s to coordinate their actions and the division of tasks. The IC network is also used 
to report errors and failure conditions. The UO network carries all input to and output from the 
AIPS FTP’s. Thus, all sensors and actuators may be accessed by any FTP, and since F’TP’s are 
not tied to specific UO devices, any FTP may run any UO dependent task. This flexibility was 
built into AIPS so that tasks can “migrate” between FTP’s without concern about which specific 
UO devices are attached to the individual FTP’s. 

This paper concentrates on failure detection in the local FTP’s, and further discussion on 
the operation of these two networks is beyond the scope of this paper. 

1.2 The Fault Tolerant Processor 

The AIPS Fault Tolerant Processor achieves a high level of reliability by using three 
identical processing elements that perform identical operations on identical input. The FTP will 
continue to operate correctly even after the failure of one of its channels, because data from the 
two good channels will vote out and mask data from the faulty one. The design goal of the FTP is 
to produce a fault tolerant virtual processor out of these three tightly synchronized channels. 
Thus, the programmer who writes applications for the FTP does not have to worry about the fact 
that there are actually three processing units that are continually voting all input and output. In 
the Draper Fault Tolerant Processor, specialized hardware maintains synchronization and handles 
communication between processing sites. This solution not only reduces the software overhead, 
but, in fact, allows the FTP to be treated as a virtual processor. Because none of the instructions 
in the user’s application software reveal the fact that the FTP is actually three processing units, it 
is hoped that this virtual processor abstraction will reduce software cost and complexity in fault 
tolerant systems. 

Data exchanges, which are necessary both for communicating with the other channels and 
for voting, are done by the hardware data exchange mechanism. Data is voted on a bit by bit 
basis: the hardware compares each set of three bits and masks out any bit that disagrees with the 
other two. If an error is detected, a hardware error latch is set, noting the type of exchange and 
the channel(s) at fault. Fault detection is implemented by comparing the voters’ inputs and 
outputs; fault isolation uses the pattern of errors latched by the voters. By supplying this fault 
detection and masking in hardware, the FTP frees the software of this burden and helps provide 
the virtual processor abstraction. These concepts of hardware implemented fault tolerance and 
data exchanges have been successfully demonstrated in the Fault Tolerant Multi-Processor [4] at 
Draper Laboratory, and the theoretical basis for this interconnection scheme’s protection against 
Byzantine failures can be found in [71. 

E.2 .4 .2  -- 



ORIGINAL PkGE IS 
OF POOR QUALITY 

1.3 Data Exchange Mechanism 
The data exchange mechanism is the FTP’s primary means of correcting for failures. It 

has been shown [6] that  Triple Module Redundant (TMR) systems such as the FTP need two basic 
types of data exchanges: a triplication and a direct vote. A triplication is used in the case where a 
single channel has a local value, such as a sensor reading or keyboard input, that  must be sent to 
the other two channels. Since a direct transmission’s reliability is vulnerable to a single point 
failure, the triplications are sent through the voters. A direct vote, on the other hand, is used in 
the case where three channels have computed identical outputs, such as actuator commands or 
terminal output, that  must be voted to correct for errors before transmission. 

Fault Tolerant Processor Data Exchange Mechanism 
AoCbid is t i rmlW 

a- - 
Figure 1-1: FTP Data Exchange Mechanism 

Figure 1-1 shows a schematic representation of the FIT’S data exchange mechanism. 
Note that there are three major elements in the mechanism: the transmitters, the interstages, and 
the receivers. These elements are connected in several different ways. First, each channel’s 
transmitter has a bidirectional link to the other two channel’s transmitters. These links are used 
for immediate access to raw data during triplication data exchanges. Second, each transmitter 
has a link to its interstage. This link is used to send data to be latched by the interstage for 
further re-transmission. Finally, each interstage has a link to each channel’s receiver. These links 
are used by the interstages to send a copy of their data to each channel. 

During an exchange, each of the elements in the data exchange mechanism has a different 
function. The transmitters must configure their data paths so that  the correct data is sent to the 
interstages. Each transmitter may send either its own data or the data available on one of the 
direct links from the other channels. The interstages must latch the data, tkiplicate it, and send a 
separate copy to each of the three receivers. Finally, the receivers are responsible for latching and 
voting the three copies of the data from the interstages. The bit by bit majority vote is done in 
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hardware, and the result will be stored in the receiver register. If there are any disagreements in 
the voting, they are recorded in the voter’s error latches. 

Each channel’s receiver has a 12-bit dedicated error latch. These twelve bits are divided 
into three sets of four bits. Each set is used to record errors from a specific channel, and each bit 
within a set is used to specify what type of exchange the error occurred in. direct vote or 
triplicating from A, from B, or from C. Thus, if channel A’s voter discovers a disagreement in 
channel B’s value while triplicating a value from C, i t  will set a specific bit for that  exchange in its 
error latch. As more errors are discovered, more bits will be set, but none will be reset. Only a 
specific command from the software can reset the bits in the error latches. 

In their well-known paper on the Byzantine General’s problem [51 Lamport et aZ show that 
three processors (meaning three fault containment regions) cannot reach agreement in the 
presence of a fault. To surmount this problem, the FTP is divided into six fault containment 
regions: the three channels and the three interstages. That is, each channel and interstage is 
isolated (physically and electrically) so that a fault in one cannot cause a fault in another. This 
fault containment guarantees that a single fault in the FTP cannot prevent the three channels 
from reaching an agreement on the result of a vote. Thus, a channel or interstage may transmit 
bad data due to a single fault, but the bad data will be masked out by the rest of the system, 
which is fault free and generating correct data. 

1.4 Use of the Data Exchange 

A typical use for the data exchange mechanism would be a space craft control system 
reading a sensor. For complete fault coverage, three sensors would be used to read the same 
data, and each sensor would connect, through the UO network, to a specific channel. Each channel 
would read a sensor and store, a local value. Then, one by one, the channels would triplicate their 
local data by exchanging it with the other channels. 

Figure 1-2 shows an example of channel A triplicating its local value via the data 
exchange. Note that channel A sends its local value directly to channels B and C, which route the 
data to their interstages. Then, all three channels initiate a vote on the raw data. The result of 
this vote is used by the three channels as channel A’s value. This same procedure is then 
repeated for channels B and C. This exchange process ensures that, even in the presence of a 
failure, all three channels have an identical (although not necessarily correct) value for each 
channel’s sensor reading. Thus, when this process is finished, each channel has three values that 
are identical to the three values that the other two channels have. The code that initiates these 
exchanges would be located in a library of UO subroutines. This library is used to hide the data 
exchange mechanism from the user’s application, preventing the user software from violating the 
abstraction of the FTP as a single processor. The following is an example of the code that 
performs a data exchange. Note that this code is executed at the same time by all three 
processors, giving each channel an A-value, a B-value, a C-value, and a local - value. 

E . 2 . 4 . 4  



iT 
E 
? 

f 
Q r r l A  m n  Q.r lC 

Figure 1-2 A data exchange from channel A 

After all three channels have the three sensor readings, some type of redundancy 
algorithm (e.g., mid-value select) can be applied to these values to form a suitable result for the 
sensor reading. This “correct” vdue for the sensor reading is then used to produce an actuator 
command for maneuvering the space craft. Figure 1-3 shows the direct vote of this actuator 
command. Each channel directly sends its value to its interstage. The interstages then triplicate 
the data and send it to the receivers, which vote the resulta at3 before, noting any errors. Again, 
this whole process would be hidden from the user’s application by a call to the FIT’S YO 
subroutine library. The output subroutine is also fairly simple: 
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2. Structure of the FDIR code 

This chapter discusses the design of the FDIR software. The design of the FDIR code was 
shaped by two main goals: provide complete fault coverage and use minimal processor overhead. 
FDIR must be able to locate and isolate any fault that occurs, and this must be done while using 
less that 5% of the processor’s capacity. As a result of these design goals, the FDIR code is split 
into several tasks. The fast task can be run frequently, while the more complex tasks are run 
only on demand or at a lower frequency. This division allows for complete fault coverage while 
reducing the amount of processor time used. 

In terms of software engineering, the design goals were to create FDIR code that is 
modular and readable. Ada helps these goals with its data abstractions and its packages, which 
are the advantages often cited when discussing the merits of the language [3J. Ada’s use of data 
abstractions helps produce readable code by allowing programmers to manipulate data in a 
conceptual manner rather than a manner specified by the machine’s representation of the data. 
Ada also helps produce modular code by encapsulating programs in constructs called packages 
which introduce these data abstractions. As a result, the FDIR code for the AIPS FTP has turned 
out much more modular and readable than the FDIR code that was written for a previous FTP 
using c. 

The packages that comprise the FDIR software can be divided into four major categories: 

1. Declarations 
2. Resources 
3. Extensions 
4. Applications 

2.1 Declarations 

Declaration packages are collections of namings and constants that are used in many 
sections of the FDIR software (as well as the rest of the operating system). The only example of 
this type is Memory, the package that contains the mappings of all the special memory locations. 
Memory defines the locations for the data exchange hardware, the shared memory objects, and all 
the other hardware that is memory mapped, such as the timers and the Monitor Interlock. 

2.2 Resources 

Resource packages contain data types and operations that have general utility. For 
example, all the necessary procedures and types for using the data exchange and voting 
mechanism are defined in the Erchunge package. Any software that is run on the FTP will need 
to vote input and output. The Erchnge package encapsulates the data exchange hardware with a 
software abstraction so that all other software uses the voting mechanism without relying upon 
any implementation details. This means that if the data exchange hardware changes, only one 
package has to be changed to reflect the differences. Another resource package is the Emr-lrrtch 
package, which defines a data type for fhe error latches as well as the operations necessary to 
convert their hardware representation into a software defined Ada data type. Again, only one 
package reiies upon the actual implementation of the hardware error latches, and only one 
package would have to be changed if the error latches were changed. The two remaining resource 
packages are Config and Transient. Both of these packages provide procedures, types, and 
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variables that monitor the state and “health” of the FTP’s three channels. The C o n k  package’s 
primary responsibility is to maintain the software record of the three channels’ status: present or 
lost. Tmnsient, on the other hand, is primarily responsible for maintaining an unreliability index 
for each channel. Of all these resource packages, only Exchange would have a system-wide utility. 
The other (non-FDIR) parts of the operating system, however, do require access to things such as 
the error latches and the current configuration of the channels. 

2.3 Extensions 

Extension packages are used to actually extend the Ada language. Certain operations 
(such as the bit wise AND of two integers) are either not permitted or difficult to implement in 
Ada. Extension packages, which are series of assembly language subroutines that masquerade as 
Ada packages, add this needed functionality to the standard language operations. The package 
Memory utilities, for example, was created so bit wise AND and OR operations could be performed 
on two%egers. Although Ada can actually do AND and OR operations on arrays of boolean 
variables, the Telesoft compiler that produces the FTP code cannot pack a 16 boolean array into a 
single word. 

The second extension package, called Sync- utilities, was created for synchronizing code 
execution among the channels. Synchronization requires absolute control over the timing of each 
machine instruction. Assembly language code had to be used for the critical part of the 
synchronization procedure to meet these strict timing requirements. The Sync-utilities package 
also provides the procedure that aligns memory. The memory align could have been done in Ada, 
but the time penalty for not using highly optimized assembly language code to align all of memory 
was too great for the FTP, which is designed to be a real time system. 

2.4 Applications 

The F’DIR application packages use the resource, declaration, and the extension packages 
to actually “do something.” These application packages do not define any new types. Instead, they 
import types and low level procedures from the three other kinds of packages. In general, the 
FDIR application packages have only a few visible procedures, which are mostly linear code. The 
three application packages that make up the FDIR manager are: FDIR, which detects and isolates 
all faults; Sync, which synchronizes the code execution initially and whenever a channel is lost; 
and Test, which constantly runs self test on the FTP hardware. 

The FDIR package contains the actual code for the local FDIR manager. It has only one 
visible procedure, Init, which schedules a FDIR task to be run at a relatively high frequency 
(approximately 16 Hz, or every 60 msec). This task, called Fast FDIR, is used to spot the 
occurrence of errors and isolate only the most obvious faults. Both the channel presence and the 
interstage tests are simple enough to be run at this relatively high frequency. Fast FDIR also 
checks all reports from other parts of the system. If there are any necessary reco&urations, 
Fast FDIR will do the reconfigurations in a prioritized order. This higher frequency of operation 
improves reliability of the FTP by reducing the amount of time an error goes undetected. In 
reducing this time, the window in which two errors could simultaneously occur is also reduced. A 
second error, if it  occurred before the FTP could reconfigure around the first error, would lead to 
unpredictable results. 

There are, however, the two competing goals for the FDIR manager: complete fault 
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coverage, which demands high frequency, and minimal use of processor time, which demands 
faster, less complex operations. Thus, the Fast-FDIR task cannot take the time to analyze all 
possible fault conditions when an error is detected; it only analyzes the most simple cases. If 
Fast FDIR encounters an error condition that it cannot analyze, then a new task is started, called 
Slow- FDIR. Slow-FDIR is referred to as an “on demand” task. Fast FDIR will schedule it only 
if there is an error that is too complex to analyze immediately. S Z O W - ~ I R  will then fully analyze 
the error and report back to Fast-FDZR which channel, if any, is at fault. This split in the fault 
detection duties allows the FDIR manager to run quickly and often, fulfilling both goals. 

There are three visible parts to the Sync package: Znif, a procedure which initially 
synchronizes the code execution between the three channels; Lost-soul, a procedure which is 
continually run by a lone lost channel; and Lost-soul-sync, a task which a pair of synchronized 
channels will schedule (at a fairly low frequency) to find the third lost channel. These three pieces 
of code do exactly the same thing: send “lost soul” data patterns through the data exchange 
mechanism and wait for the electronic “echo” that indicates another channel was attempting to 
exchange at the same time. All three, in fact, use the same assembly language subroutine for the 
hardware interface. 

The primary difference between these three operations is what they do once a channel is 
synchronized, when they run, and how often they run. Znit runs only upon system initialization, 
and assumes that all channels are unsynchronized at the start. After two or more channels are 
synchronized, Init will reconfigure the internal FDIR records to match the new state of the 
hardware. Where Init is linear code that is run only once, Lost-soul is a tight loop with only one 
exit condition: synchronization. Any lone channel that needs to synchronize will run Lost-soul, 
and nothing else, until it resynchronizes with the other two channels. Lost soul is run frequently 
so that whenever the other two channels find time to try to pick up the &e processor, the lone 
processor is waiting and ready to be picked up. The t o s t  soul sync task, on the other hand, is a 
shell that calls the Lost soul procedure. The difference with thy task is that the two channels (in 
synchronization) will c a  Lost-soul at a lower frequency. Also, when two or more channels 
execute Lost soul, they only go once through the loop and exit. Thus, the Lost soul-sync task 
can be sched&d to run at a low frequency and will only take a small amount of &e to execute. 

The third application package is Test, which contains the four FDIR self tests: voter and 
error latch, which verifies the voting mechanism; ROM sum, which checks the integrity of the 
FTP’s ROM; RAM pattern, which tests the functionality of each RAM location; and RAM scrub, which 
ensures that all three channels have identical values in RAM. Test, like the FDIR package, has 
only one visible procedure, System test. System test calls each individual test in the appropriate 
order. Thus, the voters are test&-before anylnemory values are exchanged, and the memory 
hardware is tested by the RAM pattern test before the memory contents are checked by the RAM 
scrub test. If any one of the four tests reports that there is a faulty channel, then System test 
will stop and notify Fast FDIR that a reconfiguration is required. System test is called by a x s k  
in the FDIR package c z d  Selfdest. Seytest is scheduled to run at a low5riority. Thus, if the 
processor has any free time, it will run some self tests. 



3. The Suitability of Ada for the FIT 

While developing the fault detection code for the FaulbTolerant Processor, both the 
advantages and the disadvantages of using Ada were apparent. In general, the advantages of 
Ada, which are mostly due to the language specification, outweigh the disadvantages, which are 
mostly due to the compiler used for this project. This chapter discusses both the advantages and 
disadvantages of using Ada for the FTP, and why using Ada was, in the long run, a wise choice. 

The choice of Ada as the development language was a controversial decision. Previous 
work on fault-tolerant processors at the Laboratory had been done in the C language, and using C 
would have saved the many man hours spent re-creating code that had already been written. 
Using C would have also meant that the software engineers would have had a familiar set of tools 
available to use (e.g., compilers, debuggers, etc.). But, there are two major reasons that led to the 
selection of Ada as the development language for the AIPS system. The fvst is the Department of 
Defense’s requirement that Ada be used for military software. The second reason is Ada’s tasking, 
exception handling, strong typing system, and enforced modularity that are widely touted in some 
circles 131. The combination of these reasons led the original design team to specify that Ada 
would be used for the AIPS project. After almost a year of F’DIR code development, the choice of 
Ada is st i l l  controversial. 

3.1 Disadvantages 

The main disadvantage of Ada is that it is an immature language. There are only a 
handful of fully validated compilers and few support tools for programmers. The compiler used for 
the AIPS FTP (the unpublished Telesoft Ada compiler version 1.5) has several specific 
shortcomings: the Run-Time System is inadequate for the FTP’s requirements as a real-time 
system, the compiler produces inefficient code and is not a fully implemented version of Ada, and 
there are no debugging tools. Solving some of the problems associated with this system required a 
great deal of effort that would not have been expended if Ada were a more mature language. 

The primary problem with the Telesoft Ada compiler is the Run-Time System’s task 
scheduling mechanism. For a real-time control system such as the FTP, task scheduling is 
critical, and the firsbin, firet-out task queue supplied with the Telesoft system could not meet the 
strict timing requirements of a real-time system. Task priorities and interrupts are needed so that 
a minor task (such as a self test) would not prevent a critical task (such as Fast FDIR) from 
running. After much work, Draper Labs developed a system of priorities and intemyts that were 
incorporated into the Telesoft Run-Time System. This new run-time system allows higher priority 
tasks to interrupt the operation of those with a lower priority and includes timing information that 
specifies the frequency at which a task should be scheduled. Unfortunately, the run-time system’s 
size (approximately 48K bytes) is almost an order of magnitude larger than the operating system 
used for the C version of the FTP. Although the Telesoft Run-Time System code has more 
functionality than the C version’s operating system, it is not clear that these features are needed 
for a real-time system. With this new run-time system, Ada’s task scheduling could fulfill the 
FTF”s requirements for real-time vehicle control. 

Not only is the Telesoft Ada Run-Time System larger, but the size of the object code 
generated by the Telesoft Ada compiler was surprisingly large as well. In fact, the FTP system 
had to be redesigned to include one megabyte of RAM rather than the original 256K bytes, which 
would have been sufficient had this code been written in C. This increased code size has several 
sources: the immature compiler, which generates inefficient code, the code design, which can add 
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to the compiler’s inefficient code generation, and the required Ada runtime overhead, such as 
range and exception checks. Better compilers will, of course, help this problem. However, Ada 
rarely produces code as efficient as C, just as C rarely produces code as efficient as assembly 
language. Fortunately, the FDIR code has not exceeded the original C language size by any large 
amount, and the Fast - FDIR task is still within the 5% processor capacity goal. 

Because the Telesoft Ada compiler is not a fully implemented version of Ada, some coding 
problems must be resolved in awkward ways. For example, the representation for the error 
latches would logically be an array or record of boolean types. The Telesoft compiler, however, 
does not allow the representation of an Ada record or array to be specified on a bit-by-bit basis: 
Thus, when the data type for an error latch was defined, Telesoft Ada could not define a record 
that matched the 12-bit structure and location of the actual error latches. But, because the error 
latches had to be exchanged among the channels as 16-bit integers, a standard record or array 
could not be used either. Thus, the FDIR code used a function that converts the hardware error 
latches into patterns that fit a 16-bit integer. Unfortunately, this sacrifices one of the primary 
advantages of the Ada language: its ability to easily create data abstractions from built-in types. 
Other problems with the Telesoft compiler were along the same vein: problems that were irritating 
because hardware representations could not be mapped to data abstractions with the ease that 
Ada promised, and solutions that were difficult to use in Ada because they did not take advantage 
of the built-in types and functions. 

Finally, the fourth problem with the Telesoft compiler is the total lack of debugging aids. 
In terms of debugging tools, a disassemblel: is absolutely required. Thus, the Laboratory had to 
produce, in house, a disassembler for the FTP’s 68010 code. A VAX interface program, which 
implements standard debugging utilities (e.g., breakpoints, memory and register displays, and 
program downloads), was also produced in house. Unlike the C compiler that was previously used, 
the Ada compiler could not produce assembly language listings of the code that have the original 
Ada statements inserted in the appropriate places. This was a major drawback because all 
matches between the disassembled object code and the original source code had to be done 
manually. The lack of debugging aids requires that effort be diverted from software development 
to debugging tool development, which is not the purpose of this project. 

3.2 Advantages 
On the other hand, the advantages of Ada are due largely to the language definition rather 

than the specific compiler. The strong typing system, for instance, allows code written by several 
individuals to be linked together with almost no errors. Also, Ada’s package system fosters a 
highiy modular design that clearly delineates all module dependencies, while the data abstraction 
capability makes it easier to create readable code: Finally, although the run-time system was not 
adequate at first, the Ada built-in tasking construct is useful because the FTP needs multi- 
processing capability. 

Ada’s rigid syntax and strong typing system, which are hated by some programmers, are 
responsible for reducing errors in software to the point that almost any program that compiles will 
run, and will have almost no errors. The syntax is responsible for reducing the number of 
typographical mistakes that are accepted by the compiler as legitimate code. The strong typing 
system, meanwhile, reduces the number of errors due to interfacing procedures and data 
abstractions. And, because the structure and syntax of Ada lets fewer errors slip past the 
compiler, Ada reduces the time spent debugging code. 



Ada’s data abstractions are a powerful force in making code that is readable and has a 
well defined interface. In C, for example, the configuration of the three channels (on- or off-line) 
was numerically represented as three bits in a 16-bit word. The representation of the data, as 
well as the operations performed on it, are not conceptually obvious. Ada, on the other hand, 
represents the configuration as a record of three booleans. Using booleans in a record to represent 
the configuration produces more readable code that parallels the actual structure of the 
information. This abstraction also reduces the mistakes and confusion between programmers who 
must interface code. In C, there was a convention that channel A was represented by the low 
order bit in a 16-bit integer. This convention, however, is not as obvious as a record with a boolean 
component named A. Again, Ada’s data abstractions prevent these types of interfacing errors 
from occurring, and thereby cut the time required to debug software. 

Overall, Ada is the right language for this project. The Ada language has several strong 
advantages, while most of the disadvantages are due to its immaturity and the specific compiler 
used. In time, the language will mature and more capable compilers will be available. However, 
even a poor version of Ada has already decreased the work required to create, debug, and 
interface the code on the FTP. 

The decision to switch to Ada was controversial. Despite the advantages of Ada’s tasking, 
data abstraction, and modularity, many engineers were concerned about Ada’s immaturity and 
lack of debugging tools. Even more important, however, was the run time environment and its 
ability to meet the critical timing requirements of a real time control system. In spite of these 
problems, the development of the FDIR manager has shown that Ada has promise as a 
development language for embedded computer systems. 
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1.0 INTRODUCTION 

This paper describes the results of efforts to apply powerful 
Ada constructs to the formatted message handling process. The 
goal of these efforts has been to extend the state-of-technology 
in message handling while at the same time producing production- 
quality, reusable code. The first effort was initiated in 
September, 1984 and delivered in April, 1985. That product, the 
Generic Message Handling Facility, met initial goals, has been 
reused, and is available in the Ada Repository on ARPANET. 
However, it became apparent during its development that the 
initial approach to building a message handler template was not 
optimal. As a result of this initial effort, several alternate 
approaches were identified, and research is now on-going to 
identify an improved product. 

The ultimate goal is to be able to instantly build a message 
handling system for any message format given a specification of 
that message format, The problexc lies in how to specify cne 
message format, and once that is done, how to use that information 
to build the message handler. In Section 2 we discuss message 
handling systems and message types. In Section 3 we describe the 
"ideal" system. In Section 4 we detail the initial effort, its 
results and its shortcomings. We then describe the approach now 
being taken to build a system which will be significantly easier 
to implement, and once implemented, easier to use. Finally, in 
Section 5, we offer our conclusion. 

2. BACKGROUND 

Message handling systems play a major role in command, 
control, and communications (C3). C3 systems are most often found 
in military applications, where rapid, accurate dissemination of 
information is required. Non-milita'ry space-related 
communications systems face many of the same requirements. In 
this section, we discuss attributes of the message handling 
systems which support the communications aspect of C3, and we 
identify the requirements for those systems. 

2.1 Message Handling Systems 

The typical message handling systems consists of eight 
components, as depicted in Figure 1. The transmitter and receiver 
perform the actual communications between this system and some 
other system with which it is communicating. They handle message 
blocking, line protocols and other low level functions. They are 
usually hardware dependent and are typically written in assembler 
language or in microcode. 
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The message input and output processors are the interface 
between the rest of the system and the transmitter/receiver 
facility. Usually a message handling system will hold the data in 
some internal format which makes sense in the context of the 
applications to be performed upon the data. This format is 
usually independent of the format in which a message is 
transmitted or received over any specific 1/0 line. The message 
input processor accepts a bit stream input from a line by the 
receiver, passes it, extract the information and passes it to the 
Data Base Management System (DBMS). If the system provides for 
real-time display of incoming messages, the input processor may 
also pass the data along to a display utility. In a similar 
manner, when a message is to be transmitted, the message output 
processor extracts the data from the DBMS, or accepts it from a 
system operator, and formats a bit string (or character string) to 
be passed to the transmitter. 

The DBMS provides for information storage and retrieval. The 
data may be stored in message image format, or in some non- 
message-related format. How the data are stored is typically 
dependent upon the type of applications being performed upon the 
data. In systems whose primary function is other than message 
generation and transmission, the data are not typically stored as 
message images. In other systems - or subsystems - whose sole or 
primary function is directly message related rather than data 
application related, the data are more likely to be stored in 
message image format. At any rate, when an operator creates a 
message, he usually wants to see its image prior to transmission; 
therefore the interface between the DBMS and the Message Creation 
and Editing facility - the editor - will normally include a 
utility to extract data from the DBMS and build a message in the 
specified format. 
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The editor will provide standard' functions such as 
insert/delete line, cursor movements through the message, and so 
on. Additional functions to be provided are dependent upon the 
message format(s), which are discussed below. As we shall see, a 
critical function is some sort'of embedded data validation. 

Message handling systems usually provide the capability for 
visual and hard copy message output, as well as message 
transmission. In addition to viewing an image of the message they 
are creating, operators will often want to keep a hard copy of the 
message after it is sent, both for historical purposes, and for 
possible future editing. 

i The final component shown in the figure is not a part of the I 

message handling system per se, but is the reason for data 
exchange. While there are (sub)systems whose primary purpose is 
nothing more than message handling (e .0.  store-and-forward message 
drops such as the Communications Line Interface (CLI)), most 
message handling systems are components of larger systems which 
perform some applications of the data to non-transmission related 
problems. The data applications are not treated here: they do, 
however, impact the format in which the DMBS holds the message 
data. 

Examples of message handling systems include the Force yigh 
Level Terminal (FHLT) , the Ocean Surveillance Information System 
(OSIS) , the Joint Tactical 1.nformation Distribution System 
(JTIDS), and the World Wide Military Command and Control System 
(WWMCCS) among many others. These systems employ a number of 
different message types, or formats. 

20.2 Message Types 

Examples of message types include RAINFORM (of various 
subtypes), Unit Reports (UNITREP) , Movement Reports (MOVREP) , and 
Joint Interoperability of Tactical Command and Control System 
(JINTACCS). The message formats have a number of elements in 
common. First, each type (or subtype) is defined to pass on data 
concerning a fairly specific event or of a fairly specific nature. 
For example a RAINFORM Green message provides tasking data to U . S .  
Naval forces prior to a mission, while those forces use a RAINFORM 
Purple message to report the results of that mission. For another 
example, a JINTACCS B704 is an Airbase Status Report while a 
JINTACCS ClOO is a Imagery Interpretation Report. 

Given the differing data requirements of these different 
message types, it would be surprising if they could all be 
accommodated using the same format. In fact, no such format has 
yet been found. However, the formats which have evolved over time 
have a number of similarities. 

1) Messages are composed of two pieces, a header which describes 
the sender and the routing and other information about the 
message, and the body of the message holds the data content. 
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2) Both the header and body of the message are composed of line 
groupings which contain one or more lines in some specific 
order. 

3) Each line is composed of a given sequence of fields (or 
components) whose appearance or order can vary only within 
narrow bounds. 

Each field in a line contains a "molecule" of data which must 
be given in a predefined format. In fact some fields are 
composed of subfields (e.g. latitude is composed of degrees, 
minutes, cardinal point, and in some cases, checksum). 

4 )  

5) There are three types of fields: discrete, numeric, and 
text: 

a) Discrete fields are fields which must contain one of a 
(small) finite number of entries - for example a "month" 
field would have only twelve possible valid entries. 

b) Numeric fields are fields whose entries must evaluate to 
some numeric value. These fields may have a prescribed 
format as integer for fixed point. In either case, the 
number of significant digits (minimum and or maximum) 
may be specified as may the number of digits on either 
side of the decimal. 

c) Text fields are freeform fields whose contents may be 
any string of characters from some predefined character 
set - usually letters, digits, and some punctuation 
characters. 

Message types differ then in which fields they use (and how 
each is defined) , how those fields are used to define lines, and 
how those lines are grouped to form line groups. In addition, 
some message types are fixed format (the fourth field always 
starts at character 17) while others make use of delimiters to 
define where one field stops and the next starts. UNITREP is an 
example of a fixed format message type, while RAINFORM is an 
example of a "freer form" type. 

The ideal message handling system would handle any and all 
message types with the same (or similar) sets of functions and 
user interface. If such a uniform system were to be built, the 
factors listed above define the flexibility requirements for 
accommodating various message type definitions. 

I 2 . 3  Message Handling System Functional Requirements 

Given that a message creation and editing system for some 
message type is to be developed, what requirements must it meet? 
The requirements important for the transmitter/receiver portion of 
a message handling system are certainly different than those which 
drive an editor's requirements. it appears that there are three 

I 
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factors which exert the most influence on an editor's requirements 
and design: reliability, maintainability, and date validation. 

Reliability is important for two reasons. First, 
communications systems are usually of a critical nature, and their 
failure can be catastropic. Therefore, message handling systems 
must work predictably to ensure that the system provides the 
capability expected during stress periods. Second, the output of 
one such system is always the input of another. Therefore, the 
failure of a message handling system to maintain communications or 
to pass accurate, properly formatted data impacts the ability of 
other systems to meet their requirements. 

Maintainability is important due to the rapidly changing 
nature of the communications theater. New communications systems 
are constantly being fielded, and existing systems being upgraded. 
A s  this occurs, new message types are being added and existing 
types updated. For example, one existing message type has 
increased in size by over 20%,  in terms of the number of different 
line types, over the past six years. As new message types are 
added and existing types modified, existing message handling 
systems must be modified to accept these new data. 

Data validation is in some sense a component of reliability, 
but is so critical to the mission of an editor and message 
handling system that we break it out separately. Newer message 
handling systems (and some older ones such as FHLT) provide a hiqh 
ciegree of input message checking; messages which contain invalid 
data are either put into an error queue, or discarded. In the 
former case the valid portions of the message are only available 
to the system through operator intervention, in the latter case 
they are not available at all. 

2 . 4  Existing System Deficiencies 

The current situtation can be summarized as follows: there  
are a variety of message formats, each of which is handled on 
several message handling systems, each of which has its own custom 
software for each different message type it deals with. This than 
means that there is in fact not a single RAINFORM message handler, 
but several, each with its own code, its own set of functions, and 
its own user interface. Thus, when the RAINFORM message 
specification is updated, those updates find their way into some 
systems and not others. 

This leads to the following problems: 

1) Configuration management is complicated by the various 
implementations or message handlers for the same message 
types. 

2 )  Consistency and reliability suffer due to the fact that 
each message handler implements somewhat different 
versions of the message standard in questions. 
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3) Maintenance is difficult and costly since each system is 
coded in a unique fashion, many in different languages, 
almost all using different approaches. 

Generally speaking, each time we build a new message handler - whether for a new or existing message type - we are gaining 
nothing from the fact that we have ever built such a thing before. 
Furthermore, the costs involved in "reinventing the wheel" stay 
with each system throughout its lifecycle. In the case of C3 
systems, the lifecycles are long and therefore the excess cost 
high. 

Significant savings can be realized if we attempt to reduce 
or eliminate the scope of the problems discussed above through 
reusing message type definition and message editing and handling 
technology. This can occur in several ways, ranging from complete 
reuse of existing code, through partial reuse of code, to reuse of 
designs and message definitions. In the sections which follow, we 
describe some initial attempts to explore approaches to reuse of 
message definitions, designs, and message editor code. 

3. The Ideal System 

3.1 Message Format Specifications as Ada Constructs With each 
message format, there exist in some form or another, a format 
specification. This specification provides detailed information 
about the message format from the level of a message as an entity 
m JOVJU tu the field content level. This information provides 
guidelines required by applications programs for properly handling 
formatted messages. Section 2.2 above describes in some detail, 
the types of information provided by a format specification. 

Ada lends itself very nicely to defining such specifications. 
A field is the lowest level defined by a format specification. As 
mentioned in Section 2.2, there are three basic types of fields: 
discrete, numeric, and text. In Ada, discrete fields may be 
defined as enumeration types. Numeric fields may be defined as 
either integer, fixed point or floating point type. Text fields 
may be defined as string. Compound fields may also exist. They are 
fields which consist of several field components, all of which 
must be one of the three basic field types. An example of a 
compound field is a latitude field. In Ada a latitude field may 
look like: 

type LATITUDE-FIELD is 
record 
DEGREES : DEGREES FIELD; 
MINUTES : MINUTES-FIELD; 
CARDINAL POINT : CARDINAX POINT FIELD; 
CHECKSUM- . : CHECKSUM-FIELD? - 

end record; 

Where the field component types: DEGREES - FIELD, MINUTES FIELD, 
CARDINAL-POINT FIELD, and CHECKSUM - FIELD have previously been 
defined as either discrete, numeric, or text. 
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In a formatted message, a line is composed of a given 
sequence of fields. Using Ada, a line can be represented as a 
record structure. Each component of the record structure would be 
a field. For example, a formatted line which reported the contact 
position of a ship may consist of three fields: contact 
identifier, latitude of contact, and longitude of contact. In Ada, 
the contact position line may look.1ike: 

type CONTACT - POSITION-LINE is 
record 

CONTACT I DE NTIFIE R : CONTACT-I DENTIFIER FIELD ; 

CONTACT-LONGITUDE : LONGITUDE - FIELD; 
- 

CONTACT-LATITUDE : LATITUDE FIELD; 

end record7 

Where the field types: CONTACT-IDENTIFIER FIELD, LATITUDE FIELD, 
and LONGITUDE FIELD have previously been defined according t o  the 
rules for defrning field types. 

When lines are grouped together in a particular manner, they 
make up a formatted message. In Ada a formatted message may be 
represented as a record structure. Suppose a formatted message of 
a particular type was made up of the following five formatted 
lines: message identifier line, contact sighting line, contact 
position line, contact amplification line and a remarks line. The 
Ada definition of such a message type would be: 

type PICTIOGS MESSAGE F3RMA'l' is - - 
record 
MESSAGE IDENTIFIER . 
CONTACT POSITION 
CONTACT~SIGHTING 

CONTACT-AMPL IFI CATI ON : 
REMARKS- . 

end record: 

MESSAGE IDENTIFIER LINE; 
CONTACT-SIGHTING LTNE ; 
CONTACT-POS I TI ON-LINE ; 
CONTACT-WLIFICXTION LINE; 
REMARKS-LINE ; 

- - 

Where t h e  various line types have previously been defined 
according to the rules for defining formatted lines. 

In the "ideal" system, a message format would be defined as 
an Ada construct similar to that described above. Such a means for 
defining a message format has many advantages. In particular, the 
message format specification becomes a compilable unit therefore 
providing a means of partial validation of the format 
specification syntactically and semantically. Additionally, the 
Ada definition of the message format may be used directly in 
applications Ada programs that require knowledge of the format. 

There are a variety of methods for defining message format 
specifications in Ada, however the record structure described . 

above appears to be the most natural representation of a message 
format for existing formats. Currently the United States Air Force 
(USAF) is working with the JINTACCS community to define their 
message formats as Ada record types. 
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3.2 A Generic Message Handling System 

Though message formats will vary, the requirements for 
message handling systems, as described in Section 2, tend to 
remain fairly static. Generating a message handling system for 
each distinct message format is a costly and time consuming task. 
A solution, though a non-trivial one, would be to develop in Ada, 
a generic message handling system. The generic message handling 
system would essentially be a generic package with its functions 
and procedures not customized around any specific message format, 
but rather designed to work with any message format specification 
that the package is instantiated for. This would imply that the 
only significant requirement for creating a message handling 
system for a particular message format would be that the 
specification for the message format be defined as an Ada record 
and then the generic would have to be instantiated for the message 
format. All information about the message format required by the 
message handling system could than be extracted from the Ada 
record structure containing the message format. Ideally than, the 
generic definition would be as follows: 

generic -- 
type MESSAGE-FORMAT-SPECIFICATION is private; -- where the actual parameter here would be a record type -- much like that defined in Section 3.1 above -- 

package MESSAGE-HANDLING-SYSTEM is 

A person farmiliar with Ada generics or C3 systems would 
immediately identify the "ideal" system as being highly 
improbable. However, it is conceivable that a close approximation 
could be reached. The close approximation would not be as clean 
cut as the "ideal" but it would have many of the same benefits. 

4. Striving for the Ideal System 

4.1 GMHF as an Approximation 

A first attempt at developing a generic message handling 
system was completed in April 1985. The project, Generic Message 
Handling Facility (GMHF)t was sponsored by the USAF and the Naval 
Ocean Systems Center (NOSC) .  GMHF is not a complete message 
handling system. It primarily consists of the Message Creation and 
Editing facility. The feeling being that sufficient amounts would 
be learned from doing an editor and there was no real requirement ' 

to build an entire message handling system for this effort. The 
purpose behind this effort was three fold. First, a feasability 
study was to be performed to determine just how close to the 
"ideal" system could you get using pure Ada features. Secondly, a 
prototype system was to be developed as a close approximation to 
the "ideal" system. And thirdly, a final analysis was to be 
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performed to determine just how cost effective the generic system 
was to use. 

The first question was answered early on. It was apparent 
that there was no clean cut method for building a generic package 
around a generic formal parameter which was a message format 
specification as an Ada record like that defined in Section 3.1. 
Record types can indeed be passed as generic parameters, however 
within the generic, little can be done with the record structure 
since it is private. 

In striving for an approximation to the "ideal" system, it 
became clear that some sacrifices would have to be made. Since a 
main concern of this effort was to determine cost effectiveness of 
generics in real world applications, the message format 
specification as an Ada record was substituted for something less 
sophisticated. The format specification record was replaced by 
several generic formal objects and types, and a database of 
message specification information. Additionally several procedures 
had to be passed as parameters to the generic. Provided below is 
the essence of the generic definition for GMHF. Some minor 
details have been left out for simplification purposes. 

generic -- 
MAXIMUM CHARACTERS-PER-LINE : POSITIVE ; 

. -- consiant value telling the generic how many characters -- maximum a formatted line may have for the instantiated -- message type. 
MAXIMUM FIELDS-PER-LINE : POSITIVE; -- consiant value telling generic how many fields maximum a -- a formatted line may have for the instantiated message type. 
MESSAGE FORMAT FILE-NAME : STRING; -- consTant vaiue providing the name of the file which contains -- the message format specification 
type LIST OF-FIELD NAMES is (e>) ; -- an enumerated lTst of all fields for the message type 
type LIST OF LINE NAMES is (c>) ; -- an enumerated iist of all lines for the message type. -- the line names are keys into the message format -- specification file. 
with procedure GET - FIELD( FIELD NAME : in LIST OF FIELD-NAMES; 

FIELD-VALUE : out STRIKG is ; -- this procedure provides all Tnstantiations of 1/0 packages -- for the field data types of a message type. In addition, -- the routine is organized as a large case statement which -- calls the appropriate input routine for a given field type -- ilpon request. This has proved to be a long and tedious 

-- 

-- 

-- 

-- 

-- 

E . 2 . 6 . 9  



-- routine to. generate. 
with procedure FORMAT-LINE-OF-TEXT (LINE-OF-TEXT: in out STRING) 

-- this procedure handles the formatting of-a line of text so as -- its physical appearence meets the requirements of the -- specification. For example, JINTACCS requires a ' / '  as a -- field delimitter between fields. When a field is left blank -- it appears as a '/-/'in the text of the message. This 
-- procedure would be responsible for identifing a field as 
-- being blank and subsequentlly placing a hyphen in the text. 

-- 
is NULL PROCEDURE; 

-- 
package MZSSAGE - HANDLING - SYSTEM is 

The new types and objects as formal parameters and the format 
specification databa.se contain much of the same information as the 
record construct would have, but with great redundancies and in a 
less clean, less natural fashion. The end result of all this was a 
generic message handler which was a successful system but not an 
optimal one. 

With the' successful development of a generic message handler, 
the question of cost effectiveness still remained. To resolve this 
question, the generic was instantiated for two message types, 
RAINFORM and UNITREP. The RAINFORM instantiation was completed by 
one of the developers of the generic software. 'The UNITREP 
instantiation was completed by an individual only mildly familiar 
with the software but very farmiliar with Ada, the idea being that 
the average instantiator of the generic would know little or 
.nothing about the software itself. The results were very 
promising. RAINFORM required a fairly significant amount of time 
for instantiation, about 300 man hours. The majority of this time 
was spent debugging problems in the generic which were encountered 
for the first time. The instantiation of the UNITREP message 
handler took approximately 60 man hours. The time for producing 
the UNITREP instance was significantly less then the time that 
would have been required to develop a non generic message handling 
system unique to the UNITREP message format. 

In short, development of GMHF and instantion for RAINFORM and 
UNITREP message formats yielded one set of positive results. Use 
of generics in real world applications should prove to be a very 
cost effective means of software development. At the conclusion of 
the GMHF effort, the question was raised, " Are there alternative 
means for developing message handling systems which are better 
than those imposed by GMHF? " 
4.2 Problems with GMHF 

To determine better means for developing message handling 
systems, an attempt was made to identify problems and deficiencies 
with GMHF. One deficiency was immediately apparent. GMHF required 
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that the use of message format specifications as records be 
sacrificed, so that we could develop the system as a generic unit. 
In place of the record structure, an implementer of the generic 
was forced to define data types to pass as formal parameters which 
would normally not have been required. In addition, a small 
database of message format specifications had to be created by the 
implementer for use by the generic. These undesirable work- 
arounds preferably should be avoided in future systems. 

A requirement of message handling systems is that they 
support data input and output (I/O) operations, data validation, 
etc. The DBMS and Message Creation and Editing facility discussed 
in Section 2.2 above, clearly have this requirement. 1/0 
operations in this case do not refer to the low level 1/0 required 
by the transmitter and receiver, but rather to the 1/0 routines 
obtainable by instantiating packages such as TEXT IO, INTEGER IO, 
ENUMERATION IO, DIRECT-IO, etc.. GMHF supports the 1/0 
requirements, but with one hook. All 1/0 functions and procedures 
which are to operate on types defined outside of the generic must 
be themselves defined outside of the generic and passed into the 
generic as parameters. This seems like an obvious requirement and 
it is. Obvious as it may be, it is a tedious, therefore 
undesirable task instantiating 1/0 packages for the types and 
subtypes which comprise the many fields of a message format 
oftentimes numbering in the hundreds. 

- 

To summarize, if the amount of work required by the 
implementer of the message handling system could be reduced to a 
minimum, such a system would become a much more powerful, useful 
tool. .Therefore we must solve two problems. First, a way to 
utilize the record definition of a message format' specification 
must be developed. Secondly, the requirement for the implementer 
to provide instantiations of all 1/0 packages for the different 
field types and subtypes must be eliminated, vastly improving the 

Through careful investigation it became clear, there 1s no 
clean cut solution. Either you part with the message format 
specifications as records, or you must part with the idea of a 
generic message handling system. And in either case, the 1/0 
packages for each of the field types would have to be created or 
instantiated by the implementer of the system. 

4 . 3  Introducing a Preprocessor to the Problem 

Following the conclusive results of GMHF, a new concept was 
introduced. A preprocessor could be developed which would accept 
as input the message format specification as a record type, and 
output as Ada code, a compilable package specification containing 
all types, instantiations of 1/0 packages, etc., required to 
instantiate the generic message handling system. Essentially, this 
allows us to obtain the desired goal. An implementer is only 

' usability of the system. 
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required to generate a message format specification as an Ada 
record and then instantiate the generic. Of course there are some 
rules to follow when defining the message format specification so 
as to stay within the bounds of the preprocessor. The development 
of such a system is currently in progress with an expected 
completion time frame of September 1986. Portions of the system 
are being developed under contract to the USAF and NOSC, while the 
basis of the preprocessor has already been developed by a third 
party as an internal research and development project. 

4 . 4  Implementation of Such A System 

Implementation of such a system can be described as a series 
of three main steps. 

4 . 4  . 1 The Message Format Specification 

The implementer is first required to generate a package 
specification containing the record type definition for the 
message format as demonstrated in Section 3.1 above. Having 
completed this, the package specification should be compiled to 
validate it syntactically and semantically. 

4 . 4 . 2 The Preprocessor 

Having successfully compiled the message format package 
specification, the preprocessor should be activated. The  
preprocessor will read the message format package specification as 
an input file and generate an output file which is also a package 
specification. The output file will contain all types, 1/0 
packages, etc. derivable from the input package specification 
which are required for instantiation of the generic message 
handling system. 

4 . 4 . 3 The Output Package Specification 

When the preprocessor is complete, the output package 
specification should be compiled. The implementers applications 
program may then "with" the compiled output package specification 

* and in turn, instantiate the generic message handling system. 
, There will be additional generic parameters which the implementer 
will be required to provide for the instantiation which will not 
be included as part of the package specification output by the 
preprocessor . 

' 5. Conclusion 

5.1 Status 

The preprocessor solution for the "ideal" system is midway 
through the design phase. Currently a prototype of the message 
handling system is being developed to determine specific 
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requirements for the output of the preprocessor. A preliminary 
version of the preprocessor has been developed, however not with 
this particular application in mind. An expected completion date 
for the entire system is September, 1986. The system will be made 
available in the public domain via ARPANET upon completion. . 

5 . 2  Summary 

Development of a system such as that proposed by the 
preprocessor method could in a sense, revolutionize the use of 
message handling systems in the C3 world. Currently, so much money 
is poured into the development and maintenance of systems in 
support of C3. To begin development of code for such systems in 
Ada is a very large step to improve the reliability, 
maintainability, and reuseability of such systems. Additionally, 
the generic message handling system as described in this paper 
would be a welcome asset to the development of C3 systems. The 
generic message handling system is portable between hardware, and 
implementable for most every message format in use today by the 
DoD . 
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IIIPLEMENTING DISTRIBUTED Ada1 
FOR REAL-TIHE APPLICATIONS 

Patrick Rogers 
Charles W. McKay 

H ig h T ec hnolog i e s Lab or a tory 
University of Houston 

at Clear Lake 

Abstract 

The discussion of applying a (distributed) High Order 
Language (HOL) to applications which require real-time 
performance invariably invokes the subject of excessive 
overhead. In a related paper,2 the authors discuss some of 
the basic language-specific issues involved in distributing 
a High Order Language, with special attention paid to the 
Ada language. In a traditional implementation, several of 
these issues imply considerable, if not prohibitive, 
overhead, In this paper, an implementation strategy is 
introduced which promises to deal with these issues in a 
manner that will provide significant performance 
improvements. These improvements should in fact be 
sufficient to make use of distributed Ada feasible even in 
h ig hly-cons tr a ined application domains. Additionally, the 
general approach should be applicable to non-distr ibuted 
implementations as well. 

Ada is a registered trademark of the U.S. Government 
(AJPO) 

Rogers, Patrick and Dr. Charles W. McKay, 
Distributing Program Entities In Ada, University of Houston 
at Clear Lake (High Technologies Laboratory), Proceedings of 
the First International Conference on Ada Programming 
Language Applications for the NASA Space Station, June, 1986 
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RT-BUILD : An Expert Programmer for Implementing 
and Simulating Ada Real-Time Control Software 

Larry L. Lehman * 
Steve Houtchens ** 
Massoud Navab ** 

Sunil C. Shaht 
Integrated Systems Inc. 

101 University Ave. 
Palo Alto, CA 94301 

(415)-853-8400 

Abstract 

RT-BUILDTY is an expert control system programmer that creates real-time 
AdaTY code from block-diagram descriptions of control systems. Since RT- BUILD 
embodies substantial knowledge about the implementation of real-time control 
systems, it can perform many, if not most of the functions normally performed 
by human real-time programmers. Though much basic research has been done 
in automatic programming, RT-BUILD appears to be the first application of 
this research to an important problem in flight control system development. 
In particular, RT-BUILD was designed to directly increase productivity and 
reliability for control implementations of large complex systems. 

RT, BUILD Capabilities 
RT-BUILD implements control systems designed with the MATRIXXTY control 
design package. Control systems are specified as nonlinear, multi-rate, discrete- 
time block-diagrams in the interactive graphical environment of MATRIXx’s 
SYSTEMBUILDT’ module. RT-BUILD accesses the SYSTEMBUILD data- 
base to create an exact implementation of the design. 

The code produced by RT-BUILD includes all specified dynamic compensation 
and control logic, a real-time application level executive, and generic software 
interfaces to hardware such as sensors, actuators, and displays. 

* Manager, Software Development 

t Manager, Real-Time Syeteme 
** Member, Teehnicul Stafl 
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The efficient executive performs the task scheduling and interrupt handling re- 
quired to implement real-time mult i-rate controllers. h i t  ializat ion/ terminat ion 
and exception handling functions are also included. 

The software elements for an application are automatically assembled from a 
modular library of Ada control functions. User supplied control or interface 
functions (such as specific hardware drivers or existing Ada control algorithms) 
can also be included from user libraries. 

The real-time code produced by RT-BUILD is highly optimized for speed. F’ur- 
ther optimization (speed or memory) is normally performed by optimizing com- 
pilers. The net result is an automatic implementation of the design whose real- 
time performance is extremely difficult to surpass. 

RT-BUILD can be used at the final stage of the control engineering cycle to 
generate real-time code for most control problems including: aircraft/spacecraft 
control, robotics, process control, servo control, and any other real-time Ada 
application. Earlier in the engineering cycle, RT-BUILD can be used to de- 
velop off-line simulations or real-time hardware-in-the-loop simulations. Since 
RT-BUILD can be used to rapidly estimate real-time processing requirements, 
implementation considerations and processor constraints can be considered much 
earlier in the control development cycle. 

RT- BUILD Design Goals 

RT-BUILD was designed to address the requirements of flight software. The 
following aspects distinguish fight software from real-time software used in prc+ 
totype testing. 

(i) Flight software is used over a long time period. It must be very easy to 
maintain, update, and verify. 

(ii) Processing power and memory are at a premium. They must be used 
efficiently. 

(iii) The real-time software must be capable of handling a variety of input- 
output mediums. 

(iv) The software must handle multi-processor implementations, since most 
flight control systems must use many processors. 

(v) The software must accurately implement the designed control systems 
since costs of making errors can be very high. 
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The paper will describe how recent developments in computer-aided engineering 
have been applied to meet these requirements in RT-BUILD. 

RT- BUILD Design Approach 
Real-time software is generated around the concept of a modular, reconfigurable 
periodic scheduler and associated computation modules that can coexist with 
other foreground computing tasks (e.g., interrupt service routines) as well lower 
priority background processes. Device independent interfaces are incorporated 
in this design to isolate hardware dependencies. The Ada Periodic Scheduler 
(APS) is designed to provide periodic pre-emptive priority-based execution of 
tasks. The scheduler as well as the rest of the software ia written in Ada. 

The detailed paper will show various details of the design procedures and soft- 
ware structure as well as the role Ada capabilities play in thie automatic code 
generation. 

A Mult i-D isciplinary Technology 
The paper will discuss the multi-disciplinary technology required to develop 
an integrated set of Computer-Aided Control Engineering (CACE) tools which 
include automatic code generation capabilities. 

While current tools provide a tremendous improvement in flight control systems 
development, areas where further research is being conducted will be covered in 
the detailed paper and the presentation. 

RT-BUILD, MATRIXx, and SYSTEM-BUILD are trademarke of Inte- 
grated Syetems Inc., Ada is a trademark of the U.S. Department of Defense (Ada 
Joint Program Office). 

TY 
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A MULTICOMPUTER AND REAL TIME ADA ENVIRONMENT 

A multicomputer is defined as a set of tightly-coupled yet 

autonomous computers capable of synchronizing and communicating 

in parallel but also of operating independently. 

attempts to discuss the architectural concepts and requirements 

for executing the Ada programs in a multicomputer system. 

Synchronization, communication and protection of shared data 

between Ada program entities are addressed. Decomposition or 

partitioning of the Ada programs in a multicomputer system is 

also studied, 

This paper 

Finally, a multicomputer and real time Ada environment is 

described using FLEX/32 multicomputer system. 
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RUN-TIME IMPLEMENTATION ISSUES 
FOR REAL-TIME EMBEDDED ADA* 

RUTH A. MAULE 

Software Technology 
Boeing Aerospace Company 

Seattle, Washington 981 24 
Telephone: (206) 773-8607 

P. 0. BOX 3999, M/S 82-53 

ABSTRACT 

A motivating factor in the development of Ada as the department of defense standard 
language was the high cost of embedded system software development. It was with 
embedded system requirements in mind that many of the features of the language 
were incorporated. Yet it is the designers of embedded systems that seem to comprise 
the majority of the Ada community dissatisfied with the language. There are a variety 
of reasons for this dissatisfaction, but many seem to be related in some way to the Ada 
run-time support system. 

One of the more common complaints about the run-time system is that it is too big or 
too slow, that Ada requires excessive or unnecessary control structures to support high 
level language constructs that may not be used by an application. Another commom 
complaint is that the tasking model does not provide the type of real-time control 
designers are accustomed to, that the delay statement is flawed, and that 
rendezvous' are too expensive. These are fairly general complaints, and may well 
reflect real problems with the language. But there is a more fundamental problem with 
Ada run-time support systems of which many people are not yet aware, and that is the 
large number of implementation dependent characteristics which present portability 
problems and performance inconsistencies among validated compilers. The Ada 
run-time support system represents not merely a large block of additional code that 
must be loaded with each application, but an interface to the hardware from the source 
code, a real-time executive, a memory manager, and a tasking supervisor and 

*Ada is a registered trademark of the United States Government (Ada Joint 
Program Office). 
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scheduler. As long as the more general Ada semantics are supported, the 
implementation of each of these is left largely up to the implementer. No standard 
interface exists between the run-time system and the application code, no consistent 
terminology is available for comparisons between different vendors, and no standard 
format defines the Ada Language Reference Manual (LRM) Appendix F, the only place 
where a vendor is required to describe the implementation dependent features of the 
system. 

This paper presents some of the areas in which these inconsistencies have been 
found to have the greatest impact on performance from the standpoint of real-time 
systems. In particular, a large part of the duties of the tasking supervisor are subject to 
the design decisions of the implementer. These include scheduling, rendezvous, 
delay processing, and task activation and termination. Some of the more general 
issues presented include time and space efficiencies, generic expansions, memory 
management, pragmas, and tracing features. As validated compilers become 
available for bare computer targets, it is important for a designer to be aware that, at 
least for many real-time issues, all validated Ada compilers are not created equal. 

1 .O INTRODUCTION 

The high cost of mission critical embedded software was a major factor in the decision 
by the Department of Defense (DoD) to standardize on a single high level language 
(HOL). Major design decisions for this language, subsequently named Ada, were 
driven by the needs of embedded systems applications. Yet it is the designers of such 
applications that are currently among the most dissatisfied users of Ada. For many, 
the use of Ada is being treated with, at best, reluctant acceptance, and at worst, 
outright refusal. 

Unfortunately, the reasons for this reaction are clear. A single language able to 
support the broad spectrum of DoD embedded applications must be comprehensive. 
Translate that to "complex," and read that "big" [Hc80], jWb841. For computer software, 
big nearly always implies "slow," and big and slow are not desirable adjectives for 
real-time embedded systems. 

Ada is indeed comprehensive. Providing parallel' processing, exception handling, and 
machine dependent facilities as well as structured programming support capabilities 
such as strong typing, modularity, readability, and generic definitions, Ada seems to 
have something for everyone. And early implementations have, as expected, proven 
to be less efficient in terms of timing and sizing than those of previous HOL's. 
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Then there is the policy of Ada standardization via formal validation. Where previously 
there was close interaction between compiler implementers and systems designers in 
order to develop project-specific run-time protocols and interfaces, now Ada compiler 
implementers must make virtually "sterile" design decisions based on the mandated 
necessity of passing the Ada Compiler Validation Capability test suite. 

Finally, the acceptance of Ada requires the acceptance of a special, extra execution 
support package, the Ada run-time support system. This run-time support is required 
above and beyond that provided by the computer's operating executive and the 
application code to support Ada semantics. It appears as object code at execution 
time, providing many of the support functions previously designed and written by the 
embedded applications designer. Yet it is basically "canned" by a supplier who is 
unfamiliar with any project-specific needs. 

The following sections are an initial view of Ada run-time support systems issues which 
must be defined and understood in order to make effective use of this new HOL for 
embedded real-time applications. 

2.0 REAL-TIME ISSUES 

It is to be expected that the most common complaints heard from real-time 
programmers about the Ada run-time support system is that it is too big and too slow. 
In addition, there is dissatisfaction with the tasking model, the delay statement, 
rendezvous costs, exception handling overhead, context switches, and more. 
Real-time designers, accustomed to using assembly language or HOL's not requiring 
additional run-time support, find it difficult to deal with the overhead that accompanies 
an Ada program. 

A major stumbling block is presented by the Ada tasking model. Although a 
necessary and correctly included feature of the language, it seems that not quite 
enough home-work was done by the language designers to support the needs of 
real-time applications. Traditional approaches to real-time operating systems have 
relied on precise timing and tight control over the sequence and length of execution of 
individual system components. The Ada tasking model does not support this type of 
control. As pointed out by MacLaren [M180], the cyclic executive approach, which is 
most commonly applied in real-time situations, is based on synchronous sequential 
execution, while Ada tasking is by definition asynchronous and concurrent. 

Resolutions of this conflict fall into three basic categories. Some real-time designers 
simply refuse to use Ada tasking, and write the executive as they would have in a 
language that does not support tasking. The second approach is to try to force the 
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Ada model to fit the solution. Finally, the solution can be redesigned, making full use of 
the approrriate Ada constructs. Each approach will succeed in certain situations, but 
the third approach is the one that must be chosen if Ada is to succeed in the long run. 
It is also the one least likely to be chosen, as experienced designers will be reluctant 
to abandon the "tried and true" cyclic executive. 

3.0 AREAS OF CONCERN 

The intent of this paper is to point out the areas of the Ada run-time system where 
implementation choices can affect real-time performance. The elements affecting 
run-time performance are so broad that the scope of this paper will have to be limited 
to some reasonable subset of them. 

It is first assumed that the run-time system is written for a bare target. In this situation, 
the run-time system is fully responsible for run-time efficiency. It is also assumed that 
the target is a uniprocessor. The problems of multi-processing/multi-programming 
systems will be left to the more ambitious. Finally, no distinction is made as to whether 
the constructs discussed are actually in the run-time library or generated by the code 
generator. As noted before, there is no standard for this interface. 

The main areas of concern seem to fall into some rather general categories, but defy 
rigid classification. To bring order to the discussion, the areas will be loosely grouped 
under the following categories: capabilities, control, kernel support, and tasking 
support. Capabilities and control can be looked at on either an individual level or a 
system level. The kernel support basically refers to the problems and elements within 
a program without tasking. The tasking support includes all the elements necessary to 
implement Ada tasking. Under kernel support and tasking support, individual system 
elements will be explored. 

3.1 C APAB I LIT1 ES 

Run-time support capabilities are those features of the run-time system that affect the 
application system's ability to perform its function. They represent a measure of the 
limitations and performance of the system with respect to what it can do and how well it 
is able to do it. What it can do refers to such features as support for or actual inclusion 
of hardware drivers, extended memory capacity, or the degree of accuracy supported 
for fixed or floating point calculations. How well it can do it refers to performance 
features such as space and time efficiency of the run-time system itself, and also of the 
compiler generated code. An obvious example of this is the level of code optimization 
achieved by the compiler. A more subtle example is the modularity of the run-time 
system and the user's ability to select and load only those features that are used in an 
application. 
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Specific examples of capabilities that may be necessary are numerous. The ability to 
specify an absolute load location for a section of code. A tracing feature that tracks the 
scheduler of the tasking system in real-time may be the only way to recover after a 
crash or to track down an elusive bug. It may be necessary to have a certain degree of 
accuracy for fixed point calculations. For the MIL-STD-1750A instruction Set 
Architecture, the extended memory option is not a trivial addition to a run-time system. 

3.2 CONTROL 

Control here refers to the amount of influence possible over the system. One method 
of exerting control is through pragmas. Most systems for embedded targets have not 
fully implemented even the standard pragmas of the LRM. This will change, however, 
and more and more additional pragmas will be implemented as well. In this way, the 
vendor will be able to include special functions or capabilities not required by the 
standard, but of real value to a user. For example, pragmas will be able to specify that 
some function is not required by the application, and allow the system to eliminate that 
function from the resulting object code, saving at least space and quite possibly 
execution time. 

" 

Pragmas can also be used to request that the system do things in certain ways. 
Pragma optimize requests that optimization be done with one of those two often 
opposing goals, space and time, as the main objective. Pragma time-slice requests 
the system to implement a time-slicing algorithm among tasks of equal priorities. 
Pragma inline requests that a subprogram be included inline at each call. A pragma 
could be included to specify whether generic expansions should be done similarly to 
assembly language macro expansion, creating unique instances of code for each 
instantiation or i f  code should be shared as much as possible. Allowing the 
programmer to specify this information in pragmas lets the system take advantage of 
application-specific knowledge. 

For critical real-time applications, it is useful to be able to include only those functions 
needed in the run-time system code that is loaded with the application. If the system is 
well structured, excess code could be cut from the run-time system at the source level, 
creating a subset system to be compiled and linked to the critical applications. One 
good example of this is removal of the entire tasking system. The legal aspects of this 
with respect to validations, however, are unknown. Another alternative is to use some 
type of smart linker or pre-linker that will only link in the portions of the run-time system 
that are necessary. This requires cooperation from the compiler, as often identification 
of the required run-time support routines must be done at compile time. Although the 
end result of these two approaches is the same, the latter one seems to be more "legal" 
than the former. 
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3.3 KERNEL SUPPORT 

The implementation of the run-time kernel is of primary concern to real-time system 
designers. The basic support required from an Ada run-time system includes elements 
such as exception and interrupt handling, system clock functions, system initialization, 
and memory management. The effective use of registers, storage for stacks and 
heaps, implementation of activation records and scoping, and parameter passing 
mechanisms will all affect system performance. 

3.3.1 SYSTEM CLOCK 

The implementation of the system clock can be an important factor in the overall 
capabilities of the system. The counter timer chip used to drive the system clock 
defines the minimum granularity of time available to the system. The second level of 
granularity is the basic clock period, which can be found in the Ada package SYSTEM 
(SYSTEM.TICK) [US83]. A different level of granularity is represented by the Ada type 
"duration", which is not required to be the same as SYSTEM.TICK. The relationship 
between these values impact the system in different ways. 

There is not usually a practical use for the finest granularity available from the 
hardware. Typically, some reasonable value is chosen for the size of the clock period, 
and an interrupt is generated at this rate. The interrupt handler updates the system 
clock, and this represents the finest resolution available. Note that, if the main 
processor is responsible for clock maintenance, as the resolution increases, so does 
the amount of time spent handling interrupts and maintaining the clock. (This is not 
the case if the clock is maintained independently of the CPU.) 

The Ada type "duration" is not required to have the same resolution as the clock period. 
It is required by the Ada LRM to be at most 20 milliseconds, and is recommended that 
it be no more than 50 microseconds. A real-time system has timing constraints that 
require response within given time intervals. The clock period or the resolution of type 
duration must support these requirements. One system studied was found to accept a 
higher resolution of type duration than the system clock would permit. Although this 
may seem wrong at first, it was possible on that system to determine the displacement 
into the current clock period, and a separate timer was available for purposes of 
releasing the delayed tasks at the finer resolution. This is potentially more efficient, 
allowing finer resolution to be maintained only when necessary. 
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3.4 TASKING SUPPORT 

The tasking supervisor typically comprises a major portion of the run-time system. In 
this area, many variations in implementation can appear, and can have great impact 
on the run-time performance of any program that includes tasking. The Ada LRM has 
defined the interface to the tasking system from an applications program, and a 
method of communication and synchronization between tasks, but has left a large part 
of the implementation of that system undefined. The implementer is constantly faced 
with a choice bewtween doing something "bare bones" quick, efficient, and simple, as 
would be necessary only to satisfy the LRM requirements, or going further and 
including features that, although not required by the LRM, are known to be highly 
desirable for real-time processing. If the decision is made to go beyond the 
requirements, then the question becomes how far to go. Added complexity will 
adversely affect performance, and it can be difficult to determine what is acceptable 
and what is not. 

3.4.1 SCHEDULING 

Task scheduling is an important consideration for a multitasking application. The Ada 
LRM does not specify a scheduling algorithm for tasks of equal priorities. Even for 
tasks of differing priorities, the requirementrs indicate that the task with the higher 
priority should be running, but the wording still leaves room for argument. Also of 
concern here are queueing structures, priorities, pre-emptive priority scheduling, and 
time slicing. 

3.4.1.1 QUEUEING STRUCTURES 

The order in which tasks (of equal priority) are initially put on the ready (or run) queue 
should be of little consequence. The Ada LRM states that programs that depend on 
the order of scheduling are incorrect. What is important is the method used at run time 
to reschedule tasks as they become ready again after a delay or some other blocked 
state. In theory, higher priority tasks should be dispatched before those with lower 
priorities. Within each priority, some fair method of sharing the processor should be 
implemented to prevent starvation of any single task. This may seem obvious, but the 
Ada LRM does not specify prevention of starvation. In fact, as long as a task does not 
block itself, and in the absence of synchronization through rendezvous, it is legal to 
allow each task to execute to completion before beginning execution of the next task. 
And unless some method of pre-emption is used, even a task of higher priority that 
becomes ready while a task of lower priority is running is allowed to wait until the 
currently running task relinquishes the processor. 
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The implementation of the queuing structures is not generally a factor in performance, 
but the ordering and maintenance of the queues is. The run-time system minimally 
provides a delay queue and a ready queue, and may additionally have a ready queue 
for each priority or may simply order the ready queue by priority. There may be many 
other queues in the system on which a task may be placed, but, (with the exception of 
rendezvous entry queues which will be discussed in another section) these should not 
affect scheduling order. The ready queue(s) should be ordered first by task priority. 
Within each priority, the queues should ideally be FIFO, but this is at the discretion of 
the implementer. The delay queue is optimally ordered by wake up time, the next task 
ready to wake up being at the front of the queue. 

3.4.1.2 PRIORITIES 

Priorities are supposed to be static except during a rendezvous, and if they are, then 
their effect on scheduling should be straight-forward. Some vendors may be 
developing some method of implementing dynamic priorities, and this will require 
dynamic modification of the ready queue, but as of this time, none have been 
announced. 

Another issue in regards to priorities is whether or not higher priority tasks that become 
ready can pre-empt a currently running task of lower priority. This is a critical issue for 
many real time applications. The most common instance in which this becomes 
necessary is when a high priority task has been delayed for a given time span and that 
time span expires. The high priority task should then be allowed to pre-empt the 
processor from any lower priority task that may be running at the time. The alternative 
to this is to make the high priority task wait until the lower priority task relinquishes the 
processor, and then allow it to take precedence over all other ready tasks of lower 
priority. This is intolerable for real-time applications. 

3.4.1.3 TIME SLICING 

A final issue on scheduling is time slicing. Although overhead is required to implement 
time slicing, it is a good way to insure that each task within a priority will get an even 
chance at processing time. Some implementations may allow any task to be assigned 
an independent length of time for its time slice, or a single value may be available for 
modification to specify the slice length for all tasks. The user may be able to turn time 
slicing on and off through a software toggle. If time slicing has been implemented in 
conjunction with pre-emptive priority scheduling, the algorithm must take into 
consideration the time remaining in the slice allotted to a task that gets pre-empted so 
that it will be allowed to finish its slice when scheduling returns to that priority level. 
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3.4.2 CONTEXT SWITCHING 

A terminology that is popular to toss around is the time required for a context switch 
between tasks. The code required and the time it takes to execute the actual context 
switch (that is, to change the registers, stack pointer, program counter, etc) from one 
task to the next are extremely hardware dependent. It is not apparent that this time 
has any relation to the time it takes to invoke a different task, since there is a 
tremendous amount of overhead involved in supporting Ada tasking that must also be 
done at that time. The real question is how long it takes to get a different task running 
once the first has given up the processor, and this reflects the amount of overhead 
inherent in the tasking system itself. 

3.4.3 TASK TERMINATION 

The part of the run-time system devoted to managing task termination can be quite 
extensive. The tedious bookkeeping of dependence on masters, and status of children 
and sibling tasks is necessary to insure that tasks terminate properly. In many cases, 
this overhead is necessary, but in some situations, an application may want to do away 
with this overhead if it does not have tasks that terminate. \This is another case where 
the structure of the run-time system will determine the possibility of removing or 
disabling this part of the system. 

3.4.4 DELAY PROCESSING 

When a task executes a delay statement, the run-time system must calculate the 
wake-up time, update the delay queue, possibly set or reset the wake-up timer, and 
dispatch a new task. Depending on the implementation, other functions may be 
required. These should be done in as efficient a manner as possible. 

The processing of delay expirations can be handled in a variety of ways. If pre-emptive 
priority scheduling has been implemented, then a delay expiration may become a 
scheduling event, as the task whose delay has expired may be of a higher priority than 
the currently running task. To implement this, a separate timer may be set for the next 
scheduled delay expiration, and the code to release the task to the ready queue may 
be included within the handler for this interrupt. Or the code may be included within 
the dispatcher, and the interrupt may return to the Ada application through the 
dispatcher. This method forces the system to run through the scheduling routine, 
which may not be necessary if the released task is not of a higher priority than the 
running task. The code may also be included in the handler for the clock interrupt, if 
the resolution of type duration is equivalent to the clock period. In any case, 
pre-emptive scheduling requires the use of some method of regaining control of the 
processor by the run-time system. The efficiency with which this is accomplished is the 
only real consideration. 
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If scheduling is not pre-emptive, then the processing of a delay expiration can simply 
wait until the next scheduling event, whenever that occurs. Wake-up timers are not 
involved, and less overhead is required. But for real-time systems, this method is not 
really an option. 

3.4.5 RENDEZVOUS COSTS 

Rendezvous are effectively similar to procedure calls, yet they are much more complex 
to implement, and therefore create a tremendous amount of overhead for the run-time 
system. One task must always wait for the other to reach the point of the rendezvous, 
the system must invoke the rendezvous when both tasks are ready, and context 
switches are required between the tasks during the rendezvous. Priorities are not 
static during a rendezvous, and this presents additional overhead. 

It is possible for the run-time system to optimize rendezvous so that the cost is more on 
par with that of a procedure call, but some preparation must be done at compile time. 
No context switch should be made if none is necessary, (such as when no code is 
associated with the accept statement) or when the code does not require one. This can 
be difficult to determine, and must be done at compile time. 

4.0 CONCLUSIONS 

As compilers targeted to bare computers become more common, the range of quality in 
run-time performance will become more apparent. Currently, many embedded systems 
designers are unaware of the variances simply because Ada is so new. These 
designers have long known what to look for in a good compiler, but many have no 
idea what to ask a vendor about the run-time support system. 

The best run-time support for any application is determined by the individual needs of 
the application itself. But in a general sense, a good Ada implementation meets the 
basic LRM requirements, is of high and consistent quality, and is adaptable to the 
needs of the user. It is hoped that this paper and its successors will assist in defining 
the issues which impact the design and implementation of Ada run-time support 
systems. Once this is accomplished, ease of understanding and use should become 
more readily possible, allowing Ada to satisfy its requirements and original intent. 
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INTERESTING VIEWPOINTS T O  THOSE WHO W I L L  PUT Ada INTO PRACTICE 

Arne Carlsson 
Saab Space A0 

Goteborg, Sweden 

INTRODUCTION 

Ada will most probably be used as programming language for computers in the 
NASA Space Station project. There will be a great number of computers and 
computer types, e.9. in space for Data Management System, Crew Working Station, 
experiments and on ground for flight control, launch control, maintenace, 
validation, integration, software development. Will Ada be used for all these 
computers or only for some of them? It is reasonable to suppose that Ada will 
be used for at least embedded computers, because the high software costs for 
these embedded computers were the reason why Ada activities were initiated 
about ten years ago. 

Saab has since 1979 followed the Ada activities, and during the last two years 
w e  have studied Ada for usage in our products, which are embedded computers for 
on board use in space applications. The Ariane launcher, Hermes shuttle and 
Columbus, which will be the European part o f  the NASA Space Station, are 
examples o f  such applications. 

On board computers, 0BC:s , have been developed by Saab since 1973, and these 
0 B C : S  are used in a number of applications, for example the Ariane launcher. 
the EXOSAT, SPOT and HIPPARCOS satellites and in the E U R E C A  platform. Up to 
now. assembler language has been the main language for these embedded computers 
even if there are high level language compilers as Pascal, Coral66 and Fortran 
available. 

Our on board computers are designed for use in space applications, where 
maintenance b y  man is impossible. All manipulation of such computers has to be 
performed in an autonomous way or remote with commands from ground. In a manned 
Space Station some maintenance work can be performed by service people on board, 
but there are still a lot of applications, which require autonomous computers, 
for example vital Space Station functions and unmanned orbital transfer 
vehicles. In other words, the aspects in this paper are most valid also for 
embedded computers in the NASA Space Station. 

The rest of this paper will deal with those aspects, which have come out 
of the analysis of Ada characteristics together with our experience of 
requirements for embedded on board computers in space applications. 

t 

Ada is a registered trade mark o f  the U.S. Government Ada 
Joint Program Office. 



MOTIVES FOR Ada USAGE 

There are at least two large groups, which perhaps have not exactly the same 
requirements on the programming language, these are the computer manufacturers 
and the customers. 

Saab is manufacturer of embedded computers for space applications on board. We 
wish t o  make some form of profit as a result of our computer production. If our 
computers are very attractive also without Ada support, then it is tempting to 
avoid Ada, because the costs to develop an Ada support to a computer are very 
high. On the other hand, if it is possible to increase the price of a computer 
because the Ada support makes it more attractive, then it is an interesting 
alternative. 

Ada i s  designed t o  give low maintenance costs and high quality of the program. 
Therefore, because the customer pays the life cycle cost, Ada will be 
attractive for customers with long lived projects, which contain vital 
functions. However, development of Ada programs requires at least the same 
or more resources compared with development in other languages, because Ada is 
designed to be 'read' (maintenance) rather than be 'written' (development). 
This means that for very short lived programs, another language can be a better 
choice. Most space projects have a very long life cycle, which means that Ada 
ought to be a good choice from space customer's point of view. 

The most important impact on the Ada development, however, comes from large 
customers. who require Ada as programming language. Then the computer 
manufacturers have to give Ada support to their products if they want to 
participate in the project. This happens for example when Department o f  Defense 
requires Ada for their projects. The Swedish Do0 also requires Ada after 
January 1 9 8 6  for new military projects. The same thing happens in a number o f  
countries. Because of these very strong 'pro-Ada' forces, the usage of Ada will 
probably increase all over the world, and the computer manufacturers have to 
give Ada support to their computers if they want to have a chance in the 
competition on the market. The customer will choose a computer with Ada 
support, because it is important to minimize the software costs, which take 
such a great part of the costs of a computer system during the life cycle. 

From programmers point of view, Ada is a nice language. It is a total language, 
which means that no dialects are required (or allowed). Ordinary operating 
system functions are, for example, included in the language. A normal reason 
why assembler languages have been used for embedded computers i s  the interface 
between the embedded computer and the external world. Very often this interface 
i s  a special non standard type, which is not supported by any high order 
language. Ada is designed especially for such embedded computers, which means 
Ada in fact is the first chance to get embedded computer software, which 
is possible to maintain in a pactical way. Because of the high degree of 
standardization in Ada, the risk for misunderstanding between programmers is 
minimized. This is important when a number of countries participate in a space 
project, and will contribute t o  an increased program quality and lower cost. 



Ada PROGRAM LIMITS 

View the following figure: 

I Ada TOTAL I 
I I 
I 1  Ada 1 I I 
I 1  I I 
I 1 1  I I I 
I 1 1  COMPUTER 1 I I I 
1 1 1  I I I I 
I 1 1  I I I I 
I 1  0 I I I 
I 1  0 I 0 I 
I 0 0 I 
I 0 0 I 
I 0 0 I 
I 1  0 Ada N I 0 I 
1 1  I I I 
I 1 1  I I I I 
I 1 1  COMPUTER N I I I I 
I 1 1  I I I I 
I 1 1  I I I I 
I 1  I I I 
I 1  I I I 
I I I 
I I I 

I 
I 

INPUT/OUTPUT 

The Ada language tells nothing about the number o f  computers, which take part in 
execution o f  an Ada program. Suppose that computer modules 1 to N cooperate to 
execute one program, A d a  TOTAL, then the programmer has to think only on the 
black box function and on the INPUT/OUTPUT signals. All communication and time 
synchronization between computer modules and task allocation to the modules 
1 to N W i l l  be performed by a program, that can be generated by one Ada 
compiler. This compiler has to know a lot about each computer module and also 
about the communication lines between the modules. Another way to solve the 
problem is t o  write a number of programs, Ada 1 to Ada N , and use one or more 
compilers, which generate code for one computer module at the time. Here the 
programmer must write the program, that has to administrate the time 
synchronization and communication between the computer modules and also for 
the task allocation. 

From the computer customer's point of view it seems attractive t o  choose the 
Ada TOTAL alternative and let the Ada compiler d o  a lot o f  the work. In the 
Space Station, for example, it would be nice if one "clever' Ada compiler 
handled the communication between computer modules. However, in practice there 
are a lot o f  problems with this Ada TOTAL alternative. Development costs for 
such a compiler will be very high and time very long; if the computer 
structure is very complex, then the risk is high that no compiler at all is 
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available when needed. Even if such a compiler is possible to develop, the 
price will be so high, that it is difficult to sell the compiler. Its 
Special architecture makes it impossible to use in other applications, and then 
the development costs can not be spread out on a number of products. In the 
Space Station project, the computer modules will most probably come from 
various computer manufacturers, and this complicates the Ada TOTAL compiler 
still more. Questions about responsibility, maintenance and modifications of 
the computers as well as the Ada compilers during the life cycle will be 
complicated when many companies are involved in and controlled by the same 
compiler. Also the support equipment for development, integration,verification 
and maintenance will be complicated and so will the administration of the 
support equipment. 

The Ada TOTAL line seems to be not usable in practice because o f  the following 
reasons: too high complexity in technical functions and in administration 
between companies. This indicates that the other way with several programs, 
Ada 1 t o  Ada N , will be a better one. Then the interface between compiler 
and computer can be handled within one company. The interface between companies 
will consist of the communication lines. Experience shows that connection of 
computers from two or more manufacturers can take very long time and be 
extremely expensive if the communication interface is badly defined, because 
people think that they d o  understand each other, but they d o  not. Therefore it is 
very important to define all communication protocols in detail as soon as 
possible in a project. 

In the Ada 1 t o  Ada N alternative, it is not possible, within the Ada 
concept, t o  distribute a data base to several computer modules. The solution 
will be t o  provide each computer module with a program, that will handle 
communication lines and distributed data between computer modules. B y  defining 
a suitable program interface t o  this communication interface, the application 
programmer will get a feeling of distributed data base. 

Ada PROGRAMMING SUPPORT ENVIRONMENT , APSE 

From software point of view,a computer system consists of: embedded target 
computer hardware and software, environment for development and maintenance 
of software, programming language for the embedded computer. 

I I 
I I PROGRAHHING LANGUAGE I I 
I I I I 
I I 
I I 

I I I I 
I EMBEDDED COMPUTER I I ENVIRONMENT FOR I 
I I I PROGRAMMING SUPPORT I 

I I 

The programming language in fact belongs to the environment, but because of its 
great importance, it is oftpn handled as a separate component. 
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It 1 s  important to choose and adapt these three computer system components to 
each other in a proper way to make it possible to reach specified requirements, 
for example quality and l o w  life cycle cost. 

Not only the embedded computer but also the programming support environment 
and language must work properly during the entire life cycle, which for space 
applications can be very long, perhaps 10 to 2 0  years. Consequently Ada, which 
is designed for long life cycle projects and easy to maintain, shall be used 
not only for the embedded computer but also for programming of the environment 
computers. 

The Stoneman specification for Ada Programming Support Environment, APSE, 
says that the programming language for the APSE itself shall be Ada; only the 
most hardware near programs may be written in another language, normally on 
a lower level. Then, if the APSE hardware must be exchanged to another one, 
only these lower level programs have to be rewritten. However, these programs 
close to the hardware can be very hard to develop, which means that the 
Software costs for exchange of APSE hardware can be very high, even if most 
programs are written in Ada. Rewriting of the APSE kernel programs 
will also affect the APSE quality in a negative way, because each time a new 
piece of program is included, the number of software design errors increases, 
and it takes time t o  reach the same quality level as before the rewriting. 
The following figure shows this. 

PROGRAM QUALITY 
I 
1 

I 

1 
I .  

I I I TIME 
REWRITING R E W R  I T I NG 

It i s  possible to avoid these effects by using environment computers wlth 
either totally compatible or standardized instruction sets and I/O signals. 
Then no software at all need to be rewritten because of new computers in the 
environment, and the QUALITY/TIME diagram will have the following look: 

PROGRAM QUALITY 
I 
I 
I 
I 
I 
I .  
1 .  
I TIME 
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It could be a risk that such standardization and compatible ideas destroy the 
possibilities for computer hardware evolution, but I d o  not think there i s  
any risk in practice. An example of this is the MIL-STD-1750A. There are very 
powerful and usable such processors, even if their instruction architecture 
is old. Remember that the most expensive part of a computer system, the 
software, will be improved by this philosophy. 

If the embedded computers could use the same instruction set as the computers 
in the environment, then w e  would get a number of advantages. The price of 
the Ada compiler for the embedded computer can be lower if the compilers to 
the environment and to the embedded computer can be derived from each other. 
This is important because Ada compiler development i s  very expensive. It will 
also be easier t o  find programmers for development and maintenace during life 
cycle if the instruction set is used also in many other computers. The same 
programs can be utilized in the environment as well as in the embedded 
computer, which is positive from quality point of view. 

Software activities around on board space applications are different compared 
t o  ground applications. On ground it is possible, and also normal, t o  
deliver software with guaranty and modify if it does not work properly during 
integration and validation. On board in space the software has to work the 
first time it is used in practice, especially vital programs for spacecraft 
control. Of course the flight software is carefully tested on ground before 
launch, but the real environment is met after launch, for the first time. 
The flight software has t o  pass several phases: first it will be developed 
on ground and this phase i s  perhaps the most 'normal' one, but it i s  still 
different from program development for embedded systems on ground. For example, 
regard the debugging session, where an accepted method is to use in circuit 
emulation for embedded systems on ground. The principle is that control lines 
and busses are drawn out and the processor removed from the embedded computer 
to the programming support environment, from where it will be possible to 
control the embedded system in detail. When an on board computer for space 
use shall be validated or integrated in a subsystem on ground, it is very 
difficult to use the in circuit emulation method, because the control lines, 
busses and processor can not be drawn out because of quality, reliability 
and practical reasons. This means that the best software development tool 
existing today for embedded computer systems, the in circuit emulation, can 
perhaps not be utilized for embedded on board space computers when it is most 
needed. The on board computers, developed by Saab, are equipped with special 
hardware and microprogram software to allow powerful debugging also in these 
embedded situations. The next phase for the flight software is execution in 
space. For manned missions the maintenance can be performed on board, but the 
program debugging will be still more complicated than on ground. Connection 
of programming support environment for in circuit emulation is as difficult 
as on ground, but even if it would be possible, it can be difficult t o  bring 
the ground programming Support environment into space. Probably specially 
designed programming Support environment has to be developed for use on board 
in manned missions. For unmanned missions the maintenance has to be performed 
remote, which means that a number of other computers and communication lines 
constitute the interface between the embedded on board computer and the 
programming support environment. To make remote maintenance possible, the on 
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b o a r d  computer  has t o  be equ ipped  w i t h  e x t r a  p rograms and perhaps  a l s o  e x t r a  
hardware  t o  p e r f o r m  debugg ing  commands f r o m  g round .  The programming Suppor t  
equ ipment  a s  w e l l  a s  t h e  embedded computer  a l s o  must  have t h e  r i g h t  i n t e r f a c e  
t o  t h e  i n t e r m e d i a t e  computers  and commun ica t i on  l i n e s .  

What does s t a n d a r d i z a t i o n  mean f o r  Ada Programming Suppor t  E n v i r o n m e n t ,  A P S E ?  
Regard a s  an example t h e  debugg ing  on ground and t h e  remote  ma in tenance  on 
b o a r d  a s  d e s c r i b e d  above ( a l s o  v i s u a l i z e d  i n  t h e  f o l l o w i n g  f i g u r e ) .  

GROUND ON B O A R D  

I I I I 
I EMBEDDED COMPUTER I I E M B E D D E D  COMPUTER I 
I I I I 

I I 
I I 

I I I * I 
I A P S E  1 I I I N T E R M E D I A T E  I 
I I I C O M P U T E R S  AND I 

I C O M M U N I C A T I O N  I 
1 T 

I I 
I A P S E  2 I 

* 
These computers  m a y  a l s o  c o n t a i n  a number o f  Ada p rog rams ,  
each s u p p o r t e d  by  i t s  own A P S E .  

