
First International Conference
on Ada@ Programming
Language Applications

For The NASA Space Station

June 2 - 5,1986

Hosted by:

University of Houston-Clear Lake
School of Sciences and Technologies

High Technologies Laboratory

NASA Lyndon B. Johnson Space Center
In Cooperation with Local Contractors

N89- 16327
Integrating Automated Structured Analysis and Design

with Ada Programming Support Environments

Alan Hecht and Andy Simmons
Cadre Technologies Inc.

222 Richmond St.
Providence, R.I. 02903

(401) 351-5950

Abstract

Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of
Ada code. Structured analysis is a
methodology that addresses the creation of complete and accurate system specifications. Structured design takes a
specification and derives a plan to decompose the system sub-components, and provides heuristics to optimize the
software design to minimize errors and maintenance. It can also promote the creation of reusable modules. Studies
have shown that most software errors result from poor system specifications, and that these errors also become more
expensive to fm as the development process continues. Structured analysis and design help to uncover errors in the
early stages of development. APSE tools help insure that the code produced is correct, and aid in finding obscure
coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs.

These tools do not address the entire software development process.

This paper will describe how an automated system for structured analysis and design, teamwork@, can be
integrated with an APSE to support software systems development from specification through implementation.
These tools complement each other to help developers improve quality and productivity, as well as to reduce
development and maintenance costs. Complete system documentation and reusable code also result from the use of
these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and
advantages beyond those realized with any of these systems used by themselves.

D.4.2.1

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Introduction

Developing quality software on time and within budget has proven to be a difficult task. Statistics gathered by the
government and private industry have shown that software development projects are difficult to control [Boehm 81 1.
This results in software systems that can be extremely expensive with less than adequate performance.

These problems have fostered several solutions. The U.S. Department of Defense performed an analysis of its
software applications, concentrating on problems inherent with coding and implementation. This analysis resulted
in the development of Ada [DoD 811. Other people were addressing problems associated with software
requirements. The results of this effort has resulted in the development of several software development
methodologies based on the concept of a software lifecycle [DeMarco 78, Page-Jones 80, for example].

The DOD identified a problem specific to the implementation of embedded systems. There were a number of
languages in use and there was potential that this number would continue to grow. The lack of a standard
implementation language resulted in money being spent on new compilers (which were not significantly better),
training and maintenance. The development of the Ada programming language was seen as an answer to this
problem. In addition, the solution would include a programmer's environment, or toolkit, called the "APSE."

APSE

The Ada Programming Support Environment (APSE) was proposed to augment the Ada 1anguagepoD
80, Stennig 811. It includes tools such as the compiler, language sensitive editor, and debugger. These tools are
designed with knowledge about the structure of Ada and are focused on the implementation phase of software
development. The APSE presents a uniform development environment to aid Ada programmers.

APSEs help solve the problems of implementing embedded systems that were recognized by the DOD. A
reduction in software development costs can be realized as a result of making the implementation phase more
efficient. However, the problem still remains that APSEs do not thoroughly address the other phases of software
development.

Software Development Lifecycle

Recent work has focused on gathering statistics from case studies of projects [Ramamoorthy 841. At least half of
the projects had problems which originated in the requirements or functional specification (see Figure 1). To help
put this in perspective, we can view the software development process as divided into five (sometimes overlapping)
phases: analysis, design, implementation, test and verification, and maintenance.

The analysis phase is concerned with understanding what a system is supposed to do. The result is supposed to be
an implementation independent description or abstract view of the system to be developed. The product of analysis
is a requirements specification (sometimes called a functional SpecifKation) that describes the system function and
important constraints.

The design phase addresses how the system is to be implemented. It is concerned with the physical aspects of the
system. The optimal structure of the various software modules and how they interface is determined. Ideally, the
design information should be complete enough to reduce the implementation effort to little more than a translation
to a target programming language.

The implementation phase is concerned with producing executable code. Knowledge of both the design and the
target environment is incorporated to produce the final system software. All the physical aspects of the system are
addressed during implementation.

D.4.2.2

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

r Dosign Error involving
Somrni Compononls

Error in Dosign or
impiomontalion of
Singlo Compononl

Clerical Error

Error Duo to Previous
Miscorrection of an Error

b I I I
10 20 a0

Poroont of Errors Obsorvod

Figure 1: Sources of Errors'.

Information from the previous three phases is used in the testing and verification phase. Test plans can be derived
from specifications and designs [Boehm 841. The testing phase verifies that the software conforms to the
specification and that the code is correct. The best that test and verification techniques can do is prove that a
program is consistent with its specification. They cannot prove that a program meets the user's desires Wulf 803.
This means that extra care must be taken during analysis to insure that the specification is a complete and correct
reflection of what the user really wants. This can be accomplished through methods that support checks for
consistency and clearly communicate system requirements. TeamworklsA supports one such method, and it will be
discussed later in this paper.

Bug fmes and adaptations which result from experience with the software are activities of the maintenance phase.
At this point the software is being used -- the ultimate test Users will come across errors or suggestions as they gain
experience with the software. Maintenance procedures must handle the orderly evolution of the code. They must
insure that changes will not have deleterious effects on the system.

A study by Doehm 841 showed that errors detected later in the development life cycle cost more to fa than errors
detected during analysis (See Figure 2). Figure 1, discussed previously, showed that the majority of errors in a
software project can be traced to requirements and specification problems. These facts illustrate the value of
spending more time at the beginning of a project, performing analysis. This can be diffcult for programmers and
users to accept as both may be anxious to see code being produced -rthy 841. These ideas have only
recently become well understood and brought into practice.

'Adapted from [Ramamoorthy 841

D.4.23

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Relatlve
cost to
Fly Frrnr

I
I

I
I

~ I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I I -. .-.
I
I
I
I

I" 1
I

L - 1 /
-1 i /

I
I
I
I
I

I I
I I
I I
I I
I I
I I
I I
I I
I I

Analyslr I Dedgn I Implementation I

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
Test Maintenance

Phase In Which Error Was Detected and Corrected

Figure 2: Cost of Error Versus When it is Detected2.

Many approaches and methodologies utilize the concept of the software life cycle. In particular, structured
analysis (which refers to several methods [Gane 79, DeMarco 78, Ross 771) addresses the beginning phase of
requirements analysis.

Structured Analysis

Structured analysis views a system from the perspective of the data flowing through it. The function of the system
is described by processes that transform the data flows. Structured analysis takes advantage of information hiding
through successive decomposition (or top down) analysis. This allows attention to be focused on pertinent details
and avoids confusion ftom looking at irrelevant details. As the level of detail increases, the breadth of information is
reduced. The result of structured analysis is a set of related graphical diagrams, process descriptions, and data
definitions. They describe the transformations that need to take place and the data required to meet a system's
functional requirements.

De Marco's approach [DeMarco 781 consists of the following objects: dataflow diagram, process specifications,
and a data dictionaly (See Figure 3).

Data flow diagrams (DFDs) are directed graphs. The arcs represent data, and the nodes (circles or bubbles)
represent processes that transform the data. A process can be further decomposed to a more detailed DFD which
shows the subprocesses and data flows within it. The subprocesses can in turn be decomposed further with another

2Adapted from [Boehm 841

D.4.2.4

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Process Objects

Context-
Diagram

0

1.1

...........
...

........ . . .
-.. ..

I Dataobjects
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

definition

definition

definition

0

definition

Figure 3: Analysis Model Objects

set of DFDs until their functions can be easily understood. Functional primitives are processes which do not need to
be decomposed further. Functional primitives are described by a process specification (or mini-spec). The process
specification can consist of pseudo-code, flowcharts, or structured English. The DFDs model the structure of the
system as a network of interconnected processes composed of functional primitives.

The data dictionary i s a set of entries (definitions) of data flows, data elements, files. and data bases. The data
dictionary enmes are partitioned in a topdown manner. They can be referenced in other data dictionary entries and
in data flow diagrams.

Military standard 2167 [MilStd2167 851 requires that systems be specified in a top down manner using a
structured approach similar to that described above. The high level of process and data abstraction inherent in
structured analysis is compatible with the objectives of the Ada language. Where it is desirable to take an
object-oriented approach to designFooch 86,Cox 841, structured analysis helps to define classes and data
hierarchies or data structure. For procedural approaches, structured analysis works well with structured design.

Structured Design

Structured design addresses the synthesis of a module hierarchy [Page-Jones 801. The principles of cohesion and
coupling are applied to derive a optimal module structure and interfaces. Cohesion is concerned with the grouping
of functionally related processes into a particular module. Coupling addresses the flow of information, or
parameters, passed between modules. Optimal coupling reduces the interfaces of modules, and the resulting
complexity of the software.

D.4.2.5

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Page-Jones' approach page-Jones 801 consists of the following objects: structure charts, module specifications
and a data dictionary.

The structure chart shows the module hierarchy or calling sequence relationship of modules. There is a module
specification for each module shown on the structure chart. The module specifications can be composed of
pseudo-code or a program design language. The data dictionary is like that of structured analysis.

At this stage in the software development lifecycle, after analysis and design have been performed, it is possible to
automatically generate data type declarations Pelkhouche 861, and procedure or subroutine templates.

Automating Structured Analysis and Design

Hardware CAD/CAM systems have contributed to the development a systems with higher levels of complexity,
performance and reliability, at costs previously unattainable through purely manual design efforts. This is sparking
interest in automating the software development process.

Teamwork is a set of automated tools for systems analysis and design. They can support many simultaneous users
working on the same project or even many projects. They take advantage of features provided by the latest
workstation technology, offering complete support of the DeMarco structured analysis techniques and the Page-
Jones structured design techniques. Graphical diagrams are created using syntax-directed editors that incorporate
model building rules. Its interactive graphics package supports a high resolution bit-mapped display, mouse and
keyboard. Modem user interface techniques are used, including a multi-window display and context specific popup
and pull-down menus.

Multiple, simultaneous views of a specification or a design can be displayed by teamworklu (See Figure 4). It
has simple commands for traversing through the various parts of a modeL Model objects may be entered in any
order. The graphics editors allow diagrams to be easily produced and edited. Diagrams as well as components of
diagrams are automatically numbered and indexed. These features eliminate many manual, time consuming tasks.

Project information is retained in a project library, through which individuals can simultaneously share model
information and computer resources. Team members linked over the network can access the same information for
review. Multiple versions of model objects are retained in the library. Team members can independently renumber
and repartition diagrams, which allows exploration of different approaches to describe a system.

Teamwork's consistency checker detects specification errors within and between data flow diagrams, data
dictionary entries, and process specifications, and design errors within and between structure charts and module
specifications. Typical errors and inconsistencies include DFD balancing errors (data flows from one diagram that
do not match data flows to a related diagram) and undefmed data dictionary entries. The consistency checker uses
the semantics and rules of structured analysis and structured design. Checking is performed "on-demand, which
allows the analyst and designer to work top-down, bottom-up, or any other way. It encourages the exploration of
partial models that may be (during the intermediate stages of building the model) incomplete ar incorrect. The
speed and depth of checking in teaInW0rk.b helps produce consistent and correct specifications, which can be used
with the tools provided in an APSE.

D.4.2.6

ORIGINAL PAGE IS
Of POOR QUALITY

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

DO Uhl lO wvo I ROUE-RIGHT
If cannon-poeltlon !I RIWT-EDCE

Then DO.
cannon-posltlon 5 cannon-p
D l E p l q cannon-inage a t ea

Udlt

Figure 4: tt!amWoruSA Desktop

Integration of Teamwork with APSE
Teamwork was designed to allow the information it captures to be utilized for many purposes. These include

packaged specifications, project status reports, configuration management, system documentation, and test plans.
The information is captured as the specification and design are created. As described above, teamwork helps to
insure consistency of the information as a system progresses through these phases. The relationships between the
various representations of processes, data, and modules are recorded in the project library. This information may be
selectively retrieved and reformatted with post processors which can be developed for a variety of software
development tasks, such as the following:

*Producing data type declarations and procedure templates specific to the syntax of any language,

Generating test plans.
Generate formatted requirement documents, such as MIL-STD 2167.

especially Ada.

In addition, by combining an APSE with teamwork, the complete lifecycle documentation can be consistently
maintained, from requirements to code listings. If any change is ma& to any piece of a project, that change can be
reflected in the corresponding parts of the project.

D.4.2.7

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Conclusion

APSES help reduce some of the problems associated with software development., especially during the
implementation phase. Automated analysis and design environments address the problem associated with poor
specifications and software system structure. Either tool by itself is better than totally manual development. The
combination of all these tools can provide automated support for the entire software development lifecycle, insuring
consistency and reducing mors and developments costs.

D.4.28

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

[Belkhouche 861

[Boehm 811

[Boehm 841

[Booch 861

[Cox 841

CDeMarco 781

P O D 801

EDOD 811

[Gane 793

IJVlilStd2167 851

[Page-Jones 801

References

Belkhouche, B., and J.E. Urban.
Direct Implementation of Abstract Data Types from Abstract Specifications.
IEEE Transactions on Software Engineering 549-661, May, 1986.

Boehm, Barry W.
Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Boehm, Barry W.
Verifying and Validating Software Requirements and Design Specifications.
Software , January, 1984.

Booch, G.
Obj ec t-Oriented Development.
IEEE Transactions on Software Engineering :211-221, February, 1986.

Cox, Brad J. .
Mesagelobject Programming: An Evolutionary Change in Programming Technology.
Software 50-61, January, 1984.

DeMarco, Tom.
Structured Analysis and System Specification.
Yourdon Press, New York, 1978.

US Dept. of Defense.
Requirements for Ada Programming Support Environments - Stoneman.
February, 1980

US Dept. of Defense.
Reference Manual for the Ada Programming Language - Proposed Standard Document.
July, 1981

Gane, Chris and Trish Sarson.
Structured Systems Analysis: Tools and Techniques.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1979.

Military Standard - Defense System Software Development DOD-STD-2167.
June, 1985
Page-Jones, M.
The Practical Guide to Structured Systems Design.
Yourdon Press, New York, 1980.

[Ramamoorthy 841
Ramamoorthy, C.V., et. al.
Software Engineering: Problems and Perspectives.
Computer :191-209, October, 1984,

Ross, D. and RE. Schoman Jr.
Structured Analysis for Requirements Definition.
IEEE Transactions on Software Engineering SE-3(1), January, 1977.
V. Stennig et. al.
The Ada Environment A Perspective.
Computer :26-36, June, 1981.

Trends in the Design and Implementation of Programming Languages.
Computer : 14-23, June, 1980.

Boss 771

[Stennig 811

[Wulf 801 Wulf, W.A.

D.4.2.9

N89-16328

A Software Development Environment
Utilizing PAMELA

Prepared by:

R. L. Flick
&

R. W. Connelly

Westinghouse Defense & Electronics Center
P.O. Box 746

Baltimore, Maryland 21203

May 12. 1986

D . 4 . 3 . 1

A Software Development Environment
U t i l i n g PAMELA1

A b6 tract

Hardware capability and efficiency has increased dramatically since
the invention of the computer. while software programmer productivity
apd efficiency has remained at a relatively low level. A user-friendly,
adaptable, . integrated software development environment is needed to
alleviate this problem. The environment should be designed around the
Ada2 language and a design methodology which takes advantage of the
features of the Ada language such as the Process Abstraction Method
for Embedded Large Applications (PAMELA).

Introduction

Since the invention of the computer, advances in software
development productivity have not kept pace with hardware productivity.
Although the throughput of modern computers has made a 1,000.000-fold
increase over the last thirty years. software productivity has increased
only slightly. During the same period, hardware costs have decreased
dramatically and software costs have skyrocketed. Moreover, the
complexity of embedded systems is growing exponentially, putting an
ever increasing demand on software production.

Many studies have shown that the major costs in the software
development life cycle occur after system delivery. Approximately 70%
of these costs are incurred during the maintenance phase. There are
several reasons for this:

1. Personnel costs for software professionals have risen steadily
over the years. Consequently, for large systems designed to
last many years, the cost of people becomes a major concern.

2. Inadequacy of documentation either internal or external to the
code is a continual source of increased costs. Frequently on
large systems. a modification in one routine will affect many
other routines in unexpected ways. It is not uncommon that a

1.
2. Ada is a registered trademark of the United States Department of Defense,

PAMELA is a trademark of Dr. George Cherry,

Ada Joint Program Office.

Reston, Virginia

D . 4 . 3 . 2

change to correct one error will lead to numerous other errors.
This is partially because large programs are intrinsically hard to
understand, but also because inadequate documentation
hampers understanding. Furthermore. most programming
languages do not promote greater understanding since they do
not always enforce good software engineering practices.

3. Yet another factor is an inadequate design process. Frequently,
paper designs are created by systems engineers and then handed
to programmers for implementation. The programmer often will
tend to stray from the paper design in order to increase
efficiency or make changes that are required by the constraints
of the language employed.

The real cost of software therefore is in the maintenance of
programs - but it originates in the methods and languages used to
create these programs.

Current projections show that the cost of developing software is
likely to continue to increase unless new. more efficient methods are
employed. If current trends continue there will be a short fal l of
programmers by 1990 which may exceed 800,000.3 Such a devastating
short fall will slow software development to a crawl for many major
government programs.

Current trends can be reversed by developing and utilizing standard
software engineering practices throughout the software industry. These
practices can be implemented in an expert system that is designed to
specifically support one design methodology. In addition the methodology
used must be specific to the language that is supported. The preferred
language to be used is Ada, and one methodology that is specifically
designed for the Ada language is PAMELA.

The Ada Language

Since the software development environment supports development of
large embedded applications for the Department Of Defense (DOD)
applications. and incorporate state-of-the-art tools. the language of choice
is Ada. Ada is a fairly new language developed by the DOD specifically
for embedded applications. Although Ada is new. the DOD has set a
requirement that all new software written for the DOD will be done in
Ada. As the advantages of using Ada as a general purpose programming

S. Mr. Edward Berard, EVB Systems, ACM SIGAda meeting, Los Angeles,
California, February, 1986.

D . 4 . 3 . 3

language become more fully developed. commercial firms will also
choose Ada for there software needs. Some of the important features
brought to software engineering are :

Code Reusability:

Ada supports code reusability in the form of generic packages, a
common library of compiled units. and modular coding techniques. With
these facilities Westinghouse has established a common database of
program modules a t the company level. By establishing and using this
database of reusable software modules. generating software for
embedded applications has become cheaper and faster.

Tab king:

Something new that is supported by Ada and virtually no other
language, i s the task unit. This unit is on the same level as a function
or subprogram with one important difference: a task unit can be declared
as a type. Because of tasking, generating embedded systems that
require some form of parallel processing is easier.

Parallel Development:

An important feature of Ada, is the ability to do parallel
development. Ada offers this facility in the form of separate compilation
units. Westinghouse has found that several individuals can work on
different sections of the code and not interfere with each other, and that
code development is not dependant on any special order of
accomplishment (other than Ada's dependency rules of course).
Westinghouse has been able to increase software engineering productivity
by reducing the scope of dependencies within the software application.

Information Hiding:

Ada provides the facility to hide the underlying machine dependent
representation of data items. This discourages the software engineer
from depending on a machine specific characteristic when implementing a
section of the software system. It also means that the code generated
should be transportable to any other machine that supports a validated
Ada compiler.

Strong Type Checking Across Separate Compilation Units:

Ada is a strongly typed language that will not allow nonconformant
data types to be passed between program units. The purpose of Ada's
strong type checking is to prevent common errors from occurring when
calling another software engineer's code.

D . 4 . 3 . 4

Ada's Place In The Design Of A Software System:

To be able to take advantage of the state-of-the-art facilities that
Ada offers, the perception of when the capabilities of the programming
language that is used is to be considered must be changed. In addition
a design methodology that implements design concepts specified in MIL-
STD 2167 and takes into account the improved facilities of Ada must be
u,tilized.

Up until now the typical method for designing a software system
involved specifying requirements. doing a preliminary design. doing a
detailed design using a PDL and finally selecting a language and
implementing the design. The primary methodology used when designing
the system was typically a derivative of Data Flow Diagrams. (see Fig.
1) This approach has worked with other languages (before Ada)
because they did not provide sophisticated facilities for embedded
environments such as tasking. Languages therefore, had l i t t le impact on
the design of the system itself. aside from Ada,
are sequential in nature. The design methodology used to express a
system under development in this language is compatible with the
capabilities of the language used and is sequential in nature.

All popular languages,

if Ada is to become an effective alternative. several common
practices and assumptions used in designing an embedded system must
change, and a design methodology that is designed to accommodate a
specific language must be used. To be able to take advantage of the
advanced features that Ada offers, the methodology must take the
language features into consideration in the preliminary design phase of a
software system (see Fig. # 2). This means that consideration of
language facilities should be an integral part of the preliminary and
detailed design of the system. If the language considerations are made
early in the development of the preliminary design. the overall impact
will be in the areas of coding and integration time. These two areas
comprise most of a software systems development cost. If however,
Ada's facilities are not considered early in the preliminary development,
Ada will offer almost no advantage over any other language.

The method of considering Ada's facilities in the preliminary and
detailed design phase is dependent on the methodology used to express
these designs. The popular methodologies of flow chart's, data flow
diagrams, etc. will be of l i tt le advantage in the preliminary design phase
when using Ada. The inability of these methodologies to express the
unique facilities of tasking. code reusability, modular design, and parallel
development diminish their usefulness for creating a design based on

D . 4 . 3 . 5

w

m

U

0.4.3.6

P

D.4 .3 .7

Ada. It i s therefore necessary that a design methodology that can
express parallelism. code reusability. modular design, and parallel
development be used. It is also necessary that the methodology used in
the preliminary and detailed design be a direct expression of the Ada
language. We have found that PAMELA f i ts this description.

Description of PAMELA

PAMELA is a methodology for producing real-time Ada programs
which utilize Ada tasking. It was designed by Dr. George Cherry
(Reston. Virginia) to address the needs of Ada users in developing real-
time programs using Ada's rich variety of language features.

PAMELA is a structured methodology that encourages a top-down
approach, with each step in the method revealing more details than the
previous step. (see Fig. # 3) It i s also a graphical methodology which
produces pictographs of the underlying Ada code. In fact, Ada package
and task specifications. as well as skeletal package and task bodies,
can be produced directly from PAMELA graphs.

PAMELA combines aspects the two most prominent program
representation methodologies of the past two decades, data flow
diagrams and control flow diagrams (flow charts). I t 's pictographs are
very similar to those produced by structured analysis and structured
design techniques (data flow diagrams), but it also embodies a certain
amount of control flow information - primarily because of the well
defined Ada tasking mechanism.

PAMELA guides the program designer in the selection of multiple,
concurrent threads of execution (called processes in PAMELA
nomenclature). By analyzing the requirements of the problem, and by
following the process idioms outlined in the method. (see Fig. # 4) the
program designer identifies which elements of the program should become
processes. He then determines what kind of data or control signals
must be passed between processes. Next. he determines which process
i s the producer of the flow and which is the consumer. (see Fig. # 5)
Finally, he determines which of the processes should be single-thread (a
typical C. PASCAL, or FORTRAN - style program) and which should be
multi-thread (more than one Ada task). Once the graph has been
annotated with this information. Ada code can automatically be
generated (in skeletal form) which implements the design.

D . 4 . 3 . 8

0: c
P
cp
b

v)
Q)
v1

0
0
8

&
E
b

0
c c,
0 a I
9

8
I i

U
Q)

m
=%

w
d
3 x a n L;

c
Q)

c c, - E
i:
0

L

f w
6)

E"
4
0
0

0
3
0 a

D . 4 . 3 . 9

E
0
0
C
3

*.
C

r v) cn
W E aa Q,

U
L

0 L
Q,
P
Q)
0
t e o

t m
0

E Y
rd
0
m

I I n
~a
0

' L

Q)

B L
rp c

*- E
e- b o a

P
v) c1

0
C

*m
e, z

0
I F
f -

c'
C aa
0
E aa
I
Q,
0

Y *--
tu L n

r b c

t m E
>
0 fu

*-
c,

-0 E
>
0 m
- c C

I Q)

0

I L

e-

L *-
3
U
Q)
L

I Y

9 c
0 *- b

c,
Q)

LL
W

a?

!
'0
tu
L

c,
0 m *- E

2
> *-
Y

e o

e,
>

e o n
$ 3 L

0

E P
0 0
0 0
kc3 0 . LL .. g
E
L
Q, c

i

From the PAMELA graphs. single-thread processes become Ada
tasks. while multi-thread processes become packages. The package
body of a multi-thread process contains task and package specifications
for the lower level single- and multi-thread processes respectively.

The Problem To Be Solved

The problem of increasingly large and complex software systems, in
cQncert with a massive projected shortfall of software engineers in the
next decade, fueled by spiraling software costs, must be abated. It is
foolhardy to think that software systems will decrease in complexity: al l
current trends support the notion that future software systems will be
very much more complex than those of today. The number of software
engineers may increase by the next decade, but probably not fast
enough to meet the challenges of these more complex systems. If
software engineers continue to be in high demand, there i s l i t t le hope
of abating spiraling software costs.

The key to the solution of the problem is to substantially increase
the productivity of software professionals. The primary tool to
accomplish this goal is a high performance Software Development
Environment (SDE). The SDE must be designed and built around a
single specific language and design methodology. Since the DOD has
mandated that al l new software written for the DOD will be in Ada.
Ada is the natural language of choice for the SDE. There are several
new Ada based design methodologies such as Object Oriented Design
(OOD). PAMELA (Process Abstraction Methodology for Embedded Large
Applications), and Ada Partition Programming Language (APPL). Of
al l the new design methodologies we are considering PAMELA, as an
example, around which to design the SDE.

The Software Development Environment

A software development environment (SDE) is being created a t
Westinghouse which supports al l activities associated with the
development of embedded software systems, as well as software
management and post deployment support. By integrating al l of the
activities involved in software development under the control of one
expandable, adaptable environment, software development and support
can be made easier, more cost effective. and more reliable (see Fig. #
6).

D. 4.3.12

D.4.3.13

Important elements of the environment are:

R elis bili ty:

The reliability of programs created under the SDE must be
significantly greater than that of programs generated without such an
environment. Reliability metrics. when applied to programs created
under the SDE. should show a measurable and statistically significant
increase in reliability. This in t u r n will require that the SDE itself be
iqn exceptionally reliable program. We have seen that by using
PAMELA, it is relatively straightforward t o create reliable designs in a
timely manner. Since the underlying Ada code maps directly to
PAMELA pictographs, it is only necessary to correctly identify control
and data flows a t a high (pictograph) level to insure the reliability of
the underlying code. Application of expert system techniques will also
enhance the reliability of the environment.

Ease of Use:

The SDE will encompass a common, multi-level. user friendly
interface. In particular, the interface will be a s easy to use for the
novice a s for the expert. This will probably be accomplished with a
multi-window, menu-driven interface which will provide full prompting
for the novice. a series of function keys and/or control
keys can be defined (by the environment and/or by the user) to enable
rapid execution of frequently used command sequences. For others, on-
line help and an English-like command interface will be provided. Every
user will be able to select the interface he/she prefers and will also be
allowed to jump to any particular interface level a t will.

For the expert.

PAMELA will support the ease of use concept since it is graphical,
and is supported by an interactive, full screen tool which can
automatically generate executable code.

Cost Effectiveness:

The environment should be networked so that individual
workstations can be utilized by development and management personnel.
This means tha t each individual or team will be able to achieve
maximum utilization of the facilities available while avoiding the typical
slow down experienced with multi-user super-mini implementations.
Because of advances in micro-processors, a single user workstation can
provide an engineer with a more responsive machine than can normally
be attained with a time-shared super-mini. The resultant increase in
throughput. can increase productivity substantially. As a side benefit,
costs incurred due to main CPU down-time can be minimized by
allowing the workstations to operate independent from the host.

D.4.3.14

The use of PAMELA should also prove cost effective in that it
allows for rapid prototyping of the software system within the SDE.
This allows the program implementors (and designers) to identify and
correct potential or unexpected problem areas before they actually become
problem areas.

Adaptability:

, The environment will support various tools that will measure
productivity. quality, maintainability and overall cost. This means that
management will have the ability to measure all aspects of the evolving
system in terms of quality. It will also allow
the measurement of team performance compared to calibration data
contained in the database. Such measurements can be used to
recalibrate the system to more accurately reflect real world situations.

maintainability and cost.

PAMELA has proven itself to be quite adaptable. In one particular
a 7000 line program was re-designed and re-implemented from instance.

scratch in just three days.

Design Continuity:

The environment is an expert system which provides tools that
enhance al l phases of the software life cycle. Program requirements are
entered into a relational data base under the control of the expert
system. Once a requirement has been entered, a basis is established
for al l later phases of the software life cycle. In particular. design.
coding, and test specifications are derived from the requirements and
related back to them by the expert system. This provides traceability
from requirements to code, but also allows the environment to provide
an impact analysis report for each requirement.

Software designs (specifically PAMELA designs) are accepted by the
expert system. Once a design has been entered. it can be verified for
compliance to the requirements by the environment.

Tools such as language sensitive editors, compilers. and debuggers
which facilitate the coding and unit testing process can also be directed
by the environment. For example, a compiler which produces diagnostic
information could relate the number and kinds of programmer errors to
the environment. The expert system could in turn relate this
information back to a language sensitive editor to help correct
programmer mistakes as they happen.

Since al l requirements and design information are entered into the
expert environment, test scenarios and/or test cases can be
automatically generated to verify the design.

Program Visibility

The SDE supports al l levels of management visibility into the
current status, and projected results of the project. This means that
the management functions of progress tracking, scheduling. and cost
information gathering will be provided by the expert system. This
includes but is not limited to. the automatic generation documentation
a,nd management reports with l i t t l e or no human intervention. In
addition there i s some capability of the software factory concept in that
generic, reusable software could be placed in the design by the expert
system itself. This will alleviate the problem of the software engineer
overlooking a reusable package that is in the database of reusable
program modules.

Projected Environment Layout:

The environment will be as flexible as possible and support all types
and sizes of software development. The system will incorporate artificial
intelligence. networking, database management and some form of
electronic mail. The hardware of such a system is projected to be
composed of the following components:

1. A VAX minicomputer as the central database machine.

2. Several VAXSTATION 11's as individual workstations.

3. Several micro computers such as IBM PC/AT's for manager
workstations.

4. Some type of clustering system.

5. Some type of LAN (Local Area Network) system for node
communications.

6. Hardware simulators and development stations for hardware
specific support.

(see Fig. # 7)

Potential Problem Arenas

As is the case with all things, PAMELA is not perfect. There are
two potential problem arenas associated with PAMELA which affect the
performance of the SDE. For one thing, PAMELA designs typically

D.4.3.16

H
J

ORIGINAL PAGE IS
OF POOR QUALITY

I

v)

w
tu
\ u
Q

t m

I

U

D.4.3.17

f
8
f
4
d
6

L, P U

create too many tasks. This i s not a fault with the methodology per
se. but reflects the fact that there are precious few machines out there
that are made to run Ada. The methodology has been altered
somewhat to account for this fact. but in so doing. it has lost some
of i t s "virtual machine" flavor.

Another potential problem arena is that of testing. The current
suggestion is to test each single-thread process using current structured
techniques. As each is tested, it i s integrated with the others and an
integration test is performed. Eventually a multi-thread process will be
declared valid and it then can be integrated with other processes.
There is no method however for verifying that al l the task rendezvous
and other task interactions are correct. This is st i l l a matter of art as
much as it is of science but may be alleviated somewhat by the use of
heuristic approaches common in expert systems. It is not clear however,
whether this will be harmful for large embedded systems. If the paper
design is solid, the implementation should be as well: but there is
unfortunately no method for verifying paper designs either.

Potential Solutions

' The horizon should not be clouded by the concerns raised above.
Each problem poses new and exciting possibilities for new technologies
and new ideas to solve those problems. Each new challenge brings us
closer yet to another breakthrough.

The problems posed in the development of a state-of-the-art
software development environment can be solved by hard work and
dedication. They should not be attacked alone. but in concert with
concerned organizations willing to lead us into the next century.

Conclusions

In conclusion. the need for a comprehensive, integrated software
development environment has been demonstrated by the severe lack of
productivity in developing software as compared to computer hardware.
The need to automate documentation so that it provides a better picture
of the program is essential to decreasing the maintenance costs of large
software systems. An automated, integrated environment supporting a
single specific language such as Ada and designed around a specific
methodology such as PAMELA will reduce time and errors in the design
and testing phases. Since the environment will ensure adequate tracking
of requirements, design, implementation and testing. the cohesion is

/

D. 4.3.18

provided to aid management tracking of progress during the software life
cycle. A common. multi-level, user friendly interface i s absolutely
required to insure maximum effectiveness for al l users of various levels of
experience and expertise. Finally. PAMELA is an ideal design
methodology for such an environment. since it is Ada-based. and
naturally addresses multiple concurrent tasks. PAMELA has been used
on projects at Westinghouse and has proven i ts effectiveness for rapid
prototyping. ease of design, maintainability and adaptability.'

4. Some material contained in this document was presented by Rich Connelly and
Barbara Sullivan at the SigAda conference held in Boston Ma. in Nov. 1985

N89-16329

- THE BENEFITS BOTTOM-UP DESIGN

Gregory McFarland

Grumman Data Systems
1000 Woodbury Rd.

Woodbury, N.Y. 11797

ABSTRACT

This paper examines an inconsistency in generic
’top-down’ design methods and standards employed in
the implementation of reliable software. Many design
approaches adopt top-down ordering when defining the
structure, interfaces, and processing of a system.
However, strict adherence to a top-down sequencing
does not permit accurate description of a system’s
error handling functions. The design of a system’s
response to errors is becoming critical as the
reliability requirements of systems increase. This
paper describes how top-down methods such as Object
Oriented Design and Structured Design do not
adequately address the issues of error handling, and
suggests using a bottom-up substep within these
methods to eliminate the problem.

1. INTRODUCTION -
This paper describes the inability of top-down design
techniques to allow for accurate design of the error handling
features of a system. The primary concern involves what is
tentatively termed the ’detailed design phase’ of the software
development process. This is the portion of the design process
which provides a description of the system used as input to the
implementation phase of the software life cycle. We believe
that this design must accurately describe all the intended
operations of the system to avoid the risk of ’interpretation’
by programmers. Our discussion will make it clear that strict
top down design techniques do not provide the designer an
opportunity to specify the error handling features of a system.
Acknowledging the mounting interest in ’structured design
methods,’ we must be certain that these methods address all of
our requirements as designers, and that adopting them would not
preclude certain design decisions. Additionally, the
heightened reliability requirements of our systems necessitate
that design methods provide the opportunity to address error
handling issues.

D.4.4.1

The Benefits of Bottom-Up Design

I
Section 2 describes the software design environment we are
considering. Section 3 defines techniques, standards, and
tools often applied in the detailed design phase. The software
design process is investigated by examining the activities
performed during that effort in section 4 . Section 5 details
the problem encountered when using generic top-down methods in
relation to the design of error handling facilities. Finally,
section 6 describes how a bottom-up substep can be incorporated
into existing methods to eliminate the problem.

- 2 . SOFTWARE DESIGN ENVIRONM%NT

For purposes of this paper, we will adhere to definitions
for ’life cycle’ and ’method’ found in [MCDE84]. The software
life cycle defines a series of system views, each progressing
from the abstract to the more concrete. A development method
is concerned with the activities on one or more of these levels
aad comprises three distinct pieces: notation, guidelines, and
analysis. The guidelines define rules for transforming the
system at the previous level to the system at the current
level. The current level is expressed in the notation defined
by the method. Analysis is used to verify consistency within a
level as well as that between levels.

the

A software development effort includes selection of a method to
be applied in each life cycle phase. AB indicated in the
introduction, we are primarily concerned with the ’detailed
design phase’ where a representation of the system that can be
used as a baseline for the coding or implementation phase is
produced. According to the above definition of ’method,’ few
design techniques described in the literature today are
’methods.’ Quite often only guidelines and/or notation are
defined. Analysis techniques are rarely included.
Additionally, individual efforts will normally modify the
notation used baaed on past experience and tool availability.
For this paper, we will concentrate our attention on the
guidelines portion of the method. Therefore, we will assume
that the final notation of the system after this phase is some
form of M a * PDL, that a PDL processor or M a compiler is
utilized to verify internal consistency, and some sort of
structured design review is employed to verify the correctness
of the resulting design in relation to previous design phases.
We do not preclude the use of graphics during the design
process, or as an additional output, but it will be the PDL
that the programming staff utilizes during the implementation
phase, and therefore this will be the final design notation.
The final PDL representation of the system typically will
define the system’s modular structure, its data, and the
processing to be performed by each module.

* M a is a registered trademark of the U.S. Government, A J P O

D.4.4.2

The Benefits of Bottom-Up Design

- 3. SOFTWARE DESIGN TECHNIQUES, STANDARDS, TOOLS

The software development process is a complex combination of
techniques, standards, and tools. Techniques are defined by
the selected method and dictate the design steps. Standards
are often dictated by contracts and impose additional
constraints on the process. Tools can be automated aids such
as editors, or logical tools such as the use of abstraction or
information hiding. The combination of the various techniques,
standards, and tools involved in each part of the design
process can lead to problems like those described below.

Many design techniques found in the literature impose a
top-down order of work within the level or phase where applied.
The examples we will discuss are Object Oriented Design
[OBJE85] [BOOC83] and Composite (Structured) Design [AfYER78] .
Both of these methods are ’top-down’ since they require
recursive application of the technique on the modules or
operations that were defined in the previous step. In the case
of Object Oriented Design, once the objects and operations have
been defined, the designer must define the interfaces to these
operations, perform a stepwise decomposition of the highest
level module, and then repeat the entire design process for the
newly defined operations. The stepwise decomposition of the
highest module defines the interaction of this module with the
newly defined operations. The implementation of these
operations is not considered; they are ’abstractions.’
Structured design incorporates a similar set of tasks for the
design process, the main difference being the rules
(guidelines) used to define the modules that ’implement’ the
current module. In structured design, only the structure of
the system is defined. No method for defining the algorithmic
portion of each module is proposed. If the technique employed
to define each module’s implementation section applies a
top-down approach, then the entire detailed design phase is
considered top-down.

Additionally, DoD standards and guidelines [DOD] for developing
software systems impose a top-down structure on the development
process. Unless alternate development techniques are approved
by the contracting agency (see [SDST85]), top-down design,
top-down coding, and top-down testing are required. As will be
argued in the remainder of this paper, the use of a top-down
ordering of the entire detailed design process is not
desirable.

Many design techniques, including the two above, employ
’abstraction.’ Abstraction is a valuable tool of the software
engineer, but will be shown to be inappropriate if used
throughout the entire detailed design phase. Abstraction
allows designers to ignore the implementation details of
’other’ parts of the system. This is useful during a
decomposition process, but will lead to problems when connected
with the design of a system’s error haudling facilities.

D.4.4.3

The Benefits of Bottom-Up Design

We will see how the combination of the above three items,
top-down design techniques, contractual standards, and the
utilization of abstraction, leads to problems when designing
the error handling facilities of a system. A bottom-up
approach may be applied during one substep of the overall
detailed design process to eliminate this problem.

- 4. SOFTWARE DESIGN PROCESS

Consider the activities that occur during a typical detailed
design effort. The selected method defines a set of guidelines
which describe the steps a designer must undertake during the
design process. As stated above, the design at this level
typically includes module definitions, their relationships with
each other, data definitions, and a description of the
processing each module should undertake. The generic top-down
design techniques being considered proceed as follows. First,
select an undefined module and follow the guidelines specified
by the technique. These guidelines result in additional
modules and data definitions being defined. Second, determine
the interfaces of these new modules and data objects. The
guidelines may then suggest one of two possibilities. In the
case of Object Oriented Design, stepwise refinement or some
other technique is adopted to define the processing of the
module. Once this is accomplished, the method is recursively
applied to any resulting modules too large to be described as a
single unit. An alternative approach, which might be found in
a Structured Design, would be to first repeatedly apply the
method to any undefined modules, completely defining the
modular structure of the system and the interfaces to these
modules. Once the entire system is decomposed, each module’s
processing is described, most likely in a top-down order.

Abstraction plays a large role in these top-down techniques.
Abstraction permits the designer to utilize the interface
information of other modules in the design of any module’s
implementation section. A hierarchy of-modules is often viewed
in a top-down faahion, with each module taking an abstract view
of lower level modules in its ’implementation section.’ The
application of abstraction implies that only the interface
information is needed for correct use of a module. Top-down
implies that interface information for any module is used prior
to that module having its implementation section defined. Thus
we are relying on the premise that the design of any
implementation section will not alter the interface of a
module. In the case of error handling, this may not always be
true.

D.4.4.4

The Benefits of Bottom-Up Design

5 . THE PROBLEM --
The problem associated with top-down design techniques and the
use of abstraction becomes evident when considering the design
of a module’s processing section. This design will utilize
prior design work that has identified interfaces and
functionalities of subordinate modules. In other words, this
processing section’s design is based on the abstractions
provided by the subordinate modules. Thus, the correctness of
this design relies on the premise that these interfaces or
abstractions will not change. While change is a natural part
of the design process, attributable to designers’ discovery of
new information and backtracking to modify prior design
decisions, change and backtracking should not be a direct
consequence of the method used. Two assumptions concerning the
error handling facilities of a module, which will be justified
below, are that these facilities will not be known until the
module’s implementation is designed, and that these facilities
will change the interface of the module. Based on these two
assumptions, the design of every implementation section may
change the associated interface. Therefore, the design of the
processing section described above may become invalid when the
subordinate modules’ processing sections are defined. Since a
top-down order of design is being employed, every processing
section that causes changes in the associated interface,
invalidates the assumptions used to design the processing
section of superior modules.

First, the assumption that the error handling facilities of a
module will change that module’s interface should be
considered. Errors can not be handled entirely within the
module where they are generated. If errors were always handled
locally, either no real error processing or correction would be
performed, or each module would require knowledge of its actual
use or purpose. Thus, either the systems will not be tolerant
of errors, or the individual software within the system will
not be general or reusable. For these reasons we will allow
and even encourage that errors be propagated from modules and
be handled where it is most appropriate. Now consider that a
complete design, at the detailed level, will specify the
potential error situations as well as the desired response to
those errors. Errors may be propagated into or generated by a
module. Depending on the error handling facilities provided in
the chosen language, errors may or may not be gracefully
handled. Consider the M a programming language which provides
extensive error handling facilities. In M a , errors may be
handled by special sections of code, and propagated out of the
current module. The processing performed in response to errors
changes the functionality or effect of this module. The
possibility of errors being propagated out of a module also
changes the interface of the module. Thus, the error handling
facilities of a module add to or change the module’s interface.

D . 4 . 4 . 5

The Benefits of Bottom-Up Design

Consider also when the designer will be making decisions about
the error handling of some module. Abstraction plays an
important role in the application of the design method.
Modules are defined in terms of their function and interface,
while their implementation is not considered. These modules
are then utili~ed during the design of the processing sections
of superior modules. During the definition of a module's
function and interface it is possible to define certain error
situations that may arise. However, defining the internal
response to these errors would imply that the designer is
considering the implementation details of the modules. This is
a violation of the abstraction principle and is inappropriate.
Additionally, designers can not be cognizant of all the
possible errors a module may generate. These errors will be
discovered during the design of that module's implementation
section. Accordingly, at the outset, the response to these
errors will also be unknown. Therefore, there is a
considerable potential that the interface of a module will be
changed after that interface has been defined and used during
earlier design activities.

The basic flaw described above is a consequence of the
designer's reliance on the abstractions of other modules. The
principle of abstraction has proven very useful in defining the
structure of a system. However, it generally does not apply to
the entire design process. It is unwise to design the
implementation section of a module based on a number of
abstractions if there is a likelihood that the abstractions
will change. Doing so creates the potential for considerable
rework and deviation from contractual standards and procedures.

The assumption made above that "a complete design, at the
detailed level, will specify the potential error situations as
well as the desired response to those errors,)l should be
discussed. The content of a detailed design is a subjective
decision. The life cycle phase considered in this paper,
labeled 'detailed design,' was more accurately defined as the
phase prior to implementation. Thus, the output of this phase,
a description of the system in the selected notation, will be
given to a programming staff for purposes of implementation.
Alternatives to the above assumption are to not specify the
error handling facilities to be incorporated by the system, or
to specify them only partly. Consequently, the programmer must
decide between not including any error handling facilities
since they were not defined, or in the case of M a , providing a
general error handler that catches any error raised in or
propagated to a module. Neither of these situations is
desirable if reliability is a goal of the software.
Alternatively, the programmer may handle those errors which he
determines are generated by this module on an individual basis,
deciding what processing is appropriate for each, and which
should be propagated to calling modules. This will cause a
module's implementation to deviate from its assigned function
and interface. Finally, the programmer may perform the
necessary work to make the following determinations:

D.4.4.6

The Benefits of Bottom-Up Design
- -

1. Which errors may be propagated into the module?

2. What processing has already been performed in response to
these errors?

3. What errors may be generated by this module?

4. What processing is necessary in response to both types of
errors? and

5. Which errors get propagated out of this module.

This alternative requires communication between programmers and
additions to the functionality and interface of the modules.
None of these alternatives is as attractive as having the error
handling facilities defined during the design process.

- - 6. A SOLUTION

A simple solution to this problem is to design the processing
sections of a system’s modules in a bottom-up order. As each
module has its processing section designed, appropriate changes
can be made to the interface and functional description of the
module. Thus, higher level modules utilize a more complete
description of lower level modules. Performing this bottom-up
substep within a design phase is compatible with both Object
Oriented Design and Structured Design. This substep only
requires that implementation sections are not designed until
the structure and data definitions of the entire system have
been defined. Once this is accomplished, the bottom-up order
of processing section design may begin.

A bottom-up design order does not define any additional
guidelines for the design of the error handling facilities of a
system. At most, this will allow the designer the opportunity
to consider the issue, and specify the required functionality
prior to when that information is used in other design work.
This will reduce the amount of change and wasted effort that
results from basing design decisions on incomplete information.

- 7 . SUMMARY

This paper defines a problem engendered by the top-down
structure imposed by software design methods and standards
applied during the detailed design of a software system.
Designers whose techniques rely on abstract modules defined in
a top-down order will find that the design of the
implementation section of these modules will result in changes
to their interfaces attributable to error situations defined,

D.4.4.7

The Benefits of Bottom-Up Design

handled, and propagated. Changes to these interfaces
invalidate assumptions made by higher level modules’
implementation sections. One solution is to design modules’
implementation sections in a bottom-up order, making the
necessary changes to the interfaces of the modules.

This paper is not meant to criticize current methods imply
that they should be abandoned. Instead, it criticizes the ways
in which these methods are applied. What is desired is am
understanding that application of ’design methods’ does not
solve all the problems of software design. In addition to
being executed correctly, design methods must be applied only
where appropriate. Careful analysis is needed to determine
what must be accomplished during each phase of the software
life cycle, and how well the selected method or methods address
these needs. It will often be found that existing design
methods can not address all the activities required within even
a single phase of the life cycle. For this reason, methods
must be augmented with additional techniques or considerations
to ensure the design process is complete and correct. The
example described in this paper demonstrated that the design of
error handling facilities of a system is not adequately
addressed by generic top-down methods. Thus, special
consideration is required to ensure that the overall design
approach addresses this portion of the software system.

or

ACKNOWLEDGEMENTS

The author gratefully acknowledges the encouragement and
helpful comments of John D. Litke.

REFERENCES

[BOOCSS] Booch, Grady; Software En ineerin With -, M a *
Benjamin/Cunrmings Publishing Company, P-7-F- nc., Ca i ornia, 1983.

[DOD] DOD-HBK-287 Defense Department Software Development
Handboo-

POD] DOD-STD-2167 Defense System Software Development
[MCDE84] McDennid, John, aad Ripken, b u t ; Life Cycle Su ort
- - in the M a Environment; The M a Companion Series; Cam 73%- ri ge
Universit-ress, Great Britain; 1984.

[MYER78] Myers, Glenford, J.; Composite/Structured Desi-; Van
Nostrand Reinhold Company, New York; 18’78.

D.4.4.8

The Benefits of Bottom-Up Design

[OBJESS] Ob'ect Oriented Design Haadbook; EVB Software
Engineering + nc., 1985.

[SDSTSS] SDS 1 TailorinK Provisions - for -8 Ada* Technical Report
E-98044: mc t r o n i c System Division, Air Force Systems Command,
Hanscom'Air Force Base, Bedford, MA, April 1985.

D.4.4.9

~~ ~

The Ada Object-Oriented Approach

S t e v e Nies
H a r r i s Government Systems S e c t o r , Software Opera t ion

505 John Rodes Blvd., Bldg. 1
Melbourne, FL 32902

(3 0 5) 242-5383

A s sys tems become more complex, t h e cost of deve lop ing
s o f t w a r e is r i s i n g d r a m a t i c a l l y . Although the r e q u i r e m e n t s
phase h a s been i d e n t i f i e d as crucial f o r t h e s u c c e s s f u l
development of l a r g e , r e l i a b l e , systems, much of t h e
s o f t w a r e e n g i n e e r i n g e f f o r t t o d a t e has been i n improving
programmer p r o d u c t i v i t y d u r i n g t h e implementat ion phase.
Compared w i t h t h e number of t o o l s for d e s i g n and
implementa t ion , t o o l s for use i n t h e requi rements phase a r e
r e l a t i v e l y few i n number. We b e l i e v e t h a t a s sys tems become
more complex, t h e need t o a c c u r a t e l y c a p t u r e t h e system
requ i r emen t s f a r outweighs t h e need t o i n c r e a s e t h e
e f f i c i e n c y of t h e d e s i g n process .

T h i s paper p r e s e n t s v a r i o u s a s p e c t s of t h e Ada Objec t
O r i e n t e d Approach (AOOA) p r o j e c t c u r r e n t l y be ing conducted
by Harris. The o b j e c t i v e of t h i s p r o j e c t is t o p r o t o t y p e
v a r i o u s f a c e t s of a Requirements S p e c i f i c a t i o n Language
(RSL) a d d r e s s i n g t h e problems a s s o c i a t e d w i t h c u r r e n t RSLs .
T h i s e n t a i l s t h e development of an RSL based upon a
g r a p h i c a l o b j e c t - o r i e n t e d format .

The d e s c r i p t i o n of a problem o f t e n i d e n t i f i e s a l a r g e
numbers of e n t i t i e s , t h e i r c h a r a c t e r i s t i c s , behavior , and
i n t e r a c t i o n s . I n o r d e r t o c l e a r l y r e p r e s e n t t h i s
i n f o r m a t i o n , AOOA emphasizes g r a p h i c s as t h e most u n i v e r s a l
means of communication. T h i s c a p a b i l i t y is suppor ted i n t h e
form of three t o o l s : a n o b j e c t e d i t o r , i n t e r f a c e e d i t o r ,
and s c e n a r i o e d i t o r . A s t h e requirement eng inee r e x p r e s s e s
h i s concept u s i n g t h e t o o l s e t , t h e r e s u l t i n g i n f o r m a t i o n is
a u t o m a t i c a l l y stored i n a Problem S p e c i f i c a t i o n Database
(PSD) .

The i n f o r m a t i o n s t o r e d i n t h e PSD is g a t h e r e d d u r i n g
a l l phases of t h e development l i f e c y c l e , from concep t

maintenance. From t h i s f o u n d a t i o n , t h e des ign team can u s e
t h e AOOA too lse t t o e l a b o r a t e t h e requi rements i n t o a des ign
and implementat ion. Note t h a t once t h e f u n c t i o n a l
r equ i r emen t s have been e l a b o r a t e d , t h e r e s u l t i n g i n f o r m a t i o n
b e a r s a s t r o n g resemblance t o an Ada program. Thus, t h e
AOOA t o o l s e t c o n t a i n s an Ada source code g e n e r a t o r t o
t r a n s f o r m t h e i n f o r m a t i o n con ta ined i n t h e PSD i n t o
co r re spond ing Ada source code. T h i s method of g e n e r a t i n g

I Ada s o u r c e code allows a p r o j e c t t o be ma in ta ined by
modifying t h e s p e c i f i c a t i o n i n s t e a d of t h e code. When f a c e d

e x p l o r a t i o n th rough d e s i g n and imp1 ement a ti on t o

D.4 .5 .1

Page 2

w i t h changing r e q u i r e m e n t s , t h e r equ i r emen t s e n g i n e e r can
modify t h e i n f o r m a t i o n c o n t a i n e d i n t h e PSD. A new
implementa t ion may t h e n be g e n e r a t e d , r e u s i n g t h o s e p o r t i o n s
of t h e s p e c i f i c a t i o n t h a t d i d n o t change.

The a u t h o r r e c e i v e d a BS i n Computer Sc ience from
L o u i s i a n a Tech U n i v e r s i t y i n 1981. S ince j o i n i n g H a r r i s ,
t h e a u t h o r has been working as t h e p r i n c i p a l i n v e s t i g a t o r of
t h e Ada Object O r i e n t e d Approach. As t h e p r i n c i p a l
i n v e s t i g a t o r , t h e a u t h o r was r e s p o n s i b l e for deve lop ing t h e
concep t , as w e l l as i n i t i a t i n g an i n t e r n a l r e s e a r c h p r o j e c t
from which t h e i n i t i a l s e t of t o o l s were c r e a t e d .

D.4.5.2

N89-16330
TOWARDS A G E N E R A L O B J E C T - O R I E N T E D
SOFTWARE D E V E L O P M E N T METHODOLOGY

Ed Seidewitz / Code 5 5 4
Mike Stark / Code 5 5 2

Goddard Space Flight Center
Greenbelt, MD 20771

1. I N T R O D U C T I O N

An object is an abstract software model o f a problem domain
entity. Objects are packages o f both data and operations on
that data [Goldberg 83, Booch 831. The xaa (tm) package
construct i s representative o f this general notion o f an object.
-- ObJect-oriented _________--- ---- design is the technique o f using objects as the
basic unit o f modularity in system design. T h e Software
Engineering Laboratory at t h e Goddard Space Flight Center- is
currently involved in a pilot project t o develop a flight
dynamics simulator in Ada (approximately 40,000 statements)
using object-oriented methods. Several authors have applied
object-oriented concepts t o Ada (e.g., [Booch 83, Cherry 85bl).
In our experience we have found these methodologies limited
[Nelson 861. A s a result we have synthesized a more general
approach which allows a designer t o apply powerful,
object-oriented principles t o a wide range o f applications and
at all stages of design. The present paper provides an overview
o f our approach. Further, we also consider how object-oriented
design fits into the overall software life-cycle.

2 . O B J E C T S AND O B J E C T D I A G R A M S

We can model a procedure -------- as a mathematical function. That
is, given a certain set o f inputs (arguments and global data), a
procedure always produces the same set o f outputs (results and
global updates). A procedure, for--exampTey c a n n o t directly
model an address book, because an address book has ----- memory (a set
o f addresses) which can be accessed and updated. Normally, the
solution t o this is t o place such memory in global variables.

Figure 1 g i v e s a representation o f the above situation.
This diagram uses a notation similar t o [Yourdon 791 to show
both data and control flow. The arrow from CALLER t o PROCEDURE
indicates that CALLER transfers control t o PROCEDURE. Note that
there is an implicit return o f control when PROCEDURE finishes.
The smaller arrows in-Tigu?e T-sEow-iEe data flows, which may go
in either direction along t h e control arrow. Also, figure 1
includes an explicit symbol f o r t h e GLOBAL DATA. Control arrows
directed towards this symbol denote data access, even though
control never really flows into t h e data, o f course. This
convention indicates that t h e data is always passive and never
--------- initiates any action.

D.4.6.1

I

2
GLOBAL DATA

FIGURE1 A p r o c e d u r e d

T h e use o f global

ADDRESS
MEMORY

STATE)
@JTEwI(AL

FIGURE 2 An ADDRESS BOOK object

storage leaves data open t o illicit
modification. T o - a v o i d this,-an object packages some memory
together with all allowable operations on it. We can model an
object as a mathematical "state machine" with some internal
state which can be accessed and modified by a limited number of
mathematical functions. We thus implement an object as a
packaged set of procedures and internal data, as shown i n
figure 2. For an address b o o k object, the internal memory would
be a set o f addresses, and the allowable operations would be
accessing an address by name, adding an address, etc. Unlike a
procedure, t h e same arguments t o an object operation may produce
--------- different resulfs--at different times, depending on t h e hidden
internal state. We will diagram an object showing only its
operational connections to other objects, as i n t h e -- obiect ---
--- diagram --- o f figure 3 [Seidewitz 85a].

When there are several control paths on a complicated
object diagram, it rapidly becomes cumbersome t o show data flows
or all individual procedure control flows. Therefore, an arrow
between objects on an object diagram indicates that one object
invokes --- o n e -- o r ---- more of the operations provided by another object
and is not marked with data flow arrows. -- Obiect --- ------ descrigtions _-_-_
for each object on a diagram provide details o f t h e data flow.
An object description includes a list o f all operations provided
by an object and, for each arrow leaving the object, a list o f
operations used from another object. F o r example, t h e object

0 . 4 . 6 . 2

-* --- d e s c r i p t i o n f o r DATE BOOK f r o m f i g u r e 3 i s :

P r o v i d e s :
N e x t - A p p o i n t m e n t () NAME t ADDRESS
G e t A p p o i n t m e n t (DATE t TIME) NAME + ADDRESS
Make A p p o i n t m e n t (DATE + TIME + NAME)
C a n c e l - A p p o i n t m e n t (D A T E + T I M E)

U s e s :

A D D R E S S BOOK
Look-Up

CLOCK
Get D a t e
Ge t -T ime -

D a t a i n p a r e n t h e s e s a r e a r g u m e n t s w h i c h f l o w a l o n g t h e c o n t r o l
a r r o w , w h i l e u n p a r e n t h e s i z e d d a t a a r e r e s u l t s w h i c h a r e
r e t u r n e d .

FIGURE 3 A simple schedule organizer

D.

FIGURE 4 Parent-child hierarchy

4 . 6 . 3

3. OBJECT-ORIENTED DESIGN -

The intent of an object is to represent a problem domain
entity. The concept o f abstraction deals with how an object
presents this representation to other objects [Dijkstra 6 8 ,
Liskov 74, Booch 831. There is a spectrum o f abstraction, from
objects which closely model problem domain entities to objects
which really have no reason for existence. The following are
some points in this scale:

Best

I
----- Entity __----__--- Abstraction - An object represents a useful
model of a problem domain entity.

------ Action --___------ Abstraction - An object provides a generalized
set of operations which all perform the same kind of
function.

_____-- Virtual ------- Machine Abstraction - An object groups
toctether oDerations which are all used by some
sukerior level o f control or all use some j u n i o r level
set o f operations.

_____--_____ Coincidental _-__--------- "Abstraction" - A n object packages a set
o f operations which have no relation to each other.

The stronger the abstraction of an object, the more details are
suppressed by the abstract concept. The principle of
____------- information ----- h i d i n g states that such details should be kept
secret from other objects [Parnas 72, Booch 831, s o as t o better
preserve the abstraction modeled by the object.

The principles of abstraction and information h i d i n g
provide the main guides for creating "good" objects. These
objects must then be connected together to form a n
object-oriented design [Seidewitz 85bl. Following [Rajlich 851,
we consider two orthogonal hierarchies i n software system
designs. The parent-child ----------- hierarchy deals with the
decomposition o f larger objects into smaller component objects.
The _____--- seniority hierarchy deals with t h e organization o f a set of
objects into "layers". Each layer defines a ------- virtual ------- machine
which provides services t o senior layers [Dijkstra 681. A major
strength o f object diagrams is that they can distinctly
represent these hierarchies.

The parent-child hierarchy is directly expressed by
_____-- leveling object diagrams (see figure 4). At its top level, any
complete system may be represented by a single object. For
example, figure 5 shows a diagram o f the complete SCHEDULE
ORGANIZER o f the last section. The object SCHEDULE ORGANIZER
represents the ''parent" o f the complete object diagram of
figure 3. The boxes labeled "USER" and "CLOCK" are -------- external
-------- entities 9 objects which are not included in the system, but
which communicates with t h e top level system object. Note the
arrow labeled '*RUN". Bq convention, RUN is the operation used
to initially invoke the entire system.

D.4.6.4

7-

J

VIRNAl.
MACHIM
XNTEFtFACE 1

I

VlRTUAL
MACHINE
N E I F A C E 2

FIGURE 5 External Entities Diagram FIGURE 6 Seniority hierarchy

Figure 3 is t h e decomposition o f t h e SCHEDULE ORGANIZER o f
figure 5. Beginning at t h e system level, each object can be
refined i n t h i s way into a lower level object diagram. The
result is a leveled set o f object diagrams which completely
describe t h e structure o f a system. At t h e lowest level,
objects are completely decomposed into FrrJmitive ------ -- obiects, ----
procedures and internal state data stores, resulting i n diagrams
similar to figure 2.

The seniority hierarchy is expressed by t h e topology of
connections on a single object diagram (see figure 6). Any
layer in a seniority hierarchy can call on any operation i n
j u n i o r layers, but ----- never any operation in a senior layer. Thus,
all cyclic relationships between objects must be contained
within a virtual machine layer. Object diagrams are drawn with
t h e seniority hierarchy shown vertically. Each senior object
can be designed as if t h e operations provided by junior layers
were "primitive operations'' in an extended language. Each
virtual machine layer will generally contain several objects,
each designed according t o t h e principles o f abstraction and
information hiding.

T h e main advantage o f a seniority hierarchy is that it
reduces t h e coupling between objects. This is because all
objects in one virtual machine layer need t o know nothing about
senior layers. Further, t h e centralization o f t h e procedural

D.4.6.5

and data flow control in senior objects can make a system easier
t o understand and modify. However, this very centralization -can
cause a messy bottleneck. I n such cases, the complexity of
senior levels can be traded off against the coupling o f j u n i o r
levels. The important point is that the strength o f the
seniority hierarchy i n a design can be chosen from a - spectrum ------ of
possibilities, with the best design generally lying between the
extremes. This gives t h e designer great power and flexibility
i n adapting system designs t o specific applications.

I n the simple automated plant simulation system shown i n
figure 7, the j u n i o r level components d o not interact directly.
This design is somewhat like an object-oriented version o f the
structured designs of [Yourdon 791. We can remove the data flow
control from the senior object and let the junior objects pass
data directly between themselves, using operations within the
virtual machine layer (see figure 8). The senior object has
been reduced to simply activating various operations i n t h e
virtual machine layer, with very little data flow. We can even
remove the senior object completely by distributing control
among the j u n i o r level objects (see figure 9). The splitting o f
t h e RUN control arrow i n figure 1 1 means that the three objects
are activated simultaneously and that they run concurrently.
The seniority hierarchy has collapsed, leaving a homologous or
non-hierarchical desiqn fYourdon 791 (no seniority--bTerarchy,

hierarchy still remains). A design that is; the parent-child
which is homologous at all
t o what would be produced
[Cherry 85a, Cherry 85bl.

decomposition levels is very similar
by the P A M E L A (tm) methodology o f

I FIGURE 7 A simple plant automation FIGURE 8 plant simulator with
simulation system junior-level connections

D.4.6.6

FIGURE9
FIGURE10 EMS

Plant simulator, homologous design

-
context diagram

4 . OBJECT-ORIENTED LIFE CYCLE

Object diagrams and the object-oriented design concepts
discussed above can be used as part of an object-oriented life
cycle. To do this, we must show that a specification can be
translated into object diagrams, and that object diagrams map
readily into Ada. We use structured analysis for developing the
specification [DeMarco 791. The data flow diagrams of a
structured specification provide a leveled, graphical notation
containing the information needed to represent abstract
entities, but in a form emphasizing data flow and data
transformation.

_--________ Abstraction --_- analysis __- is the process of making a transition
from a structured specification to an object-oriented design
[Stark 861. We will use a simplified version of an Electronic
Message System (E M S) as an example o f abstraction analysis.
Figure 10 is the context diagram for EMS, and Figure 11 is the
level 0 data flow diagram. EMS must allow the user to send,
read, and respond to messages, to obtain a directory o f valid
users to which messages can be sent, and to add and delete users
from that directory.

The first step of abstraction analysis i s to find a central
----- entity. This is the entity that represents the best abstraction
for what the system does or models. The central entity is
identified in a similar way to transform analysis [Yourdon 7 9 1 ,
but instead of searching for where incoming and outgoing ---- data
--___ flows are most abstract we look for a set o f processes and ---- data
-_____ stores that are most abstract. It may sometimes be necessary to

0 . 4 . 6 . 7

l ook a t lower l e v e l d a t a f low d iagrams t o f i n d t h e c e n t r a l
e n t i t y . EMS i s a sys tem s e r v i n g a person s i t t i n g a t a t e r m i n a l
s end ing and r e c e i v i n g messages. On f i g u r e 11 we have c i r c l e d
t h e " c u r r e n t u s e r " d a t a s t o r e and t h e p r o c e s s 1 .0 G E T EMS
C O M M A N D . Toge the r t h i s p r o c e s s and d a t a s t o r e r e p r e s e n t t h e
u s e r e n t e r i n g commands a t a t e r m i n a l . Thus t h e y r e p r e s e n t t h e
c e n t r a l e n t i t y .

Next , we need t o f i n d e n t i t i e s t h a t d i r e c t l y s u p p o r t t h e
c e n t r a l e n t i t y . We do t h i s by f o l l o w i n g d a t a f lows away from
t h e c e n t r a l e n t i t y and g r o u p i n g p r o c e s s e s and d a t a s t o r e s i n t o
a b s t r a c t e n t i t i e s . I n o u r example t h e USER DIRECTORY d a t a s t o r e
and t h e t h r e e p r o c e s s e s (2 . 0 , 4 . 0 a n d 5 . 0) s u p p o r t i n g i t form an
e n t i t y . The p r o c e s s 3 . 0 ACCESS Q U E U E S w i t h t h e d a t a s t o r e U S E R
Q U E U E INDEX a l s o form an e n t i t y . All t h e s e e n t i t i e s a r e c i r c l e d
and l a b e l e d on f i g u r e 11. We c o n t i n u e t o f o l l o w t h e d a t a f lows
and t o i d e n t i f y e n t i t i e s u n t i l a l l t h e p r o c e s s e s and d a t a s t o r e s
a r e a s s o c i a t e d wi th a n e n t i t y .