W i l l  i t  be p o s s i b l e  t o  u t i l i z e  A P S E  1 f rom one m a n u f a c t u r e r  d u r i n g  t h e  
deve lopment  phase and A P S E  2 f r o m  a n o t h e r  m a n u f a c t u r e r  f o r  ma in tenance 
d u r i n g  m i s s i o n ?  I t  ought  t o  be p o s s i b l e  i f  t h e  f l i g h t  s o f t w a r e  s h a l l  be 
s u p p o r t e d  d u r i n g  l i f e  c y c l e ,  w h i c h  i s  t h e  mean ing  when Ada i s  used f o r  
embedded sys tems.  However, my e x p e r i e n c e  o f  A P S E  i s  t h a t  a s  l o n g  a s  you a r e  
w o r k i n g  i n s i d e  t h e  h o s t  computer ,  where t h e  A P S E  s o f t M a r e  i s  execu ted ,  t h e n  
A P S E  g i v e s  a l l  n e c e s s a r y  h e l p .  I t  a d m i n i s t r a t e s  e d i t i n g ,  c o m p i l i n g ,  p r i n t i n g  
and management o f  p rog ram v e r s i o n s  f o r  example.  Bu t  when t h e  t a r g e t  computer  
i n  t h e  embedded sys tem s h a l l  be reached  f o r  p rog ram l o a d i n g ,  debugg ing  and 
e x e c u t i o n  c o n t r o l ,  t h e n  A P S E  does n o t  s u p p o r t  t h a t .  Then you have t o  use  
a n o t h e r  equ ipmen t ,  w h i c h  i s  n o t  i n v o l v e d  i n  A P S E .  T h i s  i s  u n s a t i s f a c t o r y ,  
e s p e c i a l l y  because t h e  program debugg ing  perhaps  i s  t h e  most  d i f f i c u l t  phase 
i n  t h e  s o f t w a r e  l i f e  c y c l e .  A l s o  t h e  p h i l o s o p h y  o f  p rogram l o a d i n g  i n t o  
embedded systems i s  i n t e r e s t i n g .  Suppose t h a t  t h e  embedded computer  has no 
n a t u r a l  way f o r  p rog ram l o a d i n g ,  t h e n  w i l l  t h i s  p r o b l e m  be s o l v e d  as an 
a p p l i c a t i o n  f u n c t i o n ,  o r  i s  i t  such an o r d i n a r y  p r o b l e m  f o r  embedded c o m p u t e r s ,  
t h a t  i t  s h a l l  be s p e c i f i e d  f o r  A P S E ?  
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B r i e f l y  t h e  requirements on A P S E  f o r  embedded computers on board i n  space 
a p p l i c a t i o n s  a r e :  
-use Ada a l s o  f o r  t h e  A P S E  computers 
-use an i n s t r u c t i o n  s e t  i n  APSE computers, which w i l l  no t  be changed d u r i n g  

-use t h e  same i n s t r u c t i o n  Set i n  A P S E  computers a s  i n  the  embedded computer 

- A P S E  s h a l l  a l l o w  power fu l  debugging o f  t h e  embedded computer on ground 

l i f e  c y c l e  

t o  g i v e  maximum support  t o  t h e  embedded on board computer system 

s p e c i a l l y  d u r i n g  i n t e g r a t i o n  and v a l i d a t i o n  phases, when i n t e r n a l  s i g n a l s  
a re  d i f f i c u l t  t o  reach 

- A P S E  s h a l l  be p o s s i b l e  t o  b r i n g  i n t o  space f o r  manned miss ions ,  e.g. Space 
S t a t i o n  

- A P S E  s h a l l  a l l o w  power fu l  debugging o f  t h e  embedded computer on board i n  
space t o  be performed i n  a remote way from ground 

- A P S E  s h a l l  be standardized i n  t h a t  way  t h a t  i t  i s  poss ib le  t o  m a i n t a i n  t h e  
same Ada program on board f rom va r ious  A P S E : s  

- A P S E  s h a l l  comprise a l l  t o o l s ,  which are  necessary f o r  programming suppor t  
o f  t h e  embedded on board computer. A t  remote debugging, however, t h e  
i n t e r m e d i a t e  computers w i l l  no t  be seen a s  p a r t  o f  A P S E ,  bu t  r a t h e r  a s  p a r t  
o f  t h e  communication l i n e  

-An APSE conta ins  a l o t  o f  f u n c t i o n s ,  which a r e  in tended t o  g i v e ,  f o r  example, 
h i g h  q u a l i t y  programs and l o w  l i f e  c y c l e  cos t .  Some o f  these f u n c t i o n s  
r e q u i r e  t h a t  t h e  programmer f o l l o w s  g i ven  r u l e s  i n  o rder  t o  reach t h e  g o a l .  
Here i s  a r i s k  f o r  c o n f l i c t s  between these r u l e s  and the  working r o u t i n e s  o f  
a company. No big company w i l l  modify t h e  o r g a n i s a t i o n  a n d  work ing  r o u t i n e s  
t o  f i t  an A P S E .  Therefore a very impor tan t  requirement f o r  an A P S E  i s  
f l e x i b i l i t y  t o  make adapt ion  t o  va r ious  company o rgan isa t i ons  and work ing  
r o u t i n e s  p o s s i b l e .  

The APSE a l s o  ought t o  c o n t a i n  a Program Design Language, PDL, t o  support  t h e  
e a r l y  so f tware  phases be fo re  coding a s  w e l l  a s  t he  maintenance phase, when i t  
can be a good h e l p  f o r  understanding o f  program f u n c t i o n .  Ada has been t e s t e d  
a s  PDL a t  Saab, and been found t o  be a good candidate f o r  t h a t  j o b .  I t  i s  
p r a c t i c a l  t o  use the  s p e c i f i c a t i o n  p a r t  o f  an Ada program d u r i n g  program 
des ign ,  because i n  t h a t  way a p a r t  o f  t h e  program code e x i s t s  when t h e  coding 
phase beg ins .  

Ada C O M P I L E R  

A t  Saab we are  l o o k i n g  f o r  Ada compi le rs ,  which generates usable code t o  
p rocessors ,  which we can use i n  our embedded computers on board i n  space 
a p p l i c a t i o n s .  U n t i l  now, many o f  our on board computers have been equipped 
w i t h  s p e c i a l  i n s t r u c t i o n  s e t s ,  which have been adapted t o  each s p e c i f i c  
a p p l i c a t i o n  i n  o rde r  t o  make i t  as power fu l  a s  poss ib le .  This has been p o s s i b l e  
because t h e  requirement of Programming support  has been main ly  an assembler 
and a debugger, which are  p o s s i b l e  t o  redes ign  f o r  each p r o j e c t .  Now, when Ada 
w i l l  be r e q u i r e d .  we have t w o  ways t o  go. We can develop Ada compi le rs  t o  our 
Saab computers w i t h  s p e c i a l  i n s t r u c t i o n  se ts .  We can a l s o  use microprocessors,  
which a l ready  are  equipped w i t h  Ada compi le rs ,  i n  our on board computers. 
Because o f  t h e  h i g h  cos ts ,  which are  r e q u i r e d  f o r  own development o f  Ada 
compi lers t o  a r e l a t i v e l y  sma l l  number of s p e c i a l  purpose computers, i t  i s  
tempt ing  t o  t r y  t o  use more s tandard ized microprocessors w i t h  a l ready  e x i s t i n g  
Ada compi le rs .  However, t h e r e  a re  a number o f  impor tan t  aspects t o  t h i n k  about 
when buy ing  an Ada compi le r ,  which w i l l  be used f o r  on board computers i n  
space a p p l i c a t i o n s .  
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Often you read in reports and other papers that it is important to use 
'commercial microprocessors' and "commercial software' in order to keep costs 
on a l o w  level. Our experience says that this is not always true for long 
life cycle projects, for example in space projects. The manufacturers of 
commercial microprocessors and software have to compete with each other about 
the commercial market, where the big money are. They offer new products within 
short time intervals in order to try to be one step before the other. The 
manufacturer's interest of maintenance for the old product will decrease, of 
course, because he has to spend all resources on the latest product. If you 
use such a product in a project with long life cycle, you will have to choose 
between: A )  keep the old product, which probably is space qualified, and hope 
that it will be supported during the life cycle of your project: or E )  take 
the new product and hope that it becomes space qualified. No one of these 
alternatives is good. Each of them can end up in very high costs to find a 
usable alternative. A better alternative would be to define and standardize 
a processor for space applications on board. It could be done analogous with 
the MIL-STD-l750A, defined by DoD. I f  such a standard is used in space projects 
with long life cycle, then you have always a good chance to find a new 
qualified component if you lose one. You can also replace such a processor 
with a new one with no software modifications at all. The old Ada compiler 
can for example be used. It is a hard job and it takes long time to define 
and state such a standard,and until that is done I think a good idea would be 
t o  use the MIL-STD-1750A for embedded computers in space instead of using 
commercial processors and software. 

When Ada is used as programming language, it would be an advantage if a future 
processor standard for space were adapted for Ada. The MIL-STD-17SOA specifies 
a register machine, while a stack machine architecture would be a more suitable 
processor standard in space applications where Ada is used. The reason is that 
the instructions of a stack machine are on the same level a s  A d a  statements, 
while the instructions in a register machine are on a lower level. This gives 
in turn as result that the stack machine requires smaller program memory 
compared with the register machine. Comparisons in practice show that a stack 
machine needs only about half of the memory required by a register 
machine. The stack machine probably has higher performance too, for example 
because of fewer accesses to memory and possibility to parallel processing o f  
the high level instructions inside the processor. Performance tests often 
consist of execution of an instruction mix. The instructions are normally 
taken from the instruction set of a register machine, which is a drawback for 
the stack machine. In this way the register machine can give best test result, 
while the application function is best performed by the stack machine. It 1 s  
therefore of great importance that the performance tests are specified in 
functional terms in order to find the most suitable computer. 

Small memory and high processing power are perhaps not important requirements 
in embedded systems on ground, but it is in space applications on board. The 
reasons are: very high costs to put power, mass and volyme from ground into 
space, and computer reliabilty decreases with memory size, which means that it 
is very valuable if you can do the job with one processor instead of two and 
also if the memory is small. The ground expression 'waste with memory, it is 
cheap!" is not true for on board computers in space; normally a qualified 
memory for space costs one hundred times more than a ground memory. 



A l s o  t h e  Ada compiler has great influence o n  the memory size and processing 

power. However, most o f  t h e  Ada compilers available today are not w e l l  adapted 
f o r  embedded computers i n  space applications. In fact most Ada compilers a r e  
not developed for embedded computers at all. but for l a r g e  administrative 
computers. T h e n  some of t h e m  have been adapted t o  various embedded Computers. 
It i s  a risk that small memory and high performance have got low priority 
d u r i n g  development of such a compiler. Probably f e w  users of ground systems 
a r e  interested in compact code and high performance o f  t h e  generated c o d e .  
Execution speed of t h e  Ada compiler itself i s  often m o r e  interesting. Because 
o f  t h i s  I t hink that development of special Ada compilers, i n  order t o  m e e t  
t h e  requirements for embedded computers in space, is motivated. T h e  development 
c o s t s  would be payed back very soon because of lower costs for embedded 
c o m p u t e r s  o n  board. I t  seems natural for m e  t o  generate effective c o d e  for t h e  
embedded system on board w i t h  an Ada compiler o n  ground instead of increasing 
embedded computer resources o n  board because of ineffective code produced by an 
Ada compiler o n  ground. A standardized instruction set for embedded c o m p u t e r s  
o n  board i n  space should also contribute t o  the generation of m o r e  powerful 
c o d e  i n  that way that t h e  Ada compiler manufacturers could concentrate their 
e f f o r t s  o n  optimization o f  c o d e  t o  only o n e  instruction set; t o d a y ,  w h e n  they 
h a v e  o n e  Ada compiler working. it is time t o  start development of an Ada 
c o m p i l e r  f o r  t h e  next instruction set. There is n o  time for improvement w o r k .  
Most Ada compilers a r e  developed by software companies, w h i l e  t h e  processor 
m a n u f a c t u r e r ,  w h o  has t h e  best knowledge about t h e  processor and instruction 
s e t ,  w o u l d  b e  most suitable t o  d e v e l o p  an Ada compiler, which generates o p t i m a l  
code. A standard instruction set would give also t h e  software companies this 
possibility. 

Normally t h e  Ada compiler d o e s  not generate all t h e  code t o  an embedded 
computer program at each compilation. A large part of the program is involved 
i n  t h e  Runtime Support L i b r a r y ,  RSL. which has been created earlier. The R S L  
c o n t a i n s  computer specific programs and perhaps also real time programs, e . g .  
ordinary operating system functions, which w i l l  be called by t h e  c o d e  
generated by t h e  Ada compiler. RSL c a n  be a relatively large program p a c k a g e ,  
perhaps 100 - 200 kbytes. It i s  therefore important that RSL is developed in a 
m o d u l a r  w a y ,  which allows generation of small Ada programs. If Ada shall be 
used a l s o  f o r  small embedded computers, which w a s  t h e  intention w h e n  t h e  Ada 
w o r k  started m o r e  t h a n  t e n  years ago, then it must b e  possible t o  sort out RSL 
pieces o f  about 1 0  k b y t e s ,  or perhaps smaller. That selection )ob shall be 
performed by t h e  Ada compiler automaticly. The RSL is highly dependent 
o n  t h e  hardware architecture of the embedded computer. w h i c h  m e a n s  that you 
normally h a v e  t o  modify t h e  RSL a s  soon as signal lines or components are 
changed i n  t h e  hardware. T h i s  i s  a great problem from validation point of view. 

Validation o f  an Ada compiler is a costly process, therefore it is an a d v a n t a g e  
f o r  a compiler manufacturer i f  his Ada compiler crn be used i n  a s  many 
applications a s  possible. For administrative computer system, e.g. a VAX w i t h  
l i n e  printers. d i s k s  and terminals. a validated Ada compiler can be used i n  
m a n y  installations w i t h o u t  t o  be modified. This is possible because of t h e  
standardized inputloutput units. For embedded computers it c a n  b e  very 
difficult t o  find even t w o  computers w i t h  equal i l o  interfaces. This gives 
different RSL:s or different Ada compilers, which i n  turn m e a n s  separate 
validations for each system. Ada Joint Program Office, AJPO, proposes easier 
r u l e s ,  they w i l l  accept modification of validated Ada compilers and call such 
a compiler f o r  a derived Ada compiler. I think this gives a not desired result. 
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One big reason to start up Ada development was wishes to decrease the high 
software costs for embedded computers, and these high software costs depends 
to a very high degree on all these complex i f 0  interfaces. Therefore, usage 
of a great number of modified Ada compilers in order to fit all these i / o  
interfaces, will not decrease the software costs for embedded computers. A 
better idea ought to be usage of a smaller number various i f 0  interfaces, 
which have been standardized, in order to make it possible to use one validated 
A d a  compiler to many embedded computer installations. Improvements of a 
product can be done inside these i f 0  interfaces. It is not always necessary 
to modify also the interface, even if it seems as a good idea from technical 
point of view. 

During the validation of an Ada compiler no measurements are made about size 
of generated code or performance of that code. This is a lack if the code 
shall be used in an embedded computer, because applications in such computers 
are often time critical, for example to take a sample of an analogous signal 
each 10 millisecond with an accuracy o f  1 millisecond. The situation can be 
that the required function can be performed by the code from one validated Ada 
compiler, but when you have to exchange your Ada compiler, for some reason, to 
another validated Ada compiler, then the function can perhaps not be performed 
by the new code. Analogously the memory can hold the code from one validated 
Ada compiler but perhaps not from another. I think that the validation tests 
should be supplemented with code size and performance tests, at least for 
Ada compilers to embedded computers on board in space applications. 

Generally, time i s  an important parameter for embedded computers on board in 
space. A normal requirement is that a number of computers on board have to be 
synchronized to an absolute time. If the code to these computers are generated 
by different Ada compilers, then time synchronization has to be performed via 
the communication lines, if it shall be performed by software. The requirements 
on the time accuracy are often so hard that it is impossible to perform 
synchronization by using the long way via the application communication 
protocol. Instead lower level protocols have to be used. I f  this protocol 
software is included in the R S L  or generated by the Ada compiler. then the 
Ada compiler must be seen a s  affected by the time synchronization requirements, 
but hopefully the different A d a  compilers do not have to exchange information 
to each other. 

A question, which arises very often is whether it is possible or not to combine 
Ada programs to programs written in other languages. The link process can be 
organized to handle that, but I think it is better to translate source code 
from other languages into A d a  source code in order to get all advantages 
from the Ada compiler. 



Ada IN MULTIPROCESSOR COHPUTERS 

Writing an Ada program to a multiprocessor computer shall from the programmers 
point of view be equal to writing the program t o  a single processor computer. 
Static allocation of tasks between various processors is a job for the Ada 
compiler and is transparent for the Programmer. If dynamic allocation shall be 
possible, the necessary programs to d o  this must be generated by the Ada 
compiler or be included in the RSL. During program loading and debugging also 
the APSE has to handle all processors in such a w a y ,  that they are transparent 
for the programmer. The RSL, Ada compiler and the rest of APSE will all become 
more complex compared with a one processor computer and are because of that 
more expensive t o  develop. 

Fault tolerant computers can be seen a s  a kind of multiprocessor computers, 
which have possibility to detect faults and move tasks from a faulty unit t o  
a fresh one. As for other multiprocessor computers, it shall be possible for a 
programmer t o  write an Ada program without thinking on the fault tolerant 
computer architecture. It is a job for the Ada compiler to generate necessary 
programs, or they may be included in RSL. For example, if the requirements 
are Fail OperationalfFail Operational for a computer, then the RSL or the 
code generated by the Ada compiler must be able t o  take care of two faults 
and still keep the Ada application program executing. As mentioned above, it 
is very costly to develop support software, e . g .  Ada compiler. RSL, loader and 
debugger, t o  this type of computers, and therefore it desirable to use as many 
as possible of equal computers in order to utilize the costly support software. 
The work t o  detect faults and switch to fresh units can be performed either by 
hardware or by software. The reliability will often be better, if software is 
used, because of less hardware, and because of that the software method is 
attractive for space applications. 

An interesting question arises when you are talking about n-version programming 
in order t o  be tolerant against design failures. If all n versions of a program 
are written in Ada, then n different APSE:s ought t o  be used for code generation 
and debugging, because such a complicated software package as APSE probably 
contains design failures too. Then the question will be: is it realistic to 
work with n different APSE:s from economical point of view? 
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A b s t r a c t  

The Ada* programming 1 anguage prov ides a means of speci fyi ng 1 ogi  cal  concurrency 

b y  u s i n g  m u l t i t a s k i n g .  

i n t o  a phys i  c a l l  y concur ren t  d i  s tri buted envi  rorment whi ch  imposes i t s  own 

requirements can l e a d  t o  i n c o m p a t i b i l i t i e s .  These problems a r e  discussed. 

Us ing  d i s t r i b u t e d  Ada f o r  a t a r g e t  system may be a p p r o p r i a t e ,  b u t  when u s i n g  

t h e  Ada language i n  a h o s t  env i ronnent ,  a m u l t i p r o c e s s i n g  model may be more 

s u i  tab1 e than r e t a r g e t i  ng an Ada compil  e r  f o r  t h e  d i s t r i b u t e d  envi  rorment. 
t r a d e o f f s  between mu1 t i t a s k i n g  on d i s t r i b u t e d  t a r g e t s  and mu1 ti process ing on 

d i s t r i b u t e d  h o s t s  a r e  discussed. 

m u l t i p r o c e s s i n g  models i n d i c a t e  d i f f e r e n t  areas o f  a p p l i c a t i o n .  

Extending t h e  Ada m u l t i t a s k i n g  concurrency mechanism 

The 

Comparisons o f  t h e  mu1 t i t a s k i  ng and 

Keywords: Ada, d i s t r i b u t e d  processing, mu1 ti t a s k i  ng, mu1 ti processing, Ada 

Programming Suppor t  Envi rorment  (APSE), s o f t w a r e  engineer ing,  computer networks,  
i nterprocess  communi c a t i  on. 

1. INTRODUCTION 

I n  d e s i g n i n g  a s o l u t i o n  t:, a r e a l - w o r l d  p r o b l m ,  t h e  systems a n a l y s t  i s  

f r e q u e n t l y  faced w i t h  t h e  f a c t  t h a t  t h e  r e a l  w o r l d  f u n c t i o n s  i n  terms of 
c o n c u r r e n t  a c t i  v i  ti es . Many appl i c a t i  ons a r e  model 1 ed most n a t u r a l  1 y by 
l o g i c a l l y  concur ren t  tasks ,  b u t  most computer languages do n o t  suppor t  
concurrency. Even when concurrent  a c t i v i t i e s  can be d i s t r i b u t e d  on a computer 
network t o  achieve p h y s i c a l  as w e l l  as l o g i c a l  concurrency, t h e  des igner  must 

b u i l d  t h e  i n t e r f a c e s  between t h e  p h y s i c a l l y  d i s t r i b u t e d  components of t h e  system 
as w e l l  as p a r t i t i o n  on i t s  l o g i c a l l y  concur ren t  boundaries. 

*Ada i s  a r e g i s t e r e d  trademark o f  t h e  U.S. Government (Ada J o i n t  Program O f f i c e ) .  
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Recognizing t h a t  concurrency i s  t he  na tu ra l  approach t o  sol v ing  many probl  ems, 

t h e  Department o f  Defense (DOD) developed m u l t i t a s k i n g  as an i n t e g r a l  p a r t  o f  

t h e  Ada programming 1 anguage speci f i c a t i  on. Concurrent tasks may communicate 
through task  a c t i v a t i o n  and te rmina t ion ;  t h e y  may share global  var iab les ;  o r  

t h e  communi c a t i  ng tasks may rendezvous us ing  e n t r y  c a l l  s and accept statements. 

Synchronizat ion between comnunicating tasks  may use s e l e c t i v e  wa i t s ,  c o n d i t i o n a l  

e n t r y  c a l l  s, o r  t imed e n t r y  c a l l  s 111. 

The h o s t / t a r g e t  model was used i n  des ign ing  t h e  framework f o r  Ada env i rorments 

12,3].  
compi led b y  a cross-compi ler ,  and t h e  executable module downloaded t o  t h e  t a r g e t  

system on which i t  i s  t o  execute. Th is  model descr ibes t h e  t y p i c a l  sof twared 

devel opnent environment f o r  embedded systems. 

Ada programs a re  developed on a hos t  computer system. The program i s  

A range o f  o p t i o n s  can be considered f o r  t h e  d i s t r i b u t e d  t a r g e t .  A l t e r n a t i v e s  

t o  mu1 ti t a s k i n g  may be chosen, such as a mu1 ti process ing approach r e l y i n g  on an 
I /O-o r ien ted  i n t e r f a c e  f o r  i n te rp rocess  comnunication. F u l l y  t ransparent  d i s t r i  bu- 
t i o n  o f  t h e  program can be implemented, o r ,  as i s  more common f o r  most e f f o r t s ,  

o n l y  tasks  can be d i s t r i b u t a b l e .  Al though t h e  Ada m u l t i t a s k i n g  model i n t u i t i v e l y  

seems t o  be t he  na tu ra l  model f o r  concurrency i n  t h e  d i s t r i b u t e d  environment, 

C o r n h i l l  has suggested t h a t  t h e  Ada programs could and should be a r b i t r a r i l y  
d i s t r i b u t a b l e  14,5] .  Packages and i n d i v i d u a l  b locks o f  code as we l l  as tasks 

should be d i s t r i b u t a b l e .  Ada programs should be developed us ing  t h e  Ada 

mu1 ti tas k i  ng model f o r  1 ogi cal  concurrency regard1 ess o f  t h e  under1 y i  ng physi cal  

concurrency. The phys ica l  d i s t r i b u t i o n  o f  t h e  Ada program can be s p e c i f i e d  

u s i n g  a d i s t r i b u t i o n  language which i s  i n p u t  t o  the  compi le r  w i t h  t h e  Ada source 

code. The t r a d e o f f s  between t h e  var ious  a l t e r n a t i v e s  must be c a r e f u l l y  

cons idered be fo re  an approach t o  imp1 ementi ng d i  s t r i  buted Ada programs i s  

se lec ted .  

The terms " task"  and "process" a re  f r e q u e n t l y  used in terchangeably .  I n  t h i s  

paper tasks  a r e  independent b u t  i n t e r a c t i n g  program components which execute i n  

para1 l e 1  . A process i s  an independent program execut ion  and i t s  con tex t .  I t  i s  
t h e  bas ic  u n i t  scheduled f o r  execut ion  b y  t h e  opera t i ng  system and represents  
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the execution of a program 161. 

yet execute as a s ingle  process under an  operating system w h i c h  runs many 
concurrent independent processes. 

A sing1 e Ada program may contain many tasks ,  

2 .  DISTRIBUTED PROCESSING REQUIREMENTS 
Distributed processing may be implemented on radical ly  different types of 
architecture.  Shared memory architectures have mu1 t i  ple processors sharing one 
or more gl  obal menori es ,  or  processors w i t h  1 oca1 memory may be i nterconnected 
by message-oriented communications l inks.  These message-oriented l inks may be 
s t r i c t l y  point-to-point, or they may have a broadcast or mu1 t i - d r o p  c a p a b i l i t y .  

Distributed systems may interface by messages, remote procedure c a l l s ,  rendezvous, 
monitors, or shared variables t o  name a few of the approaches. A t  the most 
fundamental level there are only two classes of communication technology: those 
which copy d a t a ,  e.g., a n  I/O-oriented approach, a n d  those which reference shared 
d a t a ,  e.g., using global (shared) memory. Interrupts may provide an asynchronous 
change of control flow t o  s i g n a l  a n  event or message exchange, or the message 
exchange may be referenced synchronously w i t h i n  the process. Various 
communications methods may be layered on these basic technologies t o  provide 
different access techniques a n d  control  flow structures.  

There are a number of desirable capabili t ies for a distributed processing system. 
These i ncl ude: 

e 
support for mu1 t i  pl e readers; 
support f o r  mu1 t i  pl e writers; 
support for mu1 ti  pl e i ndekndent message streams; 
asynchronous i n p u t ,  i .e., a non- bl ocki n g  recei ve; 
asynchronous o u t p u t ,  i .e., a non- bl ocki ng send; 
support fo r  1 ocki ng shared memory d a t a  structures for  m u t u a l  excl usion; 
control over the scheduling discipline; 
access t o  a system clock; 
a n  i nterval timer whi ch can asynchronous1 y signal events; 
control over the distribution of processes on the network; 
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f a u l t  de tec t i on  and damage assessment. 

t ransparent  fau l  t to1 erance; 

support  f o r  mu1 ti cast; 

0 support  f o r  broadcast; 

0 s e c u r i t y  features such as  encrypt ion.  

Al though a fea tu re  may be des i rab le ,  i t  may be imprac t i ca l  t o  implement f o r  

performance reasons. 

f ea tu res  such as f a u l t  to le rance t h a t  i s  a p p l i c a t i o n  dependent. 

There i s  a t r a d e - o f f  between Performance and desi  rab l  e 

Considerat ions i n  the  a r e a  o f  d i s t r i b u t e d  processor management I?] i n c l u d e  

0 the a l l o c a t i o n  o f  processors: s t a t i c ,  dynamic, user-defined, o r  automat ic 

0 the a t o m i c i t y  o f  d i s t r i b u t i o n :  packages, tasks,  o r  procedures 

p o s s i b l e  remote operat ions:  rendezvous, a c t i v a t i o n / t e r m i n a t i o n ,  remote 

procedure c a l l s  , and global va r iab les  

0 remote dependenci es and except ion handl i ng 

a general network t o p i c s  such as encrypt ion,  p ro toco ls ,  and f a u l t  handl i n g .  

There a re  two extremes t o  us ing  Ada i n  the  d i s t r i b u t e d  env i romen t .  One ext rene 

t r a n s p a r e n t l y  d i s t r i b u t e s  Ada programs across the  d i s t r i b u t e d  envi  r o m e n t .  There 

are,  however , inheren t  probl  ens i n  t h e  Ada model o f  concurrency when a p p l i  ed t o  

t h e  d i s t r i b u t e d  envi r o m e n t .  A1 though sol  u t ions  may e x i s t  t o  many, i f n o t  a l l  , 
o f  these problem, t h e  performance pena l t i es  ex t rac ted  may render the  m u l t i t a s k i n g  

model imprac t i  cal . 

The o t h e r  extreme f o l l o w s  the mu1 ti processing model i n  which separate sequent ia l  

programs are  developed which can be concur ren t ly  executed. 

use the  techniques developed d u r i n g  years of research i n t o  d i s t r i b u t e d  process ing 

issues. 

i n t r i n s i c  t o  the  Ada concurrency model. 

i s  e x p l i c i t l y  aware o f  t h e  under l y ing  d i s t r i b u t e d  a rch i tec tu re .  

Ada programs can 

The drawback i s  t h e  l o s s  o f  t he  advanced sof tware engineer ing concepts 

The advantage i s  t h a t  t h e  system designer 
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3. DISTRIBUTED ADA PROlffAMS 

Imp1 ement ing t h e  Ada concurrency mechanisms on a d i s t r i b u t e d  system i s  n o t  a 

s t r a i g h t f o r w a r d  m a t t e r .  

p rocess ing  a r e  n o t  adequate1 y addressed b y  t h e  Ada mu1 ti tas  k i  ng capa b i  1 i ti es, 

and a nunber o f  assunpt ions i m p l i c i t  i n  t h e  d e f i n i t i o n  o f  Ada t a s k s  do n o t  

n e c e s s a r i l y  h o l d  t r u e  i n  t h e  d i s t r i b u t e d  envi  ronment 181. The imp1 m e n t a t i o n  

of  p h y s i c a l  concu r rency  may p lace r e s t r a i n t s  on t h e  des ign  o f  l o g i c a l  concurrency,  

f o r  example, t h e  use o f  g lobal  v a r i a b l e s  i n  t h e  absence o f  shared memory. These 

c o n s t r a i n t s  may be d r i v e n  by bo th  performance and f e a s i b i l i t y  r e s t r i c t i o n s .  

A nunber of issues wh ich  a r e  o f  concern i n  d i s t r i b u t e d  

The Ada Language Reference Manual i n d i c a t e s  t h a t  mu1 ti t a s k i  ng can be t r a n s p a r e n t l y  

implemented on a d i s t r i b u t e d  s y s t e n  [9]. Several  f e a t u r e s  o f  t h e  language, 

however, i m p l y  a s ing1 e-memory system [ lo ] .  
statements a r e  t h e  p r i m a r y  means o f  synchroni  r a t i o n  o f  t a s k s ,  and o f  c o m u n i c a t i n g  
va lues between tasks ,  t h e  use o f  shared v a r i a b l e s  i s  a1 so d e s c r i b e d  i n  t h e  language 

s p e c i f i c a t i o n .  Global v a r i a b l e s  i m p l y  a comnon memory. Access o b j e c t s  as 

rendezvous parameters i m p l y  a common memory. Many d i s t r i  buted systems, however, 
do n o t  s u p p o r t  shared menory. 

A l though e n t r y  c a l l s  and accept  

Connect ion management i s  n o t  supported. There i s  no su i  tab1 e 1 anguage c o n s t r u c t  

t o  r e p r e s e n t  a node i n  t h e  network; t h e r e f o r e  d i s t r i b u t i o n  o f  t h e  program cannot  

be hand1 ed f rom w i  t h i  n t h e  1 anguage . 

A l l  poss i  b l  e c o n s t r a i  n t s  on synchroni  z a t i  on cannot be expressed u s i n g  t h e  
rendezvous p r i m i t i v e s .  The rendezvous p rov ides  s y n c h r o n i z a t i o n  p o i n t s  f o r  

communi c a t i  ng t a s k s .  

t h r o u g h  shared v a r i a b l e s ) .  Asynchronous comnunicat ion i m p l i e s  nonb lock ing  sends 

and r e c e i v e s .  Th is  problem can be addressed by i n s e r t i  ng a b u f f e r i n g  t a s k  (a1 so 

c a l l e d  agen t  t a s k s  I l l ] )  between t h e  sender and r e c e i v e r ,  b u t  t h i s  may impose a 
s i g n i  f i  c a n t  degree o f  overhead. 

Ada p r o v i  des on1 y synchronous communi c a t i  on ( o t h e r  than  

C o n d i t i o n a l  e n t r y  c a l l s  i m p l y  t h a t  i t  can be q u i c k l y  e s t a b l i s h e d  whether t h e  

c a l l e d  t a s k  has executed t h e  accept  and t h a t  t h e  queue i s  empty. 
d e l a y  s ta temen t  would be used i f  a " t imed"  response was adequate, c o n d i t i o n a l  

S ince t h e  
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entry c a l l s  will be used by tasks t h a t  cannot tolerate  excessive delay. When 
the called t a s k  is on a remote node, timely response becomes a c r i t i ca l  - a n d  

u n q u a n t i  fied - issue. 

Timed entry call  s may i mpl y a potenti a1 race condi t i  on between the rendezvous 
and the timeout. 
involved i n  the rendezvous? I f  from the cal l ing t a s k ,  as seems logical , race 
conditions may occur where the c a l l i n g  t a s k  has aborted a rendezvous t h a t  the 
accepting task has in i t ia ted .  I f  from the accepting task,  a re  the semantics of 
t he  language preserved? 

Shou ld  timeout be measured from the c a l l i n g  or accepting tasks 

An interval timer capabil i t y  i s  not  supported. The Ada del ay statement guarantees 
a m i n i m u m  delay; the actual time interval can be a r b i t r a r i l y  longer t h a n  t h a t  
specified by the  de lay  statement and  s t i l l  s a t i s f y  t h e  semantics o f  the delay. 

Packages STANMRD a n d  SYSTEM need mu1 t i  pl e defi n i  tions i n  a heterogeneous 
dis t r ibuted environment. This imp1 ies a n  interface to the network presentation 
layer and  possibly a canonical representation of en t i t i e s .  Assunptions i n  target-  
dependent representation clauses may imply a specif ic  system i n  a heterogeneous 
en vi ronnent . 
Faul t to1 erance i s  not addressed [1.2,13]. What happens when a d i  s t r i  buted system 
has a processor crash? Can a "shadowing" task take over the f u n c t i o n a l i t y  of a 
"dead" task? Can the system degrade gracefully? Ada makes no expl ici t provision 
f o r  continuation. When a processor fa i lure  occurs, services a n d  d a t a  may be 
l o s t ;  tasks may be permanently suspended on the s u r v i v i n g  processors; and the 
context of some tasks may be lost. A replacement t a s k  cannot assune the name 
of the t a sk  i t  i s  intended t o  replace, a n d  there i s  no provision f o r  redirecting 
the comnunication pa th  used before the fa i lure .  

Using Ada i n  the distributed environment may require extensions t o  the 1 anguage 
[12], which, by def ini t ion,  means the language is no longer Ada. I f  there a re  
res t r ic t ions  on what Ada constructs are dis t r ibutable ,  i .e., shared variables 
are not permitted, can the compiler be validated? I f  the compiler generates 
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f u l l  Ada f o r  a u n i p r o c e s s o r  and a subset f o r  a d i s t r i b u t e d  t a r g e t ,  c a n  i t  pass 

v a l i d a t i o n  as a d e r i v e d  comp i le r  based on i t s  u n i p r o c e s s o r  mode? The i s s u e  of 

v a l i d a t i n g  Ada comp i le rs  f o r  d i s t r i b u t e d  env i  rorments i s  n o t  r e s o l v e d  a t  t h i s  

t ime. By one p h i l o s o p h y  each h o s t / t a r g e t  p a i r  must be v a l i d a t e d .  A l t h o u g h  

v a l i d a t i o n  p o l i c y  has evo lved  bejand t h a t  p o i n t ,  t h e  ques t i on  o f  a d i s t r i b u t e d  

a r c h i t e c t u r e  on v a l i d a t i o n  i s  debatable.  

One way o f  a v o i d i n g  t h e  e n t i r e  Val i d a t i o n  i s s u e  and t h e  problems o f  d i s t r i b u t i o n  

i s  t o  n o t  s u p p o r t  p h y s i c a l  concurrency i n  t h e  comp i le r .  T r a d i t i o n a l l y ,  

d i s t r i b u t e d  computer systems have a p p l i e d  some v a r i a t i o n  o f  mu1 ti process ing.  

4 .  ADA AND MULTIPROCESSING 

Mu1 ti tas  k i  ng e n t e r s  an area t r a d i  ti onal l y  considered t h e  p r o v i  nce o f  t h e  o p e r a t i  ng 

system. I n  a t t e m p t i n g  t o  d e f i n e  t h e  Ada h o s t / t a r g e t  env i ronnen t ,  t h e  S t o n m a n  

docunent speci  f i e s  an  Ada Programming Support Envi  rorment (APSE) t o  p r o v i d e  a 
framework f o r  w r i t i n g  Ada programs [2 ,3 ] .  Examining t h e  boundar ies between an 

APSE and t h e  t a r g e t  system r e v e a l s  severa l  r e l a t e d  areas: t h e  Ada language, 

t h e  r u n - t i m e  system, t h e  o p e r a t i n g  systen,  and t h e  programming suppor t  env i ro rmen t .  

The Kernel  Ada Programming Suppor t  Envi rorment  (KAPSE) p rov ides  access t o  t h e  
o p e r a t i n g  system r o u t i n e s .  An APSE p rov ides  a mu1 ti p rocess ing  h o s t  environment 

f o r  sof tware devel opnent. The t a r g e t ' s  run - t ime  system prov ides t h e  v i  r t u a l  

machine on which an  Ada program runs.  I ssues  which a r e  n o t  s p e c i f i e d  i n  t h e  

Ada 1 anguage de f  i n i  ti on and must  be addressed b y  t h e  run- ti me system i nc l  ude 
t h e  broad c a t e g o r i e s  o f  j o b  schedu l i ng ,  memory managenent , s e c u r i t y ,  f a u l t  
t o l e r a n c e ,  and d i s t r i b u t e d  systems. 

I n  an APSE t o o l  compos i t i on  

c o m p l e t e l y  s e p a r a t e  Ada p r o g r m  1141. Since  t h e  Ada language has no such f a c i l i t y ,  

s u p p o r t  f o r  t o o l  composi ti on must  be suppor ted by t h e  KAPSE. An I N V O K E  - PROGRAM 

p r i m i t i v e  can suspend t h e  c a l l i n g  program, execu te  t h e  c a l l e d  program t o  

comp le t i on ,  and then  resune t h e  c a l l i n g  program. 
no n- b loc k i  ng . 

imp1 i e s  a need f o r  one Ada program t o  invoke ano the r  

The p r i m i t i v e  can a l s o  be 

The Canmon APSE I n t e r f a c e  Set  (CAIS) a t t e m p t s  t o  p r o v i d e  a s tandard hos t  

env i ro rmen t  f o r  deve lop ing  h o s t  t o o l s  161. The C A I S  i n c l u d e s  b o t h  process 
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i ni  ti a t i  on and i nterprocess communication mechanisms. 

envirorment,  however, i s  a de fer red  t o p i c  under t h e  proposed MIL-STD-CAIS. If 

t h e  C A I S  i s  extended t o  address t h e  d i s t r i b u t e d  hos t  envirorment, a p p l y i n g  t h e  

same mechanisms t o  t h e  d i s t r i b u t e d  t a r g e t  i s  s t ra igh t fo rward .  The d i s t i n c t i o n  
between hos t  and t a r g e t  systems i s  l a r g e l y  a r t i f i c i a l  f o r  t h i s  instance. 

The d i  s t r i  buted 

Research i n  d i s t r i b u t e d  systems has explored many avenues f o r  imp1 m e n t i n g  
concurrency i ncl udi  ng mu1 ti processing and i ntegrated approaches s i m i l  a r  t o  

m u l t i t a s k i n g .  

approach i s  t h a t  i t  discards t h e  software engineer ing concepts cen t ra l  t o  the  

language. 
t o  Ada a r e  s e r i o u s l y  compromised by  us ing  message-oriented mechanisms. 

The most s i g n i f i c a n t  problem w i t h  t h e  Ada and mu1 t i p rocess ing  

The s t rong type checking and in fo rma t ion  h i d i n g  c a p a b i l i t i e s  i n t e g r a l  

Part o f  the Ada design philosophy i s  t h a t  modularity and abstraction are well- 

proven means t o  overcome natura l  hunan l i m i t a t i o n s  i n  dea l i ng  w i t h  complexi ty.  

Should a system designer be aware o f  an under l y ing  d i s t r i b u t e d  system? To prov ide 
t h e  t i m e - c r i t i c a l  performance requ i red  by  t h e  a p p l i c a t i o n  i t  may be essent ia l  

t h a t  t h e  desi  gner have expl  i c i  t understanding and c o n t r o l  o f  t he  d i  s t r i  buted 

system. I n  o t h e r  systems which do n o t  have r e a l - t i m e  requirements i t  may be 
i r r e l e v a n t  t o  t h e  system designer how t h e  under ly ing  hardware implements t h e  
design. 

~ 

~ A compromise between these approaches i s  t o  develop a pre-processor which takes 

as i n p u t  a s i n g l e  m u l t i t a s k i n g  Ada program and ou tpu ts  m u l t i p l e  Ada programs 
(one pe r  node) t h a t  use s i te -spec i  f i c  mechanisms f o r  in te rprocessor  communication 

[15,5] .  
d i s t r i b u t e d  Ada programs. 

Ada program as i t s  i n p u t ,  and ou tpu t  a s e t  o f  Ada programs which cou ld  then be 
compi led f o r  t h e  appropr ia te  ta rge t .  The pre-processor cou ld  use a standard 

sof tware communications package which provides a bas ic  message-oriented 
network i  ng capabi l  i ty. This  package coul d be reimpl enented f o r  a given 

d i s t r i b u t e d  a r c h i t e c t u r e  w i thou t  changing t h e  pre-processor. Proxy tasks could 

then be used t o  handle rendezvous between nodes. 

Such a h y b r i d  approach w u l d  prov ide a po r tab le  t o o l  f o r  b u i l d i n g  

The pre-processor cou ld  be w r i t t e n  i n  Ada, accept an 
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5. CONCLUSIONS 

I n  a r e a l - t i m e  embedded t a r g e t  envi r o m e n t  t h e  expense and compl ex i  t y  o f  imp1 ement- 

i n g  an e f f i c i e n t  Ada c o m p i l e r  f o r  a g iven d i s t r i b u t e d  a r c h i t e c t u r e  may be a 

c o m p a r a t i v e l y  m i n o r  i ssue .  A d i s t r i b u t e d  system c o u l d  be b u i l t  i n c o r p o r a t i n g  

s o l u t i o n s  t o  t h e  problems w i t h  d i s t r i b u t e d  m u l t i t a s k i n g  which have been discussed. 

Whether such a system c o u l d  p r o v i d e  adequate response i n  a hard r e a l - t i m e  

env i ro rmen t  i s  ques t i onab le  un less  t h e  comp i le r  i s  customized f o r  a s p e c i f i c  

d i s t r i b u t e d  t a r g e t .  

Us ing  t h e  mu1 ti p rocess ing  approach r e q u i r e s  know1 edge o f  t h e  d i s t r i b u t e d  a r c h i -  

t e c t u r e  a t  system design. 

d e s i g n i n g  d i s t r i b u t e d  comput ing systems emphasizes d e f e r r i n g  a b i n d i n g  o f  t h e  

system t o  t h e  a r c h i t e c t u r e .  

env i  ronment , r e q u i  res an i nterprogram communi c a t i  ons mechanism t o  a i  d i n t o o l  

composi t ion.  The e x t e n s i o n  o f  such a mechanism f o r  t h e  d i s t r i b u t e d  env i ro rmen t  
can p r o v i d e  a p o r t a b l e  d i s t r i b u t e d  p r o c e s s i n g  c a p a b i l i t y .  

T h i s  i s  n o t  n e c e s s a r i l y  bad, b u t  c u r r e n t  work i n  

The h o s t  env i ro rmen t ,  as opposed t o  t h e  t a r g e t  

Combining mu1 t i t a s k i n g  and mu1 t i  process ing may be t h e  most p romis ing  approach, 

b u t  t h e  b a s i c  problems i n  d i s t r i b u t i n g  Ada programs must s t i l l  be addressed. 

F o r  r e a l - t i m e  env i rorments t h e  des igner  must remain aware o f  t h e  performance 

i mpl i c a t  i ons o f  des i gn dec i  s i  ons . 
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An Evaluation of Ada* for AI Applications 

David R. Wallace, Intermetrics, Inc. 

1. Abstract 
Expert system technology seems to be the most promising type of AI application 
for Ada. An expert system implemented with an expert system shell provides a 
highly structured approach that fits well with the structured approach found in 
Ada systems. The current commerciaJ expert system shells use Lisp. In this 
highly structured situation a shell could be built that used Ada just as well. 

On the other hand, if it is necessary to deal with some AI problems that are not 
suited to expert systems, the use of Ada becomes more problematical. Ada was 
not designed as an AI development language, and it is not suited to that. It is 
possible that an application developed in, say, Common Lisp could be translated 
to  Ada for actual use in a particular application, but this could be difficult. 
Some standard Ada packages could be developed to make such a translation 
easier. 

If the most general -41 programs need to be dealt with, a Common Lisp system 
integrated with the Ada environment is probably necessary. Aside from problems 
with language features, Ada, by itself, is not, well suited to the prototyping a.nd 
incremental development that is well supported by Lisp. 

2. Is Ada Suitable for AI Development? 
In order to  answer this question we must look at  what is required for developing 
AI applications. 

2.1 AI Development Requirements 

Two key phrases that describe AI development are: 

0 rapid prototyping 

0 iterative feedback development 

AI systems are generally developed incrementally, where at each stage the current 
behavior is observed in order to  determine exactly what the next stage should be. 
This requires great Rexibility and is best supported by a language that allows 
either incremental compila.tion or interpretation. More specifically, AI 
development often requires heuristic search techniques that must be developed 

*Ada is a registered trademark of the U.S. Department of Defense (AJPO) 
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on-the-fly to match the particular problem at hand. 

This type of development further requires flexible dynamically changing data 
structures without strong typing. Any use of data declarations must be either 
very limited or automated in some way. Otherwise, the overhead of constantly 
modifying these declarations becomes unacceptable and what is worse, error 
prone. This data problem has been dealt with very successfully in Prolog and 
Sail by the use of an associative data base. This allows data access without 
explicit knowledge of the surrounding structure. 

In Iarger AI systems the concepts of data abstraction or object oriented 
programming are used extensively. See [7] for some background on object 
oriented programming in AI. The motivations for their use in AI is the same as 
that  elsewhere: use higher level concepts and hide implementation details in order 
to make development, modification, and maintenance easier. Object oriented 
programs have algorithms and data that are very closely coupled. In AI 
applications this coupling can be very dynamic, having procedure values mixed in 
with the data the procedure is going to use. This makes it very easy to creak 
very powerful parametrized transformations. How a large data structure is 
transformed can often be determined by values within itself. Much of the current 
uses of data abstractions in AI code written in Lisp is somewhat unstructured. 
This is partly since Lisp does not support data abstraction as a language feature. 
However, data abstr:iction use is becoming more formali~ed via the increased use 
of expert system shells (see below). 

Most AI applications require some type of general value or attribute evaluation 
and propagation mechanism. A simple example of this is the parameters and 
variables in a Prolog program. The order in which these attributes are evaluated 
and propagated is dynamically determined; thus it is impossibie to predict, their 
storage requirements or lifetimes. This requires a very general storage 
management system with garbage collection. Data on a stack will in general 
have the wrong lifetime and data on a heap without garbage collection will 
overflow during most AI applications. 

I 2.2 Ada Features Favorable to AI Development 

Ada is a modern programming language providing clear and up-to-date control 
and data st,ri~ctiiring facilities. Thiis it, should he very good at. providing 
programming support for well understood and highly structured programming 
tasks. 
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Compared with other languages of its type Ada also provides a great deal of 
leverage in dealing with data abstraction and certain types of variability. The 
key features that support this are overloading and generics. Packages with 
overloading and generics provide a very powerful data abstraction mechanism. 
Such features allow what appears to be one procedure to deal with a number of 
different data types. 

Another Ada strong point is its comprehensive support for modularity. The 
package concept is a very useful way of organizing a data abstraction. With the 
cross checking provided by the compiler it is very easy to divide a large task into 
modular pieces that can be developed independently and reliably. 

Ada is highly suited to any task that is highly structured, has a relatively static 
behavior, and has a close correlation between control structure and storage 
lifetimes. There are probably some AI applications that fit these requirements. 

The package concept allows the construction of what are the equivalent of Ada 
language extensions - in ternis of data abstractions. This means that predefined 
library packages could be constructed to model the following: 

0 Lisp list-processing language features, see e.g. [3] 

0 associative database language features, see e.g. 141 

Such features would go a long way in allowing reasonable AI programming in 
Ada. However, there are potentially serious problems in implementing these 
packages appropriately (see below). 

2.3 AI Problem Areas for Ada 

Ada is unsuitable for dealing with the variety of problems and approaches arising 
in AI research applications. 

2.3.1 Compilation 
For the most part Ada requires compilation. For the purposes of AI development 
the lack of a reasonably fast interpre1,er or incremental compilation system is a 
very serious problem. Dynamic debugging in this environment is often used to 
determine the next stage of development. Without a fa s t  interpreter it is very 
difficult to get an appropriately dynamic debugging system. In AI development, 
incomplete programs are often run with values supplied through the debugger 
when missing sections are reached. 

The strong typing and the large declaration overhead add a very high cost to the 
iterative feedback loop used for AI development. 
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There are further problems caused by the use of a language that requires 
compilation when a large system is under development; that  is recornpilation. A 
small change in one part of a large system may (and often does) force 
recompilatiori and modification in rriost modules of t h e  system. In a Lisp 
development envirorirrierit the use of an interpreter eliminates the need for 
recompilation and the flexibltb arid general data structures eliminate the need for 
rewriting data declarations. 

To be fair it should bc iiotcd that Ada is riiuch better tl:an most other languages 
(like Pascal or C) in this area. Ada provides for modular consistency in a large 
system with both recompilal ion analysis and intermodule type checking. And 
further, Ada’s support for data abstraction, even though soniewhat static, a l lows 
for limiting the global effect of local changes. 

It should be noted here that Ada systcms that support increniental compilation 
are just starting to become available; see e.g. [2]. Such a system could go a long 
way toward alleviating these development problems. 

2.3.2 Storage Management 
As mentioned above under AI requireinelits, AI applications evaluak and 
propagate values or attributes in a very complex and often unpredictable nianner. 
In any case, it is rare that the lifetime of these attributes follows the control 
structure of the program. This requires a system of managing memory 
independent of the stack mechanism. Direct user control of such a systeiri (e.g. 
explicit FREE) is out of the question because of the certainty of error. In any  
real AI application it is also riot practical to simply avoid deallocation; no rnat,tcr 
how much memory is availat~le it will be used up. This means there must be a 
sophisticated memory riiaiiagerrient system with garbage collection. This 
provides correct reclaniation of storage when data lifetime is over. It is unlikely 
that Ada systems will provide such a feature because its high overhead conflicts 
with real time requirements. However, it should be pointed ou t  that  the Ada 
definition does not precludc: garbage collection, see section 4.8 of the Ada 
reference Manual. This is a feature that could be associated with a pragnia. 

User defined garbage collectim would require the creation of a storage exception 
that, when raised, would call a user subprogram to deal with it. This 
subprogram would need to use unsafe practices to do low-level heap manipulation 
and bookkeeping. Ada does not have the language features to allow higher-level 
control of storage for garbage collection. This is due to problems with its data 
abstraction capability which is discussed in the next section. 
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2.3.3 Existing AI Packages 
One further problem with ,4da, especially for near term use, is the lack of 
existing AI packages. There are, of course, many existing AI packages written in 
LISP. 

2.4 Is Ada Suitable for AI Re-implementation? 

If we assume some AI system has already been developed in an existing AI 
language, then we could consider translating it to Ada. This would avoid the 
problems mentioned above with the AI development cycle. Further, this 
approach has been used in a number of AI applications. There is a hazard here, 
however, since it may not be possible or practical to translate all AI systems to 
Ada. Translation problems can be mitigated by using AI-language coding 
standards to limit hard-to-t,ranslate features and usages. However, hard to 
translate features and usages are legitimate and necessary for some applications. 
Translation problems are likely to arise in two areas: 

data abstraction usage 

garbage collection 

Garbage collection was discussed in the previous section. In general, a Lisp 
program using the full data lifetime capability will not be translatable to Ada. 

Ada does not have a true daka abstraction facility. Even though Lisp does not 
support data abstraction as a language feature per se, its flexibility allows the 
user to define and use powerful data abstractions. Ada supports encapsulated 
data types via the PACKAGE feature, but does not provide explicit abstract 
type construction features. This will create translation problems. Missing 
functions or features include: 

updating structures within the package to reflect the instantiation of an o b j e c t :  
Ada does allow auxiliary structures within a package but there is no 
automatic way to  coordhate it with object creation. Such use is necessary, 
for instance, to do storage allocation with garbage collection. 

t y p e  instantiation parameters or run-time t y p e  attributes: 
For instance, a user cannot create a string type with string-length as a type- 
attribute. 

initialization and finalization of an object: 
These are necessary when data types interact with their type context. For 
example, in the case of garbage collection, it is necessary to record 
information both when an object is allocated and when it is de-allocated. Ada 
only allows a limited form of initialization; i.e. when the data representation 
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is a record structure. However, there is no way to do finalization. 

For more details on the abstract type problems of Ada see the SRI analysis of 
Ada for AI uses, [5]. 

2.5 Expert System Shells in Ada 

Expert systems are best built using a shell, like ART (automated reasoning tool) 
or KEE (knowledge engineering environment). These shells have their own 
syntax and provide a disciplined and highly structured way of building expert 
systems. The shell provides not only the inference mechanism for the expert 
system but also the modular and hierarchical organization. This area provides 
the most promise for the use of Ada. 

The shell structure can be used to limit the complexity of features used and their 
interaction. Further, the  shelf can generate a large number of type declaration or 
long select statements where this would be impossible by hand. This is often 
what is necessary to cope with strong typing. 

In an expert system, general attribute propagation among rules requires garbage 
collection. However, the problems with the data abstractions in Ada can be dealt 
with if, for instance, explicit subprogram calls are inserted at  key points in the 
Ada program to coordinate allocation and de-allocation. It is not feasible to have 
such calls inserted by a user, but they can be inserted reliably by the shell. 

The modular and hierarchical aspects of shells are well supported by Ada. On a 
large system this will support team development well. However, as mentioned 
above it is necessary to have version control and recompilation analysis when 
using a compilable language. Languages such as Pascal or C would have very 
serious drawbacks in this environment. Fortunately, Ada is designed to support 
consistent separate compilation so it is very well suited to this task. However, 
during development the compilation costs could become very high. 

3. Mixed Environments of Ada and AI Language 
If Ada is only well suited to use with expert system shells, as described above, 
then other use of AI must use existing methods. Currently the accepted 
approach to dealing with the most general AI programs is the use of Common 
Lisp. Common Lisp is becoming the standard AI programming language in the 
U.S. Prolog is not yet a major force, although developments in this area should 
be watched, especia.11~ in light of Japanese efforts. The way to solve this 
dilemma is to integrate a Common Lisp system with the Ada environment. For 
proper iiitegration such a Lisp system would need lo be supplied by Ihe same 
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vendor that supplied the Ada system. In this way Ada. can be integrated with AI 
Language tools and support. They can use shared list-processing and database 
packages and have the ability to call each other. 

3.1 Impact on Development Tools 

As long as Lisp components are under the same configuration management 
system, there should be no real problems. A Lisp system may require some of its 
own special tools, but these should not interact with the other tools. 

3.2 Interfaces and Characteristics 

The interface between Lisp and Ada is potentially complex. This can be made 
simpler by sharing standard packages (see below). However, in this case the only 
good solution is to require appropriate integration. 

3.3 Operational Concepts 

The biggest problem area in a mixed system is probably garbage collection. As 
described above, hand generated Ada is not designed to deal with this well. The 
only safe solution to this is to limit the actual AI work to the Lisp components. 
One can restrict the Ada components from allocation and de-allocation, unless 
they are correctly generated by, for instance, an expert system shell. 

The storage management problem could be much simpler if it were possible to 
build packages that could deal with their own storage management without extra 
user calls. There appear to be only two ways to do this: 

low-level unsafe programming practices within the package 

0 language extensions to extend the data abstraction capabilities of Ada 

Neither is particularly desirable. 

i 
8.4 Standard Packages 

Standard packages that would be desirable for AI applications in Ada include: 

0 List Processing Predefined Package Library 

0 Associative Database Predefined Package Library 
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4. Conclusion 
Because of its design goals Ada has some limitations in comparison with very 
powerful AI languages like Common Lisp. Except in very special applications, 
translation from Lisp to Ada is not feasible. Further, the modes of AI 
development are poorly supported by the Ada system. Ada is not well suited to 
the prototyping and increniental development required for AI work. Real 
promise, however comes in the  area of expert system shells. The shells can be 
used to generate consistent Ada code that could not be generated by hand and 
further can generate complex constructs to bypass language feature mismatch 
problems. This should not be too surprising since thc shell can use compiler 
implementation techniques used in Lisp. 

If serious AI application beyond expert systems is anticipated, a mixed 
environment would be necessary. A language like Lisp provides the riglil 
language features along with support for AI style development. The most 
reasonable choice would be integrating Common Lisp in the Ada environment. 
However, access to some Lisp features from Ada would need to be restricted to 
ensure system reliability. 
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I n t e l l i g e n t  User I n t e r f a c e  Concept for  Space S t a t i o n  

by: 

Edward Comer, Cameron Donaldson, and Kath leen  Gilroy 
Sof tware  P r o d u c t i v i t y  S o l u t i o n s ,  I n c .  

and 

E l i z a b e t h  Bailey 
Sof tware  Metrics, I n c .  

I n t r o d u c t i o n  

The s p a c e  s t a t i o n  computing s y s t e m  must i n t e r f a c e  w i t h  a wide v a r i e t y  of 
u s e r s ,  from h i g h l y  s k i l l e d  o p e r a t i o n s  p e r s o n n e l  t o  payload  s p e c i a l i s t s  from 
a l l  o v e r  t h e  world.  
o p e r a t i o n s  from t h e  s p a c e  p l a t f o r m ,  ground c o n t r o l  c e n t e r s  and from remote 
sites. As a r e s u l t ,  t h e r e  is a need f o r  a r o b u s t ,  h i g h l y  c o n f i g u r a b l e  and 
p o r t a b l e  u s e r  i n t e r f a c e  t h a t  can accommodate t h e  v a r i o u s  s p a c e  s t a t i o n  
m i s s i o n s .  

The i n t e r f a c e  must accommodate a wide v a r i e t y  of 

T h i s  paper  p r e s e n t s  t h e  concept  of a n  i n t e l l i g e n t  u s e r  i n t e r f a c e  e x e c u t i v e ,  
w r i t t e n  i n  Ada, t h a t  would s u p p o r t  a number of advanced human i n t e r a c t i o n  
t e c h n i q u e s ,  such  as  windowing, i c o n s ,  color g r a p h i c s ,  an imat ion ,  and n a t u r a l  
l anguage  process ing .  The u s e r  i n t e r f a c e  would p r o v i d e  i n t e l l i g e n t  i n t e r a c t i o n  
by u n d e r s t a n d i n g  t h e  v a r i o u s  u s e r  roles, t h e  o p e r a t i o n s  and m i s s i o n ,  t h e  
c u r r e n t  s tate of t h e  envi ronment  and t h e  c u r r e n t  working c o n t e x t  of t h e  u s e r s .  

I n  a d d i t i o n ,  t h e  i n t e l l i g e n t  u s e r  i n t e r f a c e  e x e c u t i v e  must b e  suppor ted  by 
a set of t o o l s  t h a t  would a l low t h e  e x e c u t i v e  t o  be eas i ly  c o n f i g u r e d  and t o  
a l low r a p i d  p r o t o t y p i n g  of  proposed u s e r  d i a l o g u e s .  
allow human e n g i n e e r i n g  s p e c i a l i s t s  a c t i n g  i n  t h e  r o l e  of d i a l o g u e  a u t h o r s  t o  
d e f i n e  and v a l i d a t e  v a r i o u s  u s e r  s c e n a r i o s .  
t o o l s  r e q u i r e d  t o  s u p p o r t  development  of t h i s  i n t e l l i g e n t  human i n t e r f a c e  
c a p a b i l i t y  and w i l l  o u t l i n e  t h e  p r o t o t y p i n g  and v a l i d a t i o n  e f f o r t s  r e q u i r e d  
for  development  of t h e  Space S t a t i o n ' s  u s e r  i n t e r f a c e .  

T h i s  c a p a b i l i t y  would 

The paper  w i l l  d i s c u s s  t h e  set of 

The Space S t a t i o n  User I n t e r f a c e  Problem - - 
The s p a c e  s t a t i o n  u s e r  i n t e r f a c e  r e p r e s e n t s  one  of t h e  g r e a t e s t  c h a l l e n g e s  

i n  human-machine i n t e r a c t i o n  t o  date .  
t h e  s p a c e  s t a t i o n  w i l l  i n v o l v e  thousands  of p e o p l e  from a l l  o v e r  t h e  world.  
The s p a c e  s t a t i o n  u s e r  community w i l l  i n c l u d e  p r i v a t e  i n d u s t r y ,  u n i v e r s i t i e s ,  
and o t h e r  government a g e n c i e s  as w e l l  as  t h e  v a r i o u s  NASA c e n t e r s  and t h e i r  
c o n t r a c t o r s .  

The development ,  o p e r a t i o n  and u s e  of 

The s p a c e  s t a t i o n  u s e r  i n t e r f a c e  must p r o v i d e  s u p p o r t  fo r  t r a d i t i o n a l  
ground-based, on-orb i t  and payload  o p e r a t i o n s ,  each  of which i n v o l v e s  numerous 
o p e r a t i o n a l  roles. The test  and i n t e g r a t i o n  f u n c t i o n  is r e p r e s e n t a t i v e  of t h e  
d i v e r s i t y  of t h e s e  r o l e s  [DOR83]: 

o m i s s i o n  and o p e r a t i o n s  p l a n n i n g  
o s i m u l a t i o n  and modeling 
o manufac tur ing  development and test 
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o 
o on-orbit i n t eg ra t ion  and t e s t i n g  
o on-orbit maintenance and repair 
o payload i n t e g r a t i o n  and t e s t i n g  
o use r  payload da ta  processing 
o environment monitoring and con t ro l  
o 

pre- and post-launch i n t e g r a t i o n  and t e s t i n g  

real-time f l i g h t  and opera i tona l  func t ions  

While t h e  need t o  support  t r a d i t i o n a l  ope ra t iona l  roles l i k e  launch and 
f l i g h t  c o n t r o l  w i l l  continue with the  space s t a t i o n ,  an increas ing  number of 
u s e r s  w i l l  no t  have experience with NASA mission operations.  
purpose f a c i l i t y ,  t h e  space s t a t i o n  w i l l  support  u s e r s  of its s c i e n t i f i c  
l a b o r a t o r i e s  and payloads, u se r s  running manufacturing and repair opera t ions ,  
and u s e r s  providing t r anspor t a t ion  serv ices .  

As a mul t i -  

Space s t a t i o n  a c t i v i t i e s  w i l l  be d i s t r i b u t e d  over  many sites (both 
government and commercial), inc luding  space platforms,  maneuvering v e h i c l e s ,  
ground-based command s t a t i o n s ,  and da ta  c o l l e c t i o n  centers .  
a c t i v i t i e s  c u r r e n t l y  performed by ground-based personnel on s p e c i a l i z e d  
s y s t e m s  w i l l  have t o  be executed on t h e  space p la t form using multi-purpose 
equipment. 

Many of t h e  

Analys is  of user  i n t e r f a c e  technology c u r r e n t l y  i n  use  on NASA projects 

Some of t h e  problems t h a t  must be addressed include: 
demonstrates t h a t  it is clearly not  adequate t o  meet the  space s t a t i o n  
cha l lenge .  

o I n t e g r a t i o n  with o the r  systems and off-the-shelf products ( cu r ren t ly  
d i f f i c u l t  o r  no t  poss ib l e )  

o Lack of support  f o r  advanced i n t e r a c t i o n  techniques 
oInadequate  development t o o l s  
o Lack of uniformity - I n t e r f a c e s  d i f f e r  from s y s t e m  t o  sys t em,  payload 

t o  payload, and s i te  t o  si te 
o D i f f i c u l t  t o  use  - r equ i r e  t h e  a s s i s t ance  of s p e c i a l i s t s  t o  accomplish 

mission (not  appl icat ions-or iented);  no t  t a i l o r a b l e  t o  needs of 
i n d i v i d u a l  users ;  poorly human-engineered; 

o Modif icat ions o f t e n  r equ i r e  reimplementation 
o D i f f i c u l t y  i n  performing v a l i d a t i o n  i n  e i t h e r  o f f - l i n e  or real-time 

modes 

Bene f i t s  t o  be der ived  from improving t h e  cu r ren t  user  i n t e r a c t i o n  approach 
include: 

o Reduced l i f e  cycle cost by providing t h e  necessary f l e x i b i l i t y  f o r  u s e r s  
t o  accomplish new mission operat ions,  and longer  l i f e  of t h e  ope ra t iona l  
sof tware due t o  increased a d a p t a b i l i t y  [BAS851 

o Greater l e v e l  of automated support ,  providing easier operat ions,  use, 
modif icat ion,  maintenance and v a l i d a t i o n  [ DOR85 ] 

o Increased o e r a t i o n a l  confidence because personnel can perform a c t i v i t i e s  
themselves  fDOR85 ] 
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Types of  I n t e r a c t i o n  t o  b e  Supported 

I 

A v a r i e t y  of u s e r - i n t e r a c t i o n  styles h a v e  been made p o s s i b l e  by a d v a n c e s  i n  
hardware technology.  
can  be d i s p l a y e d  and t h e  o p e r a t i o n s  a v a i l a b l e ,  t h e  p o t e n t i a l  f o r  e f f e c t i v e  and 
h i g h l y  u s a b l e  i n t e r f a c e s  is g r e a t l y  increased .  
of u s e r s  and wide v a r i e t y  of u s e r  p r o f i l e s  f o r  t h e  Space S t a t i o n  computing 
s y s t e m ,  it is  e s s e n t i a l  t h a t  t h e  u s e r  i n t e r f a c e  t a k e  a d v a n t a g e  of proven  
s o p h i s t i c a t e d  t e c h n o l o g i e s  such as advanced g r a p h i c s ,  a n i m a t i o n  and n a t u r a l  
language.  

With a n  i n c r e a s e  i n  t h e  amount of t h e  i n f o r m a t i o n  t h a t  

Given  t h e  a n t i c i p a t e d  number 

Graphics  may b e  used i n  any of a number of ways t o  s u p p o r t  t h e  Space 
S t a t i o n  mission,  i n c l u d i n g  map g e n e r a t i o n ,  r e a d i n g  and a n a l y s i s ,  d e c i s i o n  
s u p p o r t  a i d s ,  t e l e c o n f e r e n c i n g ,  model ing and s i m u l a t i o n ,  and t h e  g e n e r a t i o n  of 
forms, r e p o r t s  and p r e s e n t a t i o n s .  T h i s  v a r i e t y  of a p p l i c a t i o n s  p l a c e s  s p e c i a l  
r e q u i r e m e n t s  on t h e  g r a p h i c s  f u n c t i o n a l i t y .  F u n c t i o n a l  r e q u i r e m e n t s  can be 
s e p a r a t e d  i n t o  g r a p h i c s  o u t p u t  C a p a b i l i t i e s ,  g r a p h i c s  i n p u t  c a p a b i l i t i e s ,  and 
t h e  s t o r a g e ,  r e t r i e v a l  and t r a n s f e r  of g r a p h i c s  informat ion .  An e x c e l l e n t  
d e t a i l e d  d i s c u s s i o n  of t h e  classes of g r a p h i c  i n t e r a c t i o n  and t e c h n i q u e s  t o  
s u p p o r t  them is p r o  v i ded i n  [ FOL84 3. 

Output  c a p a b i l i t i e s  needed i n c l u d e  s u p p o r t  f o r  d i s p l a y  of c h a r t ,  graph and 
o t h e r  two-dimensional diagrams, d i s p l a y  of image d a t a ,  and s u p p o r t  f o r  h i g h  
q u a l i t y  typography, a v a r i e t y  of  c o l o r s  i n  d i s p l a y  o u t p u t ,  and an imat ion  
( d i s c u s s e d  i n  later paragraphs).  
most s y s t e m s  do n o t  e f f e c t i v e l y  use it. 
t i o n  of color can  b e  found i n  [MUR84].  
c a p a b i l i t i e s ,  such  as "zoom," "shrink," "pan," and " h i g h l i g h t "  w i l l  be  needed 
also. 

The use of c o l o r  h a s  e v o l v e d  so  r a p i d l y  t h a t  
U s e f u l  g u i d e l i n e s  f o r  t h e  e x p l o i t a -  

It is  expec ted  t h a t  dynamic d i s p l a y  

Command and c o n t r o l  a p p l i c a t i o n s  t y p i c a l l y  r e q u i r e  a s i g n i f i c a n t  amount of 
G r a p h i c s  c a p a b i l i t i e s  must s u p p o r t  i n t e r a c t i v e  t e x t  e n t r y ,  u s e r  i n t e r a c t i o n .  

i n p u t  of d a t a  i n  v i d e o ,  f a x ,  o r  d i g i t a l  format, t h e  development  and management 
of menu-driven systems,  t h e  development  and management of s o p h i s t i c a t e d  m u l t i -  
window a p p l i c a t i o n s ,  and screenpaimting.  
discussed in la ter  paragraphs.  

The u s e  of menus and windows is 

Whi le  p i c t u r e s  may be c r e a t e d ,  d i s p l a y e d  and d i s c a r d e d  "on-the-f l y , "  i t  is  
o f t e n  d e s i r a b l e  t o  store p i c t u r e s  or p o r t i o n s  of p i c t u r e s  fo r  later use. 
Without  a s t o r a g e  and r e t r i e v a l  c a p a b i l i t y ,  t h e  r e u s e  of a commonly needed 
p i c t u r e  (such as a map) would h a v e  t o  be accomplished by i n c l u d i n g  t h e  map- 
drawing program i n  e v e r y  new a p p l i c a t i o n .  
t i o n  program t o  s i m p l y  r e q u e s t  t h a t  t h e  map be r e t r i e v e d  from t h e  common 
d a t a b a s e  and d i s p l a y e d .  I n  a d d i t i o n  t o  s t o r a g e ,  t h e  c a p a b i l i t y  t o  t r a n s f e r  a 
p i c t u r e  from one  s y s t e m  t o  a n o t h e r  must b e  provided.  
fo r  t h e  g e n e r a t i o n  and i n t e r p r e t a t i o n  of p i c t u r e s  expressed  a c c o r d i n g  t o  a 
p a r t i c u l a r  p r o t o c o l .  

A b e t t e r  method is f o r  t h e  a p p l i c a -  

Suppor t  must b e  p r o v i d e d  

A number of n a t i o n a l  and i n t e r n a t i o n a l  g r a p h i c s  s t a n d a r d s  e x i s t ,  t h e  
b e n e f i t s  of which are independence of a p p l i c a t i o n  programs from d e v i c e  and 
vendor  dependencies ,  t h e r e b y  improving t h e  p o r t a b i l i t y  of a p p l i c a t i o n  programs 
and da ta .  
which can  b e  compared t o  t h e  Open Systems I n t e r c o n n e c t i o n  (OSI) model f o r  

These s t a n d a r d s  r e p r e s e n t  a h i e r a r c h y  of g r a p h i c s  software layers 
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communications software. [HIN84] Among t h e  most promising s tandards  are t h e  
Graphical  Kernel System (GKS) and Programmer's H ie ra rch ica l  I n t e r a c t i v e  
Graphics Standard (PHIGS). GKS f u n c t i o n a l i t y  ranges from s i m p l e  pas s ive  
output  t o  complex i n t e r a c t i v e  graphics ,  and developments are underway t o  
support  three-dimensional graphics  (GKS 3-D). 
i nc lud ing  Ada, are p a r t  of t h e  GKS standard,  and Ada implementations of GKS 
e x i s t .  [LEO851 
binding f o r  PHIGS has been developed. 

ANSI language bindings,  

PHIGS was designed t o  be upward compatible from GKS and an Ada 

Personal  workstat ions with high r e s o l u t i o n  bit-mapped d i s p l a y s  cont inue  t o  
decrease i n  cost, making a v a i l a b l e  and very attractive t h e  c rea t ion  of 
animated drawings. Animation is a wonderful technique f o r  i l l u s t r a t i n g  
dynamic o b j e c t s  and t h e i r  ac t ions .  
of animation wi th in  a programming environment is provided by London and 
Duisberg. The au tho r s  descr ibe  t h e  need f o r  an animation t o o l k i t  - a 
set  of easily learned,  easily appl ied ,  p o r t a b l e  animation rou t ines  t o  r e l i e v e  
t h e  t ed ious  programming assoc ia ted  with computer animation. 
would i n c l u d e  a l i b r a r y  of r eusab le  and connectable  animation rou t ines  f o r  
c r e a t i n g  new views. 
S t a t i o n  Development Environment a long  with packages f o r  developing menu- and 
window-based sys tems.  

A v e r y  i n t e r e s t i n g  discussion of t h e  use 

[LD85] 

Such a t o o l s e t  

An animation t o o l s e t  should be provided i n  t h e  Space 

Menu-driven s y s t e m s  have become commonplace f o r  command and c o n t r o l  
a p p l i c a t i o n s .  For t h e  number of o p t i o n s  and the sizes of databases w e  
a n t i c i p a t e  f o r  t h e  Space S t a t i o n  computing sys t em,  t y p i c a l  t ree-s t ruc tured  
menu systems w i l l  no t  be s u f f i c i e n t .  
t y p i c a l l y  have numerous e n t r i e s ,  is t h a t  they consume precious screen space 
and f o r c e  t h e  u s e r  t o  spend v a l u a b l e  time searching f o r  a p a r t i c u l a r  entry.  
Popular  mechanisms t o  s o l v e  t h i s  problem inc lude  p a r t i t i o n i n g  of e n t r i e s  
according t o  l o g i c a l  func t ion ,  pop-up submenus f o r  r e l a t e d  but  more s p e c i f i c  
e n t r i e s ,  paged menus and s c r o l l i n g  menus. 

The problem with these  menus, which 

I n  any menu system, accomodation must be made f o r  both n a i v e  and exper t  
users ,  which i m p l i e s  t h a t  t h e r e  must be an a l t e r n a t e  rou te  f o r  commanding o r  
s e l e c t i n g  en t r i e s .  
alternate r o u t e s  t o  avoid  using menus whenever poss ib le .  
r o u t e s  should be made obvious i n  t r a i n i n g  and documentation and designed t o  be 
c o n s i s t e n t  a c r o s s  t h e  user  i n t e r f ace .  
which understands t h e  user 's  r o l e  and experience l e v e l ,  con t inua l  customiza- 
t i o n  and opt imizat ion of menus could be made ( t a i l o r i n g  t o  t h e  user  p r o f i l e ) .  
For example, reorganiza t ion  of menu e n t r i e s  i n  accordance with frequency o r  
infrequency of use  may be i n  order. 
as t h e  Transpor tab le  Appl ica t ions  Executive (TAE) do not  i n c l u d e  these  
f l e x i b l e  and i n t e l l i g e n t  c a p a b i l i t i t e s .  [TAE85] 

Experience has  shown t h a t  exper t  u s e r s  w i l l  memorize such 
These a l t e r n a t e  

With an i n t e l l i g e n t  user  i n t e r f a c e  

Exis t ing  menu systems used by NASA, such 

Multiwindow communication is d e s i r a b l e  i n  s i t u a t i o n s  where t h e  user  is 
concurren t ly  performing many tasks .  
analysis i n  a mission c o n t r o l  cen te r  where d i s p l a y s  are updated s imultaneously 
by one or more real-time processors. Windowing c a p a b i l i t i e s  are provided by a 
window manager, which both p re sen t s  information i n  windows and allows t h e  user  
t o  manipulate windows. 
categories:  
no o v e r l a p  of windows occurs  on t h e  d i s p l a y  screen  ( t i l i n g  is used i n  t h e  
Xerox Cedar System and the Microsoft  Windows system). 
manager does e x a c t l y  t h e  opposi te  - r ec t angu la r  windows o v e r l a p  l i k e  p ieces  of 

An example would be monitoring and 

Most window management s y s t e m s  f a l l  i n t o  one of two 
" t i l i ng"  o r  "desktop." T i l i n g  i n v o l v e s  arranging windows so t h a t  

A desktop window 
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paper  on a desk  ( t h e  S m a l l t a l k  envi ronment  d e v e l o p e d  a t  Xerox PARC 
d e m o n s t r a t e s  a d e s k t o p  window manager). 

There  are a d v a n t a g e s  and d i s a d v a n t a g e s  t o  both types.  Desktop window 
managers o f f e r  t h e  u s e r  t h e  most f l e x i b i l i t y  i n  a r r a n g i n g  windows b u t  a t  t h e  
same time r e q u i r e  t h e  u s e r  t o  perform a n  i n o r d i n a t e  number of f u n c t i o n s  
r e l a t i n g  t o  t h e  rear rangement  of windows. The t i l i n g  model r e l i e v e s  t h e  u s e r  
of  most of t h e  window management f u n c t i o n s  b u t  t y p i c a l l y  performs automatic 
r e s i z i n g  and r e a r r a n g i n g  which may n o t  b e  s u i t a b l e  o r  d e s i r a b l e .  P e r h a p s  t h e  
b e s t  c h o i c e  is a combinat ion of t h e  t i l i n g  and d e s k t o p  schemes, where t h e  
d e s k t o p  model i s  employed when t h e  u s e r  is  performing many d i f f e r e n t  t a s k s  a t  
one time, and t h e  t i l i n g  model is  employed when t h e  user is c o o r d i n a t i n g  many 
v i e w s  or a c t i o n s  t o  accompl ish  a s i n g l e  g o a l .  
u s e r  be a b l e  t o  easi ly  and q u i c k l y  move, size,  and c o v e r  windows, and be a b l e  
t o  move i n f o r m a t i o n  from one window t o  a n o t h e r  ( c u t  and p a s t e  o p e r a t i o n s ) .  
The proposed i n t e l l i g e n t  u s e r  i n t e r f a c e  c o u l d  a s s i s t  i n  t h e  m a n i p u l a t i o n  of 
windows by u n d e r s t a n d i n g  t h e  a p p l i c a t i o n  domain and choos ing  sizes and 
arrangement  as a p p r o p r i a t e .  

It is e s s e n t i a l  a l s o  t h a t  t h e  

Some u s e r  i n t e r f a c e s  employ t h e  u s e  of i c o n s  i n  c o n j u n c t i o n  w i t h  windows. 

I c o n s  could b e  used t o  p r o v i d e  t h e  user w i t h  v a l u a b l e  
Of ten ,  i c o n s  are used t o  symbol ize  a v a i l a b l e  software u t i l i t i e s  (such as m a i l )  
and document f o l d e r s .  
i n f o r m a t i o n  r e g a r d i n g  t h e  c o n t e x t  of h i s  working environment.  
f o r  each  window a n  i c o n  c o u l d  b e  provided  which t r a c k s  t h e  p r o g r e s s ,  
associated f i l e s  and problems w i t h  t h e  window's a s s o c i a t e d  t a s k .  
i n f o r m a t i o n  assists u s e r s  who may o t h e r w i s e  lose t r a c k  of what t h e y  are doing. 
T h i s  u s e f u l  concept  is i l l u s t r a t e d  i n  t h e  PERQ S a p p h i r e  window manager. [SAP] 
Because of t h e  s p a c e  s t a t i o n  computing system's p r o j e c t e d  i n t e r n a t i o n a l  u s e ,  
t h e  u s e  of i c o n s  may b e  h e l p f u l  th roughout  t h e  i n t e r f a c e ,  a l t h o u g h  care must 
be t a k e n  n o t  t o  use an  i c o n  which is c u l t u r e - p e c u l i a r  (e.g., a "mailbox" may 
n o t  be v e r y  communicative o u t s i d e  of t h e  U.S.). 

For example,  

Such 

Requirements  f o r  I n t e l l i g e n c e  --- i n  t h e  User I n t e r f a c e  

The d i v e r s i t y  of u s e r s  and m i s s i o n s  for  t h e  s p a c e  s t a t i o n  p r e s e n t s  a 
f o r m i d a b l e  c h a l l e n g e  i n  t h e  d e s i g n  of a g e n e r a l i z e d  user i n t e r f a c e  e x e c u t i v e .  
C u r r e n t  t e c h n o l o g i e s  i n  n a t u r a l  l anguages  and expert systems point to numerous 
p o t e n t i a l  i n s t a n c e s  whereby t h e  performance of t h e  u s e r  i n t e r f a c e  c o u l d  b e  
s i g n i f i c a n t l y  enhanced thrGugh t h e  a d d i t i o n  of i n t e l l i g e n c e .  

- 

I One s i g n i f i c a n t  o p p o r t u n i t y  for  improving u s e r  i n t e r f a c e s  d i s c u s s e d  
p r e v i o u s l y  ( e s p e c i a l l y  for  n a i v e  u s e r s )  is t o  i n c o r p o r a t e  n a t u r a l  l anguage  
i n t e r f a c e s .  C u r r e n t l y ,  w e  do a r e a s o n a b l y  good j o b  of l i t e r a l  i n t e r p r e t a t i o n  
of E n g l i s h  s e n t e n c e s  i n  s ta t ic  c o n t e x t s  and l i m i t e d ,  w e l l  s t r u c t u r e d  domains 
of a p p l i c a t i o n .  [ITW83] 
a l so  be a p p l i e d  t o  i n t e l l i g e n t  command i n t e r p r e t e r s  and query processors .  
a r e s u l t ,  s i g n i f i c a n t  b e n e f i t s  can be r e a l i z e d  by b o t h  t h e  i n e x p e r i e n c e d  or 
c a s u a l  u s e r s  (e+, payload t e l e s c i e n c e )  and by h i g h l y  s k i 1  l e d  o p e r a t i o n s ,  
tes t  and i n t e g r a t i o n  personnel .  

Yet many of  t h e  n a t u r a l  l anguage  t e c h n o l o g i e s  can  
As 

An i n t e l l i g e n t  u s e r  interface c o u l d  t r a n s l a t e  loose or s h o r t e n e d  q u e r i e s  o r  
commands p r o v i d e d  by the user i n t o  correct and f u l l y  q u a l i f i e d  messages t o  t h e  
s p a c e  s t a t i o n  computing sys tems based on s t o r e d  knowledge of: 
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o Missions 
o I n d i v i d u a l  user  r o l e s  w i t h i n  t h e  missions 
o Opera t iona l  environment conf igu ra t ion  
o Opera t iona l  environment state 
o Ind iv idua l  u se r  characteristics 
o User's c u r r e n t  con tex t  

S to red  knowledge of space s t a t i o n  missions would d e f i n e  t h e  unde r ly ing  
bases  for  communication by: 

o Establishing the vocabulary, i n c l u d i n g  abbrev ia t ions ,  acronyms, synonyms, 
g e n e r a l i z a t i o n s ,  se t  memberships, a b s t r a c t i o n s ,  t ype  inhe r t ances ,  etc. 
[ BRA83 ] 

o Defining acceptable actions, t h a t  would i n c l u d e  prepatory dec i s ions ,  test  
a c t i o n s ,  main goa l s ,  cau t ionary  a c t i o n s ,  concluding a c t i o n s  or enablement 
ac t ions .  [GAL841  

o Establishing thematic role frames, t h a t  spec i fy  a n t i c i p a t e d  or a l l o w a b l e  
a c t i o n  themes i n v o l v i n g  t h e  thematic  o b j e c t  being quer ied  or  commanded, 
t h e  agen t  f o r  a c t i o n ,  ins t ruments  i n v o l v e d  i n  t h e  a c t i o n ,  a l o n g  wi th  

time or durat ion.  [WIN841 
I a c t i o n  d e s c r i p t o r s  i n c l u d i n g  source and d e s t i n a t i o n ,  t r a j e c t o r y ,  l o c a t i o n ,  

I 
T h i s  l e v e l  of knowledge allows robus t  i n t e r p r e t a t i o n  of q u e r i e s  or 

I commands, whether provided by n a t u r a l  language i n p u t  or  by more s t r u c t u r e d  
language-based inputs .  
i n t e r f a c e  i f  knowledge of i n d i v i d u a l  u se r  r o l e s  w i th in  t h e  missions are a l s o  
provided. 

Add i t iona l  c a p a b i l i t y  can be added t o  t h e  use r  

T h i s  would a l l o w  t h e  user  i n t e r f a c e  to:  

o Restrict user  a c t i o n s ,  p rov id ing  another  l e v e l  of s e c u r i t y  a t  t h e  user 
, i n t e r f a c e .  
, 
l o Forgive erroneous or flawed input, now t h a t  t h e  bounds of an  i n d i v i d u a l ' s  
I i n t e r a c t i o n  i s  known. 

l o Provide more power i n  t h e  use r  i n t e r f a c e  by c a l l i n g  up s c r i p t s  [SHA85] of 
f r equen t  or a l l o w a b l e  a c t i o n  sequences. 

Knowledge of t h e  environment conf igu ra t ion  and t h e  environment s ta te  would 
allow y e t  another  l e v e l  of u se r  i n p u t  checking. 
commanding of space  s t a t i o n  ope ra t ions  or payloads must bear  t h e  response 
d e l a y s  of ground r o u t i n g  and s a t e l l i t e  l i n k s ,  it is d e s i r a b l e  t o  p rov ide  t h e  
maximum amount of u se r  i n p u t  checking a t  t h e  poin t  of input .  C e r t a i n l y ,  one 
would want t o  restrict any a c t i o n s  t h a t  are dangerous or de t r imen ta l  t o  t h e  
p la t form,  payloads  o r  mission. While t h e r e  would undoubtably be checks made 
a t  t h e  p o i n t  of commanding, an a d d i t i o n a l  layer of u se r  i npu t  f a u l t  t o l e r a n c e  
is o f t e n  necessary.  

Because ground-based 

Knowledge and obse rva t ion  of use r  c h a r a c t e r i s t i c s  would a l l o w  s ta t ic  and 
dynamic t a i l o r i n g  of t h e  use r  i n t e r f a c e  for i n d i v i d u a l  users .  
obvious  a p p l i c a t i o n  would be i n  acknowledging or i n f e r r i n g  t h e  s k i l l  l e v e l s  of 
u s e r s  and modifying t h e  use r  i n t e r f a c e  inpu t  and p resen ta t ion  modes 
accord ingly .  
powerful i n t e r f a c e s  being hard t o  l e a r n  and "user-friendly" i n t e r f a c e s  g e t t i n g  

The most 

T h i s  would circumvent t h e  f r equen t  problems a s s o c i a t e d  wi th  
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i n  t h e  way of experienced users .  I n  a d d i t i o n ,  t h e  u s e r  i n t e r f a c e  c o u l d  employ 
s e l e c t i v e  d isseminat ion  of  in format ion  techniques  which can dynamica l ly  t a i l o r  
t h e  method p r e s e n t a t i o n  (e.g., t e x t  vs. g raphics )  t o  t h e  u s e r  p r o f i l e  [ITW83] 
or s e l e c t i v e  omission of in format ion  techniques  (e.g., a b s t r a c t i o n ,  indexes,  
summar iza t ion)  [WIN84]. 

The t e c h n o l o g i e s  ex is t  today t o  p rov ide  t h e  c a p a b i l i t i e s  desc r ibed  above i n  
a c o s t - e f f e c t i v e ,  low r i s k  and t i m e l y  f a sh ion  f o r  space s t a t i o n .  
t h e  completeness  and robus tness  of t h e  knowledge base would improve, p rov id ing  
an  i n c r e a s i n g l y  powerful u se r  i n t e r f a c e ,  

Over time, 

I n  t h e  l o n g  term, knowledge of t h e  u s e r s  con tex t  w i l l  p rov ide  t h e  most 
s i g n i f i c a n t  improvement i n  t h e  use r  i n t e r f a c e .  
i n t e r f a c e  would a t t empt  t o  understand t h e  u s e r s  i n t e n t  and recognize  t h e  p l a n  
being pursued. 
a user ' s  i n t e r a c t i o n  i n  l i g h t  of h i s  r o l e  and i n  l i g h t  of t h e  s ta te  of  t h e  
environment t o  answer t h e  f o l l o w i n g  quest ions:  [SHA85] 

Here, t h e  i n t e l l i g e n t  u s e r  

I n  t h i s  mode, t h e  use r  i n t e r f a c e  would c o n s t a n t l y  be a n a l y z i n g  

o Why is t h i s  c h a r a c t e r  doing what he is doing? 
o What are is mot iva t ions?  
o What are h i s  p lans?  
o What's h i s  i n t e n t i o n ?  

To accompl ish  t h e  understanding of a user's context ,  a d d i t i o n a l  r e sea rch  is 
needed i n  concept  modeling and reasoning about g o a l s  and a c t i o n s  of  r a t i o n a l  
a g e n t s  (i.e., t h e  user).  [ITW83]. Once achieved,  t h e  use r  i n t e r f a c e  c o u l d  
become an a c t i v e  e lement  of t h e  user-computer d i a l o g ,  i n s t e a d  of a p a s s i v e  
one. T h i s  c o u l d  be  most important  when responding t o  emergency o r  abnormal 
c i rcumstances  where t h e  use r  must qu ick ly  t ake  some form of a l t e r n a t e  ac t ion .  
I n  such a s i t u a t i o n ,  t h e  use r  does no t  have t h e  time (or o f t e n  t h e  presence of 
mind) t o  comple t e ly  d e s c r i b e  a new course  of ac t ion .  
l e v e r a g e  t h e  machines knowledge of con tex t  and s u c c i n c t l y  execute  a new set of 
a c t i o n s ,  such as: [HAM841 

Ins t ead ,  h e  would 

o Use a l t e r n a t e  agen t  t o  accomplish t h e  goa l  
o Use a l t e r n a t e  p l a n  
o Execute s c r i p t  r a p i d l y  
o Wait o u t  c u r r e n t  state 
o Jump i n t o  t h e  middle of  t h e  s c r i p t  
o Counterplan a g a i n s t  a p o t e n t i a l  f u t u r e  state 

o Recover 
1 o Put  up wi th  it 

I n  a d d i t i o n  t o  augmenting t h e  o p e r a t i o n a l  u se r  i n t e r f a c e  wi th  knowledge- 
based c a p a b i l i t i e s ,  t h e r e  is a l s o  s i g n i f i c a n t  p o t e n t i a l  f o r  a s s i s t i n g  t h e  
d i a l o g  des ign ,  pro to typing  and management tasks with e x p e r t  sys t em 
c a p a b i l i t i e s .  
i n t e r f a c e s  and r a p i d  prototyping.  
a u t h o r s  i n  s e l e c t i n g  i n t e r a c t i o n  approaches and conf igur ing  t h e  use r  i n t e r f a c e  
accord ingly .  S i m i l a r l y ,  t h e r e  is a p o t e n t i a l  f o r  a s s i s t i n g  i n  t h e  
i n t e r p r e t a t i o n  of u s e r  i n t e r a c t i o n  d a t a  and metrics and i n  sugges t ing  
improvements o r  e x p l a i n i n g  perce ived  behavior .  

Mission and u s e r  r o l e  knowledge can assist i n  s i m u l a t i n g  user 
An e x p e r t  s y s t e m  c o u l d  assist t h e  d i a l o g  

[ ITW83 J 
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Although t h e r e  has  been o n l y  l i m i t e d  work i n  inco rpora t ing  a r t i f i c i a l  
i n t e l l i g e n c e  t echno log ie s  i n t o  i n t e l l i g e n t  u se r  i n t e r f a c e s ,  w e  are convinced 
t h a t  t h e r e  is s i g n i f i c a n t  p o t e n t i a l ,  p a r t i c u l a r l y  f o r  a program as complex as 
s p a c e  s t a t i o n .  

- User I n t e r a c t i o n  Design and Val ida t ion  

A real c h a l l e n g e  l i es  i n  combining t h e s e  use r - in t e rac t ion  c a p a b i l i t i e s  i n  a 
way t h a t  is c o n s i s t e n t  and conherent  f o r  t h e  p a r t i c u l a r  u se r s ,  t h e i r  t a s k s ,  
and t h e i r  environment. 
c a p a b i l i t i e s  or f e a t u r e s  which may be d e s i r a b l e  f o r  one class of u s e r s ,  t ype  
of a c t i v i t y  or o p e r a t i o n a l  environment may n o t  be f o r  another.  For example, 
f e a t u r e s  which suppor t  ease of l e a r n i n g  are needed f o r  t h e  inexperienced or 
i n f r e q u e n t  u se r  w h i l e  f e a t u r e s  t o  enhance e f f i c i e n c y  and power are l i k e l y  t o  
be far more important  f o r  experienced or every-day users .  
of t h e  o p e r a t i o n s  or t a s k s  t h a t  are c a r r i e d  ou t  have  i m p l i c a t i o n s  f o r  user- 
i n t e r f a c e  des ign  as w e l l .  
e n t r y  and t e x t  e d i t i n g )  e f f i c i e n c y  of phys ica l  a c t i o n s  (such as number of key 
s t r o k e s )  is important.  
minimizing t h e  user 's  mental  l o a d  and reducing errors is more important.  

Th i s  is an  e s p e c i a l l y  d i f f i c u l t  t a s k  because 

The c h a r a c t e r i s t i c s  

For t a s k s  t h a t  are r e p e t i t i v e  i n  n a t u r e  (e+, d a t a  

For t a s k s  r e q u i r i n g  a high l e v e l  of mental  e f f o r t ,  

I I n  s h o r t ,  t h e  f e a t u r e s  r equ i r ed  t o  support  e f f e c t i v e  user i n t e r a c t i o n  can 
mean d i f f e r e n t  t h i n g s  f o r  d i f f e r e n t  u s e r s  and types  of tasks .  
u s e r s  t h e m s e l v e s  are n o t  static e n t i t i e s .  
i n t e r f a c e s  which e v o l v e  as a g iven  use r  g a i n s  experience and s o p h i s t i c a t i o n ,  
both wi th  t h e  t a s k  and wi th  t h e  computer system. 

I n  a d d i t i o n ,  
I d e a l l y ,  one would l i k e  user 

The major components of e f f e c t i v e  use r - in t e r f ace  design inc lude :  

o t h e  a b i l i t y  t o  e v a l u a t e  key f e a t u r e s  of u se r  i n t e r f a c e s ,  e s p e c i a l l y  a t  
a n  early p o i n t  i n  t h e  development 

l 

l 
o t h e  a v a i l a b i l i t y  of a t o o l s e t  t o  suppor t  u se r - in t e r f ace  development 

o a s y s t e m  a r c h i t e c t u r e  which a l l o w s  development of u se r  i n t e r f a c e s  t o  
proceed independent ly  and i n  p a r a l l e l  w i t h  development of t h e  rest of t h e  
sys t em.  

E v a l u a t i n g  - User I n t e r f a c e s  

The des ign  of u s e r  i n t e r f a c e s  shou ld  proceed i n  a much more i t e r a t i v e  
f a s h i o n  than  t h e  des ign  of o t h e r  p a r t s  of t h e  software.  
unknowns concerning which combination of u se r - in t e r f ace  c a p a b i l i t i e s  w i l l  b e s t  
s u i t  t h e  v a r i o u s  t y p e s  of u s e r s ,  t h e i r  t a s k s  and o p e r a t i o n a l  environments. A t  
t h e  same t i m e ,  t h e r e  are few des ign  p r i n c i p l e s  t o  which a deve lope r  can  t u r n  
f o r  conc re t e  guidance. Even obv ious ly  important  p r i n c i p l e s  such as 
consis tency" can  be  d i f f i c u l t  t o  app ly  i n  p r a c t i c e  s i n c e  t h e  des igner ' s  

concept  of cons is tency  may no t  f i t  t h e  users .  Design dec i s ions  which seem 
obvious  t o  t h e  d e v e l o p e r s  can l e a d  t o  confusion among users.  

There are t o o  many 

I1 

User behavior  can be a v a l u a b l e  source  of guidance i n  s e l e c t i n g  user- 
i n t e r a c t i o n  c a p a b i l i t i e s .  
what e r r o r s  they  make, how much time they  r equ i r e ,  and 80 on, t h e  des igner  h a s  
an  o b j e c t i v e  and meaningful b a s i s  f o r  choosing among a l t e r n a t i v e s  and f o r  
confirming t h e  u s a b i l i t y  of choices  a l r e a d y  made. The earlier one can begin 

By obse rv ing  how u s e r s  accomplish a g i v e n  t a sk ,  



? 

t o  ga the r  t h i s  t ype  of in format ion  t h e  b e t t e r ,  u s ing  p ro to types  and 
s i m u l a t i o n s  t o  test o u t  des ign  a l t e r n a t i v e s .  

These e v a l u a t i o n s  can range from informal  o b s e r v a t i o n a l  s t u d i e s  t o  formal  
s t anda rd ized  experiments.  
i d e n t i f y i n g  t h e  s t r e n g t h s  and weaknesses of a s i n g l e  des ign ,  t hen  an  informal  
o b s e r v a t i o n a l  s tudy  i s  s u f f i c i e n t .  I f  t h e  purpose of t h e  e v a l u a t i o n  i s  t o  
compare a l t e r n a t i v e  des igns ,  t hen  one must  t u r n  t o  t h e  methodology of 
c o n t r o l l e d  exper imenta t ion ,  u s ing  a s tandard  set of procedures  i n  o rde r  t o  
produce as unbiased an e v a l u a t i o n  as poss ib l e .  
t h e  e v a l u a t i o n  t o  be v a l i d ,  t h e  use r s ,  t h e i r  t a s k s ,  and surrounding c o n d i t i o n s  
must be r e p r e s e n t a t i v e  of t hose  t h a t  w i l l  be supported by t h e  o p e r a t i o n a l  
s y s t e m .  

If t h e  e v a l u a t i o n  i s  concerned s o l e l y  wi th  

I n  e i t h e r  case, i n  o rde r  f o r  

S imula t ions  may be  of  s p e c i a l  interest i n  t h e  des ign  of t h e  space  s t a t i o n  
because they can be used t o  e v a l u a t e  use r - in t e rac t ion  c a p a b i l i t i e s  t h a t  do no t  
Yet e x i s t ,  t h u s  p rov id ing  informat ion  about  t h e  l i k e l y  b e n e f i t s  r e s u l t i n g  from 
v a r i o u s  t e c h n o l o g i e s  t h a t  may r e q u i r e  s u b s t a n t i a l  r e sources  t o  implement. 
Gould, Cont i ,  and Hovanyecz [ l ]  c a r r i e d  o u t  t h i s  t y p e  of s tudy by s i m u l a t i n g  a 
" l i s t e n i n g  typewri te r"  t h a t  cou ld  t ake  human speech as i n p u t  and produce a 
p r i n t e d  v e r s i o n  of  t h a t  speech as output.  A human t y p i s t  hidden from view 
s imula t ed  t h e  speech r ecogn i t ion  c a p a b i l i t i . e s  r equ i r ed  f o r  t h e  typewri te r .  

Tools  f o r  Developing User I n t e r f a c e s  -- 
I n  l i g h t  of  t h e  above d i scuss ion ,  f a c i l i t i e s  are needed f o r  r eco rd ing  user 

i n t e r a c t i o n .  
a tomic l e v e l  (e.g., eve ry  keys t roke)  t o  a much h igher  l e v e l  such as  t h e  t o t a l  
time requ i r ed  t o  complete  a g iven  t a s k  or a summary of t h e  d i f f e r e n t  commands 
used. The l e v e l  of d e t a i l  w i l l  o b v i o u s l y  depend on t h e  ques t ion  of i n t e r e s t .  
I n  e v a l u a t i n g  a t e x t  e d i t o r ,  f o r  example, one may wish t o  l o g  a time-stamped 
record  of  a l l  keystrokes.  
i n t e r f a c e s  no t  o n l y  i n  terms of s ta t ic  d i s p l a y s  but  i n  terms of t h e  dynamic 
a s p e c t s  of an i n t e r a c t i o n  as well. 

The l e v e l  of de ta i l  of t h e  information captured  can vary  from a n  

T o o l s  are a l s o  needed f o r  pro to typing  use r  

T o o l s  and a s s o c i a t e d  da tabases  are needed t o  assist  i n  d e f i n i n g  user- input  
languages and i n  creat ing ,  e d i t i n g ,  and s t o r i n g  d i s p l a y s  and d i s p l a y  
d e f i n i t i o n s  of  a l l  types  i n c l u d i n g  graphics ,  t e x t ,  animation,  menus, and 
forms. The Dialogue Management System (DMS), developed by Hartson and h i s  
c o l l e a g u e s  [3], c o n t a i n s  many of t h e s e  c a p a b i l i t i e s .  

A r c h i t e c t u r e  f o r  t h e  I n t e l l i g e n t  User Interface System -- - 
Given t h e  i t e r a t i v e  n a t u r e  of u se r - in t e r f ace  des ign ,  one of t h e  key 

p r o p e r t i e s  d e s i r e d  of user i n t e r f a c e s  is f l e x i b i l i t y .  The space s t a t i o n  
computing s y s t e m  must a l l o w  changes i n  use r  i n t e r f a c e s  as a r e s u l t  of 
improvements sugges ted  by u s e r  t e s t i n g  or t h e  a d d i t i o n  of new u s e r s ,  new 
ope ra t ions ,  or new o p e r a t i o n a l  sites. 
q u i c k l y ,  and wi thout  a d v e r s e l y  impact ing o t h e r  p a r t s  of t h e  sof tware.  

These changes must be made easily, 

Software d e s i g n e r s  have  t r a d i t i o n a l l y  i s o l a t e d  t h e  so f tware  from t h e  
e f f e c t s  of  hardware changes. I n  t h e  same way, t h e  computat ional  o r  f u n c t i o n a l  
p o r t i o n  of t h e  sof tware  shou ld  be  i s o l a t e d  from changes i n  t h e  p o r t i o n s  
c o n t r o l l i n g  t h e  u s e r  i n t e r f a c e .  Hartson and h i s  c o l l e a g u e s  [3] have w r i t t e n  
e x t e n s i v e l y  about  t h e  a r c h i t e c t u r a l  i s s u e s  involved.  
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Communicating with t h e  user ,  i n c l u d i n g  a l l  i n p u t  checking, shou ld  be t h e  
r e s p o n s i b i l i t y  of t h e  use r - in t e rac t ion  components w h i l e  t h e  c o r r e c t  and 
e f f i c i e n t  func t ion ing  of t h e  sys t em f u n c t i o n a l i t y  shou ld  be t h e  r e s p o n s i b i l i t y  
of t h e  computat ional  components. Hartson has  argued f o r  a para l le l  s e p a r a t i o n  
i n  t h e  s k i l l s  requi red  t o  design,  implement, and tes t  t h e s e  two components 
w i th  t h e  use r  i n t e r f a c e  f a l l i n g  wi th in  t h e  domain of t h e  human-factors 
s p e c i a l i s t  and t h e  computat ional  po r t ion  belonging t o  t h e  t r a d i t i o n a l  so f tware  
des igne r  and programmer. 
two components, t h e  two types  of s p e c i a l i s t s  can work independent ly  and i n  
p a r a l l e l  wi thout  i n t e r f e r e n c e .  

Once t h e  i n t e r f a c e  has  been def ined between t h e s e  

Because of t h e  complexi ty  of such a use r  i n t e r f a c e  and t h e  complexi ty  of 
t h e  v a r i o u s  missions o r  r o l e s ,  it is  necessary t o  deve lop  a suppor t  s y s t e m  f o r  
t h e  use r  i n t e r f a c e .  
c o n s i s t i n g  of t h e  fo l lowing:  

We propose a comprehensive use r  i n t e r f a c e  s y s t e m  

o User Interface E x e c u t i v e .  T h i s  Ada sof tware  package would p rov ide  t h e  
use r  i n t e r f a c e  u t i l i t i e s  embedded wi th in  t h e  o p e r a t i o n a l  space 
s t a t i o n  computing sys t ems  and be configured f o r  t h e  s p e c i f i c  machine and 
miss ions  f o r  each i n s t a l l a t i o n  v i a  a r e s i d e n t  da tabase  and knowledge base. 

0 user Iuterface R o t o t y p i n g  Subsystem. T h i s  would bundle  t h e  use r  
i n t e r f a c e  e x e c u t i v e  w i t h  gene ra l i zed  s imula t ion  capabi l i t i es  and data 
monitor ing and c o l l e c t i o n  rout ines .  This subsystem would p rov ide  a 
pnambic ("pay no a t t e n t i o n  t o  t h e  man behind t h e  cur ta ins")  l a b o r a t o r y  for  
use r  i n t e r f a c e  experimentation. 

o User Interface C o n f i g a r a t o r .  Th i s  sof tware  would customize t h e  use r  

The customizat ion provided by t h i s  t o o l  would 

The low l e v e l  cus tomiza t ions  would be accomplished 

i n t e r f a c e  e x e c u t i v e s  f o r  i n s t a l l a t i o n  and a l s o  t h e  pro to typing  subsystem 
f o r  experimentat ion.  
i n c l u d e  i n p u t  and p resen ta t ion  op t ions  and t h e  h igher  l e v e l  d i a l o g  
customizat ions.  
through a combination of program d i r e c t e d  sof tware  b u i l d s  from a l i b r a r y  
of u s e r  i n t e r f a c e  p r i m i t i v e s  and parametr ic  o r  language-driven i n i t i a l i z a -  
t i ons .  
compi le r  t h a t  w i l l  conf igure  t h e  user  i n t e r f a c e  e x e c u t i v e  wi th  t h e  
r equ i r ed  knowledge and in fe rence  algori thms.  

Higher l e v e l  cus tomiza t ions  w i l l  be accomplished through a r u l e  

0 Dialog b n a g e r e n t  Subsystem. This subsystem would i n p u t  knowledge 
r ega rd ing  t h e  mission, u se r s ,  con f igu ra t ion ,  etc., and be used t o  compose 
and conf igure  d i a l o g  sess ions .  
p ro to typing  subsystem would be ana lyzed  t o  v a l i d a t e  d i a l o g  s e s s i o n  before  
deployment. 

Data r ece ived  from t h e  u s e r  i n t e r f a c e  

The u s e r  i n t e r f a c e  s y s t e m  would be designed wi th  a n  open a r c h i t e c t u r e  t o  
a l low easy expansion as new use r  i n t e r f a c e  t echno log ie s  become a v a i l a b l e .  
approach d iscussed  i n  t h i s  paper w i l l  n a t u r a l l y  pu t  g r e a t e r  requirements  on 
t h e  l o c a l  process ing  c a p a b i l i t i e s  of t h e  user i n t e r f a c e  devices .  Current  
d e c l i n i n g  c o s t  t r e n d s  i n  h igh  r e s o l u t i o n  graphic  works ta t ions  l e a d s  u s  t o  
b e l i e v e  t h a t  t h e  inc reased  f u n c t i o n a l i t y  r e c e i v e d  from a n  i n t e l l i g e n t  u se r  
i n t e r f a c e  w i l l  be  a cost e f f e c t i v e  s o l u t i o n  for t h e  space  s t a t i o n .  
a d d i t i o n ,  t h e  proposed open a r c h i t e c t u r e  will l end  i tself  t o  a d d i t i o n s  of new 
t e c h n o l o g i e s  o v e r  t h e  space  s t a t i o n  l i f e  cyc le .  

The 

I n  
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1 INTRODUCTION 

The purpose of this research project is to investigate 
the feasibility of using Ada for rule-based expert systems 
with real-time performance requirements. This includes 
exploring the Ada features which give improved performance 
to expert systems as well as optimizing the tradeoffs or 
workarounds that the use of Ada may require. A prototype 
inference engine for general purpose expert system use was 
built using Ada, and rule firing rates in excess of 500 per 
second were demonstrated on a single MC68000 processor. 

The knowledge base uses a directed acyclic graph to 
represent production rules. The graph allows the use of 
AND, OR, and NOT logical operators. The inference engine 
uses a combination of both forward and backward chaining in 
order to reach goals as quickly as possible. Future efforts 
will include additional investigation of multiprocessing to 
improve performance and creating a user interface allowing 
rule input in an Ada-like syntax. 

Some of the issues discussed concerning Ada's use in 
expert systems include: How should a knowledge base be 
structured in Ada? How should the knowledge base be 
searched, especially in the context of a dynamic problem 
space with new data constantly entering the system? Can 
real-time performance be achieved? 

A critical issue involves the use of Ada's multitasking 
to implement parallel algorithms in expert systems. Clearly 
the inference engine can be implemented as a single task 
which can be integrated into a larger system and execute 
only when necessary. However, the execution of the 
inference mechanism in a parallel manner should increase 
performance. Using segmented knowledge bases, backward 
chaining in parallel on all goals at once, and forward 
chaining in parallel on individual rules are some of the 
different strategies to be considered. These strategies use 
different levels of granularity. Using an algorithm with a 
low level of granularity, fewer parallel computations will 
be performed and intertask communication will be less 
frequent . Using a high level of granularity, much 
computation is done in parallel, however it involves 
considerable intertask communication. The overhead involved 
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in creating tasks and in communicating between them, must be 
weighed against the benefits of the parallel performance. 

2 EXPERT SYSTEM USE IN THE SPACE STATION 

The Space Station will be a tremendously complex 
system. The automation of many of the Space Station 
activities and related monitoring functions in a safe and 
reliable manner will help to increase the efficiency and 
cost effectiveness of the system. In addition, one of the 
key engineering guidelines for the Space Station is that it 
should be able to carry out normal operations for some 
finite period of time without contact with the ground. As 
pointed out in a NASA Technical Memorandum on Automation 
Technology For The Space Station [l), 

"Expert systems are needed to perform many 
monitoring and control functions requiring 
complex status analysis and automated 
decision making so that the Station is less 
dependent on ground support in these 
areas. )I 

Also in [l], 

"In emergency situations, automated systems 
which respond very rapidly to a crisis can 
bring the system to a fail-safe condition 
before extensive damage occurs... Without 
automation, humans may be placed more often 
in pressure-prone situations such as EVA 
and emergency maintenance in which there is 
an increased chance of error." 

Expert systems could incorporate fault diagnosis, isolation, 
and recovery to enhance crew safety. Alarms could be 
triggered automatically to warn crew members of hazardous 
situations. In addition, many faults could be corrected 
before they pose any danger to the crew or spacecraft. 

3 FORD ADA INFERENCE ENGINE 

3.1 Description 

The Ford Ada Inference Engine (FAIE) is a research 
prototype expert system inference engine designed to execute 
as an Ada task embedded in an expert system which could in 
turn be embedded in a larger program. The sample 
application discussed here involves using FAIE for fault 
diagnosis. A typical rule in this type of system might be: 
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"IF temperature is above normal and 
heater output is above normal, 

THEN power off heater." 

The knowledge base is structured as a directed acyclic 
graph. This can be thought of as a network of nodes with 
the links all pointing in the same direction. For the 
diagnostic system, the leaf nodes on one side of the graph 
represent the various sensor data measurements. Commands 
for corrective action are the goal nodes on the other side 
of the graph. The relationships between erroneous 
measurements are the intermediate nodes leading to a goal. 
Figure 1 shows a portion of a sample graph. Note: the 
dotted lines represent additional portions of the graph that 
are not shown. 

The leaf nodes represent initial data points that must 
be provided to the inference engine. The nodes on the other 
side of the graph represent goal states that are sought when 
executing the inference engine. The nodes in between 
represent hypotheses or subgoals that will be tested. The 
links between the nodes are the llproduction rulesv1 that the 
inference engine uses to traverse the graph. 

Since we have a compiled, static knowledge base, all 
elements are present in the graph. Each node has a status 
which we will refer to as tgflaggedll, Ilunflagged", or 
unknown. A lgflaggedll node is one that satisfies its 
associated IF-THEN rule. We must distinguish between an 
untested node (status equals unknown), and a node that was 
tested and does not satisfy the associated IF-THEN rule 
(status equals 'Iunflaggedt1). A I1flagged1l node is one that 
will be used to traverse the graph. The path to a goal must 
be continuous through ttflaggedll nodes. An ltunflaggedll node 
represents a "dead end". 

Status for all the leaf nodes is passed to the 
inference engine when a problem exists. Figure 2 shows the 
sample knowledge base with all the leaves (nodes 1-11) given 
an initial status. Nodes 2,3,10 and 11 are Itflaggedf1. 

In an attempt to find a goal as quickly as possible, 
the successors of the first leaf node are examined 
and the first one in the list is visited using Ada procedure 
FORWARD-CHAIN. Since the status of the successor node is 
initialized to unknown, its predecessors are examined along 
with its AND/OR flag to determine its status. If the status 
of this first successor to the first leaf node is found to 
be tlflaggedlt, then its first successor in its list is 
visited, and so on until a goal is found or a dead end is 
reached. If the status of this first successor is found to 
be ltunflagged@l, then the next successor in the first leaf 
node's list is visited. 
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If the status of a predecessor node is unknown, then 
Ada function BACK TRACK is invoked to return the status. 
Both subprograms FOEWARD CHAIN and BACK TRACK are recursive. 

Figure 3 shows the resulting status after running the 
inference engine. To get to Figure 3 from Figure 2 the 
following steps were taken: 

- - 

1. Node 2 ' s  successor list is examined, and node 13 is 

2. Since node 13 is an Itand gate" and both its predecessors 

3. Node 13's successor list is examined, and node 17 is 

4 .  Since node 17 is an Itand gate" and node 7 is I1unflagged1l 
node 17 becomes Wnf lagged". 

5. FORWARD CHAIN returns to visiting node 13, where the 
successor list is examined, and node 18 is passed 
in another recursive call to FORWARD CHAIN. 

6. Since node 18 is an "and gate" and both-its predecessors 
(8 and 13) are flflaggedll, node 18 becomes lvflaggedlt. 

7. Node 18's successor list is examined, and node 21 is 
passed in another recursive call to FORWARD CHAIN. 

8 .  Since the status of node 20 is unknown, node 20 is 
passed in a call to BACK TRACK. 

9. Since node 20 is an @@and gate" and both its predecessors 
(10 and 11) are 8fflagged1t, node 20  is Ifflagged1l 
and BACK TRACK returns. 

(18 and 20) are "flaggedf1, node 21 is llflaggedll 
and a goal has been found. 

nodes for additional goals. 

passed in a call to FORWARD CHAIN. 

(2 and 3 )  are tlflaggedll, node 13 becomes I1flaggedf1. 

passed in a recursive call to FORWARD CHAIN. 

10. Since node-21 is an 'land gate" and both its predecessors 

11. The recursive calls return and visit other successor 

3.2 Performance 

The search speed is dependent upon the depth of the 
graph from leaf to goal but is independent of the number of 
leaves or goals in the graph. The only rules that are 
attempted to be matched already have at least one element of 
its left-hand-side Itflagged1l. When a goal node is 
Ifflaggedf1, the inference engine will issue a procedure call 
or task rendezvous to invoke logic associated with the goal 
state (e.g. turn a circuit on or off). 

Neither heuristic pruning nor optimal search techniques 
are employed. Some control over program execution can be 
accomplished by ordering the leaf nodes and/or ordering the 
list of successors and predecessors. Factors such as 
severity of problem or frequency of occurrence can be used 
to prioritize these lists. 
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This design assumes that all calculations on the data 
are performed up front, prior to invoking the inference 
engine. Speeds in excess of 500 rule firings per second 
were executed on a single processor. A rule firing is 
defined to be ffflagginglf a node, increasing working memory. 
This is similar to results obtained by other non-LISP 
inference engines (e.g. OPS83 or the BLISS version of 
OPS5). These results indicate that real-time performance is 
achievable. 

4 USE OF ADA FEATURES 

The knowledge base is an array of records. Each record 
is a node with the following information: 

STATUS - UNKNOWN, FLAGGED or UNFLAGGED 
FORM - LEAF, SUBGOAL or GOAL 
AND OR FLAG - AND or OR 
POINTER TO PREDECESSOR LIST 
POINTER TO SUCCESSOR LIST 
TEXT STRING IDENTIFIER 

The Ada package describing the data types in the knowledge 
base is given in Figure 4 .  A description of Ada constructs 
used to transform LISP research prototype expert systems 
into Ada production systems was given by Rude [2]. Unlike 
Rude, I have implemented the predecessor and successor lists 
as linked lists of records using access types rather than 
arrays of records. This allows flexibility in dynamically 
altering the knowledge base at runtime, e.g. if a sensor is 
determined to be faulty and you wish to ignore its input. 
In addition, the minimum amount of storage space.is used. 
Using arrays would require that all nodes allocate space for 
the largest list of predecessors or successors and would 
also require re-compilation to adjust the maximum sizes. 

Ada tasking was used to embed the expert system in a 
larger Ada program. It can stand idle while other 
monitoring and limit checking functions are performed and 
then spring into action when an anomaly is detected. A more 
extensive use of tasking can be made to perform various 
functions of the expert system in parallel. This will be 
discussed in the next section. 

Although Ada provided adequate constructs to build this 
inference engine there are a couple of features of other 
languages (notably LISP languages) that would be very useful 
for expert systems if supported in Ada. The main feature 
desired is the ability to pass Ada functions as parameters 
in subprogram calls. An alternative would be the ability to 
embed a function in a data structure, such as the field of a 
record, to be executed when accessed. This could be used to 
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perform calculations when needed. As mentioned earlier, in 
this version, all calculations needed to execute the 
inference engine must be performed up front. 

object 
to inherit values from a parent. For example, when new 
elements are added to a linked list or tree-like structure, 
they could inherit values in specified fields of their 
parents. This would reduce subprogram calls and a number of 
extra objects for data storage. 

The second desired feature is the ability of an 

5 FUTURE INVESTIGATION 

5.1 Further Multitasking Work 

One main thrust of our further work will focus on the 
use of multitasking to improve performance. This will also 
solve the problem of reading dynamic data which is 
constantly being updated as inferencing is in progress. It 
seems reasonable to use Ada tasking to enhance the real-time 
performance of inference engines. Although true 
production-quality multiprocessing Ada compilers do not yet 
exist, it is now feasible to write tasking implementations 
of inference engines which will exhibit order-of-magnitude 
improvements in rule-firing rates when ported to true 
multiprocessing Ada environments. 

Douglass [3,4] lists five levels of potential 
parallelism in rule-based expert systems. They are: 
subrule level, rule level, search level, language level, and 
system level. These levels include different types within 
them. Douglass concentrates on rule level and various types 
of search level parallelism. He gives a range of 
quantitative results for these levels using mathematical 
models and concludes that combinations of subrule, rule and 
search level parallelism will yield better results than any 
single level when the characteristics of the specific system 
are taken into consideration. He also mentions that very 
little work has been implemented and tested on parallel 
computers. 

Communication between processes is an important factor 
in the efficiency of parallel algorithms. Generally 
speaking, the more frequently that information is exchanged, 
the slower the computation is performed since processes 
spend a larger portion of their time communicating rather 
than computing. Researchers working on the DADO machine 
[5,6] have developed some unique methods of communicating 
between parallel processors (e.g. a binary tree structure 
of processors with communication rules controlled by 
hierarchy). 

E.4.3.9. 



In Ada, the task is the natural construct for parallel 
processing. However, multitasking involves considerable 
overhead in creating/activating tasks, communicating between 
them, and terminating them. This overhead must be compared 
with the amount of computation performed in parallel in 
order to determine the relative efficiency gained by various 
strategies of parallel processing. Gehani [7] concurs, and 
goes an to say that in designing concurrent programs in Ada, 
one must avoid the polling bias in the communication 
mechanism. He also points out that multiprocessing programs 
will be more efficient if the underlying hardware offers 
genuine concurrency. 

Deering [8] also emphasizes that hardware 
considerations, especially processor speeds versus memory 
speeds, must be examined when designing the architecture of 
expert systems. He says one should "study hardware 
technology to determine at what grain sizes parallelism is 
feasible and then figure out how to make [the] compilers 
decompose programs into the appropriate-size pieces." 

Granularity is the average amount of work done by a 
process between communication with other processes. It is 
inversely proportional to the frequency of communication. 
The five levels of parallelism mentioned by Douglass range 
from very finely grained to roughly grained. A fine grained 
approach was taken by Rude 121 where each rule was itself 
declared as an Ada task with rendezvous for links to 
predecessors and successors. This concept has merit but is 
questionable for real-time applications. In the 
implementation of the PICON expert system for real-time 
process control [9,10], a roughly grained algorithm was 
chosen by segmenting parts of the knowledge base and 
applying priorities to searching the different portions. 
Our future investigations will include analyzing various 
strategies, including forward and backward chaining on 
individual rules in parallel, dividing the knowledge base, 
and combinations of the different strategies. 

5 . 2  User Interface 

Another area for future work involves building a user 
interface for accurate and efficient knowledge acquisition. 
The accumulation of the domain knowledge and its insertion 
into a knowledge base has often been a bottleneck in expert 
system production. The Ada language IF-THEN-ELSE constructs 
are readable and English-like. We will build a user 
interface in an Ada syntax that is hopefully both easy for 
the knowledge engineer to use, and also easily translates 
into Ada code. 
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6 CONCLUSION 

The prototype demonstrates the feasibility of using Ada 
for expert systems on a small scale. Investigation of 
multitasking and alternate knowledge base representations 
will help to analyze some of the performance issues as they 
relate to larger programs. 
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with DYNAMIC STRING; 
package GRAPES is 
type NODE-NUM is new INTEGER range O..INTEGER'LAST; 

type STATUSES is (FLAGGED, UNFLAGGED, UNKNOWN); 
type GATE is (AND-GATE, OR GATE) ; 
type NODE-FORM is (GOAL, SUBGOAL, LEAF); 
type PRED-NODE; -- DATA STRUCTURE FOR LINKED LIST -- OF PREDECESSORS 
type PRED NODE PTR is ACCESS PRED - NODE; 
type PREDNODE-is - record 
NAME : NODE NUM; 
NEG-LOGIC - FLAG : BOOLEAN := FALSE; 

NEXT : PRED-NODE-PTR; 

-- FALSE = want pred to be flagged. -- TRUE = want pred to be unflagged. 

end record; 

type SUCC-NODE; -- DATA STRUCTURE FOR LINKED LIST 
-- OF SUCCESSORS 

type SUCC NODE-PTR is ACCESS SUCC - NODE; 
type SUCCINODE is record 

end record; 

NAME : NODE NUM; 
NEXT : SUCC-NODE - - PTR; 

type NODE is record -- DATA STRUCTURE FOR 
THE -- 

STATUS : STATUSES := UNKNOWN; 
AND OR : GATE := AND GATE; 

NODE OF 
GRAPH 

- -- ANDmeans all predecessors must -- be satisfied. -- OR means one or more predecessors -- must be satisfied. -- Does not apply to leaf nodes. 
PRED : PRED NODE PTR; 
succ : SUCC-NODE-PTR; 
FORM : NODE-FORM: 
MESSAGE : DYNAMIC - STRING.UCSD - STRINGS; 

end record; 

type KNOWLEDGE - BASE is array (NODE NUM range <>) of NODE; 

type FLAGGED-NODES is array (INTEGER range <>) 
of NODE NUM; -- Init. state 

function SIZE return INTEGER: -- ALLOWS SIZE OF GRAPH TO 

-- ARRAY OF RECORDS 

-- BE READ AT RUN TIME. 
end GRAPHS; 

Figure 4 .  Graphs Package 
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N89-16351 
AN APPROACH TO KNOWLEDGE STRUCTURING 

FOR ADVANCED PHASES OF THE 

TECHNICAL AND MANAGEMENT INFORMATION SYSTEM (TMIS) 

H. T. Goranson , S i r i u s  Incorporated 
P.O. Box 9258, V i r g i n i a  Beach, VA 23452 

ABSTRACT: TMIS must employ an enlightened approach t o  i t s  
"object" structure, but basic issues i n  conceptua 1 
structuring remain t o  be resolved. Sirius out- 
l ines  the necessary agenda and reports on progress 
toward so Zutions. 

INTRODUCTION 

S i r i u s  i s  a small group which has t r a d i t i o n a l l y  focused on advanced 
s o l u t i o n s  t o  troublesome issues i n  knowledge representa t ion .  I t s  p r i o r  work 
has p r i m a r i l y  been f o r  l a r g e r  f i rn is  addressing problem spaces i n  the  defense 
community. Recently, t h e  group has been working i n  areas d i r e c t l y  app l i cab le  
t o  t h e  s p e c i f i c  problems o f  object/meta-data/knowledge representa t ion  faced by 
Space S t a t i o n  planners.  A r e l a t i v e l y  mature paradigm i s  emerging which can be 
of use i n  the  p lann ing  now being done. 

THE SPACE STATION INFORMATION SYSTEM (SSIS) 

S S I S  has embraced the  ADA phi losophy, which i s  good. Study groups, 
p a r t i c u l a r l y  t he  one here a t  Clear  Lake, have developed an agenda and strawman 
models. Inso far  as we a t  S i r i u s  have seen, the  t h i n k i n g  i s  c l e a r  and has l e d  
t o  severa l  e a r l y  conc lus ions which we hope w i l l  n o t  be d i l u t e d  as a c t i v i t y  
increases and more i n t e r e s t s  become involved.  I n  p a r t i c u l a r ,  t he re  i s  a 
consensus t h a t  a Network In format ion System (NIS) e n t i t y  be created and 
d i s t r i b u t e d  i n  var ious  incarnat ions  throughout the  system t o  work w i t h  (and 
a l l o w  a h igh  l e v e l  of independence o f )  "app l i ca t i on "  systems and communication 
sys terns. 

Considerat ions o f  t h i s  N I S  a re  i n t i m a t e l y  bound w i t h  another hea l thy  

module o r  t ask  p lann ing  i s  begun, even be fore  the  development agenda i s  
formal ized,  a comprehension o f  t he  s t r u c t u r e  o f  the  representation universe 
must be set.  Th is  un iverse  must d e l i b e r a t e l y  and c i rcumspect ly  be engineered 
as a l o g i c a l  f i r s t  s tep  i n  t h e  comprehensive l i f e - c y c l e  p lann ing  o f  t he  e n t i r e  
system. 

emerging consensus: before a rch i tec tu res  a re  considered, be fore  coding, 

This  has t r u l y  never been faced square ly  before,  because p r i o r  requ i re -  
ments were narrow i n  comparison and a l lowed compromise. But SSIS-related 
issues are  too  broad, t o o  deep, indeed too  expensive and important t o  a l l ow  
l e s s  than our  bes t  e f f o r t s  i n  t h i s  mat ter .  

The problem i s :  we imned ia te ly  run  up aga ins t  t h e  same fundamental, 
unresolved ph i l osoph ica l  issues which have plagued t h e  Knowledge Representa- 
t i o n  community f o r  decades. There i s  t r a d i t i o n a l  deadlocked conten t ion  among 
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workers i n  the  f i e l d s  o f  A r t i f i c i a l  I n t e l l i g e n c e  ( A I ) ,  Programming Language 
(PL) , and Database (DB) researchers which each represent  j u s t i f i a b l e  perspec- 
t i v e s .  

The good news i s  t h a t  recent  successful  s tud ies  i n t o  the  mathematical 
foundat ions o f  a l l i e d  f i e l d s  g i ve  us a whole new wor ld  o f  t o o l s  t o  work w i t h ,  
t o o l s  which a l l o w  us t o  transcend PL/DB/AI l o c a l i z a t i o n s  and s t a r t  t o  p u t  our  
a r m s  around the  science requi red.  This  i s  f u l l y  i n  harmony w i t h  the  ADA 
c u l t u r e ,  and i n  f a c t  our group has some ADA-based research underway i n  t h i s  
area. 

The bad news, a t  l e a s t  so f a r ,  invo lves  the  Technical and Management 
In fo rma t ion  Systems (TMIS), a system planned t o  support  many facets  of Space 
S t a t i o n  development. 

TECHNICAL AND MANAGEMENT INFORMATION SYSTEM 

Whi le t h e r e  are  major d i f f e rences  between TMIS  and S S I S ,  t he  T M I S  o b j e c t  
s p e c i f i c a t i o n  would r i g h t l y  be placed before n e a r l y  a l l  S S I S  Engineer ing tasks 
(Engineer ing i n  the  ADA sense). 
Future phases w i l l  be competed s h o r t l y .  What makes the  T M I S  problem so d i f -  
f i c u l t ,  and so i n t e r e s t i n g  i s  the  manner i n  which i t  must evolve.  Each user  
group w i l l  cont inue t o  work w i t h  h i s  e x i s t i n g  a n d T a n n e d  environments, 
c o n s t a n t l y  adding t o  the  data,  in fo rmat ion ,  and knowledge pools. 

So t h e  problem, the  chal lenge o f  T M I S  i s  t o  develop a conceptual un iverse  
which s a t i s f i e s  today 'c  T M I S  needs wh i l e  b u i l d i n g  the  ob jec t / rep resen ta t i on /  
meta-data schema, which f o r  simp1 i c i  t y  we w i  11 c a l l  an In teg ra ted  Conceptual 
Environment (ICE). This I C E  should be opt imized f o r  the  emerging ADA centered 
SSIS ,  which inc ludes  A I  in te r faces ,  knowledge representa t ion  subsets, and 
a n t i c i p a t i o n  of f u tu re  (30 year  hor izon)  technologies.  

TMIS  i s  now i n  a Phase I ad hoc con f igu ra t i on .  

ISSUES: GENERAL 

Basic i ssues i n v o l v e  ADA 1 anguage and env i  ronment concerns, very  1 arge 
database theory  and A I  requirements. 

l'rogramming Language i ssues i nc lude  a complete data and a b s t r a c t  data 
type  s p e c i f i c a t i o n ,  assoc ia t i ve  p o t e n t i a l  processing topology, as w e l l  as many 
inhe ren t  c h a r a c t e r i s t i c s ,  such as f a u l t  recovery,  f a u l t  to le rance and f a u l t  
avoidance. With respect  t o  issues i n  Programming Language (PL) design, a 
candidate representa t iona l  formal ism f o r  SSIS c h a r a c t e r i s t i c s  should i nc lude  
cons t ruc ts  t h a t  a l l o w  a user  t o  capture i n t u i t i c n s  about the  s t r u c t u r e  o f  t he  
domain(s) o f  a p p l i c a t i o n  - f o r  example, i n t u i t i o n s  about ( o r  c l u s t e r i n g  
operands f o r )  t h e  appropr ia te  conceptua l i za t ion  of the ob jec ts  , proper t i es ,  
and r e l a t i o n s  o f  t h e  domain. The mo t i va t i on  f o r  much o f  the  p r i o r  research on 
i nco rpo ra t i ng  a b s t r a c t  data t y p i n g  f a c i l i t i e s  such as  ANNA i n t c  the  ADA 
programming language has r e s u l t e d  f rom t h i s  i n c i d e n t a l  requirement. Indeed, 
i n  t h e  most general sense, i t  was t h i s  mo t i va t i on  t h a t  l e d  t o  the  development 
of h igh  l e v e l  programming languages, among them ADA, i n  the  f i r s t  p lace. 

But n e i t h e r  t h e  syntax no r  the  "general"  semantics o f  f i r s t  o rder  l a n -  
guages w i l l  recognize t h e  d i s t i n c t i o n  between two types of abs t rac ts ,  a 
f r e q u e n t l y  encountered phenomenon i n  an a n t i c i p a t e d  S S I S  environment. Things 
of bo th  types w i l l  s imply  be values o f  i n d i v i d u a l  var iab les ,  and arguments o f  
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pred ica tes  (and funct ion-symbols).  To some ex ten t ,  t h e  analogue of t h i s  
p a r t i c u l a r  semantic inadequacy i n  programming languages, which i s  meant t o  be 
handled by the  i n t r o d u c t i o n  o f  data types and t y p i n g  f a c i l i t i e s ,  can be 
t r e a t e d  w i t h i n  h ighe r  o rder  ca l cu lus  languages by i n t r o d u c i n g  s o r t a l  quan t i -  
f i c a t i o n  and by o the r  ted ious  methods. But t h i s  i s  unacceptable f o r  r e l a t i n g  
a p o t e n t i a l l y  l a r g e  abs t rac t  vocabulary i n  a KR context .  

Our proposed approach extends a p o t e n t i a l  semantic c a p a b i l i t y  of ADA i n t o  
a semantic n e t  opera tor  se t ,  i n  order  t o  a l l ow  c r e a t i o n  o f  a t e s t  bed f o r  T M I S  
development, us ing  c u r r e n t  environments. 

Concerning DB theory,  one o f  t he  most s t r i k i n g  fea tu res  o f  t he  c u r r e n t  
exp lo ra t i ons  i n  I C E S  i s  t he  at tempt t o  deploy concepts and techniques from the  
f i e l d  o f  Knowledge Representation, and e s p e c i a l l y  f rom work on semantic ne t -  
works, i n  combinat ion w i t h  r e l a t i o n a l  databases. However, one can see some- 
t h i n g  o f  a paradox i n  the  focus on c u r r e n t  network-type formalisms. The back- 
bones o f  most formal isms are  taxonomic h ie ra rch ies ,  sometimes general i z e d  t o  
deal w i t h  m u l t i p l e  inher i tance.  A governing design requirement of TMIS i s  t o  
capture semantic interdependencies (both i nc lus ions  and exc lus ions)  among the  
var ious  k inds  o f  t h ings  ( o r  "concepts")  w i t h  which they have d e a l t .  Eut the  
e q Z i c i t  embodiment o f  such interdependencies seems t o  be r u l e d  ou t  by the  
h i e r a r c h i c a l  r e l a t i o n a l  model. 

Given the  s t r u c t u r a l  l i m i t a t i o n s  o f  e x i s t i n g  I C E  work, i t  i s  hard t o  see 
how such no t ions  as type h ie ra rch ies ,  inher i tance,  and exc lus ion  can be i m -  
po r ted  w i t h i n  t h e  boundaries o f  the  r e l a t i o n a l  model. One proposed hand l ing  
of h i e r a r c h i e s  and inhe r i t ance  i s  p a r t  o f  a recons t ruc t i on  o f  database theory,  
from w i t h i n  t h e  theory  o f  f i r s t - o r d e r  l o g i c .  TMIS runs the  r i s k  o f  adopt ing 
t h i s  de fau l t  p o s i t i o n  w i t h o u t  l ook ing  a t  a h igher  s t r u c t u r a l  l e v e l .  

It seems more n a t u r a l  t o  t h i n k  about r e l a t i o n a l  databases ( e s p e c i a l l y  as  
conceived of o r i g i n a l l y )  as modeZs o f  k inds o f  f i r s t  and second order  theo- 
r i e s .  It i s  i n s t r u c t i o n a l  i n  the  present  contex t  t o  propose extending the  
r e l a t i o n a l  database concept i n  terms o f  l o c a l l y  f i n i t e  dimensional cy1 i n d r i c a l  
algebras. These would be algebras whose elements a re  se ts  o f  f i n i t e  sequences 
of o b j e c t s / a t t r i b u t e s ,  r a t h e r  than i n  terms o f  f i r s t  o r  second order  theo r ies .  
We a re  i n  f a c t  drawn more t o  t h e  a lgebra ic ,  morphological  and semantic than t o  
the  s y n t a c t i c ,  p roo f - theo re t i c ,  account o f  t h e  r e l a t i o n a l  model i n  t h i s  work. 
Of course, t he re  a re  i n t i m a t e  connections between the  morphological  cy1 i n d r i -  
c a l  ca l cu lus  and algebras which our  c u r r e n t  research e x p l o i t s ,  s p e c i f i c a l l y  
w i t h i n  t h e  unique TEIIS universe. 

ISSUES: NETS 

There has been a l ong  and con t inu ing  debate w i t h i n  the  A I  wor ld  on the  
r e l a t i v e  m e r i t s  and express ive power o f  representa t iona l  languages based on 
Logic  on one hand and semantic networks on the  o ther .  It i s  tpparent  t h a t  
semantic ne ts  have of ten been used as a no ta t i ona l  r a t h e r  than as  a repre-  
sen ta t i ona l  language. Logic, on the  o the r  hand, en joys a w e l l  accepted seman- 
t i c s ,  b u t  i t s  suppor t  as a knowledge representa t ion  scheme i s  l e f t  unc lear  as 
t o  which aspects o f  which Logic  i t  proposes t o  use. 

I n  cons ider ing  semantic networks, i t  should be noted t h a t  t he re  has been 
considerable m i g r a t i o n  o f  techniques f rom semantic networks t o  data models i n  
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t h e  VLD contex t .  N e t  researchers a re  j u s t  now t a l k i n g  about m u l t i p l e  i n h e r i t -  
ance, whereas KB researchers have been invo lved f o r  q u i t e  some t ime. One fea- 
t u r e  o f  semantic networks i n  a pu re l y  d i g i t a l  environment t h a t  needs t o  be 
considered by a data model i s  t he  genet ics  o f  c l u s t e r  forces,  over  a KB l i f e  
c y c l  e. 

A d ispass ionate observer may quest ion why semantic networks haven ' t  been 
used more d i r e c t l y  f o r  I C E  purposes. Semantic networks and semantic data 
models a re  i n  a sense equa l l y  powerful , b u t  they have been in tended i n  the  
pas t  f o r  a p p l i c a t i o n s  t h a t  have d i f f e r e n t  and more 1 i nea r  c h a r a c t e r i s t i c s .  
There i s  a t rend  i n  t h i s  research t o  deal w i t h  a p p l i c a t i o n s  t h a t  i n v o l v e  an 
ever i nc reas ing  number o f  types, and the  gap i n  intended a p p l i c a t i o n s  between 
data models and semantic networks seems t o  be narrowing. Espec ia l l y  i n t e r -  
e s t i n g  i n  t h i s  case are  embryonic s tud ies  f o r  photonic  machines which appear 
t o  be p r o v i d i n g  a lead i n  t h i s  science of semantic nets .  

TMIS w i l l  have t o  consider  many poss ib le  uses f o r  a database, on l y  some 
o f  which would be o f  re levance t o  the  I C E  concerns o f  S S I S .  The i r  approach i s  
expected t o  be t o  determine the  Zeast common dsnominator o f  a l l  these a p p l i -  
c a t i o n s  and then prov ide  implementation. A1 though requirements f o r  databases 
and VLDs have changed du r ing  the  l a s t  few years,  i t  i s  n o t  obvious t h a t  the  
l e a s t  comnon denominators f o r  frameworks t h a t  handle photonic  f o r m  , v i s u a l  
and speech data, t e x t  messages, e tc . ,  a re  semantic networks. 

The p r i n c i p a l s  of S i r i u s ,  however, represent  the  phi losophy o f  those who 
promote the  use o f  ne ts  w i thou t  the  r e s t r i c t i o n  o f  logic-bound no ta t i ons ,  and 
main ta ins  the  pre-eminence o f  t h i s  approach over the other, more const ra ined 
h i s t o r i c a l  approaches. 

KNOWLEDGE REPRESENTATION (KR) NETS AND LOGIC MATRICES 

The t h e o r e t i c a l  l i m i t s  of logic-based semantic nets  a re  most c l e a r l y  seen 
v i a  p r o p e r t i e s  of t o p o l o g i c a l l y  isoniorphic representat ions o f  t he  data s t r u c -  
t u re .  It i s  e a s i l y  shown t h a t  the  genera l ized map o f  each i s  a m a t r i x  ( f o r  
t h e  rule-based " t r u t h  t a b l e "  approach) o r  a h i e r a r c h i c a l  s t r u c t u r e  ( f o r  the  
l o g i c - d r i v e n  " l i s t  processing approach"). The h i e r a r c h i c a l  geometries a re  
o f t e n  morpho log ica l l y  c lassed f o r  queuing purposes and are o f t e n  r e l a t e d ,  v i a  
p a t t e r n  r e c o g n i t i o n  layers ,  as the  corners o f  an a l l  l o g i c a l  s p a c e - f i l l i n g  
r e g u l a r  three-dimensional  t e s s e l l a t i o n .  A commonly encountered exavple o f  
t h i s  method o f  ana lys i s  can be seen i n  t h e  o c t - t r e e  o r  quad- te rnary - l i ke  types 
o f  machine-level conceptual s t ruc tu res  now being i nves t i ga ted  by S i r i u s  and 
o t h e r  workers i n  i n t e g r a t e d  photonics.  By examining the  morphology o f  e x i s t -  
i n g  Lisp-based methods, i t  can l i k e w i s e  be demonstrated t h a t  a c e i l i n g  o f  com- 
p l e x i t y  r e s u l t s  f rom commonplace simple h i e r a r c h i c a l  ( read " l i s t ,  s tack,  o r  
s t r i n g "  process ing)  b u i l d i n g  techniques, as expressed i n  t h i s  convent ional  
language syntax. 

Consequently, some i n v e s t i g a t o r s  have app l i ed  ingenious techniques t o  
create,  access, and manipulate s t ruc tu res  o f  h igher  morphological  complexi ty.  
Typ ica l  o f  t he  approaches i s  t h a t  of L i p s k i  (1978) which advances the  a v a i l -  
ab le  geometry of t h e  data l a t t i c e s  by p l a c i n g  m a t r i x  nodes i n  an order ing  
which emulates the  h i e r a r c h i c a l  l a t t i c e  o f  normal use. This, i n  f a c t ,  pa ra l -  
l e l s  a s i m i l a r  synthes is  i n  generat ing grammars by Paz (1976). I n  t u r n ,  an 
assoc ia t i ve  t rans format iona l  th read ing  i s  a l lowed through the  l a t t i c e ,  us ing 
recu rs i ve  operators  which g i ve  t h e  combined s t r u c t u r e  g rea t  conceptual power. 
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But  t h e  t h e o r e t i c a l  l i m i t  on s t r i c t l y  h i e r a r c h i c a l  geometr ies remains low i n  
morpho log ica l  complex i ty  and i s  l i m i t e d  t o  those o f  3-D, o r thagona l ,  r e g u l a r  
t e s s e l l a t i o n .  

Nets o f  much g r e a t e r  complex i ty  have been used f o r  decades by s c i e n t i s t s  
and mathematic ians,  e s p e c i a l l y  those i n v o l v e d  i n  work f o r  t a r g e t  image sensor 
fus ion.  Recent ly ,  t h e  r e g u l a r ,  i n f i n i t e  s t r u c t u r e s  t h a t  a r e  genera tab le  by 
p e r i o d i c  r e c u r s i o n  have been c a t e g o r i z e d  by Goranson (1981) ,  Burt/Wachman 
(1974) ,  and L a l v a n i  (1986). The approach t o  e s t a b l i s h i n g  a b a s e l i n e  vocabu- 
l a r y  f o r  t h e  I C E  comparat ive o p t i m i z a t i o n  s t u d i e s  s e l e c t s  a s t r u c t u r e  f o r  t h e  
knowledge r e p r e s e n t a t i o n  l a t t i c e  based on t h e  d e s i r e d  p r o p e r t i e s  o f  t h e  t a s k  
and n a t u r e  of  t h e  d i v e r s i t y  of  t h e  source data and i n t e r n a l  t r a n s l a t i v e  types. 

T h i s  "Top Down" approach g i v e s  many advantages r e l e v a n t  t o  r e l a t e d  
connection b i a s e d  t h e o r i e s .  Major  advantages f o r  t h i s  proposed approach 
i n c l u d e  r e l a t e d  r e d u c t i o n  of  a meta-operator s e t  ( u s i n g  p r i m i t i v e  and r e -  
c u r s i v e  t r a n s f o r m s )  t o  a few mathematical  symmetry o p e r a t i o n s  t o  which we can 
a p p l y  severa l  o p t i m i z a t i o n  techniques. G r e a t l y  increased d e n s i t y  and o r g a n i -  
z a t i o n  o f  t h e  i n f o r m a t i o n  i n  t h e  a b s t r a c t e d  knowledge bases i s  achieved. Th is  
l a t t e r  advantage a l l o w s  a s u i t a b l e  l e v e l  of a b s t r a c t i o n  t o  be combined w i t h  
c l u s t e r i n g  o f  r e l a t e d  elements (which can be seen as  extended " f rames" ) ,  a 
d e s i r a b l e  e f f e c t  which addresses s u i t a b i l i t y  f o r  l o c a l  TMIS users.  Memory 
requi rements a r e  g r e a t l y  reduced i n  s i z e .  Elements which express c l t i s t e r  
c h a r a c t e r i s t i c s  a r e  t y p i c a l l y  q u i t e  l a r g e  i n  number when narrow i n  scope and 
a r e  w e l l  ordered f o r  l o g i c a l  c a l c u l u s  i n t e r f a c e .  The r e s u l t a n t  p a r t i t i o n s  a r e  
a t t r a c t i v e  f o r  concur ren t  and p a r a l l e l  process ing a l g o r i t h m s  on a l e v e l  low 
enough t o  i n c l u d e  techno log ies  p r o j e c t e d  f o r  S S I S  use. 

IMPLICATIONS FOR THE PRESENT PROBLEM 

The requi rement  i s  f o r  an approach which: 

a. 

b .  

C. 

d. 

Vi11 p r o v i d e  a b a s i s  f o r  s y n t h e t i c  s t u d i e s  of a p p l i c a b l e  techno lo-  
g i e s  and methods across a wide spectrum, i n  s h o r t :  a d e s c r i p t i v e  
I C E  nomencl a t u  re .  

By v i r t u e  of p r o v i d i n g  a h i g h  l e v e l  s c i e n t i f i c  d e s c r i p t i o n  o f  t h e  
laws a t  work, w i l l  p r o v i d e  a u n i f i e d  means f o r  i n t e g r a t i n g  t h i s  
d i v e r s i t y .  

A l l o w  an approach t o  o p t i m i z i n g  I C E  s p e c i f i c a t i o n ,  des ign and 
h o s t i n g ,  p r o v i d e  f o r  f u t u r e  genera t ion  computing requi rements i n  
terms o f  process ing,  l a r g e  i n f o r m a t i o n  sources, and r e c o n f i g u r a -  
b i l  i t y .  

D i r e c t  s p e c i f i c a t i o n  f o r  h o s t i n g  and t e s t i n g  o f  these issues.  

GENERAL TOOLS 

S i r i u s  works w i t h  a s e t  of morphologica l  express ive  laws which descr ibe  
a l l  p o s s i b l e  g l o b a l  model schema. T h i s  morphology i s  c u r r e n t l y  embedded i n  a 
s e t  of programs developed over  t i m e  and c u r r e n t l y  used f o r  i n t e r n a l  research 
and i s  s t r i c t l y  w i t h i n  t h e  ADA phi losophy.  
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A specif ic  tool c i t ed ,  ALICE, described here as central t o  the approach 
i s  a method of machine hosting ICE morphological operators i n  ADA. This 
allows any h i g h  level semantic net t o  be quickly defined and tessel la ted among 
a t t r ibu ted  space. While the geometries involved originate i n  Euclidean 
l a t t i c e s ,  res t r ic t ions  on three dimensional analogues disappear so the number 
of dimensions addressed i s  limited only by practical considerations of the 
s ize  of the symmetry tensor used. Because TMIS requires operations t h a t  do 
n o t  exclude d i rec t  microcoding i n  embedded systems, the number of dimensions 
is  pract ical ly  limited to  16 based on anticipated hardware, assuming t h a t  the 
l a t t i c e  chosen has less  t h a n  3 symnetry character is t ics .  (Some work has been 
done by Sir ius  using l inear  i n f in i t e  polyhedral geometries, hosted on f ine-  
grained arrays,  b u t  the hardware required i s  specialized, and beyond the scope 
of this TMIS work.) 

Major VLD and DB investigative interface tools are DAVID (from Goddard) 
and  TIPS (from DoD). For determining the l a t t i c e  geometries, the work of 
Lalvani and B u r t  forms the basis for long term studies by Sirius, and  are  
employed here, following the symmetry operators proposed by Schoen (1970) and 
Wells (1977). The basic research of Brisson is  the source f o r  the m u l t i -  
dimensional holomorphic l inearizations required, as well as a source of 
understanding higher dimensional clustering e f fec ts  when mapped to  lower level 
matrices, which i n  turn follows a suggestion of Williams (1969).  

Key to  the approach i s  the intersymmetry minimal surface operator, an 
approach devised by Burt fo r  the generic translation of intersymnetry groups.  
A complementary approach ut i1  i z ing  added dimensions of symmetry variables i s  
used t o  annotate the en t i t y  a t t r ibutes/relat ionship a t t r i bu te  from Lalvani. 

The minimal surface operator methods themselves follow closely the trends 
established by Jenkins (1966), a f t e r  Blatter (1971) and  Voss. The actual 
t race  algorithms were suggested and bounded by Rahimi (1972) and Barber 
(1970). The reflexive nature of tha t  algorithm which re f lec ts  the Lalvani  
transpolyhedra loosely follows the technique appl ied by Yoshizawa (1982) t o  a 
s imilar  problem i n  dynamics. Provisions f o r  f ractal  doubt, not discussed 
here, come s t ra ight  "out of the book" from McClure, as well as a few other 
specialists, n o t  currently i n  the f ree  world. 

Lacking full  -time access to  supercomputer faci  1 i t i e s ,  the present capa- 
b i l i t y  f o r  V L D  simulation and storage of multidimensional matrices t h a t  Sir ius  
possesses i s  inadequate. A sat isfactory,  and expedient cost  effect ive solu- 
t ion t o  this inadequacy has been found i n  the N-Dimensional Data Base System. 
This software exploi ts  a special case of the symnetry storage case, namely the 
Generalized Balanced Ternary. I t  has been determined t h a t  the res t r ic t ions  
imposed on V L D  research are  f a r  outweighed by the ava i lab i l i ty  of this tool 
for the early phases of the e f for t .  Rehosting overlays t o  TKIS host systems 
should be s t ra ight  forward. 

OVERVIEW OF ALICE 

Sirius has been working this problem for  some time. As described, a 
high-level conceptual language i s  required, for  this type of e f fo r t  reflecting 
the ponderous capabi l i t ies  implicit i n  the problem. The r e su l t  of Sirius' 
work i s  A L I C E  (ADA/Lattice Integrated Conceptual Environment). ALICE i s  coded 
i n  ADA, of course, and uses as operators, translation sets which are created 
by the abstraction tools described. 
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An o u t l i n e  o f  t h e  f e a t u r e s  o f  ALICE: 

a. The r e l a t i o n a l  f u n c t i o n  s e t  i s  extended i n t o  a p r i m i t i v e  o p e r a t o r  
language. Th is  language has a base l o g i c  o f  some o r d e r  and has a 
mapping t o  t h e  network l a t t i c e  t ransforms.  

b. These t rans forms have t o p o l o g i c a l  equiva lences,  a un ique and i n t e r -  
e s t i n g  f e a t u r e  which a l l o w s  t h e  r u l e s  f o r  o p e r a t i o n  among t h e  f a b r i c  
t o  be ambiguous when mapping ''up'' , b u t  p r e c i  se when mapping "down" , 
o r  o u t  o f  a b s t r a c t e d  spaces. 

c. The t o p o l o g i c a l  equiva lence a l s o  a l l o w s  r e s o l u t i o n  i n t o  a few s imp le  
o p e r a t i o n s  (which i n c l u d e  photon ic  o p e r a t o r s )  which can be m a t r i x e d  
and so lved by a r i t h m e t i c  a r r a y  processors.  T h i s  ho lds  promise f o r  
h i g h  speed, concur ren t  A I  p rocess ing  u s i n g  VHSIC; Reduced Envi ron-  
ment Math processor  a r rays .  

Having e s t a b l i s h e d  a meta-language w i t h  a corresponding meta-net,  and 
formal methodology t h e  I C E  researcher  i s  faced w i t h  severa l  e x c i t i n g  p o s s i -  
b i l i t i e s .  Knowledge o f  any k i n d  can be "fused" by s imp le  procedures if t h e  
source c a l c u l u s  i s  descended f r o m  t h e  u n i v e r s a l  s t r u c t u r e  employed. 

For  example, image data,  g r a p h i c  model ing in fo rmat ion ,  e n g i n e e r i n g  data 
(which may n o t  n e c e s s a r i l y  be geometry dependent) and performance i n f o r m a t i o n  
can be a l l  imposed on t h e  same ICE. As r e l a t i o n s h i p s  a r e  e s t a b l i s h e d ,  t h e  
d i v e r s e  i n f o r m a t i o n  b e c o m e s f u s e d  , and i s  a c t u a l l y  aggregated by v i r t u a l  
p r o x i m i t y ;  V i r t w z Z  Proximity i s  d e f i n e d  as r e l a t i o n  by a c r i t i c a l  s e t  o f  
a l g e b r a i c  o p e r a t o r s  def ined by t h e  s l i d i n g  t h r e s h o l d  f a c t o r s  o f  t h e  p e r i o d i c  
l a t t i c e  m a t r i x .  
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ABSTRACT 

In this paper, we describe a software architecture which facilitates the 
construction of distributed expert systems using Ada and selected knowledge- 
based systems. This architecture was utilized in the development of a 
Knowledge-based Maintenance Expert System (KNOMES) prototype for the 
Space Station Mobile Service Center (MSC). The KNOMES prototype monitors 
a simulated data stream from MSC sensors and built-in test equipment. It 
detects anomalies in the data and performs diagnosis to determine the cause. 

The software architecture which supports the KNOMES prototype allows 
for the monitoring and diagnosis tasks to be performed concurrently. We have 
named the basic concept of this software architecture ACTORS, for Ada 
Cognitive Task ORganization Scheme. An individual ACTOR is a modular 
software unit which contains both standard data processing and artificial 
in te llig e nce com poner! ts. 

A generic ACTOR module contains Ada packages for communicating 
with other ACTORs and accessing various data sources. It also includes an 
Ada package which acts as an interface between Ada and the knowledge- 
based component. For the first prototype, the knowledge-based portion was 
written in OPS5. By changing only the interface package, other ACTORs may 
be created with knowledge-based components written in LISP, PROLOG, or 
Ada (as knowledge-based systems are written for the language). 

The knowledge-based component of an ACTOR determines the role it 
will play in a system. In our prototype we have an ACTOR to monitor the MSC 
data stream. The monitor can invoke other ACTORs as needed whose roles are 
to diagnose specific parts of the MSC. All of this activity is coordinated by a 
main ACTOR whose role is to oversee the interaction of the monitor and the 
diagnosis ACTORs. 

*Ada is a trademark of the U. S. Government, (Ada Joint Program 
off ice) 

David C. Brauer 
McDonnell-Douglas Astronautics Company 
Huntington Beach, California 
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ABSTRACT 

This paper describes an architecture for the Space Station Operations 
Management System (OMS), consisting of a distributed expert system 
framework implemented in Ada. The motivation for such a scheme is based on 
the desire to integrate the very diverse elements of the OMS while taking 
maximum advantage of knowledge-based systems technology. This 
technology is needed not only to solve problems that are specific to various 
elements of the OMS, but also to help solve the problems of integration and 
evolutionary growth. 

Part of the foundation work for an Ada-based distributed expert system 
was accomplished in the form of a proof-of-concept prototype for the KNOMES 
project (Knowledge-based Maintenance Expert System). This prototype 
successfully used concurrently active experts to accomplish monitoring and 
diagnosis for the Remote Manipulator System. We have named the basic 
concept of this software architecture ACTORS, for Ada Cognitive Task 
Organization Scheme. An individual ACTOR is a modular software unit which 
contains both standard data processing and artificial intelligence components. 

The work accomplished in the KNOMES project and in similar efforts 
throughout the industry suggest that the maintenance task for Space Station 
can best be accomplished via a knowledge-based system approach. In 
addition, tasks such as planning and scheduling, as well as logistics 
management and payload activity management, may also benefit greatly from 
the use of knowledge-based reasoning in some form. Since all of the above 
applications form a subset of the complete OMS, it will therefore be necessary 

if not at IOC, then during the growth of the station. In addition, it will be 
necessary for all of these OMS components to talk to each other. 

- v to include the potential for utilizing knowledge-based systems within the OMS -- 

It is when one considers the overall problem of integrating all of the OMS 
elements into a cooperative system that the AI solution stands out. By utilizing a 
distributed knowledge-based system as the framework for OMS, it will be 
possible to integrate those components which need to share information in an 
intelligent manner. This will be particularly crucial where processes need to be 
controlled in a hierarchical manner. One example is where a maintenance 
system for a particular subsystem needs to inform the scheduler about new 
constraints on the activities which that subsystem can perform. 

Ada is a trademark of the U.S. Government, (Ada Joint Program Office) 
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Finally, there remains the question of implementing such a system within 
the confines of Ada. The proof that this can be done rests on the KNOMES 
prototype's use of ACTORS, on past implementations of AI languages using 
more traditional languages (eg., OPS-5 using BLISS), and on the 
implementation of a major commercial knowledge-based system environment 
in C. In fact, without the benefits of object-oriented programming as 
implemented in Ada, or the integration afforded by Ada's development 
constructs, the task for implementing a distributed knowledge-based system for 
OMS would be considerably more difficult. 

M. S. Frank 
McDonnell-Douglas Astronautics Company 
Huntington Beach, California 
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APPLYING ADA TO BEECH STARSHIP.AVIONICS 

David W. Funk 
Rockwell International 
Cedar Rapids, Iowa 

Abstract 

Rockwell International's Collins Avionics Group has been active in the Ada* 
language development since 1978 when we participated in the design 
evaluation. As the language design solidified, it became evident that Ada 
offered advantages for avionics systems because of its support for modern 
software engineering principles and real-time applications. Starting in 1983, 
Collins developed' an Ada programing support environment for two major 
avionics subsystems in the Beech Starship. The two subsystems include 
electronic flight instrument displays and the flight management computer 
system. Both these systems use multiple Intel 80186 microprocessors. The 
flight management computer provides flight planning, navigation displays, 
primary flight display of attitude as well as engine instruments and 
multi-function displays of checklists and other pilot advisory information. 
Together these systems represent nearly 80,000 lines of Ada source code and to 
date approximately 30 man years of effort. The Beech Starship avionic systems 
are in flight test now with expected FAA certification by the end of  1986. 

Background 

The Beech Starship i s  an entirely new turboprop airplane that will combine 
high performance and excellent fuel economy (see Table 1). The Starship with 
its composite construction, unconventional design and advanced avionics 
architecture presented a unique opportunity for Collins Avionics to pioneer 
the use of Ada in an airborne application. 

Applying Ada to major subsystems of the Starship avionics offered several 
software engineering challenges. Except for the use of proven software design 

We started with new system/software requirements, a new development team, a 
new host computer environment (VAX), a new target computer environment (Intel 
80186) and of course a new HOL Ada. It would be misleading t o  think the 
selection of Ada was the cause of all this newness because it was not. Given 
the new system requirements, all the other elements would be new, independent 
of the language. 

r and testing methods all the other elements of software development were new. - 

* Ada is a registered trademark of the Department of Defense (AJPO). 
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TABLE 1 

Starship Operating Characteristics 

Max. Takeoff Weight 12,500 lbs. 

Max. Altitude 41,000 feet 

Cruise Speed 400 mph 

Max. Occupants 10 

Single Pilot IFR 

Starship APSE 

The Ada Programming Support Environment (APSE) that Collins established for 
the Starship applications include a compiler, assembler/linker/loader, 
symbolic debugger, configuration manager, text editor and command language 
interpreter. The APSE is hosted on VAX (VMS) computers targeted to the Intel 
80186 (see Figure 1). The components of the APSE are discussed below: 

ComDiler 

Developed by Irving Compiler Corporation (formerly the Irvine Computer Science 
Corporation), the ICC compiler front end accepts an Ada source program and 
performs all lexical, syntactic, and semantic analysis. Under license to ICC, 
Collins developed the code generator for the Intel 8086 family of 
microprocessors. While the compiler is not validated by the Ada Joint Program 
Office, it only accepts valid Ada statements. At the beginning of the 
Starship projects it was determined that the ICC compiler was more than 
adequate to support the design constructs used in avionics software. This 
conclusion was reached by careful comparison with other HOL compilers in use 
at Collins. The compiler produces an assembly source file at the rate of 800 
to 1000 Ada source lines per minute on a VAX 785. When the option is selected 
the compiler also produces a symbol table file for use by the symbolic 
debugger. 

Configuration Manager 

When the code is developed there must then be a method of keeping track of its 
evolution. This is partially the task of a configuration management tool. 
Source Tools by Oregon Software is used to manage a project's files by storing 
them in a library, tracking changes, and monitoring access to the library that 
contains the files. The Make function controls the efficient building of a 
software system by determining which components in the system have changed and 
then updating, or creating new versions of, only those files that depend on 
the changed components. 
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Symbolic Debugger 

The testing phase is especially difficult for embedded computer applications. 
Because of this, Collins Avionics has developed a symbolic debugger which 
allows a developer to test a program at the Ada source code level on the 
target computer rather than at a lower machine code level. The debugger uses 
a database that is generated in part by the compiler, assembler and linker. 
This database is separate from the user program. This means that the user 
program need not be altered (it could even be in ROM) in order to use the 
debugger for testing. 

The symbolic debugger which is also written in Ada is hosted on a n  I B M  
personal computer. The personal computer is fitted with cards that connect it 
via a cable to the target computer. These circuit cards provide additional 
RAM memory as well as control functions including signals to reset, halt, run 
and step the target computer, as well as facilities to examine and modify 
target memory location, an execution history buffer and address matching logic 
for breakpoints. The user interface to the debugger via the personal computer 
include commands for file manipulation, execution control, breakpoint, data 
manipulation as well as show and help commands. 

Editor 

The text editor currently being used is the EDT editor developed by DEC. It 
allows editing to be done in either full screen or line mode. 

Interpreter 

This task is currently performed by DEC's Digital Command Language (DCL) and 
its associated command processor. This provides a user with interactive 
program development, device and data file manipulation, and interactive and 
batch program execution and control. 

Assembler/Linker/Loader 

For the 80186, a VAX hosted cross assembler/linker package was purchased from 
Microtec Research. Collins developed programs were added to this package to 
provide data for the symbolic debugger. 

GGS ComDiler 

In order to help automate the generation of electronic flight display page 
formats, a general graphics system (GGS) compiler was added to the Starship 
APSE. As shown in Figure 1, the compiler accepts GGS source code and 
translates it into Ada source code. The GGS source is expressed in a language 
that allows description of a graphics object such as scales, pointers, numbers 
and letters as well as raster fill areas and stroke written areas. The GGS 
compiler which is written in Ada also runs on the VAX host computer. 
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Ada Applications 

In order to support the embedded applications, Collins developed a Real-Time 
Executive (RTE) which is written in Ada. While the RTE is compatible with 
Ada, it uses a slightly different tasking model than the one directly 
supported by the language. A different model was chosen for two reasons. 1) 
It is a tasking model that Collins has used in many other embedded systems. 
2)  The ICC compiler did not completely support all of the Ada tasking 
features. 

The RTE provides an interface from the application programs to the 80186 
processor. Included in the processor resources are the CPU execution 
resource, interrupts and the timers. From the viewpoint of the application 
program, the following functions are supported: tasking, based on the concept 
of independent tasks, which share the CPU resources; time-based execution of 
tasks; event-based synchronization between tasks; external interrupt based 
execution of tasks and controlled access to resources such that independent 
tasks do not interfere with each other accessing shared resources. 

A task is identified by stack, outer scope procedure, priority, and a four 
character name. Tasks are prioritized and may be activated by cyclic timer, 
event based signal or an external hardware interrupt. The RTE can support 
cyclic execution of tasks up to 1000 hertz. An Ada package may contain the 
outer procedure and stack for zero, one or more tasks, and procedures in a 
package may be executed by many different tasks. Table 2 lists the executive 
service routines that an application uses to interface with the RTE. The size 
of the RTE target code is approximately 10,000 bytes. 

EFD 

The Electronic Flight Displays (EFD) developed for Beech use 6 x 7 inch color 
CRT and completely integrated display processing. One display unit type is 
used in four applications in the cockpit. Table 3 indicates the applications 
and their functions. Each display unit is programmed with two applications to 
allow better redundancy and reversionary modes. In a two pilot cockpit, six 
display units, (four PFD/ND units and two EICAS/MFD units) are used . The Ada 
based applications execute on an pair of 80186 microprocessors. The first 
80186 is used for application specific functions (such as PFD or ND) as well 
as input/output functions. The second processor is used for display control 
functions that are common to all display applications. Each processor uses a 

1 

copy of the RTE. 

The Flight Management 
multi-sensor navigation 
This system consists of 

System (FMS) provides a very flexible automatic 
system which greatly reduces the pilot's workload. 
a control display unit, a data base unit with a 3 1/2 
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inch floppy disk drive, and the flight management computer with a pair of 
80186 processors. The Ada based applications implement the functions listed 
in Table 4. The software is partitioned on the two microprocessors in the 
following way. The first microprocessor provides control of the pages 
displayed on the CDU as well as control of the data base unit. The second 
microprocessor coupled with a floating point co-processor provides all of the 
navigation and performance computations. Some statistics about the EFD and 
FMS projects are summarized in Table 5 .  

TABLE 2 

Executive Service Routines 

Procedures: 

Functions: 

START TASK 

CHANGE PRIORITY 

defines a task procedure, 
stack, priority, and name 

raise or lower a task 
priority 

ABORT TASK stop task execution 

SET TIMER INTERRUPT RATE 

WAIT FOR TIMER INTERRUPT 

WAIT FOR (EVENT) 

SIGNAL (EVENT) 

RESERVE (RESOURCE) 

RELEASE (RESOURCE) 

FULL SECONDS 

CENT1 SECONDS 

defines cyclic task 
execution rate in hertz. 

stalls task until next 
cyclic timer interrupt 

stalls task until a 
signaled event or external 
interrupt 

used to synchronize with 
another task 

used to dedicate a shared 
resource to the calling 
task 

frees a shared resource 
(opposite of RESERVE) 

returns current value of 
real time clock in seconds 

returns current value of 
real time clock in 0.01 
seconds 
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TABLE 3 

EFD Applications and Functions 

- PFD (Primary Flight Display) 

Attitude 
Flight Director 
Lateral & Glideslope Deviation 
Airspeed error 
Alerts: marker beacon, decision 

Flight guidance modes (lateral & vertical) 
Fault & off-normal annunciations 
Reversionary "composite" PFD & ND 

height, altitude, ILS 

- ND (Navigation Display) 

Heading 
Selected heading/course/track 
Lateral/vertical deviation 
Bearings (ADF, VOR, WPT) 
Distanceltime to WPT 
Groundspeed, windspeed 
Flight plan with Navaids 
Weather radar 
Reversionary "composite" PFD & ND format 

TABLE 4 

FMS Functions 

EICAS (Engine Instrument Crew 
Advisory System) 
Torque 
Prop RPM 
Prop Sync 

Fuel Flow 
Oil temp, pressure 
80 caution & advisory msg 

N1 

- MFD (Multi-function Display) 

Reversionary EICAS 
Weather radar 
Moving map (hdg up) 
Planning map (north up) 
Checklist (emergency & routine) 
Nav status pages (pos, perf) 
Diagnostic & maintenance data 

(1) Statistical estimation of present position employing Kalman filtering 
techniques, utilizing all available sensor data. 

(2) Automatic station selection, tuning, and management of a position fixing 
submode hierarchy, with provisions for pilot to intervene where 
appropriate. 

( 3 )  Adaptive leg-to-leg and off-course captures with g-limited steering law. 

(4) Worldwide data base of VHF navigation aids, airport reference points, and 
published waypoints in numerous categories. 

( 5 )  Pilot creation of a large number of stored routes separate from the active 
flight plan, with provisions for off-aircraft creation and editing of the 
stored routes and ability to make trip planning calculations in flight. 

( 6 )  Calculations predictive of fuel remaining at destination 

( 7 )  Vertical Navigation function with deviation and steering outputs relative 
to fixed paths in space as may be defined in several ways. 
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TABLE 5 

Ada Project Statistics 

SOFTWARE LINES OF TARGET CODE 
PROJECT ENGINEERS SOURCE CODE . SIZE (BYTES) 

8 31 , 000 318 , 000 EFD 

FMS 12 51 , 000 470 , 000 

HOST DISK 
(MEGABYTES) 

164 

189 

Lessons Learned 

Two and a half years of using Ada in real-time embedded systems have taught us 
some lessons about the application of the language. We chose a "walk first 
approach" in using Ada. Instead of trying to embrace the entire language with 
all of its new features, we chose to use a subset of the language that was 
similar to features of other high order languages we have used. This approach 
appeared to be wise in terms of training and in terms of bounding the number 
of variables in building a new system. 

Training was accomplished by a combination of classroom work, textbook study 
and running examples on the VAX hosted APSE. The twelve hours of classroom 
training which was prepared and delivered by an in-house Ada expert, 
concentrated on the Ada concepts and features to be used by the Starship 
project. To complement the classroom work, all students were given a copy of 
the book "Software Engineering with Ada" by Grady Booch. Despite the fact 
that nearly every element was new in the software development process for 
these projects, we found software engineering productivity to average 200 
delivered Ada source lines per man month. This is approximately equivalent to 
what we have experienced on other projects using more established programming 
support environments. 

We discovered that the demands on the host computer system were greater than 
we had expected. 
While the compiler is quite fast at 1000 lpm, adding the steps for the 
assembler, linker and debugger table generation reduce the average to 250 
lpm. Add to this the fact that the configuration manager enforces 
recompilation of dependent packages and the result is longer processing times 
on the VAX host than we originally planned. Table 5 indicates the amount of 
host disk space required to support each project which is about twice what we 
have experienced on other HOL based avionics projects. The increase is 
explained by the additional files for configuration manager revision history, 
for the debugger database and the symbol tables needed by the compiler for Ada 
package specs and bodies. As far as code density on the target, we found the 
average of nine to ten bytes per Ada statement to be the same as other HOLs 
for the 80186. 

This is in terms of both processing time and storage space. 

We feel that Ada has brought some real benefits to the subsystems. Ada has 
provided the discipline and checks to allow program builds to work the first 
time in laboratory equipment. This greatly reduced debug time on the target 
computer. Ada has helped offer us more portable code between host system 
VAX's, personal computers and our target computers. And with the aid of 
symbolic debugging tools, our verification tasks are simplified. 
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Simulation of the Space Station Information System in Ada* 

James R. Spiegel 

College Park, Maryland 
Ford Aerospace & Communications Corporation 

INTRODUCTION 

The Flexible Ada Simulation Tool (FAST) is a discrete event 
simulation language which is written in Ada. FAST has been used 
to simulate a number of options for ground data distribution of 
Space Station payload data. The results of these analyses 
include on-board buffer requirements due to the TDRSS zone of 
exclusion, as well as bandwidth versus buffer and bandwidth 
versus delay tradeoffs within the ground system. 

The fact that the Ada language is used for implementation 
has allowed a number of useful interactive features to be built 
into FAST and has facilitated quick enhancement of its 
capabilities to support new modeling requirements. The use of 
tasks and packages has enabled the development of an interactive 
environment which allows the user to monitor and control the 
simulation. As a simulation is executing, a concurrent display 
task is updating pre-defined pages which contain simulation 
output statistics. A user command interface allows the user to 
pick from a number of display pages. This command interface also 
allows the user to interactively modify network parameters (e.g. 
number of servers or link bandwidth). 

This paper discusses general simulation concepts, and then 
how these concepts were implemented in FAST. The FAST design is 
discussed, and it is pointed out how the use of the ADA language 
enabled the development of some significant advantages over 
classical FORTRAN based simulation languages. The advantages 
discussed are in the areas of efficiency, ease of debugging, and 
ease of integrating user code. The specific Ada language 
features which enable these advanced are discussed. 

SIMULATION CONCEPTS 

FAST is a general purpose discrete event simulation tool. 
Currently, there are a number of simulation languages that are 
recognized in the field of discrete event simulation. The list 
includes SLAM, GPSS, SIMSCRIPT, and others. The key feature that 
defines a ttdiscrete event" simulation is that the state of the 
modelled system changes at discrete points in time. The 
simulation **language*t automatically performs the task of keeping 
records of what events are planned to occur, and when they will 

*Ada is a registered trademark of the U.S. Government (Ada Joint 
Programming Office) 
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occur. The language also performs the task of maintaining 
statistics that describe the performance of the network elements. 
The job of the user of a simulation language is to model a given 
system within the constraints of the particular language being 
used. 