F i g u r e 12 i s t h e ----- e n t i t y graph -- - f o r EMS. Squares r e p r e s e n t
e n t i t i e s , l i n e s w i t h a r rows r e p r e s e n t f low o f c o n t r o l from one
e n t i t y t o a n o t h e r , and l i n e s w i t h no arrowhead r e p r e s e n t
i n t e r a c t i o n s where f l o w o f c o n t r o l i s n o t y e t d e t e r m i n e d . A
"most s e n i o r " e n t i t y i s p l aced i n t o t h e d e s i g n t o g i v e an
i n i t i a l f l ow o f c o n t r o l . I n t h e EMS example, e n t i t y EMS i s t h i s
most s e n i o r o b j e c t , and we have t h e U S E R INTERFACE e n t i t y
" c o n t r o l l i n g " t h e e x t e r n a l e n t i t y USER. T h i s f l ow o f c o n t r o l

-
FIGURE 11 EMS level 0 data flow diagram

D.4.6.8

MESSAGE

(1.0, D1) (20. 4.0. (3.0, 03)
5.0, 02)

I ' ' 1

IRECTOF? %
3.0

MESSAGE
CENTEF?

FIGURE 12 EMS entity graph .FIGURE 13 EMS object diagram

i n t o U S E R w i l l u l t i m a t e l y b e i m p l e m e n t e d as r e a d and w r i t e
o p e r a t i o n s . N o t e a l s o t h a t t h e USER e n t i t y c o n t r o l s EMS. T h i s
f l o w o f c o n t r o l r e p r e s e n t s t h e u s e r i n v o k i n g t h e EMS s y s t e m .
A f t e r t h i s i n v o c a t i o n c o n t r o l r e s i d e s w i t h EMS u n t i l t h e s y s t e m
i s e x i t e d . A l l o t h e r p o t e n t i a l i n t e r f a c e s a r e shown b y l i n e s
w i t h no a r r o w s . The numbers i n s i d e t h e s q u a r e s r e p r e s e n t t h e
p r o c e s s e s and t h e d a t a s t o r e s c o n t a i n e d i n t h e e n t i t y . T h i s
p r o v i d e s t r a c e a b i l i t y f r o m r e q u i r e m e n t s t o d e s i g n .

The e n t i t y g r a p h i s t h e s t a r t i n g p o i n t f o r o b j e c t
i d e n t i f i c a t i o n . I t shows e n t i t i e s w i t h t h e h i g h e s t a b s t r a c t i o n
p o s s i b l e and a l s o shows a l l t h e p o s s i b l e i n t e r c o n n e c t i o n s
b e t w e e n t h e e n t i t i e s . S i n c e we a r e t r y i n g t o b a l a n c e d e s i g n
c o m p l e x i t y , o b j e c t a b s t r a c t i o n , and c o n t r o l h i e r a r c h y , we w i l l
a l t e r t h e e n t i t y g r a p h t o f o r m t h e f i n a l o b j e c t d i a g r a m . I n EMS
t h e e n t i t i e s a r e e a s i l y mapped i n t o o b j e c t s . The e n t i t i e s U S E R ,
U S E R INTERFACE, a n d EMS f o r m a c y c l i c g r a p h and t h e r e f o r e a r e on
t h e same v i r t u a l m a c h i n e l e v e l . We c a n n o t c o m b i n e an e x t e r n a l
e n t i t y i n t o an o b j e c t , b u t c o m b i n i n g EMS and U S E R I N T E R F A C E
y i e l d s a s i n g l e o b j e c t t h a t i s s e n i o r t o U S E R D I R E C T O R Y and
M E S S A G E CENTER. C o m b i n i n g t h e t w o j u n i o r o b j e c t s w o u l d s i m p 1 i f y
t h e d e s i g n , b u t a t t h e e x p e n s e o f a b s t r a c t i o n , a s t h e message
p a s s i n g m e c h a n i s m s h a v e l i t t l e t o d o w i t h t h e d i r e c t o r y . We
h a v e a l s o c h o s e n t o make U S E R DIRECTORY s e n i o r t o M E S S A G E
C E N T E R , s i n c e t h e d a t a f l o w s a r e f r o m U S E R D I R E C T O R Y i n t o d a t a
s t o r e s c o n t a i n e d b y M E S S A G E C E N T E R . F i g u r e 1 3 shows t h e
r e s u l t i n g o b j e c t d i a g r a m .

0 . 4 . 6 . 9

Needless t o say, identifying objects is not always t h i s
simple. Usually there is a trade-off made between level o f
abstraction and design complexity, o r a balancing o f these two
considerations and t h e virtual machine hierarchy. When these
situations occur it is still t h e designer’s judgement that must
determine which side o f t h e trade-off matters more f o r t h e
application being designed.

Once t h e object diagrams are drawn w e can identify t h e
operations provided and used by each object. In t h e c a s e o f 2.0
USER DIRECTORY t h e operations are identified by examining t h e
primitive processes contained within processes 2.0, 4.0 and 5.0
on figure 1 1 . The data exchanged are identified by looking at
data flows crossing t h e object boundaries, with t h e detailed
information about the data being found in t h e data dictionary.
T h e object description is produced by matching t h e operations
and t h e data. T h e description generated for 2.0 USER DIRECTORY
is a s follows:

Provides:
List Names () LIST-OF NAMES
Add user (USER NAME +-PASSWORD)
Delete User (USER-NAME)
Signon-(USER-NAME + PASSWORD) VALIDITY - FLAG

Uses:
3.0 MESSAGE QUEUES

Reset Queue
C r e a t e - New - Queue

Using t h e subset data flow diagram o f processes and data
stores that an object contains, t h e process o f object
identification can be repeated t o produce a child object
diagram. T h e only difference is that entities are identified
based on how they support t h e object’s operations, not by
finding a central entity. This process is used until t h e lowest
level o f data f l o w diagrams is exhausted.

T h e transition from an object diagram t o Ada i s
straightforward. T h e relationship between object diagram
notations and Ada language features is:

-- ObJect --- --- Diagram ---
Object
Procedure
State
Arrow
Actor

Ada Construct
Package
Subprogram
Package o r t a s k variables
Procedure/function/entry call
Entries/Accepts

(not covered in this paper)

--- -__-----_

Package specifications are derived from t h e list o f operations
provided by an object. For t h e EMS USER DIRECTORY object t h e
package specification is:

0.4.6.10

package User-Directory is

subtype USER-NAME is STRING(l..EO);
subtype PASSWORD i s STRING(1..6);
t y p e LIST - - O F NAMES is array (POSITIVE r a n g e c >) o f USER-NAME;

procedure Signon (User: in USER-NAME; PW : in PASSWORD;

procedure Add-User (U: in USER NAME; PW : in PASSWORD);
procedure Delete-User (U: in USER-NAME);
function List-Names return LIST-OF-NAMES;

Valid-User : out Boolean);

end User-Directory;

The package specifications derived from t h e level 0 object
diagram are placed i n t h e declarative part o f t h e top level Ada
procedure a s follows:

procedure EMS is
package User-Interface is

procedure Start;

end'User - Interface;

package User - Directory i_s

end User - Directory;

package Message-Queues is

end Message - Queues;

package body User Interface is separate;
package body User-Directory is separate;
package body Message-Queues is separate;

User 1nterface.Start;

. . .

. . .

begin

end EMS;
for lower level object diagrams t h e mapping is similar, with
package specifications being nested in t h e package body o f the
parent object. States are mapped into package body variables.
This direct mapping produces a highly nested program structure.
To implement t h e same object diagram with library units would
require t h e addition o f a package to contain data types used by
two o r m o r e objects. This added package would serve as a global
data dictionary.

T h e process o f transforming object diagrams to Ada is
followed down all the child object diagrams until w e are at the
level o f implementing individual subprograms. If t h e mapping is
done without explicitly creating library units t h e lowest level
subprograms will all be implemented as subunits, rather than by
embedding t h e code in package bodies.

0.4.6.11

5. EVALUATION OF THE METHODOLOGY

T o measure how well abstraction analysis w o r k s a s a
methodology w e must first define o u r criteria f o r a good
methodology. W e will use Barry Boehm's "Seven Principles o f
Software Engineering" [Boehm 761 as a basis o f comparison.
These principles are:

Manage using a sequential life c y c l e plan
Maintain disciplined product control
Perform continuous validation
Use enhanced top down structured design
Maintain clear accountability f o r results
Use better and fewer people
Maintain a commitment t o improve t h e process

Abstraction analysis supports all these principles. .The
---- life c y c l e plan is supported by providing t h e abstraction
analysis method for producing object diagrams, which are in turn
mappable into Ada. This also provides a means o f disciplined
Froduct control by tracing how Ada software implements an object
orienxed--&%Tsn, and also tracing h o w t h e design meets t h e
specification. This traceability allows a manager t o see that
software meets its specification, and allows maintenance o f
specifications, design, and software t o be consistent. Grady
Booch's [Booch 831 work influenced o u r methodology, but did not
provide a sufficient means o f specifying large systems. Another
drawback is that Booch does not define a formal mapping from a
specification t o a design.

T h e graphic notation supports a top down approach t o
software development. T h e leveling o f both -&fafTow-aiagrams
and o f object diagr.ams allows t h e designer to start at a high
level and w o r k top-down t o a design solution. The use o f
graphics also supports continuous validatioc by making design
walkthroughs and iterative changes easier tasks t o perform.
Both Booch and Cherry [Cherry 85b] use graphics, but'Booch's
notation w a s not designed for large applications, and Cherry's
methodology stops graphing after all t h e concurrent objects have
been identified. The graphics used by structured analysis
[DeMarco 791 provide t h e best analogy t o how graphics are used
i n t h e object diagram notation.

T h e life cycle model we have defined also supports the
remaining three principles. Objects a r e defined i n t h e design
phase and implemented as separate Ada compilation units. Tools
such as unit development folders can be used t o maintain
------------- accountability f o r completion of t h e design, implementation, and
testing o f objects. It is hoped that t h e object-oriented
approach and t h e use of Ada will enhance both productivity and
software reliability. T h i s assertion will be tested by
measuring t h e outcome of t h e pilot project in t h e Software
Engineering Laboratory at Goddard S p a c e Flight Center. The
success o f t h i s methodology would allow ------ better --- and ----- fewer people -- --
to concentrate more effort on producing a good design.

D . 4 . 6 . 1 2

Finally, w e a r e . certainly committed t o improving
process. T h e object diagram notation-and--absfraction analysis
ha?e-aiready seen much change since t h e initial versions were
defined. Further refinement will be t o define criteria for
using parallelism, criteria for choosing between library units
and t h e nested approach defined above, and to generate object-
oriented approaches t o software specifications and software
testing.

6. CONCLUSION

Object diagrams have been used t o design a 5 0 0 0 statement
team trainging exercise and to design t h e entire dynamics
simulator. They are also being used t o design another 50,000
statement Ada system and a personnal computer based system that
will be written i n Modula 11. O u r design methodology evolved
out of t h e s e experiences as well as t h e limitations o f other
methods w e studied. Object diagrams, abstraction analysis and
associated principles provide a unified framework which
encompasses concepts from [Yourdon 791, [Booch 831 and
[Cherry 85bl. This general object-oriented approach handles
high level system design, possibly with concurrency, through
object-oriented decomposition down t o a completely functional
level. We are currently studying how object-oriented concepts
can be used in other phases of the software life-cycle, such as
specification and testing. When complete, this synthesis should
produce a truly general object-oriented ------ development ---- methodology.

TRADEMARKS

Ada is a trademark of t h e US Government (Ada Joint Program
Office).

PAMELA is a trademark o f George W. Cherry.

REFERENCES

[Boehm 761 Boehm, Barry W . "Seven Basic Principles of
Software Engineering," NASA/GSFC Engineering
Coll oqui um, 1976.

[Booch 831 Grady Booch. -------- Software -- Engineering ------- with M a ,
Benjamin/Cummings, 1983.

[Cherry 85a] George W. Cherry. PAMELA: Process Abstraction
Method for Embedded Large Ape1 ---------, ications Course
notes, Thought**Tools, January 1985.
------ --- -_-_---- ---

George W. Cherry and Grad S. Crawford. The [Cherry 85b]
PAMELA ltlnl -___----- Methodology, November 1985.

[DeMarco 791 Tom DeMarco. ---------- Structured ---- Analisis --- --- and - System ----
- Specification -----------, Prentice-Hall, 1979.

D.4.6.13

[Dijkstra 681 Edsgar W . Dijkstra. "The Structure o f t h e 'THE'
-------------- Communications -- o f --- t h e Multiprogramming System,"

--- ACM, May 1968.

[Goldberg 831 Adele Goldberg and David Robison. ---_----_ S m a l l t a l k --- 80:
Imp1 ementati on.

Aaaison-Wesley, 1983,-
-- --_-__---_- Its The Language and ---

[Liskov 741 Barbara H . Liskov and S. N. Zilles.
"Programming with Abstract Data Types," Proc. of
the ACM Symp. on Very High Level Languages,
------- SIGPLAN ------- Notices, April 1974.

[Nelson 861 Robert W. Nelson. "NASA Ada Experiment - -
Attitude Dynamic Simulator," ----- Proc. -- o f
------ Washington --- --- Ada Symposium, March, 1986.

[Parnas 721 David L. Parnas. "On the Criteria t o be Used i n
Decomposing Systems into Modules, I'
-------------- Communications -- o f --- the --- ACM, December 1972.

[Rajlich 851 Vaclav Rajlich. "Paradigms for Design and
Implementation in Ada," -----------_-- Communications -- o f --- the
--- A C M , July 1985.

[Seidewitz 85a] Ed Seidewitz. ObJect --- --- Diagrams ----, unpublished GSFC
report, May 1985,

[Seidewitz 85b] Ed Seidewitz. Some Principles o f ObJect
-------- Oriented ---- Design, unpublished GSFC report, Augczf
1985.

[Stark 861 Mike Stark. ----------- Abstraction ---- Analysis: ---- From
---------- Structured Specification to -- ObJect-Orienfea ------------
---- Design, u n p u b i i s ~ e a - ~ S T ~ - r e p o r t , April 1986.

[Yourdon 791 Edward Yourdon and Larry L. Constantine.
Structured Design: Fundamentals o f 2 ----- Discieline ----
-- o f --- Computer ---- --- Program --- --- a n d - Sysfems ----- ---- Design, -
Prentice-Hall, 1979.

---------- ---- -- ------------

D.4.6.14

SESSION D.5

Panel Chair:

CAIS PANEL

David Pruett
NASA Johnson Space Center

Panel members:

Clyde Roby
Jack Krammer
Institute for Defense Analysis
Alexandria, Virginia

Sue LeGrand
SofTech
Houston, Texas

Robert Stevenson
Gould Electronics
Fort Lauderdale, Florida

Robert Fainter
Virginia Tech
Blacksburg, Virginia

Hal Hart
TRW Defense Systems Group
Redondo Beach, California

D.5.1

SOME DESIGN CONSTRAINTS REQUIRED
COMPONENTS: THE INCORPORATION

FOR THE ASSEMBLY OF SOFTWARE
OF ATOMIC ABSTRACT TYPES

INTO GENERICALLY STRUCTURED ABSTRACT TYPES

Charles S. Johnson

ABSTRACT

It is nearly axiomatic, that to take the greatest advantage
of the useful features available in a development system, and to
avoid the negative interactions of those features, requires the
exercise of a design methodology which constrains their use. A
major design support feature of the Ada language is abstraction:
for data, functions, processes, resources and system elements in
general. Atomic abstract types can be created in packages
defining those private types and all of the overloaded
operators, functions and hidden data required for their use in
an application. Generically structured abstract types can be
created in generic packages defining those structured private
types (i.e. lists, trees), as buildups from the user-defined
data types which are input as parameters. A study is made of
the design constraints required for software incorporating
either atomic or generically structured abstract types, if the
integration of software components based on them is to be
subsequently performed. The impact of these techniques on the
reusability of software and the creation of project-specific
software support environments is also discussed.

INTRODUCTION

The reusability of Ada software developed in support
environments will be wholly dependent upon the quality of those
environments. The ability of programmers that are relatively
inexperienced in Ada to generate reusable software will be
enhanced by an environment rich in already reusable software
components, which act as models f o r good design. In an analogy
to a factory, components which are tooled to fit can be easily
assembled. Atomic abstract types define objects which represent
the discrete phenomena that are the subjects of the system
development. Generically structured abstract types organize the
objects of the system in a manner representing the relationships
between those objects. If atomic and generically structured
abstract types are defined according to some general design
goals and constraints, then the subsequent assembly of these
software components is made considerably easier.

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)
System, which is the I & T subset of the User Interface Language

E.l.l.l

(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the general feasibility of creating
software support environments which maximized the reusability of
software components. The Ada environment used was that of VAX
Ada under VAX/VMS.

OBJECT DEFINITION IN ADA

The design and development of software components that meet
the needs of the user community can be viewed largely as an
effort to define and refine the definition of abstract objects
and their associated operations in computer systems. The
definition of objects in these systems is akin to a simulation
effort. There is a direct correlation between the effectiveness
of programs and the fidelity with which objects in those
programs simulate the behavior of the external phenomena they
are intended to represent. For example, an element in a
scheduler queue, representing a process awaiting execution, must
reflect the correct state of the process (priority, blocked for
I / O , etc.) for the scheduler to function properly. The element
must be distinguishable from other elements and not lose
identity or integrity during operations.

As in simulation efforts, the goals and objectives for
defining an object in a system should be specified at the
outset. The system functional requirements should drive the
process, while the scope of the system concept constrains
development to areas that are productive.

SIMPLE TYPES

An object is characterized by it's attributes and the
operations which mediate it's interactions with other objects in
the environment. In the Ada language, the process of object
definition begins with selection of base type or the creation
of a composite type.

Objects whose behavior is simple enough to be modeled by a
numeric value, can be represented by subtypes or derived types,
of numeric or discrete types. The subtype definitions can
include range constraints, and in the case of non-discrete
numeric types (UNIVERSAL-REAL, UNIVERSAL-FIXED) , they can
include limits of precision for the representation. Declared
objects of subtypes are, however, compatible with their base
type and subtypes of the base type, which can allow erroneous
combinations by operations allowable in the base type (adding
MINUTES to HOURS, for example) .

If the allowable operations of these base types are
unsuitable, they can be restricted by the use of a derived type,
which inherits the operations of the base type, but only for
declared objects of the derived type (incompatible with the base
type). This can yield dimensional errors, however, for
multiplies and divides of objects of the same type (FT * FT =
FT, instead of FT squared). In these cases subtypes and derived

E.1.1.2

types are too simple in behavior to correctly represent the
objects in applications, and composite types must be used. [l]

COMPOSITE TYPES

Objects which are characterized by collections Of
components or attributes are defined in Ada by the use of
composite types: arrays and records or by access types
which designate composite types. Objects which are collections
of compatible components are represented by arrays, whereas
objects which have various kinds of attributes are represented
by records or access types designating records. Objects with
attributes, and which have complex interactions with other
objects in the system, would seem to be the more useful,
although these are the most complex to define.

Objects with attributes interact with each other by the
means of those attributes, under the control of the allowable
operations of the objects. These interactions can produce
modifications and deletions of the objects or creation of new
and different kinds of objects. In Ada, the operations are
defined as subprograms (functions and procedures) with
parameters of the object type or subtype.

The operations which correspond to functions can be
overloaded onto the set of computer math symbols for the given
types. A function producing a scalar dot product from two input
vectors could be given the name for instance. At the same
time, a function producing a vector cross product from two
vectors, could also be named The compiler would resolve
these two operations from the type of the returned object. The
compiler cannot, however, resolve these operations when the type
of return is unknown. Vector products defined in this way could
not then be embedded in longer equations, where they would
generate intermediate results of indeterminate type.

DIFFERENTIATION

There are different levels of definition f o r a
system, it's objects and operations. Definition of the gross
structure of a system can typically be generated, in a fairly
simple manner, by the object-oriented or functional
decomposition methods. Definition of the fine structure of
the system involves different methods, which produce results of
greater complexity. One proposed second-stage method is
differentiation.

If the definition of an object is found to be too amorphous
to yield the correct behavior, differentiation can produce
separate and more distinct types of object. The differentiated
types will tend to be closely coupled and capable of interacting
with the same operations that the undifferentiated type allowed
for interactions of objects of that type. Where they differ in
behavior is that area of operations or attributes that required
the split. This type of tightly coupled interaction between
different types is produced automatically in subtypes of the
same base type, through inheritance. Subtypes, however, are very

E.1.1.3

tightly coupled, and can only differ from each other in terms of
ranges (numeric or discrete subtypes), numbers of components
(constrained array subtypes) or discriminant values (constrained
record subtypes).

If the differentiation is more extensive, requiring objects
of differently structured base types, then all of the allowed
interactions between the objects must be defined more
laboriously. The rewards of this diligence, which are unique to
Ada, are the isolation of system complexity to a package
defining all the closely coupled interactions, while the
programming using these types and operators can proceed at a
higher level.

OBJECT LIFE CYCLE

Definition of a system down to the fine structure produces
a definition that is no longer intuitive, and requires some non-
intuitive method for it's verification. The life 'cycle of an
object may prove to be useful in providing a path to follow, in
the analysis of complex objects.

All objects have their own life cycle, however brief, in
the system environment. They are created and deleted by an
operation or system event, either explicitly or implicitly.
During their life they interact with other system objects, with
results dictated by the appropriate operations.

The verification of the results of object definition can be
performed by a "walkthroughll of the object life cycle. During
this process, the defined attributes and operations of the
object can be evaluated in the light of the events it
experiences: creation, interactions and demise. If, under
these circumstances and within the scope of the requirements,
the abstract object behaves similarly to the phenomena which it
is intended to represent, then the object with it's attributes
and operations can be expected to reliably support the
development of applications concerning that phenomena.

The Ada language features which directly support the
definition of objects are packages and private types. Packages
contain the definition of the object and allowable operations,
which are visible, and the implementation, which is hidden.
Private types further close the window of visibility, allowing
only higher-level or interface attributes of the object
definition to be visible

TWO CLASSES OF ABSTRACT TYPES

For the purposes of the assembly of software components,
there appear to be two broad classes of private types. The types
which support the definition of objects as discussed above are
called, only for the purpose of distinction, atomic abstract
types. These types represent the discrete phenomena which are
the subjects of system development, and are defined in
packages as private types. They have the indivisible property of
atoms, and can be incorporated into the second class of types:
the generically structured abstract types.

E.1.1.4

Generically structured abstract types are managed by
generic software components (packages or subprograms), and are
built-up from application-defined types which are contained as
components of the generic structure. These structured abstract
types organize the objects of the system in a manner
representing the relationships between objects, and they shall
be discussed first.

GENERICALLY STRUCTURED ABSTRACT TYPES

These structures, built-up from application-defined
atomic abstract types and managed by generic packages, support
the basic organization of the elements of the system. The
organization of objects in a structure is a representation of
the relationships between those objects, which can be either
static or dynamic in nature.

The specification of a generic package is parameter driven.
The generic formal parameters of a generic package are the basis
and controlling factor in the reusability of the package. The
use of generic software has implications, however, for the
design of atomic abstract types which are later to be used in an
‘instantiation of that software. The benefits of reusability can
only be fully realized if the design of atomic abstract types
follows distinct lines.

Taking an example of a generic sorting routine, it can
readily be seen that the reusability of the routine is dependent
upon the initial typing of the generic formal parameters and the
matching rule for generic formal parameters. If the parameter is
typed as simply private, then the maximum reusability is
achieved, because it will match nearly everything (except
discriminant or limited private types). However, if the
parameter is typed as a real (digits <>) or integer (range <>),
the operations that are consistent with those types will be
available to the internals of the generic, but at the expense of
only allowing those types as parameters.

It should be noted here, that although a generic formal
parameter of the limited private type would extend the
generality of the generic software component, it is not useful
due to the lack of both assignment and compare for equality
within the generic. Without assignment, components of the
structure cannot be set, or initialized to any value.

The concept of generic programming turns private types and
visibility inside out. In the case of a generic package, the
structure of a type passed as a formal parameter is not visible
to the package which manipulates it.

In the support of generic structures, typically all that is
needed is the assignment function @@:=I@ , the compare for equality
function It=)I , and an ordering function @I>@@. The assignment and
compare functions are available with type private parameters,
and the ordering function I@>@@ can be passed as another formal
parameter. With no other details or operations, structures like
lists, queues, indexes, and hierarchical tree structures
containing objects of the generic formal parameter type can be
defined and maintained by the package.

E . 1 . 1 . 5

ATOMIC ABSTRACT TYPES

The atomic abstract types are the components which fit into
the generically-structured abstract types, during the assembly
of software components. As such they must be crafted to fit
easily into the generic structure.

As has been noted, generic formal parameters of the maximum
range of applicability are those of the private type. The
problem then is to design atomic abstract types that match the
simple model of the private type: assignability and
comparability.

Discriminant types, although very useful on their own for
the development of objects with constraining attributes, are
fairly disfficut to use in conjunction with generic software.
Very quickly it is found that, to match a discriminant type with
a generic formal parameter, the types for each individual
constraint must first be passed as generic formal parameters.
Then the discriminant type must be passed with it's
constraints. Unconstrained types are not allowed. Generic
formal parameters of this combination should be fairly difficult
to match with any type other than the type initially matched,
making for extremely reduced reusability.

Access types, which are the foundation of the dynamic
structure of generically structured abstract types, are of
little use in constructing atomic abstract types. They
perform the assignability function more or less according to the
simple model of private types, however they do not create a copy
of the designated object (object pointed to), but instead copy
the access object value (pointer address) onto the new object.
This creates a shared object, with a certain loss of object
identity, and could cause integrity problems inside the generic
structure which incorporates the access object as a component.

The ordering function used to order the elements of a
generic structure (index, tree), can be defined by overloading
the O>lV function for the access object, to create a function
comparing the designated objects values (for a string access
type, the lV>I1 would compare the designated strings).

The compare function VI=11 is another matter, however. It
exists for access types, but compares the values of the access
objects to see if they designate the same designated object.
The)l=II can only be overloaded if the abstract access type is
declared as limited private instead of private. When this is
done, however, the assignment operation is lost (and cannot
be overloaded), which is needed for internally manipulating the
generic structure inside the generic package.

Embedding the access type in a non-discriminant record
would not change the reference nature of the contained object,
and the problem of compares.

Embedding discriminant types, however, is very successful.
AS long as the constraint is not needed for data validity, this
technique can hide the discriminant type within a non-
discriminant record. The non-discriminant record will match a
generic formal parameter of type private. This allows, for

E.1.1.6

- -
instance, a variable string (unconstrained array type), to be
contained within a non-discriminant record, and passed to
generic procedures easily.

DESIGN GOALS AND CONSTRAINTS FOR ATOMIC ABSTRACTION

In the process of feasibility prototyping for the
generation of application independent software support
environments, the following design goals and constraints were
found to yield, for packages supporting atomic abstract types,
the maximum in abstraction, flexibility, and potential for
generic

1.

2 .

3 .

4 .

5 .

6 .

structure incorporation:

Package-def ined atomic objects being declared in the
application software should, where possible, be
defined as abstract types, that is, made private.

If the operations of an object are analogous to those
of standard objects already in the system, overload
the same names for the operations. This enhances
readability and learnability of the application
software support environment. Do not, however,
overload names with non-analogous functions.

The functions performed by the operations of an
object should be intuitive. The action
performed by an operation should be predictable from
the context of the application software.

The outcome or result of operations of an object
should be intuitive. The kind of object produced by
operators, for example, should be predictable from
the context of the application software.

Maximize the completeness of the application interface
to the atomic type defined in the package. Give the
application developer all of the operations required
to manipulate and combine objects, in an easy-to-use
yet well controlled manner.

Maximize the potential use of reusable software
incorporating the abstract atomic type into
generically structured types. This can be accomplished
by defining types that perform simply under the
operations of assignment and comparison (not
discriminant types or access types, which follow a
more complex model).

DESIGN GOALS AND CONSTRAINTS FOR GENERIC ABSTRACTION

In the process of feasibility prototyping for the
generation of application independent software support
environments, the following design goals and constraints were

E.1.1.7

found to vield the maximum in reusability and flexibility for
packages

1.

2 .

3 .

4 .

5 .

6 .

7 .

ianaging generically structured abstract types :
-

Package-managed generic objects that are declared in
the application software should, where possible, be
defined as abstract types, that is, made private.

Maximize the generality of the package. This comes
from the use of formal generic parameters,
particularly for types, that match the widest variety
of application input types (type private instead of
digits -3, for example).

Maximize the usability of the application interface to
the package. Extend, as far as possible into the
application domain, access to the structures managed
in the package, without violating the integrity of the
internals, or the independence of the application
from the generic software component (generality).

Maximize the completeness of the application interface
to the package. Give the application developer all the
operations required to access and manipulate the
internal structures, in a package-controlled manner.

Support, if possible, multiple objects with the same
package. This limits the need to re-instantiate the
package several times within the same scope, for
processing of multiple objects.

Design for flexibility: a single tool, suited to a
wide range of applications, is more likely to be
remembered, and used by developers.

Cover the infrequent failure modes. Most failures of
algorithms and processing logic in programs occur at
the extremes of their domain of applicability.
Testing should cover the ends of ranges and the
infrequent states of the application. If the software
component is reusable, it will be used in a wider
range of applications, and the infrequent failure
modes will occur more frequently.

PACKAGES SUPPORTING GENERICALLY STRUCTURED ABSTRACT TYPES

The index package, described as a list of elements ordered
by another set of associated elements or keys, will be used as
an example for a package supporting a generically structured
abstract type. The index structure itself should be a private
type. It should be defined in the package specification, not
hidden, so that it can be declared as an object in the scope of
the application. The package should be capable of accessing and
managing several objects of type INDEX, so there should be a
USE-INDEX function, which selects the appropriate object, and

E.1.1.8

sets a package-internal access object to the same value as that
passed as the USE-INDEX parameter. Then there will be two
access objects pointing to the index structure internals, one in
the application scope, one in the package scope.

Since the access object in the application scope cannot be
changed, neither can the access object in the package scope
(unless there is a subsequent USE-INDEX call). They must stay
aligned. This means that the INDEX access object cannot
designate the head of the index-list, but must instead designate
an access object that designates the head of the index-list.
This is in case an insert must be made at the head of the index,
and the access object that designates it must be modified.

The importance of having the index object in the scope of
the application is in the flexibility of use of the object at
the application level. The developer should be capable of
passing the object as a parameter to subprograms developed at
the higher level. If the object of type INDEX is hidden, this
flexibility is not there.

The indication of success or failure of an operation
(add/delete, search, etc.) should be available for the
application, for the purpose of logical tests and conditional
branching. It should be contained in the package scope, visible
in the package specification, and it can be called STATUS.
Values contained in status can be defined in the package

FOUND, etc.) . specification to show conditions (END-OF-LIST, ELEMENT-NOT,

CURRENT-NODE POINTER FACILITY

One question about package operations that must be answered
before the design phase is about the context-sensitivity of
operations. Higher level operations, like those involved in
command languages, are typically constrained to be context
insensitive, on a line-by-line basis. This means that the
interpreter of the command or function requires no information,
other than that in the command, to interpret it completely.
There is no contextual bas i s .

This can be effectively at a high level of application, but
is difficult for the implementation of any complex
functionality. For the package managing a complex structure, it
is really necessary for the package to keep a contextual
indication of the current position of the search through the
structure in between calls. A USE-INDEX call to a new index
would reset this position indicator, of course, as would any
search, add/delete, or sequential positioning call. This
prevents the need for a node search upon every call. This
position indication variable can be called CURRENT.

CURRENT is of necessity an access object. If CURRENT is
kept in the application scope, it must be passed in the
subprogram interfaces of every operation. Also, being in the
application scope, synchrony can be lost between USE-INDEX calls
(pointing to the wrong INDEX designated structure).

If CURRENT is kept in the package, the package can track
application context, and reset CURRENT upon USE-INDEX

E.1.1.9

invocation. Also, it should be hidden, because it would be
difficult for the application to interpret it anyway.

With these design issues decided, a generic package for
managing INDEX objects can be developed.

REUSABILITY ISSUES

Reusability is generally discussed in terms of taking
software written at other sites, and not necessarily on the same
machine, and porting it for use in an application. There is a
context here, which can be called inter-project reusability.
This kind of reusability is based on two types of software
development.

In the first type of reusable software, software components
or interfaces to non-Ada components are produced for general
application support areas, like DEMS, user interface software,
graphics, communications, data reduction and others, even AI.
These will certainly be necessary to include, as they are more
expensive to develop than to buy. They will also be the most
commercially available.

In the second type of reusable software, and with far less
availability, software components are written targetting the
application area of interest. These will probably be less of a
fit to the specific application, with fewer packages to choose
from .

In the I & T area, high performance software is hard to
obtain, and will be in the future. This is due to the narrow
market and the very high degree of system dependence of the
applications developed. In application domains with parameters
like those of I & T, the major gains in Ada reusability will be
those derived from software designed and developed in the same
project .

This kind of reusability can be called intra-project
reusability, and comes from design by abstraction. High level
software can be produced for specific application domains by the
production of packages tailored to support those
domains.

Packages implementing private types can be developed that
support the objects and operations representing the phenomena
which are the subject of system development. If these objects
and operations simulate the behavior of those phenomena well
(within the purposeful domain), then the applications developed
using them will be higher level, and generally more effective
and maintainable.

Generic packages can also be developed supporting the
static and dynamic relationships between objects in the system.
If these packages can be made flexible and with maximum
reusability, then the objects of the system can be organized
by instantiation of those packages, allowing the system
relationships to be established on a high order level in a
logical way.

The reuse of both sets of software can be enhanced by
establishing design constraints on each, so that the software
components of the system can be assembled with maximum

E. 1.1.10

likelihood. The design goals and constraints on Ada software can
not be effectively left as an afterthought.

PROJECT-SPECIFIC SOFTWARE SUPPORT ENVIRONMENTS

The effectiveness and reusability of software generated by
relatively inexperienced Ada programmers will be directly
related to the project-specific software environment that
exists when they first enter the project. It will always be
found that it is easier, quicker and more reliable to construct
anything from pre-fabricated components that fit together as
well as Leg0 blocks do. Two things are required to build a good
set of blocks.

First, the objects (the logical atoms and molecules of the
system) and their operations must be represented well by
packages supporting those atomic abstract types and all of their
support functions. Secondly, the relations organizing the
objects of the system must be supported with generic packages
that are flexible and easy to use.

In the internals of both of these packages can be buried
the hidden complexity of the system, and some of the system
dependencies as well. In this way, technology insertion into the
system can be accomplished directly, without negatively
affecting the applications of the system. [2]

Finally, a good set of blocks is not sufficient to build a
system. The builder has to know what he is building to be
effective. There is no substitute for Requirements Analysis and
Functional Decomposition using data flows and similar techniques
to express what a system does in a manner traceable back to the
original User Requirements. The development of Ada and
the object-oriented design methodologies which Ada directly
supports will eventually prove, however, to be a large step on
the way to cracking the problem of what to do after the System
Requirements are assigned to the top-level components of the
system.

ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank my
wife, Bronwen Chandler, for her support.

REFERENCES

1. Johnson, C., 1986. "Some Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Types", Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, F.4.4.

E. 1.1.11

2. Johnson, C., 1986. IISome Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typesv1, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, B . 4 . 3 .

E. 1.1.12

~ I F ' I C A T I O N OF ADA ='IS FOR REUSE

Gregory A. H e n * ,
General DymiCs, lkta Systms Division, San Diego,CA

S.D. Sgaulding, General Qmics, Eats Systans Division, San Diego, CA

Gl-i Edgar, Gemral Dymics, Data Systems Division, San Diego, CA

* Curenfly anplcyed Qy the Software Engimering Inst i tute ,
Carnqi.e-&llon UniverSiQ, Pittsbur&,

J nt r odu ct ion

OIle a€ the claims ma& by propnents of Ada is tha t Ada software i s
highly reusable. The f a c t t h a t specif icat ions are ampiled and
accessible would make reusability seen easily acfiiwahle. However,
s c e c i f i c a t i o n s s i v e on ly a l imi ted amount aE information a b u t a
pkkage; moreover-, a s p d f i c a t i o n cannot help deternine whether a
p c k a g e %worked", or h w w e l l it worked.

This problem has led t o t he concept of "certifying" Ada p r t s for
reuse; t h a t is, determining the worthimss of a p r t as a reusable
component. This p p r adiiresses issues that are critical t o reuse:
the &aracter izat ion of p r t performance, design f o r reuse, and
correct u t i l i z a t i o n of prts. %e p p r w i l l then address current
areas of study bene f i c i a l i n the developnent of a c e r t i f i c a t i o n
process.

E.1.2.1

I. a!€-

Ada has two features which support reusabi l i ty: specificaticm
aompdlation and the ab i l i t y t o Qclare ins t an t i a t ions of generic
units. Ada specifications allw a p r t ' s interfaces to be defirred,
but are not sufficient for Mining reuse. It is important t o have
information about a p a r t ' s performance i n a reuse operation to
determine amplltational requirements, accuracy a€ cdlculations, etc.

Performance is mt sanething that is eas i ly quantified; however,
attributes associated w i t h performance are *finable. A pr t ' s
performance is defimhle & its behavior, or intended fmc t ion , and
t h e computational resources it extracts from the system when
executing. mese a t t r ibu te s are d i r e c t l y related, and not
independent. They m u s t be considered i n the scope a€ both mrmal
proaessing and exception handling.

Ihe explicit separation of -#ion handling and normal processing
i s es sen t i a l for modularizaticm. Without exceptions, mstedf l ags
are required fo r error recovery management. This leads t o the
intermingling of e r ror (i. e. exceptions) and normal pcooessing,
which leads to umraMgeahle mde. Ada provides fo r the separation
of except im handling and mmal wooessing, and this aeprat ion is
mandiatary for pr t s reuse.

Exception handling oonsists of three steps: exception detection,
c o r r e c t i o n , and recovery. These steps should be handled a t
different places i n a software system. The exceptions t h a t are
raised, and t h e method of handling those exceptions, are not
oontaimd i n a pickage specification. This irdarmation is essential
to the p r t certifioation prooess.

Hcrw exceptions are handled determines the behavior of an Ada part
and a f f e c t s the performance of t h a t part. The de tec t ion ,
correction, and reawery @~ilosophy of a system has direct bearing
on the computational requirenents of that q s t e m , as &es frequency
of excepticm. Subjects such as recovery vs. restart and process
s y n c h r o n i z a t i o n m u s t be a d d r e s s e d . Exception handl ing
standardization could be an important factor i n the c e r t i f i c a t i o n
prooess.

Generic programing seems t o provide a logical approach to the
certif ication of reusable software. Hwever, some obstacles t o
r e u s a b i l i t y , s u c h as e x c e p t i o n h a n d l i n g , s t i l l e x i s t .
e c i f i c a t i a n s for generics give m more infomation mncerning the
b e h a v i o r or per fo rmance of t h e cor responding body than
specifications of pckages, sukprograns, or tasks. Since Ada does
n o t a l l o w e x c e p t i o n s t o be passed as parameters f o r the
instantiation of generic parts, the use of a generic as a reusable
p a r t is somewhat constraiMd. The usual exception declaration
interfaoe between a system and a generic package is the package
specif icat ion. Thus the ident i ty and meaning of the exception is

E.1.2.2

determined by the generic package, not the host program. This
constitutes a reversdl of acceped top down design techniques.

Another way of interfacing excegtions and reusable generic parts is
t o have both the system and t h e g e n e r i c u n i t depend on a
specifactioll package of exception declarations. This technique
would be oonsistent w i t h top dDwn methodologies, but would require a
high degree of cooperation between system implementers and the
designers of reusable prts.

A t h i r d technique of except ion i n t e r f a c i n g i n v o l v e s t h e
implementation of subprograms which raise exceptions. The
subprogram would be elaborated i n t h e sys tem's d e c l a r a t i v e
env i ronmen t and p a s s e d a s a c t u a l parameters t o g e n e r i c
instantiations. *s technique solves the poblen, but a t the mst
uf efficiency, elegance, and desicp clarity.

Another factor affecting certification of reusable pr ts is the hard
timing requirenents of a part. 'Ihis infamatian is not extractable
f r an a package qecification, and varies fran qstem to wstem. In
early oomputef architectures, timing w a s a fa i r ly easily calculated
q u a n t i t y . However, m u l t i t a s k i n g so f tware systems and new
architectures which use cache, f loa t ing point accelerators, and
other features, have direct influence on timing. ~n fact, I Y) ~

pckage oonstraints such as context switch times have become as
important as pckage timing itself.

Since parts can be viewed as tree structures with many branches;
where except ion handl ing and t iming must be considered, the
characterization of a p r t ' s perfmance and its c e r t i f i c a t i o n are
i n d e e d v e r y c o m p l e x .

E.1.2.3

I1 .
The design of aoftware p r t s m u s t be done i n a aontext independent
manner; that is, no assumptions s h o u l d be made about i n p u t
mnditions. All pssible error Conditioas should be a n t i u p t e d and
treated as exceptions. !the exception handling implenentation m u s t
be explicitly docunented.

Ihe Ada mnpiler r m time default error hecking features should not
be used, except as a redpldant he&. If r m time error hecking is
turned off for speed reasons, then flaws potent ia l ly exist i n the
qsten. Therefore, error aonditims m u s t be handled & the package.
'Ihis *ilosoFhy, mfartmately, can lead to sped impacts within the
systen.

If there are time cons t ra in ts placed upon a part, then a "costw
analysis m u s t be performed on that p r t wiar to its implanentatim,
and the results of that a m l y s h mlnst be captured f o r later use. A
hierarchical f m t i o m l demnpsitim methodology, sud~ as data flow
ar Fetri mts, can be used i n the ana lys is process. As w i l l be
discussed later, expert system technology can be amied t o the
perfo~manoe d ~e moost" analysis.

It should dlso be mentioned that there exists a potentially large
nunber of specific ooding and design practices that can adversely
impact reusability a t both the gtstem and part level. Tb fully
ickntify these Factiaes and address their relative impact w i l l take
time and experience, and such a discussion is beyond the scope of
t h i s p a p e r .

E.1.2.4

Ideally, a oertified "part" should be a reusable pr t . Hwever, it
is Fobnble #at p r t s that are oonsidered t o be 100% c e r t i f i e d are
going t o be mall aegnents of a>& with limited aFplication. Ihe
proaess of aertifying large segnents of oode is extranely oomplex.

This paper has made several points amcerning the reuse of Ada
prts:

o Ada specif icat ion packages are insuf f ic ien t f a determining
reuse

o Behavior and perfmance af a part m u s t be exp l i c i t l y defined
and extractahle

o Exception handling is an imprtant factor i n both behavior and
perf mane

o Generics offer a logical appraacfi t o oertification of reusable
p r t s hut have certain oonstraints

o Hard timing requirements must be stated, and are subject t o
variations created b~ hardvare and software envirommts

o Run time hplenenta t ions must be considered as influencing a
par t ' s behavior

Artificial Intel l igence can provide sane tecfimlogy to reace the
mplexity of analysis for reuse. In particular, expert system
technology and object-oriented design can be aFplied to the problen.
Object-oriented design is a term used t o define a methodolgy of
software development i n which &ta itens i n a software systen are
defined i n terms of their attributes, as w e l l as i n terms of their
relat ionship t o other data items i n the system. Object-orientation
has led t o the Oonoept of "franes", which are used extensively i n
expert systems for knowledge representation. If software p r t s are
thought of as objects, a frame-based system can be b u i l t which
contains declarative and procedural infarmation about plrts.

The knowledge contained i n such a frame would be symbolical ly
stated, using a f m a l graranar. %e grarmrar of the frane w i l l state
the fmction of #e p r t , sucfi as nmber and types of exceptions,
real-time requirements, accuracy, etc. If a h i e r a r c h i c a l
representation is used t o describe the qirsten, attributes of parts
can be " i n h e r i t e d " f r a n other parts a t a higher level i n the
h i e ra rchy . An expert system can then be b u i l t t o compare
requirements t o information about plrts, yielding a probabalistic
measure of a p p l i c a b i l i t y of a part t o a problem. The more
informat ion a v a i l a b l e about a part, the better a measure of
a e i c a b i l i t y can be determined.

Another technology that can be applied t o reusability is that of
Arcfietyping. (1) Archetype comes f ran the l a t i n for
" f i r s t molded as a pattern; exemplary". In t h i s case, software

E.1.2.5

specialists capture software =on after it has been tested and
delivered, work w i t h users of the software qsten, and sketch out
future requirements for systems of this type . Thus, a team of
software and domain experts develops a pattern fran w h i c h future
systems can be generated. The result of an archetyped software
system is a tenplate that requires a tool to "fill in the blanks" t o
custanize the software for an application. One such tool is the
CARTS technology, offered ty General 4.mics. ArchetyFed software
overoanes all the limitations fomd w i t h Ada generics. Archetyped
part elements, acmbined w i t h a formal grarrmar, w i l l gcovide antext-
sensitive expansion of specifications in to compilable Ada source
a&.

It is the amclusion of this -per that absolute oertification is a
desirable b u t extremely d i f f icu l t t o achieve goal. Partial
certification is a more realistic goal and i s attainable w i t h
existing tecfimlogies.

mreover, i n order to L L S ~ p r t s "as is", they must be kept anall and
uncomplicated, otherwise the process of certification kccanes very
axnplex. A methodology, such as archetyping, combined w i t h the
proper tools, ciin make p r t s adaptable, r a c e aomplexity, and allow
for reuse of larger bodies of mde.

The concepts described i n t h i s paper reflect research being
performed a t General Dynamics Data Systems Division, San Diego,
California.

(1) Pnytylinski, S. "ArchetYping- A Knowledge-Baaed Ftee Paradign"
April, 1986

E.1.2.6

DEVELOPHENT OF AN ADA* PACKAGE LIBRARY

D r , Bruce Burton and Mr, Michael Broido

Intermetrics, Inc.
Aerospace Systems Group

5312 Bolsa Ave
Huntington Beach, California 92649

ABSTRACT

A u s a b l e p r o t o t y p e Ada
p a c k a g e l i b r a r y h a s b e e n
d e v e l o p e d a n d i s c u r r e n t l y
b e i n g e v a l u a t e d f o r u s e i n
l a r g e s o f t w a r e d e v e l o p m e n t
e f f o r t s . T h e l i b r a r y system
is comprised of a n Ada-orien-
t e d d e s i g n l a n g u a g e u s e d t o
f a c i l i t a t e t h e c o l l e c t i o n of
r e u s e i n f o r m a t i o n , a r e l a -
t i o n a l d a t a base t o s t o r e
reuse i n f o r m a t i o n , a s e t o f
r e u s a b l e Ada c o m p o n e n t s a n d
t o o l s , and a set of g u i d e l i n e s
g o v e r n i n g t h e s y s t e m ' s use.
The prototyping exercise is
d i s c u s s e d a n d t h e l e s s o n s
l e a r n e d a r e p r e s e n t e d . O u r
e x p e r i e n c e s i n deve lop ing t h e
p r o t o t y p e l i b r a r y and l e s s o n s
l e a r n e d f r o m it h a v e l e d t o
t h e d e f i n i t i o n o f a compre-
h e n s i v e t o o l set t o f a c i l i t a t e
s o f t w a r e reuse.

* Ada i s a trademark o f t h e
U . S . D e p a r t m e n t o f D e f e n s e
(AJPO) .

W i t h t h e r i s i n g demand
f o r c o s t - e f f e c t i v e product i o n
o f s o f t w a r e , s o f t w a r e r euse
h a s b e c o m e i n c r e a s i n g l y
i m p o r t a n t a s a p o t e n t i a l
s o l u t i o n t o l o w p rogrammer
p r o d u c t i v i t y . I n t h e A d a
programming l anguage , e x p l i c i t
s u p p o r t i s p r o v i d e d f o r
s o f t w a r e r e u s e t h r o u g h t h e
" p a c k a g e " a n d " g e n e r i c "
l a n g u a g e f e a t u r e s . Unfo r tu -
n a t e l y , t h e c o n c e p t o f Ada
s o f t w a r e r e u s e i s n o t a
p a n a c e a f o r our c u r r e n t
s o f t w a r e p r o d u c t i v i t y p r o b -
l e m s . The n o t i o n of s o f t w a r e
r e u s e h a s b e e n p o p u l a r f o r
d e c a d e s . B u t i m p l e m e n t i n g
h i g h d e g r e e s o f r e u s e h a s
u s u a l l y f a i l e d , w i t h t h e
e x c e p t i o n o f some e f f o r t s i n
f a i r l y narrow areas (b u s i n e s s
a n d c o m p i l e r a p p l i c a t i o n s) .
T h e c h a l l e n g e t h e n , i s t o
r e c o g n i z e t h e c o n t r i b u t i o n s
t h a t t h e Ada l anguage can make
t o a s o f t w a r e reuse e f f o r t
w h i l e a t t h e s a m e t i m e
i d e n t i f y i n g a n d r e s o l v i n g

E. 1 .3 .1

language-independent problems.
Based on t h e p r o m i s e o f t h e
Ada programming l a n g u a g e we
undertook t h e development of a
p r o t o t y p e Ada package l i b r a r y .

T h e p r o t o t y p i n g e x e r c i s e
i n c l u d e d :

0 . a n e x a m i n a t i o n o f t h e
r e a s o n s f o r low s o f t w a r e
reuse i n t h e p a s t ,

o i d e n t i f i c a t i o n o f
a c t i v i t i e s a n d t o o l s
w h i c h w o u l d s u p p o r t a
r e u s e m e t h o d o l o g y t h a t
s p a n s t h e s o f t w a r e
d e v e 1 opmen t 1 i f e - c y c l e
from r e q u i r e m e n t s t h rough
m a i n t enance ,

o t h e d e v e l o p m e n t o f a
p h a s e d i m p 1 emen t a t i o n
p lan f o r s o f t w a r e reuse
t h a t d e f i n e s a d e v e l o p -
ment p a t h from p r o t o t y p e
t o a n o p e r a t i o n a l ,
mu l t i - company , geograph-
i c a l l y d i s t r i b u t e d
sys t em,

o d e v e l o p m e n t of a p r o t o -
t y p e f o r t h a t m e t h o d -
o l o g y ,

o t h e d e v e l o p m e n t , acqui-
s i t i o n , and e v a l u a t i o n of
r e p r e s e n t a t i v e p a c k a g e
e n t r i e s , and

o a n e x a m i n a t i o n of user
i n t e r f a c e t e c h n i q u e s t h a t
c o u l d be used t o maximize
communica t ions between a
r e u s e s y s t e m a n d i t s
users.

A s d i s c u s s e d a b o v e ,
s o f t w a r e reuse i s n o t a new
c o n c e p t . S i g n i f i c a n t e f f o r t s
h a v e b e e n underway s i n c e t h e
e a r l y 1 9 6 0 ' s t o i m p r o v e
s o f t w a r e d e v e l o p m e n t produc-
t i v i t y th rough reuse (c o n s i d e r
t h e e a r l y o b s e r v a t i o n s o f
McI l roy a b o u t t h e b e n e f i t s of
reuse p r e s e n t e d a t t h e NATO
S o f t w a r e E n g i n e e r i n g mee t ing
i n G a r m i s h i n 1 9 6 8)
ISTANDISH83 J . An a n a l y s i s of
t h e p r o b l e m s a t t e n d i n g reuse
h a s l e d t o t h e i d e n t i f i c a t i o n
of s e v e r a1 p o t e n t i a1 h i n d r an -
c e s t o r e u s e JSTANDISH83,
BROID0851. These impediments
t o reuse can be c a t e g o r i z e d as
t e c h n i c a l , e c o n o m i c , a n d
p o l i t i c a l o b s t r u c t i o n s . Some
t y p i c a l p r o b l e m s t h a t h i n d e r
reuse i n c l u d e :

o l a c k o f u n i v e r s a l
s t a n d a r d s f o r component
c o m p o s i t i o n , l e v e l o f
d o c u m e n t a t i o n , c o d i n g
t e c h n i q u e s , t e s t i n g ,
etc. ,

o d i f f i c u l t y i n t r a n s f e r -
r i n g a n u n d e r s t a n d i n g of
t h e pu rpose of a s o f t w a r e
r o u t i n e f r o m t h e a u t h o r
t o t h e p o t e n t i a l reuser,

o h i g h e r i n i t i a l d e v e l o p -
m e n t c o s t s a n d l o n g e r
s c h e d u l e s ,

o r i s k m a n a g e m e n t i s sues
s u c h a s w a r r a n t y ,
l i a b i l i t y , a n d a c c o u n t -
a b i l i t y ,

E . 1 . 3 . 2

- ORIGINAL PAGE IS
OF POOR QUALITY

o t h e " n o t i n v e n t e d h e r e "
syndrome, and

o t h e l a c k o f p r i d e
t y p i c a l l y e x h i b i t e d when
r e u s e h a s been s e l e c t e d
i n a s o f t w a r e development
p r o j e c t o v e r o r i g i n a l
development .

W h i l e t h e p r o b l e m s
i m p e d i n g r e u s e a r e s i g n i -
f i c a n t , t h e l a r g e s i z e a n d
c o s t o f a m a j o r s o f t w a r e
d e v e l o p m e n t e f f o r t p r o v i d e s
s u b s t a n t i a l m o t i v a t i o n t o
i m p r o v e p r o d u c t i v i t y through
reuse. Although Ada p r o v i d e s
a n a t u r a l v e h i c l e f o r encour-
a g i n g s o f t w a r e e n g i n e e r i n g
reuse, t h e same t e c h n i c a l and
p o l i t i c a l o b s t r u c t i o n s t h a t
have l i m i t e d reuse i n t h e p a s t
a r e l i k e l y t o o n c e a g a i n
impede t h e s h a r i n g of s o f t w a r e
e n g i n e e r i n g p r o d u c t s a c r o s s
p r o j e c t s . T h e S o f t w a r e
T e c h n o l o g y D e p a r t m e n t w i t h i n
I n t e r m e t r i c s i s a c t i v e l y
i n v e s t i g a t i n g t h e p r o b l e m s
t h a t h i n d e r r e u s e . We a r e
d e t e r m i n e d t o f i n d s o l u t i o n s
t o t h e s e p r o b l e m s a n d t o
c o l l e c t a n d reuse Ada pack-
ages.

A l o n g t h e s e l i n e s , w e
have d e f i n e d a phased approach
t o t h e d e v e l o p m e n t o f a
r e u s a b l e p a c k a g e l i b r a r y
s u i t a b l e f o r u s e on l a r g e Ada
a p p l i c a t i o n s projects. R a t h e r
t h a n d e f i n e a n e l a b o r a t e reuse
f a c i l i t y a n d i m p l e m e n t t h e
l i b r a r y i n a s i n g l e s t e p , w e
a r e c u r r e n t l y p r o t o t y p i n g
p a r t s o f t h i s f a c i l i t y t o
i n v e s t i g a t e t h e p o t e n t i a l

REUSE U
F i g u r e 1. R e u s e p r o c e s s

ove r v i e w .
u t i l i t y of o u r a p p r o a c h . A
c o m p l e t e d e s c r i p t i o n of t h i s
p h a s e d d e v e l o p m e n t p l a n i s
o f f e r e d i n [BURTON85]. The
i n i t i a l e f f o r t on t h i s p r o j e c t
h a s b e e n f o c u s e d o n t h e
c r e a t i o n o f a n Ada S o f t w a r e
CATalog (ASCAT) .

An overview of t h e ASCAT
p o r t i o n o f t h e Ada p a c k a g e
r e u s e s y s t e m is s h o w n i n
F i g u r e 1. The sys tem h a s besn
i m p l e m e n t e d u s i n q B y r o n ,
I n t e r m e t r i c s ' A d a - b a s e d
program d e s i g n l a n g u a g e , and a
commercial r e l a t i o n a l d a t a b a s e
management system. C e n t r a l t o
t h e s y s t e m is t h e a b i l i t y of
Byron t o s u p p o r t d e f i n i t i o n
a n d u s e o f u s e r - d e f i n e d
keywords.

Software Classification and
Data Element Selection

One key t o t h e success of

E. 1.3.3

any r e u s e scheme i s t h e t y p e s
of c l a s s i f i c a t i o n s a s s i g n e d t o
e n t r i e s . T h e p r imary pu rpose
of t h e s e c l a s s i f i c a t i o n s is t o
f a c i l i t a t e r e t r i e v a l , b u t t h e y
may a l s o be used t o assist i n
d e f i n i n g s t o r a g e s t ra teg ies as
w e l l .

S e l e c t i n g t h e c l a s s i f i -
c a t i o n s t o be used is r e a l l y a
s u b s e t o f a l a r g e r
q u e s t i o n : w h a t d a t a elements
d o w e w a n t t o be a b l e t o
r e t r i e v e a b o u t a p a r t i c u l a r
e n t r y ? The l i s t of s t o r a b l e
e l e m e n t s seems i n ou r o p i n i o n
t o be h i g h l y i n f l u e n c e d by t h e
s i z e of t h e l i b r a r y (number of
program u n i t s s t o r e d) and t h e
d e g r e e o f c o o p e r a t i o n (o r
p o t e n t i a l a n t a g o n i s m) among
t h e users of t h e l i b r a r y . An
i n i t i a l c u t a t s u c h a l i s t was
prepared [BROID085] from t h e
p e r s p e c t i v e o f o u r u l t i m a t e
(m u l t i p l e s i t e s , m u l t i p l e
o r g a n i z a t i o n s , m u l t i p l e usage
t y p e s) system. Over 60 items
which c o u l d p o t e n t i a l l y affect
t h e s u i t a b i l i t y of a n e n t r y
were named i n s e v e n m a j o r
c a t e g o r i e s : i d e n t i f i c a t i o n (3
i t e m s) , d e s c r i p t i o n (1 6
i t ems) , component pa r t s (2 0) ,
e n v i r o n m e n t / u s a g e (9) 8

o r d e r i n g i n f o r m a t i o n (7) , 'and
r e v i s i o n h i s t o r y (11) . Even
a t t h i s l e n g t h , we r e c o g n i z e
t h a t t h e r e a r e u n d o u b t e d l y
many o t h e r items which c o u l d
be added.

T h i s l i s t was f a r t o o
large f o r our p r o t o t y p e , s o w e
examined t h e c o n t e x t i n which

* B y r o n i s a t r a d e m a r k o f
Intermetrics, I n c .

t h e p r o t o t y p e would o p e r a t e .
We c h a r a c t e r i z e d our i n i t i a l
envi ronment as f o l l o w s :

0

0

0

0

A l l t h e u se r s would be
f r o m t h e same company,
a l t h o u g h t h e r e would be
s e v e r a l d i v i s i o n s u s i n g
t h e c o m m o n l i b r a r y .
T h u s , no r e s t r i c t i o n s on
access would need t o be
s u p p o r t e d .

A l l i n i t i a l e n t r i e s would
be w r i t t e n (when pos-
s i b l e) i n m a c h i n e - i n d e -
p e n d e n t A d a , s o t h e
c o m p i l a t i o n and e x e c u t i o n
e n v i r o n m e n t s w o u l d be
we l l -de f ined .

S o u r c e code would. a lways
be a v a i l a b l e , s o u se r s
c o u l d d o t h e i r o w n
t a i l o r i n g (n o " b l a c k
b o x e s ") . Suppor t i n t h e
f o r m o f c o r r e c t i o n s and
t r a i n i n g (o t h e r t h a n b\
r e a d i n g t h e s o u r c e c o d e)
would n o t be p rov ided .

E m p h a s i s was c e n t e r e d
a r o u n d t h e c o l l e c t i o n of
r e u s a b l e Ada p a c k a g e s
r a t h e r t h a n c o m p l e t e
p r o g r a m s . Two f a c t o r s
i n f l u e n c e d t h i s d e c i -
s i o n . The f i r s t is t h a t
mos t of t h e p a c k a g e s w e
wanted t o i n c l u d e a l r e a d y
e x i s t e d p r i o r t o t h e
s t a r t of ou r e f f o r t s , and
c o h e r e n t d e s i g n documents
were n o t a l w a y s a v a i l -
ab l e . The second f a c t o r
was t h e w i d e l y d i s t i n c t
s e t o f u s e r s we were
a d d r e s s i n g ; t h e y do n o t
sha re t h e commonality of
p u r p o s e w h i c h m a k e s

E . 1 . 3 . 4

d o m a i n a n a l y s i s a n
e f f e c t i v e t o p - d o w n
a p p r o a c h . T h e d e c i s i o n
t o c e n t e r o u r d e s i g n on
p a c k a g e s e n a b l e d u s t o
d e f i n e a s t a n d a r d header
f o r e a c h p a c k a g e , based
on t h e r e q u i r e m e n t s of
o u r B y r o n p r o g r a m
p r o d u c t . F o r m a l i z e d
r e q u i r e m e n t s and d e s i g n
documen t a t i o n were n o t
r e q u i r e d .

T h i s d e c i s i o n causes t h e
l i b r a r y t o b e m o r e
s u p p o r t i v e of "bottom up"
s o f t w a r e c o n s t r u c t i o n
t e c h n i q u e s t h a n most of
t o d a y ' s t o p - d o w n
m e t h o d s . T h e top-down
m e t h o d s r e f l e c t a n
a t t i t u d e of d e f i n i n g what
would be a p e r f e c t system
a n d d o n o t a d e q u a t e l y
r e c o g n i z e t h e i n f l u e n c e
o f e x i s t i n g t o o l s
(i n c l u d i n g c o d e) s h o u l d
h a v e o n r e q u i r e m e n t s
f o r m u l a t i o n i n t h e
p r e s e n c e o f r e a l c o s t
c o n s t r a i n t s . (Note t h a t
t h e " o b j e c t o r i e n t e d
d e s i g n " s t r a t e g i e s t h a t
a r e e m e r g i n g w i t h Ada
r e f l e c t a t e n d e n c y away
f rom s t r i c t t o p - d o w n
methods.)

o No a p r i o r i n a m i n g
c o n v e n t i o n s were e s t a -
b l i s h e d , a l t h o u g h a n
i n f o r m a l g u i d e l i n e was
prompted by t h e technica l
m o n i t o r o f o n e o f t h e
c o n t r i b u t i n g programs.

o C o n f i g u r a t i o n management
was n o t r i g i d l y e n f o r c e d ,
e x c e p t w i t h i n t h e rules

i m p o s e d b y A d a . I n
p a r t i c u l a r , no computer-
i z e d l i s t of o u t s t a n d i n g
u s e r s (p e o p l e o r p r o -
g r a m s) o f t h e l i b r a r y
r o u t i n e s was ma in ta ined .

o T h e p r o g r a m s w h i c h were
i n t e n d i n g t o t a k e
a d v a n t a g e of t h e l i b r a r y
p r o v i d e d n o e x p l i c i t
f u n d i n g f o r t o o l s u p p o r t
o r t o e n s u r e t h a t any new
p a c k a g e s c r e a t e d w e r e
g e n e r a l i z e d and o t h e r w i s e
s u i t a b l e f o r f u t u r e
reuse. Package h e a d e r s
a n d o t h e r p r o g r a m m e r -
s u p p l i e d i n f o r m a t i o n had
t o be e a s y (i n bo th time
and d i f f i c u l t y) f o r t h e
programmers t o supp ly .

o V a r i o u s s t a n d a r d s were
e s t a b l i s h e d f o r t h e d a t a
items we would c o l l e c t .
S i n c e we were a t t e m p t i n g
t o c a t a l o g packages which
h a d b e e n p r e v i o u s l y
c r e a t e d t o s u p p o r t
s e v e r a l d i f f e r e n t
p r o j e c t s , I t w a s
n e c e s s a r y t o r e t r o f i t
m a n y o f t h e s e l e c t e d
p a c k a g e s t o i n c l u d e t h e
r e q u i r e d Byron comments.
P a r t o f our e v a l u a t i o n
w i l l b e t o t r y t o
i d e n t i f y t h e d i f f i c u l t i e s
c a u s e d b y " l o o s e "
d e f i n i t i o n s o f e s s e n -
t i a l l y n a r r a t i v e f i e l d s
(e . g . , o v e r v i e w s) . I n
a d d i t i o n , n o common
m e t h o d o l o g y h a d b e e n
e s t a b l i s h e d , s o t h e
d e g r e e of f o r m a l i t y and
t h e l i s t o f a v a i l a b l e
s u p p o r t items (r e p e a t a b l e
t e s t c a s e s , p r e v i o u s

E.1.3.5

s a m p l e o u t p u t , u s e r
documenta t ion , e tc .) a l s o
v a r i e d c o n s i d e r a b l y .
We f i l t e r e d t h e o r i g i n a l

l i s t down t o t h e f o l l o w i n g
d a t a items f o r t h e d a t a b a s e
(o t h e r s , s u c h as t h e c a l l i n g
c o n v e n t i o n s and p a r a m e t e r s ,
would be a v a i l a b l e f r o m t h e
s o u r c e c o d e i f n o t g i v e n i n
t h e overv iew) :

1.
2.
3 .
4 .
5.
6.
7.

8.
9 .

1 0 .

11 .
12.

13.

1 4 .