The first step in the process is for the user make a 
abstraction of the system. Essentially, this means applying the 
terms of the simulation language such as lfresourcerl, I1queuel', and 
Vraffic" to the user's particular problem. Figure 1 provides a 
table of different types of systems that may be modelled, and the 
associated meanings of each of the model elements. 

One type of %etwork@' which FAST has been used to model is 
the SSIS. In this case, the lttraffictl entities are data packets, 
and the 'tserverstt or ltresourcesl1 are the communications links. 
Simulations were performed to answer such questions as: 

How much bandwidth is needed ? 

How long will data be delayed ? 

What percentage of the time is the link busy? 

For this example, the answer to the second and third 
questions The average wait time per 
packet is dependent on the link bandwith. The bandwidth is thus 
a 'Inetwork parameter1', while the delay times (queue statistics) 
and the link ("resource1') utilization describe the system 
performance. The objective of a simulation activity is to 
predict the system performance as a function of the network 
parameters. This is usually done by performing a number of 
simulation "runs*', while varying the network parameters. The 
result of each run is usually viewed as a point on a curve, and 
this curve describes the system performance as a function of 
input parameters. 

are dependent on the first. 

The methodology used to implement an event-driven simulation 
is based on the concept of a future events queue. An event may 

the system. Examples are when a data packet is generated, or 
when a transmission has been completed. The future events queue 
keeps a record of all of the events that may be planned. For 
example, when the transmission of a packet is initiated the time 
at which the transmission will be complete is calculated. This 
event is placed on the future events queue. 

I be defined as any action or condition that changes the state of 

Each time an event occurs, a procedure is called that 
implements the logic associated with that event. This logic 
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consists of decision making (is a link available?), updating the 
state of the system ( the link is now busy), and performing 
calculations required to maintain statistics. When the 
processing for a given event is complete, then the future events 
queue is used to determine the next event. 

One of the major problems in the area of simulation is 
efficiency. The process of discrete event simulation is 
inherently a Monte-Carlo process. This means that the input 
traffic is described by a statistical model. The simulation is 
thus performed using random inputs, and the statistics which 
describe the network performance are expected to converge in 
time. The number of events which need to be processed in order 
to achieve statistical convergence is both very large, and 
difficult to predict. The procedure usually adopted is to pick a 
safe duration, and to use this for all runs. This often results 
in two troublesome phenomena. The first is that more computer 
time is used that is actually necessary for a given run. The 
second is that the scope of the simulation activity is usually 
limited by the computing resource. 

Another limitation of general purpose modelling languages is 
that they are usually not sufficient to model the complex 
interactions of a real world systems. Many simulation languages 
overcome by allowing the user to write his own procedures. 
Mechanisms are provided for the user to write his own code 
(usually in FORTRAN), and integrate user written procedures in 
the model. The support available for this type of activity 
varies among languages, but in almost no cases can the support be 
considered ltfriendly1'. In most cases, the user is constrained to 
the use of a number of cryptic conventions in order to integrate 
his code. This process is both time-consuming and fraught with 
hazards. The bottom line is that one has to be a simulation 
llexpertlt in order to undertake such a task. 

this 

One final source of many headaches for users of simulation 
languages is the area of debugging. This includes both debugging 
of user written simulation routines (discussed in previous 
paragraph), and the debugging of models which do not work. 
Again, various languages provide various levels of support for 
this activity. As a minimum, most languages have the capability 
to list the names of what events occured and at what time. This 
results 
order to begin to understand where a problem is Once 
this information is found, it is sometimes useful, but oftentimes 
it does not shed enough light to solve the problem. When this 
happens the user is left little option other than staring long 
and hard at his input model, scratching his head, and trying to 
determine why he got the unexpected output. He may change one 
variable, rerun the model, and see what effect it had. When this 
fails to shed light, he will change others as deemed appropriate. 
This can be a very time consuming activity. Frustrated modellers 
have even been known to blame hardware. 

in a large listing which the user must search through in, 
occuring. 

F. 1.2.4 



FAST CONCEPTS 

? 

Three areas have just been described in which improvement is 
clearly welcome. These are : 

o EFFICIENCY 

o DEBUGGING 

o EASE OF INTEGRATING USER CODE 

FAST has been designed with the objective of alleviating 
many of the obstacles which are encountered in these areas. In 
order to understand how these areas are addressed, it is 
necessary to first gain an appreciation for the overall FAST 
environment. This section provides a general description of the 
FAST environment, and then discusses the advances which have been 
recognized in these three areas. 

FAST provides an unusually friendly environment in which to 
perform simulations. Figure 2 illustrates this I1environmentt1. 
FAST is designed to run interactively from a terminal. When FAST 
is running, most of the screen is dedicated to the display 
window. The user may specify which page is to be displayed by 
entering a llSET-PAGE1l command in the input window. Figures 3 and 
4 show the menus of user commands and pre-defined display pages 
which the user has to choose from. Figure 5 provides an example 
of one of these display pages. The other two windows are the 
error window, and the simulation state window. The error window 
is used when there is a syntax error in the user input, or when 
there is an error within the simulation run. The simulation 
state window displays whether a simulation is running, stepping, 
or suspended. 

In a typical use of FAST, the user runs a simulation and 
monitors a statistic of interest. When the statistic has 
converged, the user changes the network parameters, and a new 
simulation I1runtt is started. This environment presents a number 
of advantages, the most important of which is that the user is 
able to observe the statistic as it is updated in accord with the 
progress of the system. obtained 
confidence in the results is significantly reduced. 

The period of time required to 
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I DISPLAY WINDOW 

Figure 2 - The FAST Environment 

+-----------------------------------------------------------------------------+ 

IState menu commands: I 
I 
I 

I 
I Help 
IHelp <Set-Page> -- Display page selection help I 
I List -- List all state files I 
I New [<filename>] -- Start a new state file I 
lopen [<filename>] -- Open a state file I 

ISet-Queue-Size <queue number> <size> -- Set size of one queue I 

I Flush -- Flushes Statistics I 
I SAVE -- Saves the current state file I 
1 Close -- Close a state file I 
I Print -- Print Simulation Results I 
I Quit -- Return to limit menu I 

-- Display this help screen 

ISet-Speed <number of seconds from 1 to 60> -- Set refresh rate of display 1 
ISet-Duration <simulation time> -- Set duration of simulation I 

!Set-Resource-Size <resource number> <size> -- Set size of one resource I 

Execution Suspended. 
Input : 

Figure 3 - Input Command Menu 
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+---------------------------------------- 
IPage Selection State menu commands: 
I 
]Set-Page Queue-Resource-Summary 
ISet-Page Mark-Summary 
ISet-Page Limit-Summary 
ISet-Page Queue-Resource <queue number> 
(Set-Page Queue <queue number> 
ISet-Page Future-Events-Queue [amnber>] 
ISet-Page Mark <mark number> 
ISet-Page Passport-Summary [<number>] 
ISet-Page Active Passports [<number>] 
I 

.------------------------------------- + 
I 
I 

-- Display mark statistics I -- Display limit statistics I 

-- Display a queue I -- Display Future Events Queue I 

-- Display queue / resource stats I 

-- Display statistics on one queue I 

-- Display statistics on one mark I -- Display status of all passports I -- Display status of active passports1 
I 

Input : 

Figure 4 - Display Page Menu 

1 

IQueue and resource summary 
I 
IQueue Arrivals Avg Length I----- -------- ---------- 

1 8153 1.0111 
2 8251 0.0529 

I 
I 

3 8153 4.3402 
4 102 1.3550 

I 
I 
I 5 600 27.1731 
I 
I 
I 
I 
I 
I 
I 

Current simulation time is 10000.0000 

Avg Wait Avg Resource Usage 

1.2401 0.4144 
0.0642 0.4282 
5.3238 2.1731 

133.8373 1.0000 
465.1406 1.0000 

-------- ------------------ 

Execution Suspended 
Input : 

Figure 5 - Sample Queue-Resource-Summary Page 
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The user may control the execution of the simulation through 
the use of %TEP1I, llSTOP1l, and I1RESTAFtT8l commands. In 
addition, he may alter network parameters using the 
llSET-QUEUE-SIZE1l or IISET-RESOURCEtl command. The result of these 
ccapabilities is that an environment is provided in which the 
user may monitor and control the simulation process. 

b 

EFFICIENCY 

The ability to provide the capability to build and monitor 
display pages was facilitated by the use of Ada tasking. The 
FAST system consists of a number of tasks. One of these is the 
simulation task, which performs the actual network simulation. 
In addition, there are tasks for displaying pages, as well as 
tasks to interact with the user. 

There is no way of getting around the fact that Monte-Carlo 
simulation takes a long time in order to achieve statistical 
convergence. What FAST does provide, however, is a mechanism to 
monitor the statistics in question. The user m a y  monitor a 
statistic during a simulation run, and when the statistic has 
stabilized to the userls satisfaction, the run may be stopped. 
This provides two advantages. The first is that a confidence 
range may be established. The second is that the user does not 
have to guess how long to run the simulation, thus saving a lot 
of personal and CPU time. 

DEBUGGING TOOLS 

Clearly, for an event driven simulation, the future events 

~ ability to view the future events queue on an event by event 
basis is extremely valuable for debugging purposes. One of the 
major advantages of FAST is that it does allow visibility into 
the llinternalll structures of the simulation. These include both 
a llFuture-EventS-Queuetl page, as well as an "Active-Passports1I 
page. (A passport is a record that is used to keep track of the 
traffic entities as they flow through the system). The 
Future-Events-Queue lists which passports are scheduled to be 
activated, and when. The Active-Passports page describes where 
within the network each passport resides, as well as additional 
information about the passport. The combination of these two 
pages provides significant detail regarding the state of the 
system. FAST also includes a feature called step mode, which 
allows the user to instruct the model to process only one event 
at a time. Using the pages in conjunction with the step mode the 
user is able to observe the very fine details of the system, and 
can do so at whatever level is deemed appropriate for determining 

I queue is vital to the inner workings of the simulation. The 
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exactly how the simulation is progressing. 

In addition to the features that have been described, the 
process of debugging is reinforced by an error management 
philosophy that takes advantage of Ada's exception handling. If, 
in the process of a simulation, a logical simulation error is 
encountered (such as a queue overflow), this error is managed as 
an exception. The simulation is suspended, and an error message 
is displayed in the error window that describes the error. At 
this point, the user is able to investigate why this error has 
occured. All of the simulation structures are still in tact, so 
the user may use the display capability to observe any of the 
pre-defined pages. 

One proven debugging technique is to use the "SET-DURATION" 
command to a time just prior to the simulation error. A 
llRESTART1l command will then cause the simulation to run to a 
point just before the error occurs. The user may now proceed 
using the STEP command to determine exactly when, where, and why 
the error occured. Clearly, such a capability is invaluable in 
the debugging process. 

EASE OF - INTEGRATING USER CODE 

FAST has been designed in such a way that makes adding user 
modules safe, efficient, and easy. This is due to the fact that 
an object oriented design has been implemented which not only 
protects the system from the user, but also provides maximum 
support for the user. 

As an example, there is a 'IQUEUE1' package which contains the 
data structures which are used to model the queues, and all of 
the procedures and functions which operate on queues(e.g. 
REQUEST, RELEASE). Within the queue package, all of the logic 
which is needed to model the queue (First-In-First-Out) is coded. 
All additional effort which is required in order to implement 
these functions is provided by support packages. All of the 
queue length statistics (average, standard deviation, maximum, 
minimum) are maintained by a statistics package. Within the 
queue package, whenever the queue length is altered, a message is 
sent to the llSTAT1l package. Similarly, communications between 
instances of queue and passport structures is through a message 
oriented protocol similar to Smalltalk in nature. Real-time 
displays are implemented through messages to a window manager 
(also implemented in Ada). 

All of these support packages which are currently used by 
the existing FAST packages are available for user written 
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packages. This means that the inclusion of user packages is both 
safe and efficient. In addition, the debugging capabilities 
significantly reduce the time necessary to test and integrate 
large models. Finally, the user packages are written in Ada, and 
are thus blessed with the inherent advantages therein. 

The use of object oriented design has already provided 
significant efficiencies in the development of the FAST system. 
In addition to all of the classical arguments espoused by the 
proponents of object oriented design, the methodology lends 
itself particularly well to the implementation of a simulation 
language. Specifically, objects that are built to model elements 
are limited in scope and complexity to the problem of modelling 
the logic of that element. 

CONCLUSION 

FAST uses the capbilities of the Ada language (packages, 
tasking, and exception handling) in order to enhance a classical 
simulation tool by providing an interactive, friendly simulation 
environment. result is a tool which is easy for a beginner 
to use, and significantly increase the productivity of an 
experienced network simulation specialist. 

The 
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DESIGNING WITH ADA* FOR SATELLITE SIMULATION: A CASE STUDY 

W. W. Agresti, V. E. Church, D. N. Card, P. L. Lo 
Computer Sciences Corporation** 

ABSTRACT 

A FORTRAN-oriented and an Ada-oriented design for the same SyS- 
tem are compared to learn whether an essentially different de- 
sign was produced using Ada. The designs were produced by an 
experiment that involves the parallel development of software 
for a spacecraft dynamics simulator. Design differences are 
identifieu in the use of abstractions, system structure, and 
simulator operations. Although the designs were significantly 
different, this result may be influenced by some special charac- 
teristics discussed in the paper. 

INTRODUCTION 

Some early experiences using Ada for scientific applications 
(e.g., [l]) showed that the design of the Ada system "looked 
like a FORTRAN design." As part of an experiment on the effec- 
tiveness of Ada, the experiment planners identified the follow- 
ing factors that were believed to be prerequisites for obtaining 
a new design, one that would take full advantage of Ada features: 

0 The opportunity to set aside previous designs for the 
system and work directly from system requirements 

0 Training in design methods that exploit Ada's capabili- 
ties 

0 The encouragement to explore these new design methods 

The purpose of this paper is to address the following question: 

When these prerequisites were satisfied, was a different 
design produced? 

The experiment in progress is being conducted by the Software 
Engineering Laboratory (SEL) [2] of the National Aeronautics and 
Space Administration's Goddard Space Flight Center (NASA/GSFC). 
NASA/GSFC and Computer Sciences Corporation (CSC) are cosponsors 
of the experiment, which is supported by,personnel from all 

*Ada is a registered trademark of the U.S. Government (Ada Joint 
Program Office). 

**Authors' Address: Computer Sciences Corporation, System 
Sciences Division, 8728 Colesville Road, Silver Spring, 
Maryland 20910 
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three SEL participating organizations (NASA/GSFC, CSC, and the 
University of Maryland). 

The objective of the overall experiment is to determine the 
effectiveness of Ada for flight dynamics software development at 
NASA/GSFC. ( ( 2 1  describes the characteristics of this environ- 
ment.) The experiment, begun in January 1985, consists of the 
parallel development, in FORTRAN and Ada, of the attitude dy- 
namics simulator for the Gamma Ray Observatory (GRO) spacecraft. 
When completed, the system is expected to comprise approximately 
40,000 source lines of code to execute on a DEC VAX-l1/780 com- 
puter. Additional information about the experiment is presented 
in [ 3 ] .  

Although the FORTRAN and Ada development teams are proceeding in 
parallel, the FORTRAN team is further along, due, in part, to 
the time necessary to train the Ada team in the Ada language and 
design methods. Both teams have completed the critical design 
review. This paper reports on a preliminary review of the de- 
sign processes and products of both teams in order to address 
the question of interest. The design problem is discussed, an 
overview of the designs is presented, design processes and prod- 
ucts are compared, and the results and their implication for 
answering the question are summarized. 

THE DESIGN PROBLEM 

The purpose of the GRO dynamics simulator is to test and eval- 
uate GRO flight software under conditions that simulate the ex- 
pected in-flight environment as closely as possible [ 4 ] .  The 
simulator is represented as a control problem in Figure 1. The 
right side of the figure models the onboard computer (OBC) flight 
software. The OBC Model uses sensor data provided by the Truth 
Model to determine the estimated attitude. Comparing the esti- 
mated attitude to the desired spacecraft attitude, the OBC 
determines the attitude error. Control laws are modeled within 
the OBC to generate attitude actuator commands that will reduce 
the attitude error. 

The Truth Model, the left side of Figure 1, simulates the re- 
sponse of the attitude hardware. The Truth Model updates and 
interpolates the spacecraft ephemeris and environmental torques, 
integrates the spacecraft equations of motion, and generates the 
true attitude of GRO. The Truth Model produces sensor data cor- 
responding to the attitude, for use by the OBC Model. 

Both teams have the task of designing and developing software to 
simulate the attitude dynamics and control shown in Figure 1. 
An additional requirement on the FORTRAN team is to extract its 
Truth Model and integrate it with the Goddard GRO Simulator 
(GGS), a real-time simulator of the GRO OBC flight software. 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

F i g u r e  1. GRO Dynamics S i m u l a t o r  a s  a C o n t r o l  Problem 

OVERVIEW OF THE DESIGNS 

I n  t h i s  h i g h - l e v e l  look  a t  each d e s i g n ,  t h e  o v e r a l l  sys t em 
s t r u c t u r e  and  t h e  e x t e r n a l  and i n t e r n a l  data  f l o w s  a re  d i s -  
cussed. , Some simple q u a n t i t a t i v e  measures are  e x t r a c t e d  from 
e a c h  d e s i g n .  

System S t r u c t u r e  

k t o p - l e v e l  sys t em diagram f o r  each d e s i g n  i s  shown i n  F i g u r e s  2 
and 3. To f a c i l i t a t e  comparison,  t h e  i d e n t i c a l  s y s t e m  i n p u t  and 
o u t p u t  o b j e c t s  are  p l a c e d  a t  t h e  t o p  and bot tom, r e s p e c t i v e l y ,  
of each  f i g u r e .  The FORTRAN sys t em c o n s i s t s  of t h e  f i v e  subsys -  
t e m s  i n  t h e  middle of F i g u r e  2. The A d a  sys t em is  t h e  p r o d u c t  

FORTRAN team method. So, a l t h o u g h  "subsystem" w i l l  be used t o  
refer t o  t h e  major  Ada u n i t s ,  t h e y  a re ,  i n  f a c t ,  A d a  packages.  
Fu r the rmore ,  t h e  s i m u l a t i o n  s u p p o r t  subsys tem i n  F i g u r e  3 is 
r e a l l y  a c o l l e c t i o n  o f  three Ada packages  f o r  t h e  s i m u l a t i o n  
timer, parameters, and ground commands. The Ada sys t em a p p e a r s  
i n  F i g u r e  3 as  f i v e  subsys tems o n l y  t o  i n v i t e  compar ison  w i t h  
FORTRAN r e g a r d i n g  t h e  h i g h - l e v e l  da ta  f low.  

* of a d e s i g n  method (discussed below) t h a t  d i f f e r s  from t h e  

The FORTRAN sys t em is  composed of three d i s t i n c t  programs: Pro-  
f i l e ,  P o s t p r o c e s s o r ,  and S i m u l a t o r  ( T r u t h  Model, OBC Model, and 
S i m u l a t i o n  Con t ro l - I /O) .  A s  separate programs, e a c h  i n t e r a c t s  
w i t h  t h e  user, a s  shown by t h e  e x t e r n a l  da ta  f l o w s  i n  F i g u r e  2. 
The a s s ignmen t  of p r o c e s s i n g  f u n c t i o n s  t o  e a c h  subsys tem is 
shown i n  F i g u r e  4 f o r  b o t h  t h e  FORTRAN and A d a  sys tems.  
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Figure 2. FORTRAN System Diagram 

Figure 3. Ada System Diagram 
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Figure 4 .  Allocation of Functions Among Subsystems 

The Ada system is designed as a single program, with each sub- 
system performing the functions listed in Figure 4 .  The OBC 
Model is functionally similar to its FORTRAN counterpart. The 
Ada Truth Model incorporates the processing performed in the 
FORTRAN Profile in addition to the FORTRAN Truth Model. (The 
FORTRAN user has the option of choosing not to use Profile and 
having those calculations performed in the Truth Model, thereby 
mirroring the Ada design.) The Ada design pulls apart the simu- 
lation control functions from the User Interface; these process- 
ing elements are combined in the FORTRAN design. However, the 
User Interface in Ada includes the results processing that, in 
FORTRAN, is delegated to a separate program, the Postprocessor. 
Both designs have major units named Truth Model and OBC Model to 
reflect the underlying control problem illustrated in Figure 1. 

External Data Flow 

B o t h  designs in Figures 2 and 3 show communication with nine 
external objects (files or devices). Eight of the nine are 
identical, the difference being the profile data file in FORTRAN 
and the display format file in Ada. The FORTRAN design requires 
the profile data file to decouple the Profile and Truth Model 
processing. The use of a display format file in the Ada design 
is motivated by reusability considerations. By keeping the de- 
tailed formats of menus and displays on an external file, the 
user interface is easier to reuse on a future simulator. 
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The number of external data flows is greater in the FORTRAN de- 
sign, as shown in Table l. Most of the additional data flows 
arise from the separation of the FORTRAN design into three pro- 
grams, requiring more data flows to and from the user and dis- 
tinct data flows to the profile data and results output files 
that decouple the programs. Also, as shown in Figure 2, the 
star catalog external file is required in both Profile and the 
Truth Model. 

SEPARATE PROGRAMS 

TASKS 

' EXTERNALENTITIES 

EXTERNAL DATA FLOWS 

INTERNAL DATA ROWS 

SUBROUnNEWSUBPROGRAMS 

PACKAGES 

Table 1. Simple Quantitative Design Characteristics 

I CHARACTERISTIC FORTRANDESIGN I ADADESIGN I 
3 

5 (IN SIMULATOR 
PROGRAM) 

8 

18 

3 

282 

1 

5 

8 

10 

8 

262 

101 

The Ada design (Figure 3) involves the minimum number of exter- 
nal data flows. The details of accessing each file are confined 
to a single subsystem. 

Internal Data Flow 

Table 1 shows that the Ada design has nine internal data flows, 
versus three for the FORTRAN design. Of course, no more inter- 
nal data flows are possible in the FORTRAN case because Profile 
and the Postprocessor are separate programs. The three remain- 
ing subsystems in the FORTRAN design exchange data with one 
another via COMMON blocks. (Although the use of COMMON has been 
criticized, empirical results from the flight dynamics environ- 
ment has shown it to be effective [SI.) 

Although the number of distinct data flows (connections) between 
subsystems is greater in Ada, fewer data items pass over these 
connections than in FORTRAN.. An example will show how various 
Ada language features help to reduce the proliferation of data 
item names. 

Both designs provide for the recording of simulation analysis 
results. In FORTRAN (Figure 2), these results pass from the 
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Truth Model and OBC Model via COMMON to the Simulation Control- 
1/0 Subsystem, which writes them to the external results output 
file. In Ada (Figure 3 ) ,  the internal data flows from the Truth 
Model, OBC Model, and Simulation Control carry results data to 
the User Interface, which writes them to the results output file. 

In the FORTRAN design, the results data record comprises 4 3  dis- 
tinct variable names. In Ada, the results are passed under a 
single identifier, Results Data, when a procedure, Put Results- 
Data, in the User Interface is called by the Truth Model, OBC 
Model, or Simulation Control. This reduction in the number of 
iaentifiers is possible because of the use of Ada's variant rec- 
ord feature. In the example, Results-Data can be either an 
executed ground commana, parameter upoate, error message, or 
analysis result. In Ada, the user can declare Results Data as 
type RESULT, defined as a record type with a variant part as 
follows : 

type RESULT - KIND is (Error Msg, Log - Command, Results, 
Parameters) ; 

type RESULT (Kind: RESULT KIND:=Results) is - 
record 
case Kind is 
when Error Msg I Log Command => 

Result-Line: 
when Results 1 Parameters = >  

Result-Rec: PARAM RESULT; 

STRING (1. . 80) ; 
- 

end case; 
end record: 

Because of such features, the count of data items is consistently 
lower over the Ada data flows than over the FORTRAN data flows. 

COMPARING DESIGN PROCESSES 

Differences in the design processes help to explain the differ- 
ences in the delivered design products of the FORTRAN and Ada 
teams. Two aspects of the design process--critical design 
"drivers" and the use of design abstractions--will be examined. 

Design Drivers 

The design drivers--critical characteristics that strongly in- 
fluence design decisions--are different for the two teams. The 
FORTRAN team was influenced by its real-time processing require- 
ment, previous designs, and schedule concerns. The Ada team was 
influenced by its training in alternative design methods and the 
opportunity to apply those methods. 

Although the basic requirements for each team are identical, the 
FORTRAN team has a real-time requirement, noted earlier, to in- 
tegrate its Truth Model Subsystem with the Goddard GRO Simula- 
tor. To help ensure that the Truth Model will complete its 
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processing in time to meet this requirement, the FORTRAN design 
removes those computations that are not strongly attitude de- 
pendent from the Truth Model to a separate Profile Program. 
Then, instead of performing these calculations (such as environ- 
mental torque and magnetic field) each iteration, the Truth 
Model can simply read the necessary values from the Profile data 
set (as shown in Figure 2) . This separation of the Profile cal- 
culations from the Truth Model is further encouraged by the pre- 
vious designs of dynamics simulators in FORTRAN, which also had 
separate Profile Programs. The FORTRAN design also provides the 
option, for qreater accuracy, of performing the Profile calcula- 
tions within the Truth Model. 

The Ada design, not required to meet the real-time constraint in 
this experiment, includes in its Truth Model the calculations 
performed in the FORTRAN Profile Program and FORTRAN Truth Model. 
It will be of interest later to test whether the real-time re- 
quirement can be met by the Ada design and by the FORTRAN design 
under the option of performing Profile calculations inside its 
Truth Model. 

A strong driver of the FORTRAN design is the presence of a pre- 
vious design, used successfully on past simulators. The parti- 
tioning into subsystems in Figure 2 is identical to that of 
previous simulators. With this legacy, the interfaces between 
subsystems--a frequent problem area with original designs--are 
clarified early in the project. With the interfaces relatively 
clear, the subsystems can be assigned to individuals or small 
subgroups for detailed design and implementation with the "de- 
sign envelope" fairly well established. 

The Ada design was intended to be an independent one, free of 
the influence of past simulator designs. The subsystems that 
evolved were the product of lengthy design discussions. The 
similarity of the Ada subsystems to those in FORTRAN owes more 
to both designs reflecting the underlying control problem of 
Figure 1, rather than the Ada design copying the FORTRAN design. 

The schedule constraints on the teams were different. To help 
explain this difference, consider that the dynamics simulator is 
a routine element of the set of ground support software for a 
satellite mission. The entire complement of software has rigid 
schedule constraints derived from launch dates. FORTRAN has 
been used in the past and is being used now for the GRO attitude 
ground support software. In such an environment, it is natural 
that the FORTRAN team was perceived as building the real, opera- 
tional software, even though the Ada product is also expected to 
pass acceptance testing and to perform in an operational envi- 
ronment. 

The FORTRAN team generally had more schedule pressure than did 
the Ada team, and this difference affected the design products 
and methods. Both teams were charged with developing operational 
software, but the Ada team was also encouraged to try Ada-related 
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design methods as a way of understanding their usefulness in the 
flight dynamics environment. The FORTRAN team had more exclu- 
sively practical concerns of meeting the development schedule. 

Desiqn Abstractions 

The use of abstraction was also different for each team. The 
FORTRAN design products provide evidence of the procedural ab- 
straction carried forward from earlier designs. An individual 
subroutine may be thought of as a black box that will, for spec- 
ified values of its input variables, produce the same specific 
output values every time it is invoked. The input and output 
quantities are transmitted via argument lists or COMMON. This 
procedural abstraction can also be used at higher levels in the 
system. For example, the Truth Model is a procedural abstrac- 
tion possessing an identifiable function (computing the current 
attitude state of the spacecraft), specific input quantities 
(primarily parameter values and actuator commands), and specific 
output quantities (primarily sensor data reflecting the time 
attitude state) . 
The FORTRAN design also has elements of being object oriented. 
Functional processing at the lower levels is organized around 
objects in the problem domain such as specific sensors and ac- 
tuators. For example, the Truth Model contains a sensor model- 
ing component that calls seven routines: one for each sensor 
type, Anyone making a code modification due to a requirement 
change relating to the fine Sun sensor will find a subroutine, 
FSSMOD, described as modeling the fine Sun sensor. The use of 
COMMON also reflects an orientation to objects. For example, 
one COMMON block holds gyro parameters; another has FSS param- 
eters; and so on. 

Concurrent processes are used in the FORTRAN design to model the 
concurrency that exists in the operational use of the simulator. 
For example, an analyst may interrupt the processing to change 
the value of a parameter. System services of the DEC V A X - 1 1 / 7 8 0  
VMS operating system are used to implement the concurrent proc- 
esses. Both the object-oriented features and the use of con- 
currency are characteristics of past FORTRAN simulators, 
demonstrating that reuse of design is the operative high-level 
approach in the FORTRAN design, 

1 

The Ada design process was significantly different from that of 
the FORTRAN team. 
the design phase of the project. 

The differences begin to emerge even before 
* 

The functional specifications and requirements document [ 4 1  for 
the GRO dynamics simulator is influenced by the design legacy of 
dynamics simulators developed within the organization. For ex- 
ample, the document is organized by major subsystem because that 
particular partitioning into subsystems (Figure 2) has persisted 
through several simulator project teams. In effect, the highest 
level design is completed during the requirements analysis phase. 
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This encroachment of design on requirements actually provides a 
welcome headstart to a team who will be following that design 
and taking maximum advantage of the existing code based on that 
design. While such a document fit in well with the projected 
work of the FORTRAN team, it was not as helpful to the Ada team, 
who wanted to produce an independent design, uninfluenced by 
previous simulator designs. 

A way out of this dilemma--the influence of the previous design 
present in the requirements--was to recast the requirements in a 
different form. The Ada team developed a specification for the 
dynamics simulator using the Composite Specification Model (CSM) 
161, which represents a system from the functional, dynamic, and 
contextual views. Recasting the system requirements using CSM 
served other purposes as well: It provided a testbed for the 
CSM as a specification tool, and it allowed the Ada team, who 
was relatively inexperienced in the application area, to analyze 
the system requirements in a systematic manner. The result of 
this exercise was a specification document [ 7 ]  and a better 
understanding of the needs of the system. For example, included 
in [7] are PDL-like process specifications describing the re- 
quired functional processing. The specification succeeded in 
removing the inherited design from the system requirements and 
served as a starting point for the Ada design. 

The Ada language itself influenced the design team because the 
team members knew that useful design abstractions could be rep- 
resented in Ada. The team had been exposed to object-oriented 
design, tne process abstraction methodology, and other approaches 
during their training program, which included the development in 
Ada of a 5700-line training exercise [ 3 ] .  The principal design 
abstractions used by the team were the state machine abstraction 
and the representation of the system according to the orthogonal 
views of a seniority hierarchy and a parent-child hierarchy [8]. 
The state machines are conveniently implemented as Ada packages 
consisting of internal state data and a group of related proce- 
dures that operate on that state data. The Ada design product 
reflects this approach; the design includes 104 packages and 
69 sets of state variables. 

An instance of the seniority hierarchy is shown in Figure 5. 
The team's design approach is to build the system as layers of 
virtual machines 191. For example, Figure 5 shows that the OBC 
package is senior to the Truth Model package. The arc between 
the two pac-shows that OBC uses operations (subprograms) of 
the Truth Model. Arcs do not go from a package to one that is 
above it. In this way, each diagram expresses the relative 
seniority of the packages [lo]. The orthogonal parent-child (or 
inclusion) hierarchy provides for a package (like one of those 
in Figure 5) to be represented on a separate diagram in terms of 
its constituent elements; for example, subprograms, other pack- 
ages, and state data. 
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Figure 5. Ada Design: Seniority Hierarchy of Packages 

In summary, the Ada team was able to use effective design ab- 
stractions because they were confident that these abstractions 
could be preserved in an Ada implementation. 

COMPARING DESIGN PRODUCTS 

The design documents were examined to determine any significant 
differences. Some differences were noted earlier: the FORTRAN 
design involving three programs; the different assignment of 
functional processing to subsystems; and the data flow. Review 
of the design documents revealed two more fundamental differ- 
ences in the basic operation of each simulator, as specified by 
the designs. These key differences can be shown by tracing the 
operation of each simulator. 

Figure 6 shows the logical relationships among the five tasks 
that constitute the FORTRAN simulator program (i.e., excluding 
Profile and the Postprocessor). The task called GROSS in Fig- 
ure 6 is the main process started by the user via a RUN command. 
GROSS remains an active process throughout the simulation run, 
displaying a menu of user options at the user's terminal and 
remaining ready to respond to a user request. 

The SIMCON process, created by GROSS, controls the simulation. 
AS suggested by the control loop in Figure 1, the simulation 
involves iterating over the Truth Model and the OBC Model. 
SIMCON directs this iteration. SIMCON wakes up the Truth Model 
(TM) process, which computes the attitude state and deposits the 
corresponding sensor data into a global COMMON section. When TM 
is finished, it goes into hibernation, setting an event flag 
that signals SIMCON to wake up the OBC process. OBC obtains the 
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c u r r e n t  s e n s o r  da t a  l e f t  by TM, models t h e  c o n t r o l  laws, and 
g e n e r a t e s  a c t u a t o r  commands t h a t  a re  placed i n  a g l o b a l  COMMON 
s e c t i o n  f o r  access by TM on t h e  n e x t  i t e r a t i o n .  Its work f i n -  
i s h e d ,  OBC h i b e r n a t e s ,  s i g n a l i n g  SIMCON t o  w a k e  u p  SIMOUT t o  
wri te  an  a n a l y s i s  r e c o r d  t o  c a p t u r e  t h e  r e s u l t s  o f  t h i s  i t e r a -  
t i o n .  When SIMOUT h i b e r n a t e s ,  SIMCON w a k e s  u p  TM t o  b e g i n  t h e  
n e x t  i t e r a t i o n .  

I 
I 

, I  

I 
I r w a v r I  
I 
I 

F i g u r e  6, FORTRAN Design:  H i e r a r c h y  o f  Execu t ion  T a s k s  

I 

I 
. I  

The FORTRAN user c a n  s e t  t h e  c y c l e  t i m e ,  which is t h e  amount of 
t i m e  t h a t  t h e  s i m u l a t i o n  clock is  incremented .  The c y c l e  t i m e  
d e t e r m i n e s  when e v e n t s  o c c u r  i n  t h e  s i m u l a t i o n ,  f o r  example,  
when t h r u s t e r s  f i r e ,  when new s e n s o r  d a t a  are  g e n e r a t e d ,  and 
when t h e  s p a c e c r a f t  a t t i t u d e  s t a t e  is  updated. The FORTRAN de- 
s i g n  t h u s  i n v o l v e s  i t e r a t i n g  o v e r  t h e  three processes (TM, OBC, 
and SIMOUT) ,  w i t h  t h e  user-settable c y c l e  t i m e  d e t e r m i n i n g  when 
e v e n t s  occur .  

I 
I I 

F i g u r e  5 shows a n  e x c e r p t  from t h e  Ada d e s i g n  c o r r e s p o n d i n g  t o  
t h e  s i m u l a t o r  o p e r a t i o n ,  The n o t a t i o n  i n  t h e  f i g u r e  needs  some 

d e n o t e  off-page c o n n e c t o r s ,  w i t h  t h e  l abe ls  El, E2, etc., re- 
f e r r i n g  t o  e x t e r n a l  f i l e s  and t h e  l a b e l  1 d e n o t i n g  package num- 
ber 1 from a d i f f e r e n t  diagram. A r c s  show t h e  d i r e c t i o n  o f  a 
subprogram c a l l  from a subprogram i n  t h e  c a l l i n g  package t o  a 
subprogram i n  t h e  called package.  More d e t a i l  on  t h e  d e s i g n  
n o t a t i o n  is p r e s e n t e d  i n  [lo]. 

The p lacement  of packages  on d e s i g n  d i ag rams  such  as  F i g u r e  5 
shows t h e  s e n i o r i t y  h i e r a r c h y  described ear l ie r .  Thus, i n  Fig- 
u r e  5, t h e  S i m u l a t i o n  C o n t r o l  package is  s e n i o r  t o  o t h e r  pack- 
a g e s  on t h e  d iagram;  t h a t  is, it u s e s  services p rov ided  by t h e s e  
o t h e r  packages  and t h e y  do  n o t  u s e  i t s  s e r v i c e s .  The three 

I e x p l a n a t i o n ,  The rounded r e c t a n g l e s  are A d a  packages. Circles 
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packages at the lowest level (which together constitute the sim- 
ulation support subsystem of Figure 3 )  are junior to the pack- 
ages higher in the diagram and as such are not the origin for 
any arcs that terminate at higher level packages. 

This more detailed examination of the operation of each simula- 
tor revealed two clear differences in the Ada design: the pas- 
sive role of the Truth Model and the separate timing of the OBC 
and the Truth Model. 

The Ada design represented by Figure 5 shows that, unlike the 
FORTRAN design, the OBC and the Truth Model are - not at the same 
level. The OBC calls the Truth Model to obtain sensor data when 
the data are needed. The Truth Model is passive; it performs 
processing and generates sensor data only when directed to do S O .  

Both the OBC and the Truth Model are junior to Simulation Con- 
trol in Figure 5, an arrangement that appears to mimic the 
FORTRAN design. However, the Ada design notebook [ll], which 
provides details of the actual calls made by Simulation Control, 
shows the Ada design to be quite different. Recall that the 
cycle time in FORTRAN affected both the OBC and the Truth Model. 
In the Ada design, the timing of the OBC and the Truth Model is 
separate: the Truth Model cycle time is under user control; OBC 
timing is not. The Ada team chose to model faithfully the 
spacecraft OBC flight software, whose timing is not under user 
control. Because timing and event scheduling are central ele- 
ments in any simulation, this difference is of a fundamental 
nature and demonstrates that the Ada team was able to go back to 
basic system requirements for their analysis. 

CONCLUSIONS 

The comparison of FORTRAN and Ada designs has revealed signifi- 
cant differences in both the design processes and products. In 
this experiment, the Ada design has been shown to be different 
to a significant degree from the FORTRAN design. This result 
differs from that reported in [l] for another monitored Ada de- 
velopment project in a different environment. 

The results have implications for other organizations contem- 
plating the use of Ada. This experiment led to a design that 
exploits Ada's features for expressing design abstractions. 
However, this result was supported by (1) the use of a specifi- 
cation method, CSM, to counteract the influence of design-laden 
requirements; ( 2 )  the explicit allowance for the Ada team to 
pursue new design methods, not requiring the team to take the 
less costly route of reusing the existing design; and ( 3 )  train- 
ing in alternative design methods. 
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(PRELIMINARY) 
MODELING, SIMULATION AND CONTROL 

FOR 

A CRYOGENIC FLUID MANAGEMENT FACILITY 

How relevant to the complex space station applications are academic 
formulation and solution of control problems, based on recently published 

textbook methodology complemented with limited laboratory scale experiments? 
The textbook abstractions are often stripped of consideration of constraints 
of prime concern to the field application: 
economics, hazards analysis and fault tolerance. However, the approach of 
the classroom - simplistic of necessity due to man-hour and funding 
constraints -- serves as a starting point for formulating a "top-down 
modular" definition of the problem and development of an overall perspective 
for the research professor or student. 
readily adapt to a position in team efforts with major funding. 

process capacities, user demands, 

The individual is thus conditioned to 

As one of an ongoing series of term projects in Process Monitoring and 
Control at UH-CL, the class in PROC 5232: Process Modeling, Simulation and 
Control, has studied the synthesis of a control system for a cryogenic fluid 
management facility. 
instrumentation and control unique to the space station environment are prime 
considerations. 

The severe demands for reliability as well as 

Realizing that the effective control system depends heavily on 

quantitative description of the facility dynamics, a methodology for process 
identification and parameter estimation is postulated. A block diagram of 
the associated control system ie also postulated. 
adaptive control strategy is developed utilizing optimization of the velocity 
form control parameters - proportional gains, integration and derivative 
time constants - in appropriate difference equations for direct digital 
control. 

Finally, an on-line 

Of special concern are fhe communications, software and hardware 
It is supporting interaction between the ground and orbital systems. 

visualized that specialiets In the OSI/ISO utilizing the M a  programming 

language will Influence further development, testing and validation of the 
simplistic models here presented for adaptation to the actual flight 
environment. 
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1. PROCESS DESCRIPTION 

1.1 Baseline Configuration: 
CFMFE Flight System 

The initial concept is diagrammed in Figure 1.1. Assembled 
as a module for mounting in the shuttle, it consists of three 
submodules identified with successive operational stages : 

a) chilldown of the Ground Fill Line on the pad; 

b) 

c) chilldown of the Transfer Line combined with chilldown 

chilldown and filling of the Supply Tank on the pad; 

and filling of the Receiver Tank in orbit. 

The submodules for operational stages a) and b) are detailed in 
Figure 1.1.1. The submodules for operational stages c) and d) 
are detailed in Figure 1.1.2. 

N O T I C E  

At the deadline for submitting manuscripts this paper was 

incomplete. 

t Copies of the completed version will be made available at 

the presentation to those who desire one. 

Max Turner 
UH-Clear Lake Box 329 
2700 Bay Area Blvd. 
Houston, TX 77058-1098 
(713) 488-9480 
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CFMFE 

1. PROCESS DESCRIPTION 

1.2 Functional Requirements and Constraints 

Time : 

Pressure : 

Temperature: 

Chilldown time, 8 = 15 min. 

Fill time, eF - 60 min. 
C 

= 1 atm 'min Minimum 

Maximum excursion P - 85 psig (PSV spec) max 

Minimum Tmin = 36.7'R (20.4'K) 

Ambient 

Maximum ATa7 

T = 530°R 

AT87max 

a 
= (TBD) 

Conservation of H2: (TBD) 

Hazards : 

f 

Zero-gravity : 

Explosion and fire (TBD) 

Destructive vibration (TBD) 

and shock 

Stress fractures (TBD) 

Loss of power (TBD) 

Liquid pressurization (TBD) 

Chilldown of receiver tank system (TBD) 

Filling receiver tank (TBD) 

Contingency respondent and fault tolerant (TBD) 
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CFMFE 

1. PROCESS DESCRIPTION 
1.3 Problem Identification 

1.3.1 Thermal balances and minimized system chilldown and fill times 

On the pad: 
1. The Ground Fill line 
2. The CH2 Storage and Supply Tank 

In orbit: 
3. Chilldown time for the transfer line from the Supply Tank to the 

Receiver Tank 

4. Chilldown and fill time for the Receiver Tank 

Special problems: 

5 .  Overpressures and destructive stresses 
6. Delayed GH2 boiloff due to heat transfer 
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CFMFE 

2. MATHEMATICAL MODELING 

2.2 Analysis, Degrees of Freedom and Control Loops 

2.2.1 The Ground Fill Line 

Physical model for an energy balance: 
Assumptions: 
1. 
2. LH2 enters with quality x = 0 
3. 

4. 

5. Significant thermal energy sources which limit the minimum 

The aluminum tube is perfectly insulated 

Until chilldown is essentially complete, the exit GH2 has a 
quality of x = 1 
Maximum chilldown rates are limited by the vent ing  capacity of the 
line 

cooldown time are the concentrated masses associated with 
stainless steel control valves and sensors. 
The enthalpy of LH2 at near atmospheric pressure is given  by: 6. 

h = 278.4 + 4 4 1 . 8 ~  + 10.13 (T-21) 

0 = 507.47 + 10.13T, kJ/kg using the unit K 

= 218.63 + 2.425T, Btu/lbm using the unit OR 

Reference: Perry and Green, Ch.E. Handbook, McGraw-Hi11 1984, 
pp 3-1958 

C = C = 10.13 kJ/kg°K at 21°K 
Pf Pg 

7. The heat capacity of A 1  is: 

= - 0.1362 + 0.007528T - 0.00001356T2 kJ/kg°K 'vAl 

with T in OK 

-7 2 = - 0.03254 + 0.000999T - 9.99 x 10 T Btu/lbmoR 'vAl 

with T in OR 

Reference: Perry and Green, 1984, pp 3-135 

8. The heat capacity of stainless steel is: 

- - 0.0586 + 0.003219T - 5.078 x 10-6T2 kJ/kg°K 
cV 

cV 

with T in OK 

= - 0.0140 + 0.000428T - 3.75 x 10-7T2 Btu/lbzR 

with T in OR using 1 Btu/lbmoB = 4.178 kJ/kg°K 
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2.2.1 The Ground Fill Line 

Assumptions (continued) 

9. Radiation heat transfer rates across the annulus of concentric 
tubes or spheres is nil compared to convective heat transfer rates 
from A 1  to LH2: 

q/A 2 300 Btu/hrftZ from A1 to LH2 at 36.7'R 

4 4  0 2 q/A = F12 6 ( T  - T LH2) = 12.7 Btu/ft hr from StSt to A1 
I - 0 f 8 , 0 9 9  

1 
- I at 530°R where F12 = I 

- + - - I  * I  - + I  7t - 1  6 = .1713 x loo8 Btu/(ft €'2 hr 3 4  R ) 

Reference: Perry and Green, 1984 

A1 St.St. 10. Thermal diffusivities, k/pCV: - 
20°K 0.5 0.040 

100°K 0.00023 - 9 
300°K 0.00011 3.3 

Reference: Perry and Green, 1984, pp 3-263 
3 = 0.104 kg/m at 20.4'K ?GH2 
3 

e LH2 rn 
= 70.57 kg/m at 20.4'K or 4.72 16 /ft3 

3 3 11. Densities: eA1 = 2723 kg/m or 170 lbm/ft 
= 7900 kg/m 3 or 492 lbrn/ft 3 

Ps t s t 
Reference: Perry and Green, 1984, pp 3-96 

12. Thermal conductivities: 

Reference: Perry and Green, 1984, pp 3-261 

13. Convective heat transfer coefficients: 

References: 1) Perry and Green, 1984, pp 10-23 
2) H.H. Walters, AiResearch Manufacturing Compant 

"Single-Tube Heat Transfer Tests with Liquid 
Hydrogen", (see WADC Technical Report 59-423) 

3) Drake et al., Arthur D. Little, Inc. 
"Pressurized Cool-Down of a Cryogenic Liquid 
Transfer system Containing Vertical Sections", 
(testp yi&h LO21 . . .  
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2.2.1 The Ground Fill Line 

Assumptions (continued) 

Walters -- LH2 tests: 

film boiling: h = 460 to 540 Btu/hrftZ0R 
for inlet (? )  = 1.6 to 1.7 atm 

Re = 3 x 10 0 5 

nucleate boiling: h = 10 x value for film boiling 

Drake et al. -- LO2 tests: 
2 0  

outlet pressure - 10 psig 
2 0  

film boiling: h = 300 Btu/ft hr R 
for inlet pressure - 20 psig 
h = 200 Btu/ft hr F 
for i n l e t  pressure - 10 psig 

outlet pressure = 5.5 psig 
20 = 500 Btu/hrft R (uncontrolled) 

= 300 Btu/hrf t20R (controlled) 

hmax 

have 

Re = 3 x 10 

LH2 - assume: 

0 5 

14. Critical constants of H2: P = 12.8 atm 
C 

T = 33.3'K = 60.0°R 
C 

F. 1.4.14 
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Intertask Communication in Ada: 
A Bus Interface Solution 

This is a special two hour presentation by representatives of the 
Weizmann Institute Rehovoi, Israel. The topics are listed below: 

Statement of the problem: Intertask synchronization in real 
time systems. 

Hierarchical Partitions - a simpler reference model 
Data Link Layer Regime: 

provision for message cancellation. 
Message Alphabets 
Ada Oriented Protocols and extension to CSP. 
VLSI Solution 

The prioritized dialogue with 

Flavia Rosenberg 
Smil Ruhman 
A. Pnueli 
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VERIFYING PERFORIUWCR REQUIRKKKHTS 

BY 
Dr. Joseph Cross 
Sperry Corporation 

St. Paul, MN 
(612) 456-7316 

INTRODUCZCION 

The thesis presented in this paper is that today, it is in 
general impossible to verify that the performance requirements on 
a software program will be met. A n  approach to a partial 
solution to this problem is presented. 

The next section of this paper, Problem Definition, defines 
the problem to be addressed, and defines related terms as they 
are used below. 

The following section, Obstacles to Verifying Performance 
Requirements, presents the reasons why performance requirements 
are, today, difficult to verify. 

The section on Methods for Verifying Performance Requirements 
briefly presents methods in use today, and proposes an 
alternative approach to overcome some of the remaining 
difficulties. 

P R O B W  DEFINITION 

A "performance requirement" is a requirement on the speed of a 
function performed by software. Much of the following applies 
equally well to requirements on the amount of memory used by a 
software function. An example of a performance requirement is 
"The interval between updates to each track shall be on the 
average at most two seconds, and in no case longer than five 
seconds." Note that while performance requirements are, at the 
user level, generally stated in elapsed time, these requirements 
may be recast at lower levels of design into units of processor 
utilization. 

"Verifying" a specific requirement on a specific software 
development work product refers to determining whether that 
requirement is fulfilled by that work product. The requirements 
on the work products of each phase of software development are 
results of the preceding phase, except for the system 
requirements, which are input to the entire software development 
process. A work product WP is said to satisfy a requirement R if 

system produced according to the requirements set forth in WP 
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(and its sibling work products, if any) will meet the requirement 
R. Verifying a software development work product in its entirety 
also entails checking its completeness, consistency, feasibility, 
and testability [11. 

For example, to verify that a detailed design satisfies a 
requirement, such as the example requirement above, is to 
determine whether any system produced in accord with that 
detailed design could fail to exhibit the required behavior. 
Moreover, verifying the entire detailed design requires 
determining whether there is at least one system that can be 
built in accord with that detailed design. 

Of course, what work products are produced and what are the 
phases of software development depend on the approach to software 
development in use. In the conventional approach, the phases are 
requirements analysis, design (often subdivided into high-level 
design and detailed design). and implementation; the work 
products of which are a requirements specification, a design 
document (or documents), and code, respectively. In the 
operational approach to software development, the first phase 
produces a prototype/executable specification, which is intended 
to satisfyldefine all requirements except performance 
requirements; then a second phase transforms that 
prototype/executable specification into a program with the same 
behavior except that the performance requirements are met [2]. 

In order to minimize the dependence of the following 
discussion on the approach to software development in use, it 
will be assumed below that the work product on which performance 
requirements are to be verified is a body of compiled but 
untested Ada (tm) code. (Ada is a registered trademark of the 
U.S. Government, Ada Joint Program Office.) This body of code 
could represent a detailed design in the conventional approach, 
or an intermediate step in the transformation of a 
prototype/executable specification in the operational approach. 

In order to make the issues involved in the verification of 
performance requirements as simple as possible, it will be 
assumed that a target machine is given and fixed throughout the 
discussion. Here "target machine" refers to the virtual machine 
on which compiled code is to run: one or more processors, 
memories, communication channels, together with run-time support 
software such as operating systems. This target machine is 
assumed to be the target of a valid implementation of the Ada 
language. 

Note that while the assumption of a single, known, target 
machine is reasonable in the Space Station environment, it is not 
reasonable in other environments in which the target machines 
that will execute the software may be unknown. We are fortunate 
in this regard. I 

The term "mapping" will be used to refer to the association 
between design-level objects and run-time objects. For example, 
a subprogram may be mapped onto a segment of memory-resident 
machine code, or it may be mapped into many similar segments of 
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machine code (as it would be if it were inlined), or it may be 
mapped into nothing (as may be the case for type conversion 
functions). As another example, a data object may be mapped into 
a location in the main memory of one computer, into a register of 
one computer, or into several locations in several computers (as 
would be the case if redundant data were being maintained). 

The function of mapping a program is generally distributed 
among the compiler, linker, loader, and run-time system. 

Note that one of the goals of the Ada language design was to 
include in the source code all details of the program that define 
its semantics, except f o r  pe rformance iss ues. That is, by 
examination of only the source code of an Ada program, without 
considering other information such as linker directives, it is 
possible to determine (within limits) its behavior as an 
input-output process: however, it is not possible to determine 
its timing. For this reason, it is necessary to use additional 
information, above and beyond the source code, to verify 
performance requirements. 

OBSTACLES To VERIFYING PERFORMANCE REQUIREMENTS 

This section describes several reasons why verification of 
performance requirements is not a straightforward task, even 
given a design that has been carried to the level of compiled Ada 
code, and a well-defined target machine. 

UNSPECIFIED MAPPING ONTO THE TARGET 

Perhaps the major obstacle to verifying performance 
requirements on a design presented as Ada code is that lack of 
information concerning the mapping of the program onto the target 
machine. It is only in the mapping information that 
performance-critical issues such as the following are dealt with: 

* Optimizations. These include low-level optimizations 
such as dead code detection and constraint check 
elimination, and high-level optimizations such as 
subprogram inlining and monitor task optimizations. 

* Target resource allocation. This includes the 
assignment of tasks to processors (whether the 
assignment is static or dynamic), the allocation of 
data to memory (registers or main memory, resident or 
non-resident, and arrangement into memory banks or 
pages), and backup and casualty configurations. 

* Implementation dependencies. These include all the 
implementation dependencies allowed by the Ada 
language definition, such as the number of task 
priorities, task scheduling algorithm within a 
priority, and interrupt handling methods. 
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A s  an example of t he  importance of these i s s u e s ,  no te  tha t  it i s  
p o s s i b l e  t o  cons t ruc t  an A d a  program tha t  w i l l  deadlock under one 
legal task scheduling a lgo r i thm,  but not  under another  legal task 
schedul ing a lgor i thm.  

Note t ha t  a large amount of the opt imiza t ion  and target 
resource  a l l o c a t i o n  data can change as a r e s u l t  of an appa ren t ly  
small change i n  the  des ign .  For example, the d e c l a r a t i o n  of a 
small data ob jec t  can cause t he  a l l o c a t i o n  by the compiler of 
s ta t ic  data t o  memory banks t o  be s i g n i f i c a n t l y  r e v i s e d ,  with 
p o t e n t i a l l y  important changes t o  t iming .  T h i s  effect i s  
p a r t i c u l a r l y  pronounced i f  a g l o b a l l y  optimizing compiler i s  
used.  

NON-CATEGORICAL SPECIFICATIONS 

A " c a t e g o r i c a l "  s p e c i f i c a t i o n  i s  one which d e f i n e s  only one 
target system. O f  cou r se ,  des ign  s p e c i f i c a t i o n s  are g e n e r a l l y  
in tended  t o  be non-ca tegor ica l ,  t h a t  i s ,  t o  permit s u b s t a n t i a l  
freedom i n  their  implementation. 

The problem of non-categorical  s p e c i f i c a t i o n s  i s  tha t  i f  t o o  
much freedom of implementation remains, there can be a 
combinatorial explosion in the number of cases requiring 
examination i n  order  t o  v e r i f y  a requirement.  For  example, 
cons ider  a target machine tha t  c o n s i s t s  of 3 dissimilar 
processors  connected by communication channels .  I f  the program 
c o n t a i n s  12 tasks,  and i f  t h e  des ign  does not c o n s t r a i n  the  

power (1?28) c o n f i g u r a t i o n s ,  each of which r e q u i r e s  v e r i f i c a t i o n .  
Each choice l e f t  open by t h e  des ign  p o t e n t i a l l y  m u l t i p l i e s  t he  
number of  conf igu ra t ions  tha t  must be dealt w i t h  i n  v e r i f i c a t i o n .  

I a l l o c a t i o n  of tasks t o  p rocesso r s ,  then  there are 12 t o  the  t h i r d  

NON-INVERTIBLE DATA DEPENDENCIES 

The processing t i m e  f o r  some opera t ions  depends on t h e  input  
cond i t ions  t o  t h o s e  ope ra t ions  ( i . e . ,  i npu t  data and r e t a i n e d  
data).  For example, the  t i m e  required by a track processing 
ope ra t ion  may depend on the number of c u r r e n t l y  l i v e  tracks. For 
a given ope ra t ion ,  le t  the func t ion  that  maps inpu t  cond i t ions  t o  
process ing  time of tha t  ope ra t ion  be called i t s  data dependency 
f u n c t i o n .  

Data dependency f u n c t i o n s  are o f t e n  i n v e r t i b l e ,  a t  least i n  
the  rough sense  tha t  the set of i npu t  cond i t ions  that  r e s u l t  i n  
process ing  times less t h a n  some l i m i t  can be determined. For 
example, i t  might be determined that  the time necessary t o  search 
a track f i l e  w i l l  be less the 25 mil l i seconds  i f  there are no 
more the  100 l i v e  tracks t o  be searched. T h i s  s o r t  of i nve r s ion  
of the  data dependency f u n c t i o n  i s  o f t e n  s u f f i c i e n t  t o  v e r i f y  
whether the ope ra t ion  meets i t s  performance requirements.  

Unfortunately,  data dependency func t ions  are found in p r a c t i c e  
that  are not  i n v e r t i b l e .  That i s ,  there are opera t ions  f o r  which 
t h e  processing t i m e  depends on t h e  inpu t  cond i t ions ,  but the  

I 
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dependency is too complex to invert. Phrased otherwise, it is 
impossible in practice to define the set of input conditions on 
which the operation will complete within its prescribed time. 

Examples of such non-invertible data dependencies can be found 
in combinatorial algorithms, and in artificial intelligence 
paradigms. Specifically, consider a backtracking algorithm -- 
depth first search for an optimum value using bounding functions. 
It may happen that a long series of nodes will be generated and 
expanded before it is discovered that this series does not lead 
to an optimum, and must be discarded (the "garden path" 
phenomenon). It is not in general possible to give a simple 
condition defining those sets of input data that give rise to 
this phenomenon. In such cases, it is impossible to discriminate 
input conditions for which processing will be fast from input 
conditions for which processing will be slow. 

NON-DETERMINISTIC BEHAVIOR 

Non-deterministic behavior of a program is behavior that 
cannot be predicted from the input conditions. Non-determinism 
can arise from the hardware level, as when two processors race 
for access to a memory word, from the run-time software level, as 
when the operating system takes varying times to respond to a 
service request due to the varying activity of peripherals or to 
the varying activity of other programs under its purview, and 
from the software level, as from the Ada select statement and Ada 
arithmetic, which are defined as (potentially) non-deterministic. 

The property of being non-deterministic differs from being 
non-categorical in that non-determinism may be a property of the 
behavior of a single system, whereas only a specification can be 
non-categorical. The property of being non-deterministic differs 
from having a non-invertible data dependency function in that the 
data dependency function of a non-deterministic process can only 
be defined statistically, and that function may or may not be 
invertible. 

One example will s u f f i c e  t o  demonstrate the d i f f i c u l t i e s  
presented by non-determinism to the verification process. 
Consider a program that is deterministic except that the  select 
statement is implemented non-deterministically. That is, when 
several rendezvous are possible, the choice of which to accept is 
made at random. The state space of such a program branches each 
time a select with two or more open accept branches is executed. 
Therefore the number of distinct possible program behaviors can 
grow rapidly with time, and it must be verified that all these 
behaviors meet the requirements. 
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ADAPTIVE BEHAVIOR 

Adaptive behavior refers to the aspects of a program's 
behavior that change relatively slowly over time, for the purpose 
of improving its performance. Examples of adaptive behaviors are 
load balancing functions in distributed systems, and programs 
that learn from experience. 

Adaptive behavior can be implemented in a straightforward 
manner, as by changing a vector of locations, and adaptive 
behavior can be implemented by highly sophisticated means, as in 
some learning programs that, in effect, modify the code that 
performs some of their functions. 

If the set of possible behaviors of an adaptive program is 
reasonably small, then adaptation causes no great problems for 
verification: each of the possible behaviors must be verified to 
satisfy the requirements. If, on the other hand, the set of 
possible behaviors is large, then verification may become 
difficult or impossible. 

METHODS FOR VERIFYING PKRFORMANCE REQUIREMENTS 

Substantial work has been done in the area of dealing with 
performance requirements. SREM [31 is a method of expressing 
requirements, including performance requirements. SREM a l s o  
provides a means to simulate the behavior of the specified 
system. Unfortunately for our present purposes, the SREM 
methodology is not well suited to producing Ada programs. 

The Model system 141 generates programs (in PL/1) of a 
restricted form from a specification expressed in an ad hoc 
language. The system then estimates the performance of the 
resulting system, using data generated as a by-product of the 
program generation process together with inputs from the user on 
the times of the target machine for "input, output, arithmetic, 
comparison, and function operations." 

Several methods support performance estimation based on 
queueing theory. Examples are PAISLey [SI and SARA [63, and 
Petri net approaches [ " I .  Such methods are effective when a 
network of queues is an acceptable model of the execution 
behavior of the software, and when statistical estimates of 
timing (as opposed to guaranteed worst-case values) are 
acceptable. 

Note that none of the preceding techniques is intended to 
solve exactly the problem addressed by this paper: validating 
performance requirements on a detailed design expressed as Ada 
code. 

One popular non-method for dealing with performance 
requirements needs to be noted. There is some feeling that any 
concern for performance is improper, almost immoral, during 
program design. This attitude will be called the DEMO 
methodology (for DEliver Me from Optimizations). The DEMO 
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methodology cal ls  f o r  programs t o  be designed e x c l u s i v e l y  f o r  
c o r r e c t n e s s ,  m o d i f i a b i l i t y ,  and m a i n t a i n a b i l i t y ,  and tha t  
e f f i c i e n c y  w i l l  taken care of l a te r .  The claim i s  t h a t  whatever 
degree of e f f i c i e n c y  i s  called f o r  can be provided, 
au tomat i ca l ly ,  after the  completion of detailed d e s i g n ,  by one of 
three means: 

* Compiler op t imiza t ions .  "Any decent  implementation" 
of t he  Ada language w i l l  provided e x t e n s i v e ,  g l o b a l ,  
op t imiza t ions ,  r e s u l t i n g  i n  a system tha t  w i l l  be as 
e f f ic ien t  as i f  it had been optimized by hand. 

* Recoding hot-spots  i n t o  low-level code. S ince  most 
of t he  execut ion time i n  many programs i s  taken  up by 
a small propor t ion  of  t he  l i n e s  of code, t h o s e  b locks  
of code may be recoded i n t o  assembly code, and good 
e f f i c i e n c y  thereby  obtained a t  small c o s t .  

* Hardware. I f  t he  program does not run fast  enough, a 
faster computer should be used. It does not  matter i f  
no such computer i s  a v a i l a b l e  today ,  s i n c e  i t  w i l l  be 
a v a i l a b l e  soon. 

The DEMO a t t i t u d e  probably developed i n  response t o  the  o lde r ,  
pre-software engineer ing a t t i t u d e  that what makes sof tware good 
was f i rs t ,  being e f f i c i e n t ,  followed c l o s e l y  by meeting spec ,  and 
a l l  o t h e r  va lues ,  such as m a i n t a i n a b i l i t y ,  were of i n s u f f i c i e n t  
importance t o  deserve mention. I f  DEMO i s  a r e a c t i o n  t o  t ha t  
a t t i t u d e ,  i t  i s  l a r g e l y  j u s t i f i e d ,  but neve r the l e s s  it i s  an 
ove r reac t ion .  Consider each of  t he  preceding three p o i n t s :  

While ex tens ive ,  g l o b a l ,  op t imiza t ions  are wi th in  t h e  s ta te  of 
the a r t ,  no A d a  compiler known t o  t h i s  au thor  provides  t he  
fac i l i t i es  previous ly  demanded of "decent implementations" o f  t he  
language. T h i s  i s  due t o  two factors: the demand f o r  reasonably 
fast  compilat ion,  and t h e  sepa ra t e  compilation fac i l i t i es  of  t h e  
language. The r e s u l t  i s  t h a t  l o c a l l y ,  generated code i s  not as 
p a r t i c u l a r l y  good, and g loba l  op t imiza t ions  are not  performed a t  
a l l .  Hence w e  cannot depend on compilers t o  so lve  our eff ic iency 
problems today . 

Recoding of hot-spots  i n t o  low-level code i s  of course a 
va luab le  technique as far as it goes.  It does not  h e l p  i n  two 
important cases: d i s t r i b u t e d  i n e f f i c i e n c y ,  and hot  assembly code. 
The former refers t o  i n e f f i c i e n c i e s  tha t  are widely spread 
throughout a program; f o r  example, a c u r r e n t l y  popular Ada 
compiler emits r e spec tab le  code t o  r e fe rence  a r r a y s  t h a t  have an 
index subtype such as 1..10, and h igh ly  i n e f f i c i e n t  code f o r  
a r r a y s  having the  index subtype 0..9; no l o c a l i z e d  recoding w i l l  
h e l p .  Hot assembly code refers t o  t h e  case i n  which the  
program's hot-spots  are i n  subrout ines  tha t  are a l ready  i n  
assembly code; i n  p a r t i c u l a r ,  when the  hot-spots  are i n  the  
run-time support  code. For example, a program that  i s  bound by 
task suspension and d i s p a t c h  times cannot be helped by recoding 
i n t o  low-level code. 
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The hardware s o l u t i o n  depends on cos t - e f f ec t iveness .  There i s  
a balance between the c o s t  of opt imizing sof tware ,  and 
maintaining tha t  optimized sof tware ,  a g a i n s t  the c o s t  of us ing  of 
a faster computers, t ak ing  i n t o  account weight , '  power, and 
l o g i s t i c s  i s s u e s .  That balance cannot be c a s u a l l y  t i p p e d  i n  
ei ther d i r e c t i o n ,  no matter how convenient i t  would be f o r  t h e  
sof tware  v a l i d a t i o n  process .  

The remainder of t h i s  s e c t i o n  concerns a proposed approach t o  
so lv ing  t h e  problem def ined  above. 

The basis of t h i s  approach i s  a change i n  viewpoint of t h e  
meaning of a des ign .  A design i s  convent iona l ly  considered t o  
d e f i n e ,  roughly,  an abstract computation ( i . e . ,  a func t ion  
mapping i n p u t s  i n t o  ou tpu t s )  t oge the r  w i t h  a s t r u c t u r e  for t h e  
sof tware .  Note that  the  meaning of " s t r u c t u r e  of the  sof tware"  
i s  not e n t i r e l y  e v i d e n t :  the  s t r u c t u r e  of the source code -- i t s  
hierarchical decomposition of a program i n t o  packages, tasks and 
subprograms and t h e  s e p a r a t e  compilat ion s t r u c t u r e  -- may be 
q u i t e  d i f f e r e n t  from the  s t r u c t u r e  of the  software a t  run time. 
For example, code of one subprogram may be consol idated i n t o  the 
code of  many o thers  by means of i n l i n i n g ,  and the program's 
s ta t ic  data may be d iv ided  up a r b i t r a r i l y  ac ross  s e v e r a l  
computers, and f u r t h e r  i n t o  r e s i d e n t  and non-resident segments. 
Convent ional ly ,  a "des ign"  may spec i fy  any o r  a l l  of these 
sof tware  s t r u c t u r e s .  

For t he  purposes of v e r i f y i n g  performance requirements,  l e t  u s  
adopt the  fol lowing viewpoint on t h e  meaning of "design" : 

A DESIGN IS A CONSTRAIHT ON THE 
INITIAL STATE OF THE TARGET MACHIHE 

That is, of t he  very large number of p o s s i b l e  i n i t i a l  states f o r  
t h e  target machine, a des ign  selects a subse t  of those states,  
a l l  of which presumably d e f i n e  programs that  w i l l  perform 
according t o  t h e  program's requirements.  The word design w i l l  be 
used only i n  t h i s  sense  below. 

A des ign  may be expressed as Ada code w i t h  anno ta t ions ,  o r  as 
Ada code wi th  a s e p a r a t e  data s t r u c t u r e  that  c o n s t r a i n s  t h e  
mapping of the  program onto the  target machine. Examples of 
data that  may reasonably be included i n  a design inc lude  the  
t y p e  and c o n f i g u r a t i o n  of t h e  target computer processors ,  
memories, and communication channels ,  the mapping of s ta t ic  data 
onto memories, the  mapping of tasks (or task types)  t o  
p rocesso r s ,  and the  i d e n t i f i c a t i o n  of the run-time support  code 
and parameters  (such as task scheduling a lgo r i thm) .  

Even after the  human des igne r s  have expressed a l l  t h e  
informat ion  t h e y  have concerning the  mapping of t h e  program onto 
t he  target machine, a d d i t i o n a l  information i s  requi red  from t h e  
compiler concerning i t s  mapping d e c i s i o n s .  A form i n  which t h i s  
informat ion  could be expressed w i l l  be presented s h o r t l y .  T h i s  
information inc ludes  data on the compi le r ' s  choices of 
op t imiza t ions ,  such as upmerging. i n l i n i n g ,  and code motion. 
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When all of the available information on the source code and 
its mapping onto the target machine is available, then the 
verification of performance requirements can proceed. The 
essence of verifying performance requirements is to prove certain 
statements about the program behavior correct. The statements to 
be proven correct are the requirements ("The interval between 
updates to each track shall be on the average at most two 
seconds, and in no case longer than five seconds"), and the 
hypotheses are the available rules about the program and its 
mapping onto the target machine, together with some rules 
defining the behavior of the target machine itself. 

Since the verification of a requirement is likely to be a 
long, but not particularly subtle, chain of reasoning, such 
verifications are likely candidates for automation. For this to 
be feasible, the data on the program will have to be expressed in 
a form acceptable to a theorem-proving system, such as a Prolog 
implementation [81 o r  a rule-based system [91. For example, part 
of one set of rules presented to the verifier, which expresses 
the run-time structure of a subroutine, might have a semantic 
content (but not a form) such as 

1) Subroutine S117 is completed when Block249 is 

2) Loop98 is completed when Boolean4276 is false. 

completed and Loop98 is completed. 

3) Block249 requires 79 milliseconds to complete. 

4) Each iteration of Loop98 requires 182 milliseconds. 

It is to be expected that attempts to verify requirements by 
this method will initially fail, simply because the conclusion is 
not justified by the available information. That is, 
requirements will not be validated because there is not 
sufficient data to establish that those requirements will be 
satisfied by the final system. 

When requirements cannot be validated due to the lack of 
sufficient data, additional information must be made available. 
Examples of such information would be a conclusion that is 
justified by the available information but is too deep for the 
verifier to discover (such as that some iterative process must 
converge within a fixed number of iterations), o r  information 
that is added to the design in order to meet the performance 
requirement (such as that when Condition equals Red, then the 
availability of Processor Alpha to Program Zeta will be 10096.) 
If such additional information does not permit the truth of the 
requirement to be deduced, then that requirement must be reported 
as not satisfied. 

This is as it ought to be. 

This rule-based verification approach has the following 
strengths: 
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* Accuracy. If a requirement is verified by rule-based 
verification, it is highly probable that any system 
produced according to the design will satisfy the 
requirement. Also, if a requirement is not verified 
by this method, it is highly probable that some 
system can be produced according to the design that 
will not satisfy the requirement. The method is well 
suited to handling worst-case requirements. 

* Ability to handle non-determinism. In contrast to 
simulation-based approaches, the rule-based 
verification approach does not require that state 
transitions be uniquely defined: a rule stating that 
under certain conditions, either Process Alpha or 
Process Beta will be dispatched is perfectly 
accept able. 

* Ability to accept non-categorical specifications. A 
rule-based verification process is well suited to 
handle non-categorical specifications. 

* Ability to repeat a validation following a 
modification. After a change to a design, such as 
specifying pragma inline for a function, validation 
may be repeated for only the cost of computer time. 

This rule-based verification approach has the following 
weaknesses: 

* Required tool support. The major tool support 
required to use rule-based verification is the 
rule-based system processor, and the additional 
function required of the Ada compiler (m. emission 
of information on mapping decisions). Rule-based 
system processors are commercially available, but the 
modification to the Ada compiler is not trivial. 

* Required human effort. Substantially more effort 
than is traditionally expended will be required on 
the part of the verifiers and the designers to 
achieve verification under this approach. 

* Inability to handle non-invertible data dependencies. 
The use of a rule-based system will not solve the 
problem of unpredictable processing time. 

* Inability to handle adaptive behavior. The use of a 
rule-based system will not solve the problem of 
unpredictable processing. 
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Today, it is impossible to verify performance requirements on 
Ada software, except in a very approximate sense. There are 
several reasons for this difficulty, of which the main reason is 
the lack of use of information on the mapping of the program onto 
the target machine. 

An approach to a partial solution to the verification of 
performance requirements on Ada software is here proposed, called 
the rule-based verification approach. This approach is suitable 
when the target machine is well-defined and when additional 
effort and expense are justified in order to guarantee that the 
performance requirements will be met by the final system. 
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1.0 Introduction 

During the past four years, Intermetrics has constructed 
one of the largest systems yet written in Ada. 
the Intermetrics Ada compiler. As you might imagine, 
Intermetrics has learned many lessons during the implementation 
of its Ada compiler. This paper describes some of these 
lessons, concentrating on those lessons relevant to large system 
implementations. 

This system is 

As I considered what lessons to discuss an amusing thought 
occured to me. Four years ago I gave a briefing at the Johnson 
Spacecraft Center entitled "Ada: A Management Overview." At 
that time, I was an ardent Ada proselytizer but one who had 
never laid hands on an Ada compiler. In that briefing four 
years ago I made several predictions about what it would be like 
to manage an Ada project. Having spent the last two years 
managing an Ada implementation, I thought I ought to determine 
how accurate my predictions had been. (As you might guess, my 
predictions turned out to be correct. If they hadn't, there 
certainly would have been no point in admitting to them in this 
paper. 1 

Before I identify 
the characteristics of 
at Intermetrics. Then 
describe some specific 
predictions. 

these predictions, I'll first describe 
the Ada compiler implementation project 
after listing the predictions I will 
experiences which verify these 

2.0 Project Description 

The Intermetrics Ada compiler and linker comprise 400,000 
lines of Ada code. The compiler is augmented by a program 
library manager and by a set of tools which are together another 
100,000 lines of Ada. The tool set includes a source lister 
which optionally includes the generated assembly code, a 
completeness checker, a body generator, the ByrOn(tm) design 
language processor, a debugger, and a set of static and dynamic 
program analyzers. 

Ada'(tm) is a registered trademark of the U.S. Government (Ada 
Joint Program Office). 
Byron(tm) is a trademark of Intermetrics, Inc. 
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Intermetrics is currently completing a total of six 
compilers under two government contracts and four commercial 
contracts. The compilers generate code for the IBM 370, the 
Sperry 1100, and the MIL-STD-17SOA instruction sets; this 
generated code executes in six different run-time environments: 
IBM MVS(tm), IBM CMS(tm1, Rmdahl UTS(tm1, Sperry 1100, and bare 
1750A. The compilers are hosted under four different operating 
systems: IBM MVS, IBM CMS, Amdahl UTS, Sperry 1100, and VAX 
VMS (tm) . 

All of these compilers have been developed in parallel and 
all of the compilers share the same source code. 
code is maintained under a configuration management system 
designed specifically to support a multi-hosted and multi- 
targeted compiler development environment. 
staff at its peak included fifty software engineers. 

The source 

The development 

The development environment for the Ada compilers is an IBM 
3083 Model BX, running the Amdahl UTS operating system hosted 
under VM. 
developed using an Ada-subset compiler Intermetrics wrote in 
Pascal. 
December 1985 and was bootstrapped through itself in February 
1986. 

The production-quality compiler was initially 

The production-quality compiler was validated in 

3.0 The Predictions 

Figures 3-1 and 3-2 are extracted from the four-year old 
briefing I described above. The predictions contained in these 
figures are self-explanatory. Of these predictions, the ones 
concerning multi-tasking are, of course, not relevant to our 
compiler. (Not yet at least: Intermetrics is anxious to modify 
our compiler to become the first Ada compiler to take advantage 
of the new generation of multi-micro machines.) 

All the other predictions have turned out to be more or 
less correct. One theme that runs through these predictions is 
that with the introduction of Ada, the DoD is attempting to take 
a major step forward in the "computerization of programming." I 
use the term computerization of programming, rather than 
"automatic programming" because I believe that for completely 
new applications, such as Ada compilers and Space Station 
software, automatic programming will never occur. On the other 
hand, many of the tasks required in the programming of new 
systems are amenable to much greater computerization. In 
particular, Ada requires much more "bookkeeping" to be performed 
by the compiler than do other languages. 

IBM(tm), MVS(tm) and CMS(tm) are trademarks of the International 
Business Machines Corporation. 
UTS(tm) is a trademark of the Amdahl Corporation. 
VAX(tm) and VMS(tm) are trademarks of the Digital Equipment 
Corporation. 
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A more significant computerization of programming arises 
because Ada fosters, if not requires, a database management 
approach to the handling of software. That is, each Ada package 
should be treated as a valuable, complex, and evolving piece of 
data; database management facilities and procedures should be 
provided that are commensurate with the value and complexity of 
this data. 

As Intermetrics has further computerized its software 
implementation procedures through the use of Ada, Intermetrics 
has learned several lessons which confirm those four-year-old 
predictions, as well as some lessons that could not have been 
anticipated four years ago. These lessons are described below. 

4.0 Ada-Lessons Learned 

The lessons Intermetrics has learned may be split into the 
following categories: Ada Training, Ada Tools, and Ada Language 
Use. 

4.1 Ada Training 

One of the predictions states that the use of Ada would 
required well-educated software engineers. Implied by this 
prediction is a possible short-fall in software engineers 
trained in Ada and trained in the software engineering 
principles that Ada encourages. 

In fact, availability of trained Ada engineers has not been 
a problem at Intermetrics. This is because the Intermetrics 
Software Systems Group employees computer scientists who 
specialize in support software. Most of our new employees 
already know Ada and already know the system design principals 
associated with Ada software engineering. 

Ironically, in some cases this broad knowledge of modern 
language technology has actually caused problems. Some 
engineers who have worked with university-developed, state-of- 
the-art languages expect Ada to behave the same way. Many of 
these state-of-the-art languages emphasize expressability, 
perhaps at the expense of run-time efficiency, whereas run-time 
efficiency was a key criteria in the design of Ada (and has been 
a key criteria in the development of the Intermetrics Ada 
compilers.) 

L 

An example of the problems caused by an orientation to 
state-of-the-art languages arises from the CLU programming style 
which advocates regular use of "signals" to return status from 
subprograms. Several new Intermetrics employees have assumed 
that in a corresponding way, exceptions should be used in Ada 
programming to return subprogram completion status. In fact, 
Ada exceptions are intended for truly "exceptional" 
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circumstances. Efficient Ada compilers attempt to generate code 
in such a way that exceptions require no processing time unless, 
and until, the exception is signalled. However, when the 
exception is signalled, substantially more processing is 
required than simply returning an output parameter. Thus, use 
of Ada exceptions is not analogous to use of CLU signals. 
Through coding standards and code reviews, Intermetrics educates 
its programmers into efficient use Ada programming. 

4.2 Tool-Use Lessons 

In using high-order languagas, Intermetrics of ten has found 
that the quality of the compiler is more important than the 
quality of the language. Certainly in the initial years of Ada 
use, this will be the case. Three characteristics of Ada tool 
usage are discussed below: the importance of the library 
manager, the unfortunate variability among Ada compilers, and 
the substantial computing resources required by Ada tools. 

4.2.1 A Sophisticated Library Manager is Critical 

During the parallel construction of the six compilers, all 
of which share the same Ada program library, the necessity for a 
database management approach to Ada software configuration 
management became clear. It is the Ada program library manager 
that provides this database management. This database manager 
must provide the following services: 

Separate development areas for projects and sub- 
projects along with a facility to share formally 
"released" packages among projects and sub-projects. 

Management of variants of subsystems, where these 
variants support rehosting or retargeting the overall 
system. 

Formal configuration management of successive versions 
of subsystems. 

An interactive facility that can answer queries 
concerning the status of packages in the library as 
well as queries concerning dependencies among 
packages. 

An interactive facility which supports constructing a 
system by choosing specific variants and versions for 
each sub-system. 
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4.2.2 All Ada's are not the same 

has used three different Ada compilers and attempted to use a 
fourth. The three successfully used compilers are the two 
Intermetrics compilers and the DEC (tm) compiler. (One 
Intermetrics compiler and the DEC compiler are validated 
compilers.) Not surprisingly, these compilers do exhibit enough 
variation that rehosting a large system from one compiler to 
another is a substantial undertaking. Some of the major 
differences Intermetrics encountered are listed below. 

During the developement of its Ada compilers, Intermetrics 

Three classes of differences were experienced: functional, 
capcity, and performance. Two functional differences were 
noteworthy: the first arises because Ada does not specify a 
default elaboration order. Thus, unless pragma elaborate is 
used exhaustively to explicitly order the complete elaboration, 
a complex system may elaborate correctly using one compiler and 
yet fail to elaborate using another. 

The more troublesome functional problem involved the 
different handling of un-initialized records. It is, of course, 
incorrect to rely on un-initialized variables. Nevertheless, it 
is common in large systems developed using a compiler that does 
initialize all variables to zero by default, that this large 
system will work correctly even though some variables are not 
explicitly initialized. When such a large system is rehosted to 
a compiler with a different default initialization, it becomes 
extremely costly to identify the un-initialized objects. 

At times potential customers have asked us to rehost our 
compiler front-end and Byron tool set to systems already having 
an Ada compiler. In one case we were unable to respond to the 
request because the existing compiler did not have the capacity 
necessary to compile the largest units in the Intermetrics 
compiler. (Generally, the Intermetrics compilation units are 
from ten to several hundred lines; however, there are a few very 
large packages in the compiler. These packages include the 
parser tables, the code-generator tables, and the DIANA access 
package. 1 

The most serious difference we encountered was the speed of 
our compiler'as compiled by different compilers. We, of 
course,'expected variation in the code quality among the 
different compilers; when we forecast the speed of our compiler 
on the VAX as compiled by the DEC Ada compiler, we took into 
account the difference in code quality and difference in machine 
speed. Nevertheless, our I/O-intensive, host-interface package, 
which conforms to the CAIS file model, ran much more slowly on 
the VAX than anticipated. We eventually identified Ada file 
open and close operations as the cause of this anomaly. The 
lesson is that for extrapolating the performance of a systems- 
level Ada program, a simple comparison of code-quality is not 
sufficient. 
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There are straightforward procedures which may be used to 
avoid these compiler variability problems. Foremost is the 
identification of those aspects of Ada which may vary from 
compiler to compiler and establishment of coding standards 
addressing these variations. If you know in advance that your 
system will be rehosted to several compilers, investment in a 
standards checker will definitely pay off. 

For a large project such as the Space Station which will 
have the resources to modify its compilers, it would be 
appropriate to enhance each compiler to flag possible sources of 
incompatibilities and to generate code that conforms with the 
anomalies of other compilers. Fo.r example, Intermetrics is 
considering adding a DEC-Ada compatibility option to the 
Intermetrics compiler so that we may minimize the recurring cost 
of rehosting the Intermetrics compiler to the VAX. 

4.2.3 For Ada, Don't Underestimate the Computes! 

Sure enough, Ada compilers have turned out to be big and to 
be slow. Despite what some may hope, an A d a  compiler will 
always be slower than an equivalent Pascal or C compiler: it's a 
simple issue of algorithmic complexity. Again, Ada is 
attempting to computerize software engineering substantially 
more than have previous languages: this computerization 
requires substantial computing resources. 

4.2.3.1 Compile and Link Speed 

All potential Ada users are aware that average compilation 
speed is a critical compiler characteristic. Nevertheless, in 
addition to the average lines-per-minute speed of Ada compilers 
there are several other compilation speed issues that are unique 
to Ada. These are start-up overhead, speed of separate 
compilation, and up-to-dateness checking. 

Ada compilers have a start-up overhead greater than 
previous compilers. This arises from the size of the compiler 
executable and from the requirement to interact with a large 
database, namely, the program library. Consequently, the cost 
of compiling very small modules is greater than with previous 
compilers. This cost should be taken into account when 
estimating computing resource requirements and perhaps when 
partitioning your system into compilation units. 

One Ada's most valueable characteristics is its requirement 
that the compiler verify module interfaces. Once again, this 
further computerization requires processing time. Each package 
that a given package "with's" must be accessed and its interface 
information made available to the current compilation. Extended 
chains of "with" dependencies across packages add further 
accessing cost. Thus, the hierarchical structure of large 
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systems must be designed carefully to avoid including extraneous 
dependencies among packages. Further the dependency structure 
should be periodically re-assessed during a long implementation 
effort to determine if adjustments to this structure would 
improve compilation time. 

Ada compilers and linkers are required to check the "up-to- 
dateness" of Ada packages. In a large system with a complex 
library structure, the look-up required to verify up-to-dateness 
will be significant. Again an understanding of this issue is 
important when evaluating Ada compilers and when estimating 
required computer resources. 

4.2.3.2 Disk Storage Requirements 

Systems written in Ada will require substantially more disk 
storage than previous systems. This arises from two factors. 
First Ada requires a program library that maintains interface 
information from preceding compilations. Secondly, and more 
importantly, some Ada compilers, including the Intermetrics Ada 
compilers, provide an open interface into the internal data 
structures that describe the packages of the compiled system. 
The Intermetrics Ada compilers provide this open interface 
through DIANA. A program library containing a DIANA description 
of each package in the system enables the construction of a set 
of tools that can analyze these packages. These tools include 
static analyzers, dynamic analyzers, debuggers, package status 
reporting tools, and package documentation tools. An advantage 
of an open interface is that a given project, like the Space 
Station, can readily implement whatever analysis tools the 
project requires. 

*\ 

This open interface facility does have a computer resource 
cost, namely more disk storage than required by previous 
languages. In evaluating this cost, managers must recall that 
with the advent of Ada compilers which provide a DIANA-based 
program library, we are taking a significant step toward a 
database-oriented view of software systems. Such a methodology 
does imply the disk storage resources required for a large 
database. 

Recognizing that a given project may not want to provide 
the resources necessary for a complete DIANA database, the 
Intermetrics Ada compilers will provide the option to retain 
only enough DIANA to support Ada interface checking. Even 
though Intermetrics will provide this option, we do anticipate 
that most projects will find the benefit provided by the DIANA- 
based toolset will substantially outweigh the cost of the disk 
storage. 

- It is interesting to note that the issue of program library 
size and program library functionality is only slowing beginning 
to appear in various Ada compiler evaluation criteria. This is 
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because a sophisticated program librarian and its disk storage 
requirements were never an issue with Ada's predecessors. With 
Ada, the characteristics of the program library may well become 
one of the key distinguishing characteristics of Ada compilers. 
The functionality of the library will determine how effectively 
a large number of programmers will be supported and how 
effectively parallel development efforts will be supported. The 
size of the program library will be an important parameter when 
a manager budgets for computer resources. 

4.3 Language-Usage Lessons 

Building one of the first large systems in Ada is like 
attending a grand buffet banquet in a foreign country. There's 
a table full of goodies that look incredibly delicious. The 
problem is: some of the goodies may not agree with you and there 
are so many goodies it would be very easy to overeat. Listed 
below are some of the Ada features that in some case turned out 
to be a little too rich. 

4.3.1 Beware Abstraction Overdose! 

From its inception, the Intermetrics compiler was designed 
and coded fully utilizing Ada's excellent support for data 
abstraction. Each of the compiler's major data structures is 
designed as a data abstraction with an appropriate set of access 
procedures. The compiler's heavy reliance on abstractions has 

standpoints. 
I worked out well from both the robustness and flexibility 

For example, the compiler was designed with a software 
paging system that would manage the storage for the various 
intermediate languages. During the first year, while the paging 
system was being the implemented, a simple, memory-resident 
system was used as a substitute- When the time came to switch 
over to the paging system, we anticipated a lengthy integration ' 

and debugging phase, However, because the underlying 
implementation of the storage primitives had been hidden, the 
switch-over phase proceded with almost no bugs. 

Data abstraction does, however, have a negative side: data 
abstraction, particularly if overused, can substantially degrade 
a system's performance. Going through multiple levels of 
abstraction, each one of which is a procedure call, is 
expensive. As we complete our compiler, we find ourselves 
having to "collapse" some of these levels, specifically, the 
parser's access to the parse tables and the code generator's 
access to the code tables- 

. Having experienced both the benefits and costs of heavy use 
of data abstraction, we believe the best approach is to start 
out with those abstractions that best support initial 
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development and integration. However, a project manager must 
definitely budget time and effort to measure the cost of 
abstraction usage once the system has been integrated. And 
unfortunately, a project staff probably will need to tune some 
of the abstraction usage in order to meet the project's 
performance requirements. 

4.3.2 Don't Touch that Spec (and leave my body alone too!) 

A key Ada design prinicipal is the physical separation of 
package specification code from package implementation code. An 
intended benefit of this separation is the avoidance of re- 
compilation that could result from changes to the implementation 
code. Intermetrics experience shows, however, that the simple 
division into spec's & bodies does not guarantee minimal 
compilation. 

To assure minimal re-compilation, management diligence is 
required. Ada's strong interface checking has its downside. In 
C, Pascal, or FORTRAN, modules are not strongly connected and 
hence modules may be recompiled readily. In Ada, packages are 
very strongly connected and if changes to packages are not 
managed, one can spend enormous amounts of computer dollars re- 
compiling. 

The strongly connected aspect of Ada necessitates a 
software development approach that emphasizes bottom-up coding 
and unit testing. The hierarchy of packages must be built in a 
manner that freezes the interfaces and thereby prevents 
undesired recompilations. This development approach is, of 
course, a standard aspect of good software engineering and most 
projects do attempt to adhere to this approach. Nevertheless, 
when using Ada, the cost of not following this approach become 
greater since Ada will force recompilations whenever the 
interfaces appear to have changed (even if the programmer knows 
they haven' t) . 

Another aspect of interface management arises because Ada's 
spec and body separation is not as strong as normally believed. 
Changes to generic bodies and to in-lined procedures will cause 
recompilation. Consequently, managers must make sure that the 
staff is aware of these possible body dependencies and structure 
their packages to minimize re-compilation necessitated by 
changes to both spec's and bodies. 

In addition to fostering a package partitioning that 
minimizes recompilation, a manager should also make sure the 
project's APSE includes a what-if analyzer. A what-if analyzer 
answers the question: "What .recornpilation would result if I make 
the following change to this spec or to this body.'' This tool 
is 'particularly valuable during maintenance when a substantial 
change, for example for performance reasons, is being 
contemplated. It is likely that a maintainer would not fully 
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understand the recompilation dependencies in a large system. A 
what-if analyzer could guide the design toward one which avoids 
substantial recompilation. 

4.3.3 Lady Lovelace, she doth nag. 

Ada's pervasive constraint checking is thought by many to 
be a meddlesome annoyance best handled by liberal use of pragma 
subpress. 
inception of its Ada development and our experience has shown 
our perception to be correct. 

Intermetrics did not agree with this view at the 

Constraint checking has been perhaps the most valuable Ada 
feature we've enjoyed during the compiler's development. The 
positive attributes of contraint checking include: 

Bugs manifest themselves very close to their "time of 
occurrence." In developing a compiler this is 
critical, sipce the generation of incorrect code, when 
undetected, produces the most difficult bugs. 
Fortunately, ninety percent of the time, our compiler 
failed with a constraint check rather than blithely 
generating incorrect code. 

By providing appropriate exeception handlers, bug 
occurrences can be made somewhat self-documenting. 
That is, an exception handler can identify the context 
in which the constraint error occured. For example, 
when a contraint error occurs in our compiler, it 
prints out the line number of the source line being 
compiled and dumps the relevant internal data 
structures. (This contrasts with the more 
conventional, unadorned "memory exception" and 
"operation exception". 1 

Given self-documenting failures, contraint checking 
allows an independent test group to play a much more 
active and productive role in the checkout and debug 
process. 

Because of the value of constraint checking, Intermetrics 
took special'care to design an optimizer that would remove all 
unnecessary constraint checks. Unfortunately, with constraint 
checking, the compiler can't do the whole job. Minimization of 
constraint checking also requires good Ada programming. Precise 
type definition is critical to avoid unnecessary constraint 
checks. A carefully written Ada program compiled by a good Ada 
compiler should result in no more checking-code than would an 
equivalent C program containing that amount of assertion 
checking mandated by good software engineering standards. 
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While we were using our subset compiler for development, we 
were concerned with the possibly unacceptable amount of 
constraint checking that would exist in the completed compiler. 
Fortunately, we were quite pleased with the contrast between no 
constraint check elimination in the subset compiler and 
excellent constraint check elimination in the production 
compiler. In fact, Intermetrics currently plans to achieve its 
performance requirements without resorting to pragma suppress. 
Retaining the necessary constraint checks in the compiler will 
markedly improve the maintainability of the compiler. 

4.3.4 Look Ma - No Regressions! 
The problem of regressions is indeed lessened in Ada. 

Prior to Ada it was often the case that in fixing a bug in a 
large, complex system other bugs were introduced into the 
system. The strong structuring support and strong typing that 
Ada provides make it more difficult to introduce incorrect fixes 
into a large system. 

This characteristic of a system written in Ada was clearly 
indicated during both the validation and the bootstrap of our 
compiler. We had expected, based on prior compiler experience, 
that we would experience a two or three week "tail" at the end 
of our pre-validation testing. This tail would occur as we 
attempted to pass the final five percent of the ACVC suite. We 
expected that a fix introduced to pass one of the last ACVC's 
would cause one or two previously passing ACVC's to begin to 
fail. In fact, this regression did not occur. Our rate of 
getting new ACVC's to pass remained high right up through the 
week in which the last ACVC's were passed. 

A similar phenomenon occurred when we bootstrapped our 
compiler. To manage the bootstrap process, we decided that we 
would f irs t  bootstrap the smallest compiler phase, using this 
mini-bootstrap to expose the majority of compiler bugs we would 
experience during the full bootstrap. This smallest phase is 
the 70,000 line, global optimizer phase. Its bootstrap required 
three months. During the three months 55 bugs were exposed and 
fixed. This bug rate corresponds to 8 bugs for each new 10,000 
lines of new code exposed to the compiler. 

4 

In forecasting the bootstrap of the remaining 330,000 lines 
of the compiler, we estimated that these new lines would produce 
bugs at 4 bugs per 10,000 lines, for a total of 130 bugs. Given 
this number of bugs, we estimated it would require twelve weeks 
to bootstrap the entire compiler. To our pleasant surprise, we 
bootstrapped the compiler in five weeks and the additional 
330,000 lines exposed only 10 new bugs! 

F. 3.2.13 



We attribute these two instances of fewer bugs than 
expected to the "correctness" discipline which arises from 
programming in Ada. 
which have few "lingering" bugs and are readily maintainable. 

Ada does indeed appear to result in systems 

5.0 Conclusion 

Intermetrics realized five years ago that writing a 
production quality Ada compiler would be a tough job. Writing 
the compiler in Ada itself made the job really tough. 

This heightened difficulty arose not because Ada isn't an 
excellent systems programming language. The difficulty arose 
from a situation which occurs too often in our industry: the 
dependence on a brand-new programing support environment for a 
large systems programming effort. 

Fortunately, this situation is behind us. Intermetrics has 
a production quality, programming support environment that 
efficiently supports continued development of the Intermetrics 
Ada compilers. Intermetrics has also learned a great deal from 
its 150 person-years of Ada development; hopefully, the lessons 
described in this paper will benefit the planning and 
implementation of the Space Station software. 
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N89-16360 
A small evaluation suite 

for Ada compilers 

Randy Wilke, Daniel Roy 

1 INTRODUCTION 

After completing a small Ada pilot project (OCC simulator) for the 
Multi Satellite Operations Control Center (MSOCC) at Goddard last 
year, we recommended the use of Ada to develop OCCs. 

To help MSOCC transition toward Ada, we recently developed a suite of 
about 100 evaluation programs which can be used to assess Ada 
compilers, namely: 

o Compare the overall quality of the compilation system (e.g., 
ease of use, complexity, impact on the host computer, error 
message quality). 

o Compare the relative efficiencies of the compilers and the 
environments in which they work (e.g., how long does it take 
to compile and link a program?). 

o Compare the size and execution speed of generated machine 
code. 

Another goal of the benchmark software was to provide MSOCC system 
developers with rough timing estimate for the purpose of predicting 
performance of future systems written in Ada. 

2 SUITE DESCRIPTION 

Two types of benchmarks were created, "statictf and "dynamictt. Static 
benchmarks are used to assess the extent to which a compiler helps (or 
hinders) the software development effort. Dynamic benchmarks measure 
the efficiency of machine code generated by Ada compilers. 

The Ada evaluation suite was developed in about 4 man-months on a 
Digital Equipment Corporation (DEC) VAX-11/785 using the DEC Ada 
Compilation System (V1.0) running under the VMS operating system 
(V4.2). The evaluation suite source was then ported from the VAX to a 
Data General Corporation (DG) MV/4000 via magnetic tape. The software 
was rebuilt on the MV/4000 using the DG Ada Development Environment 
(V2.3) running under the AOSIVS (V6.3) operating system. 
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2.1 Static Benchmark Programs 

Two general classes of static evaluation programs were generated. The 
first set of programs measures the time to compile various Ada 
constructs such as: 

o A null program to measure the minimum overhead. 

o 

o A program translated from Reference 2, dealing with stride 

A program instantiating INTEGER - IO. 

and non-stride array references. 

o The DHRYSTONE synthetic benchmark program from Reference 3. 

A compilation command procedure automatically measures the compile 
time for every program of the benchmark suite. 

The second set of static benchmark programs contain deliberately 
induced errors in the source code. They are used to subjectively 
evaluate how well compiler messages help the programmer identify some 
common mistakes such as: 

o Incorrect dereferencing of an object in a procedure call. 

o Confusing type and subtype declarations. 

o Common typos (missing "--" and ";", reference to a misspelled 
variable, etc.) 

o Forgetting to qualify items from "withed" packages. In this 
case, a good message should mention the right package(s). 

2.2 Dynamic Benchmark Programs 

The dynamic benchmark programs measure the run time overhead 
following Ada features: 

for the 

I - Control structures (CASE, IF-THEN-ELSE, LOOP). 

- 
- Procedure call overhead (including calling another language 

Assignment statements including ACCESS types. 
, 

from Ada). 

1 - Dynamic memory allocation. 
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- Sequential IO. 

- Rendezvous (inter-task communication) and task activation. 

- Using multi-tasking to overlap IO with CPU intensive 
processing. 

- Array referencing (stride and non-stride). 

The chosen limited set of tests concentrates on the Ada language 
features that are vital to MSOCC. However, the benchmark methodology 
and the benchmark code structure provide a good framework to easily 
create new benchmarks as the need arises. 

An averaging technique is used to smooth the effects of random system 
events that can be minimized but not eliminated from the 
multi-programming environment. A llnullll loop is timed for several 
iterations to compute the overhead for the loop. The ADA construct to 
be benchmarked is then timed inside the same loop. The null loop time 
is subtracted from the time of the loop containing the Ada construct, 
and the result is divided by the number of iterations to produce the 
time for one execution of the ADA construct. All timing is performed 
using the CALENDAR.CLOCK routine. 

A command procedure automatically logs all sysgen parameters as well 
as the main process parameters (quotas, working set, etc.) before 
running all tests with a programmable number of iterations. Timing 
results are computed internally by every benchmark program and logged 
in individual files (one such file per test). 

2.2.1 Parallelism Test Programs Description 

The programs that test the overlapping of input, output and CPU 
processing with tasking warrant a more detailed discussion: 

2.2.1.1 PAR BIG - 
This program instantiates the SEQUENTIAL IO package for a file of big 
record size (10 000 bytes per block) aEd reads, processes and writes 
several records , overlapping sequential access input , CPU intensive 
"processingll and sequential access output by using Ada tasking with 
rendezvous. The overall run time should be compared to the overall 
run time for SER - BIG described below. 

If the compiler correctly implements the Ada tasking paradigm, the 
processing task should be able to run while the I/O tasks are blocked. 
Therefore, PAR BIG should run faster than SER BIG provided that the 
rendezvous overhead is acceptable. 

- 
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2.2.1.2 SER - BIG 

This program instantiates the SEQUENTIAL IO package for a file of big 
record size (10 000 bytes per block) 70 serialize sequential access 
input, CPU intensive "processing" and sequential access output in a 
loop. 

2.2.1.3 

The same principles were applied to a file of nascom blocks (600 
bytes). However, because modern operating systems very efficiently 
buffer the data during sequential IO operations, the efficiency 
advantage of tasking may be small (or non existent) for this test. 

PAR - NB And SER - NB 

2.3 Code Optimization Issues 

One major concern, when doing simple dynamic benchmarks, is the 
compiler optimizer. Host simple benchmark programs do not do any 
reasonable work. One must be careful that the optimizer does not 
recognize this fact and optimize the construct being benchmarked 
completely out of the program. Even if the construct is still 
present, there is concern as to whether the optimization would have 
taken place in a "real" program to the extent that it took place in 
the simple benchmark (e.g., all variables used in the benchmark ending 
up in registers may not be realistic). 

The DEC Ada Compiler has two optimization switches. One, 
/OPTIMIZE=TIME will automatically treat small subroutines as though 
the INLINE pragma had been invoked. The other, /OPTIHIZE=SIZE 
performs all other optimization but does not do automatic INLINE 
processing. The /OPTIHIZE=TIME switch does not result in automatic 
INLINE processing if the body of the subroutine being called is 
compiled separately. 

We tried a method described in Reference 4 to trick the compiler into 
not performing automatic INLINE processing. We rejected the method 
because it introduced large delays that would have made timing 
measurements of small constructs very imprecise. 

Ye compiled all dynamic benchmarks with and without optimization. 
Where significant differences resulted, the generated machine code was 
examined to determine if the optimizer did its job "too well". In 
such cases, the non-optimized version was used in test runs. 
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3 COMPARING DEC ACS AND DG ADE 

We were guests on both of the host machines and hence, were assigned 
limited resources. Consequently, much effort was spent managing 
resources, particularly disk space. On the ADE we were frequently 
running at reduced priority, relative to all other system users. 

This comparison between the ACS and the ADE is, perhaps, a little 
unfair to the ADE. The VAX-11/785, which the ACS runs on, is about 
twice as fast as the MV/4000 (1.2 MIPS vs 0.6 MIPS). Also, while DG's 
AOSIVS is far superior to many operating systems, we believe that 
DEC's VMS, in general, provides a significantly better software 
development environment. These bias must be taken into consideration. 

4 

All static and dynamic benchmarks were developed on the DEC VAX-11/785 
and ported to the DG MV/4000. There were no cases where the ADE 
failed to compile a program that was successfully compiled the 
ACS. was one instance where the ADE generated incorrect code, 
and one program experienced runtime problems that were never solved. 
Specifically, the following problems were encountered while porting 
the benchmark suite: 

under 
There 

- Due to bad code being generated for an explicit type 
conversion, PAR - NB had to be recoded. 

- PAR - BIG never ran successfully on the MV/4000. 
- File IO and parallel processing programs had to be modified 

on the the MV/4000 because the ADE does not handle 
representation clauses for type trbytetl and generated code for 
32 bit integer instead. 

- An unhandled exception would randomly occur while using a 
program (written in Ada) to unpack records from files that 
had been transferred to the DG. The problem would go away by 
rerunning the program with exactly the same input file. 

The following additional subjective comparisons can be made: 

1. Both systems use a lot of resources. The ADE makes 
extravagant use of disk space and is also a CPU hog. 

2. The MV/4000 text editor (SED) didn't seem as friendly as the 
VAX's (EDT). This may have been due to lack of DG experience 
on the part of the evaluators (we did not know how to use 
SLATE). 

As a rule, setting up command files to build and run things frequently 
took an order of magnitude longer on the MV/4000. 
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3.1 Static Evaluation 

3.1.1 Compilation Times 

ACS and ADE compilation times for a subset of the benchmark suite are 
compared in Figure F.3.3-1. For the sample, the ACS performed better 
even if we allow for the difference in processor speeds. Differences 
in the time required to perform disk IO is an additional, hard to 
quantify factor. 

The entire benchmark suite was compiled and linked in less than 40 
minutes on the ACS and in about 3 hours on the ADE. 

COMPILE TIME 
(seconds) 

Benchmark ACS (VAX 11-785) ADE (MV/4000) 

COMP NULL 
COHP-COMMENTS 
COHP-INT IO 
COMP-TEXT - - IO 

MODUL~ BYTE 

SUE CALL-o - 
PAR-BIG - 

ARRAY REF 

RV A R 6 Y  100 

6 
5 
11 
7 

31 
28 
20 
18 
69 

24 
32 
65 
20 

142 
92 
94 
105 
264 

Figure F.3.3-1, A Sample of Compilation Times. 

3.1.2 Error Messages 

Even though the ACS compile time messages were verbose at times, their 
relevance and clarity were judged superior to those of the ADE. 

In particular, the ACS makes generally good suggestions (adding 
missing semicolons, guessing package name for missing qualification, 
etc.) whereas the ADE suggested that a derived type was intended when 
the problem was a confusion between type and subtype declarations. 
This kind of suggestion can greatly confuse the novice programmer. 
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3.2 Dynamic Evaluation 

, 

Overall, the DEC ACS produced more efficient code than the DG ADE. 
The rest of this section compares execution speeds for several classes 
of benchmarks. 

3.2.1 Common Features 

Figure F.3.3-2 shows the measured run time for the most common Ada 
constructs. 

CONSTRUCT 

Control 
3 CASES 

10 CASES 
IF/THEN/ELSE 
FOR LOOP (optimized) 

Assignments 
VARIABLE := VARIABLE 
ACCESS VARIABLE := VARIABLE 
VARIABLE := CONSTANT 

VARIABLE := CONSTANT 

VARIABLE := CONSTANT 

(CONST < 2**8) 

2**8 < CONST < 2**16 

(CONST > 2**16) 

Synthetic benchmark 
DEIRY STONE 

ACS/ADE OVERHEAD 
(microsec) 

average low high 

2.611.5 2.6/0.8 2.6/1.9 
2.9/1.3 2.9/1.3 2.9/1.6 
4.6/1.6 4.4/1.6 4.7/1.6 
1.516.0 1.5/6.0 1.7/6.0 

0.713.4 0.613.4 0.7/3.5 
3.015.4 3.0/5.0 3.2/5.4 

0.712.6 0.7/2.6 0.8/2.6 

1.1/2.6 1.W2.5 1.3/2.6 

1.0/2.9 0.9/2.9 1.1/2.9 

1.3/4.6 1.W4.6 1.7/4.6 

Figure F.3.3-2, Common Ada construct run time overhead. 
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3.2.2 Procedure Call 

Figure F.3.3-3 shows the run time overhead for procedure calls. 

NUHBER OF 
PARAMETERS 

0 

1 
1 
1 

PARAMETER ACWADE CALL OVERHEAD 
TYPE (microsec/call) 

average low high 

1 (C calls C) IN 
1 (Ada calls C) IN 

- 13/31 13/31 13/31 

IN 17/37 16/36 17/37 
OUT 16/37 16/37 16/37 
INOUT 20/40 19/40 20/40 

10 
10 
10 

IN 
OUT 
INOUT 

13/NA 13/NA 14/NA 
15/NA 15/NA 16/NA 

56/89 
55/89 ~ 

86/121 

56/89 56/172 
55/89 55/90 
86/121 86/124 

10 element array IN 14/33 14/33 14/34 
10 element array OUT 14/34 14/33 14/35 
10 element array INOUT 14/34 14/33 14/35 

100 element array IN 14/33 14/33 14/33 

1000 element array IN 14/34 14/34 14/34 

10000 element array IN 14/NA 14/NA 14/NA 

Figure F.3.3-3, Procedure Call Overhead. 

3.2.3 Hemory Allocation 

Figure F.3.3-4 shows the overhead measured for dynamic memory 
allocation. 

NUHBER OF SIZE OF ACS/ADE ALLOCATION OVERHEAD 
BUFFERS BUFFERS (millisec/allocation) 

(by t-1 average low high 

100 
500 
1000 
1000 

1000 
lo00 
100 
500 

0.9/5 .O 0.814.0 1.2/5.0 
2.9/4.6 3.614.6 2.8/4.6 
0.2/1.5 0.2/1.5 0.2/1.5 
6.4/4.7 6.514.6 6.2/4.9 

Figure F.3.3-4, Dynamic Hemory Allocation. 
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3.2.4 Sequential File I O  

Figure F.3.3-5 shows the run time overhead measured for sequential IO. 

RECORD SIZE ACS/ADE IO TIMES 

(Bytes) (milliseconds/read) (milliseconds/write) 

average low high average low high 

4 0.6/7 0.6/7 0.617 0.5/5 0.5/5 0.5/5 
600 4.0/50 3.0/50 5.0/50 11/120 8.0/120 13/120 
10000 120/130 100/130 140/130 340/280 300/280 400/280 

Figure F.3.3-5, Sequential IO. 

3.2.5 Tasking 

Figure F.3.3-6 shows the run time overhead measured for a rendezvous 
between 2 tasks. 

NUMBER OF 
PARAMETERS 

PARAMETER ACS/ADE RENDEZVOUS OVERHEAD 
TYPE (millisedrendezvous) 

average low high 

0 - 1.8/11 1.8/11 1.8/12 

1 
1 

IN 1.8/11 1.8/11 1.8/11 
ACCESS 1.8/11 1.8/11 1.8/11 

10 IN 1.8/12 1.8112 1.9/12 

10 element array IN 
100 element array IN 

1000 element array I N  

1.8/11 1.8/11 1.8/11 
1.9/12 2.0/12 2.0/12 

3.6/12 3.4/12 4.0/13 

lk element array INOUT 3.4/13 3.3113 3.6/13 

Figure F.3.3-6, Rendezvous Overhead. 
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Figure F.3.3-7 shows the run time overhead measured for 
activation. 

dynamic task 

ACS/ADE TASK ACTIVATION OVERHEAD 
(milliseconds/activation) 

average low high 

6.2114 6.0/14 6.4/14 

Figure F.3.3-7, Task Activation Overhead. 

Figure F.3.3-8 shows the run time measured for reading, processing and 
writing number of 600 bytes (NASCOH) and 10 000 bytes records (BIG 
BLOCKS) using tasking (PARALLEL) or not (SEkAL). Refer to the 
description of PAR - BIG and SER-BIG given previously for details. 

a 

PROCESSING ACS/ADE TOTAL EXECUTION TIHE 
MODE (seconds) 

Two CONTROLLERS: 

NASCOH BLOCKS 
NASCOH BLOCKS 

BIG BLOCKS 
BIG BLOCKS 

average low high 

SERIAL 3.7/NA 3.4/NA 3.9/NA 
PARALLEL 4.1/NA 3.9/NA 4.4/NA 

SERIAL 6.6/NA 6.4/NA 6.8/NA 
PARALLEL 4.5/NA 4.3/NA 4.8/NA 

ONE CONTROLLER: 

BIG BLOCKS SERIAL 7.5/NA 7.3/NA 7.7/NA 
BIG BLOCKS PARALLEL 5.4/NA 5.2/NA 5.6/NA 

NASCOH BLOCKS SERIAL NA/14 NA/14 NA/14 
NASCOH BLOCKS PARALLEL NA/ 16 NA/16 NA/16 

Figure F.3.3-8, Parallel Processing test. 

Our results, obtained with the ACS, show that when separate 
controllers are used for the input and the output, parallelism is 
highest, allowing the PAR BIG multi-tasking program to run than 
24% faster that its seriai counterpart. 

Excellent buffering by the OS however, makes the serial program for 
NASCOH blocks (SER - NB) run 10% faster that its multi-tasking 
counterpart. 

more 

Lack of time and numerous problems with an unfamiliar environment 
not allow us to run PAR-BIG on the ADE. 

did 
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3.2.6 An Interesting Math Routine 

In Reference 3, it was shown that for two routines accessing an array 
in a stride and non-stride manner, the F77 compilers produced 
significantly slower code than the VAX FORTRAN and that all of the VMS 
Pascal compilers considered generated very inefficient code. 

Our results, presented in figure F.3.3-9, show that the VAX Ada code 
for this test is not as efficient as the VAX FORTRAN code (execution 
time for VAX FORTRAN is about half that for VAX Ada). This result 
contradicts our own previous experience (see Reference 1) and the 
results of other groups. DEC Ada is often found to be faster than DEC 
FORTRAN V4.2 but we observe that DEC FORTRAN V4.3 produces 
significantly faster code and that the ACS optimizer can be improved. 
We hope that DEC Ada will benefit from the progress made for DEC 
FORTRAN. 

ACS on VAX 111785 CPU time 
(seconds) 

50 100 150 200 
ITER- ITER- ITER- ITER- 
ATIONS ATIONS ATIONS ATIONS 
---_-- ------ ------ ------ 

STRIDING : 
VAX FORTRAN (V4.3) 0.3 1.8 6.5 15.9 
VAX ADA (V1 .O) 0.4 3.7 13.5 38.0 

NON-STRIDING: 
VAX FORTRAN (V4.3) 0.3 2.4 8.8 25.0 
VAX ADA (V1.0) 0.3 2.8 10.2 26.9 

Figure F.3.3-9, Array Reference Benchmark Execution Times. 

4 CONCLUSION 

In general, the ACS is a reasonable system to work with. The 
following positive comments can be made: 

- The ACS operates in a logical, easy to comprehend manner. 
When assistance is required, documentation on operating the 
ACS is complete, accurate, and easy to use. On-line help is 
available. 

- The LRM is generously supplemented with text and examples 
specific to the DEC implementation. 
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- The ACS is well integrated into the DEC software development 
and run-time environment. A run-time reference manual 
provides practical information about internal details of the 
DEC implementation and how Ada interfaces to VHS and other 
high-level languages. 

- Compilation speed is rapid enough for serious software 
development (at least on a VAX-111785). 

While ACS disk space requirements (per user library unit) are 
high, "garbage" files, necessary to track compilation units, 
were fewer than on ADE and were confined to the library 
directory, rather than cluttering the user's working 
directory. 

- 

- Run-time error messages were excellent. They were generally 
very specific about the true nature of the problem and 
provided the W S  standard trace back information. 

The following negative comments can be made about the ACS: 

- The Ada rendezvous mechanism, which will be critical to HSOCC 
realtime applications, incurred relatively high overhead. 

- The ACS requires large amounts of disk space to maintain a 
user library. 

- In the single direct comparison between VAX Ada and VAX 
FORTRAN (ARRAY REF), our results suggest that in spite of its 
overall good quality, the DEC ACS code generator can be 
improved. 

- While the information contained in compiler error messages 
usually identifies the offending line of code and the nature 
of the error, the messages themselves tend to be verbose and 
poorly worded. Much effort is required to extract the 
information from the message. 

The following positive comments can be made about the ADE: 

1. The ADE feature.s a more extensive set of tools than the ACS 
(e.g., a pretty printer). 

2. The library manager can produce very useful cross reference 
reports. 

3. The symbolic debugger is friendly and more mature than 
systems' debuggers. 

other 
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4. The ADE features an impressive number of packages (e.g., 
BIT OPS to alleviate the lack of representation clauses, 
C-NT EXCEPTION ,to help determine the origin of an 
exception) that would help alleviate some of the problems we 
mentioned. 

5. Overall, the ADE generated less efficient code than the ACS 
but in a few cases, when the difference in CPU speed is 
accounted for, the ADE generated code of equal or better 
quality . 

The following negative comments can be made about the ADE: 

1. Run-time error messages were terrible. Frequently, system 
limits are exceeded during program elaboration. When this 
happens, the user is either presented with Wnhandled 
exception in library unit prog", or "Constraint error in unit 
main", and no additional information. 

2. The compiler required a pragma or a compile switch to 
explicitly declare a procedure to be the main program. The 
concept is not part of the L R M  and should not be necessary. 

3. Compilation times were very slow, even considering the fact 
that the MV/4000 is only a 0.6 MIPS machine. 

4. PAR NB contained code which assigned an array to an array 
wi tE an explicit type conversion (the arrays were declared as 
different types). The DG compiler generated bad code which 
caused the program to hard abort directly to the operating 
system with no Ada exception raised. PAR - NB was recoded to 
avoid the type conversion. 

5. PAR - BIG never ran successfully on the MV/4000. An exception 
was raised the first time that a read was attempted on its 
input file. The reason for the exception was not apparent. 
SER BIG did not have any problems reading the file. PAR - BIG 
worEed correctly on the VAX. 

6. The ADE doesn't support storage of 8-bit integers. It uses 
32-bits for all integer variables, ignoring length 
representation clauses. In order to compare ADE IO benchmark 
results to ACS results, programs were modified on the MV/4000 
to ensure that buffers were the same number of bytes. 

7. There is no ADE compiler switch to turn off optimization. 
Such a switch is frequently necessary when working with 
symbolic debuggers and would have been useful in the 
benchmarking process. 
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8. 

9. 

10. 

11. 

12. 

The user's guide was rather thin and did not provide much 
insight into the ADE implementation of the Ada language. 

The ADE LRM documentation did not include any ADE specific 
description or examples. 

Some of the library files that ADE needs to configure 
compilation units must reside in the users working directory 
rather than in the library directory. Users have a hard 
enough time keeping their directories free of their own 
"garbage" files without also having to worry about the ADE's. 
The names generated for the ADE files have very long and 
arcane embedded number sequences, making them unwieldy to 
deal with on an individual basis. 

The ADE makes extravagant use of disk space. 

The W/4000 text editor (SED) didn't seem to us as friendly 
as the VU'S (ED"). However, a colleague demonstrated a very 
impressive Ada frame driven editor the he built using SLATE'S 
macro capability. 

Overall, the ADE is usable for investigating the Ada language but many 
improvements are needed before it can be used as a production 
compiler. 

4 .1  For More Information 

Two reports, available from the authors, document the suite and the 
results of the comparison between DEC's ACS and DG's ADE: 

o An - Evaluation -- Suite for - Ada Compilers, Century Computing, 
Inc., Revision A, March 1986. 

o A Comparison of the DEC Ada Compilation System and the DG Ada 
Development Environment, Century Computing, Inc., Revision A, 
March 1986. 

- ---- ---- 

The source code for the suite and the RUNOFF source file for the 
reports are also available from the authors on a W S  BACKUP format 
tape. 
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I INTRODUCIlON 

Programmers have traditionally approached floating-point arithmetic with great 
trepidation. Brown and Feldman in their landmark paper on model numbers call floating- 
point arithmetic the "bete noire" (black beast) of computing. Programmers are haunted by 
the suspicion that floating-point calculations harbor hidden errors. This resistance stems, 
at least partly, from the variety of inconsistent floating-point representations 
implemented over the years by different computer manufacturers. 

In many respects, the programming language Ada' is not so much a breakthrough 
in technology as it is an evolutionary melding of many advancements achieved by 
computer science research during the 1970s. This is certainly the case with respect to 
Ada's treatment of floating-point arithmetic. Ada explicitly adheres to concepts of 
environmental inquiry initially proposed by Naur in 1967 and of model number 
parameterization advanced by Brown and Feldman in 1980 and formalized by Brown in 
1981. Following these precepts, Ada encourages the development of safe, transportable 
numerical programs. This paper traces major historical efforts to establish effective 
standards for floating-point arithmetic. It describes previously developed programs 
written in languages such as FORT" and BASIC which partially undertake the testing 
of conformance to such standards. It provides results obtained from a contemporary 
program, Paranoia.Ada, which tests various aspects of floating-point arithmetic in the 
context of the Ada programming language. 

SPECIFICATION OF FLOATING-POINT ARITHMETIC 

The last two decades have witnessed efforts within the computer science 
community to establish floating-point arithmetic standards. These efforts have been 
primarily motivated by a desire to perform consistent arithmetic in a common 
transportable programming language across many different computing environments and 
hardware architectures. Naur, writing in 1967, introduced the concept of an 
"environmental inquiry" as a means of ascertaining the arithmetic characteristics of a 
computing environment. His ideas where incorporated into the ALGOL 68 language and 
are reflected in the "attribute" feature of Ada. 

The International Federation for Information Processing (IFIP) Working Group 
25 (Mathematical Software) introduced the concept of floating-point parameters as a 
means of determining the characteristics of a specific programming environment's 
floating-point arithmetic implementation. The design of FORTRAN 77 provided access 

I to such floating-point parameters? 

I 'Ada is a registered trademark of the US. Government, ATP0 (Ada Joint Program Office). 
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BROWN-FELDMAN CONTRIBUTIONS 

More recently, Brown and Feldman, using model number theory, further specified 
floating-point parameterization. They defined a generalized standard representation of 
floating-point numbers independent of underlying machine architecture. Their landmark 
work resulted in precise definitions for floating-point arithmetic based on model numbers 
and model intervals. They established rigorous theorems concerning the dependability of 
computational results derived from operations that adhered to the basic model 
definitions.2 They defined a standard model number representation as: 

x = be f, where 

b is the specified radix, 

e is an integer exponent of specified range, and 

f is the significand expressed as a base-b digit. 

They identified seven model parameters as necessary to the specification of a 
floating-point arithmetic implementation. Four parameters consist of basic integer values: 

BASE 

PRECISION 

MNIMUM EXPONENT 

MAXIMUM EXPONENT 

b 

P 

emin 

emax 

Three additional parameters consist of floating-point values derivable from the 
basic parameters: 

MAXIMUM RELATIVE SPACING Epsilon = bl-p 

SMALLEST POSITIVE NUMBER Sigma = bemh-1 

LARGEST NUMBER Lambda = bemax(l-b'P) 
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CURRENT IEEE STANDARDIZATION EFFORTS 

Tko committees within the IEEE are working to further refine and extend the 
Brown-Feldman model of floating-point arithmetic. Committee P754 is developing a 
detailed specification to be applied to computers employing a binary representation. P854 
is developing a compatible super-set specification that is both rad+ and word length 
independent. The objective of both committees is to establish additional environmental 
rules which will precisely define the outcome of all floating-point operations. Such rules 
are intended to eliminate all implementation-dependent or ambiguous circumstances 
with particular emphasis on consistent treatment of error conditions? 

As an example of this focus, both IEEE draft specifications require the 
implementation of at least the five following exception conditions: 

0 Invalid operation 

0 Division by zero 

e Overflow 

0 Underflow 

0 Inexact result 

ADA FLOATING-POINT PARAMETERIZATION 

The design of floating-point arithmetic in the Ada programming language 
explicitly complies with the Brown-Feldman model. It requires a limited, conservative 
interpretation of the Brown-Feldman parameters. Ada assumes a binary representation 
and arbitrarily assigns values to the other parameters based on the elemental precision 
specification of DIGITS in a real object type definition. Although the minimal Ada model 
number parameter values frequently result in an artificially limited precision range, they 
do encourage portability, predictability and understandability. 

Ada also allows for the specification of implementation-dependent "safe number" values. 
Such safe numbers permit additional latitude in the programming of numerically 
sophisticated procedures requiring greater exploitation of the complete underlying 
hardware architecture. A comparison between the Brown-Feldman parameters against 
Ada attributes relating to both the required model number values and implementation- 
dependent values shows a close mapping: 
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Brown-Feldman 
Parameter 

b 

P 

emax 

emin 

Epsilon 

Sigma 

Lambda 

Model Number 
At tribute 

2 
(BY DEFINITION) 

TMANTISSA 
(FUNCIION OF TDIGITS) 

TEMAX 
(4*TMANTISSA) 

- TEMAX 
(SYMMETRICAL RANGE) 

TEPSILON 
(2.0**(1- TMANTISSA)) 

TSMALL 
(2.0*+(-TEh4AX - 1)) 

TLARGE 
(2"TEMAX (1.0 - 

2.0L*(-TMANTISSA))) 

HISTORICAL FLOATING-POINT ARITHMETIC TESTS 

Implementation-Dependent 
Attribute 

TMACHINE-RADIX 

TMACHINE-MANTISSA 

TSAFE-EMAX 
TMACI-LTNE-EMAX 

TMACHINE-EMIN 

(Determined 
by Paranoia.Ada) 

TSAFE-SMALL 

TSAFE-LARGE 

A number of computer programs have been written in the last several years which 
evaluate the quality of floating-point arithmetic implementations. One such program is 
MACHAR written by Cody in 1979 and published in the classic reference, Sofhyare 
Manual for the Elementary F~nctions.~ MACHAR, coded in FORTRAN 77, determines 
thirteen characteristics of a floating-point arithmetic implementation such as radix, 
precision, rounding phenomenon, underflow threshold and ovefflow threshold. 

Another notable effort is the Arithmetic Unit Test Program developed by Schryer 
in 1979. Results from the execution of this program were reported in the seminal Brown 
and Feldman paper "Environmental Parameters and Basic Functions for Floating-Point 
Computation"? Schryer's test program was also coded in FORTRAN 77 and calculates 
the seven Brown-Feldman model parameters. The program was used to test Cray-1, IBM 
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370, DEC VAX, Honeywell 6000 and Interdata 8/32 computers in support of Brown and 
Feldman's research. 

RECENT FLOATING-POINT ARITHMETIC TESTS 

More recently, two members of the IEEE floating-point standardization 
committees have written programs that perform even more sophisticated evaluations of 
floating-point arithmetic implementations. Karpinsky's 1985 article, "Paranoia: A 
Floating-Point Benchmark" describes the program Paranoia written by University of 
California, Berkeley Professor W. M. Kahan.6 The article includes both Pascal and 
BASIC source code listings of Guard, a subset version of the full Paranoia. Kahan's 
original Paranoia is written in BASIC for the IBM (Intel 8088/8087) Personal Computer. 
It has also been translated into FORTRAN, Pascal and "C" for execution on DEC VAX 
and Sun Microcomputer (Motorola 68000) architectures? 

ADA IMPLEMENTATION OF PARANOIA 

In conjunction with its Ada evaluation activities, Package-Architects, Inc. has 
converted the original Paranoia program to Ada. This converted program is called 
Paranoia.Ada. Paranoia.Ada determines the floating-point characteristics of the 
hardware supporting an Ada implementation. It also evaluates the accuracy, precision 
and reliability of the basic, predefined Ada arithmetic operations. The program identifies 
errors in floating-point computations and provides a report summarizing the overall 
quality and acceptability of the floating-point computational capability. 

Paranoia.Ada performs specific diagnostic tests related to the following aspects of 
floating-point arithmetic: 

0 Determination of correct mathematical operations on small integral values. 

0 Calculation of radix, precision and Epsilon parameters. 

0 Determination of normalization with respect to subtraction operations. 

0 Determination of guard digits on subtraction, multiplication and division 
operat ions. 

0 Determination of rounding phenomenon (e.g. chopped, rounded or 
rounded to even) on addition, subtraction, multiplication and division. 

0 Determination of commutative multiplication properties. 

0 Determination of underflow threshold values. 
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0 Determination of rounding phenomenon on floating-point to integer 
conversion operations. 

0 Determination of overflow threshold values. 

0 Evaluation of integer power arithmetic. 

0 Evaluation of division by zero arithmetic. 

Paranoia.Ada takes significant advantage of several advanced features of Ada. The 
program relies on the Ada exception feature to detect and respond to error conditions 
with less disruption to processing than occurs with conventional BASIC or Pascal 
mechanisms. The program has been architecturally redesigned into forty-six separately 
compiled units and consists of approximately twenty-five hundred semi-colon terminated 
Ada statements. The program is implemented as a generic and is instantiated through the 
specification of a DIGITS parameter or by reference to a predefined FLOAT-TYPE. 

Because a number of validated Ada compilers do not provide the mathematical 
functions required by the Paranoia algorithms, Paranoia.Ada contains a partial 
mathematics library based on the Cody-Waite algorithms. The program can either use the 
mathematics library provided by the compiler being tested or use its own independent 
library for test calculations. 

The program also includes a utility package called STOP-WATCH which provides 
timing data related to test execution. The program measures the amount of CPU time 
required to perform the floating-point diagnostic tests and the amount of time required to 
generate the resulting output report. 

PARANOIAADA DIAGNOSTIC EVALUATIONS 

Paranoia.Ada replicates the test algorithms implemented in the original BASIC 
language version and adheres to the evaluation criteria established by Professor Kahan. 
Paranoia.Ada classifies errors detected in the course of its diagnosis into four categories. 
Ranked according to increasing levels of severity, the error categories consist of flaws, 
defects, serious defects and failures. Examples of errors associated with each category are 
as follows: 

J 

Flaws: Comparison anomalies such as: 
x /= -(-(X) or, 
X/= Y but X - Y = 0. 
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Defects: 

Serious Defects: 

Failures: 

Range imbalance between overflow threshold and 
underflow threshold. 

Comparison anomalies such as: 
z**x /= Z,*Z,*Z, ....* ZI. 

Erroneously raised numeric errors. 

An imbalance between the underflow threshold and 
Epsilon. 

Multiplication and subtraction operations yield 
inconsistent underflow thresholds. 

Absence of division by zero protection. 

Absence of guard digits. 

Underflow or overflow conditions not accompanied by 
corresponding numeric errors. 

Outright arithmetic errors such as: 
2 + 2 = 5 .  

Non-normalized subtraction. 

Erroneous guard digits. 

Underflow to negative number. 

Accuracy deterioration approaching underflow. 

I ParanoiaAda maintains a record of the errors encountered in the course of its 
execution. In its summary report, the program generates an overall evaluation of the 
tested floating-point implementation. Using IEEE Standards P754 and P854 as criteria, 
the program rates the diagnosed arithmetic in terms of one of the following comments: i 
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0 The arithmetic diagnosed appears excellent. 

0 The arithmetic diagnosed seems satisfactory. 

0 The arithmetic diagnosed seems satisfactory though flawed. 

0 

0 

The arithmetic diagnosed may be acceptable despite inconvenient defects. 

The arithmetic diagnosed has unacceptable serious defects. 

0 A fatal failure may have spoiled this program's subsequent diagnoses. 

EXECUTION OF PARANOIkADA AGAINST DEC ACS 

Paranoia.Ada has been run extensively against the Digital Equipment Corporation 
(DEC) Ada Compilation System (ACS) hosted on a VAX 785 computer. The VAX 
architecture provides a rich and powerful floating-point arithmetic capability. The VAX 
supports four floating-point representations. These four representations are avail able 
through the Ada package SYSTEM pre-defined floating-point types F-FLOAT, D-FLOAT, 
G-FLOAT and H-FLOAT. F-FLOAT is a 32 bit representation, D-FLOAT and G-FLOAT 
are alternative 64 bit representations (selectable by a PRAGMA directive), and H-FLOAT 
is a 128 bit representation. 

' 

The DEC ACS also provides for three pre-defined floating-point types in package 
STANDARD. The compiler maps each of these types -- FLOAT, LONG-FLOAT, and 
LONG-LONG-FLOAT - into the respective machine representation types F-FLOAT, 
D-F'LOAT or G-FLOAT, and H-FLOAT. Paranoia.Ada has been run against all seven of 
these pre-defined types as well as a user-defined type of SYSEM.MAX-DIGITS. 
S m . M A X - D I G I T S  forces the compiler to use the H-FLOAT representation. Sample 
output reports from D-FLOAT, G-FLOAT, H-F'XDAT, and SYSTEM.MAX_DIGITS test runs 
are supplied as attachments. 

DIAGNOSTIC ANALYSIS 
i 

ParanoiaAda provides a consistent diagnosis of the eight tested floating-point 
representations. The values calculated by the Paranoia.Ada algorithms match the values 
reported by queries to corresponding Ada attributes. The program detects a similar set of 
errors on all eight representations as well. One flaw and one serious defect pertaining to 
underflow phenomena were discovered for each of the representations. The flaw involves 
an inconsistency between comparison results and arithmetic results with numerical values 
at or very close to the underflow threshold. The serious defect concerns the absence of a 
numeric error when subtraction operations on such small numbers result in underflow. 
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This specific circumstance is addressed by the IEEE standards. The DEC VAX 
implementation appears to result in an underflow to zero but without a numeric error 
being raised. The IEEE standards require that the underflow result be a non-normalized 
"tiny" number accompanied by an exception. 

Paranoia.Ada uncovers a second serious defect in the D-FLOAT floating-point 
representation. In the VAX architecture, D-FLOAT representation is an extension of the 
single-precision F-FLOAT representation. (G-FLOAT is the true double-precision 
representation.) D-FLOAT has the same exponent range as F-FLOAT but uses an 
additional 32 bits of storage to allow greater precision in the significand. This allocation 
violates a requirement of the IEEE specification for balance between Epsilon and Sigma. 
In Paranoia.Ada terms, Epsilon equates to a calculated unit in the last place value and 
Sigma is the calculated underflow threshold value. 

TIMING RESULTS 

Execution and compilation timing data for each of the eight various DEC ACS 
floating-point representations are presented in Table 1. Execution times are also 
graphically depicted in Figure 1. (Since these data represent only a single sample for each 
type, caution is advised against drawing unjustified general conclusions.) Report 
generation times appear relatively consistent and provide a basis of comparison for the 
execution time differences. The execution times appear to increase as a function of the 
amount of precision provided by each type. Within the same precision, STANDARD pre- 
defined types seem to take longer to execute than SYSTEM pre-defined types. 

Compilation times for the seven pre-defined types are also relatively constant. For 
these types, the DEC ACS compiles Paranoia.Ada at a rate of approximately six hundred 
statements per minute. The compiler generates the SYSTEM.MAX-DIGITS version of the 
program at a slightly slower rate. 

SIGNIFICANCE OF RESULTS 

Owing to the sophistication of its diagnostic algorithms, Paranoia.Ada places 
heavy demands on the floating-point capabilities of an Ada compiler. The successful 
compilation and execution of a program as numerically complex and devious as 
Paranoia.Ada is a significant demonstration of a compiler's maturity, robustness and 
completeness. ParanoiaAda is a practical exploration of Ada's floating-point capabilities. 
It tests the fidelity of an Ada implementation to the concept of model numbers, assesses 
the dependability of the arithmetic, and reveals Ada's suitability as an engine for further 
serious numerical computations. ParanoiaAda, itself being a computationally intensive 
program, establishes the appropriateness of Ada as a medium for numerically demanding 
applications. 
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CONCLUSION 

Many essential software functions in the mission critical computer resource 
application domain depend on floating-point arithmetic. Numerically intensive functions 
associated with the Space Station project, such as ephemeris generation or the 
implementation of Kalman filters, are likely to employ the floating-point facilities of Ada. 
Paranoia.Ada appears to be a valuable program to insure that Ada environments and 
their underlying hardware exhibit the precision and correctness required to satisfy mission 
computational requirements. 

As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an 
Ada floating-point implementation. Equipped with such knowledge, programmers need 
not tremble before the "black beast" of floating-point computation. 
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SAMPLE OUTPUT REPORTS 
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Paranoia-Ada ( R )  

A Diagnost ic 8enc:hmar-k 

Paranoia. Ada i s  a program t o  diagnose f loat ing-point .  arithmet.ic 
in the context  o f  the Ada(*) programming language. The program 
evaluates the q u a l i t y  o f  a f loat ing-point .  ar i t .hmet ic imp1ement.a- 
t i o n  w i t h  respect t o  the proposed IEEE Standards P754 and P854. 

Paranoia - Ada i s  der ived from the o r i g i n a l  B A S I C  pr-ogramming 
language version o f  Paranoia developed and copyr ighted by 
Professor- bJ.fl. Kahan o f  the Un ivers i ty  o f  Cal i for-nia,  Berkeley I 

The B A S I C  Paranoia program i s  described i n  "Paranoia: A Float. ing- 
Point. Benchmar-k" , b y  Richard Karpinsky , Byte Magazine, V o l  - 10, 
No. 2, February 1985, PP. 223-235. 

Paranoia. Ada rep l icat .es i n  Ada the  test. a lgor i thms o r i g i n a l l y  
implemented i n  BASIC and adheres t o  the evaluat ion c r i t e r i a  
establ ished b y  Kahan. 

Paranoia.Ada incorporates a major- s t r u c t u r a l  redesign and 
employs app l icab le  Ada a r c h i t e c t u r a l  and s t y l i s t i c  features.  

*: Ada i s  a regist .ered trademark o f  the U,S,Government., 
AJPO (Ada J o i n t  Program Of f i ce )  

(C) Package-A?-chltects, Inc.  19BC 
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Paranoia Report f o r  t.ype D-FLOAT 
DEC ACS 1.0-7 VAX/7GS (VMS 4.2) 

19 : 3c’ : 42 22-Apt- -1 YE:& 

SYSTEM-NAME: VAX-VMS 

S m a l l  I n teg ra l  Values Test 

Radix, Precision, arid Closest Relat ive Separation Test 

Normalized Subtraction Test 

Guard D i g i t  on Subtraction Test. 

Guard D i g i t  on Mu l t i p l i ca t i on  Test 

Guard D i g i t .  on Div is ion Test 

Rounding f o r  Addition/Subtraction Test 

Rounding fo r  Mult ip l icat . ion Test 

Rounding f o r  Div is ion Test 

Rounding Sticky B i t  Test. 

Commutative Mu1 t i p l i c a  t i o n  Test 

Under- f 1 o w  Test 
FLAW: 

Comparison says X /= 2,  and yet X - 2 = 0.0 
X = 4.040761~309516133E-39 
z = 2.93e735~770557i~e~-~9 

SERIOUS DEFECT: 
Exception NUMERIC-ERROR was NOT ra ised to report 
underflow for Y := X - 2 
Confusion w i l l  be caused when innocent statements 
l i k e :  

i f  (x=z )  
then ... 
else . . . (f (x1-f (z))/(x-z) . . . 

encounter d i v i s ion  by zero although actual ly  
X / 2 = 1.0 + 3.7500000000000000E-01 

Range is too narrow, U1 ** 4 underflows 
SERIOUS DEFECT: 

Conversion Rounding Test 

Overflow Test 

Integer Power Test 

Div is ion by Zero Test 
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Paranoia Summary f o r  type D-FLOAT 
DEC ACS 1.0-7 VAX/7s5 (VMS 4.2) 

SERIOUS DEFECTS discovered 
FLAWS discovered 

2 
1 

Small Integral Values -1.0, 0.0, 0 . 5 ,  1.0, 2.0, 
3.0, 4.0, 5.0, 8 . 0 ,  9 .0 ,  
24.0, 27.0, 32.0, and 240.0 are 0 .k .  

Radix, Precision, and Closest Relative Separation 

Ada Imp1 emen ta ti or1 At t t- ibu t.es 

D-FLOAT'MACHINE-MANTISSA 56 bits 
D-FLOAT'MANTISSA 31 bits 
D-FLOAT'DIGITS 9 decimal digits 
D-FLOAT'EPSILON 

D-FLOAT 'MACHINE-RAD1 X 2 

9,31322574&1547852E-10 

Calculated Values 
Radix 
Pr ec is i on 
UI Cl.0 - nextafter(l.0, 0.o)J 

uz [nextafter-(i.O, 2.0) - 1.03 
1,3877787607814457E-17 

2.7755575&15628914E-17 

2 
56 digits o f  Radix 

Subtraction is normalized 

Guard Digits 

Suht.rac:t.ion: has guard digit 
Multiplication: has guard digit 
Division: has guard digit 

Rounding 
I 

Ada Implementation Attributes 
D-FLOAT'MACHINE-ROUNDS TRUE 

Calculated Values 
Addition/Subtraction: appears to be correctly rounded 
Multiplication: appears to be correctly rounded 
Division : appears to be correctly rounded 
Sticky bit ; used incorrectly or not at all 

Multiply commutes correctly for 20 pairs 

Underflow 

Ada Imp1 emen ta t ion Attributes 
D-FLOAT'SMALL 
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Paranoia Summary for type D-FLOAT 
DEC ACS 1.0-7 VAX/713S (VMS 4.2) 

19: 38: 42 22-Apr--19UC 

2.35098C7016445750E-38 

. 2.9367356770557188E-39 
. D-FLOAT'SAFE-SMALL 

Calculated Values 
EO - smallest positive number 
UO - underflow threshold 2.938735t3770557188E-39 

2.9387358770557lBlE-SY 

Conversion from +-x.5 to INTEGER rounds FROM-ZERO 

Overflow 

Ada Implementation At.tributes 
D-FLOAT'MACHINE-OVERFLOWS 
D-FLOAT'LARGE 

D-FLOAT'SAFE-LARGE 

D-FLOAT ' LAST 

2.1267647922655134E+37 

1-7014118338124107E+38 

1~701411~346046923E+38 

TRUE 

Calculated Values 
vo - overflow saturation 
V - overflow threshold 1.7014118346046923E+38 

1.7014118346046923€+38 

Integer Powers were calculated correctly 

Division by 0.0 handled correctly 

With respect to the proposed IEEE standards P754 and 9854: 
The arithmetic diagnosed has unacceptable serious defects 

Paranoia calculations elapsed time 0.9300 seconds 
Paranoia report elapsed time . 0,6800 seconds 
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Paranoia Report for  type G-FLOAT 
D€C ACS 1.0-7 VAX/7B5 (VMS 4.2) 

20:05:18 22-Apr-1986 

SYSTEM-NAME: VAX-VMS 

Small Integral  Values Test 

R a d i x ,  Precision, and Closest Relative Separation Test. 

Normalized Subtraction Test 

Guard D i g i t  on Subtraction Test 

Guard D i g i t  on Mult ip l icat ion Test 

Guard D i g i t  on Division Test 

Rounding for  Addition/Subtraction Test 

Rounding for f lu l t ip l i ca t ion  Test. 

Rounding for- Division Test 

Rounding Sticky B i t  Test 

Commutative Mult ip l icat ion Test 

Under f 1 o w  Test 
FLAW: 

Comparison says X /= 2,  and y e t  X - 2 = 0 .0  
X = 7.648691388618505E-309 
2 = 5.5C2684~4G266003E-309 

Except.ion NUMERIC-ERROR w a s  NOT raised to report 
underflow f o r  Y := X - 2 
Confusion w i l l  be caused when innocent statemer1t.s 
l i k e :  

SERIOUS DEFECT: 

i f  ( x = z )  
then ... 
else ... (f(x)- f (z)) / (x-z)  ... 

encounter d iv is ion by zero although actual ly 
X / Z = 1.0 + 3.750000000000000E-01 

Conversion Rounding l e s t  

Overflow l e s t  

Integer Power l e s t  

Div is ion by Zero l e s t  
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Paranoia Summary for type G-FLOAT 
DEC ACS 1.0-7 VAX/7l35 (VMS 4.2) 

SERIOUS DEFECTS discovered 
FLAWS discovered 

20 : 05 : 1 e 22-Ap r- - 1 9Sdl 

1 
1 

Small Integral Values -1.0, 0.0, 0.5 .  1.0, 2.0 ,  
3.0, 4.0, 5.0 ,  8 .0 ,  9 .0 ,  
24.0, 27.0, 32.0, and 240.0 are 0 . k .  

Radix, Precision, and Closest Relative Separation 

Ada Implemeri t.a t ion At t r ibu t.es 
G-FLOAT'MACHINE-RADIX 2 
G-FLOAT'HACHINE-flANTISSA 53 bits 
G-FLOAT'MANTISSA 51 bits 
G-FLOAT'DIGITS 15 decimal digits 
G-FLOAT'EPSILON 

8.881784197001252E-16 

Calculated Values 
Radix 
Pr ec isi on 
UI C1.0 - nextafter(l.0, O - o ) ]  

U L ~  Cnext.after(l.0, 2.0) - 1-01 1.110223024625157E-16 

2,220446049250313E-16 

2 
53 digits o f  Radix 

Subtraction is normalized 

Guard Digits 

Subtraction: has guard digit 
Multiplication: has guard digit 
Division: has guard digit 

Rounding 

Ada Implementation Attributes 
G-FLOAT'HACHINE-ROUNDS TRUE 

Calculated Values 
Addition/Subtraction: appears to be correctly rounded 
Nultiplication: appears to be correctly rounded 
Division: appears to be correctly rounded 
Sticky bit: used incorrectly or not at all 

mltiply commutes correctly for 20 pairs 

Underflow 

Ada Implementation Attributes 
G-FLOAT'SMALL 
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Paranoia Summary for- type G-FLOAT 
DEC ACS 1-0-7 V A X / 7 8 5  (VMS 4.2) 

1.944692274331607E-62 

5.562684646268003E-309 
G-FLOAT'SAFE-SMALL 

Calculated Values 
EO - smallest positive number- 
UO - underflow t.hr-eshold 5.56268464d268003E-309 

5.56268464d268003E-309 

Conversion from +-x .5  to INTEGER rounds FROM-ZERO 

Overflow 

Ada Implementation At.  tr i butes 
G-FLOAT'MACHINE-OVERFLOWS 
G-FLOAT 'LARGE 

G-FLOAT'SAFE-LARGE 

G-FLOAT'LAST 

2.571100870814383E+61 

B.988465674311576E+307 

B.988465C7431157YE+307 

TRUE 

Calculated Values 
VO - overflow saturation 
V - overflow threshold 8.988465674311579E+307 

e . 9 8 8 4 ~ ~ 6 7 4 3 1 1 5 7 ~ ~ + ~ 0 7  

Integer Powers were calculated correctly 

Division by 0.0 handled correctly 

3 with respect to the proposed IEEE standards P754 and P854: 
The arithmetic diagnosed has unacceptable serious defects 

Paranoia calculations elapsed time 1.2600 seconds 
Paranoia report elapsed time 0.7100 seconds 
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Paranoia Report for type H-FLOAT 
DEC ACS 1.0-7 VAX/7eS (VMS 4.2) 

20:47:00 22-Apr-1986 

SYSTEfl-NAME: VAX-VMS 

S m a l l  Integral  Values Test 

Radix, Precision, and Closest. Relative Separation Test 

Normalized Subtraction Test 

Guard D i g i t  on Subtraction Test 

Guard D i g i t  on Mult ip l icat ion Test 

Guard D i g i t  on Division Test 

Rounding for Addition/Subtraction Test 

I Rounding fo r  f lu l t ip l icat ion Test 

Rounding fo r  Division Test 
~ 

Rounding Sticky B i t  Test 

Commutative Mult ip l icat ion Test 

Underflow Test 
FLAW: 

Comparison says X /= 2, and yet X - 2 = 0.0 
x = 1.155722Y554447821427777954997043S2E-4932 
2 = 8-4052578577802337656566945433043G2E-4933 

Exception NUMERIC-ERROR was NOT raised to report 
underflow fo r  Y := X - 2 
Confusion w i l l  be caused when innocent statements 
like: 

SERIOUS DEFECT: 

i f  (x=z)  
then -.. 
else ... (f(x)- f (z)) / (x-z)  ... 

encounter d iv is ion by zero although actual ly 
X / 2 = 1.0 + 3.750000000000000000OOOOOOOOOOOOOOOE-01 

Conversion Rounding Test 

Overflow Test 

Integer Power Test 

Div is ion by Zero l e s t  
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Paranoia Summary for type H-FLOAT 
DEC ACS 1.0-7 VAX/785 (VMS 4.2) 

SERIOUS DEFECTS discovered 
FLAWS discovered 

1 
1 

Small Integt-a1 Values -1.0, 0.0, 0 . S .  1.0, 2.0, 
3.0, 4.0, 5.0, 8 .0 ,  9 .0 ,  
24 .0 ,  27 -0 ,  32-0, and 240.0 are 0.k.  

Radix, Precision, and Closest Relative Separation 

Ada Implementation Attributes 
H-FLOAT*HACHINE-RADIX 2 
H-FLOAT'MACHINE-HANTXSSA 113 bits 
H-FLOAT'HANTISSA 111 bits 
H-FLOAT'DIGITS 33 decimal digits 
H-FLOAT'EPSILON 

7.703719777548943412223911770339709E-34 

Calculated Values 
Radix 2 
Pr ec is ion 113 digits o f  Radix 
U1 11.0 - nextafter(l.0, O . O ) ]  

U2 Inextaft.er(l.0, 2-01 - 1-03 9.62964972193617926527988Y712924637E-35 

1.925929944387235e53055977942584927E-34 

Subtraction is normalized 

Guard Digits 

Sub t r ac ti on : has guard digit 
Multiplication: has guard digit 
Division: has guard digit 

Rounding 

Ada Implementation Attributes 
H,FLOAT*flACHINE-ROUNDS TRUE 

Calculated Values 
Addition/Subtraction: appears to be correctly rounded 
tlu 1 tip 1 ica t ion : appears to be correctly rounded 
Division: appears to be correctly rounded 
Sticky bit; used incorrectly or not at all 

tlultiply commutes correctly for 20 pairs 

Underflow 

Ada Implementation Attributes 
H-FLOAT'SMALL 
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Paranoia Summary f o r  type H-FLOAT 
DEC ACS 1.0-7 VAX/785 (VMS 4.2) 

20:47:00 22-Apr-1YE6 

1.100i56821463791821093431802093605E-134 
H-FLOAT'SAFE-SMALL 

8.405257~57780233765656694543304382E-4Y33 

Calculated Values 
EO - smallest pos i t i ve  number 

UO - underflow threshold 
8.4052578577802337656566945433043f52E-4933 

6.4052578577802337656566945433043t32E-4933 

Conversion from +-x.5 to INTEGER rounds FROM-ZERO 

Overflow 

Ada Implementation At t r ibu tes  
H-FLOAT'MACHINE-OVERFLOWS TRUE 
H-FLOAT'LARGE 

H-FLOAT'SAFE-LARGE 

H-FLOAT'LAST 

4.542742026647543065933273799300027E+133 

5.94~65747C786158825428796633140033140033€+4~31 

5-94865747678615~@25421796633140035E+4931 

Calculated Values 
VO - overflow saturat ion 

V - overflow threshold 
5.948657476786158825428796633140035E+4931 

5.948657476786158825428796633140035E+4931 

Integer Powers were calculated cor rec t ly  

D iv is ion  by 0.0 handled cor rec t ly  

With respect t o  the proposed IEEE standards P754 and P854: 
The ar i thmet ic  diagnosed has unacceptable serious defects 

I 
Paranoia ca lcu lat ions elapsed time 3.7500 seconds 
Paranoia repor t  elapsed time 0.6900 seconds 
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P a r a n o i a  Report. for t .ype M A X - D I G I T S  
DEC ACS 1.0-7 V A X / 7 8 5  (VHS 4 .2 )  

SYSTEM-NAME: VAX-VMS 

Small I n t e g r a l  V a l u e s  T e s t  

Radix, Pr -ec : i s ion ,  a n d  Closest R e l a t i v e  Separ -a t . ion  T e s t  

N o r m a l i z e d  S u b t r a c :  t . i on  T e s t  

G u a r d  D i g 1  t. on Sub t rac : t . i on  T e s t .  

G u a r d  D i g i t  on  M u l t . i p l i c a t i o n  T e s t  

G u a r d  D i g i t .  or1 D i v i s i o n  T e s t ,  

Rounding  for  Addi t i o n / S u b t . r a c t i o n  T e s t  

Round ing  for- Mu1 t i p l i c : a t . i o n  T e s t .  

Rounding  for  D i v i s i o n  T e s t  

Round ing  S t i c :ky  B i t .  T e s t .  

Commuta t ive  M u l t i p l i c a t i o n  T e s t  

Under  f l o w  T e s t  
FLAW I 

Compar i son  says X /= 2, a n d  ye t .  X - 2 = 0 - 0  
X = 1.1557229554447821427777954997043S2E-4932 
2 = 8.4052S78577802337656566945433043I32E-4933 

E x c e p t i o n  NUMERIC-ERROR was NOT raised to report. 
u n d e r f l o w  for  Y := X - 2 
C o n f u s i o n  w i l l  be c a u s e d  when i n n o c e n t  s t . a t e m e n t . s  
l i k e :  

S E R I O U S  DEFECT: 

i f  ( x = z )  
t h e n  ... 
else ... ( f ( x ) - f ( z ) ) / ( x - z )  ... 

e n c o u n t e r  d i v i s i o n  b y  zero a l t h o u g h  a c t u a l l y  
X / 2 = 1.0 + 3.750000000000000000OOOOOOOOOOOOOOOE-01 

C o n v e r s i o n  Round ing  T e s t  

O v e r f l o w  T e s t  

I n t e g e r  Power lest 

D i v i s i o n  b y  Zero T e s t  
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Paranoia Summary for type MAX-DIGITS 20 : 09 : 27 2E:-Apr-l9i315 
DEC ACS 1.0-7 VAX/7eS (VMS 4.2) 

SERIOUS DEFECTS discovered 
FLAWS discovered 

1 
1 

Small 1rit.egral Values -1.0, 0 .0 ,  0 .5 ,  1-0, 2 .0 ,  
3.0, 4.0, 5 . 0 ,  6 . 0 ,  9 .0 ,  
24.0, 27.0,  32.0, and 240.0 are 0.k.  

Radix , Precision , and Closest Relative Separat.ion 

Ada 1 mpl emerc t.s t.i on At. t.r i bu t.es 
MAX-DIGITS'MACHINE-RADIX 2 
MAX-DIGITS'HACHINE-MANTISSA 113 b1t.s 
MAX-DIGITS'MANTISSA 111 bits 
MAX-DIGITS'DIGITS 33 dec:imal digits 
MAX-DIGITS'EPSILON 

7.70371977754t3Y43412223911770339709E-34 

Calculated Values 
Radix 2 
P t- ec is i on 113 digits of  Radix 
UI c1.0 - next.aft.er(1.0, 0.O)I 
~2 Cnextafter(l.0, 2 . 0 )  - 1-01 9.629649721936179265279889712929241537E-35 

1.92592YP443872358S30559779425s4927E-34 

, Subtraction is normalized 

i Guard Digits 

Sub t r ac t ion : has guard digit 
Multiplication: has guard digit 
Division : has guard digit 

Rounding I 

Ada Implementation Attributes 
MAX-DIGITS'MACHINE-ROUNDS TRUE 

Calculated Values 
Addition/Subtraction: appears to be correctly rounded 
Multiplication: appears to be correctly rounded 
Division: appears to be correctly rounded 
Sticky bit; used incorrectly or not at all 

Multiply commutes correctly for 20 pairs 

Underflow 

Ada Implementation Attributes 
MAX-DIGITS'SMALL 
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Paranoia Summary for- type MAX-DIGITS 20:09:27 28-Apr-19&* 
DEC ACS 1-0-7 VAX/7E15 (VMS 4.2) 

1.1006,466214C;3791 I321 093431 802O936OSE-134 
MAX-DIGITS'SAFE-SMALL 

R.4052578577802337656566Y959J30433043I32E-4~~3 

Calculated Values 
EO - smallest. p o s i t i v e  number 

UO - under-f low threshold 
8.40525765778023376565669454330433043~2E-4~33 

~.405257857780233765656694543304382E-4933 

Conversion from +-x .5  t o  INTEGER rounds FROM-ZERO 

Overflow 

Ada 1mplement.at.ion Attr ibut.es 
MAX-DIGITS'MACHINE-OVERFLOWS TRUE 
MAX-DIGITS'LARGE 

MAX-DIGITS'SAFE-LARGE 

MAX-DIGITS'LAST 

4.54274202~~8475430CS93~27~7~93000~7E+l3~ 

5.9486S747678615E~25428796633140033E+4931 

5.946C5747678615~82542~796~33140035E+49Sl 

Calculated Values 
VO - overf low sat.urat.iorc 

V - overf low t.hr-eshold 
5.948657476786158825428796633140035€+4931 

5-9486574767861588254287~6633140035E+4~~1 

Integer Powers were calculat.ed co r rec t l y  

D iv i s ion  by 0.0 handled cor rec t ly  

f W i t h  respect t o  the proposed IEEE standards P754 and P854: 
The ar i thmet ic  diagnosed has unacceptable serious defects 

Paranoia calculations elapsed t ime 4.4200 seconds 
Paranoia repo r t  elapsed t ime 0.7100 seconds 
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Interfacing Ada* and Other Languages 

Paul B a f f e s  a n d  B r i a n  W e s t  

In termetr ics  Inc. 

PJTRODUCTION 

T h e  D e p a r t m e n t  Of D e f e n c e  h a s  man- 
d a t e d  t h e  u s e  o f  Ada o n  u p c o m i n g  projects  
i n v o l v i n g  e m b e d d e d  s y s t e m  s o f t w a r e .  N A S A  
h a s  a l s o  i n d i c a t e d  t h a t  A d a  h a s  b e e n  base- 
l i n e d  f o r  t h e  Space S t a t i o n  p r o j e c t .  Both  
of t h e s e  d e c i s i o n s  w i l l  r e q u i r e  t h e  con- 
t r a c t o r  c o m m u n i t y  t o  t r a n s i t i o n  f r o m  t h e i r  
c u r r e n t  non-Ada p r o g r a m m i n g  e n v i r o n m e n t s .  
E x i s t i n g  s o f t w a r e ,  t h a t  is p r o v e n  a n d  
v a l i d a t e d ,  w i l l  m o s t  l i k e l y  c o n t i n u e  t o  be 
u s e d  d u r i n g  t h e  t r a n s i t i o n  p e r i o d .  During 
t h i s  p e r i o d  new Ada programs a n d  e x i s t i n g  
p r o g r a m s  i n  o t h e r  l a n g u a g e s  may n e e d  t o  be 
i n  t e rf a c e d .  

A .  m y r i a d  o f  p o s s i b i l i t i e s  e x i t s  f o r  
t h e  s o l u t i o n  o f  t h e  t r a n s i t i o n  problem. 
One se t  o f  s o l u t i o n s  d e a l s  w i t h  t r a n s -  
l a t i n g  t h e  s o u r c e  code o f  t h e  o t h e r  l a n -  
guage i n t o  Ada s o u r c e  code or t h e  i n t e r m e -  
d i a t e  l a n g a u q e  u s e d  b y  t h e  c h o s e n  Ada 
c o m p i l e r .  A n o t h e r  s o l u t i o n  i n v o l v e s  a 
special i n t e r f a c e  s u b r o u t i n e  t h a t  s w i t c h e s  
f r o m  t h e  Ada r u n  t i m e  e n v i r o n m e n t  t o  t h e  
r u n  t i m e  e n v i r o n m e n t  o f  t h e  o t h e r  lan- 
guage .  T h e  l a t t e r  s o l u t i o n  w i l l  be exam- 
ined .  

T h e  a b o v e  m e n t i o n e d  non-Ada program- 
ming e n v i r o n m e n t s  c o n s i s t  of many d i f f e r -  
e n t  p r o g r a m m i n g  l a n g u a g e s  l i k e  FORTRAN. 
PASCAL a n d  HAL/S. While  e a c h  o f  t h e s e  
l a n g u a g e s  is u n i q u e ,  t h e y  a r e  a l l  m e m b e r s  
o f  t h e  ALGOL f a m i l y  o f  p r o g r a m m i n g  lan- 
g u a g e s  a n d  s h a r e  many i m p l e m e n t a t i o n  c h a r -  
acter is t ics .  T h e r e f o r e ,  a n  i n t e r f a c e  s u b -  
r o u t i n e  c a n  be a n a l y z e d  f o r  a n y  o n e  of  
t h e s e  l a n g u a g e  a n d  t h e  r e s u l t s  c a n  t h e n  be 
e x t e n d e d  t o  t h e  r e m a i n i n g  l a n g u a g e s .  HAL/S 
w a s  c h o s e n  f o r  t h i s  examinat ion .  

T h e  H A L / S  360 compiler w h i c h  r u n s  
u n d e r  t h e  IBM M V S  O p e r a t i n g  Sys tem a n d  t h e  
Ada compiler w h i c h  r u n s  u n d e r  t h e  IBM 
VM/SL O p e r a t i n g  S y s t e m  were s e l e c t e d  f o r  
t h i s  s t u d y .  T h e  p r i m a r y  criteria f o r  t h e  
s e l e c t i o n  o f  t h e  HAL/S a n d  Ada compilers 
was t h a t  t h e y  were  h o s t e d  o n  t h e  same 
m a c h i n e  a r c h i t e c t u r e .  B o t h  compilers were 
d e v e l o p e d  by I n t e r m e t r i c s .  

GEHERAL QVERVrrw p6. mE PROBLPl 
I n  t h i s  s e c t i o n ,  t h e  g e n e r a l  i s s u e s  

i n v o l v e d  i n  i n t e r f a c i n g  a n y  two d i f f e r e n t  
h i g h - l e v e l  l a n g u a g e s  w i l l  be e x p l o r e d .  
T h i s  e x p l a n a t i o n  w i l l  o u t l i n e  t h e  d i rez-  
t i o n  t a k e n  b y  t h e  f o l l o w i n g  s e c t i o n s .  Snd  
s h o u l d  h e l p  i n  p r o v i d i n g  a n  o v e r v i e w  of 
t h e  i n t r i c a c i e s  i n v o l v e d  i n  s u c h  a n  i n t o -  
gra t i o n .  

The Language Envirorrcnt 

Along w i t h  a n y  P r o g r a m m i n g  L a n g u a g e  
comes a se t  of a s s u m p t i o n s  u n d e r  which 
t h a t  l a n g u a g e  is r u n .  T h i s  set of assump-  
t i o n s  c a n  be called t h e  e n v i r o n m e n t  of 
t h a t  l a n g u a g e ,  a n d  c o n s i s t s  o f  b o t h  a l g o -  
r i t h m s  a n d  data  s t r u c t u r e s .  While t h e s e  
may c o v e r  a v a r i e t y  o f  s u b j e c t  mat te r .  
m o s t  Algol-like l a n g u a g e  e n v i r o n m e n t s  c a n  
be u n d e r s t o o d  t h r o u g h  a f e w  basic i d e a s .  

T h e  f i r s t  of t h e s e  basic  i d e a s  is 
known a s  a r u n - t i m e  s t ack .  I n  g e n e r a l ,  
t h e  r u n - t i m e  s t a c k  is u s e d  t o  k e e p  track 
of local data  a n d  register c o n t e n t s  across 
p r o c e d u r e  calls a s  t h e  p r o g r a m  is b e i n g  
e x e c u t e d ,  I n  t h i s  w a y ,  t h e  i n t e g r i t y  of a 
procedure c a n  be m a i n t a i n e d  w h i l e  control 
is passed  t o  a s u b p r o c e d u r e ,  a n d  ther? 
restored when t h e  s u b p r o c e d u r e  r e t u r n s .  

A n o t h e r  of t h e s e  basic i d e a s  c o n c e r n s  
t h e  i n t e r n a l  r e p r e s e n t a t i o n  o f  da t a .  For 
example, o n e  l a n g u a g e  e n v i r o n m e n t  might 
u s e  a s i g n e d  m a g n i t u d e  r e p r e s e n t a t i o n  f o r  
i n t e g e r s  w h i l e  a n o t h e r  m a y  u s e  t w o s  c o m -  
p l e m e n t  f o r m .  N a t u r a l l y  s u c h  d e t a i l s  are 
n o t  a n  i n t e r f a c i n g  c o n c e r n  when a c a l l r n g  
p r o c e d u r e  a n d  t h e  called s u b p r o c e d u r e  a re  
w r i t t e n  i n  t h e  same l a n g u a g e .  However ,  
care m u s t  be t a k e n  t o  e n s u r e  t h a t  t h e s e  
i n t e r n a l  r e p r e s e n t a t i o n s  a r e  i d e n t i c a l  
when two d i f f e r e n t  l a n g u a g e s  are involved .  

A f i n a l  basic c o n c e p t  i n v o l v e s  t h e  
m a n a g i n g  of r u n - t i m e  e r r o r s .  c o m m o n l y  
known a s  e x c e p t i o n  h a n d l i n g ,  Most o f t e n ,  a 
l a n g u a g e  e n v i r o n m e n t  w i l l  p r o v i d e  a large 
c o l l e c t i o n  o f  p r o c e d u r e s  c a l l e d  a r u n - t i m e  
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l ib rary  w h i c h  c o n t a i n s  t h e  mechan i sms  f o r  
d e a l i n g  w i t h  t h e s e  e r r o r s .  However ,  s i n c e  
two d i f f e r e n t  l a n g u a g e s  w i l l  u s e  two sepa- 
r a t e  r u n - t i m e  l i b r a r i e s ,  a n  e r r o r  occur- 
r i n g  i n  a s u b p r o c e d u r e  of o n e  language  
would p r o b a b l y  n o t  be u n d e r s t o o d  b y  t h e  
c a l l i n g  p r o c e d u r e  of  t h e  o t h e r  l a n g u a g e .  
T h i s  would  p r e v e n t  t h e  c a l l i n g  p r o c e d u r e  
f r o m  r e s p o n d i n g  t o  t h e  e r r o r  i n  a p r o p e r  
manner. 

The Basic Interface 

In  l i g h t  of t h e  p r e v i o u s  d i s c u s s i o n ,  
t h e  i n t e r f a c e  b e t w e e n  two  d i s t i n c t  lan- 
g u a g e s  b e c o m e s  a ma t t e r  of  swi t ch ing  envi -  
r o n m e n t s .  To  a c c o m p l i s h  t h i s  a t  run-time. 
a special l i nk ing  s u b r o u t i n e  would need  t o  
be i n v o k e d  f r o m  t h e  run - t ime  l ibrary of 
t h e  c a l l i n g  p r o c e d u r e .  T h i s  s u b r o u t i n e  
would p r o v i d e  t h e  mechanism f o r  s a v i n g  t h e  
p r e s e n t  e n v i r o n m e n t  o f  t h e  c a l l i n g  Pro- 
c e d u r e  a n d  i n i t l a  t i n s  t h e  new e n v i r o n m e n t .  
In  t u r n ,  u p o n  t e r m i n a t i o n  of t h e  called 
s u b p r o c e d u r e ,  t h i s  s u b r o u t i n e  would  r e g a i n  
c o n t r o l  a n d  r e i n s t a t e  t h e  o ld  environment.  

Ada p r o v i d e s  a n  i n s t r u m e n t  f o r  i n t e r -  
f a c i n g  w i t h  o t h e r  l a n g u a g e s  called t h e  
PRAGMA INTERFACE d i r e c t i v e .  T h e  s e c t i o n s  
t h a t  f o l l o w  t a k e  i n t o  c o n s i d e r a t i o n  t h e  
de ta i l s  n e c e s s a r y  f o r  imp lemen t ing  t h i s  
mechanism. 

P a r a m e t e r  Parsing 

Almost  e v e r y  s u b r o u t i n e  m a k e s  u s e  of 
parameter p a s s i n g ,  w h e t h e r  i t  accepts some 
v a l u e  or  v a l u e s  a s  inpu t ,  or produces  some 
o u t p u t ,  or b o t h .  T h i s  p r o c e s s  of e x -  
c h a n g i n g  i n f o r m a t i o n  be tween p r o c e d u r e s  is 
p a r t  of  a l a n g u a g e  e n v i r o n m e n t  a n d  t h u s  
w i l l  m o s t  l i k e l y  v a r y  f r o m  o n e  l a n g u a g e  t o  
a n o t h e r .  I n  regards t o  t h e  H A L / S  a n d  A d a  
c o m p i l e r s  c i ted ,  t h e  d i s c r e p a n c i e s  are 
drama tic. 

The Proocdure Cal l  

In  m o s t  c a s e s ,  a l l  parameters are 
p a s s e d  t h r o u g h  registers t o  t h e  called 
s u b r o u t i n e .  However ,  when t h e r e  are n o t  
e n o u g h  registers for  a l l  of t h e  p a r a m -  
eters.  a n o t h e r  method is p u r s u e d .  Th i s  
method u s u a l l y  i n v o l v e s  p l a c i n g  t h e  param- 
eter i n  t e m p o r a r y  s t o r a g e  a n d  p a s s i n g  t h e  
address  o f  t h i s  l o c a t i o n  i n s t e a d  t o  t h e  
called subprocedu  re. 

B o t h  H A L / S  a n d  Ada comply w i t h  t h e  
c o n v e n t i o n s  o u t l i n e d  a b o v e .  H o w e v e r .  t h e  
s p e c i f i c  registers u s e d  b y  t h e  t w o  lan- 
g u a g e s  t o  a c c o m p l i s h  t h e s e  s t a n d a r d s  are 
n o t  t h e  same. F o r  example  HAL/S a n d  Ada 
u s e  a d i f f e r e n t  regis ter  f o r  a d d r e s s i n g  
t h e  temporary storage area where t h e  ove r -  
f l o w  parameters  a r e  s t o r e d .  I n  add i t ion .  
Ada m a y  s t o r e  its parameters  i n  m o r e  t h a t  
o n e  place, d e p e n d i n g  on  w h e t h e r  or n o t  

t h e y  were d y n a m i c a l l y  a l l o c a t e d .  Any 
i n t e r f a c i n g  s u b r o u t i n e  would  h a v e  t o  map 
o n e  set of register c o n v e n t i o n s  t o  t h e  
o t h e r  a n d  a l s o  be aware o f  t h e  d i f f e r e n t  
l o c a t i o n s  w h e r e  t h e  o v e r f l o w  parameters  
are stored. 

The ?unction Cal l  I 

F u n c t i o n s ,  u n l i k e  p r o c e d u r e s ,  r e t u r n  
a v a l u e  t o  t h e  c a l l i n g  p r o c e d u r e .  T h i s  
v a l u e  is r e t u r n e d  v i a  t h e  u s e  of  a regis- 
ter .  A s  w a s  t r u e  w i t h  Parameter p a s s i n g .  
t h i s  register may c o n t a i n  either t h e  ac- 
t u a l  v a l u e  or a r e f e r e n c e  t o  t h e  l o c a t i o n  
w h e r e  t h e  v a l u e  is s a v e d .  Again ,  each 
l a n g u a g e  w i l l  u s e  d i f f e r e n t  c o n v e n t i o n s  
f o r  r e t u r n i n g  t h i s  v a l u e .  In  f a c t ,  t h e  
H A L / S  a n d  Ada c o m p i l e r s  c i t ed  u t i l i z e  
dif  f e r e n t  regis ters f o r  t h i s  pu rpose .  

D a t a  Represents tion 

A prob lem related t o  parameter pas- 
s i n g  arises f r o m  how e a c h  l anguage  c h o o s e s  
t o  r e p r e s e n t  its da ta  t y p e s .  T h e r e  are a 
v a r i e t y  o f  f a c t o r s  i n v o l v e d  i n  d a t a  repre- 
s e n t a t i o n  i n c l u d i n g  t h e  number  o f  b y t e s  
u s e d .  i n d e x i n g  s c h e m e s .  v a l u e  restric- 
t i o n s .  a n d  t h e  a l g o r i t h m  e m p l o y e d  f o r  
pack ing  t h e  r e p r e s e n t a t i o n s  t o  s a v e  space. 
S i n c e  e a c h  l a n g u a g e  w i l l  d i f f e r  i n  its 
m e t h o d s  of r e p r e s e n t a t i o n .  s o m e  scheme f o r  
c o n v e r t i n g  da t a  b e t w e e n  r e p r e s e n t a t i o n s  
would h a v e  t o  be implemen ted  b e f o r e  any  
i n t e r f a c i n g  would be poss ib l e .  

The  Run-Time Stack 

T h e  objec t ive  of t h e  r u n - t i m e  s t a c k  
is t o  k e e p  t r a c k  o f  t h e  f low of a program 
d u r i n g  its e x e c u t i o n ;  namely ,  t o  r e c o r d  
t h e  dynamic  n e s t i n g  o f  t h e  called proce-  
d u r e s .  To a c c o m p l i s h  t h i s ,  t h e  run-time 
s t a c k  c o n t a i n s  t h e  i n f o r m a t i o n  n e c e s s a r y  
t o  describe t h e  s t a t e  of  t h e  p r o g r a m  a t  
a n y  p o i n t  d u r i n g  its e x e c u t i o n .  T h e  pa r -  
t i c u l a r s  o f  t h e  run - t ime  s t a c k  a r e  a l s o  
implementation dependent .  

The R A L S  Run-Time Stack 

HAL/S h a s  a v e r y  s t r a i g h t f o r w a r d  
a p p r o a c h  t o  its run- t ime  s t a c k  d e s i g n .  I t s  
r u n - t i m e  s t a c k  is d i v i d e d  i n t o  " s t a c k  
f r a m e s , "  o n e  f o r  e a c h  p r o c e d u r e  c u r r e n t l y  
b e i n g  e x e c u t e d .  T h e s e  s t a c k  f r a m e s  are  
f u r t h e r  d i v i d e d  i n t o  two  s e c t i o n s ,  T h e  
f i r s t  o f  t h e s e  is of  a c o n s t a n t  s i z e  a n d  
c o n t a i n s  t h e  fo l lowing :  a register s a v e  
area,  a n  area f o r  t h e  c u r r e n t  c o d e  base. 
a n d  a workspace f o r  e x c e p t i o n  handling. 
T h e  second s e c t i o n  is o f  v a r i a b l e  size a n d  
is u s e d  t o  s t o r e  t h e  p r o c e d u r e ' s  local and  
t e m p o r a r y  v a r i a b l e s .  T h e  u s e s  of t h e s e  two 
s e c t i o n s  are explained belnw. 