Uni t name
Author
Uni t s i z e
Source language
Date c r e a t e d
Date l a s t updated
C a t e g o r y c o d e (see

below)
Ove r v i ew
Algo r i t hm descr ip-

t i o n
E E r o r s / e x c e p t i o n s

g e n e r a t e d
Up t o 5 k e y w o r d s

(f o r r e t r i e v a l)
Machine dependenc ie s
(i f a n y)
Program dependenc ie s
(i f a n y)
Notes

O u r r e t r i e v a l s t r a t e g y
was b a s e d upon a combina t ion
o f two a l t e r n a t e mechanisms.
The f i r s t mechanism was t h e
a s s i g n m e n t o f a h i e r a r c h i c a l
c a t e g o r y c o d e , w i t h t h e
h i e r a r c h y d e f i n e d a h e a d o f
time a n d c h a n g e a b l e o n l y a t
w e l l s e p a r a t e d t i m e i n t e r -
v a l s . T h i s scheme is similar
i n c o n c e p t t o t h e ones used by
Cornputins Reviews [ACM85 J and
t h e I M S L l i b r a r y [IMSL76].
B u t it was n e c e s s a r y t o i n v e n t
o u r own c l a s s i f i c a t i o n scheme
s i n c e n e i t h e r of t h o s e two was

s u i t a b l e t o our p u r p o s e s . Our
scheme has t h e advan tage t h a t
eve ryone knows w h a t t h e c o d e s
a r e and can use a n e f f e c t i v e l y
f i n i t e p rocedure f o r s e a r c h i n g
t h e e n t r i e s . D i s a d v a n t a g e s
i n c l u d e a g r o w i n g l i s t o f
v a s t l y d i s s i m i l a r "misce l -
l a n e o u s " e n t r i e s a n d t h e
i n a b i l i t y o f t h e o r i g i n a l
h i e r a r c h y d e s i g n e r s t o p r o v i d e
s u f f i c i e n t l y d i s c r i m i n a t o r y
c a t e g o r i e s t o p r o v i d e e f f e c -
t i v e r e t r i e v a l (n o t t o o many
o r t o o few c a n d i d a t e s) .

For t h e second mechanism,
w e a l l o w e d t h e s u b m i t t e r s t o
s u p p l y up t o f i v e keywords t o
be a s s o c i a t e d w i t h e a c h
package. These keywords a r e
n o t a s s o c i a t e d (as i m p l i c i t l y
o c c u r s w i t h i n t h e h i e r a r c h y of
c a t e g o r i e s) 8 a l l o w f o r
o v e r l a p p i n g t o p i c s (t h e
p a c k a g e s d o n o t c o n v e n i e n t l y
f a l l i n t o s t r i c t t r e e c l a s s i -
f i c a t i o n s) , a n d c a n g r o w
(w i t h o u t reprogramming o r an
a l l - k n o w i n g d a t a b a s e admin i s -
t r a t o r) w i t h t h e needs of t h e
p r o j e c t s t h e y a r e c r e a t e d
f o r . A scheme s imilar t o t h i s
h a s been employed o n N A S A ' s
C O S M I C (C o m p u t e r S o f t w a r e
Management I n f o r m a t i o n C e n t e r)
s y s t e m on c o m p l e t e programs,
a l t h o u g h t h e keywords a l lowed
a r e s u g g e s t e d by t h e program
a u t h o r s a n d f i l t e r e d by a n
a c c e p t a n c e team.

One of t h e a u t h o r s is a
member of t h e A p p l i c a t i o n s
P a n e l o f t h e D e p a r t m e n t o f
D e f e n s e ' s S o f t w a r e Technology
f o r A d a p t a b l e , R e l i a b l e
S y s t e m s (S T A R S) Program. An
i m p o r t a n t o p e n i s s u e s u r -
r o u n d i n g t h e f o r m a t i o n o f a

E. 1.3.6

ORIGINAL PAGE IS
OF POOR QUALITY

p o t e n t i a l Ada package l i b r a r y
t o b e a v a i l a b l e a s G F E
m a t e r i a l s f o r DoD c o n t r a c t s is
d e f i n i n g t h e q u a l i t y of t h e
e n t r i e s . On t h e o n e h a n d ,
some peop le a d v o c a t e i n c l u d i n g
o n l y i t e m s o f t h e h i g h e s t
q u a l i t y , w i t h f u l l DoD
s t a n d a r d d o c u m e n t a t i o n a n d
e v e n f o r m a l i n d e p e n d e n t
v a l i d a t i o n and v e r i f i c a t i o n
(I V & V) r e q u i r e d o n n e w
en t r i e s . G t h e r s p r e f e r t o l e t
a more f l e x i b l e scheme a p p l y ,
w i t h a " t r u s t l e v e l " a s s o c i -
a t e d w i t h e n t r i e s . T h i s
l a t t e r s c h e m e e n c o u r a g e s
" p r o m o t i o n " o f e x i s t i n g
e n t r i e s from "buyer beware" t o
h i g h e r t r u s t l e v e l s ; a f t e r
a l l , u s i n g i n f o r m a l l y qual i -
f i e d d e s i g n s and code and t h e n
a d d i n g f o r m a l t e s t i n g a n d
d o c u m e n t a t i o n c a n s t i l l take
l e s s t ime (a n d o f t e n r i s k)
t h a n i n v e n t i n g from s c r a t c h .
For t h e p r o t o t y p e , we dec ided
t o l e t a l l s u b m i t t e d e n t r i e s
be a c c e p t e d and t h e n e v a l u a t e
t h e impact of t h i s d e c i s i o n .

Reuse Information Extraction
Hechan i sm

Another c r i t i c a l phase i n
t h e d e v e l o p m e n t o f a n Ad'a
package l i b r a r y involves the
e x t r a c t i o n mechanism used t o
c o l l e c t r e u s e - o r i e n t e d
i n f o r m a t i o n . The e x t r a c t i o n
mechanism u t i l i z e d i n a n Ada
p a c k a g e l i b r a r y m u s t even-
t u a l l y p r o v i d e s e v e r a l
d i f f e r e n t c a p a b i l i t i e s t o
i n s u r e e f f i c i e n t o p e r a t i o n .
T h e s e r e q u i r e d c a p a b i l i t i e s
i n c l u d e :

o s u p p o r t f o r a u t o m a t i c
data c o l l e c t i o n ,

o s u p p o r t f o r i n s u r i n g
s t a n d a r d i z a t i o n o f d a t a
e n t r i e s ,

o s u p p o r t f o r a s s u r i n g
c o n t i n u i t y a n d c o n s i s -
t e n c y o f r e u s e i n f o r -
m a t i o n a c r o s s t h e
S o f t w a r e Development L i f e
Cycle (SDLC) 8

o s u p p o r t f o r c h e c k i n g
c o m p l e t e n e s s and reason-
a b l e n e s s (e . g . , d a t e s) ,
and

o s u p p o r t f o r r e u s e
i n f o r m a t i o n examina t ion .

T h e r e u s e i n f o r m a t i o n
e x t r a c t i o n a p p r o a c h u t i l i z e d
i n ou r Ada package l i b r a r y is
d e t a i l e d i n F i g u r e 2 . An
a n a l y s i s o f t h i s f i g u r e
r e v e a l s t h a t e a c h o f t h e
e l e m e n t s p r e v i o u s l y i d e n t i f i e d
f o r d a t a c o l l e c t i o n h a s been
m a p p e d i n t o p r e d e f i n e d o r
u s e r - d e f i n e d keywords f o r t h e
Byron d e s i g n t o o l . A Byron
t e m p l a t e p r o g r a m was s u b s e -
q u e n t l y d e v e l o p e d t o au tom-
a t i c a l l y e x t r a c t t h e
r e u s e - o r i e n t e d i n f o r m a t i o n .
T h i s i n f o r m a t i o n i s p l a c e d
i n t o a f i l e t h a t c a n b e
d i r e c t l y p r o c e s s e d i n t o t h e
ASCAT da ta base.

-In-
ADA

PACKAQES

F i g u r e 2. E x t r a c t i o n mechanism
overv iew

E. 1.3.7

T h e u s e o f a
B y r o n - o r i e n t e d reuse i n f o r -
m a t i o n e x t r a c t i o n m e c h a n i s m
p r o v i d e s most of t h e r e q u i r e d
c a p a b i l i t i e s e n u m e r a t e d
above. T h i s approach p r o v i d e s
a m e a n s f o r a u t o m a t i c c o l -
l e c t i o n of d a t a s t a n d a r d i z e d
i n f i e l d name a n d f o r m a t .
S i n c e t h e Byron d e s i g n f i l e is
i n t e n d e d t o t r a n s i t i o n i n t o
t h e implementa t ion w i t h r e u s e
d a t a i n t a c t , s u p p o r t i s
o f f e r e d t o assure i n f o r m a t i o n
c o n t i n u i t y a c r o s s m u l t i p l e
phases of t h e SDLC.

W h i l e t h i s e x t r a c t i o n
a p p r o a c h h a s many p o s i t i v e
f e a t u r e s , i t i s n o t w i t h o u t
i t s shor tcomings . The lack of
p r e d e f i n e d reuse a t t r i b u t e s
w i t h i n Byron f a i l s t o s u p p o r t
d i r e c t e x a m i n a t i o n of reuse
d a t a i tems for c o m p l e t e n e s s ,
c o n s i s t e n c y , a n d r e a s o n -
a b l e n e s s . The i n c l u s i o n o f
r e u s e - o r i e n t e d i n f o r m a t i o n
i n t o t h e B y r o n - p r o d u c e d
p r o g r a m l i b r a r y r e p r e s e n t s a
s i m p l e p o t e n t i a l improvement
t o ou r approach t h a t c o u l d a i d
i n t h e e x a m i n a t i o n o f t h e
reuse data items.

Software Ca t a l o a I m D l e m e n -
tation

The s o f t w a r e c a t a l o g f o r
t h e reusable p a c k a g e l i b r a r y
was i m p l e m e n t e d t h r o u g h t h e
use of a commercial r e l a t i o n a l
d a t a base management package.
The d a t a d e f i n i t i o n c a p a b i l i t y
used f o r f i e l d d e f i n i t i o n and
t h e b u i l t - i n d a t a b a s e
p rogramming l a n g u a g e f a c i l i -
t a t e d t h e examina t ion of reuse
d a t a f o r l i m i t e d c o r r e c t n e s s
and c o n s i s t e n c y checking . The

u s e of a d a t a base a l s o a i d e d
i n t h e r a p i d development of an
i n t e r f a c e between t h e s o f t w a r e
c a t a l o g a n d p o t e n t i a l Ada
p a c k a g e u s e r s t h r o u g h t h e
u t i l i z a t i o n o f p r e d e f i n e d
r e p o r t s and s u p p o r t f o r ad hoc
u s e r q u e r i e s . N o n e t h e l e s s ,
t h e user i n t e r f a c e r e p r e s e n t s
a w e a k l i n k i n o u r p r o t o t y p e
package l i b r a r y . The p r e s e n t
i n t e r f a c e i s v e r y l i m i t e d i n
t h e s e n s e t h a t i t o f f e r s no
c o n t e x t - s p e c i f i c s u p p o r t f o r
c o m m u n i c a t i o n b e t w e e n t h e
reuse system and i t s u s e r s .

T h e p r e s e n t s o f t w a r e
c a t a l o g i s l i m i t e d i n i t s
i n t e r a c t i o n w i t h t h e u se r .
F o r e x a m p l e , c o n s i d e r t h e
s c e n a r i o o f a s o f t w a r e
e n g i n e e r p e r f o r m i n g a n
a p p l i c a t i o n s o f t w a r e d e s i g n of
a r o u t i n e t h a t r e q u i r e s a
s o r t i n g p a c k a g e . I n t h e
p r e s e n t s y s t e m , t h e s o f t w a r e
e n g i n e e r w o u l d n e e d t o : 1)
e x i t t h e e d i t o r , 2) e n t e r t h e
s o f t w a r e c a t a l o g d a t a base
s y s t e m , 3) e n t e r a q u e r y t o
i d e n t i f y t h e a v a i l a b l e s o r t i n g
p a c k a g e s , 4) s e l e c t t h e
d e s i r e d p a c k a g e , a n d 5)
r e - e n t e r t h e e d i t o r and issue
t h e n e c e s s a r y commands t o draw
t h e d e s i r e d package (des ign / -
c o d e) i n t o t h e a p p l i c a t i o n s
program d e s i g n .

T h i s i n i t i a l p r o t o t y p e
s o f t w a r e c a t a l o g can r e a d i l y
be improved t o enhance t h e way
i n w h i c h i t i n t e r a c t s w i t h
u s e r . I n F i g u r e 3 , t h e
p r e s e n t mode of i n t e r a c t i o n is
d e p i c t e d . I n F i g u r e 4 ,
a n o t h e r p o t e n t i a l s c e n a r i o is
shown. I n t h i s s c e n a r i o , a
multi-window envi ronment

E. 1.3.8

ORlGlNAC PAGE
OF POOR QUALITY

i s u s e d w h e r e t h e user may
p e r f o r m t h e s o f t w a r e c a t a l o g
i n q u i r y a n d c o n c u r r e n t l y
e x a m i n e s e v e r a l p r o m i s i n g
p a c k a g e s w i t h o u t e x i t i n g t h e
e d i t o r .

A t h i r d p o s s i b l e ope ra -
t i o n a l s c e n a r i o o f t h e
s o f t w a r e c a t a l o g i s n o t
p i c t u r e d . I n t h i s t h i r d
approach , t h e data base que ry
language would be r e p l a c e d by
a n a t u r a l l anguage f ron t - end ,
t h e s o f t w a r e c a t a l o g search
would be a s s i s t e d by an e x p e r t
sys t em, and t h e multi-window

A ronmg rouliru m
rwuuw. ~ a m o
waor. I~VOLUIIU
ASCAT dea b.u
sys~om and antw
.ppropnato quwy.

swrF4ckalpmu
n*lllno&or. uu
odmormu-uso-,

p.dugr-.
W h ' and cab IO

F i g u r e 3 . C u r r e n t ASCAT
o p e r a t i o n a l
s c e n a r i o

approach would be s u p p o r t e d by
a language- and c o n t e x t - s e n s i -
t i v e e d i t o r . T h e t h i r d
a p p r o a c h i s f e a s i b l e w i t h
i n v e s t i g a t i o n i n t o i t s
i m p l e m e n t a t i o n o c c u r r i n g i n
s e v e r a l c u r r e n t p r o j e c t s

[ANDERSON851 .
Intermetr ics is c u r r e n t l y

i n v e s t i g a t i n g t h e implemen-
t a t i o n o f t h i s t h i r d a p p -
r o a c h . We a r e i n t e g r a t i n s a
c o m m e r c i a l n a t u r a l l a n g u a g e
l a n g u a g e f r o n t - e n d on o u r
r e u s e d a t a b a s e a n d a r e
d e s i g n i n g a n e x p e r t sys tem t o
f a c i l i t a t e e v a l u a t i o n a n d
s e l e c t i o n o f a l t e r n a t i v e Ada
p a c k a g e s . A l t h o u g h i t i s
p r e m a t u r e f o r s i g n i f i c a n t
c o n c l u s i o n s o n o u r e x p e r t
s y s t e m e f f o r t s , w e have made
s e v e r a l o b s e r v a t i o n s a b o u t t h e
a d v a n t a g e s a n d d i s a d v a n t a g e s
o f t h e N a t u r a l L a n g u a g e
Front-End (NLFE) .

O u r p r e l i m i n a r y f i n d i n g s
on t h e NLFE a r e n o t s u r p r i -
s i n g . A s e x p e c t e d , w e found
t h e NLFE t o be s i g n i f i c a n t l y
e a s i e r t o u s e t h a n t h e
t r a d i t i o n a l d a t a b a s e q u e r y
l a n g u a g e s u p p l i e d w i t h o u r
DBMS. On t h e n e g a t i v e s i d e ,
w e f o u n d t h a t t h e n a t u r a l
l a n g u a g e i n t e r f a c e w a s
s u b s t a n t i a l l y s lower t h a n our
t r a d i t i o n a l d a t a b a s e q u e r y
language . O u r i n i t i a l f i g u r e s
s h o w a p e r f o r m a n c e p e n a l t y
a s s o c i a t e d w i t h t h e NLFE which
r a n g e d from a f a c t o r of f i v e
f o r r e l a t i v e l y simple queries
t o a f a c t o r of t e n f o r f a i r l y
complex queries.

O u r p r e l i m i n a r y q u e r y compo-
s i t i o n compar isons and i n i t i a l
p e r f o r m a n c e e v a l u a t i o n s show
t h a t t h e NLFE a p p r o a c h i s a
v i a b l e a l t e r n a t i v e t o t r a d i -
t i o n a l da t abase q u e r y l a n g -
u a g e s . We a r e c u r r e n t l y
a d d r e s s i n g t h e p e r f o r m a n c e
issues t h a t p l ague t h e NLFE

E. 1.3.9

F i g u r e 4. Improved ASCAT o p e r a t i o n a l s c e n a r i o

a p p r o a c h . We f e e l t h a t t h e
a p p l i c a t i o n of NLFE and e x p e r t
s y s t e m t e c h n o l o g y t o t h e
s o f t w a r e l i b r a r y a r e a w i l l
s i g n i f i c a n t l y s i m p l i f y t h e
o p e r a t i o n o f a s o f t w a r e
l i b r a r y a n d s u b s t a n t i a l l y
i m p r o v e t h e p r o d u c t i v i t y o f
t h e s o f t w a r e l i b r a r y u s e r s .

LESSONS LEARHE D

The development , c o l l e c -
t i o n , e v a l u a t i o n , and c a t a l o g -
i n g of r e u s a b l e components and
t o o l s u n d e r t a k e n i n t h e
development of a n Ada package
l i b r a r y h a s l e d t o s o m e
i n t e r e s t i n g o b s e r v a t i o n s
c o n c e r n i n g Ada package reuse.
U n f o r t u n a t e l y , w e do n o t y e t
have enough e x p e r i e n c e t o
e v a l u a t e t h e s e l e c t e d c a t e g o r y
scheme, keyword r e t r i e v a l

c a p a b i l i t y , o r t h e l i s t of
c o l l e c t e d d a t a elements.

During t h e p a s t y e a r , w e
h a v e d e v e l o p e d a s e t of t e s t
and a n a l y s i s t o o l s w r i t t e n i n
A d a a n d i n t e n d e d f o r Ada
s o f t w a r e d e v e l o p m e n t
e f f o r t s . T h e f i x e d - p r i c e
n a t u r e of t h i s c o n t r a c t a n d
t h e f a c t t h a t i t r e p r e s e n t e d
t h e f i r s t m a j o r Ada develop-
m e n t c o n t r a c t w i t h i n o u r
d i v i s i o n m o t i v a t e d u s t o
e m p h a s i z e reuse of e x i s t i n g
Ada p a c k a g e s a s a c o s t a n d
r i s k r e d u c t i o n measure. Based
o n t h e r e s u l t s o f t h a t
c o n t r a c t w e found t h a t reuse
o f e x i s t i n g g e n e r i c s u p p o r t
p a c k a g e s s i g n i f i c a n t l y
i m p r o v e d o u r p r o d u c t i v i t y ,
w i t h o v e r 3 3 % o f t h e c o d e
compr ised of r e u s e d packages.

E.1.3.10

On t h e n e g a t i v e s i d e , w e
f o u n d t h a t s e v e r a l o f t h e
t o o l s i n i t i a l l y e x h i b i t e d poor
p e r f o r m a n c e . I n a l m o s t e v e r y
ins tance , we found t h e g e n e r a l
n a t u r e of t h e reused packages
t o c o n t r i b u t e h e a v i l y t o t h e
performance problems. We a l s o
f o u n d t h a t t h e g e n e r i c Ada
p a c k a g e s o f f e r e d much more
f u n c t i o n a l i t y than required i n
o u r a p p l i c a t i o n . The e x t r a
f u n c t i o n a l i t y r e s u l t e d i n a
s i z e p e n a l t y w i t h r e s p e c t t o
t h e e x e c u t a b l e code. The use
of a performance a n a l y z e r and
t a i l o r i n g o f t h e r eused code
f o r t h e c u r r e n t a p p l i c a t i o n
s u b s t a n t i a l l y improved t o o l
per formance IRATHGEBER861 .

We a l s o s t u d i e d t h e
problem of composing reusable
a p p l i c a t i o n s p a c k a g e s f rom
e x i s t i n g r e u s a b l e
components. A s p a r t of a n A i r
F o r c e s t u d y , w e compared t h e
p e r f o r m a n c e o f two d i f f e r e n t
i m p l e m e n t a t i o n s of reusable
Kalman f i l t e r r o u t i n e s . One of
t h e r o u t i n e s was w r i t t e n i n
Ada : q e n e r i c Ada mathemat ics
packages were h e a v i l y used i n
i t s d e v e l o p m e n t . T h e o t h e r
r o u t i n e was w r i t t e n i n FORTRAN
a n d s p e c i f i c a l l y des igned t o
s o l v e a s p e c i f i c Kalman f i l t e r
p r o b l e m . A p e r f o r m a n c e
compar i son of t h e g e n e r a l i z e d
A d a p a c k a g e a g a i n s t t h e
c u s t o m - t a i l o r e d F O R T R A N
r o u t i n e s showed t h e FORTRAN
r o u t i n e t o e x h i b i t s i g n i f i c a n t
speed a d v a n t a g e s ove r i t s Ada
c o u n t e r pa r t . Th is pe r f o rmance
d i f f e r e n c e i s p r o b a b l y due t o
t h e r e l a t i v e immatu r i ty of t h e
Ada c o m p i l e r u s e d i n t h i s
s t u d y and a l s o t o t h e g e n e r a l -
i z e d n a t u r e o f t h e A d a

p a c k a g e s . An i m p o r t a n t
c o n c l u s i o n o f t h e s t u d y i s
t h a t t h e per formance problems
a s s o c i a t e d w i t h i n c l u d i n g a
g e n e r a l i z e d r e u s a b l e Ada
p a c k a g e i n t o a n a p p l i c a t i o n s
p r o g r a m a r e s u b s t a n t i a l l y
c o m p o u n d e d when a n e n t i r e
s y s t e m i s c o m p r i s e d o f
r e u s a b l e components w h i c h a l s o
c o n s i s t o f r e u s a b l e compo-
n e n t s .

A l t h o u g h m a n y o f o u r
l e s s o n s l e a r n e d have n e g a t i v e
i m p l i c a t i o n s f o r t h e use o f
Ada reusable p a c k a g e s , t h e r e
i s some l i g h t a t t h e e n d of
t h e t u n n e l . R e u s e was a b i g
a i d i n i n c r e a s i n g our produc-
t i v i t y i n t h e development of
Ada t e s t a n d a n a l y s i s t o o l s .
We a l s o found t h a t reuse can
be s u c c e s s f u l l y employed i n
t h e d e v e l o p m e n t o f e f f i c i e n t
Ada s y s t e m s i f s u f f i c i e n t
t h o u g h t i s p u t i n t o how t h e
packages a re t o be r eused and
i f t h e p r o p e r t o o l s a r e
a v a i l a b l e (e . g . 8 s u c h a s a
per formance a n a l y z e r) .

CONCLUSIONS

I n a c c o r d a n c e w i t h o u r
p r e v i o u s p l a n , w e h a v e
completed a proto type mech-
a n i s m f o r e x t r a c t i n g reuse
i n f o r m a t i o n f r o m p a c k a g e s
deve loped i n t h e normal c o u r s e
o f b u s i n e s s . W e a l s o have a
p r i m i t i v e m e c h a n i s m f o r
e n t e r i n g t h a t d a t a i n a
c a t a l o g a n d s e a r c h i n g t h e
c a t a l o g f o r e n t r i e s t h a t are
p o t e n t i a l l y u s e f u l o n new
p r o j e c t s , T h e a p p r o a c h
c e n t e r s o n t h e d e s i g n a n d
i m p l e m e n t a t i o n phases, s i n c e
t h e s e a r e t h e o n e s t o w h i c h

E . I . J . 1 1

r e u s e c o n c e p t s may m o s t
r e a d i l y be a p p l i e d i n t h e
g i v e n envi ronments .

We h a v e c o n f i r m e d w i t h
a c t u a l experience our e a r l i e r
a s s e s s m e n t t h a t s u c c e s s f u l
i m p l e m e n t a t i o n o f a r e u s e
me thodo logy r e q u i r e s t h o u g h t ,
a c t i o n and management d i r e c -
t i o n and s u p p o r t t h r o u g h o u t
t h e s o f t w a r e l i f e c y c l e .
T h i s , h o w e v e r , may r e q u i r e a
managemen t r e o r i e n t a t i o n t o
t h e view of s o f t w a r e deve lop-
ment a s t h e a c q u i s i t i o n of a
l o n g - l i v e d c o r p o r a t e a s s e t
r a t h e r t h a n as o n l y t h e work
r e q u i r e d t o p r o d u c e t h e
cur r e n t d e l i v e r ab le [WEGNER8 4 ,
Y E H 8 5 J . C o m p l e m e n t i n g t h e
reuse e f f o r t s be ing conducted
by t h e STARS o f f i c e , which a r e
t a r g e t e d a t l o n g r a n g e
o b j e c t i v e s , o u r a p p r o a c h
p r o v i d e s u s e f u l t o o l s wh ich
c a n be u t i l i z e d immedia te ly .

We h a v e a c h i e v e d s o m e
success i n a p p l y i n g s o f t w a r e
r e u s e . E f f e c t i v e u s e of t h e
p a c k a g e s f o r c e d u s t o d e f i n e
s u b s e t s o f t hem which subse-
q u e n t l y r e q u i r e d pe r fo rmance
t u n i n g . T h i s p o i n t s o u t t h e
v a l u e of d e v e l o p i n g a compre-
h e n s i v e r e u s e m e t h o d o l o g y ,
w i t h adequate s u p p o r t t o o l s t o
f a c i l i t a t e t h e development of
e f f i c i e n t s y s t e m s comprised of
r e u s a b l e components.

The Ada l anguage and t h e
m e t h o d o l o g i e s g r o w i n g u p
around it p r o v i d e a good s t a r t
t o w a r d a c h i e v i n g l a r g e r scale
r e u s e t h a n w e have a c h i e v e d i n
t h e p a s t . B u t t h e y a r e n o t
e n o u g h by t h e m s e l v e s . Even
w i t h A d a , t h e r e a r e s t i l l

p l e n t y of o b s t a c l e s t o r e u s e .
A management commitment a n d
d e s i r e t o improve p r o d u c t i v i t y
when c o u p l e d w i t h a compre-
h e n s i v e reuse methodology and
t h e p r o p e r t o o l s o f f e r
s u b s t a n t i a l p r o m i s e f o r
improvement .

E. 1.3.12

REFERENCES

ACM8 5

ANDERSON85

BRO I DO8 5

BURTON8 5

" I n t r o d u c t i o n t o t h e CJ C l a s s i f i c a t i o n System,"
C o m P u t i n s R e v i e w s , Vo l . 26, No.1. A s soc i a t i o n
f o r Computing Machinery, J a n u a r y , 1985, pp. 45-57.

A n d e r s o n , C.M. a n d M c N i c h o l l , D . G . , " R e u s a b l e
S o f t w a r e - A M i s s i o n C r i t i c a l Case Study" , A I A A
C o m p u t e r i n A e r o s p a c e V C o n f e r e n c e , O c t o b e r
21-23, Long Beach, C a l i f o r n i a .

B r o i d o , Michael D. I " S o f t w a r e Commonality S t u d y
f o r S p a c e S t a t i o n P h a s e B", In termetr ics Repor t
IR-CA-029, Intermetrics, I n c . , 29 May 1985.

Bur ton , B.A. and Broido , M.D., "A Phased Approach
t o Ada Package R e u s e " , STARS Workshop on S o f t w a r e
R e u s e , A p r i l 9-12 1985, Naval Resea rch L a b o r a t o r y ,
Washington, DC 20375-5000.

IFEL76 Reference manual, The I n t e r n a t i o n a l Mathematical &
S t a t i s t i c s L i b r a r i e s , IMSL, F a l l , 1976.

RATHGEBER8 6 Ra thgebe r , R.L.8 "Techn ica l Repor t on Ada T e s t and
A n a l y s i s T o o l s " , I n t e r m e t r i c s , I n c . , Hunt ington
Beach, C a l i f o r n i a , I n P r e p a r a t i o n .

STANDI S H8 3 S t a n d i s h , T.A., "Sof tware Reuse", p r e s e n t e d a t t h e
I T T Workshop on R e u s a b i l i t y i n Programming, Rhode
I s l a n d , September 7-9, 1983.

WEGNER8 5 Wegner, Peter , " C a p i t a l - I n t e n s i v e S o f t w a r e Tech-
n o l o g y , " I E E E S o f t w a r e , V O l . 1, No .3 , I E E E
Computer S o c i e t y , J u l y , 1984, pp. 7-45.

YEH85 Y e h , D r . Raymond T . , "Japanese a n d B r a z i l i a n
S o f t w a r e T e c h n o l o g y I n i t i a t i v e s " . (Luncheon
a d d r e s s) . P u b l i s h e d by t h e NSIA S o f t w a r e C o m m i t -
t e e i n t h e P r o c e e d i n s s of t h e F i r s t DOD/ I n d u s t r y
STARS P r o s r a m Conference , 30 Apr i l 1985 - 2 May
1985.

E. 1.3.13

A DESIGN FOR A REUSABLE ADA LIBRARY

I

John D. Litke

Grumman Data Systems Corporation

1000 Woodbury Road
Woodbury, New York 11797

ABSTRACT

A goal of the Ada language standardization e f fo r t is to promote
reuse of software, implying the existence of substantial soft-
ware libraries and the storage/retrieval mechanisms to support
them. W e propose a searching/cataloguing mechanism t h a t
permits full or partial distribution of the database, adapts to a
variety of searching mechanisms, permits a changing taxonomy
with minimal disruption, and rninimizes the requirement for

specialized cataloguer/indexer skills. The important observa-
tion is tha t key words serve not only as a n indexing mechanism,
but also as a n identification mechanism, especially via concat-
enation and as support for a searching mechanism. By deliber-
a te ly separating these multiple uses, we achieve the modifiabil-
i t y and ease of growth t h a t current libraries require.

Extensive reuse of software is a goal that industry has found diff icult to reach.

Arnon,: t he many issues to be solved before extensive reuse is a reality is the design
and construction of a software pa r t storage facility. The requirements fo r such a
system exceed those normally found in a conventional software management system
and thus demand a new design approach. This paper proposes a new design for a
crit ical component of a software library, t h e searching and cataloguing mechanism.

All libraries have a common set of functions to perform. Some well known examples
a r e storage of information, accession, discard of materials, and searching and retrieval

E.1.4.1

of information. Most of these functions for a computerized software pa r t s library c a n
use known computer science or library science methods. However, t h e function of

searching and retrieval has proven difficult and i t is in this a r e a t h a t we propose a new
design.

As in any library, t he function of a searching mechanism is to retrieve any information
relevant to a query, not just a precisely specified fact. This means that context and

meaning a r e important e lements in t h e query interpretation process. Furthermore, t h e
information in a library is not s ta t ic , but rapidly changing both in scope and in
terminology used to describe t h e relevant topics.

A useful searching/retrieval mechanism for a library of software would support inquiry
from at least three different points of view. First , it should support t h e more

conventional inquiry by keyword matching to select i tems by language, machine,
author, etc. Second, i t should allow searching by conventional topical descriptions in a
va r i e ty of areas, such as aeronautics, electrical engineering, etc. Third, it should
allow searching by algorithmic content, ra ther than by intended function. For

example, we should be able to find a n algorithm both by t h e topical "edge enhance-
men t techniques", and t h e algorithmic, "fast fourier transforms." If t he re were a
universal topical and algorithmic specification nomenclature, we would need a n
elaborate, but conventional index. However, a l l engineering fields have different
topical indexing styles that do not map one to one to each other. Further, their
algorithmic nomenclature is also not congruent t o t h e nomenclature of other fields.
Hence, a complete indexing/classification scheme must contain synonyms, see alsos,
analogous references, etc.

If t h e resulting classification system were stable, t h e problem is complex enough.

Furthermore, not only is t h e conventional taxonomy unclear and dependent on the
engineering field of t h e user, but also t h e information t h a t we are indexing is
unformatted with an uncontrolled vocabulary.

A superficial solution to this searching and retrieval problem is to propose a computer
based database system, complete with proven query languages and report writers.

E.1.4.2

However, t h e problem is not one of retrieval of information by unique key word, but
retrieval of relevant information given a set of partially applicable key words or

phrases. The differences a r e so substantial t h a t a distinct field of information
retrieval has evolved t o address t h e issues as distinct from database technology. A

review of t h e current problems in t h e field will illuminate t h e nature of t h e problem
and t h e import of our proposed solution.

Current research in this field of information retrieval can b e summarized in four
cat ego r ies (BAR T8 5):

Automatic Indexing
Information Structures
Query Formulation
Query Evaluation.

The workers in t h e area of automatic indexing are trying to find a way to convert
unforrnatted information with an unstable vocabulary into a formatted, s table vocabu-
lary tha t can b e served with conventional indexing systems of t h e database community
(ABBE75). The hear t of t h e problem is to determine t h e content of a document by
analysis of i t s text. This problem is analogous to t h e problems faced by t h e automatic
language translation e f for t s and has proven very difficult.

The information s t ructures a r e a is trying to determine ways to represent t h e
information contained in documents and t h e ways t h a t documents re la te to one
another. There a r e th ree principal approaches. The first seeks to develop useful and
comprehensive classification mechanisms to apply to al l documents. This approach is
t h e established, classic approach of libraries. The second seeks to develop thesauri
t ha t cap ture not only meaning, but relationships in a limited vocabulary of terms. The
principal d i f fe rence of a thesaurus and a classification system is t h e inclusion of
relationships into t h e scheme, such as "part of", or t h e narrowedbroader relationship
of classes, and o ther ordering relations. Finally, a system tha t emphasizes relation-
ships will t a k e on t h e appearance of a semantic ne t or other network structures. At
this end of t h e spectrum, more meaning is in t h e relationship between terms, and so
t h e problem of synonyms and partially related te rms becomes important.

E.1.4.3

The query formulation a r e a is not independent of t h e query evaluation area, although
it does contain an important component of human interface in addition to t h e selection
logic mechanism. To d a t e the re has not been a great deal of success with e i ther
boolean logic based systems tha t allow t h e formation of "this and tha t but not t h e
o the r thing" type of queries, or with combinatoric systems tha t allow "similar to this
or that" type of queries. There a r e two major difficulties with t h e boolean logic

approach. First , t h e inquirer must know t h e allowable vocabulary and indexing scheme
so t h a t t h e query will b e well formed. For large, complex systems like a library, this
is unlikely for a casual inquirer. Second, boolean logic makes it difficult to specify
major/minor selection cr i ter ia (BART85), (CROF8 l), (BOOK85). The combinatoric
approach cannot represent boolean constraints easily, of ten leading to poor selectivity,
and difficulty indexing uncertain information.

PROPOSED SOLUTION

T h e sof tware library searching and retrieval design has several key constraints. First,
t h e automatic classification of entr ies is beyond a commercially viable solution at
present. Since t h e library will become large, we must minimize t h e classification
e f for t required until automated solutions are available. Second, t h e information
s t ruc tures tha t are desirable are not yet known. Because a library is intended to have
a long life, we must minimize t h e impact of modifications to t h e information s t ruc ture
or t h e classification/retrieval structure. Further, i t is desirable to distribute widely
t h e classif ication/retrieval mechanism t o t h e user community to encourage a uniform
approach to nomenclature/classification. To make such a distribution practical , t h e
classification mechanism must be separable f rom t h e actual documents t h a t it

classifies. Finally, a mechanism must be found to classify t h e subject documents
without extensive services f rom a professional indexer. Since automatic classification
systems are still experimental, this implies a reliance on t h e help of t h e submit-
ter/author, a heretofore not totally sat isfactory source of indexing information. The
solution we propose is not a final solution, but ra ther an archi tecture t h a t will se rve
t h e present and grow gracefully into t h e future.

E.1.4.4

Our solution to this problem uses three k e y ideas supported by three interrelated
databases. First , a precis is required from all submitters to minimize t h e indexing

work of the library staff. Second, the classifications required of t h e author by t h e
precis a r e guided by a database system supplied by the library to ensure t h a t
classifications a r e reasonable and correct. Furthermore, classification cross refer-
ences and see alsos a r e maintained by the library staff, and a r e not expected of t h e
author. Third, t he searching mechanism is separated from . the storage/retrieval
mechanism t o make future modifications to ei ther easier.

The largest of t h e three interrelated databases is a conventional configuration

management system and holds the full t e x t f i les of a l l information in the library. (See
Figure 1 .) Other than indices required by the configuration management function,
i t ems a r e identified by a unique accession number.

TOPICAL
OUERIES
,

J
QUERY FORMING

DATABASE
KEYWORD
OUERIES

PRECIS DATAEASE

~~

Architecture of the Library System

Figure 1.

E.1.4.5

The second database holds a precis of each logically unique cluster of documents in t h e

library. I t

serves as a brief reference document to a collection of related documents t h a t are
logically indexed as one. Such a collection might include the specification, functional
design, code, test driver, and test da ta for a particular module. The precis represents
the finest level of granularity tha t a user can see from the indexing system. Note t h a t
t he configuration management system is free t o control t he configuration of such a
collection ei ther as a unit, or as separate documents. The design of a precis itself is

discussed separately below. The second database is organized conventionally in e i ther
a hierarchical or relational model, supporting conventional keyword query mechanisms.

This precis requires certain information such as author, language, etc.

The third database contains the indexing/classification system and serves as a query
f ron t end to the precis database. This database supports complex query forms on the

classification system, not on tile documents t h a t a r e classified, and enables t h e user to
easily construct complex queries for eventual submission to the precis database. This
separation of the querying process f rmn the underlying data containing system will
allow change in e i ther mechanism without rewriting the other. I t allows users t ha t a r e
satisfied with conventional keyword access to use a conventional system, while
allowing independent development of more elaborate searching/retrieval mechanisms.

There a r e three important properties of this solution. First, separation of t h e

databases allows smaller, indexing databases to be distributed widely without t h e high
cost of distributing large quantities of da t a in t h e configuration management database.
Second, the version control and dependency relationships a r e removed from the
searching/indexing mechanism to simplify t h e design and maintenance of t h e data-

bases. Third, the topical relationships a r e separated from the precis information. This
topical information is stored in a separate, logical tree organization so t h a t variable
depth indexing and class/subclass relationships can be maintained with a fixed record
and fixed key size indexing scheme. (This was t h e same problem t h a t led t h e

GRIPHOS database designers to separate the indexing and retrieval mechanism in a

similar way.)

E. 1.4.6

This design rests on a plausible, but untested assumptions t h a t t he da t a to be classified
is regular enough that:

1.

2.

3.

Typical relationships between indexable topical te rms a r e sufficiently generic
t ha t the relationships and the data a r e separable without introducing excessive
retrieval error.

Classification can be done sufficiently well t h a t t h e number of false identifica-
tions is tolerable. This implies t ha t classification with a fixed vocabulary is

possible.

The subject mat te r is sufficiently regular t h a t classifications can be usually

identified with a pre-existing taxonomy and tha t separable relationships a r e

sufficiently generic t h a t significant classes of objects a r e formed.

A small database is being construct'ed to test the validity of these assumptions.

PRECIS DATABASE

One of the difficulties with conventional keyword approaches to database access is

tha t the keyword vocabulary must be controlled to eliminate misspellings, synonyms,
etc. Further, t he indexing terms a r e not readily expanded or changed without
structural database changes. For these reasons, t he precis database will be indexed
with commonly agreed keys t h a t have a finite, known range and represent quantifiable

machine, language, operating system, etc. This information will be obtained from
each submitter to the database by requiring the submission of summary information
according to a specified style. From this summary information, a trained indexer will
prepare a precis with a controlled vocabulary for inclusion in the precis database, and
t h e original summary information will be retained in the configuration managed
database.

cha rac t e r i s t i c s . F o r example , we will index on module name, vers ion, au tho r ,

E. 1.4.7

To form a connection between the precis database and t h e query forining database, t h e
author must supply up to five classification codes. These codes will be selected by

using t h e query forming database itself to explore t h e classification space and will be
critiqued by a professional indexer for suitability. The classification codes need not be
at a uniform depth of classification.

QUERY FORMING DATABASE

The query forming database bears t h e responsibility to support sophisticated inquiry
into the precis database. There a r e two problems to be solved, while honoring several
constraints. First, we must devise a n indexing and classification system t h a t will
allow flexible searching of the precis database. Second, we must design a n e f f ec t ive

human interface to t h e query forming mechanism t h a t does not require extensive
knowledge of the underlying classification system.

To be a n e f f ec t ive tool, t h e solution must also honor several constraints. First , it

m u s t support multiple views of algorithm classification for a variety of engineering
disciplines. (The notions of subset/superset classifications are especially varied among
disciplines.) Second, it must allow retrieval at uniform levels of detail so t h a t broader
scope documents a r e not retrieved together with narrower scope documents uninten-

tionally. Third, it must grow gracefully with minimal or no re-classification of
existing software. Fourth, i t must be easy to provide classification guidance to

submitters of software so tha t they can provide effect ive aid to t h e professional
indexers.

The solution t h a t we propose establishes a relationship among classification systems in
t h e query forming database and not among items in the precis database. Thus
relationships among library modules are represented implicitly via the classification

system and not via explicit links in t h e precis or configuration database. W e require
t h e explicit relationships between elements to be maintained by t h e management
database, since such a r e more static, while t he more dynamic classification relation-
ships are maintained in t h e classification system itself.

E. 1.4.8

To obtain a classification t h a t is familiar and useful to a wide variety of engineers, we
propose a hierarchy of overlapping classification systems, whose inter-relationships

are determined and maintained by expert indexers. The top level classification system
will use the taxonomy of Dissertation Abstracts for field identification. Under each
field, t h e indexing scheme customary to t h a t field will be used. For example,
mechanical engineers would use the scheme of the Applied Mechanics Reviews,
Computer Scientists would use Computing Reviews, etc. The depth of t h e indices will
vary from field to field. Since some a reas of knowledge such as algorithms a r e found
very frequently in software systems, a finer classification resolution such as t h a t
provided by the CALCO system will be needed. I t will be up to the professional
indexing staff to provide cross references and see also relationships among and
between the classifications. The only change t h a t will be made to the adopted
classification system is to apply a more uniform numbering system to adjacent levels.

This allows the database retrieval mechanism t o refer t o any classification with a
unique code.

This design allows multiple classification schemes to exist and be interrelated with no

overt cooperation from authors. The scheme can be revised and extended with l i t t le
or no alteration of existing software. Deleted classification te rms a r e simply
translated by automated means into designated al ternate categories, while new te rms
require reclassification only incrementally. (The simultaneous deletion of a n old
classification and re-assignment to a variety of new ones would require some re-
classification.)

The system allows a user to self classify a module in his/her own vocabulary, while

automatically supplying the cross references to other vocabularies and fields. Since
t h e classification database is physically separate from t h e precis database, users can

choose to use printed versions of the classification schemes and more laboriously
search t h e precis database by conventional keyword selections. Finally, since a
mechanism is provided to search the classification system itself, t h e classification can
be made much more elaborate and precise without making t h e searching job harder.

E. 1.4.9

Since t h e whole intent of t h e query forming database is to enable t h e user to more

readily search t h e library, t h e quality of t h e user in te r face will be highly dependent on

good physical implementation as well as a good match to people's searching strategies.
W e envision t h a t t h e user will be able to select categories and sub-categories as s h e

navigates freely through t h e classification system, a b l e at any t i m e to retr ieve some

or all of t h e precis implicitly selected, refine t h e query by elaboration, deletion, or

addition of additional keyword specific qualifiers (such as language) as required. A

modem, menu driven system with mouse and optional text entry is a candidate

in te r face paradigm.

Each entry in t h e classification database will contain a count of t h e number of entr ies

in t h e precis database t h a t are indexed by t h a t classification. This will allow a user to
sharpen t h e query procedure without necessarily accessing t h e large precis database.

I tems can also be classified to any depth t h a t t h e author deems appropriate.

Exhaustive precision in classification is not required.

REFERENCES

(BART85) Bartschi, Martin "An Overview of Information Retrieval Subjects," Compu-

ter, (Vay 1985) pp 67-84.

(CROF81) Croft, W.B. vlDocument Representation in Probablistic Models of Informa-

t ion Retrieval," J. ASIS, V 32, 1981, pp 451-457

(ABBE75) Abbey, Scott , "GRIPHOS as a Relational Database System," Dissertation

1975, S t a t e University of Stony Brook, Stony Brook, New York.

(BOOK85) Bookstein, Abraham "Implications of Boolean Structure for Probabilistic

Retrieval" Proc 8 t h International ACM SIGIR Conf, Montreal, Canada, June 5-7, 1985
pp 1177.

E.1.4.10

rics for CornDatibilitv and Reusab ilitv .- pesianina Gene D. Doualas Smith

Designing Generics for
Compatibility and Reusability

Introduction
Many desirable features may be achieved by implementing a consistent design in generic

libraries. The techniques discussed here are not exhaustive, but can form the basis for a
design. In addition, a few of the simpler uses of generics will be touched on.

One of the major goals of generics is reusability. It is toward this end that most of these
techniques are directed. Reusability is desirable not only across applications, but also across
data structures; i.e. a process applied to a linked list should be available for an array also.
With this in mind, most of the applications of the generic library should treat the data
structure as a Sinale entitv and provide routines to apply to that data structure.

It is difficult to understand generics without using them. Consequently, these
discussions are directed to those who have some practical experience with generics. In
addition, it is recommended that the reader take the time to try his hand at some of the more
difficult examples continuing to look for more ways to turn the specific into the generic.

Exporting refers generally to any visible component of a package. This includes types,
objects, procedures, functions, (sub)packages, and generics. Specifically for generics, any
item that becomes visible at instantiation is considered exported. Along the lines of the
notation suggested by R.J.A. Buhr, this can be represented graphically [BUHR],

package "NG

Exported E M

lmoortinq
Importing most often refers to the use of items from another package made visible

through a with clause. However, this paper will refer to parameters required for
instantiation of the generic as imported during instantiation. Importing can be similarly
represented graphically.

package "G

Imported rEM

Notation
Each box represents not only what is imported and exported, but also the order in which

the individual structures are available. In the case of the generic, all items must be available
for importing before they can be exported. In addition the name of the module appears at the
top.

E.1.5.1

Desianina - Generics for ComDati bilitv and Reusab ilitv D. Doualas Smith

package

type LIxAL_KEy
3 type EMS

- -

A vaila bilitv

package T4EE-MN.WEFI - - type KEY
- type E M S

A feature that may be overlooked by a first glance at generics is that the functions and
types visible in a generic are immediately available after an instantiation to be used in
further instantiations. Assuming the existence of a linked list package and an array
manipulation package, an array of linked lists can be created:

package LINKED-LIST

- -

I

function WAX function UXXW
function PACK function NSERT

- -

package AFIRAY-LET

type ITEM

Array of Linked Lists d AHWY-WPE I ' Embeddinq

with TABLEMANAGER;
generic

type ITEMS is private;

subtype LOCAL-Wis INTEGER;

package LOCAL-TABLE is newTABIEMANAGER(LOCA-KEY,

function UNPACK (KEY : LOCAL-KEY) return ITEMS

function PACK (ITM : ITEMS) return LOCAL-KEY

packagecoMPREssis

ITEMS);

mames LOCAL-TABELOOKUP;

renames LOCAL-TABEINSERT;

E.1.5.2

Desianina Ge nerics for ComDatibilitv and Reusab ilitv D. Doualas - Smith

In fact, any imported item may be used in further instantiations. Constants, functions,
procedures, etc. can all be used to instantiate an embedded generic.

The only restriction in the Language Reference Manual is the use of recursive
instantiations as discussed in section 12.3. However, there is a way of using the results of an
instantiation in the instantiation itself. This will be discussed later.

Exoortina Generics
Exporting generally refers to any data type, object, function or procedure that is visible

in a package. Specifically, generics themselves can be exported from generics. As opposed to
embedding, exporting makes a generic visible for further instantiation. The most obvious
example is a generic used to operate on the whole data structure which has been given the
process to APPLY to each item.

VARIABLE-ARRAY

type E M S

type EM-ARRAYS

procedure APPLY

procedure PRXESS
procedure INITIALIZE

generic
type ITEMS is private;

type ITEM-ARRAYS is array(POSITIVE range O) of ITEMS;

generic
with procedure PROCESS (ITEM : in out ITEMS);
with procedure INITIALIZE (ITEM : in out ITEMS);

procedure APPLY(ITEM-ARRAY : in out ITEM-ARRAYS);

package VARIABLEARRAY is

end;

For flexibility, the exported generic can easily consist of default parameter values.
This precludes the necessity for constantly writing null procedures and functions to match
generic arguments. If you like, the default procedures and functions can actually be
instantiations themselves.

E. 1.5.3

Desianina Ge nerics for ComDa tibilitv and Reusab ilitv D. Doualas Smith

'7
procedure b type E M S bb type E M S

package VARMLE-AJWW

1 procedure
type I I E M - ~ B

procedure DEFAULT-INrIIALlZE

procedure APPLY -
procedure p#xTss

procedure INITIALIZE

generic

procedure DEFAULT-PROCEDURE(ITEM : in out ITEMS);
-begin - null;
-end;

type ITEMS is private;

with DEFAULT_PROCEDURE;
generic

type ITEMS is private;

type ITEM-ARRAYS is array(POSITIVE range e) of ITEMS;

procedure DEFAULT-INITIALIZE is new DEFAULT-PROCEDURE(ITEMS);
--This procedure could be inline

package VARIABLEARRAY is

generic
with procedure PROCESS (ITEM
with procedure INITIALIZE (ITEM

is DEFAULT-INITIALIZE;
procedure APPLY(ITEM-ARRAY : in out

end;

in out ITEMS);
in out ITEMS)

TEM-ARRAYS);

Indirect Recursive Instantiations and Mutual Dependencv
One of the big problems in handling data structures is the inability of generics to handle

different data structures. Normally, a generic to handle arrays is different from the generic
to handle linked lists, even though the two generics may do functionally the same thing. There
is a way to remove this structure dependency from the generic.

It is easier to introduce the technique with an illustration. The first example introduces
a problem in compilation order.

E.1.5.4

Generics for Comtibilitv and Reusakji itv D. D o u m Smith

with LINKED-LIST;

type EMPLOYERS;
type EMPLOYERS-PTR is access EMPLOYERS;

package EMPLOYEE-LIST is new LINKED-LIST(EMPLOYERS-PTR);

type EMPLOYERS is
record

end record;

NAME : STRING (1..32);
EMXIYES : EMPLOYEE-LH.NODE;

procedure DUMP(EMP : EMPLOYERS-ITR) is
begin

end;

PU-LINE (EMP.NAME);
DUMP-LIST(EMP.EMPLOYEES); -Not a visible routine yet

procedure DUMP-LIST is
new EM PLOY EE-LI ST. APPLY(DUMP) ;

Notice that there is a way around this interdependency by deferring the procedure
definition. This will lead us to a solution to the basic problem of manipulating data structures
in a generic. The goal is to use a function or procedure from a generic within a function or
procedure that is used by the generic. Graphically,

(TT procedure U P

generic APPLY

procedure

procedure

To achieve such interaction, the corresponding incomplete declarations of procedures
and functions can be used: 1) the actual function is declared, 2) the instantiation of the
generic which uses the actual function is done, (making any functions or procedures in the
generic available.) 3) Now the actual function can be completed, using any routines available
from the generic.

E.1.5.5

Desianlna Gene rics io r ComDatibilitv and Reusab ilitv 0. Doualas Smith

procedure DUMP(EMP : EMPLOYERS-PTR);

procedure DUMP-LIST is
new EMPLOYEE-LlST.WPLY(DUMP);

procedure DUMP(EMP : EMPLOYERS-PTR) is
begin

end;

PUT-UNE (EMP.NAME);
DUMP-UST(EMP. EMPLOYEES);

At this point, a significant distinction can be made between the normal procedure and the
procedure achieved through instantiation-- DEFERRED DEFINITION! Deferred definitions
allow normal procedures to interact with each other in ways that instantiated procedures
cannot. However, there is a way that this feature can be added to instantiations.

Using essentially the same technique, hide the point of interaction inside a procedure and
defer its definition. Remember, although the declaration of an instantiation cannot be
deferred, it can be hidden inside an actual procedure which can!

generic APPLY_to_node hh procedure string procedure PW-LINE
procedure DUMP

procedure list
procedure

generic APPLY-to-list I b procedure 9 procedure

generic

procedure APPLY(EMP : EMPLOYERS-PTR);

with procedure APPLY-TO-NAME (STR : STRING);
with procedure APPLY-TO-EMP (LST : EMPLOYEE-LISLNODE);

procedure DUMP(EMP : EMPLOYERS-PTR);

procedure DUMP-LIST is
new EhnPLOYEE-UST.APPLY(DUMP);

procedure DUMP(EMP : EMPLOYERS-PTR) is

begin

end;

procedure INTERNAL-DUMP is new APPLY(PUT-LINE, DUMP-LIST);

INTERNAL-DUMP(EMP);

E.l S.6

Desianina Ge nerics for ComDatibilitv and Reusab ilitv D. Doualas Smith

Data Structure Independence
One of the goals toward compatibility has been reached--removing data structure

dependency from the generic. The resulting generic is derived by recognizing the only actual
parameter to the application: the procedure applied to the string component of the record
structure.

The resulting code is deceptively simple. Almost all of the techniques discussed to this
point, and then some, are being used here. In addition, the parameter passed to the generic is
actually hidden from the APPLY-TO-LIST procedure. This technique will be discussed more
generally later.

generic APPLY-to-de

pr oced u re APPLY-TO-ME
procedure APPLY-TO-LET

LJ procedure I
generic

procedure APPLY(EMP : EMPLOYERS-PTR);

procedure APPLY(EMP : EMPLOYERS-PTR) is

new EMPLOYEE-LIST.APPLY(APPLY);
begin

APPLY-TOME (EMP.NAME);
APPLY_TO_IST (EMP.EMPLOYEES);

with procedure APPLY-TO-NAME(STR : STRING);

procedure AP PLY-TO-L I ST is

if EMP /= null then

end if;
end;

Compatibilitv
In the previous example, the data structure supplied by the generic is now independent

of the implementation. If arrays were the hidden implementation inside the linked list
package, there would be no code change. But then that is not what is really desired.
Preferably if a change is needed, then the instantiation uses a different package. So now the
issue of compatibility needs to be addressed.

Compatibility for generics can mean different things. The intent of the application must
obviously match the functionality of the generic. This may not be enforcable by the language
and therefore must be left to design considerations. But for generics that are functionally
equivalent, some language features define another meaning for compatibility.

Parameter profile matching and general type matching are required for instantiation.
Compatibility occurs when the profiles match as described in the Language Reference Manual
6.6. Keeping a consistent format allows the results from a generic instantiation to be used in
another instantiation. It also allows switching between generics with minimal d e changes.

E.1.5.7

Desianina Gene rics for COmbatibilitv and Reusab ilitv

In the cases where generics cannot keep such a consistency, the alternative is to
overload the routines from a generic to be both in a procedural form and a functional form.
Such overloading then allows the programmer to continue plugging the routines into other
generics since Ada will resolve to the compatible form. Additional overloading and default
parameters can provide even more versatility.

D. Doualas - Smith

Profile Conversion
Even when parameters are not compatible, generics can provide a quick solution. A set

I 1
of profile conversion generics can come in handy:

I I generic CawWsrrJ

type I-I-EM
function

1-I procedure I
generic

procedure PROCEDURAL_PROCESS(ITEM : in out ITEMS); - begin - ITEM := PROCESS(ITEM); - endpRocEss,

type ITEMS is private;
with function PROCESS(ITEM : ITEMS) return ITEMS;

I generic

type TYPE-1
type TYPE-2

procedure \IKIoNG_FoF;M

I l Drocedure

generic
type TYPE-1 is limited private;
type TYPE-2 is limited private;

with procedure WRONG-FORM(PRGl : in out TYPE-1 ;
pRG2 : in out TYPE-2);

procedure SWITCH-ARGUMENTS(PRGl : in out TYPE-2;
ARC2 : in out TYPE-1);

Parameter Hidnq
Unfortunately, as data structures interact, parameters can get lost in the design. Again,

embedding a generic instantiation within a procedure can preserve both the parameter and the
needed compatibility.

E.1.5.8

Pesianina Ge nerics for COmDatibilitv and Reusab ilitv D. Doualas Smith

procedure APPLY-Wrm-EXlRA-ARGUvlENT

arg-1 : list-type
arg-2 : extra-argument r

procedure COMPATIEuEK)R-M~l lON l r u

procedure

package INTEGER-PACKAGE is new LINKED-LIST(INTEGER);

procedure DUMP(FILE : FILE-TYPE;
LST : INTEGER-PACKAG€LlST-TYFE) is

procedure INTEGER-DUMP(INT : INTEGER) is
begin

end;
PUT(FILE, INT);

procedure INTERNAL-DUMP is

INTERNAL-DUMP(LST);

 ne^ INTEGER-PACKAGEAPPLY(INTEGER-DLIMP);
begin

end;

Namina Conventions
Since one of the goals of compatible design is to have interchangeable modules, an

otherwise unimportant consideration becomes very important. If the functionally equivalent
items in one package do not have the same name, then extensive code modifiction will be
required to do the conversion. Renaming is an alternative, but obviously a clumsy one.

An example might be a length function provided by a LINKED-LIST package and a
TABLEMANAGER. By using the name LENGTH in both packages, they can be interchanged
without modification to every occurrence of the function.

By designing the generics with a consideration toward consistent naming and parameter
profiles, switching the implementation becomes trivial--instantiate with the other package.
Since the package name does not change, even full dot notation(which is preferable) can
remain unchanged. Change the instantiation in the previous example and notice that nothing
should change if consistent naming conventions are used.

package INTEGER-PACKAGE is new VARIABLEARRAY(INlEGER);

E.1.5.9

Pesianina Ge nerics for ComDatibilitv and Reusab ilitv D. Doualas - Smith
-

Off The Shelf
The desire to change processing for different data structures and designs indicates that

families of generics may be desired to handle the various intentions of the software designer;
recursive lists, arrays, ordered lists, ordered arrays, etc.

In fact we can look at it as "plug compatible" software; Le. the parameter profiles from
one generic instantiation match the arguments to another generic. There is still a need for
careful design in terms of the application desired. The plugs may fit, but the wrong process
may occur.

Conclusion
In all of the discussions so far, the application and the implementation have been

general. The techniques apply across a large range of generics such as linked lists, variable
arrays, circular lists, ordered lists, etc.

We can now partition the generics into four groups:

1) Generics that create and handle a data structure and in turn provide
generic APPLY procedures for treating the data structure as a logical
entity.

2) Generics that perform a particular process on any data structure (such

3) Generics to manipulate a data structure, processing the data structure for
an application that must exploit the internal structure of the data, such
as using employee-list.apply in handling the hierarchical nature of the
employer data.

4) Generics to handle profile conversion and parameter hiding for
compatibility if needed.

as SEQUENTIAL-to).

Through the use of generics, designed for compatibility and partitioned correctly, a few
instantiations can create the application desired. With consistent naming conventions and
compatibility, an application can switch from one implementation to another with minimum
impact.

Two of the major benefits to a library designed to use these features are maintainability
and reliability. Maintainability is enhanced by simply reducing the amount of code to maintain
and allowing for interchangable modules. Reliability is enhanced by not only reusing
previously tested code, but actually testing the code across many different applications and in
different environments.

With these techniques and concepts in mind, a set of generic libraries can more easily be
meshed into a compact, compatible unit. Generics can then apply across a greater range of
software solutions and integrated into a design effort.

Biblioarap hv

[BUHR] Buhr, R.J.A., "System Design with Ada," Prentice-Hall, Inc., 1984.

E.1.5.10

Desianina Ge nerics for Co mDatibilitv and Reusab ilitv D. Doualas Smith

Mr. Smith received his M.A. in Mathematics from Vanderbilt
University. He has been designing and programming in the Ada
language for the last 2 years and has worked extensively with
the Generic feature during the development of a successful large
scale software project. Mr. Smith is currently working on
static analysis techniques in a language independent
environment.

E.1.5.11

Considerations for the Design of Ada* Reusable Packages

Norman S. Nise
Chuck Giffin

Rockwell International
Downey, California

June 4,1986

Abstract
This paper discusses two important considerations that precede the design of Ada reusable
packages - commonality and programming standards. First, the importance of designing packages
to yield widespread commonality is expressed. A means of measuring the degree of applicability
of packages both within and across applications areas is presented. Design considerations that
will improve commonality are also discussed. Second, considerations for the development of
programming standards are set forth. These considerations will lead to standards that will
improve the reusability of Ada packages.

jntroduc tion
By 1990, the cost of software will outpace the cost of hardware by a ratio of five-to-one.
According to the United States Department of Defense, the cost of software will rise to $32
billion by 1990, up from $2.5 billion in 1980. The primary responsibility for these high costs
can be attributed to the maintenance phase of the software development cycle.

One promising method of reducing these costs and improving the supply is to use what is
becoming known as reusable software. Reusable software can be defined to be specifications,
designs, data, code, test cases, and documentation that are reused in the same or in a different
software program with little or no modifications. Reusability yields a reduction in man-hours
required for design, development, testing, and, particularly, maintenance. This reduction in
man-hours leads to a reduction in software costs. Since "tried and true" software is used over
and over again while bugs are discovered and eradicated, increased reliability is also accrued.

Why hasn't reusable software found widespread acceptance and use by now? The major problem
has been the lack of a set of universally accepted standards and a single programming language
supporting the design of reusable software. Furthermore, even today, few accept the idea that
reusable software could possibly work. Some feel that it is unworkable since a lack of standard
and understandable documentation encouraging the use of reusable software exists. Individyal
company proprietary interests encourage a reluctance to share developed software with other
concerns.

Ada is a registered trademark of the U.S. Government - Ada Joint Program Office

E.1.6.1

Frequently, others are reluctant to use software developed for other applications since the
software would not serve their current needs.

Portability is, of course, another reason for not accepting the concept of reusable software. Code
developed on one machine might not run on another without extensive modifications.

Finally, standards used by one company in the development of their software may differ from
another company. This lack of standardization makes it difficult to share software with
confidence.

What has occurred to change the picture and begin to turn around the lack of community-wide
acceptance of the idea of reusable software? First and foremost, the escalating cost of software is
driving the change. As pointed out, these costs are rising to unmanageable proportions! This fact
drove the Department of Defense to development and declare the use of Ada as the official
programming language for mission critical embedded systems. Reusable software can now be a
reality for two reasons: (1) a common language, and (2) a language that supports the theoretical
basis for reusability.

We now find both government and private industry seriously considering reusable software
systems. For example, the Department of Defense Software Technology for Adaptable Reliable
Systems (STARS) is currently working with members of private industry to establish criteria
for the design of a reusable software system. Such considerations as the library system
approach, parts design, metrics, and incentives for participants are being explored. The output
from the team will be a reusability guidebook.

The authors have previously described a reusable software system (Reference 11).
Commonality was mentioned as a key element for its design. In Reference 12 some design
requirements for commonality were described. This paper now ties together both commonality
and standards as considerations for the design of reusable software packages.

Considerations for the Desian o f Reusable Pac kaaeg
Regardless of the form that the reusable software system will take, software packages must be
designed so that they exhibit certain qualities associated with reusability. If a package is
designed with reusability in mind, it will be used again and again. The amount of reuse is a
metric that the designer will want to maximize in order to realize the economic advantages of
reusable software.

One way of increasing the degree of reuse of software packages is to take specific steps to
increase what we call the domain of applicability or the commonality associated with a software
package. That is to say, steps must be taken to design software packages that will not only be
applicable within a specific applications area, but will also be applicable across applications
areas.

E.1.6.2

Another consideration is to design into the package the basis for reusability and portability.
Standards requiring enforcement of these two concepts must be set up a priori to ensure code
design that is indeed reusable and portable.

Commonality and standards will now be explored separately to show their importance in the
development of reusable software packages.

C o m m o w
Commonality is two dimensional. Software reuse can be measured by the degree of applicability
of the package both within and across applications areas. Applications areas imply distinct
industrial groupings. For example, different applications areas could include missiles, aircraft,
spacecraft, weapons, ships, lasers, commandlcontrol, radar, etc. The economic advantages of
reusable software can be diminished if packages developed for a reusable software system do not
have the widest range of applicability. If the designer is satisfied with a very narrow range of
applicability, or does not consider extending the range of applicability either within the
applications area or across applications areas, the reusable software library will begin to bulge
with an overabundance of software from a very narrow domain of applicability. Since each
package represents development and maintenance costs, it would be economically beneficial to
ensure that the designer develop each reusable Ada package with the maximum possible degree of
commonality. Furthermore, the proliferation of packages within the reusable software library
could create a problem in classification and retrieval of software.

The space shuttle is an example of the non-reuse of software. Of the millions of lines of code
developed, not one line was planned for any reuse on any other project. Hopefully, this will not
occur for the software developed for the space station. First of all, a common language, Ada, now
makes it feasible to develop reusable software. Second, more sensitivity to the need for creating
reusable software now exists. However, what is being suggested here is to take a quantum leap in
thinking. To develop reusable software within applications areas is not enough even though it
would be a step in the right direction. Reusable software that has had every possible bit of
commonality designed into it must be developed. This commonality must cross the boundaries of
applications areas if we are indeed to reap the economic benefits of reusable software on a large
scale.