When a s u b p r o c e d u r e  is called. a new 
stack f r ame  is created and  p laced  o n t o  t h e  
s t ack .  T h e  c o n t e n t s  of  a l l  t h e  c a l l i n g  



p r o c e d u r e ’ s  registers a r e  t h e n  s t o r e d  i n  
t h e  regis ter  s a v e  a rea  of t h i s  new stack 
frame.  I n  t u r n ,  when t h e  called s u b p r o c e -  
d u r e  r e t u r n s  c o n t r o l  t o  t h e  c a l l i n g  proce- 
d u r e  t h e s e  s t o r e d  register c o n t e n t s  are 
replaced i n t o  t h e i r  appropriate  registers. 
I n  t h i s  w a y ,  t h e  c a l l i n g  p r o c e d u r e ’ s  reg- 
i s t e r  c o n t e n t s  a r e  n o t  v i o l a t e d  by t h e  
called s u b p r o c e d u r e .  T h e  r e m a i n i n g  f i x e d  
p o r t i o n  o f  t h e  s t a c k  frame p r o v i d e s  t h e  
p r o c e d u r e  w i t h  r u n - t i m e  c o n t r o l  i n f o r m a -  
t i o n .  T h i s  i n f o r m a  t i o n  i n c l u d e s :  t h e  
l o c a t i o n  o f  t h e  f i r s t  e x e c u t a b l e  i n s t r u c -  
t i o n  f o r  t h e  c u r r e n t  p r o c e d u r e ,  a tempo- 
r a r y  workspace.  a n d  a l i n k  t o  t h e  e r r o r  
library. 

T h e  s e c o n d  s e c t i o n  o f  t h e  r u n - t i m e  
s t a c k  is l e f t  f o r  t h e  local a n d  temporary  
v a r i a b l e s  o f  t h e  s u b p r o c e d u r e  b e i n g  e x e -  
c u t e d .  T h e  s ize  of t h i s  s e c t i o n  v a r i e s  
f r o m  p r o c e d u r e  t o  p r o c e d u r e  d e p e n d i n g  on  
each  p r o c e d u r e ’ s  n u m b e r  o f  local  a n d  t e m -  
p o r a r y  var iables .  T h e  s i z e  o f  each  p r o c e -  
d u r e  s t a c k  f r a m e ,  h o w e v e r .  is d e t e r m i n e d  
a t  compile t i m e .  So w h i l e  s t a c k  f r a m e  
s i z e s  m a y  v a r y  from p r o c e d u r e  t o  proce- 
d u r e ,  e a c h  p r o c e d u r e ’ s  p a r t i c u l a r  s t a c k  
f r a m e  size is f i x e d  a t  e x e c u t i o n  t i m e .  

The R e a l  Time E x e c u t i v e  

Real t i m e  e x e c u t i v e s  a re  u s e d  t o  
s y n c h r o n i z e  a n d  allow c o m m u n i c a t i o n  be- 
t w e e n  t w o  i n d e p e n d e n t l y  e x e c u t i n g  pro- 
grams.  Any program w h i c h  d e p e n d s  upon 
s o m e  rea l  w o r l d  e v e n t  w i l l  d e p e n d  upon a 
rea l  t i m e  e x e c u t i v e  f o r  p roper  e x e c u t i o n .  
T h e  i n t e r n a l  m e c h a n i s m s  which  i m p l e m e n t  
r e a l  t i m e  e x e c u t i v e s  a r e  n o n t r i v i a l  a n d  
v a r y  wide ly  a m o n g  t h e  l a n g u a g e s  t h a t  p r o -  
v i d e  real  t i m e  f e a t u r e s .  A l t h o u g h  H A L / S  
a n d  Ada b o t h  h a v e  a p o w e r f u l  se t  o f  real  
t i m e  e x e c u t i v e  t o o l s ,  t h e s e  t o o l s  a re  
u n a l i k e  a n d  t h e y  r e q u i r e  d i f f e r e n t  ap- 
p r o a c h s  b y  t h e  a p p l i c a t i o n s  p r o g r a m m e r  for 
s o l v i n g  real  t i m e  p r o b l e m s ,  B e c a u s e  t h e i r  
s e t s  of r e a l  t i m e  e x e c u t i v e s  a re  n o t  t h e  
s a m e ,  t h e  H A L / S  a n d  A d a  l a n g u a g e  e n v i r o n -  
m e n t s  w i l l  i n c o r p o r a t e  d i f f e r e n t  implemen- 
t a t i o n  schemes.  To i n t e r f a c e  t h e s e  t w o  
sets o f  real t i m e  e x e c u t i v e s  would pose a n  
e x t r e m e l y  i n v o l v e d  c h a l l e n g e .  

The Run-Time L i b r a r y  
a 

E v e r y  l a n g u a g e  h a s  a se t  o f  p r i m i t i v e  
u t i l i t i e s  which  i t  u s e s  r e p e t i t i v e l y .  T h i s  
s e t  of u t i l i t i e s  is commonly called t h e  
r u n - t i m e  l ib rary .  T h e  r u n - t i m e  l i b ra ry  is 
a u t o m a t i c a l l y  l i n k e d  w i t h  t h e  program’s 
ob)ec t  m o d u l e  b e f o r e  e x e c u t i o n .  A s  a re- 
s u l t ,  e v e r y  p r o c e d u r e  or s u b p r o c e d u r e  o f  
t h e  program c a n  employ  a n y  r o u t i n e  pro- 
v i d e d  by t h e  run-t ime library. 

Of c o u r s e ,  each l a n g u a g e  w i l l  h a v e  a 
u n i q u e  r u n - t i m e  l ib rary .  One o f  t h e  more 
s i g n i f i c a n t  p rob lems  a r i s i n g  f r o m  t h i s  
c o n c e r n s  e r r o r  h a n d l i n g .  When a n  error  
o c c u r s  d u r i n g  t h e  e x e c u t i o n  o f  a program, 
t h e  problem is m o s t  o f t e n  m a n a g e d  b y  a 
r o u t i n e  i n  t h e  r u n - t i m e  l i b ra ry .  I f  t h i s  

were t o  h a p p e n  i n  a ca l led  s u b p r o c e d u r e  of 
a d i f f e r e n t  l a n g u a g e ,  t h e r e  w o u l d  be n o  
g u a r a n t e e  t h a t  t h e  process  u s e d  t o  h a n d l e  
t h e  e r ror  w o u l d  be u n d e r s t o o d  by t h e  cal- 
l i n g  p r o c e d u r e .  T h i s  problem is i m p o r t a n t  
b e c a u s e  some e r r o r s  m a y  r e q u i r e  t e r m i n a -  
t i o n  o f  t h e  program. T h u s ,  if  t h e  ca l led  
s u b p r o c e d u r e  w e r e  t o  force  t e r m i n a t i o n  
be fo re  r e t u r n i n g  c o n t r o l ,  t h e  c a l l i n g  p r o -  
c e d u r e  w o u l d  n o t  be able t o  e x i t  i n  a 
g r a c e f u l  m a n n e r ,  T h i s  c o u l d  r e s u l t  i n  a 
l o s s  of p e r t i n e n t  i n f o r m a t i o n ,  Addit ion-  
a l l y ,  similar e r r o r s  may be h a n d l e d  w i t h  
d i f f e r e n t  l e v e l s  of s e v e r i t y  by d i f f e r e n t  
l a n g u a g e  e n v i r o n m e n t s .  I n  p a r t i c u l a r ,  w h a t  
may c a u s e  a HAL/S program t o  t e r m i n a t e  m a y  
o n l y  ra ise  a n  e x c e p t i o n  i n  a n  Ada program. 
T h i s  p r e s e n t s  a f o r m i d a b l e  problem f o r  t h e  
i n t e r f a c i n g  su br ou t i n e .  

Overvien of a n  Interface S u b r o u t i n e  

T h e  i n t e r f a c e  s u b r o u t i n e  w o u l d  oper- 
a t e  i n  a s t r a i g h t f o r w a r d  m a n n e r .  T h e  rou- 
t i n e  w o u l d  f i r s t  load t h e  passed  parame- 
t e r s  i n t o  t h e  regis ters .  A p a r a m e t e r  
w o u l d  be passed e i t h e r  b y  its a c t u a l  v a l u e  
or b y  a p o i n t e r ,  a m a c h i n e  a d d r e s s .  Veri- 
f y i n g  t h a t  t h e  pa rame te r s  were pas sed  i n  
t h e  correct  f o r m a t  w o u l d  be t h e  r e s p i r , -  
s i b i l i t y  o f  t h e  Ada a p p l i c a t i o n s  program-  
mer. 

T h e  n e x t  s t e p  i n  t h e  i n t e r f a c e  sub- 
r o u t i n e  w o u l d  be t o  i n i t i a l i z e  a new HAL/S 
s tack  f r a m e  a n d  b r a n c h  t o  t h e  e n t r y  p o i n t  
o f  t h e  HAL/S e x e c u t a b l e  c o d e ,  D u r i n g  e x e -  
c u t i o n ,  calls  t o  t h e  HAL/S r u n - t i m e  li- 
b ra ry  may be m a d e .  To g u a r a n t e e  proper 
e x e c u t i o n .  t h e  Ada a p p l i c a t i o n s  p r o g r a m m e r  
w o u l d  h a v e  t o  i n c l u d e  a l l  n e e d e d  HAL/S 
r u n - t i m e  l i b r a r y  r o u t i n e s  i n  t h e  l o a d  
m o d u l e .  Upon f i n i s h i n g  t h e  normal  e x e c u -  
t i o n  o f  t h e  H A L / S  code,  a b r a n c h  would be 
made back t o  t h e  l i n k i n g  s u b r o u t i n e  a n d  
t h e  o l d  s t a c k  f r a m e  w o u l d  be p o p p e d  o f f  
t h e  s t a c k .  

F i n a l l y ,  t h e  i n t e r f a c e  s u b r o u t i n e  
w o u l d  r e m o v e  t h e  p a s s e d  parameters f r o m  
t h e  reg is te rs .  B e f o r e  a s s i g n i n g  t h e s e  
v a l u e s  t o  t h e i r  a p p r o p r i a t e  memory loca- 
t i o n s ,  c o n s t r a i n t  c h e c k i n g  s h o u l d  be per- 
formed. Any c o n s t r a i n t  v i o l a t i o n  s h o u l d  
raise a n  e x c e p t i o n  a n d  t h e  c o r r e s p o n d i n g  
e x c e p t i o n  h a n d l e r  s h o u l d  be i n v o k e d  a t  
t h a t  t i m e ,  

R e s t r i c t i o n s  on the Interface 

R e s t r i c t i o n s ,  u n f o r t u n a t e l y .  w o u l d  
h a v e  t o  be placed o n  t h e  ca l led  H A L / S  
p r o c e d u r e .  T h e  i n t e r f a c e  s u b r o u t i n e  would 
r e s o l v e  a s  many o f  t h e  d i f f e r e n c e s  b e t w e e n  
t h e  two r u n  t i m e  e n v i r o n m e n t s  a s  poss ib l e .  
T h o s e  d i f f e r e n c e s  w h i c h  c o u l d  n o t  be re- 
s o l v e d  w o u l d  r e s u l t  i n  r e s t r i c t i o n s  on  t h e  
i n t e r f a c e .  

One r e s t r i c t i o n  w o u l d  i n v o l v e  t h e  way 
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e r r o r s  a r e  h a n d l e d .  Run- t ime e r ro r s  i n  
t h e  H A L / S  e x e c u t a b l e  c o d e  w i l l  n o t  raise 
e x c e p t i o n s  when t h e y  occur. Some o f  t h e s e  
e x c e p t i o n s  c o u l d  be r a i s e d  b y  t h e  i n t e r -  
face s u b r o u t i n e  when c o n s t r a i n t  c h e c k i n g  
is d o n e .  O t h e r  r u n - t i m e  e r r o r s  i n  t h e  
HAL/S code w o u l d  go u n n o t i c e d  a n d  t h e  
s u b s e q u e n t  e x e c u t i o n  w o u l d  be i n d e t e r -  
m i n a n t .  N o t e  t h a t  t h e  called HAL/S proce- 
P u r e  w o u l d  h a v e  t o  h a v e  a n  appropr i a t e  ON 
ERROR IGNORE s t a t e m e n t  or else t h e  H A L / S  
ccde c o u i d  m a k e  a n  u n s u p p o r t e d  o p e r a t i n g  
s y s t e m  call. 

A n o t h e r  r e s t r i c t i o n  c o n c e r n s  t h e  vi-  
s i b i l i t y  of variables.  A t  t h e  p o i n t  o f  t h e  
HAL/S p r o c e d u r e  ca l l  i n  t h e  Ada p r o g r a m ,  
scme o f  t h e  d e c l a r e d  var iables  may h a v e  
v i s i b i l i t y .  While  a n  Ada p r o c e d u r e  called 
f r o m  t h e  same p o i n t  w o u l d  be able t o  ac- 
cess t h e s e  v i s ib l e  v a r i a b l e s ,  t h e  HAL/S 
p r o c e d u r e  c o u l d  n o t .  S u c c i n t l y ,  t h e  only 
w a y  t h e  Ada program a n d  t h e  H A W S  proce- 
d u r e  c o u l d  c o m m u n i c a t e  w o u l d  be v i a  t h e  
Passed parameters. 

Y e t  a n o t h e r  r e s t r i c t i o n  w o u l d  be t h a t  
t h e  H A L / S  p r o c e d u r e  c o u l d  n o t  i n v o k e  r e a l  
t i m e  e x e c u t i v e s .  A d d i t i o n a l  r e s t r i c t i o n s  
may be t o  l i m i t  t h e  u s e  o f  Ada real  t i m e  
e x e c u t i v e s  a n d  t o  c i r c u m s c r i b e  t h e  u s e  o f  
1/0 i n  t h e  H A L / S  p r o c e d u r e .  T h e  a b o v e  t w o  
D r o p o s e d  l i m i t a t i o n s  need  f u r t h e r  i n v e s t i -  
ga t i o n .  
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C O "  

I n t e r f a c i n g  two separately d e v e l o p e d  
compilers  is a c o m p l e x  task. T h e  complex- 
i t y  a r i s e s  b e c a u s e  v e r y  f e w  d e s i g n  s t a n d -  
a r d s  e x i s t  f o r  compiler d e v e l o p m e n t .  This ,  
c o u p l e d  w i t h  t h e  many complicated d e s i g n  
d e c i s i o n s  i n h e r e n t  i n  compiler c o n s t r u c -  
t i o n ,  v i r t u a l l y  g u a r a n t e e s  n o n c o m p a t i b i l -  
i t y .  T h e  i n t e r f a c e  s u b r o u t i n e  which would 
l i n k  t h e  t w o  d i f f e r e n t  r u n  t i m e  e n v i r o n -  
m e n t s  w o u l d  r e s o l v e  as many of t h e  dis- 
similari t ies a s  p o s s i b l e .  T h e  d i f f e r e n c e s  
t h a t  c o u l d  n o t  be r e s o l v e d  w o u l d  be re- 
s p o n s i b l e  f o r  t h e  r e s t r i c t i o n s  p l a c e d  on 
t h e  i n t e r f a c e .  Albe i t  r e s t r i c t i o n s  w o u l d  
e x i s t ,  t h e  r e s u l t i n g  i n t e r f a c e  may be w e l l  
wor thwhi le .  
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SOFTWARE ISSUES INVOLVED IN CODE TRANSLATION 
OF C TO ADA PROGRAMS 

Robert Hooi, Joseph Giarratano 
University of Houston Clear Lake 

ABSTRACT 

It is often thought that translation of one programming 
language to another is a simple solution that can be used to extend 
the software life span or in re-hosting software to another 
environment. 

the disadvantages of direct machine or human code translation 
versus that of re-design and re-write of the software. The 
translation of the expert system language called C Language 
Integrated Production System (CLIPS) which is written in C, to Ada, 
will be used as a case study of the problems that are encountered. 

This paper examines the possible problems, the advantages and 

1 FUNDAMENTAL CONCEPTS 

1.1 Introduction 

CLIPS is a rule-based expert system language developed by the 
Artificial Intelligence (AI) section of the Johnson Space Center. 
The programming language C was used in the original implementation 
of CLIPS, while Ada is used as the new target language. 

In re-hosting the original version of CLIPS from C to Ada, two 
approaches were attempted. The first approach was direct code 
translation, while the second was a complete re-write and re-design 
of the entire software. 

1.2 Direct Code Translation As A Possible Amroach 

The work involved in the development of large software systems 
often represents huge amounts of time and expense. Monetary 
investments and time involved in the development make it extremely 
desirable to continue using these software systems for as long as 
possible. A few reasons for re-hosting to a new hardware or 
software environment are: 

o software system -is still needed 

o difficulty in locating technical support 

o need to increase software versatility 

o greater execution speed 

o more economical hardware 

At first sight, code translation may be seen as a simple, 
inexpensive approach to a complex and difficult problem. 
Translation seems to offer an attractive patch in extending the 
versatility and life span of existing software systems without the 
need to "re-invent the wheel". 
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1.3 Advantaqes Of Direct Code Translation 

Direct code translation is often considered a very direct, 
simple and desirable method of re-hosting existing software to 
another environment. It offers a number of plausible advantages 
that can be highly questionable in retrospect. These advantages 
are : 

o elimination of some of the software life cycle phases 

o requires less time and effort compared to re-design and 
re-write 

o easily extended life span and software versatility 

o elimination of human errors compared to re-design and re- 
write. 

These advantages will now be discussed in more detail. 

1.3.1 Elimination Of Some Of The Software Life Cycle Phases 

The major phases of the software life cycle 111 include: 

1. requirement analysis 2. specifications/requirements 

3. design 4. coding 

5. verification and 6. maintenance and operation 
validation 

If carried out correctly, the most difficult work involved in 
the software life cycle is in the early phases. Maintenance and 
operation may be time consuming but lacks the complexity of the 
first phases (1 - 3 )  of the life cycle, unless major changes are 
desired after the software is released. In fact, studies have shown 
that maintenance may account for up to 90% of costs for the 
software life span [ 8 , 9 ] .  One of the major reasons for the 
development of Ada was to reduce maintenance costs. Direct code 
conversion offers a simple short cut to avoid the early phases 
(1 - 3) of the life cycle by: 

o requiring only source code of the software 

o minimizing verification and validation 

o allowing re-use of test data from the original 

o eliminating the need to do design conversion 

o eliminating the need to understand the functionality of the 
software, which is especially useful if the original 
programmers have left 

In cases where the documents of the early phases of the 
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software life cycle are missing or are poorly defined, direct code 
translation means eliminating "re-inventing the wheel". There is no 
need to derive a design if it is missing or to study and redefine 
poorly written documents. 

1.3.2 Requires Less Time and Effort Compared to Re-Desianins and 
Re-Writinq 

Direct code translation appears to be an attractive approach in 
that it is theoretically a simple, mechanical process if the host 
and target language are similar. There is little need to understand 
the actual requirements, design or functionality of the program. 
Much smaller machine and human resources are needed in performing 
the translation. All that is required is a basic understanding of 
the software tools and their interfaces, detailed knowledge of the 
host and target languages, and the different hardware 
specifications. 

quickly and without the possibility of human error. In theory, 
translation work is basically tedious but mechanical and simple in 
nature. All that is required is a consistent, correct and accurate 
equating of the original implementation with that of the target 
language and its' environment. Also, once a translator is 
available, it may be used on other software or the translator may 
be sold for a profit. 

Once a translator is built, code translation may proceed very 

1.3.3 Easily Extended Life Span And Software Versatility 

A re-write and re-design of a software system is expensive and 
time consuming. It requires a considerable amount of professional 
human expertise compared to direct code translation which could be 
performed by either human or machine translators. If direct code 
translation is done by human translators, it may be expensive and 
time consuming, but it is still cheaper than a re-design and re- 
write. The early phases (1-3) of the software life cycle can still 
be skipped. 

If the work is performed by a machine translator, it would 
still be relatively inexpensive since the only real work would be 
in the validation and verification of the accuracy of the results. 
A certain amount of editing and debugging may be required, but the 
work involved is relatively mechanical in nature while the 
resources needed are still less than an actual re-design and re- 
write. 

The elimination of most of the work involved in the software 
life cycle, plus the possible availability of a machine translator 
and the ease involved in the work, could mean a saving in time. The 
re-hosting and re-targeting work can be completed in a relatively 
short period of time compared to re-design and re-writing. 

1.4 Elimination of Human Error 

Translation of computer software can be carried out either by a 
human or machine translator. If the software is large, then the use 
of a machine translator may be the least expensive approach, 
whereas for small programs, a human translator may be the better 
choice. The translated version is tested for accuracy and 
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correctness by computer programmers. 

the computer languages and external interfaces involved in the 
translation process. The work in general is very mechanical in 
nature. The advantage of the mechanical translator compared to a 
human is a reduction in software errors in the translation. The 
disadvantages of machine translators is that the human may clean up 
the code during translation because the human can understand the 
semantics as well as just the syntax. 

The requirements for a human translator is an understanding of 

- 2 SOFTWARE ENGINEERING ISSUES INVOLVED IN DIRECT CODE TRANSLATION 

2.1 Introduction 

The process that direct code translation generally takes often 
results in a failure to address certain design and implementation 
issues in software engineering. These can develop into major 
problems later on in the software life cycle. They are: 

l o differences and incompatibilities in design methodologies 

o differences and incompatibilities in language implementation 

l o possible disregard of the richness of the target language 
~ 

~ 

o possible inaccuracies and discrepancies between languages 

o maintenance costs may well exceed savings of translation. 

Unless the above issues are addressed, the problems and 
I <isadvantages may outweigh all the advantages made in a direct code 

translation. 

2.2 Differences And Incompatibilities In Desiqn Methodologies 

The types of available software tools have a profound effect on 
aur thinking process and thus the design and development of the 
software. The types of design methodologies used are often guided 
as well as restricted by the software tools used in the 
implementation of the actual program. It should be noted, however, 
that methodologies are generally much easier to compromise than the 
implementation language tools. The same rules apply to modern 
software engineering principles and practice. 

The principles of modern software engineering as incorporated 
by languages such as Ada and Modula-2 are [2,3] are: 

o modularity o abstraction o information hiding 
o localization o uniformity o completeness 
o confirmability 

If the programming language used does not directly provide 
support towards the above software engineering principles, then it 
is difficult and often impractical to implement a design which 
adheres to these concepts. The implementation language and design 
methodologies used should be mutually cornpatible for best results. 
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So converting a BASIC program to FORTRAN IV would be reasonable 
since they share similar software principles. Likewise conversion 
from Modula-2 to Ada would be feasible since both languages support 
the above modern engineering principles. Difficulties arise in the 
translation of programs in a language like C to Ada since C does 
not adhere to the above principles of Ada. 

The use of an object-oriented design methodology [41, together 
with an object oriented language such as Ada, forms a very highly 
compatible choice towards the support and implementation of these 
software engineering principles [lo]. If a programming language does 
not readily support these concepts it will probably be absent in 
the implementation. In languages which do not have this support it 
may be too expensive and difficult to enforce these principles. In 
most cases, the designers and implementors would probably choose a 
design methodology that allows an easier implementation, rather 
than one in which the language would have difficulty adhering to. 

A major issue involved in directly translating a program to a 
target language is that the type of methodology used is often 
ignored. If the work is performed by computer programmers, then it 
may be possible to modify and adapt some of the code to that of 
Ada's object-oriented approach. It would be impossible for a simple 
syntax-directed machine translator to do this completely, since it 
involves a certain degree of independent thinking, analysis and 
understanding of the original software. Thus, a machine translator 
would have to understand the semantics as well as the syntax to do 
a thorough job. Such a translator would have to include artificial 
intelligence and expert system techniques and would be very 
difficult to build. A simpler alternative would be to have a human 
examine the code produced by the simple translator and polish it 
up. However, this could still be a major task. 

If the original implementation is not an object-oriented design 
methodology, then it will not normally be present in the translated 
version- For example, if the original does not support the concept 
of information hiding, then the translated version will not. If the 
original design methodology adheres to the concept of data flow 
decomposition or the Jackson Design methodology [SI, then the 
translated version certainly would not have any of Ada's object- 
oriented approach. 

A time factor should also be taken into account since the type 
of methodology used is dependent on when it was first conceived. 
Ada's object-oriented design methodology would certainly be absent 
if the software was developed prior to the 1980's. This technical 
gap may not be easily bridged in direct code translation unless the 
languages are similar, such as Modula-2 and Ada. 

The ability of the language to support these methodologies must 
also be considered. For example, Ada's packages supports the 
concept of information hiding, which may be simulated by CIS 
statement "INCLUDE". However, this does not mean that C provides 
the same capabilities or support of the concept of information 
hiding found in Ada. There is no close equivalent in C to Ada's 
private and limited private types or visibility controls, 

of re-usable software components. For example, there are no 
facilities in C to directly simulate Ada's generics. 

is missing. The problem is compounded when the methodology used is 

Translation becomes even more difficult concerning the concept 

A major difficulty in translation occurs when the documentation 
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unknown and is not similar to Ada's object oriented approach. These 
problems were found in the translation of CLIPS. 

A certain amount of re-design and re-write was required in 
certain program segmnents in order to conform to the language 
implementation requirements of the target language (ADA). An 
example is the difference between a C library program versus Ada's 
packages. Each C library program has the function - "main", which 
may make calls to other external library functions or functions 
within the same file. The visibility rules in C allow calls by the 
sub-program unit "main" to other functions located anywhere within 
the file dependent upon the programmer's convenience. Ada's 
visibility rules allow procedures and functions to be called by 
other program units only if declared above it. An example found in 
the CLIPS demonstrating C's visibility problems is shown below: 

command-loop 0; 
if (optIu-found == TRUE) 

{displayfunctionso;} 
1 J 

command-loop ( )  

displayfunctions ( )  

Ada's visibility rules would require: 

procedure Command-Loop is -- assumes converted to a procedure -- 
end Command-Loop; 

procedure Display-Functions is 

end Display-Functions; 

procedure Main is 

begin 

Command-Loop; 
if ( Opt U Found = True ) then - -  

Displayfunctions; 
c 

end Main; 

In view of the differences in design methodologies, it follows 
that if the translation does not include the methodologies, then 
the work is only partially complete. A translation without the 
design methodology is not a true representation of the target 
language's environment. It is therefore not possible to re-target 
software correctly by direct translation if the design 
methodologies are not considered in the work. 

2.3 Differences And Incompatibilities In Lansuage Implementations 
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Discrepancies and incompatibilities between different computer 
languages mean that what is considered as an acceptable programming 
practice in one may not be permitted in another. C has weak typing, 
which means that unless it well enforced, most data types can take 
on any values assigned to them. If the program is to be properly 
translated to Ada, then a number of conversions and data checks 
must be included to restrict the values assigned to variables. This 
is needed to accomodate the differences between C's weak typing 
versus Ada's strict typing requirements. 

The strength in Ada's requirement for strict typing enforces 
program reliability and consistency, while C allows for greater 
flexibility on the part of the programmer. The result in 
accomodating the typing requirements of Ada is that the translated 
version is seldom, if ever, smaller than the original. In the 
translation of CLIPS to Ada, it was found that for every line of C 
code, the average is generally two lines of Ada code. This does not 
mean that Ada is a less efficient language compared to C, merely, 
that Ada's strict typing enforces consistency and provides a more 
reliable program. This is particularly important to the Space 
Station since much of the software will support human lives and 
also directly affect the longevity of the space station. 

be corrected in the translated version is shown below: 
An example from CLIPS demonstrating CIS weak typing which must 

float tally = 0; 

char lm; 

int ten = 10; 

tally = tally*lO + (lm - ' 0 ' 1 ;  

The Ada version must have the following changes made: 

o convert integer 10 to float 

o convert data types: lm and l o '  to asc i i  values 

o convert the resulting arithmetic operations (lm - ' 0 ' 1  
to float 

o value initialized to tally changed to 0.0 

tally := tally*l0.0 + 
float(Character'Pos(1m) - Character'Pos('o')); 

The complexity of the problem increases if the typing problem 
occurs in the arguments of a subprogram call. Data conversion will 
have to be made prior to actual passing of the values to the 
subprogram call. 

In addition to the weak typing problem, certain language 
features in C which are not found in Ada have to be worked around. 
This again accounts for some extra code being produced. An example 
from CLIPS showing the auto increment is: 

F.3.7.7 



while ((atemp != null) && (++count != nnn)) 

versus Ada's version 

while ((atemp /= null) and (count /= nnn)) loop 

end loop; 

count := count + 1; 

Note that in this case, the lack of an auto increment or 
decrement in Ada does not necessarily mean it is a slower language 
at run time. Depending upon the compiler implementation, the 
functionality is the same and should execute at similar speeds. The 
major difference is that Ada aids readability, thus making it 
easier to understand and maintain. 

The extra code size may present several important problems: 

o program efficiency could be sacrificed 

o storage and execution speed becomes worse 

o maintenance problem increase due to increased code size 

Depending on where the increased code is generated source code, 
code size could result in slower program execution. In a situation 
where response time is crucial, such as real time execution, 
anything that may reduce execution speed should be examined very 
carefully to see if it could be acceptable. 

For software systems that are relatively small, an increase in 
size may not pose an important issue. However, as the magnitude and 
complexity of the software increases, there will be a proportional 
hardware demand. For example, consider a large embedded software 
program occupying 100,000 blocks of disk space. Increasing the code 
size by two times might exceed the remaining disk capacity. If this 
rule is applied to software systems that are even larger, then 
size requirements made by direct code translation may not be an 
acceptable solution. 

software maintenance would also grow. Issues in software 
maintenance will be further examined later in this paper. 

An increase in code size would also mean that the complexity of 

Some of the results found in the translation of CLIPS to Ada: 

Comparison of storage size for one of the files on the VAX: 

original version: CL1PS.C occupies 175 blocks 
translated version: CLIPS.ADA occupies 369 blocks 

Comparison of code size for functions: 

Excluding global data declarations, for function Rarray 
the original occupies approximately 15 statements 
Excluding global data declarations. 
translated version occupies 26 statements. 

Some factors contributing to an increase in code and storage 
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size are: 

o statement 
others 

terminators found in Ada - end if, end case and 

o instantiations of generic 1/0 packages 

o path names used in calls made to other packages 

o absence of auto increment and decrement statements 

o absence of statements with embedded functions and 
statements in boolean tests, such as auto increments 

Additional explanation of the reasons for the increase in code 
and storage size will be discussed in the next section. 

2.3.1 Possible Disresard Of The Richness Of The Tarset Lansuage 

In order to translate as accurately as possible, the simple 
syntax method is to equate statements found in the original with 
that of the target language. This presents a disadvantage in that 
much of the richness found in the target language is often ignored. 
If the translation is done manually, then certain segments of the 
original could be re-built to allow better usage of the target 
language. The same cannot be easily applied if the work is 
performed by machine translators unless semantic understanding is 
also included. 

Ada has a standard of 63 reserved words regardless of the 
implementation versus C I S  approximate 33 (including functions for 
the C preprocessor). These 33 words of C depend upon the compiler, 
version and host environment. Ada has, in addition, a number of 
features which are not present in the standard C implementation. 
They are: 

o predefined language attributes 

o predefined language pragmas 

o predefined language environment: 

o language predefined identifiers (package standard) 

o utility packages such as system and calendar 

o input and output packages 

o ability for overloading, generics, multi-tasking, nested 
generics and packages 

The use of generics would drastically reduce the amount of code 
found in the original, since functions with like actions but 
different data types and properties can be grouped together and 
placed in the same subprogram. As a generic unit, a template is 
built to accommodate the function of a sub-program without specific 
properties. The instantiation allows the properties to be set to 
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the generic package. 
While C allows for greater flexibility in usage, the richness 

of Ada permits better control, reliability and flexibility in the 
programming environment. For example, in order to recover from run- 
time errors, the C program will have to simulate what Ada naturally 
does in its ability to raise and handle exceptions. A direct syntax 
translation would result in having a simulation of run-time error 
recovery in Ada, which ignores what the language is equiped to 
perform naturally. 

An example taken from CLIPS is: 

if (notstate == 0) 
{ 
if (btemp == NULL) 

1 L 
htemp ->  locals = valuescopy(1ine->locals); 

If the power of Ada is exploited correctly, then the structure 
above could be combined, yet simplified as follows: 

if ( Notstate = 0 ) and then ( Btemp = null ) then 
Htemp.Locals := Valuescopy ( Line.Locals ) ;  

It should also be noted that since Ada data types are not case 
sensitive, then capitalization of the variables could be used to 
improve readability, and so provide better maintainability. 

completely in direct translation. The increase in code and storage 
size of the translated version is in no way an indication that the 
original host language is a better software tool. The same rule 
applies if the execution speed of the target language is reduced. 
It does not mean that Ada is a less efficient language, merely that 
it is not exploited fully. 

The full power of the target language is seldom exploited 

2.3.2 Pcssible Inaccuracies And Discrepancies Between Lanquaqes 

Translation of language syntax is generally a very mechanical 
process. To equate accurately, it necessary to consider the 
semantics of a program, which is a much more difficult task. 

The difficulty of the problem of correct semantic translation 
increases with the magnitude and complexity of the software. In 
addition, if the source in the original is poorly written and has a 
very confusing implementation, the chances of a misinterpretation 
increases. The main software issue is the program's reliability, 
accuracy and correctness. If the semantics are misconstrued in a 
subtle area that is difficult to detect, then locating and 
debugging the logic problem would be equally difficult. 

The differences and restrictions in language implementation are 
a major cause of discrepancies in translation. For example, C 
permits recursion for the arguments in a function call since the 
values passed into the function can be changed. In contrast, the 
parameters in Ada must be of a formal type, and changes to those 
values are not allowed. To work around this problem, the translator 
must decide whether to declare the values that are changed in the 
function as global data types or convert it into a procedure. If 
the values are changed into global data types, then the issues of 
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localization and modularity are raised. In addition, care must also 
be taken to ensure that those global values are correctly 
initialized, changed or kept at each call. If the values are not 
traced correctly, then the program execution may not function as 
originally designed or there will be a set of global values created 
at every subprogram unit that makes a call to that function. If a 
function is converted into a procedure, then the calling process 
made by the subprograms will have to be changed. 

arguments in a function as follows: 
An example from the CLIPS demonstrating the changes made to the 

Any(code, values) 
int code; 

if (values->whoset == code) 

else 
values = values->next; 

ret = -1; 

return(ret); 

Note that in C the arguments of a function are value 
parameters. It can, however, perform as a variable, formal or value 
parameter. Ada strongly enforces the type of parameter used, which 
is defined in the subprogram arguments. For example: 

push ( first, second, third ) 

versus Ada's parameters 

procedure Push 
( First : in Integer; 
Second : in out Float; 
Third : out Boolean ) ; 

This ensures program reliability and consistency, as values 
passed in are restricted to performing within the scope of their 
declared type. The simple solution in translating from C to Ada is 
to have all arguments declared as value parameters. In translating 
the C code to Ada, unless checks are made to determine if the 
arguments passed perform as a variable, formal or value parameter, 
this particular strength in Ada will be ignored. 

C is a case-sensitive language. A data type with the same name but 
written in upper-case is a different variable to that which is in 
lower-case. Caution must be taken to ensure that data types with 
the same names but different cases be given different names. In 
addition, variables in C may be reserved words in Ada. The 
translator must be able to identify these and assign meaningful 
substitutes. 

Another possible semantic problem in direct translation is that 

Examples taken from CLIPS to the problem above is shown below: 

struct element *out; 

while (out != NULL) 

extern struct internode *AGENDA; 

struct internode *agenda,*step,*past; 
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out = out->next; AGENDA = agenda; 

In example (1) a compilation error would result if the 
translation process does not substitute a different name to the 
data type - "out". The data name ''out" is an Ada reserved word and 
cannot be used as a variable name. 

Example ( 2 )  can have unpredictable results, depending on the 
translated version. Since Ada is not a case sensitive language, the 
translated statement could really be doing nothing, unless a change 
is made to either one of the two object names - "AGENDA'' or 
"agendat1. 

The ability of C to include function calls in test statements 
further complicates the translation process since a patch must be 
used to adapt to Ada's language requirements. Temporary variables 
must be used in order to obtain the values required for the boolean 
tests prior to the execution of the statements. Again, the issue is 
not that Ada is a less efficient language, but that it enforces 
program readability for better maintainability. An example from 
CLIPS shows the problem: 

if ((any(go,list) == -1) && ((second == -1) 1 ;  
I (any(second,list) == -1))) 

while an Ada patch solution would be: 

First - Value, Second-Value : Integer := 0; 

First-Value := Any ( Go, List ) ;  
Second-Value := Any ( Second, List 1; 

if ((First Value = -1) and 
(Second-= -1 ) or 

( (  Second-Value = -1))) then 

Bit manipulation [6,71 is another area that Ada does not 
directly support, but is present in C. The translator must be able 
to use an Ada implementation of the compiler that can perform a 
representation of the size of the bit used. There are also bit 

in order to translate correctly and accurately. Note that this 
problem did not arise in the translation of CLIPS as there was no 
bit manipulation used. 

direct translation. For example, problems arise when the original 
implementation performs systems calls using operating system 
dependent control languages such as IBM JCL,DEC BLISS and DCL. 
Problems occur also when the target language does not contain the 
necessary interface features. Direct code translation is thus 
dependent upon the implementation capabilities of the target 
language and its host environment. 

I manipulation operators in Ada similar in C. A patch must be found 

In certain cases it may not even be possible to implement a 

2 . 4  Maintenance Costs May Well Exceed Savinqs Made in Translation 
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The quality of the simple syntax translation is at best 
equivalent to the original. In most cases it is inferior to that 
of the original. The reason is that direct translation copies over 
the raw design and implementation of the original. If the source 
code in the original is unstructured, cryptic and consists of 
meaningless data names, then the translated version would bear the 
same resemblance. As the old saying goes, "Garbage in, Garbage 
out". Just because a program is translated to Ada does not 
automatically make it a good program. In addition, the increase in 
code to patch some of CIS weak typing serves only to complicate 
the task of maintaining the software. 

will be hard to translate or re-design correctly, Ideally, the 
person who wrote the original code should also have been trained 
in the target language. For example, the best person to write C 
code would be an Ada programmer who knows C. A programmer who has 
experiences with a more evolved language such as Ada, will write 
better C than one who knows just c.  

An example an equivalent translation from CLIPS is: 

if (((element->state == ' 0 ' 1  I !  (element->state == 'nt)) & &  
(element->type != FCALL) && (element->type != COAMP ) )  

In any language, if the original has poorly designed code, it 

{ 

if (element->name == list->name) 
{ 
go = 0; 
pkg = 0; 
if (element->type == NUMBER) 

if (element->ivalue != list->ivalue) 
stop = -1; 

The translated version in Ada is shown following: 

(element.type /= FCALL) and (element.type /= COAMP 1 )  then 
if (((elementostate = l o ' )  or (element.state='nI)) and 

while ((list /= null) and (stop = 1) and (go = 1)) loop 
if (elementoname = 1ist.name) then 

go := 0; 
pkg := 0; 
if (element.type = NUMBER) then 

if (element.ivalue /= 1ist.ivalue) then 
stop = -1; 

Note that the code and structure characteristics present in 
the original can also be found in the translated version. These 
are : 

o meaningless, cryptic object names 

o lack of capitalization standards for readerability 
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o poor structures and language usage 

Code from CLIPS that has data types with meaningless names like 

In the simple syntax translation of CLIPS to Ada, the general 

jill, jack, junk, grab and has no documentation, will produce a 
translated version with the same characteristics. 

results obtained were that the translated version was worse than 
the original. It is at best an Ada program written in C 
methodology, with Ada structures looking like C structures. A 
simple syntax translation of bad C code will produce bad Ada code. 
However, this does not mean that good C code will produce good Ada 
code, since much of the wealth of Ada is ignored. This defeats the 
purpose of the translation to Ada, which is supposed to improve 
maintainability and reliability. If the software lacks quality, it 
cannot be easily built on, understood, modified and most important - maintained. 
2.5 Summary 

In view of today's rising software costs, where the bulk 
(80% - 90%) of the expense lies in maintenance and operation, 
direct translation may not be the best alternative in extending 
the versatility and life span of a software system. It is at best 
a patch and at worst an expensive solution when maintenance is 
considered. 

3 DIRECT TRANSLATION VERSUS 
RE-WRITE AND RE-DESIGN OF COMPUTER SOFTWARE 

3.1 An Evaluation Of Direct Translation 

Simple syntax code translation may not be the ideal solution 
to a difficult and complex problem. Yet it is not a totally 
useless approach since there are certain values that are tied to 
the process. For example, if the program is relatively small, 
simple, and has a limited life span and usage, then translation 
may well be the best approach. In certain cases, where a design 
document is not present, a translation may be a possible method 
used to build a prototype for study purposes prior to the actual 
re-write of the entire software. 

generally limited to small and simple programs. The cost of human 
re-writing and re-design is best served in real-time code where 
performance is critical. In the translation of CLIPS, it was found 
that the time spent in the translation process was almost 
equivalent to that used in the original implementation and was 
thus self-defeating. 

Simple syntax translation should be avoided if the target 
environment has a very different design methodology. It can be 
strongly considered if the target is a different host machine or a 
new version of the same language and design methodology. 

Because of the expense involved, human translation is 

3.2 An Evaluation Of Re-Design and Re-Write 

The re-design and re-write approach should be strongly 
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considered if a well documented design along with the specification 
exists. The original types of methodology used may be incompatible 
with the target , but it may be converted and adapted to the 
requirements of the new design methodology. The reason is that if 
the design is clear and well documented, it can be easily 
understood, worked upon and modified to fit any methodology. Coding 
is a relatively simple and mechanical process if a good design 
exists. The most difficult work involved in the development of any 
software is still the early phases of the life cycle. If a design 
exists, it can be studied, the weaknesses can be avoided in the 
implementation, and the strengths enhanced further. 

The only part of software that can be transparent to all 
languages and host machines is the design and its' specifications. 
Once the design is converted to suit the requirements of the new 
methodology, it can be ported to the new target language and host 
machine. "Re-inventing the wheel" can be avoided only if a design 
is present. 

3.3 Summary 

Simple syntax translation or re-design and re-write are 
alternatives that can be used, but these have to be carefully 
considered before either one is adopted. Re-design and re-write 
should be strongly considered if a design is present. Translation 
may be considered if the goal is to port the software to a 
different host machine or up-date the software. 

Considering the fact that neither of the two approaches is 
exactly easy to adopt, a few possible alternatives can be taken 
into account. These are: 

o interface the original with Ada 

o implementing the new software in Ada and port the data 
produced by the old software to be processed in the new 
environment 

Interfacing Ada with other languages can be done using the Ada 
language's predefined pragma INTERFACE. Consideration should be 
given to the possible restrictions due to the different 
implementations of the compile. The reason being that this pragma 
is an implementation feature dependent upon the Ada environment. 
Certain implementations may allow for full usage, while others may 
be used partially and some none at all [ 6 1 .  

In cases where the host hardware is out-dated and an Ada 
compiler may not be available or an interface with the target 
language cannot be made, then it may be advisable to use the old 
software to generate the data. Any additional processing that is 
not dependent on the old software may have the new implementation 
developed in Ada. The data generated can be ported and executed in 
a new host environment. 

Conclusion 

Direct code translation or re-write 
the only available solutions. There are 
easy solutions to the problem. In terms 

and re-design may not be 
basically no cheap and 
of today's need to reduce 
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the cost of software maintenance, plus the greater importance of 
software reliability, it may be much better to rebuild the entire 
system correctly. The advantage is that the faults and weaknesses 
are known and can be avoided. A better, more reliable software 
system can be built in place of the original. 
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N89-16365 - 
REEOSTING AND RETARGETING AN Ada COMPILER 

A D E S I G N  STUDY 

Ray Robinson 

Harris Government Systems Sector, Software Operat ion 

The goa l  of t h i s  s tudy  was t o  develop a p l an  f o r  r e h o s t i n g  
and r e t a r g e t i n g  t h e  A i r  Force Armaments Labora tory /Flor ida  
S ta t e  Un ive r s i ty  Ada cross-compiler.  Th i s  compiler was 
v a l i d a t e d  i n  September, 1985 using ACVC 1.6, is w r i t t e n  i n  
Pascal, is hos ted  on a CDC Cyber 178,  and is t a r g e t e d  t o  
(i.e.8 produces code f o r )  an embedded Z i log  28002. The  
s tudy  was performed t o  determine t h e  f e a s i b i l i t y ,  cost8 
time, and t a s k s  required t o  r e t a r g e t  t h e  compiler t o  a DEC 
VAX 11/78x and r ehos t  it t o  an embedded U . S .  Navy AN/UYK-44 
computer . 
Major t a sks  i d e n t i f i e d  dur ing  t h i s  s tudy  were r e h o s t i n g  t h e  
compiler f ront-end, r e w r i t i n g  t h e  back-end (code g e n e r a t o r ) ,  
t r a n s l a t i n g  t h e  run-time environment from 28002 assembly 
language t o  AN/UYK-44 assembly language, and developing a 
l i b r a r y  manager. The Navy's MTAsS/M so f tware  development 
too l  set, which is c u r r e n t l y  used t o  develop FORTRAN, 
CMS-11, and assembly programs f o r  t h e  AN/UYK ser ies ,  will 
provide an assembler,  a l i n k e r - l o a d e r t  and a s imula to r .  
Reuse of t h e s e  three t o o l s  reduces t h e  p r o j e c t ' s  c o s t  by a t  
l eas t  a f a c t o r  of two and e l i m i n a t e s  t h e  r isk a s s o c i a t e d  
w i t h  developing them. 

The r e s o u r c e s  required t o  r ehos t  and r e t a r g e t  t h e  compiler 
were es t ima ted  a t  nine people for  f i f t e e n  months, f o r  a 
t o t a l  of 135 months of e f f o r t .  The product  of this e f f o r t  
w i l l  be an Ada cross-compiler which passes t h e  ACVC 1.6 
v a l i d a t i o n  tests. The unpred ic t ab le  c o s t  of v a l i d a t i n g  t h e  
compiler using the l a t e s t  v e r s i o n  of ACVC is n o t  i n c l u d e d  i n  
t h i s  estimate. 

The au tho r  was t h e  t e c h n i c a l  l e a d e r  of t h e  r e h o s t / r e t a r g e t  
s tudy  and is c u r r e n t l y  involved i n  t h e  development of t h e  
Tester Independent Software Support  System (TISSS) . H i s  
educa t ion  i n c l u d e s  a B.S. i n  Engineer ing from U.T. 
Chattanooga, a M.S. i n  Chemical Engineering and a M.S. i n  
Informat ion  and Computer Science from Georgia I n s t i t u t e  of 
Technology, and work i n  p rogres s  l e a d i n g  t o  a M.S. i n  Space 
Technology from F l o r i d a  I n s t i t u t e  of Technology. 

Ray Robinson 
505 John Rodes Blvd., Bldg. 1 
Melbourne, FL 32902 
(305)  242-5678 

F . 4 . 1 . 1  



Considerations for the Task Management Function of 
the NASA Space Station Flight Elements' Operating 
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The TAVERNS Emulator: An Ada simulation of the  Space Station 

Data Communications Network and software development environment 

by Dr. Norman R. Howes 

Introduction. 

The Space Station DMS (Data Management System) is the onboard component of 
the Space Station Information System (SSIS) that includes the computers, net- 
works and software that support the the various core and payload subsystems of 
the Space Station. Although some of the DMS software runs in the subsystem 
computers, the subsystem computers themselves are not considered to be part of 
the DMS. Also, the applications software that is specific to a subsystem 
(e.g., the Communications and Tracking Subsystem) is not considered part of the 
DMS. 

The various core subsystems (there are 22 of them) are to be implemented on 
Standard Data Processors (SDPs). This does not imply a standard computer has 
already been selected for this role but that all subsystem computers are to 
have the same instruction set architecture (ISA). It is also possible that a 
single SDP may host more than one subsystem. A diagram of the DMS together 
with the various subsystems is shown in Figure 1. 

Figure 1 shows each SDP connected to a Core or Payload network via a Network 
Interface Unit (NIU). The NIU is itself a computer, probably with the same ISA 
as the SDP. The NIU hosts the Network Operating System (NOS) component of 
the DMS. On the other hand, the SDP hosts the application software for one or 
more subsystems. The SDP has an operating system (OS) of its own that is some 
times referred to as the local operating system (LOS). 

A great deal of the DMS software resides in the SDPs. Those parts of the DMS 
software that provide the file management capability and the data base manage- 
ment capability are examples of DMS software that resides in the SDPs. Most of 
the DMS software that supports the actual transmission of data (both datagrams 
and virtual circuit transmissions) resides in the NIU and is referred to in gen- 
eral as the NOS. 

The Ada packages of services available to the core or payload application pro- 
grammer for (1) network communication, (2) file management, (3) database manage- 
ment, (4) data acquisition and distribution and (5) crew workstation services 
are documented in the DMS Test Bed Users’ Manual (NASA/JSC No. 22161). 
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Figure 1 

I The TAVERNS Concept. 

TAVERNS is a distributed approach for development and validation of appli- 
cation software for Space Station. The acronymn TAVERNS stands for Test 
And Validation Environment for Remote Networked Systems. The TAVERNS 
concept assumes that the different subsystems will be developed by different 
contractors who may be geographically separated. 

I 

In this approach, each software development contractor for the station will be 
provided with a miniature version of the Space Station DMS complete with three 
SDPs. One of the SDPs is for developing the subsystem software, one hosts the 
Displays and Controls software and the third hosts a simulation of the network 
core subsystems (e%., ECLSS, C&T, CN&C, etc.) and the network loads. A diagram 
of such a TAVERNS DMS Emulator is illustrated in Figure 2. 

I The SDPs and NIUs on this mini Space Station DMS will host the same Serv- 
ices as the real DMS, so to the applications programmer, it will appear that 
the entire Space Station DMS environment is present. In turn, these TAVERNS 
systems will be interfaced with the Space Station SSE (Software Support Envi- 
ronment) and there will also be a TAVERNS on the station. In this way, soft- 
ware can be developed and checked out by different contractors at different loc- 
ations. Com2Ieted and tested applications can then be transferred to the SSE 
for validation. 
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After an Initial Operational Capability (IOC) has been achieved for the Sta- 
tion, new validated software modules can be transmitted to the station where 
they will be revalidated on the onboard TAVERNS before being placed in service. 

T A V E R N S  

SIMULATED LOADS DEVELOPMENT DISPLAYS & CONTROL 
DYS SERVICES USER AlwcATKms DISPUY DRIVERS 
CORE SuBmsmM USER NEWACE 
NlWoRa LOADS 

Figure 2 

The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD 
VAX in Building 16A. The software services described in the DMS Test Bed 
Users’ Manual are being emulated on the VAX together with simulations of some 
of the core subsystems and a simulation of the DCN. The TAVERNS Emulator 
will be accessible remotely from any VAX that can communicate with the ASD 
VAX. 

The purpose of this simulation is to (1) test the functionality of the DMS Ser- 
vices as documented in the DMS Test Bed Users’ Manual, (2) provide a DMS 
software environment that is consistent with the one described in the Users’ 
Manual where subsystem test bed developers can attempt to interface their sub- 
systems with one another and (3) provide an environment where the TAVERNS 
concept itself can be evaluated and improved. 

Ada features of the TAVERNS Emulator 

Purposes (1) and (2) above are of special interest to the software engineer or 
programmer who will be designing or coding programs in Ada. In a way, the DMS 
Services as described in the Users’ Manual can be thought of as an extension of 
the Ada language for distributed applications. These services are actually pack- 
ages of utilities (subprograms or tasks) for performing certain operations such 
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as transmitting a message from one subsystem to another or opening a file at a 
remote node (subsystem) and reading records from it. 

These utilities are not only written in Ada but their intent is to operate on 
Ada data structures in a transparent manner. For instance most data communica- 
tions networks with which anyone has any experience only allow a user to trans- 
mit data in a single predefined format such as in ASCII or binary packets. These 
packets may be as small as a single character as with asynchronous communica- 
tions or a large binary block as with synchronous communications. On the other 
hand, when using an object oriented language like Ada what one would like to do 
is transmit an entire Ada object without first having to convert it into an 
ASCII or binary string. 

The DMS Test Bed Users' Manual describes Ada oriented utilities such as this 
for transmitting Ada objects, writing Ada objects to remote files, etc. In 
fact, the Users' Manual describes even higher level services that use various 
Ada objects. For instance, one of the most frequently needed communications cap- 
abilities for the Space Station core subsystems is a request to read a set of 
measurements. By a measurement is meant the reading of a certain sensor (such 
as temperature or pressure) or the determining of the state of something (such 
as a valve being open or closed). 

For most applications more than one measurement needs to be read at a time. The 
DMS provides a service for assigning logical "set names" to a set of measure- 
ments and a service for requesting the reading of a whole set of measurements 
by issuing a single command. When such a request is made, the DMS returns all 
of the readings in an Ada structure that depends on variant records that is op- 
timized for this application and is independent of the Ada types that corres- 
pond to the various measurements in the measurement set. Furthermore, not all 
the measurements in the set have to be located at the same node on the network. 

The Ada Simulation 

The Ada simulation is being designed to run in a single VAX with access from 
another VAX. The intent here is for the VAX in which the simulation runs  to 
represent all of the TAVERNS system except the SDP node and the other VAX 
represent the SDP. The user of the TAVERNS Emulator can develop Ada code 
on any VAX and then link to the TAVERNS Emulator VAX via the simulated 
DMS Services thereby simulating the way a contractor would develop Space Sta- 
tion applications software on the SDP node of a TAVERNS system. A diagram 
of the Ada simulation is shown in Figure 3. 

The Ada simulation is being developed in two phases. The first phase configu- 
ration is shown in Figure 3. The first phase consists of a demonstration in 
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which the user's only participation is that of responding to prompts on the dis- 
play. In this configuration, the display handler software consists of the Ada 
procedures that control the menus from which the user chooses options during 
the demonstration and the various screens the user sees as part of the demon- 
stration. 

USER VAX ASD VAX 

SIMULATED SDP 

Figure 3 

SIMULATED DCN & 
SUBSYSTEMS 

For the most part the DMS Services software maps the various DMS service 
commands onto the appropriate VAX VMS or DECNET service or combin- 
ation of services'to accomplish the specified DMS service. Where no exist- 
ing combination of VAX services will accomplish a DMS service the neces- 
sary Ada subprograms are being developed. 

The simulation software that runs in the ASD VAX is based on deterministic 
models of three subsystems for the first phase demonstration. These are the 
Communications and Tracking (C&T) Subsystem, the Environmental Control and 
Life Support (ECLS) Subsystem and the Mass Memory Management (MMM) 
Subsystem. The C&T and ECLS subsystems are modeled as a set of meas- 
urements. During the demonstration the values of the measurements change 
in accordance with a predetermined algorithm. The MMM subsystem is modeled 
as a set of data structures that relate which files belong to which subsystems 
and how files are related to each other through directories. 

The demonstration consists of prompting the users for which sets of measurements 
the user wants to see displayed; using the DMS Services to request a reading 
of these measurements across the network (across the physical network between 
VAXs), to reply to the request at the other end of the network and to build the 
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display in response to the user's request; and using the DMS Services to handle 
the supporting file management functions (the globally known measurement names 
are stored on a remote file). This last feature may seem a bit contrived as it 
was incorporated into the demonstration in order to insure that the function- 
ality of the distributed file handling services of the DMS were tested. In the 
real DMS the globally known names may well be stored at every node. 

The second phase of the simulation will consist of a set of transportable Ada 
packages for the user's host VAX that will enable the user to call the DMS Ser- 
vice utilities from user written application programs. The user's requests for 
remote services will be transmitted to the Ada simulation running in the ASD 
VAX for servicing. In the second phase simulation, the user's host VAX will 
appear as a node on the DCN and requests for local services will be considered 
to be remote since the simulation will only reside in the ASD VAX and not a re- 
mote user VAX. 

Datagram Service Simulation 

The Datagram Service is simulated on the VAX using six Ada tasks as shown in 
Figure 4. Three of these tasks run in each of the two VAXs involved in the 
sirnulation. Task SEM is a semaphore that controls access to the underlying 
DECNET network "file" (DECNET looks like a file to an Ada subprogram or task). 
Tasks INQUEUE and OUTQUEUE continually pass a token back and forth 
across DECNET until one of the OUTQUEUE tasks has a datagram to trans- 
mit. When this task gains possession of the token it transmits its datagramls) 
and then goes back to circulating the token. 

The simulated Datagram Services such as SEND or RETRIEVE are procedures 
that either place a datagram in an outgoing queue or fetch one from an incoming 
queue. The datagram service supported by the simulated DMS services is a very 
Ada oriented service in that the datagrams themselves are Ada objects that are 
prefaced by a header that contains the transmission parameters. 

Package DATAGRAM is a generic package that a user of the Datagram Services 
instantiates for each different Ada object to be transmitted. At the receiving 
end, the type of object being transmitted can be determined by first examining 
the header. 

The format of the SEND command for datagrams is: 

SEND(MESSAGE,ADDRESS); or SEND(MESSAGE,NAME); 

where MESSAGE is the datagram to be transmitted and ADDRESS is the logical 
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network address of its destination. When the alternate form of the command is 
used, the parameter NAME is the name of a list of addresses to which the data- 
gram is to be sent. The simulated Datagram Service supports a multicast cap- 
ability for selectively sending datagrams to a list of predefined addresses. 
The command for assigning a logical name to a list of addresses is the MULTI- 
CAST command and its format is: 

MULTICAST(N AME,AddressList); 

where NAME is the name to assign to the list of addresses and AddressList is 
a linked list of addresses. A broadcast capability to all nodes on a given LAN 
or to all nodes on the network is provided by supplying a "broadcast address" 
in the first form of the SEND command shown above. The ability to scan the in- 
coming datagram queue for messages with a specific combination of transmission 
parameters (e.g., priority, time-tag, etc.) is provided by the SCAN command 
which returns the message count (number of messages) with this combination of 
transmission parameters. 

OUEUE DECNET OUEUE 
'FILE' 

OUTOUEUE - H i / - .  -.-.-.- ..-_. 

! 
! 

IWOUEUE 

Figure 4 

OUEUE 

A message can be physically retrieved from the incoming queue using the RET- 
RIEVE command. The RETRIEVE utility provides selective retrieval for a speci 
fic combination of transmission parameters or it can be used without parameters 
to retrieve the highest priority message in the incoming queue. 
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Virtual Circuit Service Simulation 

When the information exchange between subsystems of the DMS must simulate a 
continuous dialogue over a physical circuit or when near real time transmissions 
are necessary it is usually more efficient to establish a "virtual circuit" 
between the subsystems. Some of the advantages of a DMS virtual circuit are: 

(I) the routing information (source and destination address) does not, 

(2) network bandwidth is reserved for the dialogue, insuring a certain 

(3) messages are always received and handled in the same sequence they 

have to be provided to the NOS for every transmission, 

maximum transmission delay and 

are transmitted. 

The simulation of the virtual circuit capability on the TAVERNS Emulator is 
very similar to that of the datagram service. The main difference is that ded- 
icated incoming and outgoing queues are established for each circuit in both the 
subsystem requesting the connection and the subsystem being connected. The other 
main difference is that virtual circuit traffic is "multiplexed" over the DEC- 
NET connection to simulate the reservation of bandwidth but the ability to as- 
sure  a maximum transmission delay of the order of magnitude anticipated for near 
real time communications on the station is not possible using DECNET when other 
users are on the system. 

To establish a connection (virtual circuit) an Ada subprogram or task calls the 
CONNECT procedure and to deallocate a circuit (and its associated queues) the 
DISCONNECT procedure is used. Once a connection is established the connected 
Ada subprograms can transmit and receive using the XMIT and RECV commands 
whose formats are: 

XMIT(MESSAGE,CIRCUIT); and RECV(MESSAGE,CIRCUIT); 

where MESSAGE is the Ada object to be transmitted and CIRCUIT is the circuit 
number assigned to the virtual circuit by the NOS at the time of connection. 
The Ada procedures that provide the virtual circuit capability are contained in 
the generic package VIRTUAL (this does not include the connection service). An 
Ada subprogram using the virtual circuit capability must instantiate a version 
of this package for each different Ada object that will be transmitted. 

Data Acquisition and Distribution Services Simulation 

The DMS Data Acquisition and Distribution (DAD) Service is layered over the 
datagram and virtual circuit services provided by the DMS. Which of these un- 
derlying services is used depends upon whether the usage of the DAD service is 
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periodic or not (as will be explained below). As previously mentioned, one of 
the key features of the DMS Services is the ability to request readings of sets 
of measurements. The simulation of this service in the TAVERNS Emulator is 
based on the following (simplified) Ada measurement object defined by: 

type MEASUREMENT(REP RepType; dl, d2, d3: positive) is 
record 

NAME: string(1 . . 15); 
case REP is 

when FLOATPNT 
when FIXEDPNT 
when TEXT => TXT : string(1 . . dl); 
when FLOATARRAY1 => FVAL1: FLTARRAYl(1 . . dl); 
when FLOATARRAY2 => FVAL2: FLTARRAY2(1 . . dl, 1 . . d2); 

=> FVAL : float; 
=> IVAL : integer; 

end case; 
end record; 

where the discriminant REP is a variable of the enumeration type RepType 
that includes an entry for each data structure that the Data Acquisition and 
Distribution (DAD) Services supports and where dl, d2 and d3 are parameters 
that indicate the size of arrays, strings, etc. to be associated with a meas- 
urement as i t s  "value". 

Measurements are known globally by their NAME which is recorded in the 
NAME field of the MEASUREMENT variant record object. Each measurement 
is owned by some subsystem and this ownership is known to the DMS Services. 
The value of a measurement is stored in the variant part of the MEASURE- 
MENT record object and can be of any type for which a corresponding entry in 
RepType exists. The enumeration list for RepType shown above is only rep- 
resentative as many of the types are yet to be determined. 

The package DATAREQUEST contains the procedures for preparing a request 
message for transmission. They are REQUEST, MAKESET, GETSET and 
READNEXT. The MAKESET procedure associates a name with a list of 
measurements. The format of the MAKESET command is then defined by 

MAKESET(SetName,Measuremen tlist) 

where SetName is the name to be assigned to the measurement set and Measure- 
mentList is a list of measurement names. The REQUEST command requests the 
reading of a set of measurements. The format of the REQUEST command is: 

REQUESTISetName) or REQUEST(SetName,PERIOD) 
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The second form of this command utilizes the PERIOD parameter which is a req- 
uest for a periodic reading of the measurement set every PERIOD seconds where 
PERIOD The following steps outline 
the requesting procedure. 

is a non negative floating point number. 

(1) call the MAKESET procedure to create the named measurement set, 
(2) call the REQUFST procedure to request the reading of the set, 
(3) call the GETSET procedure to obtain the set name of the next meas- 

urement set that has been successfully processed as a result of a 
previous REQUEST and 

(4) use the STATUS parameter of the GETSET command to determine if the 
reading of a set has been completed. 

The format of the GETSET command is: 

GETSET(SetName,STATUS,TIME) 

where SetName is the name of a previously requested measurement set whose 
processing has been completed at the time returned in the TIME parameter. 
Once a set name is obtained from the GETSET utility, the measurements in 
the set can be read using the READNEXT procedure whose command format is: 

READNEXT(SetName,MEAS) 

where MEAS is of type MEASUREMENT. To use the measurement’s name as 
an operand is straightforward since i ts  type is known to always be a 15 char- 
acter string. To perform an operation on a measurement’s value, however, 
involves examination of the discriminant of MEAS since MEAS is a variant 
record. The STOP command is used to stop an active periodic REQUEST. The 
format of this command is: 

STOP(SetName). 

The DATAREPLY package provides the necessary procedures to be used in res- 
ponding to a REQUEST. These utilities are: REPLY, SETNAME, NEXTNAME, 
and WRITENEXT. They are similar in nature to the utilities provided 
in the DATAREQUEST package. 
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A STUDY OF THE USE OF ABSTRACT TYPES FOR THE 
REPRESENTATION OF ENGINEERING UNITS IN 

INTEGRATION AND TEST APPLICATIONS 

Charles S. Johnson 

ABSTRACT 

Physical quantities using various units of measurement can 
be well represented in Ada by the use of abstract types. 
Computation involving these quantities (electric potential, 
mass, volume) can also aut-atically invoke the computation and 
checking of some of the “implicitly associable attributes of 
measurements. Quantities can be held internally in SI units, 
transparently to the user, with automatic conversion. Through 
dimensional analysis, the type of the derived quantity resulting 
from a computation is known, thereby allowing dynamic checks of 
the equations used. Through error analysis, the precision with 
which a quantity is measured can be correctly propagated into 
the result of a computation involving that quantity. The output 
of both measured and computed quantities can automatically be 
rounded to the correct significance, and labeled with the 
correct units. 

The impact of the possible implementation of these 
techniques in integration and test applications is discussed. 
The overhead of computing and transporting measurement 
attributes is weighed against the advantages gained by their 
use. The construction of a run-time interpreter using physical 
quantities in equations can be aided by the dynamic equation 
checks provided by dimensional analysis. The overhead of 
responding to measured and computed system variables in real- 
time systems can be decreased in the case where only the 
significant changes in data values are responded to. The 
effects of higher levels of abstraction on the generation and 
maintenance of software used in integration and test 
applications are also discussed. 

INTRODUCTION 

Data abstraction should, in the near future, become the 
most important tool used in the Ada development of replacements 
to current systems functioning in the area of Integration and 
Test (I t T) . This importance stems from the urgent need to 
maintain Test Procedure/ Test System Independence. This 
independence promotes both the reusability of Test Procedures 
and the possibility of modifying physical device information in 
the Test System, at run-time, without affecting procedures using 
logical access methods. This is necessary to decrease turn- 
around time due to modifications of the Test System/ Test 
Article hardware configurations. 
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BRIEF BACKGROUND 

Kennedy Space Center/ Engineering Development/ Digital 
Electronics Engineering Division is in the process of 
prototyping distributed systems supporting I & T applications, 
particularly the Space Station Operations Language (SSOL) 
System, which is the I & T subset of the User Interface Language 
(UIL) for the Space Station. The discussions in this paper were 
developed from the results of systems designed and developed in 
Ada to demonstrate the feasibility of supporting the abstract 
data types used in I & T, specifically, engineering units. The 
Ada environment used was that of VAX Ada under VAX/VMS. 

SYSTEM CONCEPT 

There is a direct correlation between the effectiveness of 
computer systems and the fidelity with which objects in those 
systems simulate the behavior of the external phenomena that 
they are intended to represent. [l] The definition of objects 
is then akin to a simulation effort: complete with objectives 
outlining progress towards simulation goals, and constraints 
which limit the scope of the effort. 

The goal of object definition for measurements and 
quantities used in Integration and Test applications is to 
create objects representing the physical quantities that are 
measured, tracking a magnitude for the quantity, and the type of 
quantity. The quantities (VOLTS, METERS/SECOND, PSI) should 
interact with other quantities in the same way that real 
physical phenomena do: 

V = IR 
PV = nRT 

In other words, arithmetical operations 
quantities correctly into new quantities. 
useful if the creation, input, and output 

should convert the 
Also it would be 

of those quantities 
could be performed using any unit or scaie of measure (length in 
METERS or MICRONS or CUBITS). It would be nice, as well, to know 
the precision with which a measurement was made, so that it can 
be determined if it represents a significant change from the 
last measurement. That precision, or measurement error, should 
propagate correctly during computation as well. 

The objectives which mark progress towards these goals can 
be established. The quantities and units should be easy to 
define and use. The quantities should convert correctly upon 
input in different units. The quantities should convert 
correctly upon computation, and if the resultant quantity is of 
the incorrect type, an exception should be created, because the 
equation is incorrect (or the result type is wrong). Precision 
should be computed correctly for the different arithmetic 
operations. Finally, if the wrong units are selected for input 
or output, an exception should be generated. 

The constraints which confine the scope of the effort can 
be defined. It is important that the support of the 
features of the system should not incur excessive system 
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processing or storage size overhead, because too much time and 
space costs money (space less than time these days). Tne 
resulting packages should not be too complex, relying instead on 
algorithms and structures that are just complex enough to create 
a useful result. Lastly, the development should be constrained 
against passing the point of diminishing returns. If a 
feature is difficult to implement and yields little in tangible 
results, it should be forgone. 

PHYSICAL QUANTITIES 

The tracking and converting of types of quantities is 
simply and efficiently d o h  in computer programs by dimensional 
analysis. [2] This involves some fairly simple physics, f o r  
example, the average acceleration of a body can be computed by 
the equation: 

Average Acceleration (m/s2) = Change 
Time of Change (s) 

which uses the units m = meters and s = seconds. The average 
force applied to the same body can be computed by: 

Average Force (N) = Mass of Body (Kg) 
* Average Acceleration (m/s2) 

which uses the units N = newtons and Kg = kilograms as well as 
meters and seconds. What can be seen from combining the units of 
these equations is the following units equivalency: 

newtons (N) kilograms (Kg) * meters (m) 
seconds squared (s2) 

The units like kilograms, meters and seconds are called base 
units, and the units like newtons are called derived units. 
These are all SI units, standardized by the IS0 Resolution RlOOO 
in 1969, and documented in the Le Systeme Internationale 
de'Unites (BIPM), but conversions exist for all other forms of 

c units as well. If a matrix of derived units versus their base 
units is made, the dimensionality of derived units in their base 
units can be shown (Table F.4.4-1). The newtons unit shows a one 
in the kilograms column, a one in the meters column and a -2 in 
the seconds column, because seconds squared is reciprocal. 

This dimensional analysis can be done for most units in any 
of the systems (English, CGS, etc.). Some units, however, are 
truly dimensionless. An example is the decibel and the Richter 
scale units, which are logarithms of ratios of units which 
cancel out. Some units just do not fit into dimensional 
analysis. AC circuit impedance equations do not cancel nicely, 
for instance, and AC units would probably have to be defined as 
dimensionless for those equations to correctly cancel. This 
simple dimensional analysis, as a whole, probably deals badly 
with sinusoidal phenomena. 

F.4.4.3 



TABLE F.4.4-1: PARTIAL TABLE OF UNIT DIMENSIONALITY 

For each unit, the dimensionality is given versus each base 
unit from which it is derived (meter, kilogram, second, 
ampere, kelvin, candela & mol), along with the scale and 
offset required (1.0, 0.0 for SI derived units). 

Base Units SI Conversion 

b Derived Units A a K cd mol 

-1 

-2 
1 

1 

newton : N 
hertz : Hz 
jou1e:J 
watt: W 
volt : v 
lumen: lm 
henry:H 
mo1arity:M 
astron. unit:AU 
footpound:ft-lb 
knot: kt 

fahrenheit:OF 
slug 

Scale, Offset 

1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1000.0, 0.0 
1.4963+11, 0.0 
1.356, 0.0 
0.5144, 0.0 
14.5939, 0.0 

1 

2 
2 
2 

2 
-3 
1 
2 
1 

I 

1 

1 
1 
1 

1 

1 

1 

- 

S 

- 
-2 
-1 
-2 
-3 
-3 

-2 

-2 
-1 

7 

I 1 I I I 0.5556, 255.37 
The advantages of this method of tracking dimensions are 

mostly in verification of physical equations used in I C T 
applications. Even very complex equations involving many factors 
can be analyzed. During addition and subtraction operations, the 
two input quantities and one output quantity must be identical 
dimensionally. During multiplication the dimensions are added, 
and in division they are subtracted. If the result type doesn't 
match the computed dimensionality, it is an error. Dimensions 
can be stored as integers of range -20..20, and the overhead 
involved in integer arithmetic and compares is probably little. 

The disadvantages are that it doesn't deal well with AC 
quantities and the like, which would require a complicated and 
unwieldy solution, yielding few tangible returns. Also, there 
are several correct dimensional solutions, any of which can be 
misapplied to a problem, with no detectable dimensional error 
(series/ parallel DC circuit equations). 

MEASURED PHYSICAL QUANTITIES 

The measurement of physical quantities always incurs a 
measurement error which can be assigned to the measured quantity 
at it's source, as it enters the system. This precision is key 
to any analysis of the significance of the measured quantity. If 
two sequential measurements of the same phenomena are obtained, 
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and their difference is less than the precision by which they 
are measured, then there is no significant difference, and the 
measurement is considered the same, experimentally. The scope of 
use for measurement precision would then be anywhere, in the 
system, after the conversion from raw data (counts) into 
engineering units. It should be noted here, that the measurement 
precision analysis discussed is different from the significant 
change analysis used in the front end processing of raw Counts 
in the Launch Processing System (LPS), which is a digital 
process for raw data concentration to remove line jitter. 

Error propagates (increases) as measurement values are 
combined by physical equations to yield resultant quantities. If 
the precision is an available attribute of the measured 
quantity, then the precision of all computed quantities can 
likewise be computed and carried along with the measurement. The 
computation of propagated error from the mathematical operations 
applied to quantities is shown in Table F.4.4-2. The relative- 
type error, on the right, looks like it will produce many 
occasions of division by zero, and is therefore not useful. The 
absolute-type of error, in the center, looks to produce a divide 
by zero only when the operation is a divide by zero (in error), 
and seems optimal. 

For quantities introduced into the system without a 
measurement, such as constants, the precision input would be 
derived from the number of significant digits (+/- one half of 
the last digit). 

TABLE F.4.4-2: FORMULAE FOR LIMITING ERROR 

For the following mathematical functions: f( x, y ) :  given 
that x and y are the exact values, a and b are 
measured approximations, and the deltas for a and 
their limiting errors. 

their 
b are 

Type Of Bounds For The 
Function Absolute Error 

Bounds For The 
Relative Error 

X + Y  

X-Y 

X * Y  

X/Y 

X” 

DERIVED TYPES SOLUTION 

The simple object-oriented approach to measured quantities 
would be to consider units to be classes of measurements, and to 
make them derived types of a bask record type which would have 

F.4.4.5 



the components mentioned: measured value and precision, and 
dimensional values. Then the combinations of these types would 
be performed by defining, for example, a multiply function that 
takes inputs of AMPS and OHMS and makes VOLTS. To define the 
legal combinations for just a few types would be laborious, 
there are just too many relationships. The simple approach is 
too complex. 

DISCRIMINANT TYPE SOLUTION 

A solution for the representation of physical quantities 
using discriminant records is pointed to in Hilfinger [ 3 ] .  It is 
not written exactly in Ada, though, for he presents a case for 
possible changes in the language. The record discriminants are 
the dimension values and the units scale factor, which would 
then prevent assignment of dissimilar units of the same 
dimensionality. For example, quantities in meters could not be 
assigned to quantities in feet, although the dimensionality is 
the same. Assignment of dissimilar constrained records is then 
accomplished by the overloading of the assignment operator ":=" I 

with a function that re-scales the internal value to the new 
scale factor, and creates the correct and matching constraint 
values. 

In current Ada, however, only discrete discriminants are 
legal, which disallows units scale factor as a discriminant 
(because it is a real type), and the ":=" operator cannot under 
any circumstances be overloaded. So it doesn't work in standard 
Ada. 

An attempt can be made to standardize that approach, but 
there are some problems without the fixes to Ada. If the scale 
value were kept as a record component, instead of a 
discriminant, it will be modified upon assignment (not a 
constraint anymore). This negates the ability to keep scale in 
the quantity, and the quantity scaled as feet, instead of 
meters . 

If the scale for an engineering unit alone is kept, then 
offset units, such as degrees fahrenheit (not aligned with 
absolute 0 OK) cannot be used. 

There is also unnecessary run-time overhead to re-scaling 
every time a computation is made, and possible rounding error in 
the scale, which may drift. The rounding error in the scale is 
probably the reason why Ada doesn't allow it or any other real 
type to be used as a record discriminant. 

CLOSELY-COUPLED DISCRIMINANT TYPES SOLUTION 

A further redefinition of an object can be accomplished 
with differentiation [l] , when the object definition has become 
too amorphous to simulate the target phenomena. Differentiation 
could be considered a fine structure definition technique for 
systems, whereas Object-Oriented Design or Functional 
Decomposition are gross structure definition techniques. 

A separation of the object definition for physical 
quantities is made, into two closely-coupled objects, QUANT and 
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UNIT. QUANT is the measured quantity, and UNIT is one possible 
engineering unit for a quantity. They have attributes in common, 
the dimensional values. They also have unshared attributes. 

UNIT is a private dimensionally-constrained discriminant 
record which contains the scale and offset for the engineering 
unit it represents, and can have for components other 
engineering unit attributes, such as the text label for output 
functions, or an input prompt text. 

QUANT is a private dimensionally-constrained discriminant 
record which contains the measured value stored in SI units (no 
re-scaling), and can have for components other measurement 
attributes, such as measurement precision or identification of 
source device or process. 

Arithmetic interactions of real types with type QUANT 
should be similar to those between scalars and vectors, only 
multiplication and division being allowed for scaling the QUANT 
values. Arithmetic interactions of real types with type UNIT 
should be similar to those between scalars and unit vectors, and 
therefore a QUANT is the outcome. Any arithmetic interaction cf 
a UNIT with a UNIT or a QUANT should produce a QUANT, converting 
the pure to the impure, so to speak. QUANT objects should 
arithmetically combine to produce QUANT objects, of course. 

With these definitions for the private types and arithmetic 
functions, it is simple to define several QUANT subtypes for the 
physical quantities (LENGTH, MASS, VELOCITY, POTENTIAL, WORK, 
INDUCTANCE, etc.) and to define several UNIT constants (deferred 
constants in the package) for the engineering units (FT, KG, 
KPH, VOLTS, FT-LB, HENRYS, etc.). It should be simple to create 
values for QUANT on the fly: 

PIPE-LENGTH : LENGTH := 5 * FT; 
GAS-CONSTANT : CONSTANT QUANT := 

8.31434 * JOULES / ( DEG-K * MOLS ) ;  

Functions for creating new UNIT constants on the fly will 
be necessary, since they cannot be produced arithmetically or 
defined externally to the package. 1/0 functions for QUANT 
Values will also require a UNIT constant as a parameter, for 
scaling to/from SI units. A function for extracting the value of 
a QUANT object as a real variable, will also require a UNIT 
parameter and a conversion. 

It would be possible, with a private dimensionally- 
constrained discriminant record variant, to create one type by 
lumping both QUANT and UNIT attributes together (one 
discriminant chooses which). This, however, is an 
unsatisfactory technique. With variant objects, the programmer 
always has to check what he has, before he can use it. The 
overhead of such checking is little, but the complication is now 
pushed into the application, instead of being in the package. 
This would seem to be a reversal of the purpose of abstraction. 

Measurement precision could be included as a component in 
the QUANT definition by the use of the absolute precision 
computations listed in Table F.4.4-2. The absolute quantity 
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precision would then be computed into any result, like the 
dimensionality and the measured value itself. 

The offset component of the UNIT type, could be used for 
more than just offset temperature scales (Celsius, fahrenheit) . 
Any differential scale could be represented by an engineering 
unit. In an example, cargo positional coordinates could be 
internally held in a centralized coordinate scheme. Differential 
voltages or pressure readings from sensors could also be related 
to some reference point. 

If the pre-defined UNIT constants were ordered into a 
table, the 1/0 functions could, given a quantity of unknown 
type, select an output label and scaling, or an input prompt. 
This might be particularly useful in the generation of reports 
or ad hoc queries, which would use computation involving 
quantities and creating new quantities on the fly. 

USE OF DISCRIMINANT TYPES IN GENERICS 

Along with the useful constraining features of discriminant 
records, comes the difficulty of matching them with generic 
formal parameters. To instantiate a generic software component 
with a formal parameter matching a discriminant private type, 
the type must be constrained (no unconstrained types in 
generics), and the type of constraint passed as a generic formal 
parameter first. Then the discriminant type is passed, as a 
discriminant generic formal parameter. It is fairly obvious that 
most generic software will be produced, not of this type, but 
using the type private, with accompanying functions of that type 
(as in the generic sort function in most textbooks). 

This problem can be handled, for any unconstrained 
discriminant type (QUANT, UNIT) with constrained subtypes 
(VOLTAGE, POWER), by declaring a non-discriminant record type 
which contains the unconstrained discriminant type. To 
instantiate a generic sort function, the enclosing record type 
would have to be passed to the generic, for the creation of an 
array type (for sorting), and an ordering function gg>88 for the 
enclosing type would also have to be defined and passed. 

This is somewhat of a kludge, in that the constraints do 
not apply within the scope of the generic component. 
Simply put, the discriminant types feature of Ada somewhat 
precludes the use of generic software in a straightforward 
manner 

ANALYSIS OF OVERHEAD FOR USAGE OF OBJECT DEFINITION 

The storage overhead can be estimated on the assumption of 
bytes for dimensional integers and 4-byte floating point 
representation for the measurement itself and for it's 
precision. This gives a 2X storage increase for carrying the 
dimensions and another 1X for the precision, up to 4X for 
everything. In communications, with all of the rest of the 
overhead involved in sending a measurement in a packet, this 
probably is not significant (other measurement information, 

F.4.4.8 



status, device status, send/receive addresses, transaction ID, 
packet ID, etc.) . 

The computational overhead for the dimensional analysis 
feature, which uses integers, is thought to be small compared to 
the floating point math involved in each multiply and divide 
for the measurement itself. This is thought even though there 
are seven dimensional integers being added for every measurement 
being multiplied (inversely for divides). Measurement adds and 
subtracts simply involve comparing for the dimensions (can't add 
VOLTS to WATTS). 

The computational overhead for the precision feature, if 
absolute error is propagated by a floating point representation, 
is about 1X for adds, subtracts and the power function, 2X for 
multiplies, and 4X for divides. This can be seen in the central 
column of Table F.4.4-2. 

ADVANTAGES OF DIMENSIONAL ANALYSIS FEATURE 

The low computational overhead incurred by this feature is 
more than compensated by the advantages it carries. These are in 
the area of verification, validation, and run-time 
interpretation support. 

During the development of I & T software, the use of 
constrained types to represent quantities should make possible 
the verification by dynamic analysis of that software. Even the 
most complex equations using dimensional variables, can be 
checked for the correct and allowable combination of subtypes, 
and for the return of the correct types of physical quantities. 
However, this will not catch those mistaken computations which 
return the correct quantity type, incorrectly computed. 

The dimensional analysis method, since it is a dynamic 
feature of programs using it, and not a static feature, will 
lend itself well to validation of programs as well. In large I t 
T applications (for example LPS), the binding of logical 
measurement designation to physical device parameters is delayed 
for as long as it is possible. This allows the modification 
of hardware parameters with the minimum impact on the software 
system. The optimum circumstance would involve run-time binding 

configuration could be changed at test-time without having to 
patch the system, as is done now. 

In that desired situation, there will be a large separation 
between the analysis of the logical nature of a program 
(equations) , which would occur during development and 
verification, and the physical validation of the program against 
the model, or components of the Test System. As the distance 
between the verification of the logical and the validation of 
the logical-to-physical widens, the potential for dynamic 
problems to escape unnoticed should increase. If methods for 
logical verification of programs at run-time are used, such as 
dimensional analysis of equations by the method proposed, the 
possibility of catching these dynamic problems increases. 

This problem of run-time dynamic analysis is exacerbated in 
the use of I & T command languages such as the User Interface 

- I of the logical level to the physical, so that the hardware 
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Language (UIL) and it's subset, the Space Station Operations 
Language (SSOL). The commands in these languages are interpreted 
at run-time, and are formulated by the user at the terminal, on- 
orbit. The use of complex equations in these languages to 
perform control functions is proposed. Syntax checking can be 
performed easily by the User Interface, but checks for 
correctness of the physical equations used will require some 
facility, such as dimensional analysis. If dimensional 
analysis were used, the internal checks in the interpreter 
program would be automatic against every statement using 
physical quantities, and exceptions would be generated on a 
statement by statement basis. 

ADVANTAGES OF COMPUTATION OF PRECISION FEATURE 

As the complexity of systems increases, leading up to the 
Space Station era, so does the number of levels of integration 
to be passed through by components before their operational use. 
In some shuttle payloads from ESA, there are already 7 levels of 
integration. If Ada is to become widespread in it's use as the I 
& T language supporting these levels of integration, then the 
Ada software products must be promotable between levels of 
integration. This does not imply a need to run the same 
procedure at a higher level, although that may be a requirement. 
What it does require is that lower level software components be 
incorporated by some method of abstraction into higher level 
components, up through launch operations and on-orbit 
operations. 

At each level of abstraction, component level state, 
control and measurement variables are presented as parameters to 
higher-level integration software, simplifying interfaces at the 
subsystem, and then the system level. This continues until at 
the on-orbit user interface level, simple designators for 
systems are connected to a large tree of state, control and 
measurement variables extending all the way back down the 
integration chain. 

In systems using abstracted measurement variables, knowing 
the significance of measurements at all levels is an important 
issue. Control logic algorithms which attempt to establish set 
points to an insignificant range are erroneous. Commands which 
effect an insignificant change in an effector are meaningless, 
and consume system resources in their performance. Measurements 
which involve insignificant changes in levels should not be 
communicated. 

communication overhead becomes more of an issue, as we 
progress from tightly-coupled shared-memory systems (like LPS), 
to loosely-coupled distributed systems (like GDMS prototypes). 
Distributed systems have failure modes related to communication 
loading (traffic jams), which can be abated somewhat by data 
concentration. 

concentration of data at the very lowest level of 
measurement has, and will probably continue to be performed on 
the raw data by bit-oriented algorithms. After the basic 
measurements have been converted to ei'gineering units, however, 
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there are data concentration possibilities, based on 
significance and propagated significance, that affect 
communications, and the stimulus and response of the system. 