Increased commonality needs to be a design consideration up front. The designer must consider
how to increase the domain of applicability across applications areas. There must be a reluctance
to settle for application-specific packages. For example, a program to add two integers together
does not have as wide a domain of applicability as an Ada generic package that provides the choice
of variable types.

ACommonalitv M a U
To place the two dimensions that pertain to the domains of applicability into a visual
perspective,the commonality matrix is shown on Figure 1.

E.1.6.3

NARROW WIDE

UERY NARROW 0 1 2

NARROW 1 2 3

WIDE 2 3 4

UERY WIDE 3 4 5

Figure 1 Commonality Matrix

UERY

3

4

5
6

The domain of applicability is rated from very narrow to very wide in four steps, both across
and within applications areas. Software measured against this matrix has a commonality rating
from 0 to 6. The higher the rating, the larger the domain of applicability as measured both
across and within applications areas.

Software can be classified within the matrix based upon the expected amount of reuse. In order to
estimate this, a detailed domain analysis must be performed to identify the possible users
within and across all domains.

The objective of the commonality matrix is to identify a point of departure from which steps can
be taken to improve and to expand the domain of applicability as an integral part of the design.
The first step is to properly classify the software in order to see the possibility of expanding its
domain of applicability. If software is thought of as application-specific, such as spacecraft,
aircraft, missile, etc., it will be difficult to think in terms of expanding the software's degree of
commonality. However, if functions are thought of rather than applications, the range of
possible users enlarges. For example, a sort routine for a spacecraft's downlink data also can be
used by the accounting industry. In this case, the mind-set should be focused toward the function
"sort" rather than the application "spacecraft". Another reason for doing this is to ensure that
the library software's classification does not mask the wide range of applications. The sort
routine, classified and buried under a spacecraft application would not be discovered by the
accounting industry. In this case, the reuse of one sort routine would be diminished while the
library would be expanded by another sort routine from the accounting industry. The economic
benefits of the reusable software library will decrease1

The economic benefits that can accrue to an industry taking the time, effort, and money to
develop truly reusable packages, can be enormous. A spacecraft industry that has developed
reusable sort packages can now market its software products in new applications areas1

E.1.6.4

As an example, assume that a domain analysis of a navigation function within the spacecraft
industry resulted in a commonality rating of very wide applicability. On the other hand,
considering the applicability of navigation functions to other areas such as aircraft, accounting,
etc., a domain analysis resulted in a rating of narrow. The overall rating for this navigation
function as evaluated from the commonality matrix would be 4 which is found at the intersection
of very wide within the application area and narrow across applications areas. This type of
analysis can then be performed with other functions such as math functions, process functions,
mission functions, system outputs, and system inputs, etc. - 4

The next question that arises is "what can be done to improve the commonality rating of a
software package?". A non-reusable package can be thought of as containing application
dependent input transformations, application dependent output transformations, and application
dependent processes. The package can also contain application independent input and output
transformations as well as application independent processes.

One technique would be to create two separate packages. One package would become part of the
reusable software library and would contain the application independent input and output
transformations as well as the application independent processes and functions. Any
transformation or process analyzed to have a narrow range of applicability even within an
applications area would be relegated to the non-reusable package. This package would contain
application-specific software and would not become part of the reusable software library.

Another technique would be to create an Ada generic package containing the input
transformations, output transformations, and processes that have widespread commonality. This
package would become part of the reusable software library. An application-specific
instantiator would then be written. The function of this package would be to instantiate the Ada
generic library package and endow it with all of the application-specific information stored in
the instantiator. The instantiator can also be provided with a sequencer in order to instantiate
several packages (i.e., input, output, and process).

An example of the first technique is a non-reusable scaler-checker whose function is to take
analog and discrete inputs and give messages and scaled data as outputs. The software performs
input acquisition, checks for range and limits if the input is analog, checks for desirable states
if the input is discrete, scales the inputs, and sends appropriate messages. These functions are
supported by a table of ranges, limits, scaling, and messages. By separating the
application-specific tables and the conversion to common data types function from the
non-application-specific functions performed, a reusable module consisting of range and limit
checking, validity checking, and message select functions is formed. The non-reusable module
consists of the tables, messages, and conversions to common data types.

E.1.6.5

Pros ra mm ina S tanda r&
Another consideration for the design of Ada reusable packages is programming standards. In all
software development projects, standards are set, documented, implemented by developers, and
audited for compliance by a standards auditing team. Typically, programming standards deal with
documentation, naming conventions, restricted language statements, anomalies, interfaces, and
the like.

If an Ada reusable software library is to be set up, new standards specifically dealing with the
design for reusability must be developed. These standards must exist alongside the standards
usually written for software development. Each standard must describe a method of
implementation that specifically tells the designer or programmer how to comply. Furthermore,
a method of compliance control must exist. Compliance control describes the methods that ensure
compliance such as automated techniques or auditing procedures.

Many standards are set up merely as guidelines. Typically these standards are not audited. Other
standards are set up as mandatory. They must be followed and automated or audited for
compliance.

Reusable software will require both standards that heretofore were not a consideration as well
as standards that typically have driven software development in the past.

Naturally, reusable software must be be readable and understandable. To ensure this, the source
code must follow prescribed templates so that the user will recognize the same format in all
packages. Considerations, such as letter case of types, variables, and subprogram names must be
established ahead of time.

Standards for formatting must be in place. The reader must see a familiar format from one
reusable package to another. Typically for reusable software, information hiding is a
requirement. The method of implementation is hidden from the user. This prevents the user
from changing the implementation or becoming confused by it. These standards for reusability
must apply to the specification part of the package, the part the user will see. Other standards
can be set up to deal with the body. For example, such characteristics as indentation, alignment,
and spacing must be written. Comments must accompany all code to improve readability.

Typing and declarations must follow a template. Variables should be in a particular order decided
upon a priori. For example, all inputs followed by all outputs.

E.1.6.6

- There are many considerations unique to reusable software. It is beyond the scope of this paper
to cover all standards required to build reusability into the software. Some of the important ones
to be discussed here are:

(1) Accuracy dependency
(2) range dependency
(3) operation order dependency
(4) side effects -

Target machine dependency has an effect upon reusability because of differences in available
character sets, differences in exceeding bounds, differences in dynamic allocation and timing
effects, the effect upon real-time tasking due to differences in instruction execution time, and
differences in accuracy. Factors such as accuracy that affect the portability and reusability of
software and should be formalized as programming standards. Floating point operations cannot
rely upon the accuracy of the implementation if the code is to be portable. For example,
conditional responses cannot rely upon the accuracy of a comparison that can change between
implementations. Accuracies must be declared and adhered to. The required accuracy should not
exceed that required for a specific application in order to ensure portability to smaller targets.
It is a good idea to declare the accuracy of even predefined types to ensure implementation
independence. Inequalities using Ada attributes based upon model numbers such as EPSILON, can
be used since the same accuracy can be expected with any implementation. Another approach to
making "accuracy" implementation independent, is to declare integer and real constants as named
numbers of universal type. This leaves it up to the implementation to set the accuracy.

Ranae DeDe ndency
Range constraints for integer and floating point types should be limited so that the ranges will be
independent of implementation. This includes integer literals used for discrete ranges. These
literals, unless constrained in the declaration could be out of range on some machines.

The use of attributes that are not model numbers, such as FIRST and LAST, should not be used as
a range constraints since these attributes are not implementation independent. Furthermore,
values of real types that are outside the range of model numbers cannot be handled by every
implementation. Thus if these numbers are used for decisions or exception handling, problems
will certainly arise.

It is tempting to handle exceptions by using such declarations as NUMERIC-ERROR and
CONSTRAINT-ERROR. Unfortunately, the exact conditions causing these exceptions to be raised
depend upon the implementation. Reusability would be better served by programming these
exceptions directly into the code.

E.1.6.7

Orde r of Evaluat ion or Elaboration
The order of evaluation of an expression or the order of elaboration of a declaration can be
different from implementation to implementation. Standards must be established to ensure that
errors do not arise because of differences in the order of elaboration between implementations.
The pragma ELABORATE can be used to obtain the same order of elaboration regardless of
implementation.

Subexpressions can be evaluated in different ways. Some implementations may evaluate
expressions in such a way that causes the subexpression to overflow. Standards must be
established to ensure that subexpressions will not overflow under some implementations since
range checking cannot be relied upon for intermediate values. One of the ways of accomplishing
this task is to limit the number of operators contained in an expression.

Ada generic packages, which will be housed in the reusable library, require special
considerations of their own. Code sharing should be avoided. If one package requires code from
the other package, the order of compilation will determine if this sharing is possible. Under
some implementations this sharing would not even be permitted.

Side Effects
Another consideration in improving reusability and portability, is the elimination of side
effects. Side effects are caused by functions that modify variables which are not local to the
expression. A reusability problem arises if these non-local variables are used in the function
itself. The reason for the problem is simple. The order of evaluation is essential to create the
correct value for the function. Since the order changes between implementations, it is unknown
whether the value of the variable used in the function was the one before or after the execution
of the function. Establishing standards that set forth the order of variable assignment can
prevent the problems associated with side effects. For example, if the right hand side of an
expression is completely evaluated prior to the assignment to the left hand side, the previous
copy of a variable can be relied upon under all implementations.

Summarv
This paper described two important considerations for the design of Ada reusable packages: (1)
commonality and (2) programming standards. It was shown that reusable packages will bring
about economic improvement in software development It is imperative that each reusable
package be designed to cover the maximum possible domain of applicability. This maximization
implies the designing of the package for applications areas outside of that originally intended.
Maximizing commonality can be accomplished by thinking in terms of functions rather than
applications areas and partitioning application-specific software 'from the functions that cut
across many applications areas. Developers could realize economic gains by extending software
sales outside of their own applications area.

E.1.6.8

Another consideration of this paper was programming standards. It was shown that many
standards, previously not required, must be developed to solve the reusability design problem.
The areas of concern covered in this paper was the effect of accuracy, range, order of evaluation,
and side effects upon reusability. This does not imply that these are the only considerations, This
paper attempted to point the way toward new types of programming standards that will be
required for the reusable software of the future.

Acknowledae ments
The authors wish to thank Keith Morris for his invaluable input to this paper.

References
1. "Common Ada Missile Packages", Interim Report AFATL-TR-85-17, September
1984-January 1985.

2. Booch, G., "Software Engineering with Ada", The Benjamin Cummings Co., 1983.

3. Freeman, "Reusable Software Engineering:Concepts and Research Directions", ITT Workshop
on Reusability in Programming, September 1983

4. Grabow & Noble, "Reusable Software Concepts and Software Development Methodologies",
AIAA/ACM/NASA/IEEE Computers in Aerospace V Conference, 21 -23 October 1985.

5. Honeywell, "RaPIER", Final Scientific Report to the Office of Naval Research, Contract No.
N0014-854-0666, March 28, 1986.

6. Hughes Aircraft Co., "Reusable Software Implementation Technology Reviews", Prepared for
NOSC, December 1984.

7. Jones et al, "Issues in Software Reusability", SigAda.

8. McCain, "A Software Development Methodology for Reusable Components", STARS Workshop
1985 Reports.

9. McCain, "Reusable Software Component Construction: A Product-Oriented Paradigm",
AIAA/ACM/NASA/IEEE Computers in Aerospace V Conference, 21 -23 October 1 985.

10. McNicholl & Anderson, "CAMP Preliminary Technical Report", STARS Workshop 1985
Reports.

11. Nise, Dillehunt, McKay, Kim, Giffin, "A Reusable Software System", AIAA/ACM/NASA/IEEE
Computers in Aerospace V Conference, 21 -23 October 1985.

E.1.6.9

12. Nise & Giffin,"The Design for Reusable Software Commonality", DoD STARS Workshop,
March 24, 1986.

13. Nissen & Wallis, "Portability and Style in Ada", Cambridge University Press, 1984.

14. Parnas, D., "Designing Software for Ease of Extension and Contraction", IEEE Transactions
on Software Engineering, March 1979.

15. Parnas, D., "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, December 1972.

16. Procedings of the Workshop on Reusability in Programming", ITT, September 7-9, 1983.

17. "Reference Manual for the Ada Programming Language", MIL-STD 1851A, 22 January
1983.

18. "Reusable Software", Electrical Design News", February 3, 1983.

19. Snodgrass, "Fundamental Technical Issues of Reusing Mission Critical Application
Software", STARS Workshop 1985 Reports.

20. "Strategy for a Software Initiative", Appendix I I , Department of Defense,l October 1982.

21. Van Neste, "Ada Coding Standards and Conventions", Journal of Pascal, Ada, & Modula-2,
September/October 1 985.

22. Wegner, "Capital-Intensive Software Technology", IEEE Software, July 1984.

23. Witte, B., "Checklist for Ada Math Support Priorities", ACM Ada Letters, March, April
1984.

E.1.6.10

N89-16336

Roger Racine
C.S. Draper Laboratory

555 Technology Sq.
Cambridge, MA 02139

(61 7) 258-2489

Abst rac t

There are many problems associated w i t h d i s t r i b u t i n g an Ada program
over a loose ly coupled communication network. Some o f these problems
invo lve the va r ious aspects o f the d i s t r i b u t e d rendezvous. The problems
addressed i n t h i s paper invo lve suppor t ing the "delay" statement i n a
s e l e c t i v e c a l l and suppor t ing the "else" c lause i n a s e l e c t i v e c a l l .
Most o f these d i f f i c u l t i e s a re compounded by the need f o r an e f f i c i e n t
communication system. The d i f f i c u l t i e s a re compounded even more by con-
s i d e r i n g the p o s s i b i l i t y o f hardware f a u l t s occu r r i ng w h i l e the program
i s running. With a hardware f a u l t t o l e r a n t computer system, i t i s pos-
s i b l e t o des ign a d i s t r i b u t i o n scheme and communication so f tware which
i s e f f i c i e n t and a1 lows Ada semantics t o be preserved. An Ada des ign
f o r t he communications sof tware o f one such system w i l l be presented,
i n c l u d i n g a d e s c r i p t i o n o f the serv ices prov ided i n the seven laye rs o f
an I n t e r n a t i o n a l Standards Organizat ion (ISO) Open System In te rconnec t
(OSI) model communications system. The system c a p a b i l i t i e s (hardware
and software) t h a t a l l o w t h i s communication system w i l l a l s o be
descr ibed.

Background

There a re many reasons f o r us ing d i s t r i b u t e d computer systems. Key
among these i s the a b i l i t y t o recover when a f a u l t occurs i n one o f t he
computing s i t e s . Other reasons inc lude increased throughput and sepa-
r a t e subsystem development by d i f f e r e n t con t rac to rs (or t h e a b i l i t y t o
buy o f f - t h e - s h e l f subsystems).

The Ada p r o g r a m i n g language has the concept o f p a r a l l e l i s m b u i l t i n
(i n the form o f tasks) . To expand t h i s concept t o i nc lude runn ing one
Ada program on m u l t i p l e computers, w i t h communication t a k i n g p lace over
some network, c rea tes a number o f problems. One must consider how t o
spec i f y the l o c a t i o n o f processes, t h e d i s t r i b u t e d e l a b o r a t i o n o f t h e
program, whether the va r ious so f tware engineers invo lved a re ab le t o
t e l l where va r ious components w i l l be located, what should happen i n t h e
case o f hardware f a u l t s , and how t o implement t h e va r ious communication
mechanisms a v a i l a b l e i n Ada.

E.2.1 .I

I n t h e i n t e r e s t o f space, t he focus of t h i s paper w i 1 1 be i n the
area o f t he d i s t r i b u t e d Ada rendezvous. I n a rendezvous, one task c a l l s
an "en t ry " i n another task. The f i r s t task then wa i t s f o r t he server
task t o "accept" t he c a l l . Conversely, i f the server task at tempts t o
accept the c a l l be fo re i t i s made, i t w i l l w a i t . When t h e c a l l e r and
server bo th have a r r i v e d , t h e rendezvous occurs, w i t h parameters passed
t o the en t r y , a b lock o f code executed, and any ou tpu t parameters passed
back t o the c a l l e r . The two tasks a re then f r e e t o execute aga in i n
para1 l e l .

That i s t he simblc rendezvous. Ada also prov ides s e l e c t i v e c a l l s
and s e l e c t i v e accepts, t imed c a l l s and timed accepts, and guarded
accepts.

A s e l e c t i v e c a l l i s a c a l l which must be accepted immediately. I f
any o the r task i s be ing served, o r t he server task i s anywhere i n i t s
execut ion except w a i t i n g a t the accept statement, t h e c a l l i s cancel led.
The language requ i res t h a t t he server task be checked t o determine if
the e n t r y i s ava i l ab le . I t i s necessary, there fore , for two messages t o
be sent over the network t o o b t a i n the in fo rmat ion . The f i r s t message
w i l l ask f o r t he rendezvous; t he second w i l l e i t h e r be a message say ing
the rendezvous could n o t be accepted o r e l s e the second w i l l c o n t a i n the
r e s u l t o f t he rendezvous.

A t imed c a l l i s one which must be accepted w i t h i n a g iven amount o f
t ime. The c a l l w i l l be cance l led i f i t i s no t accepted w i t h i n t h a t t ime.
The semantics o f a t imed c a l l a re d i f f e r e n t depending on t h e va lue o f
t he delay. I f the de lay i s zero or i s negat ive, the semantics o f a
s e l e c t i v e c a l l w i l l be fo l lowed. A t l e a s t two c o m u n i c a t i o n messages
must be sent over t h e network. However, i f the de lay i s p o s i t i v e , and
the rendezvous i s known, by t h e c a l l e r , no t t o be ab le t o occur w i t h i n
the de lay per iod, i t i s n o t necessary t o even at tempt t h e rendezvous.
A l l t h a t i s necessary i s t o w a i t t he delay pe r iod be fo re g i v i n g c o n t r o l
back t o t h e c a l l i n g task. No communications over t h e network w i l l be
requ i red i n t h i s case.

A s e l e c t i v e accept a l l ows a server task t o accept a c a l l t o one
e n t r y a r b i t r a r i l y from among a l i s t .

A t imed accept a l l ows a server t o w a i t o n l y a f i n i t e t ime f o r a task
t o c a l l one o f i t s e n t r i e s . A t t h e end o f t he t ime per iod, i f no task
has ca l l ed , t h e server task w i l l r e g a i n c o n t r o l , and w i l l execute a l t e r -
na te code.

A guarded accept a1 lows a server t o accept, i n a s e l e c t i v e accept,
one o f a l i s t o f e n t r i e s based on cond i t ions . The c o n d i t i o n s on accept-
i n g t h e va r ious e n t r i e s w i l l be checked a t run-time, and one of the
"open" e n t r i e s w i 1 1 be p icked.

The s e l e c t i v e accept, t he timed accept and t h e guarded accept can
a l l be managed on t h e server t a s k ' s processor, w i t h o u t any network com-
municat ion.

E.2.1.2

To a designer of a distributed computer system, these built-in con-
structs raise a number of issues:

0 Should one even allow the use of the Ada constructs when communi-
cating between two tasks on different computers? Specific commu-
nication packages could be provided instead, with pragmas used to
make the Ada constructs "erroneous". The assumption used here is
that the Ada constructs should be used so that the application
does not need to know where various tasks are.

0 What happens if a task does a timed entry call, but the computer
of the called task fails at some time before the rendezvous
occurs? It is possible to send enough messages to ensure that
the Ada semantics are followed, even in the case of failures, but
the time involved in transferring the messages is large. If the
rendezvous is extremely inefficient, it is not usable.

0 The rendezvous semantics specify that once the rendezvous has
started, it must complete before the calling task can continue.
What should happen if the processor running the server task fails
during the rendezvous?

The AIPS Project

For the Advanced Information Processing System (AIPS), reliability
is the most important issue, with efficiency also being a priority
issue. The NASA sponsored AIPS project will produce a flexible, fault
tolerant, distributed, real-time computer system. It has been designed
in terms of "building blocks", such that different applications, such as
deep space probe or a manned space station, could use the components.

The building blocks include the following (this is not an exhaustive
list. It only includes those blocks pertaining to intertask communi-
cat ion) :

Fault Tolerant Processors (FTPs). One FTP consists of two
(duplex) or three (triplex) microprocessors, each executing iden-
tical instructions. A triplex FTP has the ability to mask a sin-
gle fault from the rest of the system. A duplex FTP can determine
that a fault exists.

A fault tolerant Intercomputer' (IC) network. This network is a
triplicated circuit-switched nodal network with sufficient links
in each network to be able to reach all FTPs on the network after
experiencing a single fault in the network. Because the network
is triplicated, it is possible to have reliable communication
with multiple faults.

Systems software flexible enough to handle an arbitrary number of
FTPs connected to the network. The network management process
must be able to recognize faults in the network, and reconfigure

E.2.1.3

i t au tomat i ca l l y (and i n v i s i b l y t o a p p l i c a t i o n s processes). The
communications so f tware must a l l o w f o r any number o f FTPs t o com-
municate. Systems management sof tware must be ab le t o recon f ig -
u r e the system (f u n c t i o n a l l y "move" a group o f tasks from one FTP
t o another) i f extreme f a i l u r e s occur. Local FTP management
so f tware must be a b l e t o recon f igu re the FTP in t h e presence o f
processor f a i l u r e s (downmode t o a duplex from a t r i p l e x , for
exampl e) .

0 Local Operat ing System (OS) sof tware capable o f work ing a lone
(s implex) , i n duplex or i n t r i p l e x . The l o c a l OS i s concerned

w i t h the tasks on one FTP (the l o c a l scheduler, l oca l rendezvous
software, etc.) .

F a u l t T o l e r a n t D i s t r i b u t e d Ada

I n the absence o f f a u l t to lerance, i t i s d i f f i c u l t t o des ign a ren-
dezvous scheme between tasks on d i f f e r e n t computers w i thou t m u l t i p l e
t ransmiss ions over the network t o ensure processors remain a c t i v e
throughout the w a i t f o r t h e rendezvous. A message would need t o be sent
to request a rendezvous. An acknowledgement would be necessary w i t h i n
some t ime l i m i t i n t he case o f a timed o r s e l e c t i v e c a l l , t o make sure
t h e c a l l has been rece ived and pu t on the queue. Another message would
need t o be sent s t a t i n g t h a t t he e n t r y i s accept ing the c a l l . I f t h e
c a l l e r i s making a t imed c a l l , and the delay runs out be fo re t h i s mes-
sage i s received, a message cou ld be sent t o take the c a l l o f f t h e
queue. F i n a l l y , t h e r e s u l t s o f t he rendezvous can be sent back t o t h e
c a l l e r .

These messages make up a minimal se t o f t ransmiss ions over t h e ne t -
work a t t h e h ighes t l e v e l . There might be o ther t ransmiss ions a t a lower
l e v e l t o make c e r t a i n t h a t each complete message i s rece ived c o r r e c t l y .

I n the f a u l t t o l e r a n t A I P S system, t h e problem of unknown processor
f a i l u r e s does no t e x i s t . I f one o f t he processors i n an FTP f a i l s , t h e
f a u l t i s detected. I f p o s s i b l e (i n a t r i p l e x FTP, f o r example), proc-
ess ing cont inues normal ly . If i t i s n o t p o s s i b l e t o i s o l a t e the f a u l t ,
t he System manager w i l l r econ f igu re such t h a t f unc t i ons on the f a i l e d
FTP a r e run on a d i f f e r e n t FTP.

For t h i s type o f system, i t i s poss ib le t o des ign an e f f i c i e n t com-
mun ica t ion s e r v i c e t o implement the Ada rendezvous. Because the tasks
invo lved a r e v i r t u a l l y assured o f con t inu ing execut ion throughout t h e
rendezvous, 1 i t t l e e r r o r d e t e c t i o n needs t o be done i n t h e communi -
c a t i o n s so f tware o f t h e processor con ta in ing t h e c a l l i n g task.

For t h e case o f t he t imed rendezvous, w i t h a p o s i t i v e de lay value,
t h e des ign c a l l s f o r t h e opera t i ng system on the c a l l ed processor t o
t ime the wa i t , i f the de lay va lue i s l a rge r than the m in imum necessary
t o t r a n s m i t t he rendezvous request and rece ive a response back. I f t h e
e n t r y i s n o t accepted w i t h i n the g iven amount of time, a message w i l l be

E .2.1.4

sent back to the calling processor, and the calling task can execute
alternate code. The only messages that need to be sent would be the
initial message that the caller wants to communicate, and the final mes-
sage that the server is finished (for whatever reason) . If the delay
amount is smaller than the minimum needed to transfer messages, no com-
munication is needed. The calling task can be given control back after
the specified delay.

If the delay amount is zero or negative, or if it is a conditional
call, the messages still must be sent, and the rendezvous might occur.

The IC network services will keep track of whether the called task
is moved from one FTP to another. It is also possible that the network
will be reconfigured while the tasks are waiting to communicate. All of
this will be transparent to the application program.

The design for the intertask communication has been subdivided into
two parts, the local communication and the interprocessor communication.
The 1 oca 1 commun i cat i on cons i s ts of the "norma 1 I' rendezvous between two
colocated tasks. The interprocessor communication consists of doing the
same thing across an IC network.

The Ilglue" between these two services is cal led the "context manag-
er". Its function is to determine, for each attempted rendezvous,
whether the called entry is on the same processor as the calling task.
If it is, the local communication service is invoked. If the called
entry is on some other processor, the IC network service is invoked.

The design of the context manager includes a table of locations of
what are known as "migratables". As was mentioned above, when a fault
is detected, tasks can be transferred to another FTP. The tasks will be
grouped into large units. All the tasks within a migratable unit will
always be colocated; if they are moved, they will move as a block.
Therefore, the table of locations can be organized hierarchically. This
will allow a fast algorithm to be designed to determine in which FTP a
called task is being run.

The network services are organized into layers, as in the IS0 Open
Systems Interconnect model. The highest layer, the Application layer,
will provide the interface between the context managers on the FTPs, and
the IC network.

The interface between the context manager and the IC network has
been designed to be as similar as possible to the interface between the
context manager and the local communication service. This is not a
necessity, but since the context manager is a potential bottleneck,
there should be no translation of data to support different interfaces.

The Application layer is responsible for the Ada rendezvous seman-
tics. When a rendezvous is with a task on another FTP, this layer must
make sure the semantics are followed. With a fault tolerant system,
this layer i s fairly simple. A t system initialization, a table of task
to task communications is used to create logical connections between
each pair. When the rendezvous is actually requested by the caller,

E.2.1.5

this layer sends the input parameters, along with the timeout value, to
the Application layer on the server's FTP. The server's Application
layer calls the server with the appropriate delay (adjusted to take into
account communication delays). When the rendezvous is complete, the
Application layer returns output parameters. If an exception is raised
or the call times out, a message is sent back to the caller specifying
the problem. The Application layer on the caller's FTP then either
gives control back to the caller at the appropriate point or raises the
specified exception to the caller.

The other layers, except the lowest software layer (the Network
layer), are designed to support general network services (not just Ada
communication), and are not affected by the fault tolerance of the sys-
tem.

The Presentation layer is responsible for translating data when the
format on the receiver is different from that on the sender. The system
being bui 1 t (the proof of concept, or POC, system) has a1 1 processing
sites identical; therefore no transformation routines will be coded.

The Session layer is responsible for verifying the legitimacy of the
communication. It is possible for users (in some anticipated appl ica-
tions) to attempt to communicate with tasks to which they should not be
allowed access. A table of allowed communications will be checked for
all connections.

The Transport layer is responsible for determining the hardware des-
tination of the communication. It will have a table of locations for
the various tasks. If a communication destination is changed (if a task
is moved to another processor), this layer will be notified so that com-
munication can continue.

The Network layer is responsible for detecting and masking hardware
faults. On a triplex FTP, each processor is connected to one of the
three IC networks for transmission. Each processor has receivers all
three networks. Masking faults is not trivial when receiving messages
from processors which: are not fault tolerant, are duplex FTPs or are
triplex FTPs. It is, however, still much faster than detecting faults
through multiple acknowledgments at the Application layer. In fact, in
the usual case of no faults, a triplex FTP's Network layer needs to do
very little processing to obtain (reliable) data for each of the three
processors. It is only in the presence of faults that extra processing
needs to be done.

The Datalink layer is responsible for sending packets across the
network. It contends with the other FTPs for the network using a modi-
fied Laning poll which allows one triplex FTP to win the triplicated
network in the presence of a single fault. This protocol is somewhat
more complex than is necessary for a single network. This added com-
plexity, on the POC, adds a 10% overhead on each transmission. The
Datalink layer uses the HDLC protocol to transmit data over each net-
work .

E.2.1.6

The Hardware l aye r has two b i t - p r o t o c o l s : t he data b i t and the p o l l
b i t .

Conclusion

I n t h e presence o f f a u l t s on a system which i s no t f a u l t t o l e r a n t ,
i t i s d i f f i c u l t t o des ign an e f f i c i e n t communication system t o suppor t
the Ada rendezvous. For the f a u l t t o l e r a n t A I P S computer system, howev-
er, i t i s much eas ie r t o des ign the upper l aye rs o f the IS0 O S 1 communi-
ca t i ons model. The Network layer and the Da ta l i nk layer each have more
process ing t o do f o r each comnunication, but the amount o f process ing i s
small when there a r e no e r r o r s occur r ing , and the number o f communi-
ca t i ons can be reduced t o two a t t he A p p l i c a t i o n layer .

The r e s u l t i s an extremely r e l i a b l e , e f f i c i e n t communication system
a l l o w i n g Ada tasks t o communicate as i f they were on the same FTP.

D i s t r i b u t e d systems have many bene f i t s . The d i s t r i b u t i o n a l l ows the
system t o r u n i n p a r a l l e l , g i v i n g more throughput than i n a n o n d i s t r i b -
u ted system. The d i s t r i b u t i o n a l lows the system t o be reconf igured i n
the presence o f f a u l t s . The d i s t r i b u t i o n a l l ows the system t o be ab le
t o cont inue i n the presence o f damage, by p u t t i n g the va r ious computers
i n d i f f e r e n t p a r t s of t he veh ic le . Adding hardware f a u l t t o le rance com-
plements the d i s t r i b u t i o n by a l l o w i n g the sof tware t o i s o l a t e f a u l t s and
i n many cases t o mask t h e f a u l t . Th i s a l lows sof tware systems such as
the communication system t o be much s impler than i n systems which are
no t f a u l t t o l e r a n t .

E.2.1.7

Lessons Learned
Implications

in Creating Spacecraft Computer Systems:
for Using Adatm for the Space Station

bY

James E. Tomayko

Senior Computer Scientist
Software Engineering Institute

Camegie-Melbn University

Pittsburgh, PA 1521 3.

Abstract

Twenty-five years of spacecraft onboard computer development have resulted in a better understanding
of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight
flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Viking, Voyager, Galileo) and three research
programs (Digital Fly-By-wire, STAR and the Unified Data System) are useful in projecting the computer
hardware configuration of the Space Station and the ways in which the Ada programming language will
enhance the development of the necessary software. This paper reviews the evolution of hardware
technology, fault protection methods, and software architectures used in space flight in order to provide
insight into the pending development of such items for the Space Station.

1. Introduction

During the 25 years since the first flights of manned and unmanned spacecraft carrying onboard
computers, the tasks assigned to the machines have grown in complexity and pervasiveness until now it
is impossible to consider designing a spacecraft without including substantial computing power. As with
any mission critical component, the reliability of computers has to be ensured. NASA's efforts to use
computers onboard spacecraft resulted in the development of various methods of fault tolerance.
Development of computer systems for unmanned and manned spacecraft have largely followed separate
tracks. Systems onboard manned spacecraft used increasing numbers of redundant processors as the
primary method of protection. Those on unmanned spacecraft, though redundant, were more innovative
in terms of distributing tasks and processing power. The Space Station project provides an opportunity to
merge the two tracks, taking from the manned programs experience with using high level languages,

 he author io on ieave h ~ m he wichita SWB U n h i t y , ~ l i ~ h i t a an.
The views and conduskns In Ihb doarment are hose of Ihe auhw and should not be interpreted as representing offiaal policies.

either expressed or Implied, of the Sofhnam Engineering Institute, CamegieMelbn Unimity, the Deparbnent of Defense, or the
US. Government

Thii work was partiallv spawmd by Ihe Depahent of Defeme,

Ada is a regielered trpdemark of the Department of Defense.

Copyaht (c) 1986 by James E. lomayko

most nrsearch done under NASA centrad NASW-3714.

E.2.2.1

software synchronization, and hrge-scale software devebpment, and from the unmanned programs use
of distributed systems and microprocessors. This synthesis creates a system that lends itself to the use of
Ada as the onboard software devebpment language if the problems of implementing the language on
distributed systems can be sotved.

2. A Taxonomy of Spacecraft Computer Systems

A review of previous onboard computer systems is in otder to provide a basis for discussing a
computer architecture for the Space Station. Since all previous systems have used redundancy in some
form for fautt tolerance, a taxonomy can be established by considering the nature of the various
redundancy schemes. Four types of systems can be identified: simplex, multiplex, functional distribution
with full redundancy, and functional distribution with virtual redundancy. Both simplex and mttiplex
schemes have examples in both the manned and unmanned programs, while the latter pair of types
presently have only unmanned spacecraft systems as members.

21. Simplex Systems

Simplex onboard computer systems are identified by the absence of redundancy. They are also
characterized by being part of a single subsystem of the spacecraft, specifically the guidance and
navigation subsystem on manned spacecraft and the commanding subsystem on unmanned spacecraft.
If the simplex computer system failed, its tasks would be suspended when possible, or taken over by a
backup with reduced functionality. Crew and spacecraft safety would be maintained, but mission
objectives would be compromised. Three simplex systems were developed in the 1960s: the
programmable sequencer onboard the later Mariner missions, the Gemini Digiial Computer and the
Apollo Guidance Computer.

2.1 .l . Marinefs Programmable Sequencer

Prior to the Mariner Mars 1969 flyby missions, unmanned interplanetary spacecraft camed hardwired
sequencers. Essentially these sequencers monitored a counter that was constantly updated by pulses
from a clock. When an appropriate time interval had elapsed, some spacecraft adiviiy would be initiated.
For example, after the cruise period to a planet, at a time precalculated and put into the sequencer’s
bgk, the spacecraft would orient itself and activate experiments to be done during the encounter with the
planet. This meant that very accurate preflight navigation calculations had to be made, and that the
sequences could not be c h a m after liftoff.

Mariner Man 1969 was to be a double flyby of the Red Planet. tf the spacecraft could be fitted with
programmable sequencers, then the tarpeting and camera aiming of the second spacecraft could be
chanoed to follow up on d i e r i e s made by the first flyby. For instance, if a particularly interesting
terrain feature was found, the second spacecraft could have fts encounter sequence reprogrammed from
the earth to obtain more imaging in that area. Wdh a t ied sequencer this would have been impossible.
Accordingly, a programmable sequencer with 128 words of memory was included. Later expanded to a
512 word memory, this machine controlled two Mars flyby missions, two orbiters (1971), and the Venus
and Mercury flyby mWon in 1973. The latter demonstrated the flexibility of the machine because the
mission was so complex one software bad was too small to do the pb. Therefore, a seriis of complete

E.2.2.2

software bads were prepared and sent up to the spacecraft as the mission progressed [Hooke 19731.
Subsequently, in flight reprogramming became a planned and common feature of interplanetary missions,
greatly reducing memory requirements and increasing flexibility.

Backup to the programmable sequencer was the same hardwired sequencer used in the early Mariner
missions. If the programmable sequencer had failed, then the mission could continue, but only with
preprogrammed sequences. Switching to the backup resulted in reduced functions. A similar situation
existed in the two sirnplex manned spacecraft systems.

2.1.2. The Gemini Digital Computer

The Gemini program was more than a tW0-rf-m folkwon to the Mercury spacecraft. It was a test bed
for guidance and navigation techniques considered essential for the Apollo lunar landing program. Two of
the more diffiilt of these were rendezvous and computerantrolled reentry. A small onboard computer
customdesigned and programmed by IBM Corporation provided real-time calculations of maneuvers for
the astronauts. During a rendezvous operation, required vekcity changes would be displayed and the
astronauts would fire thrusters and maintain attitude during powered maneuvers. The spacecraft had
lifting capability suffiiient to adjust the landing point within a rectangular footprint 500 miles long and 40
miles wide. The computer was programmed to target within the footprint. Each major function was
contained in separate single software modules. By using a rotary switch and the start button, a program
could be selected. When the machine was not needed, such as during coasting in orbit, it could be shut
Off.

If the computer failed, its tasks would either be abandoned or done by less effective means. A
rendezvous could be canceled. Computer controlled reentry could be replaced by pilot control, such as on
the Mercury missions. Either way, crew safety was maintained, but mission objectives were not
accamplis hed .

2.1 3. Apollo’r Simplex Systems

NASA contracted with the Instrumentation Laboratory (now the C. Stark Draper Laboratory) of the
Massachussetts Institute of Technology for the Apolb guidance system. A computer first built for the
Polaris submarine launched ballistic missile was redesigned as the Apollo GuMance Computer. Software
for the computer functioned as a priority-interrupt system with some cyclic characteristics. Jobs were
scheduled and monitored by an executive program. Code was executed by an interpreter. A typical
software bad consisted of several dozen “programs” which could be activated by the crew. Key mission
phases such as lunar orbi insertion, landing, lunar orbii rendezvous, and entry into the earth’s
atmosphere were computer intensive activities.

The Apolb was a two-part spacecraft: command module and associated propulsion, and the lunar
module. Each module had a computer, with, of cou~se, different applications programs, but the same
interpreter and executive. If the command module’s computer failed, the mission would be aborted and
return to earth would be handled by doing maneuver calculations on the ground and sending instructions
to the crew. If the lunar module’s computer failed, it had an onboard backup. The backup computer was a
small device built by TRW Corporation that could guide the ascent portion of the lunar module to a
rendezvous with the command module. That was its wle function, so a computer failure during lunar
descent would have caused an abort of the landing attempt.

E.2.2.3

The o b v i s shortcoming of simplex systems is that a single computer failure severely damages the
mission. This is apparent even in the systems described here, even though their use was limited to one
subsystem. As NASA entered the 1970s, spacecraft that depended on computers for more than one
function were being designed. On those spacecraft, computer failures would greatly affect crew and
spacecraft safety. The first method of reducing the impact of such failures was the development of
multiplex systems with full redundancy.

22. Multiplex Systems

Three spacecraft designed in the first half of the 1970s used fully redundant computers. The Viking
unmanned Mars orbiters and landers and the Skylab orbiting space station both had duplex systems,
while the Space Shuttle orbiter and its aircraft predecessor had more than two computers. The
introduction of redundancy as a method of fault tolerance necessitated the addiiion of management
software absent from the simplex systems.

2.2.1. Viking and Skylab: Dual Redundancy

The Viking missions to Mars were, in many ways, the most Complex unmanned flights yet attempted. A
two part spacecraft was placed into Martian orbit, whereupon the orbiier portion began a search for a
landing site. When one was chosen, the lander portion descended to the Martian surface. Each part of
the spacecraft functioned for years, the ofbiier mapping the planet and conducting experiments best done
from space, the lander doing chemical and biological analyses of the Martian soil and sending detailed
images of the surface back to earth. Both the orbiter and lander had dual computer systems. Each could
support its part of the mission independently, or could work cooperatively on separate tasks. The orbiter
computers were primarily a replacement for the programmable sequencers carried on Mariners, with the
same command and control functions. The lander computer had to control the descent and later the
operation of the surface station. The Jet Propulsion Laboratory, whiih built the orbiter, designed a special
purpose processor for its spacecraft. The lander, built by Martin-Marietta Corporation, used an existing
Honeywell computer.

Skylab's dual computers were also commercially available, coming from the IBM line of 4Pi processors
that were derived from the 360 architecture. The Skylab computers were related to their manned
spacecraft predecessors in that they were part of a single subsystem, in this case attitude control. This
space station used a complex set of control moment gyros for stabilization and attitude maintenance. The
computers were programmed to execute scheduled tasks cyclically, including a set of self-tests. Each
cycle the primary computer would deposit a Wit status word to a special register in a common section
of the system. Thii register and its associated logic were constructed of triple modular redundant circuits
for r e l i i l i . If the secondary computer detected that the primary was failing its self-tests, it would take
the status word from the common section before the failing computer could corrupt it, and shut down its
partner. Such a failure never occurred during the lifetime of the Skylab, but a manual switchover was
done to prove that the system was reliable no matter w h i i machine was designated primary.

Even though the Viking and Skylab computers were fully redundant and provided a high degree of
reliability, a dual system is insufficient for manned operations. If bne half of a dual system detects a failure
in the other half, it follows that the failing computer might well detect a failure in the good computer, and
will try to shut it down. Also, there is a possibility that the computer detecting the failure is actually the one

E.2.2.4

failing, and that the detection k incorrect. An obvious solution to this dilemma is to add more computers,
each running identical software-the solution chosen for the Shuttle.

2.29. Redundancy for Digital Fly-by-Wim AetospacraR

NASA's Space Shuttle is different from all the other spacecraft so far discussed in that the onboard
computers have tasks outside of a single system or small set of systems. The Shuttle computers control a
large number of spacecraft functions, including such mundane items as the opening and closing of the
cargo bay doors. Most importantly, the Shuttle has a digital fly-by-wire control system. This means that
where mechanical linkages exist in conventional aircraft control systems, the Shuttle has electrical and
eledronic connections between the controlling devices, the computers, and the control surfaces. When an
astronaut moves the hand controller in the Shuttle, signals are generated and transmitted to the
computers, which then generate signals to the actuators at the control surfaces. Therefore, a software or
hardware failure makes the control system inoperable, and even a short loss of control in a critical
mission phase wouM be disastrous. Since early research showed that the most likely source of failure in
an avionics system would be the computers, NASA chose to increase the levels of redundancy of the
primary computer system to provide sufficient protection.

At first, the level of protection was what has been termed "fail-operationaVfail-operationaWail-safe." If
one computer fails, then the spacecraft is still operational, if a second fails, it is operational, but should
return to earth because it has reached fail-safe level, at which another failure would mean seriius danger.
The fail-safe level escalated to three computers to avoid the standoff situation. The sum of ths is that five
computers were necessary and NASA accordingly acquired five IBM AP-101 machines for each orbiter.
Later adjustments to the design reduced the level of redundancy to failoperational/fail-safe, but the fifth
computer was kept on the spacecraft as a backup f l iht system that could be activated by the crew in
case of a catastrophic failure of the primary. The backup can only control the ascent and descent of the
orbier, and by itself can not complete a mission.

Of central concern to the Shuttle designers was the development of a redundancy management
scheme. Fortunately, NASA was already engaged in a research program that could shed direct light on
the subject. The Dryden Flight Research Center at Edwards, California, had been conducting a digital
fly-by-wire test program using a modified VougM F-8C aircraft. A single Apollo Guidance Computer was
installed in the aircraft to provide flight control. An electronic analog system acted as a backup, but it
never was needed. Dryden's research team realized that a simplex system would never be acceptable for
routine use, 60 il was exploring a dual computer system when officials at the Johnson Space Center
contacted them about installing three of the same computers to be used in the Shuttle in the F-8 and thus
tryino out methods of integrating multiple machines into an avionics system. Dryden agreed, and three
AP-101s were installed and flown on the F-8. Several single computer failures occurred during flight, none
of which endangered the aircraft.

The primary problem in managing multiple computer systems is failure detection. It was reasoned that
if the software could be compared at regular intewals, then a failing computer would be obvious because
its results would be different from the results of its partners. Comparing checksums consisting of the
components of a number of parameters is a simple way of doing this; however, due to dfferences in the
computer clocks, the machines would quickly reach the point where they were out of step, and anomalies
would show up in the checksums even though the machines had not failed. To overcome this problem,

E.2.2.5

the machines had to be synchronized. Each time the software executes an input operation, output
operation, or changes the module being executed, a three-bl discrete signal is sent on a dedicated bus to
the other computers. The sending computer waits up to four milliseconds for its partners to check in with
an identical signal. If the signals do not agree, of if the time limit expires, the computer which failed to
check in properly is indicated to be failing, and the computer that detects this error goes on. Due to fear of
generic errors, the computers are not capable of shutting each other off, only the crew can do that in
response to the failure signals.

Basically, multiplex systems provide fault tolerance by layers of redundancy. The disadvantages of this
are that entire systems must be replicated at least three times and more reasonably four times to provide
the reliability needed by mission critical systems. In a computationally intensive environment, such as that
on the proposed Space Station, so many processors wouM have to be replicated that the increase in
power consumption and other resources devoted to the computers would be prohibitive. Other forms of
reliability insurance developed for the unmanned flight programs may provide more sensible solutions for
the Space Station.

2.3. Functional Distribution with Full Redundancy

NASA's longest lived interplanetary spacecraft are the two voyagers launched in 1977 and still working
successfully, as proved by the recent flyby of Uranus. The Voyagers carry a functionally distributed set of
three pairs of redundant computers. Probably most of the reason why this computer configuration was
chosen is the structure of the Jet Propulsion Laboratory. Different sections of the Laboratory contribute
different components to a spacecraft. In the case of Voyager, the section that builds the command system
reused the computer developed for the Viking orbiier with an almost identical software structure. The
attitude control system developers used a speeded up version of the command computer and the flight
data system had a newly developed machine. Each of the three groups independently determined that
the inclusion of a computer system was the best way for the specific tasks involved to be accomplished.

One change caused by adopting functional distribution was the need to communicate with other
computers instead of hardwired logic devices. Most intercomputer communication consisted of
commands and signals relating to internal tests. More complex communications were required by the next
level of unmanned spacecraft systems.

2.4. Functional Distribution with Virtual Redundancy

The next major interplanetary spacecraft designed after Voyager was Galileo, a Jupiter atmospheric
probe and orbiter. Galileo cames a dual computer system for attitude control and pointing that uses an
off-the-she! microprocessor, the ATAC-16, and is programmed in a hgh level language, HAUS. Its
command and data system also uses commerically available microprocessors, six RCA 1802s in two
strings of three. This system was derived from research sponsored by the Jet Propulsion Laboratory
concerning reliable computer systems for unmanned spacecraft.

Beginning in the early 1 9 6 0 ~ ~ the Laboratory sponsored the design of a computer called STAR (for Self
Testing and &pair) that consisted of collections of multiple copies of each major component (Avbienis
19681. For instance, memories, inputloutput devices and the like were triplicated. A special piece of

E.2.2.6

hardware called the Test and Repair Processor, or TARP, had five copies. When the computer was
operating, one of each subcomponent and three TARPs were powered up and running. If the TARPs
voted that a component was failed, they activated one of the spares. If the vote had not been unanimous,
the dissident TARP would be shut off and another activated. In this way no more than the minimum
number of components would be powered at any given time. The weakness of ths scheme is that a
failure of the switches used to turn off bad components and turn on ones would negate the fault
tolerance. However, the concept of a single computer with virtual redundancy wwived to the next round
of research.

Research initiated after STAR led to the construction of the Unified Data System in the early to mid
1970s [Rennels 19781. Here the emphasis was on several processors working cooperatively. Certain
processors, called High Level Modules, would communicate only with other processors, called Terminal
Modules. The Terminal Modules would deal with spacecraft systems or the outside world. Conceptually,
by carrying several High Level and a larger number of Terminal Modules, each communicating by means
of multiple busses, and sharing numerous memory modules, the system coukl function with a variety of
combinations of modules, memory, and bus connections. This way a single processor failure would result
in a change of the configuration, but no degradation of performance unless a number of different failures
OCCUKed.

Designers of the Galileo command and data system did not fully adapt the concept, even though they
adapted the terminology. Two 1802s are assigned as High Level Modules, four are Low Level Modules.
Several memories and redundant busses are part of the system. However, it is fundamentally separated
into two redundant strings. Even so, the software is constructed in what are termed ”virtual machines” and
is distributed over the several processors. From the Unified Data System and the actual Galileo software
some hints for a possible Space Station computer architecture can be derived.

3. Computer Architecture for the Space Station

The Space Station will be different from any previous manned spacecraft in tens of its computational
needs. In fact, It will be much cbser to an unmanned spacecraft. This is primarily because the guidance
and navigation tasks on a Space Station are minimal compared to what a spacecraft like the Shuttle
requires for active flight control. However, considerable computational capability in the areas of data
acquisition and analysis, altitude control, lire support, and spacecraft health monitoring will be necessary.
Wfih ths variety of tasks, It is logical to imagine that the final configuration of the computers onboard the
Space Station will be a distributed system, with physical processors embedded in the hardware built to
accomplish each function. Thus the Station’s computer systems will resemble the functional distributions
used on Voyager and Galileo, rather than the centralbed systems used on the Shuttle.- Questions of
redundancy can then be handled at the local level. Some systems such as life support are so critical as
to require fault protection to the same degree as fliiht control, and will require multiple dedicated
processors for redundancy. Other systems can be virtually redundant in that their tasks can be transferred
to another processor in another system in case of a failure. Perhaps a common pool of processors can be
made available to host tasks offbaded from failed machines. In any case, the intent of a hardware

“ A h o h the Shuttle has locep ccmwtem on ?he main engines and on payloads. Ihe Data proceedng System, with its muttipkx
conliguraiion, does ail other mputetional operaiions.

E2.2.7

architecture for the Space Station should be to provide fault tolerance relative to the importance of the
systems, and to avoid carrying large numbers of resource-hungry multiplex systems.

4. Implementing Space Station Onboard Software with Ada

Since Ada has already been designated as the devebpment language for the Space Station, its
strengths and weaknesses in implementing software for its potential computer architecture are of interest.
Ada's strengths in developing this type of system lie in its inherent ability to handle concurrency, both in
terms of data sharing and Synchronization, and in hiding mechanisms of concurrency in the programming
language. Fundamentally, the entire sohare bad for the Station could be created as a set of tasks,
some of which will run individually on separate processors, some of which will share a single processor,
but all of which can be considered as part of a lbrary of related programs. This was impossible in
previous distrikrted systems in which the software for each computer was written separately in different
languages, sometimes in a mix of high level and low level languages, and interconnected with great
difficulty. The chief weakness of Ada at this point in time is not the language itself, but the lack of
implementations of it that make use of its full range of features, particularly those most applicable to the
Space Station.

4.1. Ada Features Most Useful for Distribution and Fault Tolerance

Since the original purpose of designing Ada was to serve the devebpment of large and real time
systems, several features of the language are directly applicable to programming the heterogenous
machines on the Space Station.

4.1 .l. Tasks

Using Ada, programs can be made up of a variety of units, inctuding tasks. A task is a program unit
that runs in parallel to other tasks, and to the main pmgram, which is implicitly also a task. Moreover, it
can run either interleaved with other tasks in one physical processor or as a single process on a machine
in a multicomputer system. Tasks on the Space Station would have varying degrees of interaction. For
instance, a task monitoring spacecraft health would periodically wish to receive signals from processes
throughout the Station in order to make sure everything is still functioning. These messages would be far
less frequent than three computers running identical tasks as part of a mission critical, locally redundant,
synchronized subsystem. Regardless of the level of communication, the information to be exchanged can
be abstracted in the task body, hiding the complexity of the interior of a task from programmers working
on associated tasks.

4.1 9. Rendezvous

Previous parallel ~mputations in spacecraft shared information by message passing or common data
pools. On Voyager, messages are sent between the command computer and attitude control computer as
single units. On the Shuttle, the high level language HAVS provides for the dedaration of common data
shared by several scheduled parallel processes. M a provides for wnunon data using pragmas for
shared information, but the most common form of information exchange on the Station would probably be
message passing, usable for simple data exchange or for synchronization. Message passing is

E.2.2.8

implemented in Ada using the rendezvous, in which a task will be bbcked while attempting to send or
receive a message. When both sender and receiver reach the point in their respective task bodies where
they are ready to do the exchange, a rendezvous occurs, data is transferred, and both tasks continue.
These rendezvous can take place between widely distributed tasks.

4.1.3. Exception8

One Ada feature critical for Space Station systems is the abi l i to gracefully handle predictable errors.
Even though most Space Station subsystems could have short duration failures without endangering the
crew, actively handling the failures as opposed to reacting to existing conditions is almost always
preferable. Exception handlers can be part of each task, and, used creatively, can eliminate complete
shutdowns of subsystems.

4.1.4. Modularity

Since the Space Station is expected to operate over a long period of time, with many changes in its
component modules, the software used on it must be easily modifiable. Ada’s ability to separately compile
tasks that have been added or modified and include them in the existing software bad is a significant
advantage. NASA has made good progress in reusing software in preparing Shuttle flight loads.
Consciousness of reusability can be easily transferred to the Space Station project since the development
language directly supports such techniques through the use of generics.

4.2. An Example: Implementing Shuttle-Like Computer Failure Detection in Ada

As an example of tasks, rendezvous, and exception handling, the Ada code in Figure 1 on the next
page implements the Shuttle computer failure detection and synchronization scheme in a two processor
system.

5. Summary
Ada has many characteristics that support the development of software that implements fault tolerance

schemes developed for previous spacecraft. Also, the ability to run on distributed systems essentially
transparently to programmers working on the Space Station software means that a variety of redundancy
configurations can be used. This, of course, depends on continued research and development concerning
implementing Ma. Although some attempts have been made to implement Ada on several cooperating
processow, the nuances of doing so are still not all understood [Ado 19841. Also, the progress of Ada
development environments, though picking up steam, is still behind original expectations. Adoption of
existing Ada development technobgy by the Space Station project coupled with support of efforts
designed at multiprocessor implementations provides the safest route to completion of Space Station
software in the early 1990s.

E.2.2.9

kgin
8- IO-- (1-06-0: in -TIm-TYPE) do -- thr taok io bloalud at +hi8 atat-t waiting for ma of i t 8 -- f a l l o w t a o b op thh proooooor t o ..LLd w o r d that it h a do- -- M input or M output. wbrn a rrlua Zot 1-a-O rmlvao, thrn -- it wait . for up t o 4 millloeaaada for thr athrr proarosor to -- ahmk in u8- +hi. B d m & 8k-t:

or

md

Figura 1

E.2.2.10

BI bliography

[Ada 1983lAda Programirrg Language, ANSI/MIL-STD-l815A, 22 January 1983.

[Ado 19841 A. Ardo, "Experimental Implementation of an Ada Tasking Run-time System on the
Multiprocessor Computer Cm'", Proceedings of the First Annual Washington Ada Symposium.

[Avizienis 19681 A. Avizienis, "An Expenmental Self-Repairing Computer," NASA-TR-32-1356, Jet
Propulsion Laboratory.

[Gehani 19831 Narain Gehani, Ada, An manced lntroducfion (Prentice Hall).

[Habermann 19831 A. Nico Habermann and Dwayne E. Perry, Ada for Experienced Programmers
(Addison-Wesley).

[Hooke 19761 A. J. Hooke, "In FliiM Utilization of the Mariner 10 Spacecraft Computer," in Journal of
the British interplanetary Sociefy, Vol. 29, April, 1976.

[Rennels 1978) David A. Rennels, "Reconfigurable Modular Computer Networks for Spacecraft On-
board Processing," C o m e r , July, 1978.

Notor on tho Author
James E. Tomayko is a Computer Scientist at the Software Engineering institute, Carnegie-Melbn

University, a federally-funded research and development center. He is on have from a faculty position in
the Computer Science Department of The WEhita State University. Recently Dr. Tomayko completed a
three-year study of NASA's use d computers in space flight operations to be released by the Agency as a
book Articles related to the subject of the present paper have already appeared:

"NASA's Manned Spacecraft Computers,' Ann& of the History of Computing, Volume 7, #1,

0 "Achieving Reliability: The Evolution of Redundancy in American Manned Spacecraft Computers,"

0 "Digital Fly-By-&e: A Case of Bidirectional Technology Transfer,' Amspace Historian, Volume

January 1985, pp. 7-1 8.

&mal of the Bdhh lnrerplanetary Society, Volume 38, #12, December, 1985, pp. 545-553.

33, t i .

Or. Tomayko is a National Lecturer for the Association of Computing Machinery, and has given over 50
talks on manned and unmanned spacecraft computer systems within the last 18 months.

E.2.2.11

USING ADA* -- THE DEEPER CAALLANGES
David A. Feinberg, C.D.P.

Software Technology
Boeing Aerospace Company

Seattle, Washington 98124
Telephone: (206) 773-5485

P. 0. BOX 3999, M/S 82-53

ABSTRACT :

The Ada programming language and the associated Ada Programming
Support Environment (APSE) and Ada Run Time Environment (ARTE)
provide the potential for significant life-cycle cost reductions
in computer software development and maintenance activities.

,The Ada programming language itself is standardized, trademarked
and controlled via formal validation procedures. Though
compilers are not yet as production-ready as most would desire,
the technology for constructing them is sufficiently well known
and understood that time and money should suffice to correct
current deficiencies.

The APSE and ARTE are, on the other hand, significantly newer
issues within most software development and maintenance efforts.
Currently, APSE and ARTE are highly dependent on differing
implementer concepts, strategies and market objectives. Complex
and sophisticated mi.ssion-critical computing systems require the
use of a complete Ada-based capability, not just the programming
language itself; yet the range of APSE and ARTE features which
must actually be utilized can vary significantly from one system
to another. As a consequence, the need to understand,
objectively evaluate, and select differing APSE and ARTE
capabilities and features is critical to the effective use of
Ada and the life-cycle efficiencies it is intended to promote.
Methodologies for dealing with dissimilar APSE/ARTE systems are
also in sore need of definition and understanding: particularly
for industry contractors who will be developing similar
capabilities (e.g., missile and air/space craft navigation,
guidance, throttle control) for differing customers (e.g., Army,
Navy, Air Force, NASA, Boeing, Airbus).

It is the selection, collection, and understanding of APSE and
ARTE which provide the deeper challanges of using Ada for

* Ada is a registered trademark of the United States Government
(Ada Joint Program Office)

E.2.3.1

real-life mission-critical computing systems. This paper
discusses some of the current issues which must be clarified,
often on a case-by-case basis, in order to sucessfully realize
the full capabilities of Ada.

1. INTRODUCTION

In the early 1970's, the Department of Defense (DOD) recognized
several problems related to the acquisition of software for
major defense systems. Software systems were too frequently
late, unreliable, and more expensive than planned.
Additionally, there was a steadily rising trend in software
costs while, at the same time, computer hardware costs were
decreasing significantly.

At the time, the primary cause of these problems was identified
as a deficiency in the computer programming process;
particularly in the area of programming languages. There were
over 450 general purpose languages and dialects being used for
DOD systems with no single point of control for each. Many of
these languages were poorly suited to their application, and/or
did not take advantage of nor support good programming
practices . The DOD was also beginning to recognize the
long-term life-cycle advantages of using higher order languages
(HOL'S) rather than assembler code. By 19748 each of the
military services was independently proposing development of a
standard HOL for their service's mission-critical software
development.

In January, 19758 a joint services HOL working group began
identifying and defining requirements for all DOD HOL'S and
individual service efforts were halted. The "Strawman" document
issued in April, 19758 started a multi-year effort which
culminated in 1981 and 1983 with the establishment of
ANSI/M1L-STD-1815A8 "Reference Manual for the Ada Programming
Language," as a single DOD standard for all future
mission-critical computer software development efforts.

Unfortunately, durinq the six years required to produce the Ada
standard, the understanding of the problems of developing large,
complex software systems evolved. While the programming process
was still important, newer full-life-cycle models of software
project activities reduced programming's overall significance to
only 20% of the whole; much less than was thought in the early
1970's.

In response to this changing perception, the HOL working group
began to recognize that the new common DOD HOL alone would not
be sufficient to ensure DOD'S desired improvements in software
development. The programming environment within which Ada would

E.2.3.2

operate needed significant improvement.

Following two years of work, an Ada Programming Support
Environment (APSE) was defined in the 1980 "Stoneman" document.
Even though this document provides criteria for assessment and
evaluations of programming environments, it is not a standard
and, as such, implementers of Ada tools are not bound by any
hard and fast requirements. Rather, implementers are free to
choose any of the four "Stoneman"-defined levels of Ada
programming support. More importantly, they are also free to
select, as they see fit, specific tools within each of the
levels. Thus, while Ada, the language, is tightly controlled,
APSE'S are not controlled at all and vary significantly from one
implementer's products to another's.

In a similar manner, an Ada Run Time Environment (ARTE) can also
vary significant3.y. Once the necessities of the Ada language
standard are satisfied, implementers are free to produce a wide
varietv of operating executives. In fact, ARTE development is
even less constrained than development of an APSE; no assessment
and evaluation document such as "Stoneman" even exists for run
time requirements.

In response to the absence of APSE and ARTE system
standardization, projects using Ada must, on a case-by-case
basis, identify those features most necessary to their specific
requirements. Once this is done, evaluation of the numerous
implementer offerings is required in order to select the
critical environmental capabilities which will be used. The
following sections describe the key issues affecting selection
of Ada Programminq Support and Ada Run Time environments.

2. ADA PROGRAMMING SUPPORT ENVIRONMENT

An Ada Programming Support Environment (APSE) consists of a
number of individual tools which provide software support to
write, test and maintain Ada language programs. An APSE can
also be used to provide orderly program development methodology.
Tools within an APSE will vary from implementer to implementer;
however, most implementers conform at some level to the
"Stoneman" document. The cooperating ability of tools with each
other, as opposed to merely "Stoneman" tools-database
interfaces, can, however, vary significantly.

Typically, an APSE will consist of at least the minimum tool
levels described in "Stoneman": an operating system, a Kernal
APSE (KAPSE), and a Minimal APSE (MAPSE). With the exception of
a debugger, it is virtually impossible to utilize Ada without
the MAPSE tools: a compiler, linker/loader, editor,
configuration manager, and job control language processor.

E.2.3.3

Additionally, a full APSE (i.e.8 anv Ada Programming Support
Environment with tools in excess of those called for by MAPSE)
may consist of any number of augmenting tools such as a pretty
printer, cross reference generator, test generator, program
design language processor, source code control system, problem
reporting system, etc.

Evaluation of an APSE is required in order to determine which
available environment best fits the needs of a specific
Ada-based project. This minimally requires analyzing the tools
in a given APSE to determine their effectiveness, and where
possible, to directly compare them to similar tools in other
APSE’ s .
While quantitative methods can be used to examine many tools,
this is not always possible. First, even though two (or more)
t001.s perform the same function on the same computer using the
same operating system, their performance characteristics may
vary significantly based on computer load factors at the time of
testing. Even if these factors can be controlled or mitigated,
design parameters of the tools themselves can cause fluctuating
performance data depending on individual account and session
situations. In general, modern virtual memory multi-component
computer systems can play havoc with what appear to be
straiqht-forward quantitative evaluations.

The second reason is that quantitative evaluation methods are
not always applicable. Discussions of such factors as “user
friendliness” do not realistically lend themselves to
quantitative accumulation. Even so, these factors can be
significant issues when determining the overall effectiveness of
a tool.

While individual tool evaluations are important, even more
critical is extending any evaluation to the integration and
cooperation of all of the tools which comprise an APSE. It is
not uncommon for individual software tools to be efficacious as
stand-alone entities, yet efforts to use the results of one as
grist for another fail totally. Such an overall view of APSE
effectivity and suitability cannot be obtained by simply summing
the results of individual tool evaluations. An APSE must be
reviewed as an integrated (or non-integrated) whole to determine
if it fulfills a project’s software development needs.

E . 2 . 3 . 4

3. ADA RUN TIME ENVIRONMENT

An Ada Run Time Environment (ARTE) is the collaboration of
program object code conventions with data structures used to
interface to the underlying run time system. This system, in
turn, consists of a series of library and/or executive routines
that are necessary to support execution of Ada programs.
Typical functions of an ARTE include general operating system
services as well as Ada-specific features such as tasking,
dynamic memory management, exception handling, interrupt
processing and any other needed support deferred from a
compiler’s code generation phases.

Even though the Ada language is standardized, the ARTE for
different computers and operating systems can vary widely. This
can be due to differences in computer hardware, operating
systems, compiler impl-ementations of Ada semantics, or, the most
frequent case, a combination of all of these. Additional
variations can result from trade-offs for reasons of ARTE or
program size, speed, overhead, capability, or portability.

In rare cases, a specific project using Ada will find one or
more ARTE implementations which are universally best suited to
its needs. Usually, however, compromises between various
implementations in terms of project priorities will be required.
Given the characteristics of most mission-critical software
programs, the best ARTE may turn out to be the one that is
easiest and safest to modify on a case-by-case basis.

Evaluation of ARTE elements depends on the depth to which a
project is required to delve. Some elements (e.g., code size,
coding language, implemented pragmas) are readily apparent by
simple examination of external characteristics or implementer
documentation. Others (e.g., subprogram call timing, arithmetic
implementations) can be found throuqh test program executions.
Still others (e.g.8 delay overhead, task dispatch algorithm) can
only be determined by detailed analysis (or even experimental
modifications) of the run time code itself.

4. ENVIRONMENTAL PROLIFERATION

Even though the Ada programming language itself is standardized,
trademarked, and controlled via formal validation procedures,
Ada Programming Support Environments (APSE) and Ada Run Time
Environments (ARTE) are not. The U. S. Army has already taken
delivery of its APSE/ARTE system: the Ada Language System
(ALS). The Air Force continues to make progress on key
components of its support environment: the Ada Integrated
Environment (AIE) and its supporting Ada Compilation System
(ACS) . Within the past few months, the Navy has let a contract

E.2.3.5

for its version of the ALS: ALS/N. NASA has also established
its policy calling for an integrated Software Support
Environment to support use of Ada for Space Station operational
software.

Thus far, with the partial. exception of ALS and ALS/N, none of
the existing APSE/ARTE systems are compatible with each other;
even though they execute on identical host and target computers.
When systems on the drawing boards plus commercially available
products (e.g., Systems Designers' "Perspective", Verdix's
"vADS") are added to the list, the proliferation of dissimilar
capabilities, facilities and functions will reach significant
proportions. The late 1980's have all the potential to become
highly reminiscent of the 1970's programming language
proliferation which led to Ada in the first place (Figure 1).

ORGAN1 ZATION 1970's - HOL 1980's - APSE

A i r Force

Army

Navy

NASA

Industry

JOVIAL

TACPOL

CMS-2

HAL/S

FORTRAN
Pascal
C

AIE/ACS

ALS

ALS/N

SSE

Perspective
VADS
ADE
etc.

Figure 1. Organizational Standards Proliferation

The potential proliferations in late 1980's APSE/ARTE are the
well-intentioned result of attempts to "graft" enhancements onto
the Ada programming language, which is in turn, the solution to
the 1970's perception of the software development problem. Ada
was initially designed to correct difficulties in programming.
Current, 1980's, estimates a l l o t only 20% of the software
development cycle to programming, and consequently, Ada needed
to be expanded to fit a newer, better, full-life-cycle model.
Unfortunately, the "Stoneman" grafts have been done

E.2.3.6

"on-the-fly", and have, in turn, recreated a mutant of the
initial problem. The Ada Language is standardized. APSE'S and
ARTE's are not. Moreover, differing organizations are beginning
to require use of their incompatible APSE/ARTE even as
full-life-cycle model methodologies for software development are
beginning to coalesce (e.g. , DOD-STD-2167) .

5 . CONCLUSION
The use of Ada and its associated Ada Programming Support
Environment (APSE) and Ada Run Time Environment (ARTE) continues
to provide a high potential for significant life-cycle
methodology improvements and cost reductions in software
development and maintenance activities. In order to move the
significant advantages of Ada from potential to actual, several
concurrent efforts must be completed. The first, development of
high quality compilers and optimizing code generators, is
already well underway. Over a dozen organizations currently
offer Ada compilers and some form of minimal programming support
tools. The technology necessary to improve these offerings has
been in existence for over a dozen years. Time and incentive
should produce the needed production quality compilers.

Development of full-function, integrated, APSE'S is the second
needed effort. While the qoal of this effort is conceptually
clear, the steps necessary to reach it remain unacceptably
vague. Full scale software development environments have been
proposed for years, but no universally usable one yet exists.
Using Ada as a vehicle for producing such a capability has much
merit and the "Stoneman" document provides some necessary
guidance. Unfortunately, these items are not yet enough.
Significant research into programming environment requirements
and solution sets, particularly those dealing with human factors
and expert systems, remains to be accomplished.

The third effort needed to move Ada from potential to actual
usage is the development of a configurable ARTE. Ada is

These intended for "mission-critical" computing systems.
systems can range from ground-based surveillance and tracking
systems (air, space, sea) to in-flight avionics (manned,
unmanned) to simple sensor/actuator systems, and much much more.
Even though all of these mission critical systems can be
considered as "real time," many other widely varying
characteristics can affect their execution environment
constraints. A great deal of research and development remains
to be done. The need for an ARTE criteria and evaluation
document is barely even recognized. Yet, the ultimate key to
mission-critical computing is its performance in the field;
under "production" conditions.

E.2.3.7

Finally, and most difficult, is the need to recognize and begin
to resolve the issue of incompatible APSE/ARTE systems. Using
the full-life-cycle model demanded of today's software
development process, the proliferation of differing services'
tool sets can clearly become counter-productive; particularly
for organizations performing similar work for different
customers .
The work of many individuals and organizations will be required
to complete the efforts described in this paper. The
definition, rationalization, implementation and integration of
APSE and ARTE into the Ada language to create complete software
development environments are now the deeper challanges of using
Ada. Only when they are accomplished will Ada be able to meet
the ultimate goals for which it was created.

ACKNOWLEDGEMENTS :

The work of many individuals is necessary not only to answer the
questions raised in this paper, but to raise and clarify them in
the first place. Several members of Boeing's Ada Project have
contributed ideas and concepts which led to this paper. Special
recognition belongs to two: James B. Unkefer for his work on
Ada Programming Support Environments, and Ruth A. Maule for her
clear, effective approach to the enigmas of Ada Run Time
Environments. Thanks are also due to Maretta Holden of Boeing
Military Airplane Company who continues to see into the future
farther than most of us.

REFERENCES :

1. AJPO, "Kernal Ada Programming Support Environment (KAPSE)
Interface Team Public Report," Volumes I-V.

2. ARTEWG, "Draft Charter for the Ada Runtime Environment
Working Group," July, 17, 1985.

3. ARTEWG, "Ada Implementation Dependencies," November 12, 1985
(draft) .
4. United States Air Force, "Preliminary Program Manager's
Guide to Ada," document numbers ESD-TR-83-255 and WP-25012,
February, 1984.

5. United States Department of Defense, "Ada Methodologies:
Concepts and Requirements (METHODMAN)," November, 1982.

E.2.3.8

6. United States Department of Defense, "Interim DoD Policy on
Computer Programming Languages," Memorandum to Secretaries of
the Military Departments, et. al., from Under Secretary of
Defense Robert DeLauer, June 10, 1983.

7. United States Department of Defense, "Proposed Military
Standard Common APSE Interface Set (CAIS), Version 1.4," October
31, 1984.

8. United States Department of Defense, "Reference Manual for
the Ada Programming Language," ANSI/MIL-STD-l81SA, February,
1983.

9. United States Department of Defense, "Requirements for Ada
Programming Support Environments (STONEMAN)," February, 1980.

BIOGRAPHY:

David A. Feinberg, C.D.P., is a specialist in the development
and use of software engineering tools and environments. He is
employed by The Boeing Company and is currently in charge of the
company's Ada Project. During the past twenty-three years, Mr.
Feinberg's assignments have included creation of a software
development facility used for the construction of commerical
electric power distribution and control ptoducts; large scale
network operations and communications management; and compiler
and operatinq systems construction. He is the author of over
twenty-five papers, essays and articles. Mr. Feinberg is a
member of ACM, IEEE Computer Society and DPMA, and holds an
M.S.A. degree from The George Washington University and a B . S .
degree from Stanford,

E.2.3.9

N89-16339

AN ADA IMPLEIHENTATION FOR FAULT DETECTION,
ISOLATION AND RECONFIGURATION USING

A FAULT-TOLERANT PROCESSOR

Gregory L. G d e y

The Charlm Stark Draper Laboratory
666 Technology Square

Cambridge, Massachueetts, 02139 USA
(817) 268-2482

Abstract

This paper covers the design and implementation, in Ada, of the Fault Detection, Isolation
and Reconfiguration (FDIR) Manager for the triply redundant, tightly synchronized, Fault
Tolerant Processor 0. It also examines the suitability of Ada, in the context of the FTP, for
real time control tasks. This paper explains the operational concepts behind the FTP, and
discusses the structure of the resultant Ada code.

This W& iS SU- by NASA under JSC c ~ a t n c t Ne-17560.

Ada is a rcgisterea eade& of the U.S. Government (A& Joint Program oflice).
E. 2 .4 .1

1. Draper Laboratory’s Fault Tolerant Processor

1.1 Background
In April of 1983, the Charles Stark Draper Laboratory undertook the design and

construction of a “distributed, fault and damage tolerant, real time information processing
system” for aerospace vehicle control [21 [l l . This proof-of-concept system is known as the
Advanced Integrated Processing System (AIPS). The goal of the project is to make a fault
tolerant network of fault tolerant computers behave as a single highly reliable system. The AIPS
system is composed of several Fault Tolerant Processors that are linked together via two
networks: an inter-computer (IC) network, and an inputoutput (VO) network.

The inter-computer network is used for communication among the FTP’s. This network
allows the FTP’s to coordinate their actions and the division of tasks. The IC network is also used
to report errors and failure conditions. The UO network carries all input to and output from the
AIPS FTP’s. Thus, all sensors and actuators may be accessed by any FTP, and since F’TP’s are
not tied to specific UO devices, any FTP may run any UO dependent task. This flexibility was
built into AIPS so that tasks can “migrate” between FTP’s without concern about which specific
UO devices are attached to the individual FTP’s.

This paper concentrates on failure detection in the local FTP’s, and further discussion on
the operation of these two networks is beyond the scope of this paper.

1.2 The Fault Tolerant Processor

The AIPS Fault Tolerant Processor achieves a high level of reliability by using three
identical processing elements that perform identical operations on identical input. The FTP will
continue to operate correctly even after the failure of one of its channels, because data from the
two good channels will vote out and mask data from the faulty one. The design goal of the FTP is
to produce a fault tolerant virtual processor out of these three tightly synchronized channels.
Thus, the programmer who writes applications for the FTP does not have to worry about the fact
that there are actually three processing units that are continually voting all input and output. In
the Draper Fault Tolerant Processor, specialized hardware maintains synchronization and handles
communication between processing sites. This solution not only reduces the software overhead,
but, in fact, allows the FTP to be treated as a virtual processor. Because none of the instructions
in the user’s application software reveal the fact that the FTP is actually three processing units, it
is hoped that this virtual processor abstraction will reduce software cost and complexity in fault
tolerant systems.

Data exchanges, which are necessary both for communicating with the other channels and
for voting, are done by the hardware data exchange mechanism. Data is voted on a bit by bit
basis: the hardware compares each set of three bits and masks out any bit that disagrees with the
other two. If an error is detected, a hardware error latch is set, noting the type of exchange and
the channel(s) at fault. Fault detection is implemented by comparing the voters’ inputs and
outputs; fault isolation uses the pattern of errors latched by the voters. By supplying this fault
detection and masking in hardware, the FTP frees the software of this burden and helps provide
the virtual processor abstraction. These concepts of hardware implemented fault tolerance and
data exchanges have been successfully demonstrated in the Fault Tolerant Multi-Processor [4] at
Draper Laboratory, and the theoretical basis for this interconnection scheme’s protection against
Byzantine failures can be found in [71.

E.2 .4 .2 --

ORIGINAL PkGE IS
OF POOR QUALITY

1.3 Data Exchange Mechanism
The data exchange mechanism is the FTP’s primary means of correcting for failures. It

has been shown [6] that Triple Module Redundant (TMR) systems such as the FTP need two basic
types of data exchanges: a triplication and a direct vote. A triplication is used in the case where a
single channel has a local value, such as a sensor reading or keyboard input, that must be sent to
the other two channels. Since a direct transmission’s reliability is vulnerable to a single point
failure, the triplications are sent through the voters. A direct vote, on the other hand, is used in
the case where three channels have computed identical outputs, such as actuator commands or
terminal output, that must be voted to correct for errors before transmission.

Fault Tolerant Processor Data Exchange Mechanism
AoCbid is t i rmlW

a- -
Figure 1-1: FTP Data Exchange Mechanism

Figure 1-1 shows a schematic representation of the FIT’S data exchange mechanism.
Note that there are three major elements in the mechanism: the transmitters, the interstages, and
the receivers. These elements are connected in several different ways. First, each channel’s
transmitter has a bidirectional link to the other two channel’s transmitters. These links are used
for immediate access to raw data during triplication data exchanges. Second, each transmitter
has a link to its interstage. This link is used to send data to be latched by the interstage for
further re-transmission. Finally, each interstage has a link to each channel’s receiver. These links
are used by the interstages to send a copy of their data to each channel.

During an exchange, each of the elements in the data exchange mechanism has a different
function. The transmitters must configure their data paths so that the correct data is sent to the
interstages. Each transmitter may send either its own data or the data available on one of the
direct links from the other channels. The interstages must latch the data, tkiplicate it, and send a
separate copy to each of the three receivers. Finally, the receivers are responsible for latching and
voting the three copies of the data from the interstages. The bit by bit majority vote is done in

E . 2 . 4 . 3
- -

hardware, and the result will be stored in the receiver register. If there are any disagreements in
the voting, they are recorded in the voter’s error latches.

Each channel’s receiver has a 12-bit dedicated error latch. These twelve bits are divided
into three sets of four bits. Each set is used to record errors from a specific channel, and each bit
within a set is used to specify what type of exchange the error occurred in. direct vote or
triplicating from A, from B, or from C. Thus, if channel A’s voter discovers a disagreement in
channel B’s value while triplicating a value from C, i t will set a specific bit for that exchange in its
error latch. As more errors are discovered, more bits will be set, but none will be reset. Only a
specific command from the software can reset the bits in the error latches.

In their well-known paper on the Byzantine General’s problem [51 Lamport et aZ show that
three processors (meaning three fault containment regions) cannot reach agreement in the
presence of a fault. To surmount this problem, the FTP is divided into six fault containment
regions: the three channels and the three interstages. That is, each channel and interstage is
isolated (physically and electrically) so that a fault in one cannot cause a fault in another. This
fault containment guarantees that a single fault in the FTP cannot prevent the three channels
from reaching an agreement on the result of a vote. Thus, a channel or interstage may transmit
bad data due to a single fault, but the bad data will be masked out by the rest of the system,
which is fault free and generating correct data.

1.4 Use of the Data Exchange

A typical use for the data exchange mechanism would be a space craft control system
reading a sensor. For complete fault coverage, three sensors would be used to read the same
data, and each sensor would connect, through the UO network, to a specific channel. Each channel
would read a sensor and store, a local value. Then, one by one, the channels would triplicate their
local data by exchanging it with the other channels.

Figure 1-2 shows an example of channel A triplicating its local value via the data
exchange. Note that channel A sends its local value directly to channels B and C, which route the
data to their interstages. Then, all three channels initiate a vote on the raw data. The result of
this vote is used by the three channels as channel A’s value. This same procedure is then
repeated for channels B and C. This exchange process ensures that, even in the presence of a
failure, all three channels have an identical (although not necessarily correct) value for each
channel’s sensor reading. Thus, when this process is finished, each channel has three values that
are identical to the three values that the other two channels have. The code that initiates these
exchanges would be located in a library of UO subroutines. This library is used to hide the data
exchange mechanism from the user’s application, preventing the user software from violating the
abstraction of the FTP as a single processor. The following is an example of the code that
performs a data exchange. Note that this code is executed at the same time by all three
processors, giving each channel an A-value, a B-value, a C-value, and a local - value.

E . 2 . 4 . 4

iT
E
?

f
Q r r l A m n Q.r lC

Figure 1-2 A data exchange from channel A

After all three channels have the three sensor readings, some type of redundancy
algorithm (e.g., mid-value select) can be applied to these values to form a suitable result for the
sensor reading. This “correct” vdue for the sensor reading is then used to produce an actuator
command for maneuvering the space craft. Figure 1-3 shows the direct vote of this actuator
command. Each channel directly sends its value to its interstage. The interstages then triplicate
the data and send it to the receivers, which vote the resulta at3 before, noting any errors. Again,
this whole process would be hidden from the user’s application by a call to the FIT’S YO
subroutine library. The output subroutine is also fairly simple:

E . 2 . 4 . 5

M A M B M C

Figure 1-8 Direct vote of actuator command

ORIGINAL PAGE ES
OF POOR QUAiiTY

E . 2 . 4 . 6

2. Structure of the FDIR code

This chapter discusses the design of the FDIR software. The design of the FDIR code was
shaped by two main goals: provide complete fault coverage and use minimal processor overhead.
FDIR must be able to locate and isolate any fault that occurs, and this must be done while using
less that 5% of the processor’s capacity. As a result of these design goals, the FDIR code is split
into several tasks. The fast task can be run frequently, while the more complex tasks are run
only on demand or at a lower frequency. This division allows for complete fault coverage while
reducing the amount of processor time used.

In terms of software engineering, the design goals were to create FDIR code that is
modular and readable. Ada helps these goals with its data abstractions and its packages, which
are the advantages often cited when discussing the merits of the language [3J. Ada’s use of data
abstractions helps produce readable code by allowing programmers to manipulate data in a
conceptual manner rather than a manner specified by the machine’s representation of the data.
Ada also helps produce modular code by encapsulating programs in constructs called packages
which introduce these data abstractions. As a result, the FDIR code for the AIPS FTP has turned
out much more modular and readable than the FDIR code that was written for a previous FTP
using c.

The packages that comprise the FDIR software can be divided into four major categories:

1. Declarations
2. Resources
3. Extensions
4. Applications

2.1 Declarations

Declaration packages are collections of namings and constants that are used in many
sections of the FDIR software (as well as the rest of the operating system). The only example of
this type is Memory, the package that contains the mappings of all the special memory locations.
Memory defines the locations for the data exchange hardware, the shared memory objects, and all
the other hardware that is memory mapped, such as the timers and the Monitor Interlock.

2.2 Resources

Resource packages contain data types and operations that have general utility. For
example, all the necessary procedures and types for using the data exchange and voting
mechanism are defined in the Erchunge package. Any software that is run on the FTP will need
to vote input and output. The Erchnge package encapsulates the data exchange hardware with a
software abstraction so that all other software uses the voting mechanism without relying upon
any implementation details. This means that if the data exchange hardware changes, only one
package has to be changed to reflect the differences. Another resource package is the Emr-lrrtch
package, which defines a data type for fhe error latches as well as the operations necessary to
convert their hardware representation into a software defined Ada data type. Again, only one
package reiies upon the actual implementation of the hardware error latches, and only one
package would have to be changed if the error latches were changed. The two remaining resource
packages are Config and Transient. Both of these packages provide procedures, types, and

E . 2 . 4 . 7

variables that monitor the state and “health” of the FTP’s three channels. The C o n k package’s
primary responsibility is to maintain the software record of the three channels’ status: present or
lost. Tmnsient, on the other hand, is primarily responsible for maintaining an unreliability index
for each channel. Of all these resource packages, only Exchange would have a system-wide utility.
The other (non-FDIR) parts of the operating system, however, do require access to things such as
the error latches and the current configuration of the channels.

2.3 Extensions

Extension packages are used to actually extend the Ada language. Certain operations
(such as the bit wise AND of two integers) are either not permitted or difficult to implement in
Ada. Extension packages, which are series of assembly language subroutines that masquerade as
Ada packages, add this needed functionality to the standard language operations. The package
Memory utilities, for example, was created so bit wise AND and OR operations could be performed
on two%egers. Although Ada can actually do AND and OR operations on arrays of boolean
variables, the Telesoft compiler that produces the FTP code cannot pack a 16 boolean array into a
single word.

The second extension package, called Sync- utilities, was created for synchronizing code
execution among the channels. Synchronization requires absolute control over the timing of each
machine instruction. Assembly language code had to be used for the critical part of the
synchronization procedure to meet these strict timing requirements. The Sync-utilities package
also provides the procedure that aligns memory. The memory align could have been done in Ada,
but the time penalty for not using highly optimized assembly language code to align all of memory
was too great for the FTP, which is designed to be a real time system.

2.4 Applications

The F’DIR application packages use the resource, declaration, and the extension packages
to actually “do something.” These application packages do not define any new types. Instead, they
import types and low level procedures from the three other kinds of packages. In general, the
FDIR application packages have only a few visible procedures, which are mostly linear code. The
three application packages that make up the FDIR manager are: FDIR, which detects and isolates
all faults; Sync, which synchronizes the code execution initially and whenever a channel is lost;
and Test, which constantly runs self test on the FTP hardware.

The FDIR package contains the actual code for the local FDIR manager. It has only one
visible procedure, Init, which schedules a FDIR task to be run at a relatively high frequency
(approximately 16 Hz, or every 60 msec). This task, called Fast FDIR, is used to spot the
occurrence of errors and isolate only the most obvious faults. Both the channel presence and the
interstage tests are simple enough to be run at this relatively high frequency. Fast FDIR also
checks all reports from other parts of the system. If there are any necessary reco&urations,
Fast FDIR will do the reconfigurations in a prioritized order. This higher frequency of operation
improves reliability of the FTP by reducing the amount of time an error goes undetected. In
reducing this time, the window in which two errors could simultaneously occur is also reduced. A
second error, if it occurred before the FTP could reconfigure around the first error, would lead to
unpredictable results.

There are, however, the two competing goals for the FDIR manager: complete fault

E . 2 . 4 . 8

coverage, which demands high frequency, and minimal use of processor time, which demands
faster, less complex operations. Thus, the Fast-FDIR task cannot take the time to analyze all
possible fault conditions when an error is detected; it only analyzes the most simple cases. If
Fast FDIR encounters an error condition that it cannot analyze, then a new task is started, called
Slow- FDIR. Slow-FDIR is referred to as an “on demand” task. Fast FDIR will schedule it only
if there is an error that is too complex to analyze immediately. S Z O W - ~ I R will then fully analyze
the error and report back to Fast-FDZR which channel, if any, is at fault. This split in the fault
detection duties allows the FDIR manager to run quickly and often, fulfilling both goals.

There are three visible parts to the Sync package: Znif, a procedure which initially
synchronizes the code execution between the three channels; Lost-soul, a procedure which is
continually run by a lone lost channel; and Lost-soul-sync, a task which a pair of synchronized
channels will schedule (at a fairly low frequency) to find the third lost channel. These three pieces
of code do exactly the same thing: send “lost soul” data patterns through the data exchange
mechanism and wait for the electronic “echo” that indicates another channel was attempting to
exchange at the same time. All three, in fact, use the same assembly language subroutine for the
hardware interface.

The primary difference between these three operations is what they do once a channel is
synchronized, when they run, and how often they run. Znit runs only upon system initialization,
and assumes that all channels are unsynchronized at the start. After two or more channels are
synchronized, Init will reconfigure the internal FDIR records to match the new state of the
hardware. Where Init is linear code that is run only once, Lost-soul is a tight loop with only one
exit condition: synchronization. Any lone channel that needs to synchronize will run Lost-soul,
and nothing else, until it resynchronizes with the other two channels. Lost soul is run frequently
so that whenever the other two channels find time to try to pick up the &e processor, the lone
processor is waiting and ready to be picked up. The t o s t soul sync task, on the other hand, is a
shell that calls the Lost soul procedure. The difference with thy task is that the two channels (in
synchronization) will c a Lost-soul at a lower frequency. Also, when two or more channels
execute Lost soul, they only go once through the loop and exit. Thus, the Lost soul-sync task
can be sched&d to run at a low frequency and will only take a small amount of &e to execute.

The third application package is Test, which contains the four FDIR self tests: voter and
error latch, which verifies the voting mechanism; ROM sum, which checks the integrity of the
FTP’s ROM; RAM pattern, which tests the functionality of each RAM location; and RAM scrub, which
ensures that all three channels have identical values in RAM. Test, like the FDIR package, has
only one visible procedure, System test. System test calls each individual test in the appropriate
order. Thus, the voters are test&-before anylnemory values are exchanged, and the memory
hardware is tested by the RAM pattern test before the memory contents are checked by the RAM
scrub test. If any one of the four tests reports that there is a faulty channel, then System test
will stop and notify Fast FDIR that a reconfiguration is required. System test is called by a x s k
in the FDIR package c z d Selfdest. Seytest is scheduled to run at a low5riority. Thus, if the
processor has any free time, it will run some self tests.

3. The Suitability of Ada for the FIT

While developing the fault detection code for the FaulbTolerant Processor, both the
advantages and the disadvantages of using Ada were apparent. In general, the advantages of
Ada, which are mostly due to the language specification, outweigh the disadvantages, which are
mostly due to the compiler used for this project. This chapter discusses both the advantages and
disadvantages of using Ada for the FTP, and why using Ada was, in the long run, a wise choice.

The choice of Ada as the development language was a controversial decision. Previous
work on fault-tolerant processors at the Laboratory had been done in the C language, and using C
would have saved the many man hours spent re-creating code that had already been written.
Using C would have also meant that the software engineers would have had a familiar set of tools
available to use (e.g., compilers, debuggers, etc.). But, there are two major reasons that led to the
selection of Ada as the development language for the AIPS system. The fvst is the Department of
Defense’s requirement that Ada be used for military software. The second reason is Ada’s tasking,
exception handling, strong typing system, and enforced modularity that are widely touted in some
circles 131. The combination of these reasons led the original design team to specify that Ada
would be used for the AIPS project. After almost a year of F’DIR code development, the choice of
Ada is st i l l controversial.

3.1 Disadvantages

The main disadvantage of Ada is that it is an immature language. There are only a
handful of fully validated compilers and few support tools for programmers. The compiler used for
the AIPS FTP (the unpublished Telesoft Ada compiler version 1.5) has several specific
shortcomings: the Run-Time System is inadequate for the FTP’s requirements as a real-time
system, the compiler produces inefficient code and is not a fully implemented version of Ada, and
there are no debugging tools. Solving some of the problems associated with this system required a
great deal of effort that would not have been expended if Ada were a more mature language.

The primary problem with the Telesoft Ada compiler is the Run-Time System’s task
scheduling mechanism. For a real-time control system such as the FTP, task scheduling is
critical, and the firsbin, firet-out task queue supplied with the Telesoft system could not meet the
strict timing requirements of a real-time system. Task priorities and interrupts are needed so that
a minor task (such as a self test) would not prevent a critical task (such as Fast FDIR) from
running. After much work, Draper Labs developed a system of priorities and intemyts that were
incorporated into the Telesoft Run-Time System. This new run-time system allows higher priority
tasks to interrupt the operation of those with a lower priority and includes timing information that
specifies the frequency at which a task should be scheduled. Unfortunately, the run-time system’s
size (approximately 48K bytes) is almost an order of magnitude larger than the operating system
used for the C version of the FTP. Although the Telesoft Run-Time System code has more
functionality than the C version’s operating system, it is not clear that these features are needed
for a real-time system. With this new run-time system, Ada’s task scheduling could fulfill the
FTF”s requirements for real-time vehicle control.

Not only is the Telesoft Ada Run-Time System larger, but the size of the object code
generated by the Telesoft Ada compiler was surprisingly large as well. In fact, the FTP system
had to be redesigned to include one megabyte of RAM rather than the original 256K bytes, which
would have been sufficient had this code been written in C. This increased code size has several
sources: the immature compiler, which generates inefficient code, the code design, which can add

E. 2.4,lO -

to the compiler’s inefficient code generation, and the required Ada runtime overhead, such as
range and exception checks. Better compilers will, of course, help this problem. However, Ada
rarely produces code as efficient as C, just as C rarely produces code as efficient as assembly
language. Fortunately, the FDIR code has not exceeded the original C language size by any large
amount, and the Fast - FDIR task is still within the 5% processor capacity goal.

Because the Telesoft Ada compiler is not a fully implemented version of Ada, some coding
problems must be resolved in awkward ways. For example, the representation for the error
latches would logically be an array or record of boolean types. The Telesoft compiler, however,
does not allow the representation of an Ada record or array to be specified on a bit-by-bit basis:
Thus, when the data type for an error latch was defined, Telesoft Ada could not define a record
that matched the 12-bit structure and location of the actual error latches. But, because the error
latches had to be exchanged among the channels as 16-bit integers, a standard record or array
could not be used either. Thus, the FDIR code used a function that converts the hardware error
latches into patterns that fit a 16-bit integer. Unfortunately, this sacrifices one of the primary
advantages of the Ada language: its ability to easily create data abstractions from built-in types.
Other problems with the Telesoft compiler were along the same vein: problems that were irritating
because hardware representations could not be mapped to data abstractions with the ease that
Ada promised, and solutions that were difficult to use in Ada because they did not take advantage
of the built-in types and functions.

Finally, the fourth problem with the Telesoft compiler is the total lack of debugging aids.
In terms of debugging tools, a disassemblel: is absolutely required. Thus, the Laboratory had to
produce, in house, a disassembler for the FTP’s 68010 code. A VAX interface program, which
implements standard debugging utilities (e.g., breakpoints, memory and register displays, and
program downloads), was also produced in house. Unlike the C compiler that was previously used,
the Ada compiler could not produce assembly language listings of the code that have the original
Ada statements inserted in the appropriate places. This was a major drawback because all
matches between the disassembled object code and the original source code had to be done
manually. The lack of debugging aids requires that effort be diverted from software development
to debugging tool development, which is not the purpose of this project.

3.2 Advantages
On the other hand, the advantages of Ada are due largely to the language definition rather

than the specific compiler. The strong typing system, for instance, allows code written by several
individuals to be linked together with almost no errors. Also, Ada’s package system fosters a
highiy modular design that clearly delineates all module dependencies, while the data abstraction
capability makes it easier to create readable code: Finally, although the run-time system was not
adequate at first, the Ada built-in tasking construct is useful because the FTP needs multi-
processing capability.

Ada’s rigid syntax and strong typing system, which are hated by some programmers, are
responsible for reducing errors in software to the point that almost any program that compiles will
run, and will have almost no errors. The syntax is responsible for reducing the number of
typographical mistakes that are accepted by the compiler as legitimate code. The strong typing
system, meanwhile, reduces the number of errors due to interfacing procedures and data
abstractions. And, because the structure and syntax of Ada lets fewer errors slip past the
compiler, Ada reduces the time spent debugging code.

Ada’s data abstractions are a powerful force in making code that is readable and has a
well defined interface. In C, for example, the configuration of the three channels (on- or off-line)
was numerically represented as three bits in a 16-bit word. The representation of the data, as
well as the operations performed on it, are not conceptually obvious. Ada, on the other hand,
represents the configuration as a record of three booleans. Using booleans in a record to represent
the configuration produces more readable code that parallels the actual structure of the
information. This abstraction also reduces the mistakes and confusion between programmers who
must interface code. In C, there was a convention that channel A was represented by the low
order bit in a 16-bit integer. This convention, however, is not as obvious as a record with a boolean
component named A. Again, Ada’s data abstractions prevent these types of interfacing errors
from occurring, and thereby cut the time required to debug software.

Overall, Ada is the right language for this project. The Ada language has several strong
advantages, while most of the disadvantages are due to its immaturity and the specific compiler
used. In time, the language will mature and more capable compilers will be available. However,
even a poor version of Ada has already decreased the work required to create, debug, and
interface the code on the FTP.

The decision to switch to Ada was controversial. Despite the advantages of Ada’s tasking,
data abstraction, and modularity, many engineers were concerned about Ada’s immaturity and
lack of debugging tools. Even more important, however, was the run time environment and its
ability to meet the critical timing requirements of a real time control system. In spite of these
problems, the development of the FDIR manager has shown that Ada has promise as a
development language for embedded computer systems.

E. 2.4.12

I /

References

[13 Charles Stark Draper Laboratory.
Advanced Infinnation Pmessing System (AIPS) System Specificcrtion
Technical Report CSDEC-5709, Charles Stark Draper Laboratory, Inc., Cambridge,

Massachusetts, May, 1984.

[21 Alger, Linda, et aL
Local Fault Detection, Isolation, and Reconfiguration in a Distributed Processing System.
December, 1985.

[31 Barnes, J. G. P.
Progmmming in Ada.
Addison-Wesley Publishing Co., 1982.

Hopkins, Albert L., Smith, T. Basil, and Lala, Jaynarayan H.
FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft.
Proceedings of the IEEE 66(10): 1221-1239, October, 1978.

[41

[51 Lamport, Leslie, et aL
The Byzantine Generals Problem.
ACM Transactions on Progmmming Languages and Systems 4(3):382-401, July, 1982.

[SI Smith, T. Basil.
Generic Data Manipulative Primitives of Synchronous Fault-Tolemnt Computer System.
Technical Report, Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts,

1980.

[71 Smith, T. Basil.
Fault-ToLmnt Processor Concepts and Operation
Technical Report, Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts,

1981.

N89-16340
VECTOR-MATRIX+UATERNION, ARRAY, AND ARITEMETIC PACUGBS:

ALL HAL/S FUNCTIONS IMPLEMENTED IN ADA

ABSTRACT

HAL/S avionice programmere have enjoyed a variety of tools built into a
language tailored to their special requirements. Ada is designed for a broader
group of applications. Rather than providing built-in tools, Ada provides the
elements with which uaers can build their own. Standard avionics packages
remain to be developed. These must enable programmere to code in Ada ae
they have coded in HAL/S. The packages under development at JPL will
provide all of the vector-matrix, array, and arithmetic functione described in
HAL/S manuals. In addition, the linear algebra package will provide all of the
quaternion functione used in Shuttle steering and Galilem attitude control.
Furthermore, using Ada's exteneibility, many quaternion functions are being
implemented as infix operatione; equivalent capabilitiee were never implemented
in HAL/S becauee doing eo would entail modifying the compiler and expanding
the language. With these packages, many HAL/S expressions will compile and
execute in Ada, unchanged. Othere can be converted simply by replacing the
impl ic i t HAL/S multiply operator with the Ada "*". Errors will be trapped and
identified. Input/output will be convenient and readable.

Allan R. Klumpp
David D. Kwong

Mail stop 171-236
Jet Propuleion Laboratory

4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-3892

To be presented at the
Fira, International Conference on Ada Programming Language

Applications for the NASA Space Station
Hoeted by the Univereity of Houeton - Clear Lake and

Johneon Space Center
Houston, Texas 77058

1986 June 2 - 5

E.2 .5 .1

GENERIC ADA CODE IN THE NASA SPACE STATION
COMMAND, CONTROL AND COMMUNICATIONS ENVIRONMENT

D. P. McDougall
T. E. Vollman N89-16341

Veda Incorporated
Lexington Park, Maryland

1.0 INTRODUCTION

This paper describes the results of efforts to apply powerful
Ada constructs to the formatted message handling process. The
goal of these efforts has been to extend the state-of-technology
in message handling while at the same time producing production-
quality, reusable code. The first effort was initiated in
September, 1984 and delivered in April, 1985. That product, the
Generic Message Handling Facility, met initial goals, has been
reused, and is available in the Ada Repository on ARPANET.
However, it became apparent during its development that the
initial approach to building a message handler template was not
optimal. As a result of this initial effort, several alternate
approaches were identified, and research is now on-going to
identify an improved product.

The ultimate goal is to be able to instantly build a message
handling system for any message format given a specification of
that message format, The problexc lies in how to specify cne
message format, and once that is done, how to use that information
to build the message handler. In Section 2 we discuss message
handling systems and message types. In Section 3 we describe the
"ideal" system. In Section 4 we detail the initial effort, its
results and its shortcomings. We then describe the approach now
being taken to build a system which will be significantly easier
to implement, and once implemented, easier to use. Finally, in
Section 5, we offer our conclusion.

2. BACKGROUND

Message handling systems play a major role in command,
control, and communications (C3). C3 systems are most often found
in military applications, where rapid, accurate dissemination of
information is required. Non-milita'ry space-related
communications systems face many of the same requirements. In
this section, we discuss attributes of the message handling
systems which support the communications aspect of C3, and we
identify the requirements for those systems.

2.1 Message Handling Systems

The typical message handling systems consists of eight
components, as depicted in Figure 1. The transmitter and receiver
perform the actual communications between this system and some
other system with which it is communicating. They handle message
blocking, line protocols and other low level functions. They are
usually hardware dependent and are typically written in assembler
language or in microcode.

E.2.6.1

TRANSMITTER

MESSAQE
CREATION AND

EDIT
FACILITY

RECEIVER

D A T A
APPLICATIONS

UTILITIES

MESSAGE INPUT MESSAGE OUTPUT
PROCESSOR PROCESSOR

DATA BASE
MANAGEMENT SYSTEM

MESSAGE HANDLING SYSTEM COMPONENTS
Figure 1

The message input and output processors are the interface
between the rest of the system and the transmitter/receiver
facility. Usually a message handling system will hold the data in
some internal format which makes sense in the context of the
applications to be performed upon the data. This format is
usually independent of the format in which a message is
transmitted or received over any specific 1/0 line. The message
input processor accepts a bit stream input from a line by the
receiver, passes it, extract the information and passes it to the
Data Base Management System (DBMS). If the system provides for
real-time display of incoming messages, the input processor may
also pass the data along to a display utility. In a similar
manner, when a message is to be transmitted, the message output
processor extracts the data from the DBMS, or accepts it from a
system operator, and formats a bit string (or character string) to
be passed to the transmitter.

The DBMS provides for information storage and retrieval. The
data may be stored in message image format, or in some non-
message-related format. How the data are stored is typically
dependent upon the type of applications being performed upon the
data. In systems whose primary function is other than message
generation and transmission, the data are not typically stored as
message images. In other systems - or subsystems - whose sole or
primary function is directly message related rather than data
application related, the data are more likely to be stored in
message image format. At any rate, when an operator creates a
message, he usually wants to see its image prior to transmission;
therefore the interface between the DBMS and the Message Creation
and Editing facility - the editor - will normally include a
utility to extract data from the DBMS and build a message in the
specified format.

E.2.6.2

The editor will provide standard' functions such as
insert/delete line, cursor movements through the message, and so
on. Additional functions to be provided are dependent upon the
message format(s), which are discussed below. As we shall see, a
critical function is some sort'of embedded data validation.

Message handling systems usually provide the capability for
visual and hard copy message output, as well as message
transmission. In addition to viewing an image of the message they
are creating, operators will often want to keep a hard copy of the
message after it is sent, both for historical purposes, and for
possible future editing.

i The final component shown in the figure is not a part of the I

message handling system per se, but is the reason for data
exchange. While there are (sub)systems whose primary purpose is
nothing more than message handling (e .0. store-and-forward message
drops such as the Communications Line Interface (CLI)), most
message handling systems are components of larger systems which
perform some applications of the data to non-transmission related
problems. The data applications are not treated here: they do,
however, impact the format in which the DMBS holds the message
data.

Examples of message handling systems include the Force yigh
Level Terminal (FHLT) , the Ocean Surveillance Information System
(OSIS) , the Joint Tactical 1.nformation Distribution System
(JTIDS), and the World Wide Military Command and Control System
(WWMCCS) among many others. These systems employ a number of
different message types, or formats.

20.2 Message Types

Examples of message types include RAINFORM (of various
subtypes), Unit Reports (UNITREP) , Movement Reports (MOVREP) , and
Joint Interoperability of Tactical Command and Control System
(JINTACCS). The message formats have a number of elements in
common. First, each type (or subtype) is defined to pass on data
concerning a fairly specific event or of a fairly specific nature.
For example a RAINFORM Green message provides tasking data to U . S .
Naval forces prior to a mission, while those forces use a RAINFORM
Purple message to report the results of that mission. For another
example, a JINTACCS B704 is an Airbase Status Report while a
JINTACCS ClOO is a Imagery Interpretation Report.

Given the differing data requirements of these different
message types, it would be surprising if they could all be
accommodated using the same format. In fact, no such format has
yet been found. However, the formats which have evolved over time
have a number of similarities.

1) Messages are composed of two pieces, a header which describes
the sender and the routing and other information about the
message, and the body of the message holds the data content.

E.2.6.3

2) Both the header and body of the message are composed of line
groupings which contain one or more lines in some specific
order.

3) Each line is composed of a given sequence of fields (or
components) whose appearance or order can vary only within
narrow bounds.

Each field in a line contains a "molecule" of data which must
be given in a predefined format. In fact some fields are
composed of subfields (e.g. latitude is composed of degrees,
minutes, cardinal point, and in some cases, checksum).

4)

5) There are three types of fields: discrete, numeric, and
text:

a) Discrete fields are fields which must contain one of a
(small) finite number of entries - for example a "month"
field would have only twelve possible valid entries.

b) Numeric fields are fields whose entries must evaluate to
some numeric value. These fields may have a prescribed
format as integer for fixed point. In either case, the
number of significant digits (minimum and or maximum)
may be specified as may the number of digits on either
side of the decimal.

c) Text fields are freeform fields whose contents may be
any string of characters from some predefined character
set - usually letters, digits, and some punctuation
characters.

Message types differ then in which fields they use (and how
each is defined) , how those fields are used to define lines, and
how those lines are grouped to form line groups. In addition,
some message types are fixed format (the fourth field always
starts at character 17) while others make use of delimiters to
define where one field stops and the next starts. UNITREP is an
example of a fixed format message type, while RAINFORM is an
example of a "freer form" type.

The ideal message handling system would handle any and all
message types with the same (or similar) sets of functions and
user interface. If such a uniform system were to be built, the
factors listed above define the flexibility requirements for
accommodating various message type definitions.

I 2 . 3 Message Handling System Functional Requirements

Given that a message creation and editing system for some
message type is to be developed, what requirements must it meet?
The requirements important for the transmitter/receiver portion of
a message handling system are certainly different than those which
drive an editor's requirements. it appears that there are three

I
E . 2 . 6 . 4

factors which exert the most influence on an editor's requirements
and design: reliability, maintainability, and date validation.

Reliability is important for two reasons. First,
communications systems are usually of a critical nature, and their
failure can be catastropic. Therefore, message handling systems
must work predictably to ensure that the system provides the
capability expected during stress periods. Second, the output of
one such system is always the input of another. Therefore, the
failure of a message handling system to maintain communications or
to pass accurate, properly formatted data impacts the ability of
other systems to meet their requirements.

Maintainability is important due to the rapidly changing
nature of the communications theater. New communications systems
are constantly being fielded, and existing systems being upgraded.
A s this occurs, new message types are being added and existing
types updated. For example, one existing message type has
increased in size by over 20%, in terms of the number of different
line types, over the past six years. As new message types are
added and existing types modified, existing message handling
systems must be modified to accept these new data.

Data validation is in some sense a component of reliability,
but is so critical to the mission of an editor and message
handling system that we break it out separately. Newer message
handling systems (and some older ones such as FHLT) provide a hiqh
ciegree of input message checking; messages which contain invalid
data are either put into an error queue, or discarded. In the
former case the valid portions of the message are only available
to the system through operator intervention, in the latter case
they are not available at all.

2 . 4 Existing System Deficiencies

The current situtation can be summarized as follows: there
are a variety of message formats, each of which is handled on
several message handling systems, each of which has its own custom
software for each different message type it deals with. This than
means that there is in fact not a single RAINFORM message handler,
but several, each with its own code, its own set of functions, and
its own user interface. Thus, when the RAINFORM message
specification is updated, those updates find their way into some
systems and not others.

This leads to the following problems:

1) Configuration management is complicated by the various
implementations or message handlers for the same message
types.

2) Consistency and reliability suffer due to the fact that
each message handler implements somewhat different
versions of the message standard in questions.

E . 2 . 6 . 5

3) Maintenance is difficult and costly since each system is
coded in a unique fashion, many in different languages,
almost all using different approaches.

Generally speaking, each time we build a new message handler - whether for a new or existing message type - we are gaining
nothing from the fact that we have ever built such a thing before.
Furthermore, the costs involved in "reinventing the wheel" stay
with each system throughout its lifecycle. In the case of C3
systems, the lifecycles are long and therefore the excess cost
high.

Significant savings can be realized if we attempt to reduce
or eliminate the scope of the problems discussed above through
reusing message type definition and message editing and handling
technology. This can occur in several ways, ranging from complete
reuse of existing code, through partial reuse of code, to reuse of
designs and message definitions. In the sections which follow, we
describe some initial attempts to explore approaches to reuse of
message definitions, designs, and message editor code.

3. The Ideal System

3.1 Message Format Specifications as Ada Constructs With each
message format, there exist in some form or another, a format
specification. This specification provides detailed information
about the message format from the level of a message as an entity
m JOVJU tu the field content level. This information provides
guidelines required by applications programs for properly handling
formatted messages. Section 2.2 above describes in some detail,
the types of information provided by a format specification.

Ada lends itself very nicely to defining such specifications.
A field is the lowest level defined by a format specification. As
mentioned in Section 2.2, there are three basic types of fields:
discrete, numeric, and text. In Ada, discrete fields may be
defined as enumeration types. Numeric fields may be defined as
either integer, fixed point or floating point type. Text fields
may be defined as string. Compound fields may also exist. They are
fields which consist of several field components, all of which
must be one of the three basic field types. An example of a
compound field is a latitude field. In Ada a latitude field may
look like:

type LATITUDE-FIELD is
record
DEGREES : DEGREES FIELD;
MINUTES : MINUTES-FIELD;
CARDINAL POINT : CARDINAX POINT FIELD;
CHECKSUM- . : CHECKSUM-FIELD? -

end record;

Where the field component types: DEGREES - FIELD, MINUTES FIELD,
CARDINAL-POINT FIELD, and CHECKSUM - FIELD have previously been
defined as either discrete, numeric, or text.

E.2.6.6

In a formatted message, a line is composed of a given
sequence of fields. Using Ada, a line can be represented as a
record structure. Each component of the record structure would be
a field. For example, a formatted line which reported the contact
position of a ship may consist of three fields: contact
identifier, latitude of contact, and longitude of contact. In Ada,
the contact position line may look.1ike:

type CONTACT - POSITION-LINE is
record

CONTACT I DE NTIFIE R : CONTACT-I DENTIFIER FIELD ;

CONTACT-LONGITUDE : LONGITUDE - FIELD;
-

CONTACT-LATITUDE : LATITUDE FIELD;

end record7

Where the field types: CONTACT-IDENTIFIER FIELD, LATITUDE FIELD,
and LONGITUDE FIELD have previously been defined according t o the
rules for defrning field types.

When lines are grouped together in a particular manner, they
make up a formatted message. In Ada a formatted message may be
represented as a record structure. Suppose a formatted message of
a particular type was made up of the following five formatted
lines: message identifier line, contact sighting line, contact
position line, contact amplification line and a remarks line. The
Ada definition of such a message type would be:

type PICTIOGS MESSAGE F3RMA'l' is - -
record
MESSAGE IDENTIFIER .
CONTACT POSITION
CONTACT~SIGHTING

CONTACT-AMPL IFI CATI ON :
REMARKS- .

end record:

MESSAGE IDENTIFIER LINE;
CONTACT-SIGHTING LTNE ;
CONTACT-POS I TI ON-LINE ;
CONTACT-WLIFICXTION LINE;
REMARKS-LINE ;

- -

Where t h e various line types have previously been defined
according to the rules for defining formatted lines.

In the "ideal" system, a message format would be defined as
an Ada construct similar to that described above. Such a means for
defining a message format has many advantages. In particular, the
message format specification becomes a compilable unit therefore
providing a means of partial validation of the format
specification syntactically and semantically. Additionally, the
Ada definition of the message format may be used directly in
applications Ada programs that require knowledge of the format.

There are a variety of methods for defining message format
specifications in Ada, however the record structure described .

above appears to be the most natural representation of a message
format for existing formats. Currently the United States Air Force
(USAF) is working with the JINTACCS community to define their
message formats as Ada record types.

E.2.6.7

3.2 A Generic Message Handling System

Though message formats will vary, the requirements for
message handling systems, as described in Section 2, tend to
remain fairly static. Generating a message handling system for
each distinct message format is a costly and time consuming task.
A solution, though a non-trivial one, would be to develop in Ada,
a generic message handling system. The generic message handling
system would essentially be a generic package with its functions
and procedures not customized around any specific message format,
but rather designed to work with any message format specification
that the package is instantiated for. This would imply that the
only significant requirement for creating a message handling
system for a particular message format would be that the
specification for the message format be defined as an Ada record
and then the generic would have to be instantiated for the message
format. All information about the message format required by the
message handling system could than be extracted from the Ada
record structure containing the message format. Ideally than, the
generic definition would be as follows:

generic --
type MESSAGE-FORMAT-SPECIFICATION is private; -- where the actual parameter here would be a record type -- much like that defined in Section 3.1 above --

package MESSAGE-HANDLING-SYSTEM is

A person farmiliar with Ada generics or C3 systems would
immediately identify the "ideal" system as being highly
improbable. However, it is conceivable that a close approximation
could be reached. The close approximation would not be as clean
cut as the "ideal" but it would have many of the same benefits.

4. Striving for the Ideal System

4.1 GMHF as an Approximation

A first attempt at developing a generic message handling
system was completed in April 1985. The project, Generic Message
Handling Facility (GMHF)t was sponsored by the USAF and the Naval
Ocean Systems Center (NOSC) . GMHF is not a complete message
handling system. It primarily consists of the Message Creation and
Editing facility. The feeling being that sufficient amounts would
be learned from doing an editor and there was no real requirement '

to build an entire message handling system for this effort. The
purpose behind this effort was three fold. First, a feasability
study was to be performed to determine just how close to the
"ideal" system could you get using pure Ada features. Secondly, a
prototype system was to be developed as a close approximation to
the "ideal" system. And thirdly, a final analysis was to be

E . 2 . 6 . 8

performed to determine just how cost effective the generic system
was to use.

The first question was answered early on. It was apparent
that there was no clean cut method for building a generic package
around a generic formal parameter which was a message format
specification as an Ada record like that defined in Section 3.1.
Record types can indeed be passed as generic parameters, however
within the generic, little can be done with the record structure
since it is private.

In striving for an approximation to the "ideal" system, it
became clear that some sacrifices would have to be made. Since a
main concern of this effort was to determine cost effectiveness of
generics in real world applications, the message format
specification as an Ada record was substituted for something less
sophisticated. The format specification record was replaced by
several generic formal objects and types, and a database of
message specification information. Additionally several procedures
had to be passed as parameters to the generic. Provided below is
the essence of the generic definition for GMHF. Some minor
details have been left out for simplification purposes.

generic --
MAXIMUM CHARACTERS-PER-LINE : POSITIVE ;

. -- consiant value telling the generic how many characters -- maximum a formatted line may have for the instantiated -- message type.
MAXIMUM FIELDS-PER-LINE : POSITIVE; -- consiant value telling generic how many fields maximum a -- a formatted line may have for the instantiated message type.
MESSAGE FORMAT FILE-NAME : STRING; -- consTant vaiue providing the name of the file which contains -- the message format specification
type LIST OF-FIELD NAMES is (e>) ; -- an enumerated lTst of all fields for the message type
type LIST OF LINE NAMES is (c>) ; -- an enumerated iist of all lines for the message type. -- the line names are keys into the message format -- specification file.
with procedure GET - FIELD(FIELD NAME : in LIST OF FIELD-NAMES;

FIELD-VALUE : out STRIKG is ; -- this procedure provides all Tnstantiations of 1/0 packages -- for the field data types of a message type. In addition, -- the routine is organized as a large case statement which -- calls the appropriate input routine for a given field type -- ilpon request. This has proved to be a long and tedious

--

--

--

--

--

E . 2 . 6 . 9

-- routine to. generate.
with procedure FORMAT-LINE-OF-TEXT (LINE-OF-TEXT: in out STRING)

-- this procedure handles the formatting of-a line of text so as -- its physical appearence meets the requirements of the -- specification. For example, JINTACCS requires a ' / ' as a -- field delimitter between fields. When a field is left blank -- it appears as a '/-/'in the text of the message. This
-- procedure would be responsible for identifing a field as
-- being blank and subsequentlly placing a hyphen in the text.

--
is NULL PROCEDURE;

--
package MZSSAGE - HANDLING - SYSTEM is

The new types and objects as formal parameters and the format
specification databa.se contain much of the same information as the
record construct would have, but with great redundancies and in a
less clean, less natural fashion. The end result of all this was a
generic message handler which was a successful system but not an
optimal one.

With the' successful development of a generic message handler,
the question of cost effectiveness still remained. To resolve this
question, the generic was instantiated for two message types,
RAINFORM and UNITREP. The RAINFORM instantiation was completed by
one of the developers of the generic software. 'The UNITREP
instantiation was completed by an individual only mildly familiar
with the software but very farmiliar with Ada, the idea being that
the average instantiator of the generic would know little or
.nothing about the software itself. The results were very
promising. RAINFORM required a fairly significant amount of time
for instantiation, about 300 man hours. The majority of this time
was spent debugging problems in the generic which were encountered
for the first time. The instantiation of the UNITREP message
handler took approximately 60 man hours. The time for producing
the UNITREP instance was significantly less then the time that
would have been required to develop a non generic message handling
system unique to the UNITREP message format.

In short, development of GMHF and instantion for RAINFORM and
UNITREP message formats yielded one set of positive results. Use
of generics in real world applications should prove to be a very
cost effective means of software development. At the conclusion of
the GMHF effort, the question was raised, " Are there alternative
means for developing message handling systems which are better
than those imposed by GMHF? "
4.2 Problems with GMHF

To determine better means for developing message handling
systems, an attempt was made to identify problems and deficiencies
with GMHF. One deficiency was immediately apparent. GMHF required

E . 2.6 . 1 0

that the use of message format specifications as records be
sacrificed, so that we could develop the system as a generic unit.
In place of the record structure, an implementer of the generic
was forced to define data types to pass as formal parameters which
would normally not have been required. In addition, a small
database of message format specifications had to be created by the
implementer for use by the generic. These undesirable work-
arounds preferably should be avoided in future systems.

A requirement of message handling systems is that they
support data input and output (I/O) operations, data validation,
etc. The DBMS and Message Creation and Editing facility discussed
in Section 2.2 above, clearly have this requirement. 1/0
operations in this case do not refer to the low level 1/0 required
by the transmitter and receiver, but rather to the 1/0 routines
obtainable by instantiating packages such as TEXT IO, INTEGER IO,
ENUMERATION IO, DIRECT-IO, etc.. GMHF supports the 1/0
requirements, but with one hook. All 1/0 functions and procedures
which are to operate on types defined outside of the generic must
be themselves defined outside of the generic and passed into the
generic as parameters. This seems like an obvious requirement and
it is. Obvious as it may be, it is a tedious, therefore
undesirable task instantiating 1/0 packages for the types and
subtypes which comprise the many fields of a message format
oftentimes numbering in the hundreds.

-

To summarize, if the amount of work required by the
implementer of the message handling system could be reduced to a
minimum, such a system would become a much more powerful, useful
tool. .Therefore we must solve two problems. First, a way to
utilize the record definition of a message format' specification
must be developed. Secondly, the requirement for the implementer
to provide instantiations of all 1/0 packages for the different
field types and subtypes must be eliminated, vastly improving the

Through careful investigation it became clear, there 1s no
clean cut solution. Either you part with the message format
specifications as records, or you must part with the idea of a
generic message handling system. And in either case, the 1/0
packages for each of the field types would have to be created or
instantiated by the implementer of the system.

4 . 3 Introducing a Preprocessor to the Problem

Following the conclusive results of GMHF, a new concept was
introduced. A preprocessor could be developed which would accept
as input the message format specification as a record type, and
output as Ada code, a compilable package specification containing
all types, instantiations of 1/0 packages, etc., required to
instantiate the generic message handling system. Essentially, this
allows us to obtain the desired goal. An implementer is only

' usability of the system.

E. 2.6.11

required to generate a message format specification as an Ada
record and then instantiate the generic. Of course there are some
rules to follow when defining the message format specification so
as to stay within the bounds of the preprocessor. The development
of such a system is currently in progress with an expected
completion time frame of September 1986. Portions of the system
are being developed under contract to the USAF and NOSC, while the
basis of the preprocessor has already been developed by a third
party as an internal research and development project.

4 . 4 Implementation of Such A System

Implementation of such a system can be described as a series
of three main steps.

4 . 4 . 1 The Message Format Specification

The implementer is first required to generate a package
specification containing the record type definition for the
message format as demonstrated in Section 3.1 above. Having
completed this, the package specification should be compiled to
validate it syntactically and semantically.

4 . 4 . 2 The Preprocessor

Having successfully compiled the message format package
specification, the preprocessor should be activated. The
preprocessor will read the message format package specification as
an input file and generate an output file which is also a package
specification. The output file will contain all types, 1/0
packages, etc. derivable from the input package specification
which are required for instantiation of the generic message
handling system.

4 . 4 . 3 The Output Package Specification

When the preprocessor is complete, the output package
specification should be compiled. The implementers applications
program may then "with" the compiled output package specification

* and in turn, instantiate the generic message handling system.
, There will be additional generic parameters which the implementer
will be required to provide for the instantiation which will not
be included as part of the package specification output by the
preprocessor .

' 5. Conclusion

5.1 Status

The preprocessor solution for the "ideal" system is midway
through the design phase. Currently a prototype of the message
handling system is being developed to determine specific

E.2.6.12

requirements for the output of the preprocessor. A preliminary
version of the preprocessor has been developed, however not with
this particular application in mind. An expected completion date
for the entire system is September, 1986. The system will be made
available in the public domain via ARPANET upon completion. .

5 . 2 Summary

Development of a system such as that proposed by the
preprocessor method could in a sense, revolutionize the use of
message handling systems in the C3 world. Currently, so much money
is poured into the development and maintenance of systems in
support of C3. To begin development of code for such systems in
Ada is a very large step to improve the reliability,
maintainability, and reuseability of such systems. Additionally,
the generic message handling system as described in this paper
would be a welcome asset to the development of C3 systems. The
generic message handling system is portable between hardware, and
implementable for most every message format in use today by the
DoD .

E. 2.6.13

IIIPLEMENTING DISTRIBUTED Ada1
FOR REAL-TIHE APPLICATIONS

Patrick Rogers
Charles W. McKay

H ig h T ec hnolog i e s Lab or a tory
University of Houston

at Clear Lake

Abstract

The discussion of applying a (distributed) High Order
Language (HOL) to applications which require real-time
performance invariably invokes the subject of excessive
overhead. In a related paper,2 the authors discuss some of
the basic language-specific issues involved in distributing
a High Order Language, with special attention paid to the
Ada language. In a traditional implementation, several of
these issues imply considerable, if not prohibitive,
overhead, In this paper, an implementation strategy is
introduced which promises to deal with these issues in a
manner that will provide significant performance
improvements. These improvements should in fact be
sufficient to make use of distributed Ada feasible even in
h ig hly-cons tr a ined application domains. Additionally, the
general approach should be applicable to non-distr ibuted
implementations as well.

Ada is a registered trademark of the U.S. Government
(AJPO)

Rogers, Patrick and Dr. Charles W. McKay,
Distributing Program Entities In Ada, University of Houston
at Clear Lake (High Technologies Laboratory), Proceedings of
the First International Conference on Ada Programming
Language Applications for the NASA Space Station, June, 1986

E.3.1.1

.
N 8 9 - I634 3 I

!
I

RT-BUILD : An Expert Programmer for Implementing
and Simulating Ada Real-Time Control Software

Larry L. Lehman *
Steve Houtchens **
Massoud Navab **

Sunil C. Shaht
Integrated Systems Inc.

101 University Ave.
Palo Alto, CA 94301

(415)-853-8400

Abstract

RT-BUILDTY is an expert control system programmer that creates real-time
AdaTY code from block-diagram descriptions of control systems. Since RT- BUILD
embodies substantial knowledge about the implementation of real-time control
systems, it can perform many, if not most of the functions normally performed
by human real-time programmers. Though much basic research has been done
in automatic programming, RT-BUILD appears to be the first application of
this research to an important problem in flight control system development.
In particular, RT-BUILD was designed to directly increase productivity and
reliability for control implementations of large complex systems.

RT, BUILD Capabilities
RT-BUILD implements control systems designed with the MATRIXXTY control
design package. Control systems are specified as nonlinear, multi-rate, discrete-
time block-diagrams in the interactive graphical environment of MATRIXx’s
SYSTEMBUILDT’ module. RT-BUILD accesses the SYSTEMBUILD data-
base to create an exact implementation of the design.

The code produced by RT-BUILD includes all specified dynamic compensation
and control logic, a real-time application level executive, and generic software
interfaces to hardware such as sensors, actuators, and displays.

* Manager, Software Development

t Manager, Real-Time Syeteme
** Member, Teehnicul Stafl

E . 3 . 2 . 1

The efficient executive performs the task scheduling and interrupt handling re-
quired to implement real-time mult i-rate controllers. h i t ializat ion/ terminat ion
and exception handling functions are also included.

The software elements for an application are automatically assembled from a
modular library of Ada control functions. User supplied control or interface
functions (such as specific hardware drivers or existing Ada control algorithms)
can also be included from user libraries.

The real-time code produced by RT-BUILD is highly optimized for speed. F’ur-
ther optimization (speed or memory) is normally performed by optimizing com-
pilers. The net result is an automatic implementation of the design whose real-
time performance is extremely difficult to surpass.

RT-BUILD can be used at the final stage of the control engineering cycle to
generate real-time code for most control problems including: aircraft/spacecraft
control, robotics, process control, servo control, and any other real-time Ada
application. Earlier in the engineering cycle, RT-BUILD can be used to de-
velop off-line simulations or real-time hardware-in-the-loop simulations. Since
RT-BUILD can be used to rapidly estimate real-time processing requirements,
implementation considerations and processor constraints can be considered much
earlier in the control development cycle.

RT- BUILD Design Goals

RT-BUILD was designed to address the requirements of flight software. The
following aspects distinguish fight software from real-time software used in prc+
totype testing.

(i) Flight software is used over a long time period. It must be very easy to
maintain, update, and verify.

(ii) Processing power and memory are at a premium. They must be used
efficiently.

(iii) The real-time software must be capable of handling a variety of input-
output mediums.

(iv) The software must handle multi-processor implementations, since most
flight control systems must use many processors.

(v) The software must accurately implement the designed control systems
since costs of making errors can be very high.

E.3.2.2

The paper will describe how recent developments in computer-aided engineering
have been applied to meet these requirements in RT-BUILD.

RT- BUILD Design Approach
Real-time software is generated around the concept of a modular, reconfigurable
periodic scheduler and associated computation modules that can coexist with
other foreground computing tasks (e.g., interrupt service routines) as well lower
priority background processes. Device independent interfaces are incorporated
in this design to isolate hardware dependencies. The Ada Periodic Scheduler
(APS) is designed to provide periodic pre-emptive priority-based execution of
tasks. The scheduler as well as the rest of the software ia written in Ada.

The detailed paper will show various details of the design procedures and soft-
ware structure as well as the role Ada capabilities play in thie automatic code
generation.

A Mult i-D isciplinary Technology
The paper will discuss the multi-disciplinary technology required to develop
an integrated set of Computer-Aided Control Engineering (CACE) tools which
include automatic code generation capabilities.

While current tools provide a tremendous improvement in flight control systems
development, areas where further research is being conducted will be covered in
the detailed paper and the presentation.

RT-BUILD, MATRIXx, and SYSTEM-BUILD are trademarke of Inte-
grated Syetems Inc., Ada is a trademark of the U.S. Department of Defense (Ada
Joint Program Office).

TY

E.3 .2 .3

N89-16344

A MULTICOMPUTER AND REAL TIME ADA ENVIRONMENT

Ray Naeini

Flexible Computer Corporation
1801 Royal Lane

Bldg. 8
Dallas, Tx. 75229

214/869-1234

E.3.3.1

A MULTICOMPUTER AND REAL TIME ADA ENVIRONMENT

A multicomputer is defined as a set of tightly-coupled yet

autonomous computers capable of synchronizing and communicating

in parallel but also of operating independently.

attempts to discuss the architectural concepts and requirements

for executing the Ada programs in a multicomputer system.

Synchronization, communication and protection of shared data

between Ada program entities are addressed. Decomposition or

partitioning of the Ada programs in a multicomputer system is

also studied,

This paper

Finally, a multicomputer and real time Ada environment is

described using FLEX/32 multicomputer system.

E.3 .3 .2

RUN-TIME IMPLEMENTATION ISSUES
FOR REAL-TIME EMBEDDED ADA*

RUTH A. MAULE

Software Technology
Boeing Aerospace Company

Seattle, Washington 981 24
Telephone: (206) 773-8607

P. 0. BOX 3999, M/S 82-53

ABSTRACT

A motivating factor in the development of Ada as the department of defense standard
language was the high cost of embedded system software development. It was with
embedded system requirements in mind that many of the features of the language
were incorporated. Yet it is the designers of embedded systems that seem to comprise
the majority of the Ada community dissatisfied with the language. There are a variety
of reasons for this dissatisfaction, but many seem to be related in some way to the Ada
run-time support system.

One of the more common complaints about the run-time system is that it is too big or
too slow, that Ada requires excessive or unnecessary control structures to support high
level language constructs that may not be used by an application. Another commom
complaint is that the tasking model does not provide the type of real-time control
designers are accustomed to, that the delay statement is flawed, and that
rendezvous' are too expensive. These are fairly general complaints, and may well
reflect real problems with the language. But there is a more fundamental problem with
Ada run-time support systems of which many people are not yet aware, and that is the
large number of implementation dependent characteristics which present portability
problems and performance inconsistencies among validated compilers. The Ada
run-time support system represents not merely a large block of additional code that
must be loaded with each application, but an interface to the hardware from the source
code, a real-time executive, a memory manager, and a tasking supervisor and

*Ada is a registered trademark of the United States Government (Ada Joint
Program Office).

E.3.4.1

scheduler. As long as the more general Ada semantics are supported, the
implementation of each of these is left largely up to the implementer. No standard
interface exists between the run-time system and the application code, no consistent
terminology is available for comparisons between different vendors, and no standard
format defines the Ada Language Reference Manual (LRM) Appendix F, the only place
where a vendor is required to describe the implementation dependent features of the
system.

This paper presents some of the areas in which these inconsistencies have been
found to have the greatest impact on performance from the standpoint of real-time
systems. In particular, a large part of the duties of the tasking supervisor are subject to
the design decisions of the implementer. These include scheduling, rendezvous,
delay processing, and task activation and termination. Some of the more general
issues presented include time and space efficiencies, generic expansions, memory
management, pragmas, and tracing features. As validated compilers become
available for bare computer targets, it is important for a designer to be aware that, at
least for many real-time issues, all validated Ada compilers are not created equal.

1 .O INTRODUCTION

The high cost of mission critical embedded software was a major factor in the decision
by the Department of Defense (DoD) to standardize on a single high level language
(HOL). Major design decisions for this language, subsequently named Ada, were
driven by the needs of embedded systems applications. Yet it is the designers of such
applications that are currently among the most dissatisfied users of Ada. For many,
the use of Ada is being treated with, at best, reluctant acceptance, and at worst,
outright refusal.

Unfortunately, the reasons for this reaction are clear. A single language able to
support the broad spectrum of DoD embedded applications must be comprehensive.
Translate that to "complex," and read that "big" [Hc80], jWb841. For computer software,
big nearly always implies "slow," and big and slow are not desirable adjectives for
real-time embedded systems.

Ada is indeed comprehensive. Providing parallel' processing, exception handling, and
machine dependent facilities as well as structured programming support capabilities
such as strong typing, modularity, readability, and generic definitions, Ada seems to
have something for everyone. And early implementations have, as expected, proven
to be less efficient in terms of timing and sizing than those of previous HOL's.