GENERAL ADVANTAGES OF DATA ABSTRACTION APPLY 

The systems supporting the future I t T applications 
described in the last section, will be highly distributed. They 
will contain components from several levels of integration and 
will also need to be programmed at the highest level possible. 
The programs which drive the higher-level system functioning 
should not be bogged down with detailed data analysis. 
Facilities supporting the propagation of information concerning 
the validity of measurements and the validity of algorithms 
concerning those measurements should be basic to the system. 
Complex programs integrating the functioning of a distributed I 
t T system will be inherently more maintainable and reusable if 
kept at highest possible level of data, system and resource 
abstraction. Greater readability and verifiability of software 
components, and greater reliability and ease of validation of 
the system code is then possible. Finally, the design and 
development of the user interface level applications becomes 
easier, the higher the level of abstraction that is achieved for 
the system components and measurements. 
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U n i v e r s i t y  of  Hous ton ,  Clear  L a k e  

1. I n t r o d u c t i o n  

Data D i c t i o n a r y  is d e f i n e d  t o  be t h e  set of a l l  d a t a  
a t t r i b u t e s ,  which describe d a t a  o b j e c t s  i n  terms of  t h e i r  
i n t r i n s i c  a t t r i b u t e s ,  s u c h  a s  name,  t y p e ,  s i z e ,  format and  
d e f i n i t i o n .  I t  is r e c o g n i z e d  as  t h e  da tabase  f o r  t h e  
I n f o r m a t i o n  Resource  Management -- t o  f a c i l i t a t e  
u n d e r s t a n d i n g  and  communicat ion a b o u t  t h e  r e l a t i o n s h i p  
be tween system a p p l i c a t i o n s  and s y s t e m  d a t a  u s a g e  and t o  
a s s i s t  i n  a c h i e v i n g  d a t a  independence  by p e r m i t t i n g  s y s t e m  
a p p l i c a t i o n s  t o  access d a t a  w i t h o u t  knowledge o f  t h e  
l o c a t i o n  or s t o r a g e  cha rac t e r i s t i c s  o f  t h e  d a t a  i n  t h e  
s y s t e m  [ A l l e n 8 2 ] .  

T h e  f o l l o w i n g  a re  c o n s i d e r e d  t o  be its p r i m a r y  
o b j e c t i v e s  : - 

1. To a c h i e v e  c o n t r o l  o f  t h e  d a t a  r e s o u r c e ,  by  
p r o v i d i n g  a n  i n v e n t o r y  o f  t h a t  r e s o u r c e .  To 
e n f o r c e  s t a n d a r d s  and v a l i d a t i o n .  

2 .  To c o n t r o l  t h e  c o s t s  of  d e v e l o p i n g  and m a i n -  
t a i n i n g  a p p l i c a t i o n s .  

3 .  To p r o v i d e  f o r  i ndependence  o f  m e t a d a t a  
across comput ing  e n v i r o n m e n t s ,  improving  
r e s i l i e n c y  t o  t h e  e f f e c t s  o f  hardware and 
s o f t w a r e  c h a n g e s  [ A l l e n 8 2 ] .  

Much of t h e  i m p o r t a n c e  o f  a d a t a  d i c t i o n a r y  h a s  been  
r e c o g n i z e d ,  y e t ,  l i t t l e  o f  i t  h a s  been  u t i l i z e d  t o  s u p p o r t  
a n  a u t o m a t e d  database d e s i g n  . 

* 
Ada is a r e g i s t e r e d  t r ademark  o f  t h e  U.S Government- Ada 
J o i n t  Program O f f i c e .  
S u p p o r t e d  by NASA/JSC-UHCL Ada-Beta s i t e  Con t rac  t. 
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A research and development effort to use ADA at UHCL 
has produced a data dictionary with database design 
capabilities. This project supports data specification and 
analysis and offers a choice of the relational, network, and 
hierarchical model for logical database design. It provides 
a highly-integrated set of analysis and design 
transformation tools which range from templates for data 
element definition or modification, spreadsheet for defining 
functional dependencies, normalization, to logical design 
generator. 

2 .  The Data Dictionary with Database DeSiqn Capabilities 

2.1 The Data Dictionary 

The structure for the data dictionary is essentially 
relational in nature with the data element definition 
normalized to third normal form, while the related projects 
are kept in another relation. Further, the dictionary is 
furnished with the following facilities:- 

Define -- 
creates a new data element entry in the data 
dictionary. A template is used to enter the 
data element name, type, size, range, 
description, validation rules, picture, 
intensity, display attribute, should the 
element type be enumeration, the enumeration 
list could also be entered. 

Modify -- 
changes any data element specification 
created with "Define". If the data element 
name is changed, it creates a new data 
element under this new name -- essentially, 
it performs a "Copy" function under this 
circumstance. Again, a template is used for 
all field entries. 

Search -- 
retrieves data element specifications from 
the data dictionary and displays them on 
screen, This differs from "Report" in that 
only data element names are displayed. A 
global search could be done by entering an 
II * II . A list of names will be displayed on 
screen one page at a time, 

F.4.5.2 



P u r g e  -- 
removes a d a t a  e l e m e n t  from t h e  d a t a  
d i c t i o n a r y  i f  t h e  d a t a  e l e m e n t  is used  o n l y  
i n  t h e  current  p r o j e c t .  The e l e m e n t  is n o t  
purged i f  i t  is used by o t h e r  p r o j e c t s .  

T r a n s f e r  -- 
impor t s  d a t a  e l e m e n t  d e f i n i t i o n s  from an 
e x t e r n a l  t e x t  f i l e  o r  e x p o r t s  d a t a  e l e m e n t  
d e f i n i t i o n s  t o  an e x t e r n a l  t e x t  f i l e .  All of 
t h e  e l e m e n t s  cou ld  be imported o r  e x p o r t e d  
a l l  a t  once ,  o r  they  c o u l d  be imported o r  
e x p o r t e d  i n d i v i d u a l l y ,  o r  t hey  cou ld  be 
imported o r  expor t ed  a c c o r d i n g  t o  p r o j e c t s .  

Repor t  -- 
l ists  i n  d e t a i l  t h e  d a t a  e l e m e n t  d e f i n i t i o n  
f o r  a s i n g l e  d a t a  e l e m e n t  o r  a series of 
d a t a  e l e m e n t s .  The l i s t i n g  c o u l d  go t o  t h e  
t e r m i n a l  o r  t o  t h e  system p r i n t e r .  I f  
t e r m i n a l  is chosen a s  t h e  o u t p u t  d e v i c e ,  t h e  
da t a  e l e m e n t  d e f i n i t i o n  w i l l  be d i s p l a y e d  on 
screen one page a t  a t i m e .  

2.2 F u n c t i o n a l  Dependencies 

Given a p r o j e c t  w i t h  i ts own set  of d a t a  e l e m e n t s ,  one 
can proceed  t o  d e f i n e  f u n c t i o n a l  dependenc ie s  amongst d a t a  
e l e m e n t s .  The f o l l o w i n g  f a c i l i t i e s  a re  provided  :- 

Clear -- 
which c l e a r s  o u t  a l l  p r e v i o u s l y  d e f i n e d  
f u n c t i o n a  dependencies .  

S p r e a d s h e e t  -- 
d a t a  e l e m e n t  names are  d i s p l a y e d  i n  rows and 
columns i n  a s p r e a d s h e e t .  E n t e r i n g  appro-  
p r i a t e  symbols i n  co r re spond ing  p o s i t i o n s  o r  
"cells" w i l l  d e f i n e  f u n c t i o n a l  dependenc ie s  
amongst e l e m e n t s .  Using t h e  t ab  key o r  a r row 
keys ,  one can  move around t h e  cells .  Should 
t h e  a r row go beyond bounds t h e  s p r e a d s h e e t  
w i l l  move one column l e f t / r i g h t  o r  one row 
up/down dependent  on t h e  a r row key h i t  and 
i t s  p o s i t i o n .  One can a l s o  move t h e  
s p r e a d s h e e t  one page a t  a t i m e  by p r e s s i n g  
Func t ion  key 1, 2, 3 o r  4 t o  go up, down, 
l e f t  or r i g h t .  
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The following symbols are used to define functional 
dependencies :- 

==> means row element determines column element 

<== means column element determines row element 

K E Y  means element is a key, row element name should 
be the same name as column element 

N/A means not applicable, row element name should be 
the same as column element name where the 
element is not a key 

+=> means concatenation of row elements to identify 
column element 

<=+ means concatenation of column elements to 
identify row element 

To make the spreadsheet even more convenient to use, 
there are a few hidden keys :- 

R = Refresh -- 
the screen is refreshed, in addition 
todisplaying symbols used to define elements 
functional dependencies, the complementary 
symbols are also displayed. 

H = Help -- 
help can be invoked. 

B = Beginning'-- 
spreadsheet moves to the beginning of the 
list of data elements row-wise or column- 
wise. 

E = End -- 
spreadsheet moves to the end of data element 
list row-wise or column-wise. 

F = Find -- 
gets a particular data element which will be 
displayed in the middle of the list row-wise 
or column-wise . 
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T = Toggle -- 
Toggles  t h e  symbol, f o r  example,  p r e s s i n g  "TI' 
a t  a p l a c e  where i t  d i s p l a y s  "N/A"  w i l l  
change t h e  symbol t o  " K E Y " .  

To update  t h e  f u n c t i o n a l  dependenc ie s ,  one 
o n l y  needs t o  b l a n k  o u t  t h e  e n t r y ,  en te r  
a p p r o p r i a t e  symbols o r  j u s t  t o g g l e  t h e  
symbols. 

P = P r i n t  -- 
w i l l  p r i n t  o u t  t h e  f u n c t i o n a l  dependenc ie s  t o  
t h e  screen o r  t o  a f i l e .  

2.3 Database  Design Genera tor  

Af t e r  t h e  f u n c t i o n a l  dependenc ie s  a r e  d e f i n e d ,  t h e  
n o r m a l i z a t i o n  t o o l  can be u t i l i z e d  t o  a u t o m a t i c a l l y  
no rma l i ze  t h e  r e l a t i o n s  i n  t h i r d  normal form. Each t a b l e  
s t r u c t u r e  is d i s p l a y e d  and a name should  be g iven .  

A t  t h i s  p o i n t ,  a l l  t h e  t a b l e s  s o  created a re  i n  t h i r d  
normal form. 

For a p p l i c a t i o n  o r  implementat ion r e a s o n s ,  one may have 
t o  v i o l a t e  t h e  rules  f o r  n o r m a l i z a t i o n  o r  t o  keep c e r t a i n  
r e l a t i o n s  n o t  i n  t h i r d  normal form. A " m a i n t a i n - t a b l e "  
f a c i l i t y  is p rov ided  s o  t h a t  a d a t a b a s e  d e s i g n e r  can  d e f i n e  
h i s  own t a b l e  w i t h  i t s  own se t  of keys and a t t r i b u t e s .  
Moreover, he c a n  rename a t a b l e ,  d e l e t e  a t ab le ,  d e l e t e  
c e r t a i n  keys  o r  a t t r i b u t e s  i n  a t ab l e  o r  add ce r t a in  keys 
o r  a t t r i b u t e s  i n  a t ab le .  T h e  system w i l l  n o t  r e -no rma l i ze  
t h e s e  t a b l e s .  T h e r e  is one c o n s t r a i n t ,  however, t h e  keys 
and/or a t t r i b u t e s  had t o  be d e f i n e d  i n  d a t a  d i c t i o n a r y .  

Again a s p r e a d s h e e t  is employed t o  d e f i n e  t h e  
r e l a t i o n s h i p s  amongst r e l a t i o n s ,  be i t  one-to-one, one- to-  
many, many-to-many o r  n o - r e l a t i o n s .  

A refresh f u n c t i o n  w i l l  n o t  be a p p l i c a b l e  i n  t h i s  c a s e  
as t h e  r e l a t i o n s h i p  be tween t h e  row r e l a t i o n  and t h e  column 
r e l a t i o n  may n o t  be r e c i p r o c a l .  

A p a r e n t - c h i l d  g raph  cou ld  be g e n e r a t e d  a f t e r  t h e  
r e l a t i o n s h i p s  are  d e f i n e d .  The g raph  cou ld  be p r i n t e d  o u t  
t o  t h e  sys tem p r i n t e r  o r  t o  t h e  screen. 

The c o n c e p t u a l  schema is t h e n  g e n e r a t e d  and o u t p u t  goes  
t o  t h e  screen and a t e x t  f i l e  so t h a t  t h e  d e s i g n e r  can v i e w  
i t  and make m o d i f i c a t i o n s  i f  n e c e s s a r y .  S i n c e  t h e  d a t a  
e l e m e n t s  used a re  governed by t h e  da t a  d i c t i o n a r y ,  
c o n s i s t e n c y ,  i n t e g r i t y  and v a l i d i t y  can be ach ieved  e a s i l y .  
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FOllOWing is a SQL-type l o g i c a l  d e s i g n  i n t e r f a c e  so 
g e n e r a t e d  :- 

R e m  
R e m  SQL/DS Database D e s i g n  I d e n t i f i c a t i o n  S e c t i o n  
R e m  
R e m  Appl ica t ion  : DIS 
R e m  
R e m  Date created: 6/6/86 
R e m  

R e m  SQL/DS Database Tables  Create Commands S e c t i o n  
R e m  .................................................... 

Create T a b l e  DEPT 
(DEPT NAME Char  (32) n o t  n u l l ,  
BUDGFT Number ( 7 )  I 
DE PT-MGR C h a r  (32) I 
LOCATION C h a r  (32)) ; 

Create Unique  I n d e x  DEPT - I N D E X  on DEPT (DEPT - NAME) ; 

2 r e a t e  Table  EMPLOYEE 
(EMP NAME C h a r  (32) n o t  n u l l ,  
DEPT NAME C h a r  (32) I 
EMPLZNT DATE C h a r  ( 8 )  , 
POS I TI OK C h a r  (32) 1 

SALARY Number ( 7 ) )  ; 

3 r e a t e  Unique Index  EMPL - I N D E X  on EMPLOYEE (EMP - NAME I 

:rea te Tab le  PROJECT 
(PROJ NAME C h a r  (32) n o t  n u l l ,  
DEPT-NAME C h a r  (32) I 
CHAREE NO Number ( 4 )  8 

COMPL EATE C h a r  ( 8 )  
PROJ - EEADER C h a r  (32)) ; 

:reate Unique I n d e x  PROJ I N D E X  on PROJECT (PROJ NAME);  

:reate T a b l e  EMP - PROJ 
(EMP NAME C h a r  (32) n o t  n u l l ,  
PRO5 NAME C h a r  (32) n o t  n u l l ,  

EMPPROJ-DATE - C h a r  ( 8 ) )  ; 

- - 

CHAREED HRS Number ( 4 )  , 

:reate Unique  Index  EMPPROJ I N D E X  on EMP PROJ - - 
(EMP - NAME, PROJ - NAME) ; 

3. User Interface 
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Much of t h e  work  f o r  m a i n t a i n i n g  t h e  d a t a  d i c t i o n a r y  is  
done  t h r o u g h  a template, e . g . ,  d e f i n e  and mod i fy ,  user o n l y  
n e e d s  t o  f i l l  i n  t h e  b l a n k s ,  o t h e r  w o r k  l i k e  d e f i n i n g  
f u n c t i o n a l  d e p e n d e n c i e s  and r e l a t i o n s h i p s  amongs t  t a b l e s  is 
done  t h r o u g h  a spreadshee t .  The  w h o l e  s y s t e m  is menu d r i v e n  
w i t h  t h e  f i r s t  two rows of t h e  s c r e e n  ded ica t ed  t o  commands. 
To  go up  t o  t h e  command l i n e ,  o n e  o n l y  n e e d s  t o  press <F2>.  
One c a n  t h e n  u s e  Tab, o r  arrows t o  move a c r o s s  t h e  command 
l i n e .  A < r e t u r n >  selects t h  command. T h e  2 4 t h  row on t h e  
s c r e e n  is d e d i c a t e d  t o  f u n c t i o n  key  e x p l a n a t i o n  w h i l e  t h e  
23 rd  row is  used  f o r  message  l i n e  and  t h e  22nd row is used  
f o r  prompt l i n e .  The  r e s t  of  t h e  s c r e e n  w i l l  be u s e d  f o r  
d i s p l a y  or  f o r  t h e  template.  Help c o u l d  be invoked  
t h r o u g h o u t  t h e  s c r e e n s  . 
R e f e r e n c e s  

[Al l en821  F rank  W. A l l e n ,  Mary E. S. Loomis, Michael V. 
Mannino "The I n t e g r a t e d  D i c t i o n a r y / D i r e c  t o r y  
System" 8 ACM Comp. S u r v e y , l 4 : 2 ,  1982.  

[ G o l d s t e i n 8 5 1  R o b e r t  C. G o l d s t e i n  "Database :Technology and  
Management John  Wiley  and Sons ,  I n c . ,  1985.  

[ C u r t i c e 8 4 1  R.M. C u r t i c e  " I R M A :  An Automated L o g i c a l  Data  
Base Des ign  and  S t r u c t u r e d  A n a l y s i s  T o o l " ,  
I E E E  Database Eng. 7:4 ,  December 1984.  

f R e i n e r 8 6 1  David R e i n e r ,  G r e t c h e n  Brown, Mark F r i e d e l l ,  
e t  a l ,  "A Database D e s i g n e r ' s  Workbench" 
s u b m i t t e d  t o  D i j o n  ER C o n f e r e n c e ,  1986.  

Database Des ign  Tool f o r  t h e  R e l a t i o n a l  Model 
of Data", I E E E  Database Eng. 7 :4 ,  December 
1984.  

[ B J o r n e r s t e d t 8 4 1  A . B j o r n e r s t e d t  and C. H u l t e n  " R E D 1 :  A 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

N 8 9 - 1 6 3 6 9  

Ah!Help: A G e n e r a l i z e d  On-l ine Help F a c i l i t y  

Wong N a i  Yu* 
Charmiane Mantocth* 
A l e x  S o u l a h a k i l  

i. I n t r o d u c t i o n  

commerc ia l ly  a v a i l a b l e ,  s o f t w a r e  package s imply  work. I t  m u s t  have 
c e r t a i n  c h a r a c t e r i s t i c s  t h a t  make i t  m a r k e t a b l e .  Among t h e s e ,  u s e r  
r r i e n d l i n e s s  and p o r t a b i l i t y  are  o f  major impor t ance .  

I n  tlie u s e r  f r i e n d l i n e s s  c a t e g o r y ,  a great  forward  s t e p  was 
t aken  w i t h  t h e  i n t r o d u c t i o n  of o n - l i n e  h e l p  f a c i l i t i e s ,  r e l i e v i n g  t h e  
?;ser from c o n t i n u a l l y  t u r n i n g  t o  cumbersome manuals f o r  a s s i s t a n c e .  
The  o n - l i n e  h e l p  f a c i l i t y  w e  have d e s i g n e d  is n e i t h e r  un ique  nor 
i e v o l u t i o r i a r y .  I t  is a s i m p l e  program which was o r i g i n a l l y  d e s i g n e d  
to work i n  c o n j u n c t i o n  w i t h  a s c r e e n  g e n e r a t i o n  package .  I t  is, how- 
tbver ,  i ndependen t  o f  i t  and is, t h e r e f o r e ,  p o r t a b l e .  The o n l y  i ~ e w  
i s p e c t  i n t r o d u c e d  by t h i s  package is t h a t  i t  is  w r i t t e n  i n  Ada and 
l i t i l i z e s  c :e r ta in  Ada f a c i l i t i e s ,  s u c h  as  b i n a r y  f i l e s  and Direc t - Io ,  
which makc implemen ta t ion  n e a t e r ,  s i m p l e r  and more s t r a i g h t - f o r w a r d  
' han l a n g a a g e s  have h e r e t o f o r e  a l lowed .  I n  a d d i t i o n ,  t h e  pragrcim 
u s e s  o n l y  s t a n d a r d  Ada g e n e r i c s ,  t h u s  a d d i n g  t o  i t s  p o r t a b i l i t y .  

f i l e s  i n  t e x t u a l  f o r m a t .  The  program t h e n  b u i l d s  a b i n a r y  f i l e ,  
c r e a t i n g  and s t o r i n g  a n  index  f o r  t h e  named f i l e .  T h i s  i ndex ,  cllong 
w i t h  s e c o n d a r y  i n d i c e s  c r e a t e d  f o r  f u r t h e r  h e l p  on s p e c i f i c  c h o i c e s  
m d e  a v a i l a b l e  t o  t h e  u s e r ,  is  la te r  used t o  access t h e  h e l p  f i : \? 
d s s o c i a t e d  w i t h  t h e  program c u r r e n t l y  b e i n g  used by t h e  u s e r .  Lpon 
c x i t i n g  t h e  h e l p  mode, t h e  u s e r  is  r e t u r n e d  t o  t h e  p o i n t  front where 
'-he on- l i i i e  h e l p  was r e q u e s t e d .  

I n  modern-day programming i t  is n o t  s u f f i c i e n t  t h a t  a l a r g e ,  

The c o n c e p t  behind  t h i s  package is  t o  a l l o w  t h e  b u i l d i n g  of h e l p  

,.1. Design  C o n s i d e r a t i o n s  
The b a s i c  and  o v e r a l l  purpose  of t h i s  program was t o  produf.t .  ;1 

c o n v e n i e n t ,  e a s y  t o  u s e ,  g e n e r a l  purpose  o n - l i n e  h e l p  f a c i l j t y .  
Convenience and ease of  use f rom t h e  e n d - u s e r ' s  point of view, i JW-- 
e v e r ,  u s u a l l y  means time consuming, d i f f i c u l t  programming f u t  t1.v 
L o w  l e v e l  d e s i g n e r .  I t  also g e n e r a l l y  means t h a t  t h e r e  is CI loit; 
a f  g e n e r a l i t y  a n d / o r  p o r t a b i l i t y .  

d e c i d e d  t h a t  a n  implemen to r /des igne r  s h o u l d  be ab le  t o  p r o v i d e  a n  
o n - l i n e  h e l p  menu and a s s o c i a t e d  v e r b a l  d e s c r i p t i o n s  i n  t e x t u a l  
format ,  v i a  a t e x t  f i l e .  The program s h o u l d  t a k e  ove r  from t h e r e  
and create t h e  a c t u a l  manual which t h e  u s e r  sees. The t e x t  f i l e  
method does ,  however, p r e s e n t  c e r t a i n  r e s t r i c t i o n s .  I t  is  h i g h l y  
f o r m a t t e d ,  meaning t h e  d e s i g n e r  of a n  o n - l i n e  h e l p  manual m u s t  be 
f a m i l i a r  w i t h  t h e  r u l e s  imposed by t h e  program. We f e l t  t h i s  t o  
be o n l y  a minor inconven ience  i n  compar ison  t o  t h e  advant-ages t o  
be g a i n e d  by t h e  program. 

u s e  o f  a f u n c t i o n  key, be a b l e  t o  ca l l  a n  o n - l i n e  h e l p  f a c i l i t y  
p e r t i n e n t  t o  whatever  mode/program he o r  s h e  happened t o  be i n .  

I n  o r d e r  t o  combine t h e s e  seemingly  i n c o n g r u e n t  f e a t u r e s  w e  

The main d e s i g n  c o n s i d e r a t i o n s  were t h a t  t h e  u s e r  shou ld ,  by 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PAYROLL / PERSONELL SYSTEM 

SOCIAL SECURITY NUMBER: 
LAST NAME: 
F I R S T  NAME: 
MIDDLE I N I T I A L :  
STREET ADDRESS: 
CITY AND STATE: 
Z I P  CODE: 

I 
I 
I 
I 
I 
i 
I 
I 
I 
I 

I I 

USER PRESSES F1 FOR HELP 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 
I GENERAL COMMANDS => FUNCTION KEY CALLS I 
I GENERAL PANEL DESCRIPTION I 
I PANEL ATTRIBUTE DESCRIPTIONS I 

I USE ^U TO MOVE UP, ^ D  TO MOVE DOWN, I 
I RETURN TO SELECT OPTION I 
--.---------------------------------------- 

I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER USES A D  TWICE A N D  SELECTS PANEL ATTRIBUTE 
GESCRIPTIONS BY HITTING RETURN 

--------------------__________________^_---------- 

I DATA DICTIONARY INDEX I 
I I 
I SSN LAST NAME F I R S T  NAME I 
I ADDRESS CITY AND STATE ZIP CODE I 
I I 

I I ......................................... 
I I USE ^ U  TO MOVE UP, ^D TO MOVE DOUN, i I 
I I ^L TO MOVE LEFT, *R TO MOVE RIGHT, I I 
I I RETURN TO SELECT OPTION I I 

I I ----------------------------------------- 

USER USES "D, ^ R  TWICE A N D  SELECTS ' Z I P  CODE' 

Figure 1. T y p i c a l  session from user's po in t  of v i e w  
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1 ZIP CODE I 
I I 
I ENTER ONLY THE 5 DIGIT ZIP CODE; 9 I 
I DIGIT ZIP CODES ARE NOT YET SUPPORTED I 
I EXAMPLE: 77001 I 
I I 
I I 
I I USE RETURN TO ACCESS MAIN MENU I I 
I I I I 
I I 
I I 

RETURN GETS USER BACK TO MAIN MENU FROM 
WHERE FURTHER HELP M A Y  BE OBTAINED OR 
THE USER M A Y  EXIT BACK TO THE PROGRAM 

Figure 1, continued. 

8 
J 
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Thus, 
was i 
user ' 

S 
S 

the program had to be smart enough to know where the call 
sued from, call the appropriate menu/manual, respond to the 
inputs and then return the user to the point from which the 

help call was made. Ue also decided that, in order to improve the 
user friendliness aspect of the program, the user should have little 
or no typing to do - i.e., the program should be able to respond to 
special purpose function key inputs. 

Of course, the use of the help manual itself must be self- 
descriptive in order to relieve the user from having to turn to 
a manual on the on-line help manual. 

point of view, might look like. 
Figure 1 shows what a typical session, from the end-users 

3. Implementation Particulars 

3 . 1  The Text File 

help facility has certain restrictions and rules. Figure 2 
illustrates what the text file should "look" like. 

the help file is identified within the program. This name is 
not seen by the user, o n l y  by the program. This name should 
always be the first line of the text file. 

introduction - i.e., a name with which or by which the user can 
identify the help package accessed. This name also appears on 
a line by itself. Following the introduction name is the textual 
description of the introduction itself. 

which will be made available to the user, along with the expla- 
nation which will be provided if the user selects that option, 
appears. Each name (including the introduction name) appears on 
a separate line and each description or explanation is terminated 
with a # terminator, also on a line of its own. 

the text file are: 

The text file created by the implementor of a particular 

The name of the help file corresponds to the name by which 

Following the name of the help file comes the "name" of the 

Following the introduction, the name of each menu selection 

The current limits imposed on the names and descriptions in 

- the names are limited to 15 character in length, - the textual descriptions for each menu option and for the 
introduction are limited to 24 lines of 80 characters each, 
and 

- 65 such descriptions (including the introduction description) 
can exist. 
These limits are, of course, program constants that can be 

changed, as necessary, to meet the requirements at hand. 

3.2 The help file package 
Once the text file has been created, the creator can incor- 

porate his or her help facility into the general help package by 
calling a program called PROTOTYPE. The basic task of PROTOTYPE 
is to create a binary file containing the information of the text 
file. 

When PROTOTYPE is called, the contents of a binary file called 
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Payroll/personel 
Payroll system 
This panel allows input of new or update of existing 
personell records regarding payroll 
# 
SSN 
The employee's social security number, in the following 
format: 111 22 3333 
# 
Last name 
Employee's last name, up to 20 characters in length. 
Upper and/or lowercase letters may be used. 
# 
First name 
Employee's first name, up to 20 character's in length. 
Upper and/or lower case letters may be used. 
Example: Employee's name is Marie Elizabeth Ogden; 

enter Marie as first name, even if employee goes 
by a different name. 

# 

Figure 2. Partial contents of a typical text file 
containing information to produce an on-line 
help manual 
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1 N D E X . B I N  are loaded i n t o  memory. T h i s  b ina ry  f i l e  is s t r i c t l y  a 
set of  names and a s s o c i a t e d  i n d i c e s  ( o r  r e a d / w r i t e  head p o s i t i o n s ) .  
F igure  3 i l l u s t r a t e s  t h e  c o n t e n t s  of  1NDEX.BIN.  

PROTOTYPE f i r s t  r e a d s  t h e  name o f  t h e  he lp  package from t h e  
t e x t  f i l e .  This  name is s t o r e d  i n  t he  nex t  a v a i l a b l e  p o s i t i o n  i n  
a n  a r r a y  o f  r eco rds  which c o n t a i n s  h e l p  panel  names and p o i n t e r s  
to t h e i r  arrays o f  menu s e l e c t i o n  op t ions ,  described below. The 
f i r s t  p o s i t i o n  i n  t h e  a r r ay  c o n t a i n s  a count  of t h e  t o t a l  number 
o f  h e l p  f i l e s  a v a i l a b l e ;  t h i s  number m u s t  be updated each t i m e  a 
new h e l p  f a c i l i t y  is added t o  t h e  s y s t e m .  The i n d i c e s  o r  p o i n t e r s  
associated w i t h  each name are a c t u a l l y  read/write head p o s i t i o n s  
i n t o  1 N D E X . B I N  i t s e l f  where  t h e  set o f  menu s e l e c t i o n s  are l i s t e d  
i n  a n  a r ray  associated w i t h  t h a t  p a r t i c u l a r  h e l p  package. 

After t h e  h e l p  package name, i n  t h e  t e x t  f i l e ,  t h e  in t roduc -  
t i o n  and menu s e l e c t i o n  names, a long  w i t h  t h e i r  d e s c r i p t i o n s ,  are 
found. PROTOTYPE r e a d s  t h e  name o f  t h e  i n t r o d u c t i o n  or menu selec- 
t i o n  o p t i o n  and s t o r e s  t h e  name i n  t h e  nex t  a v a i l a b l e  p o s i t i o n  i n  
an  a r r a y  of  menu s e l e c t i o n  names f o r  t h a t  p a r t i c u l a r  h e l p  f a c i l i t y .  
Once aga in ,  t h e  f irst  element o f  each o f  these a r r a y s  c o n t a i n s  a 
count  o f  t h e  number of menu s e l e c t i o n  o p t i o n s  ( i n c l u d i n g  t h e  i n t r o -  
d u c t i o n )  a v a i l a b l e  through t h e  package. (The a c t u a l  p o s i t i o n  of  
t h e  i n t r o d u c t i o n  name is always t h e  second array p o s i t i o n  s i n c e  
i t  is a lways  t h e  f irst  d e s c r i p t i o n  t o  follow t h e  h e l p  package name 
i n  t h e  t e x t  f i l e . )  PROTOTYPE then  reads t h e  t e x t u a l  d e s c r i p t i o n  
a s s o c i a t e d  wi th  t h e  l a s t  name read  and when t h e  t e rmina to r  ( # )  i s  
encountered,  i t  performs a DIRECT-IO write of  t h e  d e s c r i p t i o n  i n t o  
a f i l e  called DIRECT.BIN. The r e a d / w r i t e  head p o s i t i o n  o f  t h e  
write is s t o r e d  i n  1 N D E X . B I N  a long  w i t h  t h e  menu s e l e c t i o n / i n t r o -  
d u c t i o n  name w i t h  which i t  is a s s o c i a t e d .  

have occurred,  PROTOTYPE performs a DIRECT-IO write o f  t h e  up- 
dated v e r s i o n  of  1NDEX.BIN.  Any v i o l a t i o n  of syntax  r u l e s  en- 
countered  i n  t h e  t e x t  f i l e  du r ing  t h e  above p rocess  causes a n  
a b o r t ,  w i t h  no updat ing  of  t h e  1 N D E X . B I N  b ina ry  f i l e .  

The second d i r e c t i o  or b ina ry  f i l e  is t h e  DIRECT.BIN men- 
t i oned  above. I t  s imply c o n t a i n s  t h e  t e x t u a l  d e s c r i p t i o n s ,  i n  
b ina ry  form, which t h e  h e l p  packclge w i l l  u s e .  

F igu re  4 i l l u s t r a t e s  t h e  r e l a t i o n s h i p  between 1 N D E X . B I N  
and DIRECT.BIN. 

When EOF is encountered i n  t h e  t e x t  f i l e ,  and no v i o l a t i o n s  

4 .  Discuss ion  

g e n e r a l  menu where one of t h r e e  g e n e r a l  o p t i o n s  can  be s e l e c t e d .  
These are: 

1- a set o f  g e n e r a l i z e d  commands/keys which p e r t a i n  t o  a l l  

When t h e  u s e r  r e q u e s t  on-l ine h e l p  he o r  she f irst  g e t s  a 

h e l p  packages - e.g., how t o  save  h i s / h e r  work, how t o  e x i t  
t o  t h e  system wi thout  s av ing  t h e  work, etc. 

a g e n e r a l  d e s c r i p t i o n  o f  t h e  h e l p  package i t s e l f  and of t h e  
program/package w i t h  which i t  is a s s o c i a t e d .  

3- A l i s t i n g  of t h e  menu s e l e c t i o n  o p t i o n s  a v a i l a b l e  t o  t h e  u s e r .  

2- The i n t r o d u c t o r y  s e c t i o n  t o  t h e  h e l p  f a c i l i t y  which c o n t a i n s  
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I# of  h e l p  I index of I index of I I index of I 
I f a c i l i t i e s  I o p t i o n  l i s t  I o p t i o n  l i s t  I I o p t i o n  l i s t  I 
I I I I ... I I 
I I h e l p  pkg I h e l p  pkg I I h e l p  pkg I 
I I name I name I I name I 
I I I I 1 1 

up t o  501 s u c h  r e c o r d s  

I # of  I index i n t o  I index i n t o  I I index i n t o  I 
I o p t i o n s  I DIRECT.BIN I DIRECT.BIN I I DIRECT.BIN I 
I I I I ... I I 

- 1  I name of  I name of  I I name of I 
I I o p t i o n  I o p t i o n  I I o p t i o n  I 
I I I I I I 

up t o  64  r e c o r d s / a r r a y  
up t o  501  such a r r a y s  (1 pe r  h e l p  

f a c i  1 i t y  1 

Figure  3. The basic s t r u c t u r e  of t h e  d i r e c t - i o  
f i l e  1NDEX.BIN 
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\- I 
I I I I 

I I I I 

I 
I 
I 
I I 
I I I 

I I '  ; l e  13 I I I ... I I 3  I 

' A  1 8  I ' c  I I I I 

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 
I 
I 
I 
I 
I 
I 
I 

ARRAY OF HELP FACILITY NAHES/INDICES 
i I 
I I 

I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I I I 
I 

I I I I 

I 

I . .. ' I d 503 I504 I I I 

I 'H6C I i Q & E  I I I I 
I 

ARRAYS OF OPTION INDICES INTO DIRECT.BIN I 
I 

DIRECT. BIN 

I 
I 

I I 
I I I 

I I I 
I 
I 

31 

I 1 
I I I I 
1 -  

I I I I 
I I 
I UP TO 65 SUCH 'RECORDS' PER HELP FACILITY I 
I I 

Figure 4. Rela t ionsh ip  between INDEX. BIN and 
DIRECT.BIN 
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Each s c r e e n  produced by a u s e r  s e l e c t i o n  c o n t a i n s  a gene ra l  
s e t  o f  d i r e c t i o n s  f o r  c u r s o r  movement, r e t u r n i n g  t o  prev ious  sc reens ,  
e x i t i n g ,  etc. 

When t h e  use r  selects o p t i o n  1 above, PROTOTYPE is by-passed 
and t h e  ON-LINE-HELP package ca l l s  a panel  g e n e r a t i o n  package t o  
produce t h e  "genera l  he lp t t  sc reen ,  s i n c e  t h e  c o n t e n t s  o f  t h i s  s c r e e n  
are t h e  same r e g a r d l e s s  of  where i t  was called from. 

Options 2 and 3, on t h e  o t h e r  hand, u s e  t h e  informat ion  creaLed 
by  PROTOTYPE d i scussed  above. When e i the r  of these is  selected,  
1 N D E X . B I N  is opened and t h e  name of  t h e  h e l p  package a s s o c i a t e d  w l t h  
t h e  program t h e  u s e r  is i n  is searched f o r .  When l o c a t e d ,  t h e  
p o i n t e r s  i n t o  DIRECT.BIN are made a v a i l a b l e  through t h e  a r ray  o f  
p o i n t e r s  a s s o c i a t e d  w i t h  t h a t  name. I f  o p t i o n  2 was selected, t h e  
i n t r o d u c t i o n  s e c t i o n  p o i n t e r  (which ,  as mentioned ear l ier ,  is  
always t h e  second record  of t h e  p a r t i c u l a r  a r r a y )  is used a s  t h e  
read/write head p o s i t i o n  i n t o  DIRECT.BIN where t h e  t e x t u a l  des-- 
c r i p t i o n  can  be found. 

a v a i l a b l e  is produced on t h e  s c r e e n .  T h i s  l i s t i n g  is a v a i l a b l e  d i -  
r e c t l y  from 1 N D E X . B I N  s i n c e  t h e  names o f  t h e  menu o p t i o n s  ( a long  w i t h  
t h e i r  i n d i c e s  i n t o  DIRECT.BIN1  are s t o r e d  t h e r e i n .  S ince  t h e  menu 
s e l e c t i o n  i t e m s  are l i s t e d  i n  t h e  o rde r  i n  which they  appear  i n  t h e  
1 N D E X . B I N  array f o r  t h a t  package, keeping t rack  of t h e  c u r s o r  move- 
ment, through s imple a d d i t i o n  and s u b t r a c t i o n ,  a l s o  keeps t r a c k  of 
t h e  index i n t o  t h e  a r r a y  DIRECT.BIN f o r  t h e  element po in t ed  t o  by 
t h e  c u r s o r .  Thus, when t h e  u s e r  does select a menu op t ion ,  t h e  
index i n t o  DIRECT.BIN is d i r e c t l y  a v a i l a b l e  and t h e  r eques t ed  in -  
format ion  c a n  be d i sp layed .  

F i g u r e s  5 and 6 i l l u s t r a t e  ac tua l  s c r e e n s  which t h e  
u s e r  might encounter ;  these are s e l f - d e s c r i p t i v e .  

When t h e  u s e r  e x i t s  t h e  h e l p  mode, he o r  s h e  is  r e t u r n e d  t o  
t h e  p o i n t  from which t h e  h e l p  cal l  was made. T h i s  is  made p o s s i b l e  
by sav ing  t h e  u s e r ' s  l a s t  used  ' s c reen '  i n  a b u f f e r  whose c o n t e n t s  
are re -d isp layed  when t h e  he lp  f a c i l i t y  is e x i t e d .  

I f  o p t i o n  3 was selected by t h e  u s e r ,  a l i s t i n g  of  menu op t i i )n s  

5 .  Summary and conc lus ion  

t h e  h e l p  f a c i l i t y  is r e l a t i v e l y  s imple.  I t  is  made unique by t h e  
f a c t  t h a t  it is w r i t t e n  i n  Ada and u s e s  a s p e c t s  of t h e  language which  
make informat ion  r e t r i e v a l  r a p i d  and s imple .  S p e c i f i c a l l y ,  t h e  
DXRECT-IO f a c i l i t y  a l lows  f o r  random access i n t o  t h e  h e l p  f i l e s .  I t  
is unnecessary t o  d i s c u s s  t h e  advantages o f  random access over sequen- 
t i a l  access. 

The mere f a c t  t h a t  t h e  program is w r i t t e n  i n  Ada impl i e s  a sav ing  
i n  terms o f  l i n e s  o f  code. This  i n t r o d u c e s  t h e  p o s s i b l i t y  of  even- 
t u a l l y  a d a p t i n g  t h e  program t o  r u n  a t  t h e  micro-computer l e v e l ,  a 
major c o n s i d e r a t i o n  i n  t h i s  day  and age .  

i t  is p o r t a b l e  t o  o t h e r  systems. T h i s  is ano the r  a s p e c t  w h i c h  m u s t  
a l w a y s  be t aken  i n t o  c o n s i d e r a t i o n  i n  w r i t t i n g  any sof tware  packaye 
i n  t h e  modern day world o f  computer programming. 

A s  c an  be deduced from t h e  above d i s c u s s i o n s ,  t h e  i dea  behind 

Add i t iona l ly ,  s i n c e  t h e  program uses  only  s t a n d a r d  Ada g e n e r i c s ,  
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I 1 
I I 
I I COMMANDS ON PANEL I I 
I I PANEL PREFACE => B R I E F  I N T R O  TO CURRENT I I 
I I PANEL I I 
I I DATA DICTIONARY I I 

I I 
I I 
I I RETURN TO A C T I V E  COMMAND MENU I I 
I I I I 
I I 

~~ 

I I U S E  ^U TO MOVE UP, ^D TO MOVE DOUN, 1 I 
I .  I RETURN TO S E L E C T  O P T I O N  I 1 
I I 1 I 
I I 

I P A N E L  COMMAND D E F I N I T I O N  I 
I I 
I S A V E  => S A V E S  A L L  I N P U T  TO DATABASE I 
I E X 1  T I 
I LOAD I 
I E R A S E  I 
I HELP I 
I I 
I I 
I I 
I I U S E  ^U TO HOVE U P ,  ^D TO HOVE DOUN, RETURN TO I I 
I I S E L E C T  O P T I O N  I I 

I I 

Figure 5 .  
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

P A N E L  P R E F A C E  

I 
I U S E  RETURN T O  A C C E S S  COWUAND MENU I I 

T H I S  P A N E L  ALLOWS FOR I N P U T  O F  EMPLOYEE 
P A Y R O L L  R E L A T E D  I N F O R M A T I O N .  I N F O R M A T I O N  
CURRENTLY H E L D  ON A P A R T I C U L A R  EMPLOYEE 
MAY BE A L T E R E D  OR UPDATED V I A  T H I S  P A N E L .  

Figure 6 .  

*Graduate students at The University of Houston--Clear Lake, Houston, Texas 

c 
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Application and Systems Software 
in Ada: Development Experiences 

Jim Kuschill 
Computer Representatives, Inc. 

Santa Clara, California 

This presentation focuses on two issues: 
its existing commercial software products to Ada and the the 
technical challenges we faced both before and during the rewrite 
process. The presentation will cover the following: 

I. Environment 

why CRI chose to convert 

A. Began the rewrite of software written in SPL and FORTRAN 
to Ada in 1983. 
1. Software included: relational DBMS, 4GL tools, and 

project management system. 

11. Why Ada? 
A. Current and future maintenance considerations. 
B. Transportability had tremendous marketing advantages. 

111. Planning Challenges 
A. Shortage of available programmers. 
B. 
C. 

Learning curve amongst own personnel. 
Unknown degree of diffulculty in the use of Ada for the 
development of application software. 

IV. 

V. 

t 

Technical Challenges 
A. 

B. 

C. 

Strong typing requirements of Ada affected the data 
conversions necessary for relational accessing. 
Ada packaging functions forced some new coding and 
routines to be written for an already mature product. 
Overloading capability smoothed the transition between 
some functions. 

Opinions and Results 
A. The re-write process totaling approximately 250,000 

lines of code is now in alpha test (will be in beta by 
the time of the SIGAda Conference). 
The learning curve was shorted than expected and 
differed by the nature of the language each programmer 
was accustomed to using previously. 
Maintenance problems and costs, as demonstrated during 
development will be vastly reduced as a result of Ada. 
The structure of Ada forces the writing of better 
routines, therefore better software. 
The time between a successfully compiled program and a 
completed program is drastically reduced because of Ada 
strict coding requirements. 

B. 

C. 

D. 

E. 
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Software Development: The PRODOC Environment 
and Associated Methodology 

Joseph H. Scandura, Ph. D. 
University of Pennsylvania 

In its most basic sense software development involves describing the 
tasks to be solved -- including the given objects and the operations 
to be performed on those objects. Moreover, such descriptions must 
be precise in order for a computer (or human) to perform as desired. 
Unfortunately, the way people describe objects and operations 
typically bears little resemblance to source code in most 
contemporary computer languages. 

There are two potential ways around this problem. One is to allow 
users to describe what they want the computer to do in everyday, 
typically imprecise English (or to choose from a necessarily limited 
menu of choices). This approach has some obvious advantages and a 
considerable amount of research is underway in the area. The 
approach, however, also has some very significant limitations: (a) it 
currently is impossible to deal with unrestricted English, and this 
situation is unlikely to change in the foreseeable future; and (b) 
even if the foregoing limitation is eventually overcome, the approach 
would still require the addition of complex, memory intensive "front 
ends". These "front ends" interact with the user ' s typically 
imprecise English statements and effectively "try to figure out" what 
the user intends. The result invariably is a system which is both 
sluggish in performance and limited in applicability. 

The PRODOC methodology and software development environment is based 
on a second, we believe sounder, more flexible and possibly even 
easier to use approach. Rather than "hiding" program structure, 
PRODOC represents such structure graphically using visual programming 
techniques. In addition, the program terminology used in PRODOC may 
be customized so as to match the way human experts in any given 
application area naturally describe the relevant data and operations. 
This customized termiriology is all based on a uniform, very simple 
syntax that might easily be learned by an intelligent human (in a few 
minutes time). The approach taken with PRODOC is general, as well as 
efficient and easy to use. 

PRODOC employs a unique graphically supported approach to software 
development, and supports the entire systems software development 
process, from requirements definition and system design to 
prototyping, code generation and maintenance. Although radically 
different at a superficial level, PRODOC draws generally on our 
extensive research in structural learning (the science of cognitive, 
instructional and intelligent systems engineering, Scandura, 1986). 
It represents a major step in the direction of automating the process 
of Structural (cognitive task) Analysis (e.g., Scandura, Durnin & 
Wulfeck, 1974; Scandura, 1977, 1982, 1984a, 1984b). More 
specifically, a special rule construct (not to be confused with 
production rules) plays a particularly central role in PRODOC. 

G.1.2.1 
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In the next section, we define more precisely what we mean by a rule 
and show how rules can be represented as Scandura FLOWforms. Next, 
we describe the PRODOC system itself. FinalXy, we provide an 
overview of the IMS System Development Methodology using PRODOC. 

RULE CONSTRUCT 

Rules have three major components: a domain or set of data structures 
on which the rule operates, a range or set of structures which the 
rule purports to generate and a procedure (egg., Scandura, 1970). 
Rules have been shown to provide a convenient way to represent a wide 
variety of human cognitive processes as well as arbitrary computer 
systems (e.g., Heller & Reif, 1984; Scandura, 1969, 1971, 1973, 1977; 
Scandura & Scandura, 1980). 

The term "rule" corresponds directly to the concept of a program. 
The "procedure" component of a rule (lge., step-by-step prescriptions 
for carrying out the rule) corresponds directly to the procedural 
portion of a program. "Domain" and "Range" components of rules 

Input, output and intermediate (local) structures. Collectively, 
they correspond to the data structures on which programs operate. 
These correspondences are summarized below: 

, define problem schemes ( i . e . ,  classes of problems) and refer to 
I 

Program Rule 
/ \  / \ 

/ \ / \ 
/ \ / \ 

Data Procedure I \ 
Structures DomainIRange Procedure 

(inputloutput) Structures 

In general, the execution of rule procedures involves both testing 
conditions and carrying out operations. Where the internal structure 
of a rule procedure is unimportant, the rule is "atomic" or 
elementary -- i.e., is viewed as nondivisible for present purposes. 
Those familiar with production rules will note that PRODOC rules are 
more general. The procedures of production rules consist solely of 
operations and, consequently, correspond to "atomic" rules. 

In programming parlance, atomic rules correspond to program 
"subroutines." These include PRODOC "library rules". The extended 
version of PRODOC makes it possible to create libraries of such 
rules. These libraries make it easy for nonprogrammers (as well as 
programmers) to construct executable PRODOC rules. 

As mentioned above, rules may be written in a language which is 
either understandable to humans andlor interpretable by computer. In 
either case, however, the same basic form of representation may be 
used. FLOWforrns are easily understood by most people and can be used 
to represent arbitrary procedures (whether rule procedures or program 
procedures). I 
Like all structured procedures, FLOWforms may be refined arbitrarily. 
They are used for two purposes, one to represent procedures and two, 

G.1.2.2 



to represent input/output data structures. 

Roughly speaking, a procedure or algorithm is a recipe, process, 
technique, or systematic method for doing something. (The term 
"algorithm" is often preferred in computer science.) More precisely, 
according to Knuth (19681, a procedure or algorithm must: 

(1) always terminate after a finite number of steps, 
( 2 )  include only definite steps that are precisely defined, 

with actions that can be carried out rigorously 
and unambiguously, 

( 3 )  have an associated (possibly empty) class of inputs, 
or domain, 

( 4 )  generate at least one output, and 
( 5 )  be effective in the sense that all of the operations to be 

performed must be sufficiently basic that, 
in principle, they can be done exactly and in finite time 
by a person using pencil and paper. 

Not all procedures are structured, however. Structured procedures 
are composed of substructures (components) or elements which have 
unique points of entry and exit. In order to insure this property, 
each step in a structured procedure must be decomposable into one of 
three basic types of components; 

(a) Sequence of steps or operations, 
(b) Conditional steps or branching (selection) and 
(c) Iteration or looping* 

These types are illustrated below both in terms of traditional 
flowcharts and Scandura F'LOWforms. In the former case (a) the 
rectangles represent arbitrary operations (e.g., add a and b) and the 
diamonds represent (b) arbitrary selection or "if" conditions (e.g., 
If the building is over 20' tall, then...) and (c) arbitrary looping 
("while") conditions te.g., While there is still further to go...). 

(a) 

In Scandura FLOWform these three types of components are represented 
as shown below. - 

I A I 
I - 1  

I B I 
i C i I M 

[ELSE I C I 

- 
(WHILE C I 
I I I 

ID0 I A I  
I I  I 
I 1  I 

I I 

Sequence Selection ( I F . . T " . . E L S E )  Iteration (WHILE..DO) 
G.1 .2 .3  



These three basic types of decomposition are univerally applicable 
and independent of any particular programming language tor any 
natural language for that matter). Moreover, used in combination via 
successive refinement, they have been proven adequate for any system 
design or programming t a s k .  Hence, there is no loss of generality in 
requiring that a procedure be structured. 

Nonethless, it is often convenient to allow certain variations on the 
above. Some common variations on selections and iterations are shown 
below. 

8 

I 1 I I 1 I 1 
I CASE OF I I I I I FOR I 
1 -  I I I I - 

I - I D 0  I I 
I UNTIL I I I I 

11- 
1 -  

Iteration Iteration 

Selection (CASE) (REPEAT.. .UNTIL) (FOR...DO) 

Although it does not fall into one of the three basic classes, Pascal 
also supports a WITH (Record..Do) structure. This is represented in 
nOWforms as: 

I I 
I WITH record I 
1- 
ID01 I--i <-- field variables 
I 11- 

0 I . 
I I 1  . I . I I I  
I I 1  . I . 
I 11- 

with (Pascal only) 
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In Scandura FLOWforms, sequence structures are often displayed using 
PRODOC with indentation to show level of refinement. This makes it 
easier to move about and otherwise manipulate FLOWforms on the 
screen. 
variety of structure (decomposition) types follows: 

A sample FLOWform showing such indentation along with a 

CSAMPLE-RJ:sample-FLOWform_structures Copyright 1986 Scandura 

1 1 
I IF I 

I 
I 
I T "  I 
I 
I I I 

I I 
I 

I 

1 1 1  I I  - .  
i i i  I I  I I 
I I I I l==Tl I 

Comands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,A,z,g,l,w,?,Fl,Esc 

Parenthetically it is worth noting that F'LOWform procedures may be 
recursive as long as the language in question supports recursion. 
This l a  certainly the case, for example, with Pascal, C, Ada and 
Lisp. This is not the case, however, with high level library rules 
(see next section) used in conjunction with PRODOC. To help insure 
future generalizability of the PRODOC system, library rules fully 
reflect all of the constraints imposed on the rule construct as 
defined in the structural learning theory (e.g., Scandura, 1977, 
1981). In that theory, the role of recursion is handled exclusively 
in terms of higher order rules (which may operate on other rules) and 
an universal control mechanism. Recursion is not allowed In 
individual rules. This restriction has been shown to have important 

. 

implications for diagnostic testing and learning (e.g. , Scandura, 
1980.) 

Scandura F'LOWforms also are used to represent rule domain (input) and 
range (output) structures. In general, domain and range structures 
may be characterized mathematically as partial orderings. The 
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various components/elements may be viewed as ordered sets whose 
elements in turn may be ordered sets. 

In the structure below, set A has elements B and C; B has elements E, 
F and H; C has G and H. Although element H appears twice in this 
FLOWform, it is simply a different display of the same element 
(something you will see when you edit one of them). 

Although this representation looks similar to the CASE structure, the 
similarity is a bit deceptive. In procedures, CASE structures have 
both condition variables and operations. The condition occupies a 
distinguishing position to the right of the word "CASE" and may be 
thought of as the first CASE element. 

CSAMPLE3:Sample-DOMAIN-FLOWform Copyright 1986 Scandura 

t 1 

I I 
I CDOMAINJ : I 
I t  
I (CAJ: I 
1 1 1  

I I (CBJ: I 
l l l t  
I I I ItEJ: I 
1 1 1 '  I 
1 1 1 1  I 
I I I ICFJ: I 
1 1 1 '  I 
l l l r  I 
I I I ICHJ: I 
1 1 1 '  i 
I I '  

I I  I 
I I i iCH3: I 
1 1 1 '  
Commands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,̂ ,z,g,l,w,'?,Fl,Esc 

Notice that this representation is not quite a tree since element H 
belongs to both sets B and C. Of course, partial orderings do 
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include trees as a common subset. A simple example of a tree is 
given below. 

Animals 

/ \  
/ \ 

Mammals . Reptiles 
I \  

/ \ 
/ \ 

Subhumans . . Humans 

Since rule data structures are restricted to partial orderings it is 
true that FLOWforlns cannot directly represent cyclical relationships. 
In the case of software development, however, this restriction is 

more apparent than real. Cyclic relationships can serve two quite 
different purposes: 

(1) They can be used to summarize connections among nodes ( e . g . ,  
computer terminals) in a complex system. 

( 2 )  They can be used to represent nonhierarchical data structures, 
where the relatiomhips are not necessarily monotonic. 

In the former case, for example, the connections typically represent 
a sharing of data represented by the nodes. Just as data at any 
given node can be operated on by resident programs, programs also are 
needed to transfer data from one node to another. Thus, the cyclic 
networks themselves correspond to sets of programs, each of which may 
be represented in terms of a rule FLOWform. Such networks, in 
effect, provide a convenient way to represent the overall high level 
structure of a system of programs but they say relatively little 
about software development per se. 

The figure below illustrates the latter case -- data which a program 
procedure might operate on. 

Arch 

/ I \  
/ I \  

/ I \  
/ I \  

consists of 
\ 
\ 

/ I 
/ I 

/ I 
/ I 

/ I 

\ 
\ 
\ 

pillar 1 .-not- pillar 2 top 
-touch 2 

In this case, notice that the nodes "pillar 1" and "pillar 2" are 
superordinate to each other. This is not allowed in a partial 
ordering relationship. As with successive top-down structured 
refinement of procedures, most software engineers favor a 
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hierarchical (partially ordered) approach to data structure design. 
Thus, for example, the above Arch structure might be represented 
hierarchically as 

Arch 

/ \  
/ \  

. 
Supports . Top 

/ \  
/ \  

Pillar 1 . . Pillar 2 

where the definition of "supports" may include "not touching". In 
fact, the latter figure seems more natural. Accordingly, arches 
consist of two types of entity: supports and tops. In turn, (at 
least) two supports are needed. 

Nonetheless, it is fair to ask whether cyclic relationships are 
necessary for some purposes. 
answer to this question, it would appear that the answer is "no". 
Just as any procedure can be represented as a structured procedure, 
cyclic data structures can be represented in terms of partial 
orderings. To m e  this, notice that cycles correspond to lnflnite 
hierarchies te.g, pillar 1 --> pillar 2 - - >  pillar 1 --) pillar 2 
- -> 1.  

While we do not know of any definitive 

However, any given cycle can be realized only a finite number of 
times in the real world. Hence, cyclical relationships can be 
represented by finite successive refinement of the cycles in 
question. Consider, for example, the cyclic graph on the left 
(below) and the equivalent partial ordering on the right. 
cyclic graph looks simpler, it camouflages the fact that the cycle I s  
repeated only twice. 

While the 

B 

A A . 
/*:\ / \  

/ \ ;  * / \  
. c  B .  . c  

\ 
\ 

. A  
/ \  

/ \  
B .  . c  

\ 
\ 

/ \  
/ \  

B .  . e  

. A  

In effect, the apparent loss of representational simplicity is at 
least partially overcome by the more precise characterization 
provided by the partial ordering. The suppression of such details is 
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not appropriate in actual software development. 

It would appear, just as one can always construct a structured 
procedure equivalent to given "spagetti" code, one can always 
construct a partially ordered data structure that is equivalent to 
any given cyclical data structure. 

PRODOC 

Using PRODOC, rule data structures and procedures are constructed in 
a top-down structured fashion and represented in terms of Scandura 
FLOWforms. As we have seen, FLOWforms look similar to 
Nassi-Shneiderman flow charts, but they make better use of the 
rectangular screen and allow simultaneous display of as many (or as 
few) levels of representation as may be desired. 

A procedure F'LOWform with several levels of refinement might be 
displayed by PRODOC as illustrated below. 
example, data structures and procedures each consist of a single high 
level description (component). Various components, in turn, are 
decomposed into one or more lower level elements. 

At the highest level, for 

............................ 
Insert FLOWform showing several levels ............................ 
PRODOC consists of four distinct but complementary and fully 
compatible software productivity and quality assurance environments. 
Each of these environments (described below) makes use of Scandura 
FLOWforms. 

Relationships among the first three PRODOC environments as well as 
the way they may be used in developing applications software is 
represented schematically on the following page. 

(1) Applications Prototyping Environment (with interpreter and 
expert assistant generator) (PRODOCea) - is suitable for use by 
nonprogrammers as well as programmers for designing, documenting, 
implementing, and maintaining software systems in an integrated, 
graphically supported, top-down structured environment. In addition 
to English text, the availability of greatly simplified, high level 
library rules makes PRODOCea ideal for rapid prototyping. 
availability of graphical support for input and output data 
structures also makes it possible to directly reflect arbitrary 
semantic properties. 

The current version of PRODOCea employs a fairly general but 
relatively low level set of library rules designed largely for  
testing purposes. The current library includes a variety of: 

The 

input/output operations Ce.g., display (ELEMENT, 

G.1.2.9 



CSGRT3:sort 

Sort up to 500 numbers;print result 

05-12-86 

Copyright 1986 Scandura 

I 1  I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
i 
I 
I 

I 
I 

I 

jwrite ( ' H o w  many numbers (1 to 500) to be sorted? ' )  I 
I 
(readln (n) I 
I 
I .......................................................................... I 
I . Prompt user, then get numbers. * I  
I 1  

I t  i 
I I ........................................................................ I 
I I . Get the numbers from the user. * I  

I (writeln ('Enter below numbers to be sorted. Press <Return> after each.') I 

I I  I 

I IFOR i:=1 to n I 
I I  I 
I ID0 (readln tatiJ) I 
I '  I 
I .......................................................................... I 
I . Sort them. - 1  
I 
IFOR i:= 1 to n-1 I 
I I 
ID0 I ...................................................................... I 
I I . Scan thru items and swap if necessary. * I  
I I 
I IFOR j:= 1 to n -i I 

I 

I 1  
I ID0 
I I  
I I  
I I  
I I  
t I  
I I  
I I  
I t  
I I  
I 1  
I I  
I I  
I I  

I .................................................................. I 
( . Compare and swap if necessary. - 1  

jIF at 
I 
I T "  
I 
I 
I 
I 
I 
I 
I 

jJ> aCj+lJ 
1 

I 
I ............................................................ I 
I . Swap - 1  
I ,  
I Itemp:= atj3 I 
I I  
iaCj3:= aCj+lJ I 

I laCj+lJ:= temp I 

I 1 ~- 

( .......................................................................... I 
I . Identify and then print the resulting ordered set. * I  
I I ~~~ 

- ~ 

I 
I lwriteln I 
I t  i 
I (writeln ('The resulting order is:') I 

........................................................................ I 
I I . Print the result. * I  
I I---- I 

I (FOR i:= 1 to n I 
I I  I 
I ID0 (writeln taCi3:2) I 
1 1  1 
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IMS's PRODOC I Software Development Environment: 

- - 3  - - -  
- - 1 7 -  

c Examplesol Appllcation 
7 -  - - ( S p r f i c  App1 icat ion 

\ FUTURE OPT/ON/ 
Domain Expert Using PRODOCea Domaffi €xpeft uses com~utefL?eed 

Stfuc?ura/ AnS/YsIs 
1 

/ 

FLOWform Specification 
of Application 

I 
1 

Expert Assistant 
Using PRODOCea 

Domain Expert or Systems Designer 
Using PRODOCea 

I n t erpre t ab1 e FLOWf orm 
Using .L i brary Rules 

Systems Designer or 
Programmer 

d Using PRODOClp 

)Clp 

Programmer 
Us i ng PRODOCpp 

I 
f Library-based 1 

FLOWf o m  Enhanced 
wi th  Pascal 
Pseudocode PRO[ 

(automatic) 
(Pascal only) 

PRODOCpp 
(automatic 1 

PRODOClp 
(automatic) 

(Pascal only) 

I Source Code I 

Pascal, C or Ada 
Pseudocode 

,' 
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DISPLAY-PAlWETERS), load (DOS-NAME, DRIVE, FILE-TYPEIJ, 

other operations C(e.g., insert-component-after (VALUE, SEX', 
PREVIOUS-COMPONENT), delete-component (SET, COMPONENTIJ, 

functions Ce.g., add (ADDEND 1, ADDEND 21, modulo (X, BASE), 
find (VALUE, SFT)J, 

conditions Ce.g., match (STRING 1, STRING 21 ,  less-than (X,Y)J, 

logical connectives Ce.g., and (EXPRESSION 1, EXPRESSION 213, 

and assignment (i.e., ELEMENT := VALUE). 

The user also has the option of creating hierarchies of input/output 
data structures which directly reflect the reality they represent. 
Alternatively, inessential aspects of this structure may be 
suppressed. In this case, PRODOC automatically generates a formal 
equivalent of the needed data structures (i.e., declarations). Once 
"initialized" in this way, PRODOC library rules may be executed 
immediately in interpretive mode for purposes ranging from simple 
execution to debugging. 

In conjunction with PRODOC's Library Generation facilities (see ( 4 )  
below), custom versions of PRODOCea (and PRODOClp) can quickly be 
created to accommodate library rules to facilitate rapid prototyping 
in arbitrary semantic properties. 

A unique feature of PRODOCea is its ability to immediately execute 
not only interpretable library rules but statements written in 
ordinary English. This makes it possible to actually run through a 
proposed system design before it has even been prototyped in terms of 
high level library routines, let alone reduced to standard program 
code. An additional advantage is that it makes the difficult and 
expensive process of developing many expert systems almost trivial. 
Once an (nonprogrammer) expert knows what a human/computer assistant 
is to do, it is a simple task to develop a computerized expert 
assistant or performance aid to assist less qualified personnel in 
performing the required tasks. 

( 2 )  Applications Prototyping Environment (for use with a Pascal 
compiler) (PRODOClp) - is identical to PRODOCea in so far as 
prototype design and the use of library rules in rapid prototyping is 
concerned. Instead of an interpreter, however, PRODOClp includes a 
much generalized code generator which makes,it possible to 
arbitrarily mix Pascal code with library rules, thereby gaining the 
prototyping advantages of any number of customized, arbitrarily high 
level languages, along with the flexibility of Pascal. This feature 
makes it possible, for  example, for a programmer to speed up or 
otherwise add finishing touches to a working prototype created by a 
nonprogrammer. 

( 3 )  Programming Productivity Environment (PRODOCpp) - has all of the 
design, etc. features of PRODOCea. PRODOCpp comes in standard form 
which supports source code in any programming language. 
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(Incidentally, PRODOC can be used as a full-function idea processor. 
This text, for example, was prepared using PRODOC exclusively.) 

In addition, pseudo code support is available as an option for 
Pascal, C, Ada and other programming languages. For example, Pascal, 
C and Ada syntax and other routine aspects of code generation te.g., 
BEGINS..ENDS, etc.) are all generated automatically. The result 
effectively combines the clarity and ease of use of high-level fourth 
generation languages with the flexibility of third.generation 
languages. These options also include syntax checking, consistency 
checking and automatic declarations generation. Current plays call 
for adding pseudo code support for other third and fourth generation 
languages as needed. 

A sample FLOWform for sorting numbers and the corresponding Pascal 
source code are shown on the next page. 
............................. 
Insert Sort FLOWform and Code ............................. 
( 4 )  Library Generator (PRODOClg) - makes it possible to integrate 
available rule libraries and new library rules into either PRODOC 
prototyping environment, thereby creating customized versions of 
PRODOC for particular families of applications. Since this requires 
access to PRODOC source code, customized versions of PRODOC will 
normally involve a collaborative effort involving our development 
team and software specialists in particular application areas. 

The use of PRODOClg in developing customized versions of PRODOCea and 
PRODOClp is represented schematically on the next page. 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

CSDRflrsort 

Sort up to 500 numbersfprint result 

01 -23-86 

Copyright 1906 Scandurr 

crite ( 'Wow many numbrrr (1  to 500) to be sorted? ' 1  

wadln (n) 

writeln ('Entmr below numbrrr to be sorted. Press <Ruturn> after each.') 

FOR i r - l  to n 

rradln ( r t i l )  - 
:OR irr 1 t o  n-1 

x) 

Do 

- 

IF  atjl> afJ*13 I 
THEN 

- 
wr 8 teln 

writeln ('The resulting order is:') 

FOR i t =  1 t o  n 

uritrln (a[i'J:2) 
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PROGRAn sort; 

VAR n : INTEGER1 
L : INTEGER; 
a : ARRAYt1..5003 OF INTEGER; 
j : INTEGER; 
temp : INTEGER; 

BEGIN 
( Sort up to 500 numberstprint result 3 
BEG IN 
write ('How many numbers ( 1  to 500) to be EiDrted? 
readln (n); 
( Prompt user) then get numbers. 3 
BEG IN 

' 1 ;  

nriteln ('Enter below numbers to be sorted. Press <Return> after each.'); 
( Get the numbers from the user. 3 
FOR i:=l to n DO 

reodln (atill 
END 1 

FOR i i -  1 to n-1 DO 
Sort them. 3 

( Scan thru items and snap if necessary. 3 
FOR ji- 1 to n -i DO 

( Compare and snap if necessary. 3 
BEG IN 
IF atj3> atj+13 THEN 

( Swap 1 
BEGIN 
temp:= atjli 

otj+13:= temp 
atj3:= aCj+131 

END 
END 1 

< Identify and the? print the resulting ordered set. 3 
BEG IN 

nr i teln; 
nriteln ('Thr resulting order is:'); 
( Print the rcrrult. 3 
FOR i1-  1 to n DO 

nriteln (afiJr2) 
END 

END 
END 0 

G. 1.2.15 



IMS's Structural Analysis Methodology and 
PRODOClg Library Generator: 

Customer 

I MS, 
I nc. 

- - -  
- c Application Domain 

Domaln Expert uses 
Structural Analysls 7 compu?ertzed 

t o  ldentlfy Structura/ 

7 -  

I 

structural Anal ysls 7 Icompu?ertzed 
*&-- - - & -  ---I 

Basic Job Components 
I 

Programmer uses 
PRODOCpp 

t o  code 

~ 

[ Atomic Library Rules 

I 
PRODOC 1 g 

automat lcal ly 
produces 

Pascal Source Code k 
IMS uses proprietary tools 

t o  create 

Customized Versions of 
PRODOCea and PRODOClp I 
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OVERVIEW OF THE SYSTEM DEVELOPMENT METHODOLOGY 

Collectively, the various PRODOC environments provide a complete 
software development system, including requirements definition, 
systems design and documentation, prototype development, code 
generation and program maintenance. For this purpose, rules 
(represented in terms of data structure and procedure FLOWforms) 
provide an unique visual and uniform type of representation that can 
be used throughout. 

The PRODOCea applications prototyping environment is designed 
primarily for use by system designers (in conjunction with intended 
users). (Given some initial training, in fact, it also can and has 
been used independently by end users.) 

In this context, PRODOCea can be used in system analysis and 
requirements definition. System analyses will normally involve very 
high level descriptions of the various system states (data 
structures) and processes In ordinary English. Data FLOWforms will 
normally be used to describe the states, and transitions between 
states will be described at a high level in terms of procedure 
FLOWforms. Should the designer wish, these descriptions may include 
hardware, personnel and other development requirements. 

During the requirements definition phase, users will develop more 
detailed descriptions of the key states and transitions. This is 
accomplished by successive refinement of the very high level system 
descriptions, all in an integrated environment. 

PRODOCea makes it possible to "execute" these systems analyses and/or 
requirement definitions dynamically. That is, one can simulate 
transitions between various states of the to-be-developed system, 
thereby giving the user a better feeling for how the system might 
operate in practice. 

As is well known, the distinction between requirements definition and 
program design is largely arbitrary and depends on one's perspective. 
In the former case, definition of the key states of the system, and 

of the transition procedures connecting them are described in largely 
functional, real world terms. Conversely, program designs typically 
are represented in terms of constructs associated with programming 
languages. 

I 

The various PRODOC prototyping environments are associated with given 
atomic rule libraries. Since rule libraries are designed to 
accommodate particular families of applications, both the data 
structures these rules operate on, as well as the rules themselves, 
directly reflect application realities. 

Consequently, library rules (including both data structures and 
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atomic rules) might be used directly in the case of requirements 
definition. Indeed, the resulting definitions might be interpreted 
directly (by PRODOCea) where the terminal (most refined) elements of 
the key transition procedures correspond to atomic rules in the 
associated library. 

It may, in fact, still be possible to directly create an operational 
system even where the terminal elements of a systems definition or 
design are not already available as library rules. This might be 
accomplished in either of two ways: 

(1) New library rules might be selected from available libraries 
and/or created (e.g., using PRODOCpp). These new rules can be 
integrated automatically to form a new Library using PRODOClg. 
PRODOClg generates complete Pascal code which can, in turn, be linked 
with either PRODOC prototyping environment to create a custom version 
(of either). This new custom version, then, can be used to directly 
interpret the original systems definition or design (formulated in 
terms of atomic rules in the new library). 

( 2 )  The requirements definition stage might be further developed as 
normally is done into a detailed system design. In this case the 
data structures and procedures (represented in terms of applications 
reality) are reformulated in terms of data structures and operations 
more closely associated with some target source language. These more 
detailed designs, then, are converted to code using PRODOCpp. For 
this purpose, one can enter complete source code using PRODOCpp's 
default "text" files. Alternatively, in conjunction with available 
lanquaqe-specific files, one can simply enter pseudo code. In the 
latter case, syntax and consistency checking and declarations and 
source code generation, may be performed automatically. 

PRODOClp serves a supplemental role in the above context. For 
example, Pascal pseudo code can be used to supplement whatever 
library rules happen to be used in a given design. This can be done 

I without restriction. Given the resulting 1ibrarylPascal pseudo code 
combination, PRODOClp can be used to generate complete Pascal source 
code ready for compilation. 

PRODOClp also serves a useful role even where all elements of a 
design consist of library rules. Although the design can be 
interpreted, tested and debugged using PRODOCea, execution efficiency 
car. usually be greatly improved via compilation. In this case, 
PRODOClp can be used to convert the given design (represented solely 

I in terms of library rules and meaningful data structures) into 
I complete Pascal source code ready for compilation. 

Perhaps the single most important advantage in following the 
foregoing methodology is that of program maintenance. Given the 
integrated, fully interchangeable nature of the various PRODOC 
environments, there is no justifiable reason why system requirements 
or design, program documentation, or code should ever get out of 
synchronization. Consequently, finding one's way around in even very 
complex systems is several orders of magnitude easier than is 
normally the case. Furthermore, the prirtted documentation provides 
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additional features that are especially useful with large system 
segments. 

In developing smaller programs, of course, it may be possible to 
bypass some of the above steps. Thus, one ha5 the choice of creating 
and simply using an applications prototype as is, or of designing and 
coding the program using PRODOCpp directly (e.g., in conjunction with 
particular sets of PRODOCpp pseudo code language support files). 

At this point, it may be unclear how we propose to deal with the 
various other representational systems that are commonly used by 
designers. In this regard, we take essentially the same position 
that Martin and McClure (1985) take with respect to their "action 
diagrams": Although the methodologies may appear to differ, all of 
the commonly used forms of representation are either equivalent (to 
ours) or incomplete. In fact, while action diagrams are formally 
equivalent to procedure FLOWforms, we do not believe that they 
display overall structure nearly as clearly. 

By way of summary, using PRODOC has the advantage of placing 
requirements definition, systems design, prototyping and program 
coding (not to mention system maintenance) on the same plane. System 
designs, prototypes, and program code are viewed within an integrated 
environment, which is far easier to understand, revise, debug, and 
modify than is normally the case. Put somewhat differently, 
developing and maintaining executable (interpretable or compilable) 
prototypes and/or source code is a natural extension of system design 
and documentation, and vice versa. In short, PRODOC supports the 
entire systems software management and development process, from 
requirements definition to code generation. 

Those of us who have been involved In the creation of PRODOC are fond 
of pointing out that PRODOC has literally been indispensable in its 
own creation. Indeed, we would not even consider taking on a new 
programming task without using PRODOC. 
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1. Introduction 

The data requirements of mission-critical defense systems have been 
increasing dramatically. Command and control, intelligence, logistics, and 
even weapons systems are being required t o  integrate, process, and share ever 
increasing volumes of information. To meet this need, systems are now being 
specified that incorporate database management subsystems for handling 
storage and retrieval of information. Indeed, i t  is expected that a large 
number of the next generation of mission-critical systems will contain embed- 
ded database management systems. Since the  use of Ada has been mandated 
for most of these systems, i t  is important to address the issues of providing 
database management capabilities that can be closely coupled with Ada. 

Under sponsorship by the Naval Electronics Systems Command and the 
Defense Advanced Research Projects Agency, Computer Corporation of Amer- 
ica has been investigating these issues in the context of a comprehensive dis- 
tributed database management project. The key deliverables of this project 
are three closely related prototype systems implemented in Ada. 

1. LDM (local data manager): an advanced, centralized database manage- 
ment system that  supports a semantically rich data model designed to 
improve user productivity. It can be used either stand alone or as an 
integral part  of the other two prototype systems. 

2. DDM (distributed data manager): a homogeneous distributed database 
management system built on top of a collection of LDMs in a computer 
network. It supports the transparent distribution and replication of data  
in order to provide efficient access and high availability. 

3. Multibase: a retrieval-only system that provides a uniform interface 
through a single query language and database schema to data  in preex- 
isting, heterogeneous, distributed databases. I t  utilizes LDM for manag- 
ing its local workspace during the processing of a global query. 

All three systems are designed to support identical interfaces for interac- 
tive use and for use through application programs written in Ada. Fundamen- 
tally, they support a "semantictt data model that  captures more application 
semantics than conventional data models. The interactive language is called 
Daplex. Daplex has been designed to be an Ada compatible database sub- 
language. The syntax of many of its constructs for data definition and data  
manipulation has been borrowed from Ada. The application programming 
interface is called Adaplex. It consists of an expression-level integration of 
Daplex's data manipulation constructs with Ada. This paper identifies a set of 
requirements for a modern database management capability for Ada that has 
driven our design for the aforementioned prototype systems. It provides an 
overview of the Daplex and Adaplex languages, and a summary of the func- 
tional capabilities and technical innovations we have incorporated in the  LDM, 
DDM, and Multibase systems. 
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2. Requirements 

Providing a database management capability for Ada is not an easy task. 
Our goal is to provide a complete set of modern database management capabil- 
ities which are consistent with the style and philosphy of Ada and which are 
well integrated with the Ada language and its support environments. This sec- 
tion summarizes the major requirements of a database management capability 
for Ada. These requirements can be grouped into three general areas: classes 
of databases that must be supported, operating environments, and compatibil- 
ity with Ada. 

CZasses of databases 
Ada programs will need to access three classes of databases. The first 

class consists of centralized databases. These databases reside at a single 
location and are managed by a DBMS that executes on a single computer. The 
second class consists of distributed databases. These databases can be frag- 
mented, distributed, and replicated across a number of (possibly geographically 
separated) sites. They are managed by a DBMS that executes on a number of 
computers that are connected by a communications network. Distributed data- 
bases provide improvements in reliability, survivability, and expandability over 
centralized databases. The third class is pre-existing databases. These are 
databases (possibly centralized or distributed) that are managed by existing 
DBMSs. These DBMSs are not implemented in Ada. They provide different 
sets of functional capabilities and support different interface languages. An 
important requirement for an Ada database capability is to provide a single 
Ada interface to all of the above classes of databases. In other words, the par- 
ticular class of database being accessed should be transparent to the Ada data- 
base application programmer. 

Operating Environments 
An Ada DBMS must be able to operate effectively in both an Ada program- 

ming support environment (APSE) to facilitate the development of Ada data- 
base application programs, and in an Ada run time environment to support the 
execution of these programs. To provide for the needs of these two environ- 
ments, the DBMS must have two operating modes: shared and embedded. 
Shared mode is normally used in an APSE. A single copy of the DBMS supports 
the simultaneous development of multiple Ada database application programs 
in this mode. The interface between the application programs and the DBMS is 
a loosely-coupled one, each being executed as a separate Ada program. Thus, 
each application program can be changed without impacting the DBMS or other 
application programs. Embedded mode is typically used in a run time environ- 
ment. Once the application programs have stabilized, they can be loaded 
together with the DBMS into a single Ada program. The applications and the 
DBMS then operate as separate Ada tasks that synchronize and communicate 
via rendezvous, thereby achieving a higher degree of interface efficiency at  
the expense of reduced flexibility. Embedded mode is less flexible than shared 
since a change to one application causes the other application and the DBMS to 
be relinked. 

Compatibility with Ada 
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Ada has made a large contribution to improving program integrity through 
strong type checking at compile t ime and constraint checking at run time. I t  is 
important that an Ada DBMS provides the  same degree of integrity on the  Ada 
program data  that  i t  manages. An Ada DBMS should support all of the  Ada 
data types, including derived types, subtypes, and type attributes. I t  should also 
support the same degree of run t ime constraint checking. Note tha t  this can- 
not be easily (or efficiently) accomplished by simply providing an Ada inter- 
f ace  to an existing (non-Ada) DBMS. Let us illustrate this wi th  a simple exam- 
ple. Suppose an Ada programmer wants to s tore  a set of employee records in a 
database. The Ada type definitions fo r  this record may look like: 

type YEARS is new INTEGER range 0..50;' 

type EMPLOYEE Is  
record 

NAME : STRING(1 .30); 
YEARS-OF-SERVICE : YEARS; 
SALARY : INTEGER: 

end record; 

Suppose tha t  the Ada programmer writes a program tha t  contains a tran- 
saction that adds one to the YEARS-OF-SERVICE component of each 
employee record. There are two ways to process this transaction. One way is 
to retrieve the  YEARS OF SERVICE component for each record in the data- 
base and return i t  to t h e  application program, add one and then store it back in 
the database. This is a very inefficient way of processing since i t  results in a 
lot of data being sent  from the DBMS to the application program and then back 
again. A much more efficient method is to have the DBMS perform the update 
directly. That is, the application program can instruct the DBMS to add one to 
the  YEARS OF SERVICE component of each record. This results in no data 
being returned 6 the application program. However, the DBMS must now take 
the responsibility of insuring that all new values of YEARS OF SERVICE 
remain within the specified range. I t  is not acceptable for  the DBMSto blindly 
change each value of YEARS - -  OF SERVICE, only to have the application pro- 
grams that retrieve the data at a later time discover tha t  some values have 
become illegal. 

Data models and associated query languages have evolved significantly 
over the past two decades. The early hierarchical models were superseded by 
the network and relational models. The latter are in turn being superseded by 
so-called semantic da ta  models. Our overall DBMS project is based on a 
semantically rich data model called Daplex which combines and extends the  
key features of earlier data models. For example, Daplex's modelling con- 
structs are a s t r ic t  superset of those found in the relational model. Daplex is 
designed to enhance the effectiveness and usability of database systems by 
capturing more of the meaning of an  application environment than is possible 
with conventional data models. I t  describes a database in te rms  of the  kinds of 
entities that exist in the application environment, the  classifications and 
groupings of these entities, and the structural  interconnections among them. 
The semantic knowledge captured in Daplex is not only meaningful t o  end 
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users, but is also usable by the database system and database administrator for 
the purposes of query and physical schema optimization. For example, 
knowledge of the nature of relationships between types of entities (Le., 
whether they are one-to-one, many-to-one, or many-to-many) can be used to 
control the appropriate clustering of entities of different types that are likely 
to be accessed together, both in a centralized and in a distributed environ- 
ment. 

The basic modelling constructs in Daplex are entities and functions. Enti- 
ties correspond to conceptual objects. Entities are classified into entity types, 
based on the generic properties they possess. Functions represent properties of 
conceptual objects. Each function, when applied to an entity of appropriate 
type, yields a single property associated with that entity. Such a property is 
represented by either a single value or a set of values. These values can be 
simple, being drawn from Ada supported scalar types and character strings, or 
composite, consisting of references to entities stored in the database. We 
illustrate these constructs with an example. 

Consider a university database modelling students, instructors, depart- 
ments, and courses. Figure 1 is a graphical representation of the definition - -- of 

PERSON 

NAME 
AGE 

ISA p $ S A  

STUDENT 

ADVISOR TITLE 
SALARY I I %%TS I 

INSTRUCTOR (COURSE1 
ADVISOR TITLE 

ROOM 
CREDITS 

+ SALARY 

- 
COURSES-TAUGHT 

J 
COURSES-TAUGHT 

1 ENROLLMENTS 1 
DEPT qTl4 DEPARTMENT 1 DEPT 

FLOOR 

DEPARTMENT DEPTI w I OEPT - 
I I - 

Figure 1. A Daplex Database 

such a database. The rectangles depict entity types. The labels within the rec- 
tangles depict functions that range over Ada scalar and string types. The 
single-headed and double-headed arrows represent single-valued and set-valued 
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functions that  map argument ent i ty  types t o  result types. The double-edged 
arrows indicate isa (subtype) relationships. 

One major difference between Daplex and the relational model is that 
referential integrity constraints [DateBl], which are extremely fundamental in 
database applications but not easily specifiable in a relational environment, 
are directly captured. For example, when a student is inserted into the data- 
base, the database system will ensure that it is assigned a valid instructor, Le., 
one that is existent in the database. Likewise, when an  instructor is to be 
removed from the database, the database system will see to it that  no dangling 
references result, Le., there are no more students in the database who have t h e  
instructor in question as advisor. 

Another important semantic notion captured in Daplex is that of a hierar- 
chy of overlapping ent i ty  types. In relational systems, a real-world ent i ty  that 
plays several roles in an  application environment is typically represented by 
tuples in a number of relations. In the university application environment, w e  
might have an instructor enti ty named John Doe and a student ent i ty  also 
named John Doe. In this case, it might be desirable to impose the  constraint 
that the age of John Doe as an  instructor should agree with the age of John 
Doe as a student. One possible s t ra tegy in a relational system is to represent 
this information only once by having a relation person that  stores the age 
information, and relying on joining operations t o  determine the age informa- 
tion for  students and instructors. In Daplex, w e  can specify that student and 
instructor are subtypes of person whereby w e  can utilize Daplex's function 
inheritance semantics to simplify the formulation of queries and updates. Fig- 
ure 2 shows a relational equivalent of the  university database. Figures 3 and 4 
I 

PERSON (SSN, NAME, AGE) 

STUDENT (SSN. ADV-SSN) 

INSTRUCTOR (SSN. D E R )  

COURSE (ROOM, CREDITS) 

ENROLLMENTS (SSN. TITLE) 

COURSES-TAUGHT (SSN. TITLE) 

Figure 2. A Relational Schema 

shows a Daplex query and i t s  equivalent in SQL [DATE84]. The intent of this 
query is to print the  names of all students taking a class held at room "F320tt 
and taught by an  instructor in the "CS" department. Notice how explicit join 
terms have to be introduced in the SQL query, which tend to obscure readabil- 
ity. On the other hand, the absence of such constructs from the Daplex query 
allows the query t o  be read in a more or less English-like manner. A complete 
description of the Daplex da ta  model and access language can be found in 
[SLRR84]. 

G.1 .3 .6  



for each S in STUDENT where 
"F320" is in ROOM(ENROLLMENTS(S)) 

DEPT(ADVISOR(S)) = CS 

PRINT(NAME(S)); 

and 

loop 

end loop; 

Figure 3. A Daplex Ouery 

SELECT PERSON.NAME 
FROM PERSON, STUDENT, ENROLLMENTS, COURSE, INSTRUCTOR 

AND PERSONSSN = ENROLLMENTSSSN 
AND ENROLLMENTSTITLE = COURSE.TITLE 
AND COURSE.ROOM = "F320" 
AND STUDENT.ADV-SSN I INSTRUCTOR.SSN 
AND INSTRUCTOR.DEPT = CS 

WHERE PERSONSSN = STUDENTSSN 

Figure 4. An Equivalent SOL Ouery 

I 
4. Adaplex 

Database environments for popular programming languages, notably C, 
PL/1, COBOL, and Pascal, have resulted in extensions to the host programming 
language. At  the outset, it was not clear whether Ada would also need t o  be 
extended to accommodate database applications. This is because Ada contains 
important new features not found in previous widely-used languages. In partic- 
ular, Ada's package construct offers t he  potential for defining a database 
extension within the language itself. 

There have actually been a number of proposals for coupling database 
management capabilities to Ada through the package construct [HTVNSl, 
NOKI83, VINE831. However, we feel  that such approaches sacrifice usability 
and data integrity for  not extending Ada [SCDF85]. Since our  goal is to design 
the best Ada compatible language environment for developing database appli- 
cation programs, i t  is our desire to express as much of t h e  database environ- 
ment in Ada as possible, although not at the  expense of database capabilities 
and ease of use. 

Two major capabilities that must be provided by a database programming 
environment are schema definition (for describing the contents of the data- 
base) and transaction definition (for specifying operations on the stored data). 
In order to support database applications programming in Ada, i t  is necessary 
to couple the DBMS to an Ada programming support environment. One possible 
approach for achieving such a coupling is illustrated in Figure 5. Notice that 
both schema definition and transaction definition are separated from the  Ada 



Schema Transaction Ada 
Definition Deflnition Program 

b 

Schema Transaction Ada 
Compiler Optimizer Compiler 

Program 
Library I Transaction 

Library I Schema 
Library 

DBMS 

Figure 5. Coupling a DBMS with an Ada Programmmg Support Environment 

application program. 
This separation works for database schema definition since the output of 

the schema compiler can be logically thought of as an Ada package containing 
type definitions representing a database schema. The separation of transaction 
definition from application program is less natural because parameters must be 
passed from the application program to the DBMS and transaction results must 
be bound to application program variables. 