E.3.4.2

Then there is the policy of Ada standardization via formal validation. Where previously
there was close interaction between compiler implementers and systems designers in
order to develop project-specific run-time protocols and interfaces, now Ada compiler
implementers must make virtually "sterile" design decisions based on the mandated
necessity of passing the Ada Compiler Validation Capability test suite.

Finally, the acceptance of Ada requires the acceptance of a special, extra execution
support package, the Ada run-time support system. This run-time support is required
above and beyond that provided by the computer's operating executive and the
application code to support Ada semantics. It appears as object code at execution
time, providing many of the support functions previously designed and written by the
embedded applications designer. Yet it is basically "canned" by a supplier who is
unfamiliar with any project-specific needs.

The following sections are an initial view of Ada run-time support systems issues which
must be defined and understood in order to make effective use of this new HOL for
embedded real-time applications.

2.0 REAL-TIME ISSUES

It is to be expected that the most common complaints heard from real-time
programmers about the Ada run-time support system is that it is too big and too slow.
In addition, there is dissatisfaction with the tasking model, the delay statement,
rendezvous costs, exception handling overhead, context switches, and more.
Real-time designers, accustomed to using assembly language or HOL's not requiring
additional run-time support, find it difficult to deal with the overhead that accompanies
an Ada program.

A major stumbling block is presented by the Ada tasking model. Although a
necessary and correctly included feature of the language, it seems that not quite
enough home-work was done by the language designers to support the needs of
real-time applications. Traditional approaches to real-time operating systems have
relied on precise timing and tight control over the sequence and length of execution of
individual system components. The Ada tasking model does not support this type of
control. As pointed out by MacLaren [M180], the cyclic executive approach, which is
most commonly applied in real-time situations, is based on synchronous sequential
execution, while Ada tasking is by definition asynchronous and concurrent.

Resolutions of this conflict fall into three basic categories. Some real-time designers
simply refuse to use Ada tasking, and write the executive as they would have in a
language that does not support tasking. The second approach is to try to force the

E.3.4.3

Ada model to fit the solution. Finally, the solution can be redesigned, making full use of
the approrriate Ada constructs. Each approach will succeed in certain situations, but
the third approach is the one that must be chosen if Ada is to succeed in the long run.
It is also the one least likely to be chosen, as experienced designers will be reluctant
to abandon the "tried and true" cyclic executive.

3.0 AREAS OF CONCERN

The intent of this paper is to point out the areas of the Ada run-time system where
implementation choices can affect real-time performance. The elements affecting
run-time performance are so broad that the scope of this paper will have to be limited
to some reasonable subset of them.

It is first assumed that the run-time system is written for a bare target. In this situation,
the run-time system is fully responsible for run-time efficiency. It is also assumed that
the target is a uniprocessor. The problems of multi-processing/multi-programming
systems will be left to the more ambitious. Finally, no distinction is made as to whether
the constructs discussed are actually in the run-time library or generated by the code
generator. As noted before, there is no standard for this interface.

The main areas of concern seem to fall into some rather general categories, but defy
rigid classification. To bring order to the discussion, the areas will be loosely grouped
under the following categories: capabilities, control, kernel support, and tasking
support. Capabilities and control can be looked at on either an individual level or a
system level. The kernel support basically refers to the problems and elements within
a program without tasking. The tasking support includes all the elements necessary to
implement Ada tasking. Under kernel support and tasking support, individual system
elements will be explored.

3.1 C APAB I LIT1 ES

Run-time support capabilities are those features of the run-time system that affect the
application system's ability to perform its function. They represent a measure of the
limitations and performance of the system with respect to what it can do and how well it
is able to do it. What it can do refers to such features as support for or actual inclusion
of hardware drivers, extended memory capacity, or the degree of accuracy supported
for fixed or floating point calculations. How well it can do it refers to performance
features such as space and time efficiency of the run-time system itself, and also of the
compiler generated code. An obvious example of this is the level of code optimization
achieved by the compiler. A more subtle example is the modularity of the run-time
system and the user's ability to select and load only those features that are used in an
application.

E.3.4.4

Specific examples of capabilities that may be necessary are numerous. The ability to
specify an absolute load location for a section of code. A tracing feature that tracks the
scheduler of the tasking system in real-time may be the only way to recover after a
crash or to track down an elusive bug. It may be necessary to have a certain degree of
accuracy for fixed point calculations. For the MIL-STD-1750A instruction Set
Architecture, the extended memory option is not a trivial addition to a run-time system.

3.2 CONTROL

Control here refers to the amount of influence possible over the system. One method
of exerting control is through pragmas. Most systems for embedded targets have not
fully implemented even the standard pragmas of the LRM. This will change, however,
and more and more additional pragmas will be implemented as well. In this way, the
vendor will be able to include special functions or capabilities not required by the
standard, but of real value to a user. For example, pragmas will be able to specify that
some function is not required by the application, and allow the system to eliminate that
function from the resulting object code, saving at least space and quite possibly
execution time.

"

Pragmas can also be used to request that the system do things in certain ways.
Pragma optimize requests that optimization be done with one of those two often
opposing goals, space and time, as the main objective. Pragma time-slice requests
the system to implement a time-slicing algorithm among tasks of equal priorities.
Pragma inline requests that a subprogram be included inline at each call. A pragma
could be included to specify whether generic expansions should be done similarly to
assembly language macro expansion, creating unique instances of code for each
instantiation or i f code should be shared as much as possible. Allowing the
programmer to specify this information in pragmas lets the system take advantage of
application-specific knowledge.

For critical real-time applications, it is useful to be able to include only those functions
needed in the run-time system code that is loaded with the application. If the system is
well structured, excess code could be cut from the run-time system at the source level,
creating a subset system to be compiled and linked to the critical applications. One
good example of this is removal of the entire tasking system. The legal aspects of this
with respect to validations, however, are unknown. Another alternative is to use some
type of smart linker or pre-linker that will only link in the portions of the run-time system
that are necessary. This requires cooperation from the compiler, as often identification
of the required run-time support routines must be done at compile time. Although the
end result of these two approaches is the same, the latter one seems to be more "legal"
than the former.

E.3.4.5

3.3 KERNEL SUPPORT

The implementation of the run-time kernel is of primary concern to real-time system
designers. The basic support required from an Ada run-time system includes elements
such as exception and interrupt handling, system clock functions, system initialization,
and memory management. The effective use of registers, storage for stacks and
heaps, implementation of activation records and scoping, and parameter passing
mechanisms will all affect system performance.

3.3.1 SYSTEM CLOCK

The implementation of the system clock can be an important factor in the overall
capabilities of the system. The counter timer chip used to drive the system clock
defines the minimum granularity of time available to the system. The second level of
granularity is the basic clock period, which can be found in the Ada package SYSTEM
(SYSTEM.TICK) [US83]. A different level of granularity is represented by the Ada type
"duration", which is not required to be the same as SYSTEM.TICK. The relationship
between these values impact the system in different ways.

There is not usually a practical use for the finest granularity available from the
hardware. Typically, some reasonable value is chosen for the size of the clock period,
and an interrupt is generated at this rate. The interrupt handler updates the system
clock, and this represents the finest resolution available. Note that, if the main
processor is responsible for clock maintenance, as the resolution increases, so does
the amount of time spent handling interrupts and maintaining the clock. (This is not
the case if the clock is maintained independently of the CPU.)

The Ada type "duration" is not required to have the same resolution as the clock period.
It is required by the Ada LRM to be at most 20 milliseconds, and is recommended that
it be no more than 50 microseconds. A real-time system has timing constraints that
require response within given time intervals. The clock period or the resolution of type
duration must support these requirements. One system studied was found to accept a
higher resolution of type duration than the system clock would permit. Although this
may seem wrong at first, it was possible on that system to determine the displacement
into the current clock period, and a separate timer was available for purposes of
releasing the delayed tasks at the finer resolution. This is potentially more efficient,
allowing finer resolution to be maintained only when necessary.

E.3.4.6

3.4 TASKING SUPPORT

The tasking supervisor typically comprises a major portion of the run-time system. In
this area, many variations in implementation can appear, and can have great impact
on the run-time performance of any program that includes tasking. The Ada LRM has
defined the interface to the tasking system from an applications program, and a
method of communication and synchronization between tasks, but has left a large part
of the implementation of that system undefined. The implementer is constantly faced
with a choice bewtween doing something "bare bones" quick, efficient, and simple, as
would be necessary only to satisfy the LRM requirements, or going further and
including features that, although not required by the LRM, are known to be highly
desirable for real-time processing. If the decision is made to go beyond the
requirements, then the question becomes how far to go. Added complexity will
adversely affect performance, and it can be difficult to determine what is acceptable
and what is not.

3.4.1 SCHEDULING

Task scheduling is an important consideration for a multitasking application. The Ada
LRM does not specify a scheduling algorithm for tasks of equal priorities. Even for
tasks of differing priorities, the requirementrs indicate that the task with the higher
priority should be running, but the wording still leaves room for argument. Also of
concern here are queueing structures, priorities, pre-emptive priority scheduling, and
time slicing.

3.4.1.1 QUEUEING STRUCTURES

The order in which tasks (of equal priority) are initially put on the ready (or run) queue
should be of little consequence. The Ada LRM states that programs that depend on
the order of scheduling are incorrect. What is important is the method used at run time
to reschedule tasks as they become ready again after a delay or some other blocked
state. In theory, higher priority tasks should be dispatched before those with lower
priorities. Within each priority, some fair method of sharing the processor should be
implemented to prevent starvation of any single task. This may seem obvious, but the
Ada LRM does not specify prevention of starvation. In fact, as long as a task does not
block itself, and in the absence of synchronization through rendezvous, it is legal to
allow each task to execute to completion before beginning execution of the next task.
And unless some method of pre-emption is used, even a task of higher priority that
becomes ready while a task of lower priority is running is allowed to wait until the
currently running task relinquishes the processor.

E.3.4.7

The implementation of the queuing structures is not generally a factor in performance,
but the ordering and maintenance of the queues is. The run-time system minimally
provides a delay queue and a ready queue, and may additionally have a ready queue
for each priority or may simply order the ready queue by priority. There may be many
other queues in the system on which a task may be placed, but, (with the exception of
rendezvous entry queues which will be discussed in another section) these should not
affect scheduling order. The ready queue(s) should be ordered first by task priority.
Within each priority, the queues should ideally be FIFO, but this is at the discretion of
the implementer. The delay queue is optimally ordered by wake up time, the next task
ready to wake up being at the front of the queue.

3.4.1.2 PRIORITIES

Priorities are supposed to be static except during a rendezvous, and if they are, then
their effect on scheduling should be straight-forward. Some vendors may be
developing some method of implementing dynamic priorities, and this will require
dynamic modification of the ready queue, but as of this time, none have been
announced.

Another issue in regards to priorities is whether or not higher priority tasks that become
ready can pre-empt a currently running task of lower priority. This is a critical issue for
many real time applications. The most common instance in which this becomes
necessary is when a high priority task has been delayed for a given time span and that
time span expires. The high priority task should then be allowed to pre-empt the
processor from any lower priority task that may be running at the time. The alternative
to this is to make the high priority task wait until the lower priority task relinquishes the
processor, and then allow it to take precedence over all other ready tasks of lower
priority. This is intolerable for real-time applications.

3.4.1.3 TIME SLICING

A final issue on scheduling is time slicing. Although overhead is required to implement
time slicing, it is a good way to insure that each task within a priority will get an even
chance at processing time. Some implementations may allow any task to be assigned
an independent length of time for its time slice, or a single value may be available for
modification to specify the slice length for all tasks. The user may be able to turn time
slicing on and off through a software toggle. If time slicing has been implemented in
conjunction with pre-emptive priority scheduling, the algorithm must take into
consideration the time remaining in the slice allotted to a task that gets pre-empted so
that it will be allowed to finish its slice when scheduling returns to that priority level.

E.3.4.8

3.4.2 CONTEXT SWITCHING

A terminology that is popular to toss around is the time required for a context switch
between tasks. The code required and the time it takes to execute the actual context
switch (that is, to change the registers, stack pointer, program counter, etc) from one
task to the next are extremely hardware dependent. It is not apparent that this time
has any relation to the time it takes to invoke a different task, since there is a
tremendous amount of overhead involved in supporting Ada tasking that must also be
done at that time. The real question is how long it takes to get a different task running
once the first has given up the processor, and this reflects the amount of overhead
inherent in the tasking system itself.

3.4.3 TASK TERMINATION

The part of the run-time system devoted to managing task termination can be quite
extensive. The tedious bookkeeping of dependence on masters, and status of children
and sibling tasks is necessary to insure that tasks terminate properly. In many cases,
this overhead is necessary, but in some situations, an application may want to do away
with this overhead if it does not have tasks that terminate. \This is another case where
the structure of the run-time system will determine the possibility of removing or
disabling this part of the system.

3.4.4 DELAY PROCESSING

When a task executes a delay statement, the run-time system must calculate the
wake-up time, update the delay queue, possibly set or reset the wake-up timer, and
dispatch a new task. Depending on the implementation, other functions may be
required. These should be done in as efficient a manner as possible.

The processing of delay expirations can be handled in a variety of ways. If pre-emptive
priority scheduling has been implemented, then a delay expiration may become a
scheduling event, as the task whose delay has expired may be of a higher priority than
the currently running task. To implement this, a separate timer may be set for the next
scheduled delay expiration, and the code to release the task to the ready queue may
be included within the handler for this interrupt. Or the code may be included within
the dispatcher, and the interrupt may return to the Ada application through the
dispatcher. This method forces the system to run through the scheduling routine,
which may not be necessary if the released task is not of a higher priority than the
running task. The code may also be included in the handler for the clock interrupt, if
the resolution of type duration is equivalent to the clock period. In any case,
pre-emptive scheduling requires the use of some method of regaining control of the
processor by the run-time system. The efficiency with which this is accomplished is the
only real consideration.

E.3.4.9

t .

If scheduling is not pre-emptive, then the processing of a delay expiration can simply
wait until the next scheduling event, whenever that occurs. Wake-up timers are not
involved, and less overhead is required. But for real-time systems, this method is not
really an option.

3.4.5 RENDEZVOUS COSTS

Rendezvous are effectively similar to procedure calls, yet they are much more complex
to implement, and therefore create a tremendous amount of overhead for the run-time
system. One task must always wait for the other to reach the point of the rendezvous,
the system must invoke the rendezvous when both tasks are ready, and context
switches are required between the tasks during the rendezvous. Priorities are not
static during a rendezvous, and this presents additional overhead.

It is possible for the run-time system to optimize rendezvous so that the cost is more on
par with that of a procedure call, but some preparation must be done at compile time.
No context switch should be made if none is necessary, (such as when no code is
associated with the accept statement) or when the code does not require one. This can
be difficult to determine, and must be done at compile time.

4.0 CONCLUSIONS

As compilers targeted to bare computers become more common, the range of quality in
run-time performance will become more apparent. Currently, many embedded systems
designers are unaware of the variances simply because Ada is so new. These
designers have long known what to look for in a good compiler, but many have no
idea what to ask a vendor about the run-time support system.

The best run-time support for any application is determined by the individual needs of
the application itself. But in a general sense, a good Ada implementation meets the
basic LRM requirements, is of high and consistent quality, and is adaptable to the
needs of the user. It is hoped that this paper and its successors will assist in defining
the issues which impact the design and implementation of Ada run-time support
systems. Once this is accomplished, ease of understanding and use should become
more readily possible, allowing Ada to satisfy its requirements and original intent.

E.3.4.10

I .* .

BIB LlOG RAPHY

[AR85] ARTEWG, "Draft Charter for the Ada Runtime Environment Working Group",
July 17, 1985.

[BR84] Baker, T.P. and G.A. Riccardi, "Ada Tasking: From Semantics to Efficient
lrnplementation", Florida State University, November, 1984.

[BS85] Baker, T.P. and G. Scallon, "An Architecture for Real-Time Software Systems",
Boeing Aerospace Company, Seattle, WA, July, 1985.

[GL83] Gligor, V.D. and G.L. Luchenbaugh, "An Assessment of the Real-Time
Requirements for Programming Environments and Languages", IEEE, 1 983.

[Hc80] Hoare, C.A.R., "The Emperor's Old Clothes", Communications of the ACM, Vol
24, No. 2, Feb., 1981.

[MI801 MacLaren, L., "Evolving Toward Ada in Real Time Systems': Boeing Military
Airplane Company, Seattle, WA, 1980.

[US831 United States Department of Defense, "Reference Manual for the Ada
Programming Language, A NSl/MlL-STD- 18 15A ' I , Fe b., 1 983.

[Wb84] Wichmann, B.A., "ls Ada Too Big? A Designer Answers the Critics",
Communications of the ACM, Vol 27, No. 2, pp. 98-1 03, Feb. 1984

BIOGRAPHY

Ruth A. Maule is a systems analyst for the Ada language group of the Software
Technology Division of Boeing Aerospace Company. She is currently doing research
in the area of Ada run-time issues with respect to real-time embedded systems, and
has written an internal Boeing document on the evaluation of Ada ru -time
environments. She has done modifications to run-time systems currently in use at
Boeing. She is a principal member of the SlGAda Ada Run-Time Environment
Working Group (ARTEWG). She received MSCS and BSCS degrees from Florida
State University in 1985 and 1983 respectively.

E.3.4.1 1

N89-16346
E . 3 . 5

t

INTERESTING VIEWPOINTS T O THOSE WHO W I L L PUT Ada INTO PRACTICE

Arne Carlsson
Saab Space A0

Goteborg, Sweden

INTRODUCTION

Ada will most probably be used as programming language for computers in the
NASA Space Station project. There will be a great number of computers and
computer types, e.9. in space for Data Management System, Crew Working Station,
experiments and on ground for flight control, launch control, maintenace,
validation, integration, software development. Will Ada be used for all these
computers or only for some of them? It is reasonable to suppose that Ada will
be used for at least embedded computers, because the high software costs for
these embedded computers were the reason why Ada activities were initiated
about ten years ago.

Saab has since 1979 followed the Ada activities, and during the last two years
w e have studied Ada for usage in our products, which are embedded computers for
on board use in space applications. The Ariane launcher, Hermes shuttle and
Columbus, which will be the European part o f the NASA Space Station, are
examples o f such applications.

On board computers, 0BC:s , have been developed by Saab since 1973, and these
0 B C : S are used in a number of applications, for example the Ariane launcher.
the EXOSAT, SPOT and HIPPARCOS satellites and in the E U R E C A platform. Up to
now. assembler language has been the main language for these embedded computers
even if there are high level language compilers as Pascal, Coral66 and Fortran
available.

Our on board computers are designed for use in space applications, where
maintenance b y man is impossible. All manipulation of such computers has to be
performed in an autonomous way or remote with commands from ground. In a manned
Space Station some maintenance work can be performed by service people on board,
but there are still a lot of applications, which require autonomous computers,
for example vital Space Station functions and unmanned orbital transfer
vehicles. In other words, the aspects in this paper are most valid also for
embedded computers in the NASA Space Station.

The rest of this paper will deal with those aspects, which have come out
of the analysis of Ada characteristics together with our experience of
requirements for embedded on board computers in space applications.

t

Ada is a registered trade mark o f the U.S. Government Ada
Joint Program Office.

MOTIVES FOR Ada USAGE

There are at least two large groups, which perhaps have not exactly the same
requirements on the programming language, these are the computer manufacturers
and the customers.

Saab is manufacturer of embedded computers for space applications on board. We
wish t o make some form of profit as a result of our computer production. If our
computers are very attractive also without Ada support, then it is tempting to
avoid Ada, because the costs to develop an Ada support to a computer are very
high. On the other hand, if it is possible to increase the price of a computer
because the Ada support makes it more attractive, then it is an interesting
alternative.

Ada i s designed t o give low maintenance costs and high quality of the program.
Therefore, because the customer pays the life cycle cost, Ada will be
attractive for customers with long lived projects, which contain vital
functions. However, development of Ada programs requires at least the same
or more resources compared with development in other languages, because Ada is
designed to be 'read' (maintenance) rather than be 'written' (development).
This means that for very short lived programs, another language can be a better
choice. Most space projects have a very long life cycle, which means that Ada
ought to be a good choice from space customer's point of view.

The most important impact on the Ada development, however, comes from large
customers. who require Ada as programming language. Then the computer
manufacturers have to give Ada support to their products if they want to
participate in the project. This happens for example when Department o f Defense
requires Ada for their projects. The Swedish Do0 also requires Ada after
January 1 9 8 6 for new military projects. The same thing happens in a number o f
countries. Because of these very strong 'pro-Ada' forces, the usage of Ada will
probably increase all over the world, and the computer manufacturers have to
give Ada support to their computers if they want to have a chance in the
competition on the market. The customer will choose a computer with Ada
support, because it is important to minimize the software costs, which take
such a great part of the costs of a computer system during the life cycle.

From programmers point of view, Ada is a nice language. It is a total language,
which means that no dialects are required (or allowed). Ordinary operating
system functions are, for example, included in the language. A normal reason
why assembler languages have been used for embedded computers i s the interface
between the embedded computer and the external world. Very often this interface
i s a special non standard type, which is not supported by any high order
language. Ada is designed especially for such embedded computers, which means
Ada in fact is the first chance to get embedded computer software, which
is possible to maintain in a pactical way. Because of the high degree of
standardization in Ada, the risk for misunderstanding between programmers is
minimized. This is important when a number of countries participate in a space
project, and will contribute t o an increased program quality and lower cost.

Ada PROGRAM LIMITS

View the following figure:

I Ada TOTAL I
I I
I 1 Ada 1 I I
I 1 I I
I 1 1 I I I
I 1 1 COMPUTER 1 I I I
1 1 1 I I I I
I 1 1 I I I I
I 1 0 I I I
I 1 0 I 0 I
I 0 0 I
I 0 0 I
I 0 0 I
I 1 0 Ada N I 0 I
1 1 I I I
I 1 1 I I I I
I 1 1 COMPUTER N I I I I
I 1 1 I I I I
I 1 1 I I I I
I 1 I I I
I 1 I I I
I I I
I I I

I
I

INPUT/OUTPUT

The Ada language tells nothing about the number o f computers, which take part in
execution o f an Ada program. Suppose that computer modules 1 to N cooperate to
execute one program, A d a TOTAL, then the programmer has to think only on the
black box function and on the INPUT/OUTPUT signals. All communication and time
synchronization between computer modules and task allocation to the modules
1 to N W i l l be performed by a program, that can be generated by one Ada
compiler. This compiler has to know a lot about each computer module and also
about the communication lines between the modules. Another way to solve the
problem is t o write a number of programs, Ada 1 to Ada N , and use one or more
compilers, which generate code for one computer module at the time. Here the
programmer must write the program, that has to administrate the time
synchronization and communication between the computer modules and also for
the task allocation.

From the computer customer's point of view it seems attractive t o choose the
Ada TOTAL alternative and let the Ada compiler d o a lot o f the work. In the
Space Station, for example, it would be nice if one "clever' Ada compiler
handled the communication between computer modules. However, in practice there
are a lot o f problems with this Ada TOTAL alternative. Development costs for
such a compiler will be very high and time very long; if the computer
structure is very complex, then the risk is high that no compiler at all is

E . 3 . 5 . 3

available when needed. Even if such a compiler is possible to develop, the
price will be so high, that it is difficult to sell the compiler. Its
Special architecture makes it impossible to use in other applications, and then
the development costs can not be spread out on a number of products. In the
Space Station project, the computer modules will most probably come from
various computer manufacturers, and this complicates the Ada TOTAL compiler
still more. Questions about responsibility, maintenance and modifications of
the computers as well as the Ada compilers during the life cycle will be
complicated when many companies are involved in and controlled by the same
compiler. Also the support equipment for development, integration,verification
and maintenance will be complicated and so will the administration of the
support equipment.

The Ada TOTAL line seems to be not usable in practice because o f the following
reasons: too high complexity in technical functions and in administration
between companies. This indicates that the other way with several programs,
Ada 1 t o Ada N , will be a better one. Then the interface between compiler
and computer can be handled within one company. The interface between companies
will consist of the communication lines. Experience shows that connection of
computers from two or more manufacturers can take very long time and be
extremely expensive if the communication interface is badly defined, because
people think that they d o understand each other, but they d o not. Therefore it is
very important to define all communication protocols in detail as soon as
possible in a project.

In the Ada 1 t o Ada N alternative, it is not possible, within the Ada
concept, t o distribute a data base to several computer modules. The solution
will be t o provide each computer module with a program, that will handle
communication lines and distributed data between computer modules. B y defining
a suitable program interface t o this communication interface, the application
programmer will get a feeling of distributed data base.

Ada PROGRAMMING SUPPORT ENVIRONMENT , APSE

From software point of view,a computer system consists of: embedded target
computer hardware and software, environment for development and maintenance
of software, programming language for the embedded computer.

I I
I I PROGRAHHING LANGUAGE I I
I I I I
I I
I I

I I I I
I EMBEDDED COMPUTER I I ENVIRONMENT FOR I
I I I PROGRAMMING SUPPORT I

I I

The programming language in fact belongs to the environment, but because of its
great importance, it is oftpn handled as a separate component.

E . 3 . 5 . 1

It 1 s important to choose and adapt these three computer system components to
each other in a proper way to make it possible to reach specified requirements,
for example quality and l o w life cycle cost.

Not only the embedded computer but also the programming support environment
and language must work properly during the entire life cycle, which for space
applications can be very long, perhaps 10 to 2 0 years. Consequently Ada, which
is designed for long life cycle projects and easy to maintain, shall be used
not only for the embedded computer but also for programming of the environment
computers.

The Stoneman specification for Ada Programming Support Environment, APSE,
says that the programming language for the APSE itself shall be Ada; only the
most hardware near programs may be written in another language, normally on
a lower level. Then, if the APSE hardware must be exchanged to another one,
only these lower level programs have to be rewritten. However, these programs
close to the hardware can be very hard to develop, which means that the
Software costs for exchange of APSE hardware can be very high, even if most
programs are written in Ada. Rewriting of the APSE kernel programs
will also affect the APSE quality in a negative way, because each time a new
piece of program is included, the number of software design errors increases,
and it takes time t o reach the same quality level as before the rewriting.
The following figure shows this.

PROGRAM QUALITY
I
1

I

1
I .

I I I TIME
REWRITING R E W R I T I NG

It i s possible to avoid these effects by using environment computers wlth
either totally compatible or standardized instruction sets and I/O signals.
Then no software at all need to be rewritten because of new computers in the
environment, and the QUALITY/TIME diagram will have the following look:

PROGRAM QUALITY
I
I
I
I
I
I .
1 .
I TIME

E . 3 . 5 . 5

It could be a risk that such standardization and compatible ideas destroy the
possibilities for computer hardware evolution, but I d o not think there i s
any risk in practice. An example of this is the MIL-STD-1750A. There are very
powerful and usable such processors, even if their instruction architecture
is old. Remember that the most expensive part of a computer system, the
software, will be improved by this philosophy.

If the embedded computers could use the same instruction set as the computers
in the environment, then w e would get a number of advantages. The price of
the Ada compiler for the embedded computer can be lower if the compilers to
the environment and to the embedded computer can be derived from each other.
This is important because Ada compiler development i s very expensive. It will
also be easier t o find programmers for development and maintenace during life
cycle if the instruction set is used also in many other computers. The same
programs can be utilized in the environment as well as in the embedded
computer, which is positive from quality point of view.

Software activities around on board space applications are different compared
t o ground applications. On ground it is possible, and also normal, t o
deliver software with guaranty and modify if it does not work properly during
integration and validation. On board in space the software has to work the
first time it is used in practice, especially vital programs for spacecraft
control. Of course the flight software is carefully tested on ground before
launch, but the real environment is met after launch, for the first time.
The flight software has t o pass several phases: first it will be developed
on ground and this phase i s perhaps the most 'normal' one, but it i s still
different from program development for embedded systems on ground. For example,
regard the debugging session, where an accepted method is to use in circuit
emulation for embedded systems on ground. The principle is that control lines
and busses are drawn out and the processor removed from the embedded computer
to the programming support environment, from where it will be possible to
control the embedded system in detail. When an on board computer for space
use shall be validated or integrated in a subsystem on ground, it is very
difficult to use the in circuit emulation method, because the control lines,
busses and processor can not be drawn out because of quality, reliability
and practical reasons. This means that the best software development tool
existing today for embedded computer systems, the in circuit emulation, can
perhaps not be utilized for embedded on board space computers when it is most
needed. The on board computers, developed by Saab, are equipped with special
hardware and microprogram software to allow powerful debugging also in these
embedded situations. The next phase for the flight software is execution in
space. For manned missions the maintenance can be performed on board, but the
program debugging will be still more complicated than on ground. Connection
of programming support environment for in circuit emulation is as difficult
as on ground, but even if it would be possible, it can be difficult t o bring
the ground programming Support environment into space. Probably specially
designed programming Support environment has to be developed for use on board
in manned missions. For unmanned missions the maintenance has to be performed
remote, which means that a number of other computers and communication lines
constitute the interface between the embedded on board computer and the
programming support environment. To make remote maintenance possible, the on

E . 3 . 5 . 6

b o a r d computer has t o be equ ipped w i t h e x t r a p rograms and perhaps a l s o e x t r a
hardware t o p e r f o r m debugg ing commands f r o m g round . The programming Suppor t
equ ipment a s w e l l a s t h e embedded computer a l s o must have t h e r i g h t i n t e r f a c e
t o t h e i n t e r m e d i a t e computers and commun ica t i on l i n e s .

What does s t a n d a r d i z a t i o n mean f o r Ada Programming Suppor t E n v i r o n m e n t , A P S E ?
Regard a s an example t h e debugg ing on ground and t h e remote ma in tenance on
b o a r d a s d e s c r i b e d above (a l s o v i s u a l i z e d i n t h e f o l l o w i n g f i g u r e) .

GROUND ON B O A R D

I I I I
I EMBEDDED COMPUTER I I E M B E D D E D COMPUTER I
I I I I

I I
I I

I I I * I
I A P S E 1 I I I N T E R M E D I A T E I
I I I C O M P U T E R S AND I

I C O M M U N I C A T I O N I
1 T

I I
I A P S E 2 I

*
These computers m a y a l s o c o n t a i n a number o f Ada p rog rams ,
each s u p p o r t e d by i t s own A P S E .

W i l l i t be p o s s i b l e t o u t i l i z e A P S E 1 f rom one m a n u f a c t u r e r d u r i n g t h e
deve lopment phase and A P S E 2 f r o m a n o t h e r m a n u f a c t u r e r f o r ma in tenance
d u r i n g m i s s i o n ? I t ought t o be p o s s i b l e i f t h e f l i g h t s o f t w a r e s h a l l be
s u p p o r t e d d u r i n g l i f e c y c l e , w h i c h i s t h e mean ing when Ada i s used f o r
embedded sys tems. However, my e x p e r i e n c e o f A P S E i s t h a t a s l o n g a s you a r e
w o r k i n g i n s i d e t h e h o s t computer , where t h e A P S E s o f t M a r e i s execu ted , t h e n
A P S E g i v e s a l l n e c e s s a r y h e l p . I t a d m i n i s t r a t e s e d i t i n g , c o m p i l i n g , p r i n t i n g
and management o f p rog ram v e r s i o n s f o r example. Bu t when t h e t a r g e t computer
i n t h e embedded sys tem s h a l l be reached f o r p rog ram l o a d i n g , debugg ing and
e x e c u t i o n c o n t r o l , t h e n A P S E does n o t s u p p o r t t h a t . Then you have t o use
a n o t h e r equ ipmen t , w h i c h i s n o t i n v o l v e d i n A P S E . T h i s i s u n s a t i s f a c t o r y ,
e s p e c i a l l y because t h e program debugg ing perhaps i s t h e most d i f f i c u l t phase
i n t h e s o f t w a r e l i f e c y c l e . A l s o t h e p h i l o s o p h y o f p rogram l o a d i n g i n t o
embedded systems i s i n t e r e s t i n g . Suppose t h a t t h e embedded computer has no
n a t u r a l way f o r p rog ram l o a d i n g , t h e n w i l l t h i s p r o b l e m be s o l v e d as an
a p p l i c a t i o n f u n c t i o n , o r i s i t such an o r d i n a r y p r o b l e m f o r embedded c o m p u t e r s ,
t h a t i t s h a l l be s p e c i f i e d f o r A P S E ?

E . 3 . 5 . 7

B r i e f l y t h e requirements on A P S E f o r embedded computers on board i n space
a p p l i c a t i o n s a r e :
-use Ada a l s o f o r t h e A P S E computers
-use an i n s t r u c t i o n s e t i n APSE computers, which w i l l no t be changed d u r i n g

-use t h e same i n s t r u c t i o n Set i n A P S E computers a s i n the embedded computer

- A P S E s h a l l a l l o w power fu l debugging o f t h e embedded computer on ground

l i f e c y c l e

t o g i v e maximum support t o t h e embedded on board computer system

s p e c i a l l y d u r i n g i n t e g r a t i o n and v a l i d a t i o n phases, when i n t e r n a l s i g n a l s
a re d i f f i c u l t t o reach

- A P S E s h a l l be p o s s i b l e t o b r i n g i n t o space f o r manned miss ions , e.g. Space
S t a t i o n

- A P S E s h a l l a l l o w power fu l debugging o f t h e embedded computer on board i n
space t o be performed i n a remote way from ground

- A P S E s h a l l be standardized i n t h a t way t h a t i t i s poss ib le t o m a i n t a i n t h e
same Ada program on board f rom va r ious A P S E : s

- A P S E s h a l l comprise a l l t o o l s , which are necessary f o r programming suppor t
o f t h e embedded on board computer. A t remote debugging, however, t h e
i n t e r m e d i a t e computers w i l l no t be seen a s p a r t o f A P S E , bu t r a t h e r a s p a r t
o f t h e communication l i n e

-An APSE conta ins a l o t o f f u n c t i o n s , which a r e in tended t o g i v e , f o r example,
h i g h q u a l i t y programs and l o w l i f e c y c l e cos t . Some o f these f u n c t i o n s
r e q u i r e t h a t t h e programmer f o l l o w s g i ven r u l e s i n o rder t o reach t h e g o a l .
Here i s a r i s k f o r c o n f l i c t s between these r u l e s and the working r o u t i n e s o f
a company. No big company w i l l modify t h e o r g a n i s a t i o n a n d work ing r o u t i n e s
t o f i t an A P S E . Therefore a very impor tan t requirement f o r an A P S E i s
f l e x i b i l i t y t o make adapt ion t o va r ious company o rgan isa t i ons and work ing
r o u t i n e s p o s s i b l e .

The APSE a l s o ought t o c o n t a i n a Program Design Language, PDL, t o support t h e
e a r l y so f tware phases be fo re coding a s w e l l a s t he maintenance phase, when i t
can be a good h e l p f o r understanding o f program f u n c t i o n . Ada has been t e s t e d
a s PDL a t Saab, and been found t o be a good candidate f o r t h a t j o b . I t i s
p r a c t i c a l t o use the s p e c i f i c a t i o n p a r t o f an Ada program d u r i n g program
des ign , because i n t h a t way a p a r t o f t h e program code e x i s t s when t h e coding
phase beg ins .

Ada C O M P I L E R

A t Saab we are l o o k i n g f o r Ada compi le rs , which generates usable code t o
p rocessors , which we can use i n our embedded computers on board i n space
a p p l i c a t i o n s . U n t i l now, many o f our on board computers have been equipped
w i t h s p e c i a l i n s t r u c t i o n s e t s , which have been adapted t o each s p e c i f i c
a p p l i c a t i o n i n o rde r t o make i t as power fu l a s poss ib le . This has been p o s s i b l e
because t h e requirement of Programming support has been main ly an assembler
and a debugger, which are p o s s i b l e t o redes ign f o r each p r o j e c t . Now, when Ada
w i l l be r e q u i r e d . we have t w o ways t o go. We can develop Ada compi le rs t o our
Saab computers w i t h s p e c i a l i n s t r u c t i o n se ts . We can a l s o use microprocessors,
which a l ready are equipped w i t h Ada compi le rs , i n our on board computers.
Because o f t h e h i g h cos ts , which are r e q u i r e d f o r own development o f Ada
compi lers t o a r e l a t i v e l y sma l l number of s p e c i a l purpose computers, i t i s
tempt ing t o t r y t o use more s tandard ized microprocessors w i t h a l ready e x i s t i n g
Ada compi le rs . However, t h e r e a re a number o f impor tan t aspects t o t h i n k about
when buy ing an Ada compi le r , which w i l l be used f o r on board computers i n
space a p p l i c a t i o n s .

E . 3 . 5 . 8

Often you read in reports and other papers that it is important to use
'commercial microprocessors' and "commercial software' in order to keep costs
on a l o w level. Our experience says that this is not always true for long
life cycle projects, for example in space projects. The manufacturers of
commercial microprocessors and software have to compete with each other about
the commercial market, where the big money are. They offer new products within
short time intervals in order to try to be one step before the other. The
manufacturer's interest of maintenance for the old product will decrease, of
course, because he has to spend all resources on the latest product. If you
use such a product in a project with long life cycle, you will have to choose
between: A) keep the old product, which probably is space qualified, and hope
that it will be supported during the life cycle of your project: or E) take
the new product and hope that it becomes space qualified. No one of these
alternatives is good. Each of them can end up in very high costs to find a
usable alternative. A better alternative would be to define and standardize
a processor for space applications on board. It could be done analogous with
the MIL-STD-l750A, defined by DoD. I f such a standard is used in space projects
with long life cycle, then you have always a good chance to find a new
qualified component if you lose one. You can also replace such a processor
with a new one with no software modifications at all. The old Ada compiler
can for example be used. It is a hard job and it takes long time to define
and state such a standard,and until that is done I think a good idea would be
t o use the MIL-STD-1750A for embedded computers in space instead of using
commercial processors and software.

When Ada is used as programming language, it would be an advantage if a future
processor standard for space were adapted for Ada. The MIL-STD-17SOA specifies
a register machine, while a stack machine architecture would be a more suitable
processor standard in space applications where Ada is used. The reason is that
the instructions of a stack machine are on the same level a s A d a statements,
while the instructions in a register machine are on a lower level. This gives
in turn as result that the stack machine requires smaller program memory
compared with the register machine. Comparisons in practice show that a stack
machine needs only about half of the memory required by a register
machine. The stack machine probably has higher performance too, for example
because of fewer accesses to memory and possibility to parallel processing o f
the high level instructions inside the processor. Performance tests often
consist of execution of an instruction mix. The instructions are normally
taken from the instruction set of a register machine, which is a drawback for
the stack machine. In this way the register machine can give best test result,
while the application function is best performed by the stack machine. It 1 s
therefore of great importance that the performance tests are specified in
functional terms in order to find the most suitable computer.

Small memory and high processing power are perhaps not important requirements
in embedded systems on ground, but it is in space applications on board. The
reasons are: very high costs to put power, mass and volyme from ground into
space, and computer reliabilty decreases with memory size, which means that it
is very valuable if you can do the job with one processor instead of two and
also if the memory is small. The ground expression 'waste with memory, it is
cheap!" is not true for on board computers in space; normally a qualified
memory for space costs one hundred times more than a ground memory.

A l s o t h e Ada compiler has great influence o n the memory size and processing

power. However, most o f t h e Ada compilers available today are not w e l l adapted
f o r embedded computers i n space applications. In fact most Ada compilers a r e
not developed for embedded computers at all. but for l a r g e administrative
computers. T h e n some of t h e m have been adapted t o various embedded Computers.
It i s a risk that small memory and high performance have got low priority
d u r i n g development of such a compiler. Probably f e w users of ground systems
a r e interested in compact code and high performance o f t h e generated c o d e .
Execution speed of t h e Ada compiler itself i s often m o r e interesting. Because
o f t h i s I t hink that development of special Ada compilers, i n order t o m e e t
t h e requirements for embedded computers in space, is motivated. T h e development
c o s t s would be payed back very soon because of lower costs for embedded
c o m p u t e r s o n board. I t seems natural for m e t o generate effective c o d e for t h e
embedded system on board w i t h an Ada compiler o n ground instead of increasing
embedded computer resources o n board because of ineffective code produced by an
Ada compiler o n ground. A standardized instruction set for embedded c o m p u t e r s
o n board i n space should also contribute t o the generation of m o r e powerful
c o d e i n that way that t h e Ada compiler manufacturers could concentrate their
e f f o r t s o n optimization o f c o d e t o only o n e instruction set; t o d a y , w h e n they
h a v e o n e Ada compiler working. it is time t o start development of an Ada
c o m p i l e r f o r t h e next instruction set. There is n o time for improvement w o r k .
Most Ada compilers a r e developed by software companies, w h i l e t h e processor
m a n u f a c t u r e r , w h o has t h e best knowledge about t h e processor and instruction
s e t , w o u l d b e most suitable t o d e v e l o p an Ada compiler, which generates o p t i m a l
code. A standard instruction set would give also t h e software companies this
possibility.

Normally t h e Ada compiler d o e s not generate all t h e code t o an embedded
computer program at each compilation. A large part of the program is involved
i n t h e Runtime Support L i b r a r y , RSL. which has been created earlier. The R S L
c o n t a i n s computer specific programs and perhaps also real time programs, e . g .
ordinary operating system functions, which w i l l be called by t h e c o d e
generated by t h e Ada compiler. RSL c a n be a relatively large program p a c k a g e ,
perhaps 100 - 200 kbytes. It i s therefore important that RSL is developed in a
m o d u l a r w a y , which allows generation of small Ada programs. If Ada shall be
used a l s o f o r small embedded computers, which w a s t h e intention w h e n t h e Ada
w o r k started m o r e t h a n t e n years ago, then it must b e possible t o sort out RSL
pieces o f about 1 0 k b y t e s , or perhaps smaller. That selection)ob shall be
performed by t h e Ada compiler automaticly. The RSL is highly dependent
o n t h e hardware architecture of the embedded computer. w h i c h m e a n s that you
normally h a v e t o modify t h e RSL a s soon as signal lines or components are
changed i n t h e hardware. T h i s i s a great problem from validation point of view.

Validation o f an Ada compiler is a costly process, therefore it is an a d v a n t a g e
f o r a compiler manufacturer i f his Ada compiler crn be used i n a s many
applications a s possible. For administrative computer system, e.g. a VAX w i t h
l i n e printers. d i s k s and terminals. a validated Ada compiler can be used i n
m a n y installations w i t h o u t t o be modified. This is possible because of t h e
standardized inputloutput units. For embedded computers it c a n b e very
difficult t o find even t w o computers w i t h equal i l o interfaces. This gives
different RSL:s or different Ada compilers, which i n turn m e a n s separate
validations for each system. Ada Joint Program Office, AJPO, proposes easier
r u l e s , they w i l l accept modification of validated Ada compilers and call such
a compiler f o r a derived Ada compiler. I think this gives a not desired result.

E . 3 . 5 . 1 0

.
?

One big reason to start up Ada development was wishes to decrease the high
software costs for embedded computers, and these high software costs depends
to a very high degree on all these complex i f 0 interfaces. Therefore, usage
of a great number of modified Ada compilers in order to fit all these i / o
interfaces, will not decrease the software costs for embedded computers. A
better idea ought to be usage of a smaller number various i f 0 interfaces,
which have been standardized, in order to make it possible to use one validated
A d a compiler to many embedded computer installations. Improvements of a
product can be done inside these i f 0 interfaces. It is not always necessary
to modify also the interface, even if it seems as a good idea from technical
point of view.

During the validation of an Ada compiler no measurements are made about size
of generated code or performance of that code. This is a lack if the code
shall be used in an embedded computer, because applications in such computers
are often time critical, for example to take a sample of an analogous signal
each 10 millisecond with an accuracy o f 1 millisecond. The situation can be
that the required function can be performed by the code from one validated Ada
compiler, but when you have to exchange your Ada compiler, for some reason, to
another validated Ada compiler, then the function can perhaps not be performed
by the new code. Analogously the memory can hold the code from one validated
Ada compiler but perhaps not from another. I think that the validation tests
should be supplemented with code size and performance tests, at least for
Ada compilers to embedded computers on board in space applications.

Generally, time i s an important parameter for embedded computers on board in
space. A normal requirement is that a number of computers on board have to be
synchronized to an absolute time. If the code to these computers are generated
by different Ada compilers, then time synchronization has to be performed via
the communication lines, if it shall be performed by software. The requirements
on the time accuracy are often so hard that it is impossible to perform
synchronization by using the long way via the application communication
protocol. Instead lower level protocols have to be used. I f this protocol
software is included in the R S L or generated by the Ada compiler. then the
Ada compiler must be seen a s affected by the time synchronization requirements,
but hopefully the different A d a compilers do not have to exchange information
to each other.

A question, which arises very often is whether it is possible or not to combine
Ada programs to programs written in other languages. The link process can be
organized to handle that, but I think it is better to translate source code
from other languages into A d a source code in order to get all advantages
from the Ada compiler.

Ada IN MULTIPROCESSOR COHPUTERS

Writing an Ada program to a multiprocessor computer shall from the programmers
point of view be equal to writing the program t o a single processor computer.
Static allocation of tasks between various processors is a job for the Ada
compiler and is transparent for the Programmer. If dynamic allocation shall be
possible, the necessary programs to d o this must be generated by the Ada
compiler or be included in the RSL. During program loading and debugging also
the APSE has to handle all processors in such a w a y , that they are transparent
for the programmer. The RSL, Ada compiler and the rest of APSE will all become
more complex compared with a one processor computer and are because of that
more expensive t o develop.

Fault tolerant computers can be seen a s a kind of multiprocessor computers,
which have possibility to detect faults and move tasks from a faulty unit t o
a fresh one. As for other multiprocessor computers, it shall be possible for a
programmer t o write an Ada program without thinking on the fault tolerant
computer architecture. It is a job for the Ada compiler to generate necessary
programs, or they may be included in RSL. For example, if the requirements
are Fail OperationalfFail Operational for a computer, then the RSL or the
code generated by the Ada compiler must be able t o take care of two faults
and still keep the Ada application program executing. As mentioned above, it
is very costly to develop support software, e . g . Ada compiler. RSL, loader and
debugger, t o this type of computers, and therefore it desirable to use as many
as possible of equal computers in order to utilize the costly support software.
The work t o detect faults and switch to fresh units can be performed either by
hardware or by software. The reliability will often be better, if software is
used, because of less hardware, and because of that the software method is
attractive for space applications.

An interesting question arises when you are talking about n-version programming
in order t o be tolerant against design failures. If all n versions of a program
are written in Ada, then n different APSE:s ought t o be used for code generation
and debugging, because such a complicated software package as APSE probably
contains design failures too. Then the question will be: is it realistic to
work with n different APSE:s from economical point of view?

E . 3 . 5 . 1 2

NW-16347
COMPARING HOST AND TARGET ENVIRONMENTS FOR DISTRIBUTED ADA PROGRAMS

MARK C. PAULK

SYSTEM DEVELOPMENT CORPORATION

4810 BRADFORD BLVD NW

HUNTSVILLE, AL 35805

A b s t r a c t

The Ada* programming 1 anguage prov ides a means of speci fyi ng 1 ogi cal concurrency

b y u s i n g m u l t i t a s k i n g .

i n t o a phys i c a l l y concur ren t d i s tri buted envi rorment whi ch imposes i t s own

requirements can l e a d t o i n c o m p a t i b i l i t i e s . These problems a r e discussed.

Us ing d i s t r i b u t e d Ada f o r a t a r g e t system may be a p p r o p r i a t e , b u t when u s i n g

t h e Ada language i n a h o s t env i ronnent , a m u l t i p r o c e s s i n g model may be more

s u i tab1 e than r e t a r g e t i ng an Ada compil e r f o r t h e d i s t r i b u t e d envi rorment.
t r a d e o f f s between mu1 t i t a s k i n g on d i s t r i b u t e d t a r g e t s and mu1 ti process ing on

d i s t r i b u t e d h o s t s a r e discussed.

m u l t i p r o c e s s i n g models i n d i c a t e d i f f e r e n t areas o f a p p l i c a t i o n .

Extending t h e Ada m u l t i t a s k i n g concurrency mechanism

The

Comparisons o f t h e mu1 t i t a s k i ng and

Keywords: Ada, d i s t r i b u t e d processing, mu1 ti t a s k i ng, mu1 ti processing, Ada

Programming Suppor t Envi rorment (APSE), s o f t w a r e engineer ing, computer networks,
i nterprocess communi c a t i on.

1. INTRODUCTION

I n d e s i g n i n g a s o l u t i o n t:, a r e a l - w o r l d p r o b l m , t h e systems a n a l y s t i s

f r e q u e n t l y faced w i t h t h e f a c t t h a t t h e r e a l w o r l d f u n c t i o n s i n terms of
c o n c u r r e n t a c t i v i ti es . Many appl i c a t i ons a r e model 1 ed most n a t u r a l 1 y by
l o g i c a l l y concur ren t tasks , b u t most computer languages do n o t suppor t
concurrency. Even when concurrent a c t i v i t i e s can be d i s t r i b u t e d on a computer
network t o achieve p h y s i c a l as w e l l as l o g i c a l concurrency, t h e des igner must

b u i l d t h e i n t e r f a c e s between t h e p h y s i c a l l y d i s t r i b u t e d components of t h e system
as w e l l as p a r t i t i o n on i t s l o g i c a l l y concur ren t boundaries.

*Ada i s a r e g i s t e r e d trademark o f t h e U.S. Government (Ada J o i n t Program O f f i c e) .

E.3.6.1

Recognizing t h a t concurrency i s t he na tu ra l approach t o sol v ing many probl ems,

t h e Department o f Defense (DOD) developed m u l t i t a s k i n g as an i n t e g r a l p a r t o f

t h e Ada programming 1 anguage speci f i c a t i on. Concurrent tasks may communicate
through task a c t i v a t i o n and te rmina t ion ; t h e y may share global var iab les ; o r

t h e communi c a t i ng tasks may rendezvous us ing e n t r y c a l l s and accept statements.

Synchronizat ion between comnunicating tasks may use s e l e c t i v e wa i t s , c o n d i t i o n a l

e n t r y c a l l s, o r t imed e n t r y c a l l s 111.

The h o s t / t a r g e t model was used i n des ign ing t h e framework f o r Ada env i rorments

12,3].
compi led b y a cross-compi ler , and t h e executable module downloaded t o t h e t a r g e t

system on which i t i s t o execute. Th is model descr ibes t h e t y p i c a l sof twared

devel opnent environment f o r embedded systems.

Ada programs a re developed on a hos t computer system. The program i s

A range o f o p t i o n s can be considered f o r t h e d i s t r i b u t e d t a r g e t . A l t e r n a t i v e s

t o mu1 ti t a s k i n g may be chosen, such as a mu1 ti process ing approach r e l y i n g on an
I /O-o r ien ted i n t e r f a c e f o r i n te rp rocess comnunication. F u l l y t ransparent d i s t r i bu-
t i o n o f t h e program can be implemented, o r , as i s more common f o r most e f f o r t s ,

o n l y tasks can be d i s t r i b u t a b l e . Al though t h e Ada m u l t i t a s k i n g model i n t u i t i v e l y

seems t o be t he na tu ra l model f o r concurrency i n t h e d i s t r i b u t e d environment,

C o r n h i l l has suggested t h a t t h e Ada programs could and should be a r b i t r a r i l y
d i s t r i b u t a b l e 14,5] . Packages and i n d i v i d u a l b locks o f code as we l l as tasks

should be d i s t r i b u t a b l e . Ada programs should be developed us ing t h e Ada

mu1 ti tas k i ng model f o r 1 ogi cal concurrency regard1 ess o f t h e under1 y i ng physi cal

concurrency. The phys ica l d i s t r i b u t i o n o f t h e Ada program can be s p e c i f i e d

u s i n g a d i s t r i b u t i o n language which i s i n p u t t o the compi le r w i t h t h e Ada source

code. The t r a d e o f f s between t h e var ious a l t e r n a t i v e s must be c a r e f u l l y

cons idered be fo re an approach t o imp1 ementi ng d i s t r i buted Ada programs i s

se lec ted .

The terms " task" and "process" a re f r e q u e n t l y used in terchangeably . I n t h i s

paper tasks a r e independent b u t i n t e r a c t i n g program components which execute i n

para1 l e 1 . A process i s an independent program execut ion and i t s con tex t . I t i s
t h e bas ic u n i t scheduled f o r execut ion b y t h e opera t i ng system and represents

E.3.6.2

the execution of a program 161.

yet execute as a s ingle process under an operating system w h i c h runs many
concurrent independent processes.

A sing1 e Ada program may contain many tasks ,

2 . DISTRIBUTED PROCESSING REQUIREMENTS
Distributed processing may be implemented on radical ly different types of
architecture. Shared memory architectures have mu1 t i ple processors sharing one
or more gl obal menori es , or processors w i t h 1 oca1 memory may be i nterconnected
by message-oriented communications l inks. These message-oriented l inks may be
s t r i c t l y point-to-point, or they may have a broadcast or mu1 t i - d r o p c a p a b i l i t y .

Distributed systems may interface by messages, remote procedure c a l l s , rendezvous,
monitors, or shared variables t o name a few of the approaches. A t the most
fundamental level there are only two classes of communication technology: those
which copy d a t a , e.g., a n I/O-oriented approach, a n d those which reference shared
d a t a , e.g., using global (shared) memory. Interrupts may provide an asynchronous
change of control flow t o s i g n a l a n event or message exchange, or the message
exchange may be referenced synchronously w i t h i n the process. Various
communications methods may be layered on these basic technologies t o provide
different access techniques a n d control flow structures.

There are a number of desirable capabili t ies for a distributed processing system.
These i ncl ude:

e
support for mu1 t i pl e readers;
support f o r mu1 t i pl e writers;
support for mu1 ti pl e i ndekndent message streams;
asynchronous i n p u t , i .e., a non- bl ocki n g recei ve;
asynchronous o u t p u t , i .e., a non- bl ocki ng send;
support fo r 1 ocki ng shared memory d a t a structures for m u t u a l excl usion;
control over the scheduling discipline;
access t o a system clock;
a n i nterval timer whi ch can asynchronous1 y signal events;
control over the distribution of processes on the network;

E.3.6.3

f a u l t de tec t i on and damage assessment.

t ransparent fau l t to1 erance;

support f o r mu1 ti cast;

0 support f o r broadcast;

0 s e c u r i t y features such as encrypt ion.

Al though a fea tu re may be des i rab le , i t may be imprac t i ca l t o implement f o r

performance reasons.

f ea tu res such as f a u l t to le rance t h a t i s a p p l i c a t i o n dependent.

There i s a t r a d e - o f f between Performance and desi rab l e

Considerat ions i n the a r e a o f d i s t r i b u t e d processor management I?] i n c l u d e

0 the a l l o c a t i o n o f processors: s t a t i c , dynamic, user-defined, o r automat ic

0 the a t o m i c i t y o f d i s t r i b u t i o n : packages, tasks, o r procedures

p o s s i b l e remote operat ions: rendezvous, a c t i v a t i o n / t e r m i n a t i o n , remote

procedure c a l l s , and global va r iab les

0 remote dependenci es and except ion handl i ng

a general network t o p i c s such as encrypt ion, p ro toco ls , and f a u l t handl i n g .

There a re two extremes t o us ing Ada i n the d i s t r i b u t e d env i romen t . One ext rene

t r a n s p a r e n t l y d i s t r i b u t e s Ada programs across the d i s t r i b u t e d envi r o m e n t . There

are, however , inheren t probl ens i n t h e Ada model o f concurrency when a p p l i ed t o

t h e d i s t r i b u t e d envi r o m e n t . A1 though sol u t ions may e x i s t t o many, i f n o t a l l ,
o f these problem, t h e performance pena l t i es ex t rac ted may render the m u l t i t a s k i n g

model imprac t i cal .

The o t h e r extreme f o l l o w s the mu1 ti processing model i n which separate sequent ia l

programs are developed which can be concur ren t ly executed.

use the techniques developed d u r i n g years of research i n t o d i s t r i b u t e d process ing

issues.

i n t r i n s i c t o the Ada concurrency model.

i s e x p l i c i t l y aware o f t h e under l y ing d i s t r i b u t e d a rch i tec tu re .

Ada programs can

The drawback i s t h e l o s s o f t he advanced sof tware engineer ing concepts

The advantage i s t h a t t h e system designer

E. 3.6.4

3. DISTRIBUTED ADA PROlffAMS

Imp1 ement ing t h e Ada concurrency mechanisms on a d i s t r i b u t e d system i s n o t a

s t r a i g h t f o r w a r d m a t t e r .

p rocess ing a r e n o t adequate1 y addressed b y t h e Ada mu1 ti tas k i ng capa b i 1 i ti es,

and a nunber o f assunpt ions i m p l i c i t i n t h e d e f i n i t i o n o f Ada t a s k s do n o t

n e c e s s a r i l y h o l d t r u e i n t h e d i s t r i b u t e d envi ronment 181. The imp1 m e n t a t i o n

of p h y s i c a l concu r rency may p lace r e s t r a i n t s on t h e des ign o f l o g i c a l concurrency,

f o r example, t h e use o f g lobal v a r i a b l e s i n t h e absence o f shared memory. These

c o n s t r a i n t s may be d r i v e n by bo th performance and f e a s i b i l i t y r e s t r i c t i o n s .

A nunber of issues wh ich a r e o f concern i n d i s t r i b u t e d

The Ada Language Reference Manual i n d i c a t e s t h a t mu1 ti t a s k i ng can be t r a n s p a r e n t l y

implemented on a d i s t r i b u t e d s y s t e n [9]. Several f e a t u r e s o f t h e language,

however, i m p l y a s ing1 e-memory system [lo] .
statements a r e t h e p r i m a r y means o f synchroni r a t i o n o f t a s k s , and o f c o m u n i c a t i n g
va lues between tasks , t h e use o f shared v a r i a b l e s i s a1 so d e s c r i b e d i n t h e language

s p e c i f i c a t i o n . Global v a r i a b l e s i m p l y a comnon memory. Access o b j e c t s as

rendezvous parameters i m p l y a common memory. Many d i s t r i buted systems, however,
do n o t s u p p o r t shared menory.

A l though e n t r y c a l l s and accept

Connect ion management i s n o t supported. There i s no su i tab1 e 1 anguage c o n s t r u c t

t o r e p r e s e n t a node i n t h e network; t h e r e f o r e d i s t r i b u t i o n o f t h e program cannot

be hand1 ed f rom w i t h i n t h e 1 anguage .

A l l poss i b l e c o n s t r a i n t s on synchroni z a t i on cannot be expressed u s i n g t h e
rendezvous p r i m i t i v e s . The rendezvous p rov ides s y n c h r o n i z a t i o n p o i n t s f o r

communi c a t i ng t a s k s .

t h r o u g h shared v a r i a b l e s) . Asynchronous comnunicat ion i m p l i e s nonb lock ing sends

and r e c e i v e s . Th is problem can be addressed by i n s e r t i ng a b u f f e r i n g t a s k (a1 so

c a l l e d agen t t a s k s I l l]) between t h e sender and r e c e i v e r , b u t t h i s may impose a
s i g n i f i c a n t degree o f overhead.

Ada p r o v i des on1 y synchronous communi c a t i on (o t h e r than

C o n d i t i o n a l e n t r y c a l l s i m p l y t h a t i t can be q u i c k l y e s t a b l i s h e d whether t h e

c a l l e d t a s k has executed t h e accept and t h a t t h e queue i s empty.
d e l a y s ta temen t would be used i f a " t imed" response was adequate, c o n d i t i o n a l

S ince t h e

E.3.6.5

entry c a l l s will be used by tasks t h a t cannot tolerate excessive delay. When
the called t a s k is on a remote node, timely response becomes a c r i t i ca l - a n d

u n q u a n t i fied - issue.

Timed entry call s may i mpl y a potenti a1 race condi t i on between the rendezvous
and the timeout.
involved i n the rendezvous? I f from the cal l ing t a s k , as seems logical , race
conditions may occur where the c a l l i n g t a s k has aborted a rendezvous t h a t the
accepting task has in i t ia ted . I f from the accepting task, a re the semantics of
t he language preserved?

Shou ld timeout be measured from the c a l l i n g or accepting tasks

An interval timer capabil i t y i s not supported. The Ada del ay statement guarantees
a m i n i m u m delay; the actual time interval can be a r b i t r a r i l y longer t h a n t h a t
specified by the de lay statement and s t i l l s a t i s f y t h e semantics o f the delay.

Packages STANMRD a n d SYSTEM need mu1 t i pl e defi n i tions i n a heterogeneous
dis t r ibuted environment. This imp1 ies a n interface to the network presentation
layer and possibly a canonical representation of en t i t i e s . Assunptions i n target-
dependent representation clauses may imply a specif ic system i n a heterogeneous
en vi ronnent .
Faul t to1 erance i s not addressed [1.2,13]. What happens when a d i s t r i buted system
has a processor crash? Can a "shadowing" task take over the f u n c t i o n a l i t y of a
"dead" task? Can the system degrade gracefully? Ada makes no expl ici t provision
f o r continuation. When a processor fa i lure occurs, services a n d d a t a may be
l o s t ; tasks may be permanently suspended on the s u r v i v i n g processors; and the
context of some tasks may be lost. A replacement t a s k cannot assune the name
of the t a sk i t i s intended t o replace, a n d there i s no provision f o r redirecting
the comnunication pa th used before the fa i lure .

Using Ada i n the distributed environment may require extensions t o the 1 anguage
[12], which, by def ini t ion, means the language is no longer Ada. I f there a re
res t r ic t ions on what Ada constructs are dis t r ibutable , i .e., shared variables
are not permitted, can the compiler be validated? I f the compiler generates

E.3.6.6

f u l l Ada f o r a u n i p r o c e s s o r and a subset f o r a d i s t r i b u t e d t a r g e t , c a n i t pass

v a l i d a t i o n as a d e r i v e d comp i le r based on i t s u n i p r o c e s s o r mode? The i s s u e of

v a l i d a t i n g Ada comp i le rs f o r d i s t r i b u t e d env i rorments i s n o t r e s o l v e d a t t h i s

t ime. By one p h i l o s o p h y each h o s t / t a r g e t p a i r must be v a l i d a t e d . A l t h o u g h

v a l i d a t i o n p o l i c y has evo lved bejand t h a t p o i n t , t h e ques t i on o f a d i s t r i b u t e d

a r c h i t e c t u r e on v a l i d a t i o n i s debatable.

One way o f a v o i d i n g t h e e n t i r e Val i d a t i o n i s s u e and t h e problems o f d i s t r i b u t i o n

i s t o n o t s u p p o r t p h y s i c a l concurrency i n t h e comp i le r . T r a d i t i o n a l l y ,

d i s t r i b u t e d computer systems have a p p l i e d some v a r i a t i o n o f mu1 ti process ing.

4 . ADA AND MULTIPROCESSING

Mu1 ti tas k i ng e n t e r s an area t r a d i ti onal l y considered t h e p r o v i nce o f t h e o p e r a t i ng

system. I n a t t e m p t i n g t o d e f i n e t h e Ada h o s t / t a r g e t env i ronnen t , t h e S t o n m a n

docunent speci f i e s an Ada Programming Support Envi rorment (APSE) t o p r o v i d e a
framework f o r w r i t i n g Ada programs [2 ,3] . Examining t h e boundar ies between an

APSE and t h e t a r g e t system r e v e a l s severa l r e l a t e d areas: t h e Ada language,

t h e r u n - t i m e system, t h e o p e r a t i n g systen, and t h e programming suppor t env i ro rmen t .

The Kernel Ada Programming Suppor t Envi rorment (KAPSE) p rov ides access t o t h e
o p e r a t i n g system r o u t i n e s . An APSE p rov ides a mu1 ti p rocess ing h o s t environment

f o r sof tware devel opnent. The t a r g e t ' s run - t ime system prov ides t h e v i r t u a l

machine on which an Ada program runs. I ssues which a r e n o t s p e c i f i e d i n t h e

Ada 1 anguage de f i n i ti on and must be addressed b y t h e run- ti me system i nc l ude
t h e broad c a t e g o r i e s o f j o b schedu l i ng , memory managenent , s e c u r i t y , f a u l t
t o l e r a n c e , and d i s t r i b u t e d systems.

I n an APSE t o o l compos i t i on

c o m p l e t e l y s e p a r a t e Ada p r o g r m 1141. Since t h e Ada language has no such f a c i l i t y ,

s u p p o r t f o r t o o l composi ti on must be suppor ted by t h e KAPSE. An I N V O K E - PROGRAM

p r i m i t i v e can suspend t h e c a l l i n g program, execu te t h e c a l l e d program t o

comp le t i on , and then resune t h e c a l l i n g program.
no n- b loc k i ng .

imp1 i e s a need f o r one Ada program t o invoke ano the r

The p r i m i t i v e can a l s o be

The Canmon APSE I n t e r f a c e Set (CAIS) a t t e m p t s t o p r o v i d e a s tandard hos t

env i ro rmen t f o r deve lop ing h o s t t o o l s 161. The C A I S i n c l u d e s b o t h process

E.3.6.7

i ni ti a t i on and i nterprocess communication mechanisms.

envirorment, however, i s a de fer red t o p i c under t h e proposed MIL-STD-CAIS. If

t h e C A I S i s extended t o address t h e d i s t r i b u t e d hos t envirorment, a p p l y i n g t h e

same mechanisms t o t h e d i s t r i b u t e d t a r g e t i s s t ra igh t fo rward . The d i s t i n c t i o n
between hos t and t a r g e t systems i s l a r g e l y a r t i f i c i a l f o r t h i s instance.