In the course of our project, two approaches for handling transaction 
definition have been considered. The first approach is similiar to the one used 
for schema definition. A transaction definition is passed to the transaction 
optimizer which generates an Ada package that implements (Le. calls the 
DBMS to execute) the transaction. The package is then loaded with the appli- 
cation program. This approach, however, leaves the applications programmer 
with a rather complicated interface. The programmer must learn a transaction 
definition language which is quite distinct from Ada. Besides, parameter pass- 
ing between the application program and the package that implements the 
transaction is cumbersome. Since Ada is a strongly typed language, it might be 
necessary to use an intermediate representation like character strings for pass- 
ing certain parameters. This has a number of drawbacks. First, the program- 
mer must explicitly encode and decode these strings. Second, compile time 
type checking cannot be performed on the contents of these strings. In gen- 
eral, such a parameter passing mechanism can be quite inefficient. 

These difficulties lead us to adopt a second approach which permits the 
application programmer to embed transaction definitions directly in an Ada 
program. The result is an integrated language, called Adaplex, which provides 
a tight coupling between Ada and our transaction definition language. No 
changes were made to existing Ada constructs. The new constructs that were 
added are treated in an Ada compatible manner. The coupling is achieved at 
the expression level. Applications programmers are free to use Ada 
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Figure 6. Configuration ol Maplex Programming Tools 

expressions, control structures, and subprogram calls within a transaction 
definition. Because of Adaplex's uniform syntax and semantics, we expect it to 
be very easy to learn and use by trained Ada programmers. 

For portability reasons, a preprocessor is used to decompose applications 
programs written in Adaplex into a transaction part and an Ada program part. 
The transaction part is forwarded to the transaction optimizer and the Ada 
part to the Ada compiler. The preprocessor is a very powerful tool. I t  provides 
the same integrity checking across the application program/DBMS interface 
that the Ada compiler provides for an Ada program. 

The schema compiler, transaction optimizer, preprocessor, and DBMS form 
the minimum set of program development tools required for the database 
environment. Their combined configuration is shown in Figure 6. Any one of 
the Multibase, LDM, DDM systems can be substituted in place of the box 
labelled DBMS. Provided all these tools are written in Ada, database schemas, 
application programs, and databases may be ported between Ada installations. 

Fundamentally, Adaplex adds two constructs to Ada, the database declara- 
tion and the atomic statement. These constructs provide for schema definition 
and transaction definition respectively. A database declaration specifies the 
data objects in a database, the types of those data objects, and their 
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database UNIVERSITY is 

type DEPT-NAME is (CS. €E. MA). 
type YEARS Is new INTEGER range 0 .. 120; 
UNKNOWN-AGE constant YEARS = 0; 

type COURSE is 
entity 

TITLE 
ROOM 
CREDITS 

end entity 

: STRING (1 . .  6) 
. STRING (1 .. 5); 
' INTEGER range 1 .. 4; 

type PERSON is 
entity 

NAME STRING (1 30). 
AGE YEARS : = UNKNOWN-AGE. 
SSN INTEGER; 

end entity; 

subtype INSTRUCTOR is PERSON 
entity 

DEPT : DEW-NAME; 
COURSES-TAUGHT : set of COURSE: 

end entlty; 

subtype STUDENT is PERSON 
entity 

DORM : !STRING (1 .. 10); 
ADVISOR : INSTRUCTOR withnull; 
ENROLLMENTS : set of COURSE; 

end entity; 

overlap INSTRUCTOR with STUDENT; 

unique TITLE within COURSE; 

end UNIVERSITY: 

Figure 7. An Pdaplex Database Declaration 

consistency/inte@ty requirements. Database declarations are processed by 
the schema compiler. Figure 7 shows the database declaration for the univer- 
sity database that was depicted graphically in Figure 1. In addition to the type 
and subtype declarations, several constraint statements have been specified. 

indicates that it is legal for a PERSON entity to be both a STUDENT and 
INSTRUCTOR simultaneously. 

unique TITLE within m; 
indicates that all COURSE entities must have unique TITLES. 

overlap lWTRWKR w i t h  STUDENT; 



with UNIVERSITY; use UNIVERSITY; 

ADD-COURSE 
declare 

NEW-COURSE COURSE. 
atomic 

NEW-COURSE ' = new COURSE (TITLE = > "CS-101". 
ROOM = > GET-ROOM(CS). - 
CREDITS = > 3): 

Include NEW-COURSE into 
COURSES-TAUGHT 

(I In INSTRUCTOR where NAME (I) = "Adam Jones"); 
exception 

end atomlc: 

when UNIQUENESS-CONSTRAINT = > 
PUT-LINE("Dupl1cate course name"); 

Figure 8. An Adaplex Database Transaction 

A database is similar to a package since it is a related collection of data 
and type declarations. However, a database differs from a package in three 
principal ways. First, there are explicit protocols within Adaplex for several 
independent main programs to share the use of a database. Second, a strong 
discipline is imposed on the specifications allowed in a database declaration. 
Third, database declarations are developed interactively via the schema com- 
piler, and they are stored for future reference in the schema library. 

An atomic statement specifies a compound operation which must be indi- 
visibly executed with respect to a database. The preprocessor extracts tran- 
sactions from atomic statements for processing by the transaction optimizer. 
Figure 8 shows an Ada code fragment containing an atomic statement. This 
transaction creates a new COURSE entity and indicates that the course will be 
taught by the instructor named Adam Jones. Notice that the database type 
declarations are made visible by the with and use statements. The expression 
level integration of Daplex and Ada is illustrated by calling an Ada subpro- 
gram, GET ROOM, to generate a value to assign to the ROOM function. Since 
COURSES &e constrained to have unique TITLES, it  is possible that the create 
statement may fail. An exception handler is included to cleanly handle this 
error. 

An atomic statement is similar to a block in the sense that it is a compound 
statement that has associated declarations and exception handlers. However, 
an atomic statement differs from a block in three ways. First, atomic state- 
ments are executed indivisibly with respect to databases. Second, strong dis- 
ciplines are imposed on the contents, nesting, parallel execution, and excep- 
tion handling of atomic statements. Third, atomic statements are transformed 
by the preprocessor to extract database transactions. 

A complete description of the Adaplex language can be found in [SFLSS]. 
A detailed discussion on our rationale for developing Adaplex can be found in 
[SFL83, SCDF851. 
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5. LDY 

LDM is a general purpose system for defining, storing, retrieving, updating, 
sharing, and protecting formatted information. While its users may be geo- 
graphically distributed, LDM and its data must  be centrally located. LDM is 
designed to provide all the functions typically found in a modern database sys- 
tem, including: 

logical and physical database definition, 
logical and physical database reorganization, 
a fully integrated data dictionary facility, 
an authorization mechanism for controlling database access, 
optimized selection of access paths for transactions, 
interference-free concurrent access by multiple users/transactions, 
automatic recovery from transaction failures, software crashes, and 
media failures, 
a dumping utility for taking a consistent snapshot of the entire database, 
a reload utility for restoring a database to  a previously saved state. 

LDM's main design objectives are transportability and high performance. 
Transportability is achieved by the use of Ada as the implementation language 
and by using a modular system architecture which is greatly facilitated by 
Ada's packaging construct and separate compilation mechanism. A description 
of LDM's component architecture can be found in [CFLR81]. High perfor- 
mance, on the other hand, requires the introduction of a number of technical 
innovations in the areas of physical data structuring, query optimization, con- 
currency control, and recovery management as identified below. 

LDM is designed to provide complete physical data independence. It  sup- 
ports flexible physical structuring options so that a database administrator can 
tailor the physical representation of a database according to application 
requirements [CDFLSZ]. LDM employs special data structures for the efficient 
maintenance of referential integrity and other contraints associated with type 
overlaps in a generalization hierarchy. It  also provides a wide range of options 
for the clustering of entities that belong to  a generalization hierarchy. LDM 
supports dynamic data structures (namely, linear hashing (LARS801 and B-trees 
[COME79]) to eliminate the need for periodic reorganization. In order to  sup- 
port the efficient traversal of interentity references, LDM implements a 
pointer validation scheme that minimizes the updating costs associated with 
the use of dynamic data structures. 

The design of LDM is geared towards the processing of repetitive transac- 
tions in a database applications programming environment. Transactions are 
compiled, thereby permitting the costs for parsing, authorization checking, and 
access path optimization to  be amortized over multiple execution. LDM is also 
designed to optimize a much larger class of queries than relational systems. In 
particular, we have developed efficient strategies for processing queries with 
outerjoins and nested quantifiers [RCDFSZ, DAYA83Al. At the same time, the 
amount of effort that LDM will expend to optimize a transaction template can 
be controlled by a user (in the form of a pragma). Thus, a user can ensure that 
the effort for optimizing a given transaction tc rnplate is commensurate with 
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the savings that can be expected to  accrue over repeated execution. 
LDM implements an integrated concurrency control and recovery mechan- 

ism which has the advantage of improving concurrency while simplifying tran- 
saction and system recovery. Specifically, LDM implements a multiversion 
mechanism that allows each read-only transaction to see a consistent snapshot 
of the database without having to synchronize with update transactions 
[CFLN82]. The essence of this mechanism is that update transactions create 
new versions of data objects without overwriting their previous versions. An 
efficient scheme is used to determine the appropriate version of different data 
objects each read-only transaction should see, and to identify those old ver- 
sions that can be garbage collected. Since database dumps can be considered 
as read-only transactions that access the entire database, they can also be 
taken non-intrusively (Le., without requiring the quiescence of concurrent 
updates). 

In addition to being a stand-alone centralized database system, LDM also 
functions as an integral part of DDM and Multibase. 

6. DDM 

DDM is a homogeneous distributed database system built on top of a collec- 
tion of LDMs running at different sites connected by a computer network. 
From the end-users' point of view, DDM performs precisely the  same opera- 
tions supported by LDM. This is because all complexities introduced by frag- 
mentation, distribution, and replication of a database are hidden from end- 
users. Users access a distributed and replicated database in DDM just as they 
would access a centralized database in LDM. In a distributed environment, a 
copy of LDM and a copy of DDM are installed on each of several computers in 
a computer network where data is distributed / replicated. Each LDM is 
responsible for managing all locally stored data at its resident site. Each DDM 
cooperates with all other DDMs in the network in order to hide the distribution 
and replication .of data from end users and applications. As a truly distributed 
system, DDM delivers the benefits of improved processing capacity, communi- 
cations efficiency, survivability, and modular upward scaling. DDM provides 
the following important facilities. 

An integrated global schema that encompasses data stored at all sites. 
DDM maintains a global directory in order to keep track of the distribu- 
tion and replication of data. I t  automatically maps transactions on the 
global schema into subtransactions on data stored at individual LDMs. 

0 Complete physical data independence. The database administrator is free 
to tune parameters involving the physical distribution, replication, and 
representation of the stored data, without affecting the external view of 
the database. 
Mutual consistency of replicated data. Users deal with logical data only. 
Propagation of updates to redundant copies of updated data is managed by 
the system. 
Atomicity of distributed transactions. DDM guarantees than no partial 
effects of one transaction will be seen by another. If a transaction is 
unable to complete, all of its effects on the database are automatically 
undone. 

G.1.3.13 



Continued operation in spite of site failures. Users can continue to per- 
form retrieval and update operations, even though some copies may be 
temporarily inaccessible. These latter copies are brought up to date by 
the system before being used for processing subsequent transactions. 
Dynamic integration of new sites. No quiescence of on-going activities is 
needed for reconfiguration of the system. 

As in LDM, our main design objectives for DDM are transportability and 
performance. Again, we have introduced a number of technical innovations in 
the areas of data allocation, query optimization, concurrency control, and 
recovery management in order to obtain good performance. These are sum- 
marized below. 

DDM supports flexible database fragmentation and allocation that can be 
used to improve locality of reference and efficiency of query processing 
[CDFR83]. Each database managed by DDM is optionally divided into a 
nslmber of groups of data fragments, based on the likelihood of their being used 
together. Each group of data fragments constitutes a unit for allocation and 
may optionally be replicated at as many sites as desired. For a replicated frag- 
ment group, two kinds of copies are distinguished. Online copies are used for 
processing transactions. Offline copies serve as warm standbys that can 
quickly (and automatically) be upgraded to online status in order to retain a 
desired degree of resiliency as sites storing online copies fail. When specifying 
the replication parameters for a fragment group, a database administrator 
indicates the number of desired online copies and those sites whose copies are 
to be kept online preferrably. DDM will then strive to keep those copies at the 
preferred sites online, but dynamically bringing copies stored at other sites 
online to maintain the desired level of resiliency when necessary. 

Unlike previous systems, DDM is designed to take into consideration data- 
base fragmentation and replication in its selection of strategies for processing 
transactions [CDFG83]. Whereas most previous studies on distributed query 
optimization assume the distribution of joins over unions, DDM will consider 
the options of using left distribution, right distribution, or no distribution at all 
when processing queries that involve such operations. DDM treats each frag- 
ment group as an integral data unit during the optimization process. Both 
compile time and run time optimization are performed. Compile time optimi- 
zation seeks to identify a good order for processing the high level data manipu- 
lation operations on fragment groups without binding operations and copies to 
sites. This is because the choice of which copy of a fragment group to use for 
processing a transaction cannot be made until the availability of sites at run 
time is known. By dividing the optimization into two stages, DDM maximizes 
the amount of preanalysis done at compile time while ensuring the validity and 
optimality of the generated access plans. 

DDM's concurrency control mechanisms are extensions of those used in 
LDM. Again, a multi-version mechanism is used to eliminate conflicts between 
read-only and update transactions [CGSSI. In addition to improving parallel- 
ism, this mechanism greatly facilitates the taking of global checkpoints. Such 
a checkpoint may be necessary if one wants to reset a distributed database to a 
previous globally consistent state after the log data in one or more sites is 
damaged. With respect to replica control, DDM provides a balance between 
synchronization overhead and failure resiliency. Essentially, updates are pro- 
pagated to online copies synchronously. Offline copies are only updated in a 
background batched fashion. 
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Because DDM is designed for distributed command and control applica- 
tions, survivability is a very important issue. A special transaction commit 
algorithm is used to ensure that distributed transactions are terminated in a 
timely fashion, even in the presence of site failures, so that resources at the 
remaining operational sites can be fully utilized (without being tied down by 
incomplete transactions). DDM is designed to recover automatically from 
total failures wherein all of the sites coordinating a transaction or all of the 
sites storing replicated copies of a fragment group fail simultaneously. Previ- 
ous systems have treated such failures as catastrophes and required human 
intervention for recovery. In order to speed up the availability of data at a 
recovering site, DDM employs an incremental site recovery strategy. Essen- 
tially, the fragment groups stored at the recovering site are prioritized and 
brought up to date one at a time (with the assistance of other replication sites). 
As soon as a fragment group is brought online, it can be used for processing 
new transactions without having to wait for the recovery of other fragment 
groups. 

7. Multibase 

Multibase is designed to provide a logically integrated, retrieval-only, user 
interface to a physically nonintegrated environment containing pre-existing 
databases. These databases may reside on different types of database manage- 
ment systems, at different physical locations, and on different types of 
hardware. 

Before local databases can be accessed through Multibase, the local host 
systems must  be connected to a communications network. This network can be 
local or geographically distributed. After Multibase has been connected to the 
same communications network, a global user can access data in the local data- 
bases through Multibase using a single query language. Each local site main- 
tains autonomy for local database updates. Local applications can continue to 
operate using the existing local interfaces, as before. 

Multibase presents the end user or application program with the illusion of 
a single, integrated, non-distributed database. Specifically, Multibase assumes 
the following responsibilities: 

0 providing a global and consistent picture of the available data, 
knowing the locations for the database items, 
transforming a query expressed in the global query language into a set of 
subqueries expressed in the different languages supported by the target 
systems, 
formulating an efficient plan for executing a sequence of subqueries and 
data movement steps, 
implementing an efficient plan for accessing the data at a single target 
site, 
moving the results of the subqueries among the sites, 
resolving incompatibilities between the databases (such as difference in 
naming conventions and data types), 
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resolving inconsistencies in copies of the same information that are stored 

combining the retrieved data to correctly answer the original request. 
in different databases, and 

Global Data Manager 
(GDW 

Multibase has three key design objectives: generality, compatibility, and 
extensibility. To satisfy the first objective, Multibase has been designed to be 
a general tool, capable of providing integrated access to various database sys- 
tems used for different applications. Multibase has not been engineered to be 
an interface for a specific application area. The second requirement of Multi- 
base is that it co-exists and be compatible with existing database systems and 
applications. No changes or modifications to local databases, DBMS's, or appli- 
cation programs are necessary to interface Multibase with systems already in 
operation. The local sites retain full autonomy for maintaining the databases. 
All local access and application programs can continue to operate without 
change under Multibase. The third design objective is that it must be rela- 
tively easy to couple a new local system into an existing Multibase 
configuration. 

All these objectives are achieved by designing a modular architecture for 
Multibase and by making the system largely "description driven" [LR82]. 
Multibase's modular architecture isolates those parts of the system that deal 
with specific aspects of a local system. Because of this, a Multibase 
configuration can be expanded to include a new DBMS in a short period of t i m e  
and with little impact on the existing Multibase software. Descriptions are 
used throughout Multibase to tailor general modules for specific applications, 
users, and databases. These descriptions are written by the database 
administrator(s) who is responsible for tailoring a Multibase configuration. 

Flgun 9. Multibase Component Architecture 

The component architecture of Multibase is illustrated in Figure 9. There 
are two types of modules: a global data manager (GDM) and a local database 
interface (LDI). All global aspects of a query are handled by the GDM. All 
specific aspects of a local system are handled by an LDI. There is one LDI for 
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each local host DBMS accessed by Multibase. The GDM makes use of LDM as 
an internal DBMS to manage its workspace. The LDM is used to  store the 
results of the Daplex singlesite queries which are processed by the  LDI's and 
to perform all the required steps of the final query for combining and format- 
ting the data. 

It should be mentioned that Multibase does not provide the capability to 
update data in the local databases or to synchronize read operations across 
several sites. This is because implementing global concurrency control 
mechanisms for read or update operations would have necessitated the global 
process to request and control specific resources offered by the local systems 
(Le., locking local database items) as required to ensure consistency across the 
databases. However, most systems do not make available to  an external pro- 
cess the services necessary to implement global concurrency control. Since 
Multibase is designed to operate without requiring modifications to  existing 
systems, the tools necessary to ensure consistency across databases are not 
globally available. Thus, autonomy of database update is maintained locally, 
and Multibase provides the global user with the same level of data consistency 
that the local host DBMSs provide to each local database user. 

In addition to the highly modular and description driven architecture, the 
design of Multibase has required research in the areas of schema integration, 
global query optimization, and local query optimization. Our results in each of 
these areas have been reported in [KG81, DAYA84a1, [DAYA83b, GY84, 
DAYA84b1, and [DG82] respectively. 

8. Status 

Designs of the Daplex and Adaplex languages are complete. Prototype ver- 
sions of Multibase and LDM which support most of the described capabilities 
have been implemented. Implementation of DDM is well underway. To date, 
the systems contain approximately 500,000 lines of Ada source code. Most of 
the implementation was done in an Ada-subset using an Ada-to-Pascal transla- 
tor [SOFT81]. The systems were then converted to  full Ada using the DEC VAX 
Ada compiler [DEC85]. Development is continuing using both VAX Ada and 
Rational's Ada Development Environment [RAT85]. The initial target environ- 
ment for all three systems is VAX VMS. The current systems support an 
interactive version of Adaplex (Le., Daplex). 
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1. h e r v i e w  

This p r o j e c t  was i n i t i a t e d  to s tudy  t h e  t e c h n i c a l  i s s u e s  of ex tending  t h e  
MAPSE to suppor t  t h e  l i fe  c y c l e  of l a r g e ,  canplex  d i s t r i b u t e d  systems such as  
t h e  Space  Station Program (SSP). The work h a s  been d i v i d e d  i n t o  two phases .  
Phase-one,  c o v e r e d  by t h i s  r e p o r t ,  i d e n t i f i e s  a l i s t  of a d v a n c e d  t e c h n i c a l  
tools needed to extend t h e  MAPSE t o  meet t h e  needs b e l i e v e d  to be inhe ren t  i n  
t h e  Software S u p p o r t  Envi ronment  (SSE). O f  s e c o n d a r y  i m p o r t a n c e  was t h e  
i d e n t i f i c a t i o n  of a list of advanced management tools. 

Phase two, which is on-going a t  t h i s  time, is t o  s t u d y  and  document  t h e  
major t e c h n i c a l  i s s u e s  i n  a d d i n g  t h e s e  t o o l s  t o  t h e  MAPSE a s  a n  i n t e g r a t e d  
e x t e n s i o n  e v o l v i n g  i n t o  an a p p r o p r i a t e  SSE. The i n t e n t  is t o  p r o v i d e  a 
framework for understanding and e v a l u a t i n g  t h e  subsequent deve lopnen t  and/or 
procurement of such tools. 

This p a p e r  h a s  been e x t r a c t e d  from t h e  f u l l  i n t e r i m  r e p o r t  on  t h e  p h a s e  
one efforts. It inco rpora t e s  j u s t  t h e  d e s c r i p t i o n  of SSE requirements ,  and a 
l ist  of t h e  t o o l s  i d e n t i f i e d .  Other  t o p i c s  a d d r e s s e d  i n  t h e  i n t e r i m  r e p o r t  
i n c l u d e  an o u t l i n e  of t h e  p r i n c i p l e  requirements  for a MAPSE, a d e s c r i p t i o n  of 
t h e  l i f e  c y c l e  model and a d e s c r i p t i o n  of t h e  tools i n  t h e  c o n t e x t  of t h e  l i f e  
c y c l e  model. 

For t h e  purpose of t h i s  paper,  t h e  b a s i s  l i f e  c y c l e  model is an adap ta t ion  
of  t h e  symbolic r e p r e s e n t a t i o n  of McDermid and Ripken (1984) t o  t h e  model  
descr ibed  i n  L b D  Standards 2167 and 2168. 'ke model p a r t i t i o n s  t h e  process  of 
software deve lopnen t  i n t o  t h e  fo l lowing  phases: 

p l :  System Requirements Analysis ,  
p2: Software Requirements Analysis ,  
p3: Prel iminary Design, 
p4: Detai led Design, 
p5: Coding and bit Tes t  
p6: Cunputer Software bmponent In t eg ra t ion  

The o u t p u t s  from e a c h  p h a s e  are t h e  formal r e v i e w  documents  used  fo r  
v e r i f i c a t i o n  and v a l i d a t i o n ,  which a l s o  form t h e  i n p u t s  t o  t h e  s u c c e e d i n g  
phases .  A l l  documents  and d e v e l o p m e n t  i n f o r m a t i o n  are m a i n t a i n e d  i n  an  
i n t e g r a t e d  l i f e  c y c l e  p r o j e c t  o b j e c t  base which s e r v e s  t o  c e n t r a l i z e  and 
c o n t r o l  t h e  d e v e l o p m e n t  p r o c e s s .  A l l  a c t i v i t i e s  and t o o l s  work w i t h  t h i s  
p r o j e c t  object  base t o  m a i n t a i n  t h e  p a r a l l e l  p r o c e s s e s  of c o n f i g u r a t i o n  and  
q u a l i t y  control. 
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2.0 A Brief  Descr ipt ion of Support Ehvironment Requirements 
i n  the Context of the Life Cycle Model 

2.1 System Fkquirements Analysis 

2.1.1 C h a r a c t e r i s t i c s ,  P r i n c i p l e s  and Methods 

S e v e r a l  a c t i v i t i e s  s h o u l d  b e  pu r sued  d u r i n g  r e q u i r e m e n t s  i n t e r p r e t a t i o n ,  
f e a s i b i l i t y  s t u d i e s ,  and a n a l y s i s .  

Seman t i c  I n f o r m a t i o n  C a p t u r e  - S u p p o r t i n g  i n t e r p r e t a t i o n ,  t h e  c a p t u r e  of 
requirements  i n  the f w a  semantic model i n v o l v e s  i d e n t i f y i n g  key terms, 
c a t e g o r i z i n g  t h e  terms, d e f i n i n g  t h e  terms, and i d e n t i f y i n g  t h e  r e l a t i o n s  
between the terms. Ihe c a p t u r e  of semantic information creates a record ing  
of t h e  s e m a n t i c  model  of t h e  r e q u i r e m e n t s ,  which becomes p a r t  of t h e  
base l ine .  Assuning t h e  semantic information is machine-encoded, it might  be 
expressed i n  a formal language such as  Problem Statement Language (PSL) or i n  
a c o m b i n a t i o n  of formal g r a p h i c s  and text  e x p r e s s i o n  s u c h  as  Software 
Requirements h g i n e e r i n g  Methodology (SREM). 

Semantics Analys is  - Chce t h e  requirements  are expressed i n  t h e  c o n t e x t  of a 
semantic model, t he  model r e l a t i o n s  can be used for a sys temat ic  a n a l y s i s  of 
t h e  completeness  and cons i s t ency  of the requirements.  This is achieved  by 
a s k i n g  q u e s t i o n s  which are answered  w i t h  t h e  a i d  of t h e  r e l a t i o n s ,  s u c h  a s  
"Are there a n y  o t h e r  p r o c e s s e s  which s h o u l d  be r e l a t e d  t o  Process A by t h e  
' p r e d e c e s s o r  of' r e l a t i o n ? "  

T r a c e a b i l i t y  may be e s t a b l i s h e d  t h r o u g h  r e f e r e n c e  r e l a t i o n s  be tween 
r e q u i r e m e n t s  and s p e c i f i c a t i o n ,  d e s i g n  and c o d e ,  e tc .  The r e l a t i o n a l  
a n a l y s i s  can  be used  t o  assess t h e  impac t  of r e q u i r e m e n t s  c h a n g e s  on  t h e  
b a s e l  ined products.  

The semantic a n a l y s i s  a c t i v i t y  a i d s  d e v e l o p m e n t  b y  i d e n t i f y i n g  areas  of 
requirements  i ncunp le t eness  or inconsis tency.  

F e a s i b i l i t y  -- and Risk Analys is  - Eva lua t ing  t h e  f e a s i b i l i t y  of requirements  is a 
F e a s i b i l i t y  should  be viewed from s i g n i f i c a n t  p a r t  of requirements  a n a l y s i s .  

t h e  p e r s p e c t i v e s  of des ign ,  performance and cost. 

Design f e a s i b i l i t y  i n v o l v e s  f ind ing  a t  least  one des ign  t h a t  satisfies t h e  
requirements.  Any approach from t r i a l  design to  pro to typing  is appropr i a t e .  
Per formance  f e a s i b i l i t y  is a s p e c i a l  case of d e s i g n  f e a s i b i l i t y  a n a l y s i s .  
hce  a t r i a l  des ign  is e s t a b l i s h e d ,  modeling is an e f f e c t i v e  technique  for 
ana lyz ing  performance. Cost f e a s i b i l i t y  i n v o l v e s  e s t ima t ing  costs based on 
t h e  t r i a l  design. Cost a n a l y s i s  must cons ider  t h e  t h r e e  key elements:  t h e  
d e v e l o p m e n t  p h a s e ,  t h e  o p e r a t i o n s  p h a s e ,  and  t h e  p h a s e  for  c o n t i n u i n g  
adap ta t ion .  

2.1.2 Requirements on t h e  Support Ehvironment 

The r e q u i r e m e n t s  on t h e  s u p p o r t  e n v i r o n m e n t  d a t a  base,  d e r i v e d  from 
requirements  a n a l y s i s ,  are: 
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Basel ined Products  - ?he semantic information is the  o n l y  data associated wi th  
r e q u i r e m e n t s  a n a l y s i s  t h a t  s h o u l d  be b a s e l i n e d .  It s h o u l d  be unde r  
conf igu ra t ion  c o n t r o l  and s u b j e c t  to change o n l y  as  requirements  changes are 
approved. of each phase 
(which must be d icho tanous ly  demonstrated a t  acceptance test time) b u t  also 
the %houldstV which have  l i f e  c y c l e  i m p l i c a t i o n s  t h a t  cannot  be dichotomously 
d e m o n s t r a t e d  a t  a c c e p t a n c e  test  time and which may r e q u i r e  t h e  d e s i g n  of 
special metrics and i n s t r u n e n t a t i o n  to support  their a n a l y s i s  a t  subsequent 
p o i n t s  i n  t h e  l i f e  cycle. 

Ease l ined  data should  n o t  o n l y  i n c l u d e  t h e  

Non-Basel ined Data - Any i n f o r m a t i o n  associated w i t h  m o d e l i n g ,  s i m u l a t i o n ,  
pro to typing ,  or semantic a n a l y s i s  should be saved temporar i ly .  It should be 
used later i n  requirements  a n a l y s i s  i t e r a t i o n  or other a c t i v i t i e s .  

Measurement Data - S e v e r a l  measurements of the  requirements  a n a l y s i s  a c t i v i t y  
and its o u m s  should be captured:  

- Size of the d a t a  base for semantic in format ion ,  - Complexity of t h e  requirements  as  measured by t h e  r e l a t i o n s h i p s  i n  the 

- Nunber of i n c o n s i s t e n c i e s  or m i s s i o n s  found. 
semantic information and 

2.2 Software Requirements Spec i f i ca t ion  

2.2.1 Characteristics, F r i n c i p l e s  and Methods 

Formal  Record in  - The s p e c i f i c a t i o n  i n f o r m a t i o n  mus t  be recorded i n  some 

modes and func t ions .  It should  have t h e  c h a r a c t e r i s t i c s  of being minimal,  
unders tandable ,  accurate and p r e c i s e ,  and e a s i l y  modified. 'he s p e c i f i c a t i o n  
should  use  a formal no ta t ion  to fac i l i t a te  formal c o r r e c t n e s s  a n a l y s i s  and 
automated a n a l y s i s  of t h e  s p e c i f i c a t i o n  easier. 

suitable _Ir_g orm. As a minimun, t h e  s p e c i f i c a t i o n  should describe i n t e r a c t i o n s ,  

C o m p l e t e n e s s  A n a l y s i s  - T h i s  is done  by t r y i n g  o u t  a d e s i g n  of t h e  sys t em.  
Completeness a n a l y s i s  gene ra t e s  ques t ions  which can h e l p  i d e n t i f y  information 
a b s e n t  from t h e  r e q u i r e m e n t s .  I n  many cases, t h i s  a c t i v i t y  is  done  d u r i n g  
requirements  a n a l y s i s .  

Correc tness  Demonstration - The s p e c i f i c a t i o n  must be shown as  c o n s i s t e n t  with 
t h e  r e q u i r e m e n t s .  S i n c e  t h e  r e q u i r e m e n t s  may n o t  be s ta ted i n  a formal 
manner;  a r i g o r o u s  p r o o f  of t h e i r  c o n s i s t e n c y  may n o t  be p o s s i b l e .  The 
c o r r e c t n e s s  demonstration is t h e n  produced  t h r o u g h  a s u b j e c t i v e ,  i n f o r m a l  
a n a l y s i s  based on t h e  semantics  information from requirements  a n a l y s i s .  

Consis tency Ana lys i s  - Any method for performing t h i s  a n a l y s i s  depends on the  
7 G i X T h e  s p e c i f i c a t i o n  information. E a formal s p e c i f i c a t i o n  language is 

used, c e r t a i n  k inds  of problems may be detected by ana lyz ing  t h i s  nota t ion .  
I n  o t h e r  cases, t h e  c o n s i s t e n c y  of t h e  s p e c i f i c a t i o n  i n f o r m a t i o n  must  be 
j u d g e d  on a less p r e c i s e  basis .  A good example  of t h e  s t a t e - o f - t h e - a r t  i n  
s p e c i f i c a t i o n  methods is t h a t  advocated by the Naval Research Laboratory,  and 
used  t o  d e v e l o p  t h e  s p e c i f i c a t i o n  of t h e  A-7 f l i g h t  program. The 
s p e c i f i c a t i o n  docunent i n c l u d e s  formal, t a b u l a r  no ta t ion  which l e n d s  i t se l f  
to completeness  and cons i s t ency  ana lyses .  
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2.2.2 

The r e q u i r e m e n t s  on t h e  s u p p o r t  e n v i r o n m e n t  da t a  base, d e r i v e d  from t h e  
s p e c i f i c a t i o n  ac t i v  i t y  are : 

Basel ined Products  - lhe s p e c i f i c a t i o n  information is base l ined .  Any modeling 
information produced should  be base l ined  i f  it is c r u c i a l  to the  l i f e  cycle 
suppor t  of the software. 

Non-Basel ined - Data - T h i s  material  i n c l u d e s  p a r t i a l  s p e c i f i c a t i o n s  u n d e r  
deve lopnen t ,  a l t e r n a t e  s p e c i f i c a t i o n ,  and d i a g n o s t i c  information produced by 
s p e c i f i c a t i o n  a n a l y s i s  tools. 

Measurements - Examples of use fu l  measurements data to be captured  are: effort 
and r e source  data concerning the  deve lopaen t  of the s p e c i f i c a t i o n ,  size data ,  
n m b e r  of errors and changes made, and s u b j e c t i v e  measures of the  q u a l i t y  and 
c a n p l e t e n e s s  of the  s p e c i f i c a t i o n .  

Requirements on the Support Ehvironment 

2.3 Prel iminary and Detailed Design 

2.3.1 Characteristics, Principles and Methods 

A des ign  is the  t r a n s l a t i o n  of the "shallst l  *om requirements  a n a l y s i s  i n t o  Ada 
package s p e c i f i c a t i o n s .  F u n c t i o n a l  r e q u i r e m e n t s  s h o u l d  be t r a n s f o r m e d  i n t o  
f u n c t i o n a l  Ada s p e c i f i c a t i o n s  t h a t  c a n  be checked by  an  Ada Compi le r .  Non- 
f u n c t i o n a l  r e q u i r e m e n t s  (i.e., c o n s t r a i n t s )  s h o u l d  be t r a n s f o r m e d  i n t o  a 
d i s c i p l i n e  of Ada comnents tha t  can be checked by other APSE tools. 

Three areas of d e s i g n  s u p p o r t  are i d e n t i f i e d :  f o r m a l  r e c o r d i n g  of s y s t e m  
des ign ,  formal  record ing  of data and program des ign ,  and c r e a t i v e  aids. 

Formal Recording of System k s i g n  - There are s e v e r a l  methods i n v o l v e d  i n  
record ing  the system design. 

Information-Hiding - lhis method i n v o l v e s  i s o l a t i n g  information wi th in  modules. 
The modu le  l i m i t s  are d e f i n e d  by  the i n f o r m a t i o n  ( d e s i g n  d e c i s i o n s ,  da t a  
d e f i n i t i o n s ,  etc.) t o  be isolated.  Design is based on t h e  e x p e c t e d  c h a n g e s  
to the informat ion ,  t h u s  l o c a l i z i n g  t h e  effect of f u t u r e  changes. 

Module S p e c i f i c a t i o n  - Focusing on module s p e c i f i c a t i o n s  y i e l d s  a d e s c r i p t i o n  
allows o t h e r s  to  determine the i n t e n t  of a c a n p l e t e  module by reading  

the module s p e c i f i c a t i o n .  

- Use H i e r a r c h y  - F o c u s i n g  on the u s e  h i e r a r c h y  y i e l d s  a d e s c r i p t i o n  which 
e x p l a i n s  which p rograms  depend o n  t h e  correct i m p l e m e n t a t i o n  of a g i v e n  
module to produce correct r e s u l t s .  

Formal Recording of Data and Program Design - lhe techniques  and methods for 
the formal r eco rd ing  of data des ign  and program des ign  are: 
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Program Design Lan uage (PDL) - 'Ihe wri t ing  of d a t a  and progran des ign  i n  a PDL 

s u f f i c i e n t l y  low- leve l  to suppor t  d i r e c t  coding,  and is f l e x i b l e  enough to 
l e a v e  m e  ques t ions  unanswered while t h e  des igner  proceeds with t h e  design.  
(i.e., Ada Source c o d e  w i t h  Ada t tstubstt .)  

is a u s e f u l  + tec n i q u z r  f o r m a l l y  r e c o r d i n g  t h e  program d e s i g n .  It is 

S t e p w i s e  Ref inement  - T h i s  method g o e s  hand i n  hand w i t h  PDL. With s t e p w i s e  
r e f i n e m e n t ,  s p e c i f i c a t i o n s  for t h e  lower l e v e l  c o d e  become p a r t  o f  t h e  
d o c u m e n t a t i o n  of t h e  p rocedure .  T h i s  makes t h e .  i n t e n t  of t h e  c o d e  much 
clearer. 

Abstract ion of Data Types - With a b s t r a c t i o n ,  t h e  des igne r  can d e v e l o p  d e t a i l s  
where t h e y  are needed.  This p e r m i t s  i n f o r m a t i o n - h i d i n g  a s  well a s  a more 
independent implementation of t h e  system. 

--- 

Creative Aids - Many c r e a t i v e  techniques  exist for design. A des igne r  chooses  
t e c h n i q u e s  b a s e d  on t h e i r  i n d i v i d u a l  a p p r o a c h  t o  c r e a t i v i t y .  Some p r e f e r  
g r a p h i c  t e c h n i q u e s  w h i l e  o t h e r s  do  n o t .  The c h o i c e  of c r e a t i v e  t e c h n i q u e s  
should be l e f t  to t h e  i n d i v i d u a l ,  whereas t h e  techniques  for formal record ing  
must be standard.  

-- Data and Cont ro l  Flow Analys is  - Module decomposition and func t ion  a l l o c a t i o n  
An example 

Described below are some r e p r e s e n t a t i v e  c r e a t i v e  a i d s :  

are based upon t h e  d a t a  and c o n t r o l  flows requi red  by t h e  system. 
is St ruc tured  Design. 

Data S t r u c t u r e  Transformation - Pans fo rma t ion  is a des ign  technique  i n  which 
t h e  s t r u c t u r e  of t h e  i n p u t  and o u t p u t  d a t a  d e t e r m i n e s  t h e  structure of t h e  
program. 

- 

Graphic Decomposition Techniques - Graphs showing h i e r a r c h i c  r e l a t i o n s  d e p i c t  
An example  i s  S t r u c t u r e d  A n a l y s i s  and t h e  d e c o m p o s i t i o n  a t  many l e v e l s .  

Design Technique (SADT). 

Graphic Cont ro l  Descr ip t ions  - Other ways of showing t h e  c o n t r o l  flows i n  t h e  
progran are Petri Nets and Warnier-Q-r diagrams. 

2.3.2 Requirements on the Support Ehvironment 

As w i t h  t h e  o t h e r  a c t i v i t i e s  of d e v e l o p m e n t ,  t h e  da t a  base mus t  c o n t a i n  
information on t h e  design. 

B a s e l i n e d  P r o d u c t s  - Throughout  t h e  l i f e  of t h e  s y s t e m ,  t h e  most r e c e n t l y  
The . sys tem 

. 
a p p r o v e d  form of t h e  d e s i g n  must  be s t o r e d  i n  t h e  d a t a  base. 
design is en te red  before t h e  des ign  of v a r i o u s  subsystems or modules. 

Non-Baselined Data - T h i s  i n c l u d e s  p r e l i m i n a r y  d e s i g n s  a s  well a s  g r a p h i c  
d i s p l a y s  used  d u r i n g  t h e  c r e a t i v e  p r o c e s s .  Graph ic  d i s p l a y s  i n c l u d e  tree 
structures, b l o c k  d i ag rans ,  and o t h e r  material created by des ign  tools. ?he 
d a t a  base must p rov ide  for main ta in ing  t h e  temporary des igns  developed before  
one is a c t u a l l y  chosen and base l ined .  

- 
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Measurements - These should  i n c l u d e  module in te rconnec t ion  measurements, such 
as data bindings.  lhese should a lso i n c l u d e  lower design measurements, such 
a s  cyclomatic c o m p l e x i t y ,  and operators and  ope rands .  Many of these 
measurements are norma l ly  taken on the completed code, b u t  with good, low- 
l e v e l  PDL, t hey  can be taken (or approximated) dur ing  design. 

Archiva l  - Data - Archived data should c a p t u r e  t h e  mot iva t ion  behind t h e  choice 
of design. lhe archived  data should also i n c l u d e  past des igns  e v o l v e d  from 
use  or rejected dur ing  developl lent  a l o n g  wi th  the reasons  for the r e j e c t i o n .  

2.4 Coding and kit Tes t ,  Cunputer Software Component I n t e g r a t i o n  

2.4.1 Qlaracteristics, P r i n c i p l e s  and Methods 

'his s e c t i o n  w i l l  focus  on the unique requirements  of deve lop ing  d i s t r i b u t e d  
systems. 

Des igns  which map program e n t i t i e s  across d i s t r i b u t e d  p r o c e s s i n g  r e s o u r c e s  
s h o u l d  be s p e c i f i e d  i n  two complemen ta ry  p a r t s .  F i r s t ,  t h e  f u n c t i o n a l  
r e q u i r e m e n t s  s h o u l d  be d e m o n s t r a t e d  t o .  be met by  t h e  program d e s i g n  by  
execut ing  the progran i n  the h o s t  environment. (Le., compile  and execute  t h e  
Ada s o u r c e  code on t h e  h o s t  s y s t e m  w i t h o u t  r e g a r d  t o  p r o p e r t i e s  o f  
d i s t r i b u t i o n . )  Second,  t h e  n o n - f u n c t i o n a l  r e q u i r e m e n t s  (i.e., c o n s t r a i n t s )  
such a s  the l o c a t i o n  each program e n t i t y  is to be ass igned ,  t iming c o n s t r a i n t s ,  
s i z i n g  c o n s t r a i n t s ,  etc. should be mapped to a s imula to r  for a n a l y s i s  of t h e  
i m p l i c a t i o n s  of imposing t h e s e  r e s t r i c t i o n s  upon the des ign  which was proven i n  
t h e  f irst  s t e p .  Tuning of a s s i g n m e n t s ,  code, algorithms and s t r u c t u r e s  c a n  
t a k e  p l a c e  i n  t h e  h o s t  e n v i r o n m e n t  u n t i l  t h e  s imulator  p r o v i d e s  a d e g r e e  of 
confidence. Load modules can then  be b u i l t  and moved to the  t a r g e t  environment 
or to a t a r g e t  test bed for further study. lhe implementation should  produce 
an  e f f e c t i v e ,  u n d e r s t a n d a b l e  t r a n s f o r m a t i o n  of t h e  d e s i g n .  The a u t o m a t i c  
gene ra t ion  of appropr i a t e  comnents i n  the source  code can ease the more complex 
process  of maintenance i n  a d i s t r i b u t e d  environment. 

lhe fol lowing are some key aspects of implementation: 

Standard I n t e r f a c e  Set to a Catalog of Runtime Support  Environment Fea tu res  and 
ODtions.  - T h i s  i n t e r f a c e  set e s T a b l i s h e s  a v i r t u a l  Ada machine.  The 

--- - 
~ - -  

c a n p i l a t i o n  system produces target code that u s e s  the s e r v i c e s  provided by 
t h e  s tandard  i n t e r f a c e  set. lhe requested s e r v i c e  determine which modules of 
the runt ime suppor t  l i b r a r y  are to be exported to the target environment. 

Target  Network Topolo y S p e c i f i c a t i o n  - This  allows t h e  des igner  to s p e c i f y  t h e  

The d e s i g n  a l so  i d e n t i f i e s  t h e  communica t ions  s u p p o r t  
symbolic names + or remote area networks, local area networks, and i n d i v i d u a l  
p r o c e s s i n g  nodes.  
a v a i l a b l e  to l i n k  t h e  v a r i o u s  e n t i t i e s  of the network. 

Targe t  Node Resources S p e c i f i c a t i o n  - This  allows t h e  des igner  to s p e c i f y  the 
ha rdware  r e s o u r c e s  for e a c h  node i d e n t i f i e d  w i t h  t h e  n e t w o r k  t o p o l o g y  
s p e c i f i e r .  The sys t em w i l l  r e t a i n  t h i s  i n f o r m a t i o n  i n  t h e  p r o j e c t  ob jec t  
base a l o n g  wi th  the c o l l e c t i o n  of software resources  that w i l l  be assigned to 
t h i s  node  l a t e r  i n  t h e  d e s i g n .  'he d e s i g n e r  d e c l a r e s  t h e  i n s t r u c t i o n  set 
a r c h i t e c t u r e s  a v a i l a b l e ,  t h e  memory banks and t h e i r  a t t r i b u t e s ,  t h e  buses  and 
t h e i r  a t t r i b u t e s ,  and t h e  comnunications l i n k s  that are a v a i l a b l e .  
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P a r t i t i o n i n g  and A l l o c a t i o n  Spec i f i ca t ion  - After the M a  source  code has been 
t r a n s f o r m e d x t o  a DIANA r ep resen ta t ion  and executed to demonstrate  t ha t  it 
meets the  f u n c t i o n a l  requirements  of the  program, a d i s c i p l i n e  of ComEntS 
and key wrds such as  " locat ion" can be used to map each program e n t i t y  t o  a 
symbolic l o c a t i o n .  This symbolic l o c a t i o n  c o r r e s p o n d s  t o  t h o s e  node and 
ne twork  i d e n t i f i c a t i o n s  p r e v i o u s l y  en tered  with the topology s p e c i f i c a t i o n  
and t h e  node r e sources  s p e c i f i c a t i o n .  'lhese non-funct ional  requi rements  are 
added as  a t t r i b u t e s  to t h e  DIANA r ep resen ta t ions .  

D i s t r ibu ted  Workload Simulat ion - After t h e  symbolic l o c a t i o n  a s s i g n n e n t s  and 
o t h e r  c o n s t r a i n t s  h a v e  b e e n  a d d e d  t o  t h e  a t t r i b u t e s  o f  t h e  D I A N A  
r e p r e s e n t a t i o n ,  the  wrkload s imula to r  examines t h e  p r o j e c t  object base to 
determine c h a r a c t e r i s t i c s  of t h e  a l r e a d y  e x i s t i n g  w r k l o a d  ( i f  any) and to 
select empi r i ca l  estimates of comnunications d e l a y s ,  p rocess ing  throughput ,  
and o t h e r  r e l e v a n t  estimators. A s imula t ion  is then provided for a n a l y s i s .  
If the a n a l y s i s  i n d i c a t e s  t h e  design approach is n o t  feasible, new approaches 
t o  d i s t r i b u t i o n  can  be p r o v i d e d  by r e t u r n i n g  t o  t h e  p a r t i t i o n i n g  and 
a1 l o c a t i o n  spec i f  i ca t ion .  

D i s t r i b u t e d  Program B u i l d i n g  - When t h e  work load  s i m u l a t i o n  i n d i c a t e s  a 
feasible des ign ,  the process  of b u i l d i n g  new l o a d  modules i n c l u d e s  examining 
t h e  symbolic l o c a t i o n  assignments added to the  DIANA tree and looking  these 
u p  i n  t h e  p r o j e c t  object base t o  d e t e r m i n e  what  t y p e  of i n s t r u c t i o n  set 
a r c h i t e c t u r e  t h e  p a r t i c u l a r  e n t i t y ' s  object code is to be generated for. If 
t h e  code is t o  be added t o  t h e  workload of  an e x i s t i n g  s y s t e m ,  it is  a l s o  
necessary  to i d e n t i f y  i f  a d d i t i o n a l  modules or new v e r s i o n s  of the run time 
l i b r a r y  need to be added or i f  a d d i t i o n a l  hardware is  l i k e l y  to be needed to 
accomnodate the inc rease  i n  workload. lhe end r e s u l t  of the program b u i l d i n g  
a c t i v i t y  is to prepare  a l o a d  module c o n s i s t i n g  of a p p l i c a t i o n s  code and t h e  
n e c e s s a r y  s u p p o r t  from t h e  r u n  time l i b r a r y  for each of t h e  p r o c e s s o r s  
affected by the  d i s t r i b u t i o n  of the progran e n t i t i e s .  

-- Run Time Support  Environment Monitoring - If l i f e  and p rope r ty  are to depend 
upon t h e  program m e e t i n g  both its f u n c t i o n a l  and i ts  n o n - f u n c t i o n a l  
requirements ,  it may be d e s i r a b l e  to prepare t h e  program for execut ion i n  a 
t a r g e t  testbed. to be e f f e c t i v e ,  the testbed should be f u l l y  in s t runen ted  
and i n t e r a c t  with the host environment. ?his r e q u i r e s  the  suppor t  of a run 
time m o n i t o r  for e a c h  processor i n  t h e  t a r g e t  t e s t b e d  t o  i n t e r a c t  w i t h  t h e  
i n s t r u n e n t a t i o n  and host environment to p rov ide  meaningful information. 

2.4.2 Requirements on the Support Fhvirorment 

The most impor tan t  requirements  and o p p o r t u n i t i e s  for the  suppor t  envrionment 
l i fe  c y c l e  project object base becane e v i d e n t  fran t h i s  phase. ?he r e s u l t s  are 
smarized below: 

Base l ined  Products  - zhe f b n c t i o n a l  requirements  are similar to  those described 
i n  t h e  p r e c e d i n g  s e c t i o n s .  However, o p p o r t u n i t i e s  a r i s e  d u e  t o  t h e  
r e q u i r e m e n t s  for  t h e  D I A N A  r e p r e s e n t a t i o n  i n  the implementation phase. An 
es t imated  t e n  to twenty times the processing time is requ i r ed  to  c o n v e r t  Ada 
s o u r c e  code t o  D I A N A  r e p r e s e n t a t i o n  a s  compared t o  c o n v e r t i n g  t h e  D I A N A  
r e p r e s e n t a t i o n  to object code for the t a r g e t  environment. Furthermore source 
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code and object code can both be reconstructed from the DIANA representation. 
Since the Stoneman requirements f o r  t he  MAPSE provides  a unique 
identification for each object produced (which includes history attributes 
identifying the time, date,  t oo l s ,  etc.  used t o  manipulate the object) ,  an 
enormous amount of on-line storage space can be conserved i n  the project 
object base i f  the DIANA representation is maintained as the baseline. 

The other important implication for baseline control as  a r e s u l t  of t h i s  
phase is the identification and maintenance of the network topology and the 
network node resources described i n  the preceding section 

Non-Baselined Data - The temporary storage required for t h i s  category is 
similar to the functional requirements l i s t e d  i n  t he  other sections of t h i s  
report. However, the savings and storage space made possible by the 
utilization of DIANA representation described above may be significant even 
for temporary stor age r equi r emen t s . 

Measurement - Data - A nunber of metrics regarding the utilization of these tools 
is desirable. Knowing who is using the too ls  for what projects, and knowing 
the frequency of reference can provide valuable management ins igh t s .  

2.5 Verification and Validation 

2.5.1 Qlaracteristics, Frinciples and Methods 

The methods linked w i t h  correctness analysis  are e i ther  s t a t i c  analysis  or 
dynamic analysis. Stat ic  analysis includes, i n  order of  increasing r igor ,  
reviews, inspections, and proofs of correctness. Dynamic analysis includes a l l  
t e  s t i ng t e c h  iques . 
Reviews - Reviews determine the internal completeness and consistency of system 

requirements and software specification, design and test information. ?hey 
a l so  assess i ts  consistency wi th  i t s  predecessor information. Reviews 
involve a broad range of people, including developers, managers, users, and 
outside experts or specialists. A review m u s t  have specific objectives and 
questions to  be addressed. Ihe review findings generate rework tasks for the 
dev e l  owen t group. 

Inspections - Inspections evaluate the correctness of  component l e v e l  
specification, des ign ,  code, t e s t  plans, and test resu l t s .  They are  more 
formal and rigorous than reviews. An inspection involves a small group of 
people of a specific make-up, and follows a well4efined procedure. 

Proofs of Correctness - All developnent products should be verified with an 
infomy1 proof of correctness. Certain cr i t ical  kernels of code or special 
applications may require a formal proof of correctness. 

Testing - Dynamic execution of the system or system canponent with know inpu t s  
i n  a known environment is a %estn. If t h e  test result is consistent w i t h  
the expected result, the  canponent is deemed correct i n  the limited context 
of the t e s t .  ?he following baselined documents are  created r e l a t i v e  to  
tes t ing : 
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- Test Plan - Defines the scope, approach, and resource needed for 
tes t ing .  

- Test Procedures - Provides a detailed description of the steps and test 
data associated with each test  case. 

- Test Results - bcunents the results of each test run. Ulsuccessful 
runstrigger trouble reports which must be addressed by the developnent 
group. 

h e  relationships between system fbnctions and component or system test cases 
should be c l e a r l y  established. Then, when changes are made to  par ts  of a 
system, a subset of test cases can be identified which w i l l  test the system 
suff ic ient ly .  This process is ca l led  regression testing. Effective 
regression t e s t ing  is a good way to  reduce software developnent costs. 

2.5.2 Requirements on the Support Fnvironment 

The requirements on the Support Environment data base, derived from the 
correctness analysis, are smarized below: 

Baselined Products - Test plans, test procedures and test results (of correctly 
They are controlled by  configuration executed t e s t s )  are a l l  baselined. 

management. h e  results of inspections and proofs might also be baselined. 

Non-Baselined Data - 'zhe non-baselined data includes wrk-in-progress, static 
analysis  da-rouble reports,  and debug data. Temporary storage of t h i s  
type of information is required. 

Measurement Data - A number of measurements associated w i t h  correctness 
analysis should be captured. These include: nunber of modifications to a 
u n i t ,  nunber of errors found per nit, nunber of test runs, nunber of errors 
by error category, and test coverage. 

- 

2.6 Project Management Support 

2.6.1 Characteristics, Principles and Methods 

Estimation - Most resource estimation techniques use the m asurement from 
prior projects to estimate resources. Support of estimation methods requires 
a data base of comprehensive measurements including such software system 
parameters a s  s ize  of source code, source language, development resources 
expended, and canplexity measures. 

Precedence Networks - This planning method is used to analyze task dependencies 
and to  determine the c r i t i c a l  path of development a c t i v i t i e s .  Such an 
analysis is usually needed to define a real is t ic  schedule. It is also useful 
i n  evaluating contingencies and creating contingency plans. 

Change Control - This is the core of configuration management. It controls a l l  
?he approval process for changes might be a s  changes to baselined products. 

follows : 
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- The w r i t t e n  r e q u e s t  for change  is s u b m i t t e d  t o  the  c o n f i g u r a t i o n  
It might cane fran a change i n  requi rements  or from managanent function. 

a t r o u b l e  report docunenting a defect. 

- An assessment is made of the t e c h n i c a l  f e a s i b i l i t y  of t h e  change, and its 
If it has the p o t e n t i a l  to endanger l i f e  

- The change is approved or disapproved based on its p o t e n t i a l  effect upon 

impact on schedule  and budget. 
and proper ty ,  a separate s a f e t y  assessment may be made. 

s a f e t y ,  i ts v a l u e  and its cost. 

- The developnent  p l an  is modified and r e sources  ad jus t ed  to add approved 
changes. 

- The f u l l y  v e r i f i e d  change is entered  i n t o  the new base l ine .  

2.6.2 Requirements on the Support Ehvironnent 

lhe a c t i v i t y  of management imposes the fo l lowing  requirements  on the suppor t  
environment data base. 

Base l ined  Products  - The developnent  p l a n ,  a l though  n o t  a part of t h e  software 
system or its descr ipt ive information,  should be maintained as a baselined 
product  to i n s u r e  proper management of changes to  t h e  plan.  Configurat ion 
management data and q u a l i t y  assurance p l a n s  should a l so  be base l ined .  

Non-Basel ined Data - S i g n i f i c a n t  amounts  of informat ion  associated with the  
management m u s n  kep t  temporar i ly .  lhis information i n c l u d e s  engineer ing  
change requests, t r o u b l e  reports, resource a l l o c a t i o n  p l a n s ,  actual r e source  
u t i l i z a t i o n  reports, t e c h n i c a l  mi l e s tone  s t a t u s ,  a c t i o n  i t e m  s t a t u s ,  and the  
r e s u l t s  of q u a l i t y  assurance  reviews. 

Measurement  Data - Many measurements  are  of i n t e r e s t  t o  management. These 
inc lLde  the number of engineer ing  change proposals (ECP), and t r o u b l e  reports 
(TR), time to process an ECP or TR, resource use for each ECP or TR, resource 
use  by p r o j e c t  a c t i v i t y ,  and software size and complexi ty  measures. 

- 
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3.0 Tools to Extend the MAPSE 

Data Entry -- 
Problem Expression Editor (for requirements analysis, specification) 
Syntax/Template Directed Editor Menu Manager 
Waphics Package (GKS, 2D, 3) 
Mrd Processing integrated with O-aphics and Electronic Mail 
Network comnunications across hosts and targets 

Library Aids 

Semantics Information Browser 
Reuseable Cunponents Ekowser 
Dictionary and Schema Tools 

- 
Diana Pee Ekowser 

bst CLP script  Manager 

Management Aids - 

Report Generator b n g e  Request Packer 
(Integrated Text and O-aphics Forms Generator) 
Automated Precedence Network 
Autanated Work Breakdown Structure 
Schedule Generator 

Resource Scheduling Aid 
Event FlagaSignals Generator 

( signal path planning) 

Syntax/Semantics Analysis 

Requirements Language Processor 
Requirements In format ion Analyzer 
Design Specification Language Processor 
PDL Syntax Analyzer 
Design bmplexi t y/Metr i c s  Analyzer 

Pro0 f/Asser tion Checker 

Veri fyer /  Asser tion Analyzer 
Theorem Prover 
Symbolic Execution System 

Implementation Support 

Compilation &der Analysis 
Automated Recanpilation 
Elaboration &pendencies Analyzer 
Change Control and Impact Assessment 
Generic Usage Report Generator 

Consistenc y/Completeness 
Checker 

Standards Checker 
Requirements to Design 

Pacer/Checker 

C a l l  Pee Report Generator 
Performance Metrics Analyzer 
Ckoss-Re fer ence Generator 
Statement Rof i le  Generator 
Diana Pee Fkpander 
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T e s t  Generation. Analvsis. Automation 

Test Harness PDL Interpreter 
Generic Instantiation Harness 
Test h t a  Cenerator 
Black Box Test Generator Test h p l e t e n e s s /  Con si stenc y 
hta Extraction and Reduction Analyzer 
Test Results Canparator 
Target System Testbed ( f u l l y  instrunented)  Target Ehulation/Simulation 
Ehv ironmen t Simulator/ St imula tor Scenario Generator 
Fkrformance b n i t o r  Fault Stimulator/Analyzer 

Test Coverage Analyzer 

Modeling/Simulation 

Resource Estimator 
Modeling Tool 
Froto typing/ Simulation Capability 

Run-Time System Support 

Runtime Support Dependencies Analyzer 
System Timing Analyzer 
System Tasking Analyzer 

Distributed Target System Support 

Target M e  Resources Editor 
Target Netwrk Topology Editor 
Partitioning and Allocation Eijitor 
Distributed System Generator (progran bui lder)  

Expert  Systems 

Real-Time Assistant 
Faul t-Tolerance Assistant 
Reuseable Components Assistant 
Upgrade bad,  Test and Integration Planning Aid 

(for non-stop nodes) 

krformance M e 1  
Reliability Model 

Runtime Monitor 

S y s t e m  Storage Analyzer 

Distributed mrkload 
simulator 

Expert System Generator 
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Abstract 
An artist acquires all the necessary tools before painting a 

scene. In the same analogy, a software engineer needs the necessary 
tools to provide hidher design with the proper means for 
implementation. Ada provides these tools. Yet, as an artist's 
painting needs a brochure to accompany it for further explanation 
of the scene, an Ada design also needs a document along with it to 
show the design in its detailed structure and hierarchial order. 

Ada could be self-explanatory in small programs not exceeding 
fifty lines of code in length. But, in a large environment, ranging 
from thousands of lines and above, Ada programs need to be well 
documented to be pressrved and maintained. The language used to 
specifg an Ada document is called Ada Structure Design Language 
CASDL). This language sets some rules to help derive a well 
formatted Ada detailed design document. The rules are defined to 
meet the needs of a project manager, a maintenance team, a 
programmer and a system designer. This paper will explain in detail 
the design document templates, the document extractor, and the 
rules set forth by the Ada Structure Design Language. - 
Rda covers the different scopes under the software engineering 

spectrum. The Rda scopes can range from real time systems, 
scientific applications and other known software applications to 

software engineering concepts. 
Keeping this in mind, Ada can become very complicated when 

designing large projects governed by manu different tasks, generic 
entities and overloading mechanisms. Therefore, design documents 
are needed to clarifu some of the obscurities that might arise when 
designing large systems. The design document should also accomodate 
for the tools provided by Ada and support the Ada language by 
showing the program, entities, and tasks at the functional level. 
The d8sign method, called Ada Structure Design Language CASDL), 
approaches Ada from two different levels : 

1 abstract problems mapping, object oriented programming and new 

o Ths specification level. 
o The functional level. 

G.2.2.1 



ORlG~NkP PAGE IS 
OF POOR QUALITY 

-- <m> 
-- - *  Packago TASKS-INPUT-QUEUE * -- E m -  

- <m> 
-- - *  * -- * Author I L u t f i  C h o d r u i  * 
- - * c o m p a n y  I csc * -- * Job ordor I * - * Contract I * -- * * - 
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2.0 ASDL levels: 

tinn lmvel: 
ASDL, at this level, will suffice the specification definition 

and description of a system and put the following at hands : 

structure. 
o Requirements : statement definition of the overall 

o Author 8 
History updates : a log file of updates will provide another 

programmer and the system manager with 
history information of all changes made. 
This pin-points the responsible person far 
the changes made and ksep track of program 
progression. 
Tracking rssponsibilities is needed by the 
system manager in case anu ambiguities ever 
arise that need further explanation or 
further documentation to help clarify the 
changes made. 

each entitu. 

throughout its life cucle. ASDL will 
provide all the clues for a maintenance 
team to keep track of the environment. 

o Independability : interfaces and hierarchies definitions of 

o maintainability : the system will be easily maintained 

ASDL, at this level, provides programmers with tools for 
It debugging ease and managers with prospects on design clarity 

allows, the docurnentation of : 
. 

o Requirements : statement definition of an entity. 
o Structured 

analysis : explaining the input/output and 

design : defining the functional flow of each 

specifications of each entity. 
o Structured 

entity. 

I 3.0 ASDL format 

CISDL will show the declaration of an entity. The data structure, 
functions, procedures, tasks, and packages are explained at this 
level in a general form without going into details. The 
specification level design document using ASDL is shown in example 
-1-. CI further investigation of this example allows us to identify 
different entries within the specification level format. Each entry 
permits the documentation of a part of the sustsm that meets the 
needs of the different classes of people involved. All entries are 
mapped to a static form which allows the derivation of a 
specification level template. The template skeleton is static on 
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the outside, but the explanation within each entry can be 
dynamically filled with information to preserve the creator’s 
integrity to express his own design documents. 

The template entries for the specification level format serve as 
a road map to each or all individuals involved in the design of the 
entitu. ASDL specification template Format holds the following 
entries: 

o entity overview 
o internal routines 
o exceptions 
o external references 
o external routines 
o change history 
o dependency tree 

The entity overview entry identifies the function of an entity. 
This entry serves all the classes of people involved in the 
development of the project. Tho information covered in this entry 
should hold the important features governining an entity. Not only 
would this entry serve as information coverage of the entity but 
also acts as a fast index to the contents of the entity under 
development or investigation. 
The internal routines entru covers the naming definitions and the 

entity internal routines descriptions. A maintenance team can make 
use of this entry bg utilizing the explanation provided to 
understand the problem statement definition and to identify the 
internal routines. Both, the project developers and system 
maintainers hold the responsibility of keeping the informetion 
within this entry up to date. 
The exceptions, external references and external routines entries 

exclusively permit the system designers and project managers to 
recognize the sustem exceptions handling mechanism and to 
understand the system components interaction. The system designers 
can keep a close watch OF the sglstem by making sure that all errors 
are handlgd and a safe passage is assured bg( the exceptions 
handlers. tloreover, the exception entry will provide a fast summary 
of all exceptions occuring within an entity. In the same manner, 
the external references and routine entries will allow the project 
managers to check the entity interaction at both the gengral 
C External references) and spec if ic levels Cexternal 
references’internal routines.) 
The historu changes entry, allows the system maintainers to log 

all the changes made to the entitu throughout its life cycle. 
Horeover the sgstem developers can communicats among each other by 
notifuing through this entry other team members of important 
changes. 
The tree dependency nicely shows in a graphic form the entity 

internal hierarchu. This entru is intended to serve all the people 
involved in the project. 

7 
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0RlGiN.N P X E  fS 
OF POOR QUALITY 

packagw body TASKS-INPCTT-QUEUE $ 8  

procwdurw DEALLOCATE i s  naw UJCHEKED-DECKLOCATION (QUEUE, WEUE-ACCESS)I 

-- I n p u t  quwuw m a n r w r  --? w i l l  rwtrwiuw i n f o r m a t i o n  from t h e  input -- quww 

t n k  t ype  INPUT-QUEUE-WWMSER 1 8  
e n t r y  PUT (ELEMENT I i n  OBJECT ); 
e n t r y  GET ( E LMEM i ou t  OBJECT ) )  
e n t r y  PUEUE,SIZE (SIZE-OF-QUEUE I o u t  INTEGER ) I  

end i 

OUEUE-ER I I NfUT-QUEUE-r(PIE#GER I 

Pt.?P. - 8  

- <ew> 
task body INPUT-QUEuE,I'W&GER I 8  

- SIZE -> t o  r e t u r n  t h w  8izw o f  tho i n p u t  quwuw I n  twrms o f  nunkr  -- o f  nod- i n  t h w  quwue. 

SIZE 

-- Func t ion  1 - - - -- - 
- In I 

-- I n  O u t  1 

- out I 

1 natural  1- 0 ;  

t o  manag. t h e  input quww. I t  w i t t u r  p u t s  on or t d r w s  
an objwct  o f f  t h w  quwuw. The GET wntry  t o  g w t  an o b j w c t  
o f f  t h w  queue is gurrdwd 80 thw task uill nakw the 
requwstor  W a i t  u n t i l  an o b j 8 c t  i 8  p u t  on t h w  quwuw. 
Thf8 task w i l l  m8n8ge the q u w e  8 i z e  and r e t u r n  i t 8  
V A l U W  Uhm rwuestwd. 

w4 

N / A  

N/4 
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-- <m> 
proc.do+o M 

- $unction a t o  cal l  tho input quwo nnagmr task so i t  c m  got n -- objoet o f f  tho quwo. 

- I n  8 )ryA 

-Is out CWCI - out I ol.mnt -> tho oh joct  t o  bo rorutned frm t b  quouo. 

- Functiorr I t o  crll tiu input guru. rnrJII tamk w i t  w put rn -- O b j e c t  01) th. quw.. - I n  a el-t e) t h  0bf-t to k Put 00 th * . r u e  

- I n  Out I W A  

- ou* I EVA 

- Fatetian I t o  call ttr input pucluo - t u &  se i t  c m  got thm - sire o f  th. qum. 

- Ln aw 

- Z n k r  r W A  

-nlAlg.rltA I 
c r r  n - rwndoxuous w i t h  ttm input quouo u ~ a y o r  tW to get thwquwo - size 
md; 

- 
- 

ond TASKSJtWUT-PUEUE( 

Exanple -2- I Ada functional Am01 dosign do-t using ASDL. 
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ASDL will describe the system in a more detailed functional flow. 
ASDL will require system developers to combine Ada keywords and the 
english language to bring about a detailed flow of the entity, yet 
not cryptic to the designers or software maintainers. The system 
manager can also check the system logic and design structure for 
ambiguity, clarity, performance and possible implementation Ci.e 
whether the entity can be implemented as described or whether the 
implementation is not possible due to misinterpretation of problem 
definition, requirements need, Ada weaknesses, etc....). 

ASDL functional level format holds four entries as shown in 
example -2-. The "in", "in out" and "out" entries correspond to Ada 
parameters passing descriptions. The inclusion of these entries 
will entitle the system maintainers, developers, designers and 
managers to understand the input/output of system components. 
tloreover, a functional flow design is given by the algorithm entry 
to show the structure in its more detailed english like design. 
Finally, ASDL tends to be similar to PDL (Process Design 

Language) at this level, which proves to be advantageous since no 
training is needed for individuals already familiar with PDL. 

9 . 0  ASDL rules 

In general, ASDL does not impose any rigid rules. The ASDL rules 
for the specification level format should insure the derivation of 
a design document. The rules are set to give a detailed explanation 
of entities interactions, entity specification and data 
representation. The specification level format can be mapped onto 
the following rules : 

o new updates should be entered when necessary 
o dependency tree should be leveled to show the new entities in 
their hierarchial depth 

o history logs updates should cover the changes made 
o the information should be entered under the specified field 

to insure the extractor ability to perform its functions. 

At this level, ASDL requires developers to respect the outer and 
inner structures of Ada blocks, statements and looping mechanisms. 
The Ada keywords should be entered to show the Ada flow as if it 
was coded. Moreover, the Ada keywords should be combined with a 
detailed explanation in english to show the flow of Ada statements. 
The advantages of combining Ada keywords and English words will 
divulge when the implementation phase takes place. The proJect's 
implementation will become a matter of mapping the algorithm to Ada 

I code 
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5.0 ASDL extractor 

5 . 1  The formiter =&Ea&QL 
ASDL extractor is envisioned as a formatter extractor with menu 

driven options. When asked to format a documsnt written by ASDL, 
the extractor will prompt the requestor with a menu. The menu 
selection can be accessed through cursor control. 
ASDL formatter extractor should come with default values to allow 

simple extracting and echo printing of text to the specifisd 
destination file. On the other hand, if required, thm extractor 
should perform all the necsssary tasks to derive a well formattsd 
Ada design document including centering of titles, margin 
Justification, page numbering and other functions found in 
wordprocessors. Noreover, the extractor can control the part of 
text to be extracted from the document by a simple turn on/off 
flags or toggle keus Cif an interactive session is requested.] 
Those flags are shown in example 1 & 2 as * @ ' ,  ' # *  signs preceded 
and succeded bu ' < '  and ' > '  designators. - 
In summary, ASDL will prolonge the software life cycls. In 

addition, it will allow the documentation of large systems 
otherwise might become very difficult to understand. Finally, ASDL 
will act as a communicae to all the classes of individuals involved 
in the system development. 

* Flda is a registered trademark OF the U.S qovernment, Ada Joint 

UI ASDL extractor is still under development. 
Program office. 
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In a software system the size of the Space Station software Support 

Environment (SSE), no one software development or implementation 

mathodology is presently powerful enough to provide safe, reliable, 

maintainable, costatiactive real-time or near real-time software. In 

an environment that mu& survive one of the harshest and lengthiest 

lifetimes, software must be produced that wffl perform as predicted, 

from the ftrst time it is executed to the last. many of the software 

challenges that will be faced will require strategias borrowed from 

"Artificial Intelligence (AI)." In the statement of Work (SOW) for the 

SSE, AI is the only development area mentioned as an example of a 

legitimate r'648on for a waiver from the overall requirement to usb 

the Ada" programming language for software development. While it 
A h r c  C R @ g i d u d  Tr- of- IhtM States 8.rcnmt, M a  3.w Program 

UtJm 
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is recognized that some solutions are not readily amenable to solution 

in contemporary Ada Programming Support Environmenb (APSES), 

it is clearly the intent of the 3OW that there be one development 

language for all of space Station software so that configuration 

management, systum definition and reuse of verified and validated 

software be as simple and as off icient as pogsible. This paper will 

attempt to def ine the limits of the applicability of the Ada language, 

APSES (of which the SSE wiU be a spacial case), and software 

engineering to AI solutions by describing Q scenario that involves 

many facets of AI methodologies. 

The scenario itself is fairly simple. It involves the Space Station, an 

undocked Space shuttle, and a robot unattached to either the Space 

Station of' the nearby Shuttle (the robot is quipped with vision 

sensors, a propulsion systam with translational and rotational jets, 

and manipulatos/grapplers). The robot wffl start In prorlmity to the 

Station either stationkeeping or performing a low priority task that 

may be preempted. A t  the request of one o! the spacialists onboard i 
G.2.3.2 
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the Station the robot begins to maneuver itself to the nearby Shuttle. 

If the Shuttle is near enough, the robot will be guided by the Station 

Trqjectorg Control Program. If the Shuttle is any appreciable 

distance away the robot will request Guidance, navigation and 

Control ("lac) programs necesmry to compute and maintain a 

tmJectory to the Shuttle. I t  may also request the Station Trajectory 

Control Program to calculate intermediate vectors that it will use to 

compare against during the rendezvous. While all of this was 

happening, the specialist onboard the Station identified and requested 

a software load in addition to the OnhC software being loaded by the 

robot. This software included a vision system, general QnhC 

prognuns to be used in proximity operations at the end of the 

rendornous (tnls could be detailed enough to allow the robot to literally 

settle down in a specifled pit ion and attitude in the cargo deck of the 

specified Shuttle without any human intervention, or it might allow a 

specialist onboard the Shuttle to intemctivelg guide the robot to the 

deslred location and attitude) and a task identification that will 

establish whether or not this task may be preempted and, if it can, by 



what other tasks or levels of tasks. Once the necessary software has 

been loaded, the robot is essentially a free agent and must vie with 

other agents for Station computing resources. As soon as it begins an 

escape trajectory, the robot begins to interface with the Station 

Collision Avoidance Program (CAP) to establish and maintain a clear 

trajectory. V e r y  likely the robot and the Station wffl enter a dialogue, 

with the robot proposing a trajectory and the CAP either accepting 

the pn>pOsad trajectory or denying it. If the trajectory is denied, it is 

the responsibility of the robot to calculate another trajectory, using 

Stution computing facilities if nacessary. This cycle of calculation, 

proposal, and verification wffl proceed until an acceptable trajectory 

is proposed, acceptcrble meaning that the propoeed trajectory does 

not involve undue risk of collision between the robot and the Station 

or the robot and other free flyers, and that the proposed trajectory is 

reasonable given the mount  of propulsive and non-propulsive 

consumables that have been budgeted for this tusk (a configuration 

item that will be maintained by the Station Object Basa). The robot is 

responsible for calculating a trajectory that meets the specified goals : 

~ 
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that the rendezvous occur within a specified amount of time, that the 

rendezvous cost no more than a specified amount of non-reusable 

resources, and that the rendezvous occur with a specified object 

(rather than that the rendezvous occur at a specified place). The 

Station maintains configuration control over trajectories using the 

CAP and will not allow trajectories that violate safety standards. 

After 'the robot has negotiated a safe trajectory, it still must maintain 

a dialogue with the Station 50 that both are aware of the robot's 

current and predicted pi t ion  in any given time quanta. This 

dialogue is necessary to keep the CAP current and 80 that the robot 

may be informed of any changes in the trajectory or in the task. 

When the robot arrives in near proximitv to the Shuttle it has been 

assigned to rendezvous with, it will announce itself to 'the Shuttle 

COmpUbm. At  this point, depending On the Software loaded at the 

Station, the robot may or may not be able to proceed to dock without 

any human intervention. I! it is capable, the robot will inform the 
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Shuttle computers, and begin a docking sequence. A t  any time the 

humans onboard may elect to override the automatic docking 

sequence and control the robot through their onboard computers. If 

the robot has not been loaded with the appropriate software, it will 

announce this and wait for further instructions. Shuttle spacialists 

may decide to either load the software nemssary for an automatic 

docking sequence into the robot, or manually control the docking 

sequence. 

I Once the robot is securely docked, a spacialist in the cargo bay begins 

refurbishment and outfitting of the robot. The old I 

manipulatoxdgrapplers are removed and new once are attached. 

The robot is refilled with consumables for the next segment of its task 

and, in parallel with all of this activity, new SOnwara is loaded into the 

robot. This new software will guide the robot to a satallite at a 

gaosyrchronous altitude, diract the robot to grapple the satellite 

(which wffl require the robot to make Contact with the satellite in a 

very speclfic attitude with vow specific rotational and translational 
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velocities as well as a sequence of grapple maneuvers that must be 

performed as directed to ensure stability), and return to the Shuttle or 

to the Sation so that the satellite may be repaired. Alternatively, if 

the repair is simple enough (such as increasing the spin of the 

satellite) the robot may perform the indicated repair and return to 

the Station (if supplies of consumables allow return to the Station 

rather than refueling at the mutt&). The cloee in proximity 

operations immediately preceding the grapple will requira a number 

of real-time computations. The robot must visually confirm that the 

satellite is the correct one, that the approach is proceeding nominally, 

and that grapples are being manipulated in the correct sequence and 

towards the correct targets on the satellite. TraJactory programs in 

the robot must calculate burns that will match translational and 

mtutional velocities of the two vehicles and manipulator control 

p-s must monitor and guide grapplers from an unsteady 

platform toward targets that are moving. As soon as the manipulaotr 

control program confirms that the satellite has been securely 

grappled, the robot begins to contact the Station. I t  reports the 
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succwstul completion of rendezvous, approach and grapple and again 

enters negotiation with the CAP, this time for a return trajectory. 

When a acceptable traJectory (which will be based on new mass 

properties and different consumables lcmdings that reflect the current 

robot/sabllite pair’s configuration characteristics) has baan agreed to 

by both parties, the robot will begin its trip home to the Station. As 

before, the robot will maintain contact with the CAP and perform 

maneuvers as required or as requestad bg the CAP until it is docked at 

the Station. 

This scenario illustrates the flexibiltiy offered by allowing a 

general-purpose robot to serve as an free agent to perform a task that 

would be uneconomical if parformed by humans or it performed bg a 

robot that could not perform unless guided b$~ humans or Shuttle or 

station computers. A robot may be treated as an agent and allowed to 

compete with other agents for computing and other shareable 

resources to maximize the efficient use of thaee mwurces. Obviously 

computing time and consumables will both be at a premium for the 
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Station since neither is a renewable resource. Just as obviously, it is 

more off icient to sand a robot to do many tasks rather than sanding a 

manned vehicle with the life-support system that it must provide. 

An added benefit to treating the robot as a separate agent is that in 

the event of a communication failure the robot would be able to 

continue the task until such time as communications a m  restored or 

the t ~ s k  mires communication (such as the negotiation for 

trajectories described before). This also makes efficient use of human 

resources and offloads computing work to the responsible agent - the 

robot. A subtle, but important, benefit is that this approach separates 

the specialists from details about how the robot fullfills the task 

assigned to it (similar to the way that object-oriented design hides 

implementation details from the user) allowing himher to worrg 

about the overall task rather than details that are subJect to change 

dwmidlg (such as a trajactory that mills the task requirement 

without violating Station safety constraints). 

All of the software discussed in this paper should be implemented in 
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AdaM to ensure consistancy of inbrface between the Goitware 

modules. The Adan construct of packages will allow software to be 

developed in modules that are additive to the total software 

functionality. The time is now to start deciding not w h e w  Ada" 

should be used for AI applications on the Station, but how to efficiently 

use the power of AdaM to develop software maules that are 

sufticiently well engineered to meet real-time requirements in 

problem spces that may not allow a complete description at any 

given time. To inkoduce another language on Station doubles the 

complexity of configuration management. To introduce another 

language on Station that cannot suppo~% strong twin$ will double 

again the configuration management task. It  is clear that AdaM is 

for mang applications in AI, but it is not clear that another 

language is -for AI applications or that a trade off between 

power in expressing a solution using a traditional' AI language (Le. 

Lisp, Prolog) and the resources required to maintain any type of 

configuration control (including verification, validation, testing and 

safety data) over a configuration item produced using that language 
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is worth the price. Perhaps it is too early to tell, but it is my hop that I 

by discussing now what the Station will require in the future we may 

have a -tal vision of our intermediate and long-term goals and the 

tools we will use to reach those goals. I think that discussing scenarios 

such as the one above will prove fruitfull in determining the direction 

that the Space Station SSE will take. I 

Gilbert marlowe 

600 Qcmini Blvd. 
Houston, Texas 77068 

C/O Rockwell shuttle WMtiOnS Company (RSOC) 

(7 13) 282-2760 

Special thanks  to Dr. Charles W. McKay for his support and guidance. 
Thanks also to Lisa Willingham for moral support and the abilty to listen to 

me ramble cm long after a mere mortal would have gone to sleep. 
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N89-16375 - 
TION ADA RUNT= SUPPORT FOR 

Edward J. Monteiro 
McDonnell Douglas Astronautics Co. - Houston 

16055 Space Center Blvd. 
Houston, Texas 77062 

(713) 280-1629 

The Space Station Data Management System (DMS), associated computing subsystems, 
and applications have varying degrees of reliability associated with their operation. 
On one hand, payload applications and associated processing can fail or have 
interrupted service without endangering the operation or safety of the Station. On 
the other hand, subsystems such as the Environmental Control and Life Support 
Subsystem (ECLSS) must be fail safe. The Guidance and Control subsystem must be 
non-stop in nature. These different levels of reliability require corresponding levels 
of support from the runtime environment. 

A model has been developed [McKay 861 which allows the DMS runtime environment 
to appear as an Ada virtual machine to applications executing within it. This model is 
modular, flexible, and dynamically configurable to allow for evolution and growth 
over time. 

Support for Fault-tolerant computing is included within this model. The basic 
primitive involved in this support is based on atomic actions [Grey 78, Lampson 811. 
An atomic action posesses two fundamental properties: 1) It is indivisible with 
respect to concurrent actions and 2) it is indivisible with respect to failure. These 
properties allow rollback and recovery to occur in systems which encounter 
erroneonous computing. Using this primitive as a building block, higher levels of 
fault-tolerant support can be achieved. A transaction is a collection of atomic actions 
which collectively appear to be one action. Transactions may be nested, providing 
even more powerful support for reliability. Transactions and nested transactions 
exhibit the same fundamental properties as an atomic action. This abstraction has 
found widespread usage in database technology and non-stop computing 
environments [Meuller 84, Comm 851. 

This paper describes a proposed approach to providing support for nested atomic 
transactions within the Ada runtime model developed for the Space Station 
environment. The level of support is modular, flexible and dynamically configurable 
just like the overall runtime support environment. These characteristics of the 
model allow for the varying needs of reliability to be met under conditions where 
fault avoidance cannot be guaranteed. The paper discusses: 

D 

a) the requirements which must be addressed in the Space Station DMS 
e n v i r o n m e n t .  

b )  an overview of the transaction model 

c )  the proposed protocol model 

d) an example of its use 

e )  the Ada syntax and semantics associated with the protocol 

f )  and, other modules needed to complement the transaction model 
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REUSABLE SOFTWARE PARTS AND THE 
SEMI-ABSTRACT DATA TYPE 

Sanford G. Cohen 
McDonnell Douglas Astronautics Company 

P.O. Box 516 
St. Louis, Mo. 63166 

The development of reusable software parts has been an area of 
intense discussion within the software engineering community for 
many years. More recently, Ada has been promoted as having the 
facilities for developing reusable software. However, there have 
been few attempts to validate reusability concepts in practice for 
real-time embedded applications such as missile navigation, 
guidance and control. For these applications parts must not only 
be reusable, but they must also be efficient and easy to use. 

Missile guidance, navigation and control applications are noted 
for severe constraints in terms of processor size and 
computational requirements. In this paper, the author describes 
an approach for developing reusable parts for these applications 
which meet the following reusability criteria: 

1. Reusable: Capable of being used/reused in a wide 
spectrum of applications within the domain for which the 
parts were developed. 

2. Tailorable: Capable of being customized to the precise 
requirements of the using/reusing applications. 

3 .  Efficient: Capable of operating within an environment 
which is severely constrained in terms of both memory and 
execution cycles. 

4 .  Simple to Use: Capable of being effectively used by the 
average software engineer. 

5.  Protected Against Misuse: Capable of detecting obvious 
misuse. 

F 
Validating the feasibility of developing reusable parts which 
possess these characteristics is the basis of the Commom Ada 
Missile Packages Program (CAMP), an Air Force sponsored program 
under contract tot he McDonnell Douglas Astronautics Co. - St. 
Louis. Under CAMP, over 200 reusable software parts have been 
developed, including parts for navigation, Kalman Filter, signal 
processing and autopilot. This paper is an outgrowth of work done 
on that project. 
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The author presents six different methods for designing reusable 
software parts. (These methods are illustrated in the 
accompanying figure.) The author examines these methods through 
determining the impact of each method on developing a single part. 
He compares the methods against four evaluation criteria: 

1. Appropriateness of the interface 

2. Control for preventing misuse 

3. Availability of needed mathematical operators and 
functions 

4 .  Degree to which user's job is simplified 

Each of these criteria is essential for developing parts which can 
be used, are reusable and are sufficiently efficient for missile 
navigation, guidance and control applications. 

The author proposes the use of a generic approach, called the 
"Semi-Abstract Data Type" method, for developing reusable parts 
and provides a rationale for this selection. The semi-abstract 
data type method makes full use of Ada's generic and strong data 
typing facilities to create parts which are reusable, tailorable, 
simple to use and protected from misuse. The method achieves 
efficiency through the choice of data structures which are 
compatible with efficient algorithms and through implicit 
definition of user data structures. 

G.3.2.2 



Informal Report by the ARTEWG* 

Mike Kamrad 
Honeywell Systems and Research Center 

Minneapolis, Minnesota 

*ARTEWG - Ada Run-Time Environment Working Group 
This session will provide a status report and an update on the 
ARTEWG activities. 
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Session Chair: 

COMPUTERS FOR ADA 

Charlie Randall 
GHG Corp. 
Houston, TX 
and 
Rod Bown 
University of Houston - Clear Lake 

The following presentations are informal. 
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Language Directed Machine 
Lawrence Greenspan 
Ronald Singletary 
Sanders Associates 
Nashua, New Hampshire 

Ada Port to the ELXSI System 
Ralph Merkle 
ELXSI 
San Jose, California 

Message Passing Concurrent 
Processing Architecture 
Tony Anderson 
Intel Scientific Computers 
Beaverton, Oregon 
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SESSION 6.5 

Session Chair: 

DIALOG WITH THE NASA 
SOFTWARE WORKING GROUP 

Robert Nelson 
Goddard SFC 
and helper Richard Kessinger SOFTECH 

This session provides an opportunity for the NASA Software Working 
to identify their existence, role and scope. The audience is 
invited to participate in a question/answer session. 

CONCLUDING REMARKS 

Jack Garman, NASA Lyndon B. Johnson Space Center 
and 
Charles W. McKay, University of Houston-Clear Lake 
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