The d i s t r i buted

Research i n d i s t r i b u t e d systems has explored many avenues f o r imp1 m e n t i n g
concurrency i ncl udi ng mu1 ti processing and i ntegrated approaches s i m i l a r t o

m u l t i t a s k i n g .

approach i s t h a t i t discards t h e software engineer ing concepts cen t ra l t o the

language.
t o Ada a r e s e r i o u s l y compromised by us ing message-oriented mechanisms.

The most s i g n i f i c a n t problem w i t h t h e Ada and mu1 t i p rocess ing

The s t rong type checking and in fo rma t ion h i d i n g c a p a b i l i t i e s i n t e g r a l

Part o f the Ada design philosophy i s t h a t modularity and abstraction are well-

proven means t o overcome natura l hunan l i m i t a t i o n s i n dea l i ng w i t h complexi ty.

Should a system designer be aware o f an under l y ing d i s t r i b u t e d system? To prov ide
t h e t i m e - c r i t i c a l performance requ i red by t h e a p p l i c a t i o n i t may be essent ia l

t h a t t h e desi gner have expl i c i t understanding and c o n t r o l o f t he d i s t r i buted

system. I n o t h e r systems which do n o t have r e a l - t i m e requirements i t may be
i r r e l e v a n t t o t h e system designer how t h e under ly ing hardware implements t h e
design.

~

~ A compromise between these approaches i s t o develop a pre-processor which takes

as i n p u t a s i n g l e m u l t i t a s k i n g Ada program and ou tpu ts m u l t i p l e Ada programs
(one pe r node) t h a t use s i te -spec i f i c mechanisms f o r in te rprocessor communication

[15,5] .
d i s t r i b u t e d Ada programs.

Ada program as i t s i n p u t , and ou tpu t a s e t o f Ada programs which cou ld then be
compi led f o r t h e appropr ia te ta rge t . The pre-processor cou ld use a standard

sof tware communications package which provides a bas ic message-oriented
network i ng capabi l i ty. This package coul d be reimpl enented f o r a given

d i s t r i b u t e d a r c h i t e c t u r e w i thou t changing t h e pre-processor. Proxy tasks could

then be used t o handle rendezvous between nodes.

Such a h y b r i d approach w u l d prov ide a po r tab le t o o l f o r b u i l d i n g

The pre-processor cou ld be w r i t t e n i n Ada, accept an

E.3.6.8

5. CONCLUSIONS

I n a r e a l - t i m e embedded t a r g e t envi r o m e n t t h e expense and compl ex i t y o f imp1 ement-

i n g an e f f i c i e n t Ada c o m p i l e r f o r a g iven d i s t r i b u t e d a r c h i t e c t u r e may be a

c o m p a r a t i v e l y m i n o r i ssue . A d i s t r i b u t e d system c o u l d be b u i l t i n c o r p o r a t i n g

s o l u t i o n s t o t h e problems w i t h d i s t r i b u t e d m u l t i t a s k i n g which have been discussed.

Whether such a system c o u l d p r o v i d e adequate response i n a hard r e a l - t i m e

env i ro rmen t i s ques t i onab le un less t h e comp i le r i s customized f o r a s p e c i f i c

d i s t r i b u t e d t a r g e t .

Us ing t h e mu1 ti p rocess ing approach r e q u i r e s know1 edge o f t h e d i s t r i b u t e d a r c h i -

t e c t u r e a t system design.

d e s i g n i n g d i s t r i b u t e d comput ing systems emphasizes d e f e r r i n g a b i n d i n g o f t h e

system t o t h e a r c h i t e c t u r e .

env i ronment , r e q u i res an i nterprogram communi c a t i ons mechanism t o a i d i n t o o l

composi t ion. The e x t e n s i o n o f such a mechanism f o r t h e d i s t r i b u t e d env i ro rmen t
can p r o v i d e a p o r t a b l e d i s t r i b u t e d p r o c e s s i n g c a p a b i l i t y .

T h i s i s n o t n e c e s s a r i l y bad, b u t c u r r e n t work i n

The h o s t env i ro rmen t , as opposed t o t h e t a r g e t

Combining mu1 t i t a s k i n g and mu1 t i process ing may be t h e most p romis ing approach,

b u t t h e b a s i c problems i n d i s t r i b u t i n g Ada programs must s t i l l be addressed.

F o r r e a l - t i m e env i rorments t h e des igner must remain aware o f t h e performance

i mpl i c a t i ons o f des i gn dec i s i ons .

6. REFERENCES
1. Paul k , M .C . , ''1 n te rp rocess Communication i n Ada," Proceedi ngs of I E E E

Southeastcon ' 84 , A p r i l , 1984, pp. 33-35.

2. "Requi rements f o r Ada Programming Suppor t Envi rorments: Stoneman,"
Department o f Defense, February 1980.

3. Buxton, J.N., and D r u f f e l , L.E., "Requirements f o r an Ada Programming
Suppor t Envi rorment : R a t i o n a l e f o r Stoneman," COMPSAC 8 0 , October, 1980,
pp. 66-72, r e p r i n t e d i n The Ada Proqramming Languaqe: A - T u t o r i a l , ed.
S.H. S a i b and R.E. F r i t z , IEEE Computer S o c i e t y Press, 1982, I E E E C a t a l o g
NO. EHO 202-2.

4 . C o r n h i l l , D., "Four Approaches t o P a r t i t i o n i n q Ada Proqrams f o r Execu t ion
on D i s t r i b u t e d Targets','' Proceedinqs of t h e 1584 IEEE i o n f e r e n c e on Ada
Appl i c a t i ons and Envi rorments, pp. 153-162.

E.3.6.9

5.

6.

7.

8.

9.

10.

11.

1 2 .

13.

14.

15.

Cornh i l l , D . , " A Survivable Distributed Canputing System f o r Embedded
Applicat ion Programs Written i n Ada," ACM Ada L e t t e r s , Vol.
Nov/Dec 1983, pp . 79-86.

3, No. 3 ,

Proposed M i l i t a r y Standard Canrnon APSE I n t e r f a c e Set (CAIS), 31 January
1985.

Lanuto, N. , Rajeev, S . , and Grover, V .
Real-time Systems Newslet ter , Vol. 2 , No. 2 , Sumner 1984, pp. 27-33.

"The Ada Runtime Kit (ARK)," I E E E

Paul k, M.C. , "Probl ens with Distributed Ada Programs ,I' Proceedi nqs of the
5th Phoenix Conference on Computer and Comnunications , 1986, pp. 396-400.

ANSI/MIL-STD-l81SA, The Ada Proqramming Lanquaqe Reference Manual , American
National Standards I n s t i t u t e , 1983.

Dapra, A. , e t a1 , " U s i n g Ada and APSE t o Support Distributed Mu1 timicro-
p.rocessor Targe ts , " ACM Ada Letters, Vol. 3, No. 6 , May/June 1984, pp
57-65.

Hi1 f i n g e r , P.N. , "Implementation S t r a t e g i e s for Ada Tasking Idioms,"
Proceedings of t he AdaTEC Conference on Ada, October, 1982, pp. 26-30.

Knight, J.C., and Urquhart , J.I.A., "On the Implmen ta t ion and Use of Ada
on Faul t - to le ran t D i s t r ibu ted Systems," ACM Ada Letters, Vol. 3 , 4, No.
N O V / D K 1984, pp. 53-64.

Knight , J.C., and Gregory, S.T., "A Testbed f o r Eva1 u a t i ng Faul t-To1 e r a n t
Distributed Systems ,'I submi t ted t o Proceedi nqs of the 14th Conference on
Faul t-To1 e r a n t C a n p u t i ng Systems, June, 1984.

Stenning, V . , Froggat t , R.G., e t . a1 ., "The Ada Enviroment: A Perspect ive,"
IEEE Computer, Vol. 14, No. 6, June, 1981, pp. 26-36.

R.A.
Ada Programs Across Machines," Ada i n Use, Proceedings of t h e Ada
In t e rna t iona l Conference, May 2985, i s sued as ACM Ada Letters, Vol. 5,
No. 2 , Sept/Oct 1985, pp. 72-84.

Volz, A.W. Naylor, e t a1 ., "Sane Problems i n Distributing Real-time

E.3.6.10

An Evaluation of Ada* for AI Applications

David R. Wallace, Intermetrics, Inc.

1. Abstract
Expert system technology seems to be the most promising type of AI application
for Ada. An expert system implemented with an expert system shell provides a
highly structured approach that fits well with the structured approach found in
Ada systems. The current commerciaJ expert system shells use Lisp. In this
highly structured situation a shell could be built that used Ada just as well.

On the other hand, if it is necessary to deal with some AI problems that are not
suited to expert systems, the use of Ada becomes more problematical. Ada was
not designed as an AI development language, and it is not suited to that. It is
possible that an application developed in, say, Common Lisp could be translated
to Ada for actual use in a particular application, but this could be difficult.
Some standard Ada packages could be developed to make such a translation
easier.

If the most general -41 programs need to be dealt with, a Common Lisp system
integrated with the Ada environment is probably necessary. Aside from problems
with language features, Ada, by itself, is not, well suited to the prototyping a.nd
incremental development that is well supported by Lisp.

2. Is Ada Suitable for AI Development?
In order to answer this question we must look at what is required for developing
AI applications.

2.1 AI Development Requirements

Two key phrases that describe AI development are:

0 rapid prototyping

0 iterative feedback development

AI systems are generally developed incrementally, where at each stage the current
behavior is observed in order to determine exactly what the next stage should be.
This requires great Rexibility and is best supported by a language that allows
either incremental compila.tion or interpretation. More specifically, AI
development often requires heuristic search techniques that must be developed

*Ada is a registered trademark of the U.S. Department of Defense (AJPO)

E.4.1.1

on-the-fly to match the particular problem at hand.

This type of development further requires flexible dynamically changing data
structures without strong typing. Any use of data declarations must be either
very limited or automated in some way. Otherwise, the overhead of constantly
modifying these declarations becomes unacceptable and what is worse, error
prone. This data problem has been dealt with very successfully in Prolog and
Sail by the use of an associative data base. This allows data access without
explicit knowledge of the surrounding structure.

In Iarger AI systems the concepts of data abstraction or object oriented
programming are used extensively. See [7] for some background on object
oriented programming in AI. The motivations for their use in AI is the same as
that elsewhere: use higher level concepts and hide implementation details in order
to make development, modification, and maintenance easier. Object oriented
programs have algorithms and data that are very closely coupled. In AI
applications this coupling can be very dynamic, having procedure values mixed in
with the data the procedure is going to use. This makes it very easy to creak
very powerful parametrized transformations. How a large data structure is
transformed can often be determined by values within itself. Much of the current
uses of data abstractions in AI code written in Lisp is somewhat unstructured.
This is partly since Lisp does not support data abstraction as a language feature.
However, data abstr:iction use is becoming more formali~ed via the increased use
of expert system shells (see below).

Most AI applications require some type of general value or attribute evaluation
and propagation mechanism. A simple example of this is the parameters and
variables in a Prolog program. The order in which these attributes are evaluated
and propagated is dynamically determined; thus it is impossibie to predict, their
storage requirements or lifetimes. This requires a very general storage
management system with garbage collection. Data on a stack will in general
have the wrong lifetime and data on a heap without garbage collection will
overflow during most AI applications.

I 2.2 Ada Features Favorable to AI Development

Ada is a modern programming language providing clear and up-to-date control
and data st,ri~ctiiring facilities. Thiis it, should he very good at. providing
programming support for well understood and highly structured programming
tasks.

E.4.1.2

I-

Compared with other languages of its type Ada also provides a great deal of
leverage in dealing with data abstraction and certain types of variability. The
key features that support this are overloading and generics. Packages with
overloading and generics provide a very powerful data abstraction mechanism.
Such features allow what appears to be one procedure to deal with a number of
different data types.

Another Ada strong point is its comprehensive support for modularity. The
package concept is a very useful way of organizing a data abstraction. With the
cross checking provided by the compiler it is very easy to divide a large task into
modular pieces that can be developed independently and reliably.

Ada is highly suited to any task that is highly structured, has a relatively static
behavior, and has a close correlation between control structure and storage
lifetimes. There are probably some AI applications that fit these requirements.

The package concept allows the construction of what are the equivalent of Ada
language extensions - in ternis of data abstractions. This means that predefined
library packages could be constructed to model the following:

0 Lisp list-processing language features, see e.g. [3]

0 associative database language features, see e.g. 141

Such features would go a long way in allowing reasonable AI programming in
Ada. However, there are potentially serious problems in implementing these
packages appropriately (see below).

2.3 AI Problem Areas for Ada

Ada is unsuitable for dealing with the variety of problems and approaches arising
in AI research applications.

2.3.1 Compilation
For the most part Ada requires compilation. For the purposes of AI development
the lack of a reasonably fast interpre1,er or incremental compilation system is a
very serious problem. Dynamic debugging in this environment is often used to
determine the next stage of development. Without a fa s t interpreter it is very
difficult to get an appropriately dynamic debugging system. In AI development,
incomplete programs are often run with values supplied through the debugger
when missing sections are reached.

The strong typing and the large declaration overhead add a very high cost to the
iterative feedback loop used for AI development.

E.4.1.3

There are further problems caused by the use of a language that requires
compilation when a large system is under development; that is recornpilation. A
small change in one part of a large system may (and often does) force
recompilatiori and modification in rriost modules of t h e system. In a Lisp
development envirorirrierit the use of an interpreter eliminates the need for
recompilation and the flexibltb arid general data structures eliminate the need for
rewriting data declarations.

To be fair it should bc iiotcd that Ada is riiuch better tl:an most other languages
(like Pascal or C) in this area. Ada provides for modular consistency in a large
system with both recompilal ion analysis and intermodule type checking. And
further, Ada’s support for data abstraction, even though soniewhat static, a l lows
for limiting the global effect of local changes.

It should be noted here that Ada systcms that support increniental compilation
are just starting to become available; see e.g. [2]. Such a system could go a long
way toward alleviating these development problems.

2.3.2 Storage Management
As mentioned above under AI requireinelits, AI applications evaluak and
propagate values or attributes in a very complex and often unpredictable nianner.
In any case, it is rare that the lifetime of these attributes follows the control
structure of the program. This requires a system of managing memory
independent of the stack mechanism. Direct user control of such a systeiri (e.g.
explicit FREE) is out of the question because of the certainty of error. In any
real AI application it is also riot practical to simply avoid deallocation; no rnat,tcr
how much memory is availat~le it will be used up. This means there must be a
sophisticated memory riiaiiagerrient system with garbage collection. This
provides correct reclaniation of storage when data lifetime is over. It is unlikely
that Ada systems will provide such a feature because its high overhead conflicts
with real time requirements. However, it should be pointed ou t that the Ada
definition does not precludc: garbage collection, see section 4.8 of the Ada
reference Manual. This is a feature that could be associated with a pragnia.

User defined garbage collectim would require the creation of a storage exception
that, when raised, would call a user subprogram to deal with it. This
subprogram would need to use unsafe practices to do low-level heap manipulation
and bookkeeping. Ada does not have the language features to allow higher-level
control of storage for garbage collection. This is due to problems with its data
abstraction capability which is discussed in the next section.

E.4.1.4

2.3.3 Existing AI Packages
One further problem with ,4da, especially for near term use, is the lack of
existing AI packages. There are, of course, many existing AI packages written in
LISP.

2.4 Is Ada Suitable for AI Re-implementation?

If we assume some AI system has already been developed in an existing AI
language, then we could consider translating it to Ada. This would avoid the
problems mentioned above with the AI development cycle. Further, this
approach has been used in a number of AI applications. There is a hazard here,
however, since it may not be possible or practical to translate all AI systems to
Ada. Translation problems can be mitigated by using AI-language coding
standards to limit hard-to-t,ranslate features and usages. However, hard to
translate features and usages are legitimate and necessary for some applications.
Translation problems are likely to arise in two areas:

data abstraction usage

garbage collection

Garbage collection was discussed in the previous section. In general, a Lisp
program using the full data lifetime capability will not be translatable to Ada.

Ada does not have a true daka abstraction facility. Even though Lisp does not
support data abstraction as a language feature per se, its flexibility allows the
user to define and use powerful data abstractions. Ada supports encapsulated
data types via the PACKAGE feature, but does not provide explicit abstract
type construction features. This will create translation problems. Missing
functions or features include:

updating structures within the package to reflect the instantiation of an o b j e c t :
Ada does allow auxiliary structures within a package but there is no
automatic way to coordhate it with object creation. Such use is necessary,
for instance, to do storage allocation with garbage collection.

t y p e instantiation parameters or run-time t y p e attributes:
For instance, a user cannot create a string type with string-length as a type-
attribute.

initialization and finalization of an object:
These are necessary when data types interact with their type context. For
example, in the case of garbage collection, it is necessary to record
information both when an object is allocated and when it is de-allocated. Ada
only allows a limited form of initialization; i.e. when the data representation

E.4.1.5

is a record structure. However, there is no way to do finalization.

For more details on the abstract type problems of Ada see the SRI analysis of
Ada for AI uses, [5].

2.5 Expert System Shells in Ada

Expert systems are best built using a shell, like ART (automated reasoning tool)
or KEE (knowledge engineering environment). These shells have their own
syntax and provide a disciplined and highly structured way of building expert
systems. The shell provides not only the inference mechanism for the expert
system but also the modular and hierarchical organization. This area provides
the most promise for the use of Ada.

The shell structure can be used to limit the complexity of features used and their
interaction. Further, the shelf can generate a large number of type declaration or
long select statements where this would be impossible by hand. This is often
what is necessary to cope with strong typing.

In an expert system, general attribute propagation among rules requires garbage
collection. However, the problems with the data abstractions in Ada can be dealt
with if, for instance, explicit subprogram calls are inserted at key points in the
Ada program to coordinate allocation and de-allocation. It is not feasible to have
such calls inserted by a user, but they can be inserted reliably by the shell.

The modular and hierarchical aspects of shells are well supported by Ada. On a
large system this will support team development well. However, as mentioned
above it is necessary to have version control and recompilation analysis when
using a compilable language. Languages such as Pascal or C would have very
serious drawbacks in this environment. Fortunately, Ada is designed to support
consistent separate compilation so it is very well suited to this task. However,
during development the compilation costs could become very high.

3. Mixed Environments of Ada and AI Language
If Ada is only well suited to use with expert system shells, as described above,
then other use of AI must use existing methods. Currently the accepted
approach to dealing with the most general AI programs is the use of Common
Lisp. Common Lisp is becoming the standard AI programming language in the
U.S. Prolog is not yet a major force, although developments in this area should
be watched, especia.11~ in light of Japanese efforts. The way to solve this
dilemma is to integrate a Common Lisp system with the Ada environment. For
proper iiitegration such a Lisp system would need lo be supplied by Ihe same

E.4.1.6

vendor that supplied the Ada system. In this way Ada. can be integrated with AI
Language tools and support. They can use shared list-processing and database
packages and have the ability to call each other.

3.1 Impact on Development Tools

As long as Lisp components are under the same configuration management
system, there should be no real problems. A Lisp system may require some of its
own special tools, but these should not interact with the other tools.

3.2 Interfaces and Characteristics

The interface between Lisp and Ada is potentially complex. This can be made
simpler by sharing standard packages (see below). However, in this case the only
good solution is to require appropriate integration.

3.3 Operational Concepts

The biggest problem area in a mixed system is probably garbage collection. As
described above, hand generated Ada is not designed to deal with this well. The
only safe solution to this is to limit the actual AI work to the Lisp components.
One can restrict the Ada components from allocation and de-allocation, unless
they are correctly generated by, for instance, an expert system shell.

The storage management problem could be much simpler if it were possible to
build packages that could deal with their own storage management without extra
user calls. There appear to be only two ways to do this:

low-level unsafe programming practices within the package

0 language extensions to extend the data abstraction capabilities of Ada

Neither is particularly desirable.

i
8.4 Standard Packages

Standard packages that would be desirable for AI applications in Ada include:

0 List Processing Predefined Package Library

0 Associative Database Predefined Package Library

E.4.1.7

4. Conclusion
Because of its design goals Ada has some limitations in comparison with very
powerful AI languages like Common Lisp. Except in very special applications,
translation from Lisp to Ada is not feasible. Further, the modes of AI
development are poorly supported by the Ada system. Ada is not well suited to
the prototyping and increniental development required for AI work. Real
promise, however comes in the area of expert system shells. The shells can be
used to generate consistent Ada code that could not be generated by hand and
further can generate complex constructs to bypass language feature mismatch
problems. This should not be too surprising since thc shell can use compiler
implementation techniques used in Lisp.

If serious AI application beyond expert systems is anticipated, a mixed
environment would be necessary. A language like Lisp provides the riglil
language features along with support for AI style development. The most
reasonable choice would be integrating Common Lisp in the Ada environment.
However, access to some Lisp features from Ada would need to be restricted to
ensure system reliability.

5 . Bibliography
Appelbe, W. F., "Abstract data types in Ada," Journal of Pascal, Ada and

Crowe, M., I). Machay, M. Hughes, C. Nicol, "An interactive Ada
compiler," Ada UK News, 6(4), Oct. 1985, pp. 47-50.

Olgivie, J., "lJsing variant records: some basic Lisp functions in Modula-
2," Journal of Pascal, Ada and Modula-2, 4(2), 1985, pp. 15-20.

Poutanen, O., K-M. Varanki, T. Valimaki, "Notes on building a relational
database management system in Ada," Ada in Use, Conf. Proc., Paris,
May 1985, pp. 14-24.

Schwattz, R.L. and P.M. Melliar-Smith, "On the suitability of Ada for
artificial intelligence applications," Project 1019, July 1980, SRJ
International.

Schwartz, R.L. and P.M. Melliar-Smith, "The finalization operation for
abstract data types," Proc. of the 5th Int. Conf. on Software Engineering,
March 1981, pp. 273-282.

Stefik, M. and D. Bobrow, "Object oriented programming," AI Magazine,

Modula-2, 3(lj, 1984, pp. 26-29, 36.

VI(4), 1986, PI). 40-62.

E.4.1.8

I n t e l l i g e n t User I n t e r f a c e Concept for Space S t a t i o n

by:

Edward Comer, Cameron Donaldson, and Kath leen Gilroy
Sof tware P r o d u c t i v i t y S o l u t i o n s , I n c .

and

E l i z a b e t h Bailey
Sof tware Metrics, I n c .

I n t r o d u c t i o n

The s p a c e s t a t i o n computing s y s t e m must i n t e r f a c e w i t h a wide v a r i e t y of
u s e r s , from h i g h l y s k i l l e d o p e r a t i o n s p e r s o n n e l t o payload s p e c i a l i s t s from
a l l o v e r t h e world.
o p e r a t i o n s from t h e s p a c e p l a t f o r m , ground c o n t r o l c e n t e r s and from remote
sites. As a r e s u l t , t h e r e is a need f o r a r o b u s t , h i g h l y c o n f i g u r a b l e and
p o r t a b l e u s e r i n t e r f a c e t h a t can accommodate t h e v a r i o u s s p a c e s t a t i o n
m i s s i o n s .

The i n t e r f a c e must accommodate a wide v a r i e t y of

T h i s paper p r e s e n t s t h e concept of a n i n t e l l i g e n t u s e r i n t e r f a c e e x e c u t i v e ,
w r i t t e n i n Ada, t h a t would s u p p o r t a number of advanced human i n t e r a c t i o n
t e c h n i q u e s , such as windowing, i c o n s , color g r a p h i c s , an imat ion , and n a t u r a l
l anguage process ing . The u s e r i n t e r f a c e would p r o v i d e i n t e l l i g e n t i n t e r a c t i o n
by u n d e r s t a n d i n g t h e v a r i o u s u s e r roles, t h e o p e r a t i o n s and m i s s i o n , t h e
c u r r e n t s tate of t h e envi ronment and t h e c u r r e n t working c o n t e x t of t h e u s e r s .

I n a d d i t i o n , t h e i n t e l l i g e n t u s e r i n t e r f a c e e x e c u t i v e must b e suppor ted by
a set of t o o l s t h a t would a l low t h e e x e c u t i v e t o be eas i ly c o n f i g u r e d and t o
a l low r a p i d p r o t o t y p i n g of proposed u s e r d i a l o g u e s .
allow human e n g i n e e r i n g s p e c i a l i s t s a c t i n g i n t h e r o l e of d i a l o g u e a u t h o r s t o
d e f i n e and v a l i d a t e v a r i o u s u s e r s c e n a r i o s .
t o o l s r e q u i r e d t o s u p p o r t development of t h i s i n t e l l i g e n t human i n t e r f a c e
c a p a b i l i t y and w i l l o u t l i n e t h e p r o t o t y p i n g and v a l i d a t i o n e f f o r t s r e q u i r e d
for development of t h e Space S t a t i o n ' s u s e r i n t e r f a c e .

T h i s c a p a b i l i t y would

The paper w i l l d i s c u s s t h e set of

The Space S t a t i o n User I n t e r f a c e Problem - -
The s p a c e s t a t i o n u s e r i n t e r f a c e r e p r e s e n t s one of t h e g r e a t e s t c h a l l e n g e s

i n human-machine i n t e r a c t i o n t o date .
t h e s p a c e s t a t i o n w i l l i n v o l v e thousands of p e o p l e from a l l o v e r t h e world.
The s p a c e s t a t i o n u s e r community w i l l i n c l u d e p r i v a t e i n d u s t r y , u n i v e r s i t i e s ,
and o t h e r government a g e n c i e s as w e l l as t h e v a r i o u s NASA c e n t e r s and t h e i r
c o n t r a c t o r s .

The development , o p e r a t i o n and u s e of

The s p a c e s t a t i o n u s e r i n t e r f a c e must p r o v i d e s u p p o r t fo r t r a d i t i o n a l
ground-based, on-orb i t and payload o p e r a t i o n s , each of which i n v o l v e s numerous
o p e r a t i o n a l roles. The test and i n t e g r a t i o n f u n c t i o n is r e p r e s e n t a t i v e of t h e
d i v e r s i t y of t h e s e r o l e s [DOR83]:

o m i s s i o n and o p e r a t i o n s p l a n n i n g
o s i m u l a t i o n and modeling
o manufac tur ing development and test

E.4.2.1

o
o on-orbit i n t eg ra t ion and t e s t i n g
o on-orbit maintenance and repair
o payload i n t e g r a t i o n and t e s t i n g
o use r payload da ta processing
o environment monitoring and con t ro l
o

pre- and post-launch i n t e g r a t i o n and t e s t i n g

real-time f l i g h t and opera i tona l func t ions

While t h e need t o support t r a d i t i o n a l ope ra t iona l roles l i k e launch and
f l i g h t c o n t r o l w i l l continue with the space s t a t i o n , an increas ing number of
u s e r s w i l l no t have experience with NASA mission operations.
purpose f a c i l i t y , t h e space s t a t i o n w i l l support u s e r s of its s c i e n t i f i c
l a b o r a t o r i e s and payloads, u se r s running manufacturing and repair opera t ions ,
and u s e r s providing t r anspor t a t ion serv ices .

As a mul t i -

Space s t a t i o n a c t i v i t i e s w i l l be d i s t r i b u t e d over many sites (both
government and commercial), inc luding space platforms, maneuvering v e h i c l e s ,
ground-based command s t a t i o n s , and da ta c o l l e c t i o n centers .
a c t i v i t i e s c u r r e n t l y performed by ground-based personnel on s p e c i a l i z e d
s y s t e m s w i l l have t o be executed on t h e space p la t form using multi-purpose
equipment.

Many of t h e

Analys is of user i n t e r f a c e technology c u r r e n t l y i n use on NASA projects

Some of t h e problems t h a t must be addressed include:
demonstrates t h a t it is clearly not adequate t o meet the space s t a t i o n
cha l lenge .

o I n t e g r a t i o n with o the r systems and off-the-shelf products (cu r ren t ly
d i f f i c u l t o r no t poss ib l e)

o Lack of support f o r advanced i n t e r a c t i o n techniques
oInadequate development t o o l s
o Lack of uniformity - I n t e r f a c e s d i f f e r from s y s t e m t o sys t em, payload

t o payload, and s i te t o si te
o D i f f i c u l t t o use - r equ i r e t h e a s s i s t ance of s p e c i a l i s t s t o accomplish

mission (not appl icat ions-or iented); no t t a i l o r a b l e t o needs of
i n d i v i d u a l users ; poorly human-engineered;

o Modif icat ions o f t e n r equ i r e reimplementation
o D i f f i c u l t y i n performing v a l i d a t i o n i n e i t h e r o f f - l i n e or real-time

modes

Bene f i t s t o be der ived from improving t h e cu r ren t user i n t e r a c t i o n approach
include:

o Reduced l i f e cycle cost by providing t h e necessary f l e x i b i l i t y f o r u s e r s
t o accomplish new mission operat ions, and longer l i f e of t h e ope ra t iona l
sof tware due t o increased a d a p t a b i l i t y [BAS851

o Greater l e v e l of automated support , providing easier operat ions, use,
modif icat ion, maintenance and v a l i d a t i o n [DOR85]

o Increased o e r a t i o n a l confidence because personnel can perform a c t i v i t i e s
themselves fDOR85]

E.4.2.2

Types of I n t e r a c t i o n t o b e Supported

I

A v a r i e t y of u s e r - i n t e r a c t i o n styles h a v e been made p o s s i b l e by a d v a n c e s i n
hardware technology.
can be d i s p l a y e d and t h e o p e r a t i o n s a v a i l a b l e , t h e p o t e n t i a l f o r e f f e c t i v e and
h i g h l y u s a b l e i n t e r f a c e s is g r e a t l y increased .
of u s e r s and wide v a r i e t y of u s e r p r o f i l e s f o r t h e Space S t a t i o n computing
s y s t e m , it is e s s e n t i a l t h a t t h e u s e r i n t e r f a c e t a k e a d v a n t a g e of proven
s o p h i s t i c a t e d t e c h n o l o g i e s such as advanced g r a p h i c s , a n i m a t i o n and n a t u r a l
language.

With a n i n c r e a s e i n t h e amount of t h e i n f o r m a t i o n t h a t

Given t h e a n t i c i p a t e d number

Graphics may b e used i n any of a number of ways t o s u p p o r t t h e Space
S t a t i o n mission, i n c l u d i n g map g e n e r a t i o n , r e a d i n g and a n a l y s i s , d e c i s i o n
s u p p o r t a i d s , t e l e c o n f e r e n c i n g , model ing and s i m u l a t i o n , and t h e g e n e r a t i o n of
forms, r e p o r t s and p r e s e n t a t i o n s . T h i s v a r i e t y of a p p l i c a t i o n s p l a c e s s p e c i a l
r e q u i r e m e n t s on t h e g r a p h i c s f u n c t i o n a l i t y . F u n c t i o n a l r e q u i r e m e n t s can be
s e p a r a t e d i n t o g r a p h i c s o u t p u t C a p a b i l i t i e s , g r a p h i c s i n p u t c a p a b i l i t i e s , and
t h e s t o r a g e , r e t r i e v a l and t r a n s f e r of g r a p h i c s informat ion . An e x c e l l e n t
d e t a i l e d d i s c u s s i o n of t h e classes of g r a p h i c i n t e r a c t i o n and t e c h n i q u e s t o
s u p p o r t them is p r o v i ded i n [FOL84 3.

Output c a p a b i l i t i e s needed i n c l u d e s u p p o r t f o r d i s p l a y of c h a r t , graph and
o t h e r two-dimensional diagrams, d i s p l a y of image d a t a , and s u p p o r t f o r h i g h
q u a l i t y typography, a v a r i e t y of c o l o r s i n d i s p l a y o u t p u t , and an imat ion
(d i s c u s s e d i n later paragraphs).
most s y s t e m s do n o t e f f e c t i v e l y use it.
t i o n of color can b e found i n [MUR84].
c a p a b i l i t i e s , such as "zoom," "shrink," "pan," and " h i g h l i g h t " w i l l be needed
also.

The use of c o l o r h a s e v o l v e d so r a p i d l y t h a t
U s e f u l g u i d e l i n e s f o r t h e e x p l o i t a -

It is expec ted t h a t dynamic d i s p l a y

Command and c o n t r o l a p p l i c a t i o n s t y p i c a l l y r e q u i r e a s i g n i f i c a n t amount of
G r a p h i c s c a p a b i l i t i e s must s u p p o r t i n t e r a c t i v e t e x t e n t r y , u s e r i n t e r a c t i o n .

i n p u t of d a t a i n v i d e o , f a x , o r d i g i t a l format, t h e development and management
of menu-driven systems, t h e development and management of s o p h i s t i c a t e d m u l t i -
window a p p l i c a t i o n s , and screenpaimting.
discussed in la ter paragraphs.

The u s e of menus and windows is

Whi le p i c t u r e s may be c r e a t e d , d i s p l a y e d and d i s c a r d e d "on-the-f l y , " i t is
o f t e n d e s i r a b l e t o store p i c t u r e s or p o r t i o n s of p i c t u r e s fo r later use.
Without a s t o r a g e and r e t r i e v a l c a p a b i l i t y , t h e r e u s e of a commonly needed
p i c t u r e (such as a map) would h a v e t o be accomplished by i n c l u d i n g t h e map-
drawing program i n e v e r y new a p p l i c a t i o n .
t i o n program t o s i m p l y r e q u e s t t h a t t h e map be r e t r i e v e d from t h e common
d a t a b a s e and d i s p l a y e d . I n a d d i t i o n t o s t o r a g e , t h e c a p a b i l i t y t o t r a n s f e r a
p i c t u r e from one s y s t e m t o a n o t h e r must b e provided.
fo r t h e g e n e r a t i o n and i n t e r p r e t a t i o n of p i c t u r e s expressed a c c o r d i n g t o a
p a r t i c u l a r p r o t o c o l .

A b e t t e r method is f o r t h e a p p l i c a -

Suppor t must b e p r o v i d e d

A number of n a t i o n a l and i n t e r n a t i o n a l g r a p h i c s s t a n d a r d s e x i s t , t h e
b e n e f i t s of which are independence of a p p l i c a t i o n programs from d e v i c e and
vendor dependencies , t h e r e b y improving t h e p o r t a b i l i t y of a p p l i c a t i o n programs
and da ta .
which can b e compared t o t h e Open Systems I n t e r c o n n e c t i o n (OSI) model f o r

These s t a n d a r d s r e p r e s e n t a h i e r a r c h y of g r a p h i c s software layers

E.4.2.3

communications software. [HIN84] Among t h e most promising s tandards are t h e
Graphical Kernel System (GKS) and Programmer's H ie ra rch ica l I n t e r a c t i v e
Graphics Standard (PHIGS). GKS f u n c t i o n a l i t y ranges from s i m p l e pas s ive
output t o complex i n t e r a c t i v e graphics , and developments are underway t o
support three-dimensional graphics (GKS 3-D).
i nc lud ing Ada, are p a r t of t h e GKS standard, and Ada implementations of GKS
e x i s t . [LEO851
binding f o r PHIGS has been developed.

ANSI language bindings,

PHIGS was designed t o be upward compatible from GKS and an Ada

Personal workstat ions with high r e s o l u t i o n bit-mapped d i s p l a y s cont inue t o
decrease i n cost, making a v a i l a b l e and very attractive t h e c rea t ion of
animated drawings. Animation is a wonderful technique f o r i l l u s t r a t i n g
dynamic o b j e c t s and t h e i r ac t ions .
of animation wi th in a programming environment is provided by London and
Duisberg. The au tho r s descr ibe t h e need f o r an animation t o o l k i t - a
set of easily learned, easily appl ied , p o r t a b l e animation rou t ines t o r e l i e v e
t h e t ed ious programming assoc ia ted with computer animation.
would i n c l u d e a l i b r a r y of r eusab le and connectable animation rou t ines f o r
c r e a t i n g new views.
S t a t i o n Development Environment a long with packages f o r developing menu- and
window-based sys tems.

A v e r y i n t e r e s t i n g discussion of t h e use

[LD85]

Such a t o o l s e t

An animation t o o l s e t should be provided i n t h e Space

Menu-driven s y s t e m s have become commonplace f o r command and c o n t r o l
a p p l i c a t i o n s . For t h e number of o p t i o n s and the sizes of databases w e
a n t i c i p a t e f o r t h e Space S t a t i o n computing sys t em, t y p i c a l t ree-s t ruc tured
menu systems w i l l no t be s u f f i c i e n t .
t y p i c a l l y have numerous e n t r i e s , is t h a t they consume precious screen space
and f o r c e t h e u s e r t o spend v a l u a b l e time searching f o r a p a r t i c u l a r entry.
Popular mechanisms t o s o l v e t h i s problem inc lude p a r t i t i o n i n g of e n t r i e s
according t o l o g i c a l func t ion , pop-up submenus f o r r e l a t e d but more s p e c i f i c
e n t r i e s , paged menus and s c r o l l i n g menus.

The problem with these menus, which

I n any menu system, accomodation must be made f o r both n a i v e and exper t
users , which i m p l i e s t h a t t h e r e must be an a l t e r n a t e rou te f o r commanding o r
s e l e c t i n g en t r i e s .
alternate r o u t e s t o avoid using menus whenever poss ib le .
r o u t e s should be made obvious i n t r a i n i n g and documentation and designed t o be
c o n s i s t e n t a c r o s s t h e user i n t e r f ace .
which understands t h e user 's r o l e and experience l e v e l , con t inua l customiza-
t i o n and opt imizat ion of menus could be made (t a i l o r i n g t o t h e user p r o f i l e) .
For example, reorganiza t ion of menu e n t r i e s i n accordance with frequency o r
infrequency of use may be i n order.
as t h e Transpor tab le Appl ica t ions Executive (TAE) do not i n c l u d e these
f l e x i b l e and i n t e l l i g e n t c a p a b i l i t i t e s . [TAE85]

Experience has shown t h a t exper t u s e r s w i l l memorize such
These a l t e r n a t e

With an i n t e l l i g e n t user i n t e r f a c e

Exis t ing menu systems used by NASA, such

Multiwindow communication is d e s i r a b l e i n s i t u a t i o n s where t h e user is
concurren t ly performing many tasks .
analysis i n a mission c o n t r o l cen te r where d i s p l a y s are updated s imultaneously
by one or more real-time processors. Windowing c a p a b i l i t i e s are provided by a
window manager, which both p re sen t s information i n windows and allows t h e user
t o manipulate windows.
categories:
no o v e r l a p of windows occurs on t h e d i s p l a y screen (t i l i n g is used i n t h e
Xerox Cedar System and the Microsoft Windows system).
manager does e x a c t l y t h e opposi te - r ec t angu la r windows o v e r l a p l i k e p ieces of

An example would be monitoring and

Most window management s y s t e m s f a l l i n t o one of two
" t i l i ng" o r "desktop." T i l i n g i n v o l v e s arranging windows so t h a t

A desktop window

€3.4.2.4

paper on a desk (t h e S m a l l t a l k envi ronment d e v e l o p e d a t Xerox PARC
d e m o n s t r a t e s a d e s k t o p window manager).

There are a d v a n t a g e s and d i s a d v a n t a g e s t o both types. Desktop window
managers o f f e r t h e u s e r t h e most f l e x i b i l i t y i n a r r a n g i n g windows b u t a t t h e
same time r e q u i r e t h e u s e r t o perform a n i n o r d i n a t e number of f u n c t i o n s
r e l a t i n g t o t h e rear rangement of windows. The t i l i n g model r e l i e v e s t h e u s e r
of most of t h e window management f u n c t i o n s b u t t y p i c a l l y performs automatic
r e s i z i n g and r e a r r a n g i n g which may n o t b e s u i t a b l e o r d e s i r a b l e . P e r h a p s t h e
b e s t c h o i c e is a combinat ion of t h e t i l i n g and d e s k t o p schemes, where t h e
d e s k t o p model i s employed when t h e u s e r is performing many d i f f e r e n t t a s k s a t
one time, and t h e t i l i n g model is employed when t h e user is c o o r d i n a t i n g many
v i e w s or a c t i o n s t o accompl ish a s i n g l e g o a l .
u s e r be a b l e t o easi ly and q u i c k l y move, size, and c o v e r windows, and be a b l e
t o move i n f o r m a t i o n from one window t o a n o t h e r (c u t and p a s t e o p e r a t i o n s) .
The proposed i n t e l l i g e n t u s e r i n t e r f a c e c o u l d a s s i s t i n t h e m a n i p u l a t i o n of
windows by u n d e r s t a n d i n g t h e a p p l i c a t i o n domain and choos ing sizes and
arrangement as a p p r o p r i a t e .

It is e s s e n t i a l a l s o t h a t t h e

Some u s e r i n t e r f a c e s employ t h e u s e of i c o n s i n c o n j u n c t i o n w i t h windows.

I c o n s could b e used t o p r o v i d e t h e user w i t h v a l u a b l e
Of ten , i c o n s are used t o symbol ize a v a i l a b l e software u t i l i t i e s (such as m a i l)
and document f o l d e r s .
i n f o r m a t i o n r e g a r d i n g t h e c o n t e x t of h i s working environment.
f o r each window a n i c o n c o u l d b e provided which t r a c k s t h e p r o g r e s s ,
associated f i l e s and problems w i t h t h e window's a s s o c i a t e d t a s k .
i n f o r m a t i o n assists u s e r s who may o t h e r w i s e lose t r a c k of what t h e y are doing.
T h i s u s e f u l concept is i l l u s t r a t e d i n t h e PERQ S a p p h i r e window manager. [SAP]
Because of t h e s p a c e s t a t i o n computing system's p r o j e c t e d i n t e r n a t i o n a l u s e ,
t h e u s e of i c o n s may b e h e l p f u l th roughout t h e i n t e r f a c e , a l t h o u g h care must
be t a k e n n o t t o use an i c o n which is c u l t u r e - p e c u l i a r (e.g., a "mailbox" may
n o t be v e r y communicative o u t s i d e of t h e U.S.).

For example,

Such

Requirements f o r I n t e l l i g e n c e --- i n t h e User I n t e r f a c e

The d i v e r s i t y of u s e r s and m i s s i o n s for t h e s p a c e s t a t i o n p r e s e n t s a
f o r m i d a b l e c h a l l e n g e i n t h e d e s i g n of a g e n e r a l i z e d user i n t e r f a c e e x e c u t i v e .
C u r r e n t t e c h n o l o g i e s i n n a t u r a l l anguages and expert systems point to numerous
p o t e n t i a l i n s t a n c e s whereby t h e performance of t h e u s e r i n t e r f a c e c o u l d b e
s i g n i f i c a n t l y enhanced thrGugh t h e a d d i t i o n of i n t e l l i g e n c e .

-

I One s i g n i f i c a n t o p p o r t u n i t y for improving u s e r i n t e r f a c e s d i s c u s s e d
p r e v i o u s l y (e s p e c i a l l y for n a i v e u s e r s) is t o i n c o r p o r a t e n a t u r a l l anguage
i n t e r f a c e s . C u r r e n t l y , w e do a r e a s o n a b l y good j o b of l i t e r a l i n t e r p r e t a t i o n
of E n g l i s h s e n t e n c e s i n s ta t ic c o n t e x t s and l i m i t e d , w e l l s t r u c t u r e d domains
of a p p l i c a t i o n . [ITW83]
a l so be a p p l i e d t o i n t e l l i g e n t command i n t e r p r e t e r s and query processors .
a r e s u l t , s i g n i f i c a n t b e n e f i t s can be r e a l i z e d by b o t h t h e i n e x p e r i e n c e d or
c a s u a l u s e r s (e+, payload t e l e s c i e n c e) and by h i g h l y s k i 1 l e d o p e r a t i o n s ,
tes t and i n t e g r a t i o n personnel .

Yet many of t h e n a t u r a l l anguage t e c h n o l o g i e s can
As

An i n t e l l i g e n t u s e r interface c o u l d t r a n s l a t e loose or s h o r t e n e d q u e r i e s o r
commands p r o v i d e d by the user i n t o correct and f u l l y q u a l i f i e d messages t o t h e
s p a c e s t a t i o n computing sys tems based on s t o r e d knowledge of:

E .4.2.5

o Missions
o I n d i v i d u a l user r o l e s w i t h i n t h e missions
o Opera t iona l environment conf igu ra t ion
o Opera t iona l environment state
o Ind iv idua l u se r characteristics
o User's c u r r e n t con tex t

S to red knowledge of space s t a t i o n missions would d e f i n e t h e unde r ly ing
bases for communication by:

o Establishing the vocabulary, i n c l u d i n g abbrev ia t ions , acronyms, synonyms,
g e n e r a l i z a t i o n s , se t memberships, a b s t r a c t i o n s , t ype inhe r t ances , etc.
[BRA83]

o Defining acceptable actions, t h a t would i n c l u d e prepatory dec i s ions , test
a c t i o n s , main goa l s , cau t ionary a c t i o n s , concluding a c t i o n s or enablement
ac t ions . [GAL841

o Establishing thematic role frames, t h a t spec i fy a n t i c i p a t e d or a l l o w a b l e
a c t i o n themes i n v o l v i n g t h e thematic o b j e c t being quer ied or commanded,
t h e agen t f o r a c t i o n , ins t ruments i n v o l v e d i n t h e a c t i o n , a l o n g wi th

time or durat ion. [WIN841
I a c t i o n d e s c r i p t o r s i n c l u d i n g source and d e s t i n a t i o n , t r a j e c t o r y , l o c a t i o n ,

I
T h i s l e v e l of knowledge allows robus t i n t e r p r e t a t i o n of q u e r i e s or

I commands, whether provided by n a t u r a l language i n p u t or by more s t r u c t u r e d
language-based inputs .
i n t e r f a c e i f knowledge of i n d i v i d u a l u se r r o l e s w i th in t h e missions are a l s o
provided.

Add i t iona l c a p a b i l i t y can be added t o t h e use r

T h i s would a l l o w t h e user i n t e r f a c e to:

o Restrict user a c t i o n s , p rov id ing another l e v e l of s e c u r i t y a t t h e user
, i n t e r f a c e .
,
l o Forgive erroneous or flawed input, now t h a t t h e bounds of an i n d i v i d u a l ' s
I i n t e r a c t i o n i s known.

l o Provide more power i n t h e use r i n t e r f a c e by c a l l i n g up s c r i p t s [SHA85] of
f r equen t or a l l o w a b l e a c t i o n sequences.

Knowledge of t h e environment conf igu ra t ion and t h e environment s ta te would
allow y e t another l e v e l of u se r i n p u t checking.
commanding of space s t a t i o n ope ra t ions or payloads must bear t h e response
d e l a y s of ground r o u t i n g and s a t e l l i t e l i n k s , it is d e s i r a b l e t o p rov ide t h e
maximum amount of u se r i n p u t checking a t t h e poin t of input . C e r t a i n l y , one
would want t o restrict any a c t i o n s t h a t are dangerous or de t r imen ta l t o t h e
p la t form, payloads o r mission. While t h e r e would undoubtably be checks made
a t t h e p o i n t of commanding, an a d d i t i o n a l layer of u se r i npu t f a u l t t o l e r a n c e
is o f t e n necessary.

Because ground-based

Knowledge and obse rva t ion of use r c h a r a c t e r i s t i c s would a l l o w s ta t ic and
dynamic t a i l o r i n g of t h e use r i n t e r f a c e for i n d i v i d u a l users .
obvious a p p l i c a t i o n would be i n acknowledging or i n f e r r i n g t h e s k i l l l e v e l s of
u s e r s and modifying t h e use r i n t e r f a c e inpu t and p resen ta t ion modes
accord ingly .
powerful i n t e r f a c e s being hard t o l e a r n and "user-friendly" i n t e r f a c e s g e t t i n g

The most

T h i s would circumvent t h e f r equen t problems a s s o c i a t e d wi th

I E.4.2.6

i n t h e way of experienced users . I n a d d i t i o n , t h e u s e r i n t e r f a c e c o u l d employ
s e l e c t i v e d isseminat ion of in format ion techniques which can dynamica l ly t a i l o r
t h e method p r e s e n t a t i o n (e.g., t e x t vs. g raphics) t o t h e u s e r p r o f i l e [ITW83]
or s e l e c t i v e omission of in format ion techniques (e.g., a b s t r a c t i o n , indexes,
summar iza t ion) [WIN84].

The t e c h n o l o g i e s ex is t today t o p rov ide t h e c a p a b i l i t i e s desc r ibed above i n
a c o s t - e f f e c t i v e , low r i s k and t i m e l y f a sh ion f o r space s t a t i o n .
t h e completeness and robus tness of t h e knowledge base would improve, p rov id ing
an i n c r e a s i n g l y powerful u se r i n t e r f a c e ,

Over time,

I n t h e l o n g term, knowledge of t h e u s e r s con tex t w i l l p rov ide t h e most
s i g n i f i c a n t improvement i n t h e use r i n t e r f a c e .
i n t e r f a c e would a t t empt t o understand t h e u s e r s i n t e n t and recognize t h e p l a n
being pursued.
a user ' s i n t e r a c t i o n i n l i g h t of h i s r o l e and i n l i g h t of t h e s ta te of t h e
environment t o answer t h e f o l l o w i n g quest ions: [SHA85]

Here, t h e i n t e l l i g e n t u s e r

I n t h i s mode, t h e use r i n t e r f a c e would c o n s t a n t l y be a n a l y z i n g

o Why is t h i s c h a r a c t e r doing what he is doing?
o What are is mot iva t ions?
o What are h i s p lans?
o What's h i s i n t e n t i o n ?

To accompl ish t h e understanding of a user's context , a d d i t i o n a l r e sea rch is
needed i n concept modeling and reasoning about g o a l s and a c t i o n s of r a t i o n a l
a g e n t s (i.e., t h e user). [ITW83]. Once achieved, t h e use r i n t e r f a c e c o u l d
become an a c t i v e e lement of t h e user-computer d i a l o g , i n s t e a d of a p a s s i v e
one. T h i s c o u l d be most important when responding t o emergency o r abnormal
c i rcumstances where t h e use r must qu ick ly t ake some form of a l t e r n a t e ac t ion .
I n such a s i t u a t i o n , t h e use r does no t have t h e time (or o f t e n t h e presence of
mind) t o comple t e ly d e s c r i b e a new course of ac t ion .
l e v e r a g e t h e machines knowledge of con tex t and s u c c i n c t l y execute a new set of
a c t i o n s , such as: [HAM841

Ins t ead , h e would

o Use a l t e r n a t e agen t t o accomplish t h e goa l
o Use a l t e r n a t e p l a n
o Execute s c r i p t r a p i d l y
o Wait o u t c u r r e n t state
o Jump i n t o t h e middle of t h e s c r i p t
o Counterplan a g a i n s t a p o t e n t i a l f u t u r e state

o Recover
1 o Put up wi th it

I n a d d i t i o n t o augmenting t h e o p e r a t i o n a l u se r i n t e r f a c e wi th knowledge-
based c a p a b i l i t i e s , t h e r e is a l s o s i g n i f i c a n t p o t e n t i a l f o r a s s i s t i n g t h e
d i a l o g des ign , pro to typing and management tasks with e x p e r t sys t em
c a p a b i l i t i e s .
i n t e r f a c e s and r a p i d prototyping.
a u t h o r s i n s e l e c t i n g i n t e r a c t i o n approaches and conf igur ing t h e use r i n t e r f a c e
accord ingly . S i m i l a r l y , t h e r e is a p o t e n t i a l f o r a s s i s t i n g i n t h e
i n t e r p r e t a t i o n of u s e r i n t e r a c t i o n d a t a and metrics and i n sugges t ing
improvements o r e x p l a i n i n g perce ived behavior .

Mission and u s e r r o l e knowledge can assist i n s i m u l a t i n g user
An e x p e r t s y s t e m c o u l d assist t h e d i a l o g

[ITW83 J

E.4.2.7

Although t h e r e has been o n l y l i m i t e d work i n inco rpora t ing a r t i f i c i a l
i n t e l l i g e n c e t echno log ie s i n t o i n t e l l i g e n t u se r i n t e r f a c e s , w e are convinced
t h a t t h e r e is s i g n i f i c a n t p o t e n t i a l , p a r t i c u l a r l y f o r a program as complex as
s p a c e s t a t i o n .

- User I n t e r a c t i o n Design and Val ida t ion

A real c h a l l e n g e l i es i n combining t h e s e use r - in t e rac t ion c a p a b i l i t i e s i n a
way t h a t is c o n s i s t e n t and conherent f o r t h e p a r t i c u l a r u se r s , t h e i r t a s k s ,
and t h e i r environment.
c a p a b i l i t i e s or f e a t u r e s which may be d e s i r a b l e f o r one class of u s e r s , t ype
of a c t i v i t y or o p e r a t i o n a l environment may n o t be f o r another. For example,
f e a t u r e s which suppor t ease of l e a r n i n g are needed f o r t h e inexperienced or
i n f r e q u e n t u se r w h i l e f e a t u r e s t o enhance e f f i c i e n c y and power are l i k e l y t o
be far more important f o r experienced or every-day users .
of t h e o p e r a t i o n s or t a s k s t h a t are c a r r i e d ou t have i m p l i c a t i o n s f o r user-
i n t e r f a c e des ign as w e l l .
e n t r y and t e x t e d i t i n g) e f f i c i e n c y of phys ica l a c t i o n s (such as number of key
s t r o k e s) is important.
minimizing t h e user 's mental l o a d and reducing errors is more important.

Th i s is an e s p e c i a l l y d i f f i c u l t t a s k because

The c h a r a c t e r i s t i c s

For t a s k s t h a t are r e p e t i t i v e i n n a t u r e (e+, d a t a

For t a s k s r e q u i r i n g a high l e v e l of mental e f f o r t ,

I I n s h o r t , t h e f e a t u r e s r equ i r ed t o support e f f e c t i v e user i n t e r a c t i o n can
mean d i f f e r e n t t h i n g s f o r d i f f e r e n t u s e r s and types of tasks .
u s e r s t h e m s e l v e s are n o t static e n t i t i e s .
i n t e r f a c e s which e v o l v e as a g iven use r g a i n s experience and s o p h i s t i c a t i o n ,
both wi th t h e t a s k and wi th t h e computer system.

I n a d d i t i o n ,
I d e a l l y , one would l i k e user

The major components of e f f e c t i v e use r - in t e r f ace design inc lude :

o t h e a b i l i t y t o e v a l u a t e key f e a t u r e s of u se r i n t e r f a c e s , e s p e c i a l l y a t
a n early p o i n t i n t h e development

l

l
o t h e a v a i l a b i l i t y of a t o o l s e t t o suppor t u se r - in t e r f ace development

o a s y s t e m a r c h i t e c t u r e which a l l o w s development of u se r i n t e r f a c e s t o
proceed independent ly and i n p a r a l l e l w i t h development of t h e rest of t h e
sys t em.

E v a l u a t i n g - User I n t e r f a c e s

The des ign of u s e r i n t e r f a c e s shou ld proceed i n a much more i t e r a t i v e
f a s h i o n than t h e des ign of o t h e r p a r t s of t h e software.
unknowns concerning which combination of u se r - in t e r f ace c a p a b i l i t i e s w i l l b e s t
s u i t t h e v a r i o u s t y p e s of u s e r s , t h e i r t a s k s and o p e r a t i o n a l environments. A t
t h e same t i m e , t h e r e are few des ign p r i n c i p l e s t o which a deve lope r can t u r n
f o r conc re t e guidance. Even obv ious ly important p r i n c i p l e s such as
consis tency" can be d i f f i c u l t t o app ly i n p r a c t i c e s i n c e t h e des igner ' s

concept of cons is tency may no t f i t t h e users . Design dec i s ions which seem
obvious t o t h e d e v e l o p e r s can l e a d t o confusion among users.

There are t o o many

I1

User behavior can be a v a l u a b l e source of guidance i n s e l e c t i n g user-
i n t e r a c t i o n c a p a b i l i t i e s .
what e r r o r s they make, how much time they r equ i r e , and 80 on, t h e des igner h a s
an o b j e c t i v e and meaningful b a s i s f o r choosing among a l t e r n a t i v e s and f o r
confirming t h e u s a b i l i t y of choices a l r e a d y made. The earlier one can begin

By obse rv ing how u s e r s accomplish a g i v e n t a sk ,

?

t o ga the r t h i s t ype of in format ion t h e b e t t e r , u s ing p ro to types and
s i m u l a t i o n s t o test o u t des ign a l t e r n a t i v e s .

These e v a l u a t i o n s can range from informal o b s e r v a t i o n a l s t u d i e s t o formal
s t anda rd ized experiments.
i d e n t i f y i n g t h e s t r e n g t h s and weaknesses of a s i n g l e des ign , t hen an informal
o b s e r v a t i o n a l s tudy i s s u f f i c i e n t . I f t h e purpose of t h e e v a l u a t i o n i s t o
compare a l t e r n a t i v e des igns , t hen one must t u r n t o t h e methodology of
c o n t r o l l e d exper imenta t ion , u s ing a s tandard set of procedures i n o rde r t o
produce as unbiased an e v a l u a t i o n as poss ib l e .
t h e e v a l u a t i o n t o be v a l i d , t h e use r s , t h e i r t a s k s , and surrounding c o n d i t i o n s
must be r e p r e s e n t a t i v e of t hose t h a t w i l l be supported by t h e o p e r a t i o n a l
s y s t e m .

If t h e e v a l u a t i o n i s concerned s o l e l y wi th

I n e i t h e r case, i n o rde r f o r

S imula t ions may be of s p e c i a l interest i n t h e des ign of t h e space s t a t i o n
because they can be used t o e v a l u a t e use r - in t e rac t ion c a p a b i l i t i e s t h a t do no t
Yet e x i s t , t h u s p rov id ing informat ion about t h e l i k e l y b e n e f i t s r e s u l t i n g from
v a r i o u s t e c h n o l o g i e s t h a t may r e q u i r e s u b s t a n t i a l r e sources t o implement.
Gould, Cont i , and Hovanyecz [l] c a r r i e d o u t t h i s t y p e of s tudy by s i m u l a t i n g a
" l i s t e n i n g typewri te r" t h a t cou ld t ake human speech as i n p u t and produce a
p r i n t e d v e r s i o n of t h a t speech as output. A human t y p i s t hidden from view
s imula t ed t h e speech r ecogn i t ion c a p a b i l i t i . e s r equ i r ed f o r t h e typewri te r .

Tools f o r Developing User I n t e r f a c e s --
I n l i g h t of t h e above d i scuss ion , f a c i l i t i e s are needed f o r r eco rd ing user

i n t e r a c t i o n .
a tomic l e v e l (e.g., eve ry keys t roke) t o a much h igher l e v e l such as t h e t o t a l
time requ i r ed t o complete a g iven t a s k or a summary of t h e d i f f e r e n t commands
used. The l e v e l of d e t a i l w i l l o b v i o u s l y depend on t h e ques t ion of i n t e r e s t .
I n e v a l u a t i n g a t e x t e d i t o r , f o r example, one may wish t o l o g a time-stamped
record of a l l keystrokes.
i n t e r f a c e s no t o n l y i n terms of s ta t ic d i s p l a y s but i n terms of t h e dynamic
a s p e c t s of an i n t e r a c t i o n as well.

The l e v e l of de ta i l of t h e information captured can vary from a n

T o o l s are a l s o needed f o r pro to typing use r

T o o l s and a s s o c i a t e d da tabases are needed t o assist i n d e f i n i n g user- input
languages and i n creat ing , e d i t i n g , and s t o r i n g d i s p l a y s and d i s p l a y
d e f i n i t i o n s of a l l types i n c l u d i n g graphics , t e x t , animation, menus, and
forms. The Dialogue Management System (DMS), developed by Hartson and h i s
c o l l e a g u e s [3], c o n t a i n s many of t h e s e c a p a b i l i t i e s .

A r c h i t e c t u r e f o r t h e I n t e l l i g e n t User Interface System -- -
Given t h e i t e r a t i v e n a t u r e of u se r - in t e r f ace des ign , one of t h e key

p r o p e r t i e s d e s i r e d of user i n t e r f a c e s is f l e x i b i l i t y . The space s t a t i o n
computing s y s t e m must a l l o w changes i n use r i n t e r f a c e s as a r e s u l t of
improvements sugges ted by u s e r t e s t i n g or t h e a d d i t i o n of new u s e r s , new
ope ra t ions , or new o p e r a t i o n a l sites.
q u i c k l y , and wi thout a d v e r s e l y impact ing o t h e r p a r t s of t h e sof tware.

These changes must be made easily,

Software d e s i g n e r s have t r a d i t i o n a l l y i s o l a t e d t h e so f tware from t h e
e f f e c t s of hardware changes. I n t h e same way, t h e computat ional o r f u n c t i o n a l
p o r t i o n of t h e sof tware shou ld be i s o l a t e d from changes i n t h e p o r t i o n s
c o n t r o l l i n g t h e u s e r i n t e r f a c e . Hartson and h i s c o l l e a g u e s [3] have w r i t t e n
e x t e n s i v e l y about t h e a r c h i t e c t u r a l i s s u e s involved.

E.4.2.9

Communicating with t h e user , i n c l u d i n g a l l i n p u t checking, shou ld be t h e
r e s p o n s i b i l i t y of t h e use r - in t e rac t ion components w h i l e t h e c o r r e c t and
e f f i c i e n t func t ion ing of t h e sys t em f u n c t i o n a l i t y shou ld be t h e r e s p o n s i b i l i t y
of t h e computat ional components. Hartson has argued f o r a para l le l s e p a r a t i o n
i n t h e s k i l l s requi red t o design, implement, and tes t t h e s e two components
w i th t h e use r i n t e r f a c e f a l l i n g wi th in t h e domain of t h e human-factors
s p e c i a l i s t and t h e computat ional po r t ion belonging t o t h e t r a d i t i o n a l so f tware
des igne r and programmer.
two components, t h e two types of s p e c i a l i s t s can work independent ly and i n
p a r a l l e l wi thout i n t e r f e r e n c e .

Once t h e i n t e r f a c e has been def ined between t h e s e

Because of t h e complexi ty of such a use r i n t e r f a c e and t h e complexi ty of
t h e v a r i o u s missions o r r o l e s , it is necessary t o deve lop a suppor t s y s t e m f o r
t h e use r i n t e r f a c e .
c o n s i s t i n g of t h e fo l lowing:

We propose a comprehensive use r i n t e r f a c e s y s t e m

o User Interface E x e c u t i v e . T h i s Ada sof tware package would p rov ide t h e
use r i n t e r f a c e u t i l i t i e s embedded wi th in t h e o p e r a t i o n a l space
s t a t i o n computing sys t ems and be configured f o r t h e s p e c i f i c machine and
miss ions f o r each i n s t a l l a t i o n v i a a r e s i d e n t da tabase and knowledge base.

0 user Iuterface R o t o t y p i n g Subsystem. T h i s would bundle t h e use r
i n t e r f a c e e x e c u t i v e w i t h gene ra l i zed s imula t ion capabi l i t i es and data
monitor ing and c o l l e c t i o n rout ines . This subsystem would p rov ide a
pnambic ("pay no a t t e n t i o n t o t h e man behind t h e cur ta ins") l a b o r a t o r y for
use r i n t e r f a c e experimentation.

o User Interface C o n f i g a r a t o r . Th i s sof tware would customize t h e use r

The customizat ion provided by t h i s t o o l would

The low l e v e l cus tomiza t ions would be accomplished

i n t e r f a c e e x e c u t i v e s f o r i n s t a l l a t i o n and a l s o t h e pro to typing subsystem
f o r experimentat ion.
i n c l u d e i n p u t and p resen ta t ion op t ions and t h e h igher l e v e l d i a l o g
customizat ions.
through a combination of program d i r e c t e d sof tware b u i l d s from a l i b r a r y
of u s e r i n t e r f a c e p r i m i t i v e s and parametr ic o r language-driven i n i t i a l i z a -
t i ons .
compi le r t h a t w i l l conf igure t h e user i n t e r f a c e e x e c u t i v e wi th t h e
r equ i r ed knowledge and in fe rence algori thms.

Higher l e v e l cus tomiza t ions w i l l be accomplished through a r u l e

0 Dialog b n a g e r e n t Subsystem. This subsystem would i n p u t knowledge
r ega rd ing t h e mission, u se r s , con f igu ra t ion , etc., and be used t o compose
and conf igure d i a l o g sess ions .
p ro to typing subsystem would be ana lyzed t o v a l i d a t e d i a l o g s e s s i o n before
deployment.

Data r ece ived from t h e u s e r i n t e r f a c e

The u s e r i n t e r f a c e s y s t e m would be designed wi th a n open a r c h i t e c t u r e t o
a l low easy expansion as new use r i n t e r f a c e t echno log ie s become a v a i l a b l e .
approach d iscussed i n t h i s paper w i l l n a t u r a l l y pu t g r e a t e r requirements on
t h e l o c a l process ing c a p a b i l i t i e s of t h e user i n t e r f a c e devices . Current
d e c l i n i n g c o s t t r e n d s i n h igh r e s o l u t i o n graphic works ta t ions l e a d s u s t o
b e l i e v e t h a t t h e inc reased f u n c t i o n a l i t y r e c e i v e d from a n i n t e l l i g e n t u se r
i n t e r f a c e w i l l be a cost e f f e c t i v e s o l u t i o n for t h e space s t a t i o n .
a d d i t i o n , t h e proposed open a r c h i t e c t u r e will l end i tself t o a d d i t i o n s of new
t e c h n o l o g i e s o v e r t h e space s t a t i o n l i f e cyc le .

The

I n

I E.4.2.10

References

[BAS851
Space S t a t i o n Software I s s u e s , Apr. 25, 1985.

[BOE85] Boehm, B.
p resented a t Open Forum on Space S t a t i o n Software I s s u e s , Apr. 24, 1985.

Basi l i , V. "A V i e w of Language Issues", p resented a t Open Forum on

"A V i e w of Software Development Environment (SDE) Issues",

[BRA831 Brachman, Ronald J. ,%hat IS-A Is and Isn ' t : An A n a l y s i s of Taxonomic
Links i n a Semantic Network," Computer, IEEE Computer Soc ie ty , Vol. 16 No. 10,
October 1983.

IDOR831 Dorofee, A. and Dickison, L. '!High Order Language: Second L e v e l
White Paper, Space S t a t i o n Opera t ions Working Group, KSC/DL-DED-22, J u l . 29,
1983.

11 [DOR85] Dorofee, A. and Dickison, L. Space S t a t i o n Opera t ions Language
System Requirements and Concept D e f i n i t i o n (Preliminary)", KSC, Aug. 1, 1985.

[GAL841 Galambos, James and Black, John, Us ing Knowledge of A c t i v i t i e s to
Understand and Answer Quest ions, Yale U n i v e r s i t y Cogn i t ive Sc ience Program,
C o g n i t i v e Sc ience Technica l Report #29, August 1984.

[GCH82] Gould, J.D., Cont i , J., and Hovanyecz, T. "Composing L e t t e r s wi th a
Simula ted L i s t e n i n g Typewriter".
Computing Systems Conference, ACM, Washington, D.C., 1982.

[HAM841 Hammond, K r i s t i a n , Indexing and Causa l i t y : The Organiza t ion of P l a n s
and S t r a t e ies i n Memory, Yale U n i v e r s i t y Department of Computer Science,
d 5 1 , Dec 1984.

I n Proceedings of t h e Human F a c t o r s i n

[HJ85] Hartson, H.R. and Johnson, D.H. ' 'Dialogue Management: N e w Concepts i n
Human-Computer I n t e r f a c e Development". ACM Computing Surveys, 1985.

[ITW83] Report of t h e Informat ion Technolo
Foundation, AD-A144-212, 1 Oct 198+

Workshop, Na t iona l Sc ience

[SHA85] Shank, Roger C., guestions &Thought, Yale University Department of
Computer Sc ience , YALEU/CSD/RR#385, August 1985.

[SOW841 Sowa, John F., Conceptual S t ruc tu res : Information P rocess ing i n Mind
- and Machine, Addison-Wesley P u b l i s h i n g Company, 1984.

[WIN841 Winston, P. H., Artif icial I n t e l l i g e n c e , Addison-Wesley Pub l i sh ing
Company, 1984.

[YH86] Yunten, T. and Hartson, H.R. "A SUPERvisory Methodology Notat ion
(SUPERMAN) f o r Human-Computer System Development". I n H.R. Hartson (Ed.),
Advances i n Human-Computer I n t e r a c t i o n , Ablex Pub l i sh ing Corporat ion, 1986.

[HIIN841 Hinden, H. '%raphics S tandards F i n a l l y S t a r t t o S o r t Themselves Out,"
Computer Design, May 1984, pp. 167-180.

[LE0851 Leonard, T. "Ada and t h e Graphica l Kerne l System," Ada i n Use:
Proceedings --- of t h e Ada I n t e r n a t i o n a l Conference, May 1985, pp. 136-150.

E.4.2.11

[LE085 J Leonard, T. 3
Proceedings --- of t h e Ada I n t e r n a t i o n a l Conference, May 1985, pp. 136-150.

[GAR84a] Garman, J. ?Data Processing f o r Space Station", Oct. 18, 1984
(presenta t ion)

[GAR84b]
Center", Dec. 13, 1984. (presenta t ion)

[HAL851 Hall, D. "Space S t a t i o n and t h e Role of Software", presented a t Open
Forum on Space S ta ton Software Issues, Apr. 24, 1985.

"Ada and t h e Graphical Kernel System," ,e

Garman, J. '?Jetworking and Data Processing f o r t h e Johnson Space

[SAP] Myers, Brad A.
Graphics & Applicat ions, Volume 4, Number 12, December 1984.

'The User I n t e r f a c e f o r Sapphire," IEEE Computer

E.4.2.12

David B. LaVallee
Ford Aerospace and Communications Corp.

College Park, Maryland

1 INTRODUCTION

The purpose of this research project is to investigate
the feasibility of using Ada for rule-based expert systems
with real-time performance requirements. This includes
exploring the Ada features which give improved performance
to expert systems as well as optimizing the tradeoffs or
workarounds that the use of Ada may require. A prototype
inference engine for general purpose expert system use was
built using Ada, and rule firing rates in excess of 500 per
second were demonstrated on a single MC68000 processor.

The knowledge base uses a directed acyclic graph to
represent production rules. The graph allows the use of
AND, OR, and NOT logical operators. The inference engine
uses a combination of both forward and backward chaining in
order to reach goals as quickly as possible. Future efforts
will include additional investigation of multiprocessing to
improve performance and creating a user interface allowing
rule input in an Ada-like syntax.

Some of the issues discussed concerning Ada's use in
expert systems include: How should a knowledge base be
structured in Ada? How should the knowledge base be
searched, especially in the context of a dynamic problem
space with new data constantly entering the system? Can
real-time performance be achieved?

A critical issue involves the use of Ada's multitasking
to implement parallel algorithms in expert systems. Clearly
the inference engine can be implemented as a single task
which can be integrated into a larger system and execute
only when necessary. However, the execution of the
inference mechanism in a parallel manner should increase
performance. Using segmented knowledge bases, backward
chaining in parallel on all goals at once, and forward
chaining in parallel on individual rules are some of the
different strategies to be considered. These strategies use
different levels of granularity. Using an algorithm with a
low level of granularity, fewer parallel computations will
be performed and intertask communication will be less
frequent . Using a high level of granularity, much
computation is done in parallel, however it involves
considerable intertask communication. The overhead involved

E . 4 . 3 . 1 .

in creating tasks and in communicating between them, must be
weighed against the benefits of the parallel performance.

2 EXPERT SYSTEM USE IN THE SPACE STATION

The Space Station will be a tremendously complex
system. The automation of many of the Space Station
activities and related monitoring functions in a safe and
reliable manner will help to increase the efficiency and
cost effectiveness of the system. In addition, one of the
key engineering guidelines for the Space Station is that it
should be able to carry out normal operations for some
finite period of time without contact with the ground. As
pointed out in a NASA Technical Memorandum on Automation
Technology For The Space Station [l),

"Expert systems are needed to perform many
monitoring and control functions requiring
complex status analysis and automated
decision making so that the Station is less
dependent on ground support in these
areas.)I

Also in [l],

"In emergency situations, automated systems
which respond very rapidly to a crisis can
bring the system to a fail-safe condition
before extensive damage occurs... Without
automation, humans may be placed more often
in pressure-prone situations such as EVA
and emergency maintenance in which there is
an increased chance of error."

Expert systems could incorporate fault diagnosis, isolation,
and recovery to enhance crew safety. Alarms could be
triggered automatically to warn crew members of hazardous
situations. In addition, many faults could be corrected
before they pose any danger to the crew or spacecraft.

3 FORD ADA INFERENCE ENGINE

3.1 Description

The Ford Ada Inference Engine (FAIE) is a research
prototype expert system inference engine designed to execute
as an Ada task embedded in an expert system which could in
turn be embedded in a larger program. The sample
application discussed here involves using FAIE for fault
diagnosis. A typical rule in this type of system might be:

E.4.3.2.

.

"IF temperature is above normal and
heater output is above normal,

THEN power off heater."

The knowledge base is structured as a directed acyclic
graph. This can be thought of as a network of nodes with
the links all pointing in the same direction. For the
diagnostic system, the leaf nodes on one side of the graph
represent the various sensor data measurements. Commands
for corrective action are the goal nodes on the other side
of the graph. The relationships between erroneous
measurements are the intermediate nodes leading to a goal.
Figure 1 shows a portion of a sample graph. Note: the
dotted lines represent additional portions of the graph that
are not shown.

The leaf nodes represent initial data points that must
be provided to the inference engine. The nodes on the other
side of the graph represent goal states that are sought when
executing the inference engine. The nodes in between
represent hypotheses or subgoals that will be tested. The
links between the nodes are the llproduction rulesv1 that the
inference engine uses to traverse the graph.

Since we have a compiled, static knowledge base, all
elements are present in the graph. Each node has a status
which we will refer to as tgflaggedll, Ilunflagged", or
unknown. A lgflaggedll node is one that satisfies its
associated IF-THEN rule. We must distinguish between an
untested node (status equals unknown), and a node that was
tested and does not satisfy the associated IF-THEN rule
(status equals 'Iunflaggedt1). A I1flagged1l node is one that
will be used to traverse the graph. The path to a goal must
be continuous through ttflaggedll nodes. An ltunflaggedll node
represents a "dead end".

Status for all the leaf nodes is passed to the
inference engine when a problem exists. Figure 2 shows the
sample knowledge base with all the leaves (nodes 1-11) given
an initial status. Nodes 2,3,10 and 11 are Itflaggedf1.

In an attempt to find a goal as quickly as possible,
the successors of the first leaf node are examined
and the first one in the list is visited using Ada procedure
FORWARD-CHAIN. Since the status of the successor node is
initialized to unknown, its predecessors are examined along
with its AND/OR flag to determine its status. If the status
of this first successor to the first leaf node is found to
be tlflaggedlt, then its first successor in its list is
visited, and so on until a goal is found or a dead end is
reached. If the status of this first successor is found to
be ltunflagged@l, then the next successor in the first leaf
node's list is visited.

E.4.3.3.

a

i

a x

\

u x
4 s a
a

I

9
.- I

..
!=
rn
E
Q,

s

0

L
3

If the status of a predecessor node is unknown, then
Ada function BACK TRACK is invoked to return the status.
Both subprograms FOEWARD CHAIN and BACK TRACK are recursive.

Figure 3 shows the resulting status after running the
inference engine. To get to Figure 3 from Figure 2 the
following steps were taken:

- -

1. Node 2 ' s successor list is examined, and node 13 is

2. Since node 13 is an Itand gate" and both its predecessors

3. Node 13's successor list is examined, and node 17 is

4 . Since node 17 is an Itand gate" and node 7 is I1unflagged1l
node 17 becomes Wnf lagged".

5. FORWARD CHAIN returns to visiting node 13, where the
successor list is examined, and node 18 is passed
in another recursive call to FORWARD CHAIN.

6. Since node 18 is an "and gate" and both-its predecessors
(8 and 13) are flflaggedll, node 18 becomes lvflaggedlt.

7. Node 18's successor list is examined, and node 21 is
passed in another recursive call to FORWARD CHAIN.

8 . Since the status of node 20 is unknown, node 20 is
passed in a call to BACK TRACK.

9. Since node 20 is an @@and gate" and both its predecessors
(10 and 11) are 8fflagged1t, node 20 is Ifflagged1l
and BACK TRACK returns.

(18 and 20) are "flaggedf1, node 21 is llflaggedll
and a goal has been found.

nodes for additional goals.

passed in a call to FORWARD CHAIN.

(2 and 3) are tlflaggedll, node 13 becomes I1flaggedf1.

passed in a recursive call to FORWARD CHAIN.

10. Since node-21 is an 'land gate" and both its predecessors

11. The recursive calls return and visit other successor

3.2 Performance

The search speed is dependent upon the depth of the
graph from leaf to goal but is independent of the number of
leaves or goals in the graph. The only rules that are
attempted to be matched already have at least one element of
its left-hand-side Itflagged1l. When a goal node is
Ifflaggedf1, the inference engine will issue a procedure call
or task rendezvous to invoke logic associated with the goal
state (e.g. turn a circuit on or off).

Neither heuristic pruning nor optimal search techniques
are employed. Some control over program execution can be
accomplished by ordering the leaf nodes and/or ordering the
list of successors and predecessors. Factors such as
severity of problem or frequency of occurrence can be used
to prioritize these lists.

E.4.3.5.

I

.

W

t
0

V

This design assumes that all calculations on the data
are performed up front, prior to invoking the inference
engine. Speeds in excess of 500 rule firings per second
were executed on a single processor. A rule firing is
defined to be ffflagginglf a node, increasing working memory.
This is similar to results obtained by other non-LISP
inference engines (e.g. OPS83 or the BLISS version of
OPS5). These results indicate that real-time performance is
achievable.

4 USE OF ADA FEATURES

The knowledge base is an array of records. Each record
is a node with the following information:

STATUS - UNKNOWN, FLAGGED or UNFLAGGED
FORM - LEAF, SUBGOAL or GOAL
AND OR FLAG - AND or OR
POINTER TO PREDECESSOR LIST
POINTER TO SUCCESSOR LIST
TEXT STRING IDENTIFIER

The Ada package describing the data types in the knowledge
base is given in Figure 4 . A description of Ada constructs
used to transform LISP research prototype expert systems
into Ada production systems was given by Rude [2]. Unlike
Rude, I have implemented the predecessor and successor lists
as linked lists of records using access types rather than
arrays of records. This allows flexibility in dynamically
altering the knowledge base at runtime, e.g. if a sensor is
determined to be faulty and you wish to ignore its input.
In addition, the minimum amount of storage space.is used.
Using arrays would require that all nodes allocate space for
the largest list of predecessors or successors and would
also require re-compilation to adjust the maximum sizes.

Ada tasking was used to embed the expert system in a
larger Ada program. It can stand idle while other
monitoring and limit checking functions are performed and
then spring into action when an anomaly is detected. A more
extensive use of tasking can be made to perform various
functions of the expert system in parallel. This will be
discussed in the next section.

Although Ada provided adequate constructs to build this
inference engine there are a couple of features of other
languages (notably LISP languages) that would be very useful
for expert systems if supported in Ada. The main feature
desired is the ability to pass Ada functions as parameters
in subprogram calls. An alternative would be the ability to
embed a function in a data structure, such as the field of a
record, to be executed when accessed. This could be used to

I E.4.3.8.

perform calculations when needed. As mentioned earlier, in
this version, all calculations needed to execute the
inference engine must be performed up front.

object
to inherit values from a parent. For example, when new
elements are added to a linked list or tree-like structure,
they could inherit values in specified fields of their
parents. This would reduce subprogram calls and a number of
extra objects for data storage.

The second desired feature is the ability of an

5 FUTURE INVESTIGATION

5.1 Further Multitasking Work

One main thrust of our further work will focus on the
use of multitasking to improve performance. This will also
solve the problem of reading dynamic data which is
constantly being updated as inferencing is in progress. It
seems reasonable to use Ada tasking to enhance the real-time
performance of inference engines. Although true
production-quality multiprocessing Ada compilers do not yet
exist, it is now feasible to write tasking implementations
of inference engines which will exhibit order-of-magnitude
improvements in rule-firing rates when ported to true
multiprocessing Ada environments.

Douglass [3,4] lists five levels of potential
parallelism in rule-based expert systems. They are:
subrule level, rule level, search level, language level, and
system level. These levels include different types within
them. Douglass concentrates on rule level and various types
of search level parallelism. He gives a range of
quantitative results for these levels using mathematical
models and concludes that combinations of subrule, rule and
search level parallelism will yield better results than any
single level when the characteristics of the specific system
are taken into consideration. He also mentions that very
little work has been implemented and tested on parallel
computers.

Communication between processes is an important factor
in the efficiency of parallel algorithms. Generally
speaking, the more frequently that information is exchanged,
the slower the computation is performed since processes
spend a larger portion of their time communicating rather
than computing. Researchers working on the DADO machine
[5,6] have developed some unique methods of communicating
between parallel processors (e.g. a binary tree structure
of processors with communication rules controlled by
hierarchy).

E.4.3.9.

In Ada, the task is the natural construct for parallel
processing. However, multitasking involves considerable
overhead in creating/activating tasks, communicating between
them, and terminating them. This overhead must be compared
with the amount of computation performed in parallel in
order to determine the relative efficiency gained by various
strategies of parallel processing. Gehani [7] concurs, and
goes an to say that in designing concurrent programs in Ada,
one must avoid the polling bias in the communication
mechanism. He also points out that multiprocessing programs
will be more efficient if the underlying hardware offers
genuine concurrency.

Deering [8] also emphasizes that hardware
considerations, especially processor speeds versus memory
speeds, must be examined when designing the architecture of
expert systems. He says one should "study hardware
technology to determine at what grain sizes parallelism is
feasible and then figure out how to make [the] compilers
decompose programs into the appropriate-size pieces."

Granularity is the average amount of work done by a
process between communication with other processes. It is
inversely proportional to the frequency of communication.
The five levels of parallelism mentioned by Douglass range
from very finely grained to roughly grained. A fine grained
approach was taken by Rude 121 where each rule was itself
declared as an Ada task with rendezvous for links to
predecessors and successors. This concept has merit but is
questionable for real-time applications. In the
implementation of the PICON expert system for real-time
process control [9,10], a roughly grained algorithm was
chosen by segmenting parts of the knowledge base and
applying priorities to searching the different portions.
Our future investigations will include analyzing various
strategies, including forward and backward chaining on
individual rules in parallel, dividing the knowledge base,
and combinations of the different strategies.

5 . 2 User Interface

Another area for future work involves building a user
interface for accurate and efficient knowledge acquisition.
The accumulation of the domain knowledge and its insertion
into a knowledge base has often been a bottleneck in expert
system production. The Ada language IF-THEN-ELSE constructs
are readable and English-like. We will build a user
interface in an Ada syntax that is hopefully both easy for
the knowledge engineer to use, and also easily translates
into Ada code.

E.4.3.10.

6 CONCLUSION

The prototype demonstrates the feasibility of using Ada
for expert systems on a small scale. Investigation of
multitasking and alternate knowledge base representations
will help to analyze some of the performance issues as they
relate to larger programs.

References:

1.

2.

3.

4 .

5.

6 .

7.

a.

9.

10.

NASA Advanced Technical Advisory Committee, Advancing
Automation and Robotics Technology for the NASA Space
Station and for the U.S. Economy, NASA Technical
Memorandum 87566, Volume 11, March 1985 p. 5.

Rude, A., "Translating a Research LISP Prototype to a
Formal Ada Design Prototype", Proc. Washington Ada
Symposium, March 1985.

Douglass, R., "Characterizing the Parallelism in
Rule-Based Expert Systems1!, Proc. Hawaii International
Conference on Systems Science, HICSS-18, Jan. 1985.

Douglass, R., "A Qualitative Assessment of Parallelism
in Expert Systems", IEEE Software, May 1985, pp. 70-81.

Stolfo, S., and D. Miranker, "DADO: A Parallel Processor
for Expert Systems", Proc. 1984 Int. Conf. on Parallel
Processing, IEEE Computer Society Press, August, 1984.

Stolfo, S., "Five Parallel Algorithms for Production
System Execution on the DADO Machine", Proc. of the
NCAI, Austin, TX, 1984.

Gehani, N., Ada: Concurrent Programming, Prentice-Hall
Inc., 1984.

Deering, M. IIArchitectures for AI", Byte Magazine,
April, 1985.

Moore, R., L. Hawkinson, C. Knickerbocker, L. Churchman,
"A Real-Time Expert System for Process Controlvf, 1st
Conf. on AI Applications, IEEE Computer Society Press,
Dec. 1984.

Moore, R., "Adding Real-Time Expert System Capabilities
to Large Distributed Control Systemst1, Control
Engineering, April 1985.

E.4.3.11.

with DYNAMIC STRING;
package GRAPES is
type NODE-NUM is new INTEGER range O..INTEGER'LAST;

type STATUSES is (FLAGGED, UNFLAGGED, UNKNOWN);
type GATE is (AND-GATE, OR GATE) ;
type NODE-FORM is (GOAL, SUBGOAL, LEAF);
type PRED-NODE; -- DATA STRUCTURE FOR LINKED LIST -- OF PREDECESSORS
type PRED NODE PTR is ACCESS PRED - NODE;
type PREDNODE-is - record
NAME : NODE NUM;
NEG-LOGIC - FLAG : BOOLEAN := FALSE;

NEXT : PRED-NODE-PTR;

-- FALSE = want pred to be flagged. -- TRUE = want pred to be unflagged.

end record;

type SUCC-NODE; -- DATA STRUCTURE FOR LINKED LIST
-- OF SUCCESSORS

type SUCC NODE-PTR is ACCESS SUCC - NODE;
type SUCCINODE is record

end record;

NAME : NODE NUM;
NEXT : SUCC-NODE - - PTR;

type NODE is record -- DATA STRUCTURE FOR
THE --

STATUS : STATUSES := UNKNOWN;
AND OR : GATE := AND GATE;

NODE OF
GRAPH

- -- ANDmeans all predecessors must -- be satisfied. -- OR means one or more predecessors -- must be satisfied. -- Does not apply to leaf nodes.
PRED : PRED NODE PTR;
succ : SUCC-NODE-PTR;
FORM : NODE-FORM:
MESSAGE : DYNAMIC - STRING.UCSD - STRINGS;

end record;

type KNOWLEDGE - BASE is array (NODE NUM range <>) of NODE;

type FLAGGED-NODES is array (INTEGER range <>)
of NODE NUM; -- Init. state

function SIZE return INTEGER: -- ALLOWS SIZE OF GRAPH TO

-- ARRAY OF RECORDS

-- BE READ AT RUN TIME.
end GRAPHS;

Figure 4 . Graphs Package

E.4.3.12

N89-16351
AN APPROACH TO KNOWLEDGE STRUCTURING

FOR ADVANCED PHASES OF THE

TECHNICAL AND MANAGEMENT INFORMATION SYSTEM (TMIS)

H. T. Goranson , S i r i u s Incorporated
P.O. Box 9258, V i r g i n i a Beach, VA 23452

ABSTRACT: TMIS must employ an enlightened approach t o i t s
"object" structure, but basic issues i n conceptua 1
structuring remain t o be resolved. Sirius out-
l ines the necessary agenda and reports on progress
toward so Zutions.

INTRODUCTION

S i r i u s i s a small group which has t r a d i t i o n a l l y focused on advanced
s o l u t i o n s t o troublesome issues i n knowledge representa t ion . I t s p r i o r work
has p r i m a r i l y been f o r l a r g e r f i rn is addressing problem spaces i n the defense
community. Recently, t h e group has been working i n areas d i r e c t l y app l i cab le
t o t h e s p e c i f i c problems o f object/meta-data/knowledge representa t ion faced by
Space S t a t i o n planners. A r e l a t i v e l y mature paradigm i s emerging which can be
of use i n the p lann ing now being done.

THE SPACE STATION INFORMATION SYSTEM (SSIS)

S S I S has embraced the ADA phi losophy, which i s good. Study groups,
p a r t i c u l a r l y t he one here a t Clear Lake, have developed an agenda and strawman
models. Inso far as we a t S i r i u s have seen, the t h i n k i n g i s c l e a r and has l e d
t o severa l e a r l y conc lus ions which we hope w i l l n o t be d i l u t e d as a c t i v i t y
increases and more i n t e r e s t s become involved. I n p a r t i c u l a r , t he re i s a
consensus t h a t a Network In format ion System (NIS) e n t i t y be created and
d i s t r i b u t e d i n var ious incarnat ions throughout the system t o work w i t h (and
a l l o w a h igh l e v e l of independence o f) "app l i ca t i on " systems and communication
sys terns.

Considerat ions o f t h i s N I S a re i n t i m a t e l y bound w i t h another hea l thy

module o r t ask p lann ing i s begun, even be fore the development agenda i s
formal ized, a comprehension o f t he s t r u c t u r e o f the representation universe
must be set. Th is un iverse must d e l i b e r a t e l y and c i rcumspect ly be engineered
as a l o g i c a l f i r s t s tep i n t h e comprehensive l i f e - c y c l e p lann ing o f t he e n t i r e
system.

emerging consensus: before a rch i tec tu res a re considered, be fore coding,

This has t r u l y never been faced square ly before, because p r i o r requ i re -
ments were narrow i n comparison and a l lowed compromise. But SSIS-related
issues are too broad, t o o deep, indeed too expensive and important t o a l l ow
l e s s than our bes t e f f o r t s i n t h i s mat ter .

The problem i s : we imned ia te ly run up aga ins t t h e same fundamental,
unresolved ph i l osoph ica l issues which have plagued t h e Knowledge Representa-
t i o n community f o r decades. There i s t r a d i t i o n a l deadlocked conten t ion among

E.4.4.1

workers i n the f i e l d s o f A r t i f i c i a l I n t e l l i g e n c e (A I) , Programming Language
(PL) , and Database (DB) researchers which each represent j u s t i f i a b l e perspec-
t i v e s .

The good news i s t h a t recent successful s tud ies i n t o the mathematical
foundat ions o f a l l i e d f i e l d s g i ve us a whole new wor ld o f t o o l s t o work w i t h ,
t o o l s which a l l o w us t o transcend PL/DB/AI l o c a l i z a t i o n s and s t a r t t o p u t our
a r m s around the science requi red. This i s f u l l y i n harmony w i t h the ADA
c u l t u r e , and i n f a c t our group has some ADA-based research underway i n t h i s
area.

The bad news, a t l e a s t so f a r , invo lves the Technical and Management
In fo rma t ion Systems (TMIS), a system planned t o support many facets of Space
S t a t i o n development.

TECHNICAL AND MANAGEMENT INFORMATION SYSTEM

Whi le t h e r e are major d i f f e rences between TMIS and S S I S , t he T M I S o b j e c t
s p e c i f i c a t i o n would r i g h t l y be placed before n e a r l y a l l S S I S Engineer ing tasks
(Engineer ing i n the ADA sense).
Future phases w i l l be competed s h o r t l y . What makes the T M I S problem so d i f -
f i c u l t , and so i n t e r e s t i n g i s the manner i n which i t must evolve. Each user
group w i l l cont inue t o work w i t h h i s e x i s t i n g a n d T a n n e d environments,
c o n s t a n t l y adding t o the data, in fo rmat ion , and knowledge pools.

So t h e problem, the chal lenge o f T M I S i s t o develop a conceptual un iverse
which s a t i s f i e s today 'c T M I S needs wh i l e b u i l d i n g the ob jec t / rep resen ta t i on /
meta-data schema, which f o r simp1 i c i t y we w i 11 c a l l an In teg ra ted Conceptual
Environment (ICE). This I C E should be opt imized f o r the emerging ADA centered
SSIS , which inc ludes A I in te r faces , knowledge representa t ion subsets, and
a n t i c i p a t i o n of f u tu re (30 year hor izon) technologies.

TMIS i s now i n a Phase I ad hoc con f igu ra t i on .

ISSUES: GENERAL

Basic i ssues i n v o l v e ADA 1 anguage and env i ronment concerns, very 1 arge
database theory and A I requirements.

l'rogramming Language i ssues i nc lude a complete data and a b s t r a c t data
type s p e c i f i c a t i o n , assoc ia t i ve p o t e n t i a l processing topology, as w e l l as many
inhe ren t c h a r a c t e r i s t i c s , such as f a u l t recovery, f a u l t to le rance and f a u l t
avoidance. With respect t o issues i n Programming Language (PL) design, a
candidate representa t iona l formal ism f o r SSIS c h a r a c t e r i s t i c s should i nc lude
cons t ruc ts t h a t a l l o w a user t o capture i n t u i t i c n s about the s t r u c t u r e o f t he
domain(s) o f a p p l i c a t i o n - f o r example, i n t u i t i o n s about (o r c l u s t e r i n g
operands f o r) t h e appropr ia te conceptua l i za t ion of the ob jec ts , proper t i es ,
and r e l a t i o n s o f t h e domain. The mo t i va t i on f o r much o f the p r i o r research on
i nco rpo ra t i ng a b s t r a c t data t y p i n g f a c i l i t i e s such as ANNA i n t c the ADA
programming language has r e s u l t e d f rom t h i s i n c i d e n t a l requirement. Indeed,
i n t h e most general sense, i t was t h i s mo t i va t i on t h a t l e d t o the development
of h igh l e v e l programming languages, among them ADA, i n the f i r s t p lace.

But n e i t h e r t h e syntax no r the "general" semantics o f f i r s t o rder l a n -
guages w i l l recognize t h e d i s t i n c t i o n between two types of abs t rac ts , a
f r e q u e n t l y encountered phenomenon i n an a n t i c i p a t e d S S I S environment. Things
of bo th types w i l l s imply be values o f i n d i v i d u a l var iab les , and arguments o f

E.4.4.2

pred ica tes (and funct ion-symbols). To some ex ten t , t h e analogue of t h i s
p a r t i c u l a r semantic inadequacy i n programming languages, which i s meant t o be
handled by the i n t r o d u c t i o n o f data types and t y p i n g f a c i l i t i e s , can be
t r e a t e d w i t h i n h ighe r o rder ca l cu lus languages by i n t r o d u c i n g s o r t a l quan t i -
f i c a t i o n and by o the r ted ious methods. But t h i s i s unacceptable f o r r e l a t i n g
a p o t e n t i a l l y l a r g e abs t rac t vocabulary i n a KR context .

Our proposed approach extends a p o t e n t i a l semantic c a p a b i l i t y of ADA i n t o
a semantic n e t opera tor se t , i n order t o a l l ow c r e a t i o n o f a t e s t bed f o r T M I S
development, us ing c u r r e n t environments.

Concerning DB theory, one o f t he most s t r i k i n g fea tu res o f t he c u r r e n t
exp lo ra t i ons i n I C E S i s t he at tempt t o deploy concepts and techniques from the
f i e l d o f Knowledge Representation, and e s p e c i a l l y f rom work on semantic ne t -
works, i n combinat ion w i t h r e l a t i o n a l databases. However, one can see some-
t h i n g o f a paradox i n the focus on c u r r e n t network-type formalisms. The back-
bones o f most formal isms are taxonomic h ie ra rch ies , sometimes general i z e d t o
deal w i t h m u l t i p l e inher i tance. A governing design requirement of TMIS i s t o
capture semantic interdependencies (both i nc lus ions and exc lus ions) among the
var ious k inds o f t h ings (o r "concepts") w i t h which they have d e a l t . Eut the
e q Z i c i t embodiment o f such interdependencies seems t o be r u l e d ou t by the
h i e r a r c h i c a l r e l a t i o n a l model.

Given the s t r u c t u r a l l i m i t a t i o n s o f e x i s t i n g I C E work, i t i s hard t o see
how such no t ions as type h ie ra rch ies , inher i tance, and exc lus ion can be i m -
po r ted w i t h i n t h e boundaries o f the r e l a t i o n a l model. One proposed hand l ing
of h i e r a r c h i e s and inhe r i t ance i s p a r t o f a recons t ruc t i on o f database theory,
from w i t h i n t h e theory o f f i r s t - o r d e r l o g i c . TMIS runs the r i s k o f adopt ing
t h i s de fau l t p o s i t i o n w i t h o u t l ook ing a t a h igher s t r u c t u r a l l e v e l .

It seems more n a t u r a l t o t h i n k about r e l a t i o n a l databases (e s p e c i a l l y as
conceived of o r i g i n a l l y) as modeZs o f k inds o f f i r s t and second order theo-
r i e s . It i s i n s t r u c t i o n a l i n the present contex t t o propose extending the
r e l a t i o n a l database concept i n terms o f l o c a l l y f i n i t e dimensional cy1 i n d r i c a l
algebras. These would be algebras whose elements a re se ts o f f i n i t e sequences
of o b j e c t s / a t t r i b u t e s , r a t h e r than i n terms o f f i r s t o r second order theo r ies .
We a re i n f a c t drawn more t o t h e a lgebra ic , morphological and semantic than t o
the s y n t a c t i c , p roo f - theo re t i c , account o f t h e r e l a t i o n a l model i n t h i s work.
Of course, t he re a re i n t i m a t e connections between the morphological cy1 i n d r i -
c a l ca l cu lus and algebras which our c u r r e n t research e x p l o i t s , s p e c i f i c a l l y
w i t h i n t h e unique TEIIS universe.

ISSUES: NETS

There has been a l ong and con t inu ing debate w i t h i n the A I wor ld on the
r e l a t i v e m e r i t s and express ive power o f representa t iona l languages based on
Logic on one hand and semantic networks on the o ther . It i s tpparent t h a t
semantic ne ts have of ten been used as a no ta t i ona l r a t h e r than as a repre-
sen ta t i ona l language. Logic, on the o the r hand, en joys a w e l l accepted seman-
t i c s , b u t i t s suppor t as a knowledge representa t ion scheme i s l e f t unc lear as
t o which aspects o f which Logic i t proposes t o use.

I n cons ider ing semantic networks, i t should be noted t h a t t he re has been
considerable m i g r a t i o n o f techniques f rom semantic networks t o data models i n

E.4.4.3

t h e VLD contex t . N e t researchers a re j u s t now t a l k i n g about m u l t i p l e i n h e r i t -
ance, whereas KB researchers have been invo lved f o r q u i t e some t ime. One fea-
t u r e o f semantic networks i n a pu re l y d i g i t a l environment t h a t needs t o be
considered by a data model i s t he genet ics o f c l u s t e r forces, over a KB l i f e
c y c l e.

A d ispass ionate observer may quest ion why semantic networks haven ' t been
used more d i r e c t l y f o r I C E purposes. Semantic networks and semantic data
models a re i n a sense equa l l y powerful , b u t they have been in tended i n the
pas t f o r a p p l i c a t i o n s t h a t have d i f f e r e n t and more 1 i nea r c h a r a c t e r i s t i c s .
There i s a t rend i n t h i s research t o deal w i t h a p p l i c a t i o n s t h a t i n v o l v e an
ever i nc reas ing number o f types, and the gap i n intended a p p l i c a t i o n s between
data models and semantic networks seems t o be narrowing. Espec ia l l y i n t e r -
e s t i n g i n t h i s case are embryonic s tud ies f o r photonic machines which appear
t o be p r o v i d i n g a lead i n t h i s science of semantic nets .

TMIS w i l l have t o consider many poss ib le uses f o r a database, on l y some
o f which would be o f re levance t o the I C E concerns o f S S I S . The i r approach i s
expected t o be t o determine the Zeast common dsnominator o f a l l these a p p l i -
c a t i o n s and then prov ide implementation. A1 though requirements f o r databases
and VLDs have changed du r ing the l a s t few years, i t i s n o t obvious t h a t the
l e a s t comnon denominators f o r frameworks t h a t handle photonic f o r m , v i s u a l
and speech data, t e x t messages, e tc . , a re semantic networks.

The p r i n c i p a l s of S i r i u s , however, represent the phi losophy o f those who
promote the use o f ne ts w i thou t the r e s t r i c t i o n o f logic-bound no ta t i ons , and
main ta ins the pre-eminence o f t h i s approach over the other, more const ra ined
h i s t o r i c a l approaches.

KNOWLEDGE REPRESENTATION (KR) NETS AND LOGIC MATRICES

The t h e o r e t i c a l l i m i t s of logic-based semantic nets a re most c l e a r l y seen
v i a p r o p e r t i e s of t o p o l o g i c a l l y isoniorphic representat ions o f t he data s t r u c -
t u re . It i s e a s i l y shown t h a t the genera l ized map o f each i s a m a t r i x (f o r
t h e rule-based " t r u t h t a b l e " approach) o r a h i e r a r c h i c a l s t r u c t u r e (f o r the
l o g i c - d r i v e n " l i s t processing approach"). The h i e r a r c h i c a l geometries a re
o f t e n morpho log ica l l y c lassed f o r queuing purposes and are o f t e n r e l a t e d , v i a
p a t t e r n r e c o g n i t i o n layers , as the corners o f an a l l l o g i c a l s p a c e - f i l l i n g
r e g u l a r three-dimensional t e s s e l l a t i o n . A commonly encountered exavple o f
t h i s method o f ana lys i s can be seen i n t h e o c t - t r e e o r quad- te rnary - l i ke types
o f machine-level conceptual s t ruc tu res now being i nves t i ga ted by S i r i u s and
o t h e r workers i n i n t e g r a t e d photonics. By examining the morphology o f e x i s t -
i n g Lisp-based methods, i t can l i k e w i s e be demonstrated t h a t a c e i l i n g o f com-
p l e x i t y r e s u l t s f rom commonplace simple h i e r a r c h i c a l (read " l i s t , s tack, o r
s t r i n g " process ing) b u i l d i n g techniques, as expressed i n t h i s convent ional
language syntax.

Consequently, some i n v e s t i g a t o r s have app l i ed ingenious techniques t o
create, access, and manipulate s t ruc tu res o f h igher morphological complexi ty.
Typ ica l o f t he approaches i s t h a t of L i p s k i (1978) which advances the a v a i l -
ab le geometry of t h e data l a t t i c e s by p l a c i n g m a t r i x nodes i n an order ing
which emulates the h i e r a r c h i c a l l a t t i c e o f normal use. This, i n f a c t , pa ra l -
l e l s a s i m i l a r synthes is i n generat ing grammars by Paz (1976). I n t u r n , an
assoc ia t i ve t rans format iona l th read ing i s a l lowed through the l a t t i c e , us ing
recu rs i ve operators which g i ve t h e combined s t r u c t u r e g rea t conceptual power.

E.4.4.4

But t h e t h e o r e t i c a l l i m i t on s t r i c t l y h i e r a r c h i c a l geometr ies remains low i n
morpho log ica l complex i ty and i s l i m i t e d t o those o f 3-D, o r thagona l , r e g u l a r
t e s s e l l a t i o n .

Nets o f much g r e a t e r complex i ty have been used f o r decades by s c i e n t i s t s
and mathematic ians, e s p e c i a l l y those i n v o l v e d i n work f o r t a r g e t image sensor
fus ion. Recent ly , t h e r e g u l a r , i n f i n i t e s t r u c t u r e s t h a t a r e genera tab le by
p e r i o d i c r e c u r s i o n have been c a t e g o r i z e d by Goranson (1981) , Burt/Wachman
(1974) , and L a l v a n i (1986). The approach t o e s t a b l i s h i n g a b a s e l i n e vocabu-
l a r y f o r t h e I C E comparat ive o p t i m i z a t i o n s t u d i e s s e l e c t s a s t r u c t u r e f o r t h e
knowledge r e p r e s e n t a t i o n l a t t i c e based on t h e d e s i r e d p r o p e r t i e s o f t h e t a s k
and n a t u r e of t h e d i v e r s i t y of t h e source data and i n t e r n a l t r a n s l a t i v e types.

T h i s "Top Down" approach g i v e s many advantages r e l e v a n t t o r e l a t e d
connection b i a s e d t h e o r i e s . Major advantages f o r t h i s proposed approach
i n c l u d e r e l a t e d r e d u c t i o n of a meta-operator s e t (u s i n g p r i m i t i v e and r e -
c u r s i v e t r a n s f o r m s) t o a few mathematical symmetry o p e r a t i o n s t o which we can
a p p l y severa l o p t i m i z a t i o n techniques. G r e a t l y increased d e n s i t y and o r g a n i -
z a t i o n o f t h e i n f o r m a t i o n i n t h e a b s t r a c t e d knowledge bases i s achieved. Th is
l a t t e r advantage a l l o w s a s u i t a b l e l e v e l of a b s t r a c t i o n t o be combined w i t h
c l u s t e r i n g o f r e l a t e d elements (which can be seen as extended " f rames") , a
d e s i r a b l e e f f e c t which addresses s u i t a b i l i t y f o r l o c a l TMIS users. Memory
requi rements a r e g r e a t l y reduced i n s i z e . Elements which express c l t i s t e r
c h a r a c t e r i s t i c s a r e t y p i c a l l y q u i t e l a r g e i n number when narrow i n scope and
a r e w e l l ordered f o r l o g i c a l c a l c u l u s i n t e r f a c e . The r e s u l t a n t p a r t i t i o n s a r e
a t t r a c t i v e f o r concur ren t and p a r a l l e l process ing a l g o r i t h m s on a l e v e l low
enough t o i n c l u d e techno log ies p r o j e c t e d f o r S S I S use.

IMPLICATIONS FOR THE PRESENT PROBLEM

The requi rement i s f o r an approach which:

a.

b .

C.

d.

Vi11 p r o v i d e a b a s i s f o r s y n t h e t i c s t u d i e s of a p p l i c a b l e techno lo-
g i e s and methods across a wide spectrum, i n s h o r t : a d e s c r i p t i v e
I C E nomencl a t u re .

By v i r t u e of p r o v i d i n g a h i g h l e v e l s c i e n t i f i c d e s c r i p t i o n o f t h e
laws a t work, w i l l p r o v i d e a u n i f i e d means f o r i n t e g r a t i n g t h i s
d i v e r s i t y .

A l l o w an approach t o o p t i m i z i n g I C E s p e c i f i c a t i o n , des ign and
h o s t i n g , p r o v i d e f o r f u t u r e genera t ion computing requi rements i n
terms o f process ing, l a r g e i n f o r m a t i o n sources, and r e c o n f i g u r a -
b i l i t y .

D i r e c t s p e c i f i c a t i o n f o r h o s t i n g and t e s t i n g o f these issues.

GENERAL TOOLS

S i r i u s works w i t h a s e t of morphologica l express ive laws which descr ibe
a l l p o s s i b l e g l o b a l model schema. T h i s morphology i s c u r r e n t l y embedded i n a
s e t of programs developed over t i m e and c u r r e n t l y used f o r i n t e r n a l research
and i s s t r i c t l y w i t h i n t h e ADA phi losophy.

E.4.4.5

A specif ic tool c i t ed , ALICE, described here as central t o the approach
i s a method of machine hosting ICE morphological operators i n ADA. This
allows any h i g h level semantic net t o be quickly defined and tessel la ted among
a t t r ibu ted space. While the geometries involved originate i n Euclidean
l a t t i c e s , res t r ic t ions on three dimensional analogues disappear so the number
of dimensions addressed i s limited only by practical considerations of the
s ize of the symmetry tensor used. Because TMIS requires operations t h a t do
n o t exclude d i rec t microcoding i n embedded systems, the number of dimensions
is pract ical ly limited to 16 based on anticipated hardware, assuming t h a t the
l a t t i c e chosen has less t h a n 3 symnetry character is t ics . (Some work has been
done by Sir ius using l inear i n f in i t e polyhedral geometries, hosted on f ine-
grained arrays, b u t the hardware required i s specialized, and beyond the scope
of this TMIS work.)

Major VLD and DB investigative interface tools are DAVID (from Goddard)
and TIPS (from DoD). For determining the l a t t i c e geometries, the work of
Lalvani and B u r t forms the basis for long term studies by Sirius, and are
employed here, following the symmetry operators proposed by Schoen (1970) and
Wells (1977). The basic research of Brisson is the source f o r the m u l t i -
dimensional holomorphic l inearizations required, as well as a source of
understanding higher dimensional clustering e f fec ts when mapped to lower level
matrices, which i n turn follows a suggestion of Williams (1969).

Key to the approach i s the intersymmetry minimal surface operator, an
approach devised by Burt fo r the generic translation of intersymnetry groups.
A complementary approach ut i1 i z ing added dimensions of symmetry variables i s
used t o annotate the en t i t y a t t r ibutes/relat ionship a t t r i bu te from Lalvani.

The minimal surface operator methods themselves follow closely the trends
established by Jenkins (1966), a f t e r Blatter (1971) and Voss. The actual
t race algorithms were suggested and bounded by Rahimi (1972) and Barber
(1970). The reflexive nature of tha t algorithm which re f lec ts the Lalvani
transpolyhedra loosely follows the technique appl ied by Yoshizawa (1982) t o a
s imilar problem i n dynamics. Provisions f o r f ractal doubt, not discussed
here, come s t ra ight "out of the book" from McClure, as well as a few other
specialists, n o t currently i n the f ree world.

Lacking full -time access to supercomputer faci 1 i t i e s , the present capa-
b i l i t y f o r V L D simulation and storage of multidimensional matrices t h a t Sir ius
possesses i s inadequate. A sat isfactory, and expedient cost effect ive solu-
t ion t o this inadequacy has been found i n the N-Dimensional Data Base System.
This software exploi ts a special case of the symnetry storage case, namely the
Generalized Balanced Ternary. I t has been determined t h a t the res t r ic t ions
imposed on V L D research are f a r outweighed by the ava i lab i l i ty of this tool
for the early phases of the e f for t . Rehosting overlays t o TKIS host systems
should be s t ra ight forward.

OVERVIEW OF ALICE

Sirius has been working this problem for some time. As described, a
high-level conceptual language i s required, for this type of e f fo r t reflecting
the ponderous capabi l i t ies implicit i n the problem. The r e su l t of Sirius'
work i s A L I C E (ADA/Lattice Integrated Conceptual Environment). ALICE i s coded
i n ADA, of course, and uses as operators, translation sets which are created
by the abstraction tools described.

E.4.4.6

An o u t l i n e o f t h e f e a t u r e s o f ALICE:

a. The r e l a t i o n a l f u n c t i o n s e t i s extended i n t o a p r i m i t i v e o p e r a t o r
language. Th is language has a base l o g i c o f some o r d e r and has a
mapping t o t h e network l a t t i c e t ransforms.

b. These t rans forms have t o p o l o g i c a l equiva lences, a un ique and i n t e r -
e s t i n g f e a t u r e which a l l o w s t h e r u l e s f o r o p e r a t i o n among t h e f a b r i c
t o be ambiguous when mapping ''up'' , b u t p r e c i se when mapping "down" ,
o r o u t o f a b s t r a c t e d spaces.

c. The t o p o l o g i c a l equiva lence a l s o a l l o w s r e s o l u t i o n i n t o a few s imp le
o p e r a t i o n s (which i n c l u d e photon ic o p e r a t o r s) which can be m a t r i x e d
and so lved by a r i t h m e t i c a r r a y processors. T h i s ho lds promise f o r
h i g h speed, concur ren t A I p rocess ing u s i n g VHSIC; Reduced Envi ron-
ment Math processor a r rays .

Having e s t a b l i s h e d a meta-language w i t h a corresponding meta-net, and
formal methodology t h e I C E researcher i s faced w i t h severa l e x c i t i n g p o s s i -
b i l i t i e s . Knowledge o f any k i n d can be "fused" by s imp le procedures if t h e
source c a l c u l u s i s descended f r o m t h e u n i v e r s a l s t r u c t u r e employed.

For example, image data, g r a p h i c model ing in fo rmat ion , e n g i n e e r i n g data
(which may n o t n e c e s s a r i l y be geometry dependent) and performance i n f o r m a t i o n
can be a l l imposed on t h e same ICE. As r e l a t i o n s h i p s a r e e s t a b l i s h e d , t h e
d i v e r s e i n f o r m a t i o n b e c o m e s f u s e d , and i s a c t u a l l y aggregated by v i r t u a l
p r o x i m i t y ; V i r t w z Z Proximity i s d e f i n e d as r e l a t i o n by a c r i t i c a l s e t o f
a l g e b r a i c o p e r a t o r s def ined by t h e s l i d i n g t h r e s h o l d f a c t o r s o f t h e p e r i o d i c
l a t t i c e m a t r i x .

BIBLIOGRAPHY

L i p s k i , bJ. , "On Semantic Issues Connected w i t h Incomplete I n f o r m a t i o n
Bases" , TODS 4 (3) , 1978.

Paz Azar ia , "Mu l t id imens iona l P a r a l l e l R e w r i t i n g Systems: , i n "Automata,
Languages, Development", ed A r i s t i d Lindenmayer and Grzegorz Rosenberg, Nor th
Hol 1 and, 1976.

Goranson, H.T., " P e r i o d i c Recursion Dynamics i n Large I n t e g r a t e d Con-
c e p t u a l Environments" , S i r i u s , 1981

Wachman, A . , M. B u r t , and M. Kleinman, " I n f i n i t e Polyhedra", Technion,
H a i f a , I s r a e l , 1974.

L a l v a n i , Haresh, " S t r u c t u r e s on Hypers t ruc tu res" , P r i v a t e l y Publ i shed ,
1982.

L a l v a n i , Haresh , "Transpolyhedra" , P r i v a t e l y Publ i shed , 1977.

Schoen, A lan H., " I n f i n i t e P e r i o d i c Minimal Surfaces Wi thout S e l f I n t e r -
s e c t i o n s " , NASA TN D-5541, 1970.

Schoen, A.H. , " I n f i n i t e Quasi-Regular Warped Polyhedra and Skewness o f
Regular Polygons", Not. Amer. Math. SOC., Vol. 15, 1968, pp 801.

E.4.4.7

We1 1 s, A. F. , "Three-Dimensional Nets and Polyhedra", (Chapters 19 & 20) a

W i 1 ey , I n t e r s c i ence, 1977.

Brisson, David W . , " A D e f i n i t i o n o f Distance and Method o f Making Space-
Time Measurements", Speculat ions i n Science and Technology, Vol , 3, #5, 1980

Wil l iams, Robert Edward, "Dimension as Level " i n "H ie ra rch i ca l St ruc-
t u res " , ed. Whyte, Wilson and Wilson, American E l s e r v i e r , 1969.

Jenkins , Howard and James Ser r i n , " V a r i a t i o n a l Problems of M i n i m a l
Surface Type 111, t h e D i r i c h l e t Problem w i t h I n f i n i t e Data" Arch ive f o r
Rat iona l Mechanics and Analys is , Vol 21, #4, 1966.

B l a t t e r , J. , and E.W. Cheney, "Minimal P ro jec t i ons o f Hyperplanes i n
Sequence Spaces" AFOSR-2130-71, Report N T I S AD 735 759 1971.

Rahimi , A. and R.W. Broket t , "Homotopic C l a s s i f i c a t i o n o f Minimal Pe r i -
o d i c Rea l i za t i ons o f S ta t i ona ry Weighting Problems", SIAM Jour Appl ied Math

Barber, M.N. and B.W. Ninham, "Random and Res t r i c ted Walks: Theory and
App l ica t ions" , Gordon and Breach, 1970.

Yoshizawa, T., " S t a b i l i t y Theory and t h e Existence o f Pe r iod i c So lu t ions
and Almost Pe r iod i c So lu t ions" , Appl ied Mathematical Sciences #14, Spr inger-
Verlag.

McClure, Donald E. , "Image Models i n Pa t te rn Theory", Computer Graphics
and Image Processing, Vol . 1 2 , pp 309-325, 1980.

pp 579-586.

22, t 3 , pp 481-486, 1972.

E.4.4.8

N89- 1 6 3 5 2

ABSTRACT

In this paper, we describe a software architecture which facilitates the
construction of distributed expert systems using Ada and selected knowledge-
based systems. This architecture was utilized in the development of a
Knowledge-based Maintenance Expert System (KNOMES) prototype for the
Space Station Mobile Service Center (MSC). The KNOMES prototype monitors
a simulated data stream from MSC sensors and built-in test equipment. It
detects anomalies in the data and performs diagnosis to determine the cause.

The software architecture which supports the KNOMES prototype allows
for the monitoring and diagnosis tasks to be performed concurrently. We have
named the basic concept of this software architecture ACTORS, for Ada
Cognitive Task ORganization Scheme. An individual ACTOR is a modular
software unit which contains both standard data processing and artificial
in te llig e nce com poner! ts.

A generic ACTOR module contains Ada packages for communicating
with other ACTORs and accessing various data sources. It also includes an
Ada package which acts as an interface between Ada and the knowledge-
based component. For the first prototype, the knowledge-based portion was
written in OPS5. By changing only the interface package, other ACTORs may
be created with knowledge-based components written in LISP, PROLOG, or
Ada (as knowledge-based systems are written for the language).

The knowledge-based component of an ACTOR determines the role it
will play in a system. In our prototype we have an ACTOR to monitor the MSC
data stream. The monitor can invoke other ACTORs as needed whose roles are
to diagnose specific parts of the MSC. All of this activity is coordinated by a
main ACTOR whose role is to oversee the interaction of the monitor and the
diagnosis ACTORs.

*Ada is a trademark of the U. S. Government, (Ada Joint Program
off ice)

David C. Brauer
McDonnell-Douglas Astronautics Company
Huntington Beach, California

E.4.5.1

N89-16353

ABSTRACT

This paper describes an architecture for the Space Station Operations
Management System (OMS), consisting of a distributed expert system
framework implemented in Ada. The motivation for such a scheme is based on
the desire to integrate the very diverse elements of the OMS while taking
maximum advantage of knowledge-based systems technology. This
technology is needed not only to solve problems that are specific to various
elements of the OMS, but also to help solve the problems of integration and
evolutionary growth.

Part of the foundation work for an Ada-based distributed expert system
was accomplished in the form of a proof-of-concept prototype for the KNOMES
project (Knowledge-based Maintenance Expert System). This prototype
successfully used concurrently active experts to accomplish monitoring and
diagnosis for the Remote Manipulator System. We have named the basic
concept of this software architecture ACTORS, for Ada Cognitive Task
Organization Scheme. An individual ACTOR is a modular software unit which
contains both standard data processing and artificial intelligence components.

The work accomplished in the KNOMES project and in similar efforts
throughout the industry suggest that the maintenance task for Space Station
can best be accomplished via a knowledge-based system approach. In
addition, tasks such as planning and scheduling, as well as logistics
management and payload activity management, may also benefit greatly from
the use of knowledge-based reasoning in some form. Since all of the above
applications form a subset of the complete OMS, it will therefore be necessary

if not at IOC, then during the growth of the station. In addition, it will be
necessary for all of these OMS components to talk to each other.

- v to include the potential for utilizing knowledge-based systems within the OMS --

It is when one considers the overall problem of integrating all of the OMS
elements into a cooperative system that the AI solution stands out. By utilizing a
distributed knowledge-based system as the framework for OMS, it will be
possible to integrate those components which need to share information in an
intelligent manner. This will be particularly crucial where processes need to be
controlled in a hierarchical manner. One example is where a maintenance
system for a particular subsystem needs to inform the scheduler about new
constraints on the activities which that subsystem can perform.

Ada is a trademark of the U.S. Government, (Ada Joint Program Office)

E.4 .6 .1

Finally, there remains the question of implementing such a system within
the confines of Ada. The proof that this can be done rests on the KNOMES
prototype's use of ACTORS, on past implementations of AI languages using
more traditional languages (eg., OPS-5 using BLISS), and on the
implementation of a major commercial knowledge-based system environment
in C. In fact, without the benefits of object-oriented programming as
implemented in Ada, or the integration afforded by Ada's development
constructs, the task for implementing a distributed knowledge-based system for
OMS would be considerably more difficult.

M. S. Frank
McDonnell-Douglas Astronautics Company
Huntington Beach, California

E.4.6.2

APPLYING ADA TO BEECH STARSHIP.AVIONICS

David W. Funk
Rockwell International
Cedar Rapids, Iowa

Abstract

Rockwell International's Collins Avionics Group has been active in the Ada*
language development since 1978 when we participated in the design
evaluation. As the language design solidified, it became evident that Ada
offered advantages for avionics systems because of its support for modern
software engineering principles and real-time applications. Starting in 1983,
Collins developed' an Ada programing support environment for two major
avionics subsystems in the Beech Starship. The two subsystems include
electronic flight instrument displays and the flight management computer
system. Both these systems use multiple Intel 80186 microprocessors. The
flight management computer provides flight planning, navigation displays,
primary flight display of attitude as well as engine instruments and
multi-function displays of checklists and other pilot advisory information.
Together these systems represent nearly 80,000 lines of Ada source code and to
date approximately 30 man years of effort. The Beech Starship avionic systems
are in flight test now with expected FAA certification by the end of 1986.

Background

The Beech Starship i s an entirely new turboprop airplane that will combine
high performance and excellent fuel economy (see Table 1). The Starship with
its composite construction, unconventional design and advanced avionics
architecture presented a unique opportunity for Collins Avionics to pioneer
the use of Ada in an airborne application.

Applying Ada to major subsystems of the Starship avionics offered several
software engineering challenges. Except for the use of proven software design

We started with new system/software requirements, a new development team, a
new host computer environment (VAX), a new target computer environment (Intel
80186) and of course a new HOL Ada. It would be misleading t o think the
selection of Ada was the cause of all this newness because it was not. Given
the new system requirements, all the other elements would be new, independent
of the language.

r and testing methods all the other elements of software development were new. -

* Ada is a registered trademark of the Department of Defense (AJPO).

F. 1 , 1 , l

TABLE 1

Starship Operating Characteristics

Max. Takeoff Weight 12,500 lbs.

Max. Altitude 41,000 feet

Cruise Speed 400 mph

Max. Occupants 10

Single Pilot IFR

Starship APSE

The Ada Programming Support Environment (APSE) that Collins established for
the Starship applications include a compiler, assembler/linker/loader,
symbolic debugger, configuration manager, text editor and command language
interpreter. The APSE is hosted on VAX (VMS) computers targeted to the Intel
80186 (see Figure 1). The components of the APSE are discussed below:

ComDiler

Developed by Irving Compiler Corporation (formerly the Irvine Computer Science
Corporation), the ICC compiler front end accepts an Ada source program and
performs all lexical, syntactic, and semantic analysis. Under license to ICC,
Collins developed the code generator for the Intel 8086 family of
microprocessors. While the compiler is not validated by the Ada Joint Program
Office, it only accepts valid Ada statements. At the beginning of the
Starship projects it was determined that the ICC compiler was more than
adequate to support the design constructs used in avionics software. This
conclusion was reached by careful comparison with other HOL compilers in use
at Collins. The compiler produces an assembly source file at the rate of 800
to 1000 Ada source lines per minute on a VAX 785. When the option is selected
the compiler also produces a symbol table file for use by the symbolic
debugger.

Configuration Manager

When the code is developed there must then be a method of keeping track of its
evolution. This is partially the task of a configuration management tool.
Source Tools by Oregon Software is used to manage a project's files by storing
them in a library, tracking changes, and monitoring access to the library that
contains the files. The Make function controls the efficient building of a
software system by determining which components in the system have changed and
then updating, or creating new versions of, only those files that depend on
the changed components.

F01.1.2

Symbolic Debugger

The testing phase is especially difficult for embedded computer applications.
Because of this, Collins Avionics has developed a symbolic debugger which
allows a developer to test a program at the Ada source code level on the
target computer rather than at a lower machine code level. The debugger uses
a database that is generated in part by the compiler, assembler and linker.
This database is separate from the user program. This means that the user
program need not be altered (it could even be in ROM) in order to use the
debugger for testing.

The symbolic debugger which is also written in Ada is hosted on a n I B M
personal computer. The personal computer is fitted with cards that connect it
via a cable to the target computer. These circuit cards provide additional
RAM memory as well as control functions including signals to reset, halt, run
and step the target computer, as well as facilities to examine and modify
target memory location, an execution history buffer and address matching logic
for breakpoints. The user interface to the debugger via the personal computer
include commands for file manipulation, execution control, breakpoint, data
manipulation as well as show and help commands.

Editor

The text editor currently being used is the EDT editor developed by DEC. It
allows editing to be done in either full screen or line mode.

Interpreter

This task is currently performed by DEC's Digital Command Language (DCL) and
its associated command processor. This provides a user with interactive
program development, device and data file manipulation, and interactive and
batch program execution and control.

Assembler/Linker/Loader

For the 80186, a VAX hosted cross assembler/linker package was purchased from
Microtec Research. Collins developed programs were added to this package to
provide data for the symbolic debugger.

GGS ComDiler

In order to help automate the generation of electronic flight display page
formats, a general graphics system (GGS) compiler was added to the Starship
APSE. As shown in Figure 1, the compiler accepts GGS source code and
translates it into Ada source code. The GGS source is expressed in a language
that allows description of a graphics object such as scales, pointers, numbers
and letters as well as raster fill areas and stroke written areas. The GGS
compiler which is written in Ada also runs on the VAX host computer.

F. 1.1.3

ORlGlNAL PAGE 1s
POOR QUALITY

'

Ada Program Development Flow

FIGURE 1

. . A C . 5 E ME; L E F'
;.,$\..................I

i +..

DEBUGGER

1.I

............ Lll\li.EF'

...........

F. 1.1.4

Ada Applications

In order to support the embedded applications, Collins developed a Real-Time
Executive (RTE) which is written in Ada. While the RTE is compatible with
Ada, it uses a slightly different tasking model than the one directly
supported by the language. A different model was chosen for two reasons. 1)
It is a tasking model that Collins has used in many other embedded systems.
2) The ICC compiler did not completely support all of the Ada tasking
features.

The RTE provides an interface from the application programs to the 80186
processor. Included in the processor resources are the CPU execution
resource, interrupts and the timers. From the viewpoint of the application
program, the following functions are supported: tasking, based on the concept
of independent tasks, which share the CPU resources; time-based execution of
tasks; event-based synchronization between tasks; external interrupt based
execution of tasks and controlled access to resources such that independent
tasks do not interfere with each other accessing shared resources.

A task is identified by stack, outer scope procedure, priority, and a four
character name. Tasks are prioritized and may be activated by cyclic timer,
event based signal or an external hardware interrupt. The RTE can support
cyclic execution of tasks up to 1000 hertz. An Ada package may contain the
outer procedure and stack for zero, one or more tasks, and procedures in a
package may be executed by many different tasks. Table 2 lists the executive
service routines that an application uses to interface with the RTE. The size
of the RTE target code is approximately 10,000 bytes.

EFD

The Electronic Flight Displays (EFD) developed for Beech use 6 x 7 inch color
CRT and completely integrated display processing. One display unit type is
used in four applications in the cockpit. Table 3 indicates the applications
and their functions. Each display unit is programmed with two applications to
allow better redundancy and reversionary modes. In a two pilot cockpit, six
display units, (four PFD/ND units and two EICAS/MFD units) are used . The Ada
based applications execute on an pair of 80186 microprocessors. The first
80186 is used for application specific functions (such as PFD or ND) as well
as input/output functions. The second processor is used for display control
functions that are common to all display applications. Each processor uses a

1

copy of the RTE.

The Flight Management
multi-sensor navigation
This system consists of

System (FMS) provides a very flexible automatic
system which greatly reduces the pilot's workload.
a control display unit, a data base unit with a 3 1/2

F . 1 . 1 . 5

inch floppy disk drive, and the flight management computer with a pair of
80186 processors. The Ada based applications implement the functions listed
in Table 4. The software is partitioned on the two microprocessors in the
following way. The first microprocessor provides control of the pages
displayed on the CDU as well as control of the data base unit. The second
microprocessor coupled with a floating point co-processor provides all of the
navigation and performance computations. Some statistics about the EFD and
FMS projects are summarized in Table 5 .

TABLE 2

Executive Service Routines

Procedures:

Functions:

START TASK

CHANGE PRIORITY

defines a task procedure,
stack, priority, and name

raise or lower a task
priority

ABORT TASK stop task execution

SET TIMER INTERRUPT RATE

WAIT FOR TIMER INTERRUPT

WAIT FOR (EVENT)

SIGNAL (EVENT)

RESERVE (RESOURCE)

RELEASE (RESOURCE)

FULL SECONDS

CENT1 SECONDS

defines cyclic task
execution rate in hertz.

stalls task until next
cyclic timer interrupt

stalls task until a
signaled event or external
interrupt

used to synchronize with
another task

used to dedicate a shared
resource to the calling
task

frees a shared resource
(opposite of RESERVE)

returns current value of
real time clock in seconds

returns current value of
real time clock in 0.01
seconds

F. 1.1.6

TABLE 3

EFD Applications and Functions

- PFD (Primary Flight Display)

Attitude
Flight Director
Lateral & Glideslope Deviation
Airspeed error
Alerts: marker beacon, decision

Flight guidance modes (lateral & vertical)
Fault & off-normal annunciations
Reversionary "composite" PFD & ND

height, altitude, ILS

- ND (Navigation Display)

Heading
Selected heading/course/track
Lateral/vertical deviation
Bearings (ADF, VOR, WPT)
Distanceltime to WPT
Groundspeed, windspeed
Flight plan with Navaids
Weather radar
Reversionary "composite" PFD & ND format

TABLE 4

FMS Functions

EICAS (Engine Instrument Crew
Advisory System)
Torque
Prop RPM
Prop Sync

Fuel Flow
Oil temp, pressure
80 caution & advisory msg

N1

- MFD (Multi-function Display)

Reversionary EICAS
Weather radar
Moving map (hdg up)
Planning map (north up)
Checklist (emergency & routine)
Nav status pages (pos, perf)
Diagnostic & maintenance data

(1) Statistical estimation of present position employing Kalman filtering
techniques, utilizing all available sensor data.

(2) Automatic station selection, tuning, and management of a position fixing
submode hierarchy, with provisions for pilot to intervene where
appropriate.

(3) Adaptive leg-to-leg and off-course captures with g-limited steering law.

(4) Worldwide data base of VHF navigation aids, airport reference points, and
published waypoints in numerous categories.

(5) Pilot creation of a large number of stored routes separate from the active
flight plan, with provisions for off-aircraft creation and editing of the
stored routes and ability to make trip planning calculations in flight.

(6) Calculations predictive of fuel remaining at destination

(7) Vertical Navigation function with deviation and steering outputs relative
to fixed paths in space as may be defined in several ways.

F.1.1.7

TABLE 5

Ada Project Statistics

SOFTWARE LINES OF TARGET CODE
PROJECT ENGINEERS SOURCE CODE . SIZE (BYTES)

8 31 , 000 318 , 000 EFD

FMS 12 51 , 000 470 , 000

HOST DISK
(MEGABYTES)

164

189

Lessons Learned

Two and a half years of using Ada in real-time embedded systems have taught us
some lessons about the application of the language. We chose a "walk first
approach" in using Ada. Instead of trying to embrace the entire language with
all of its new features, we chose to use a subset of the language that was
similar to features of other high order languages we have used. This approach
appeared to be wise in terms of training and in terms of bounding the number
of variables in building a new system.

Training was accomplished by a combination of classroom work, textbook study
and running examples on the VAX hosted APSE. The twelve hours of classroom
training which was prepared and delivered by an in-house Ada expert,
concentrated on the Ada concepts and features to be used by the Starship
project. To complement the classroom work, all students were given a copy of
the book "Software Engineering with Ada" by Grady Booch. Despite the fact
that nearly every element was new in the software development process for
these projects, we found software engineering productivity to average 200
delivered Ada source lines per man month. This is approximately equivalent to
what we have experienced on other projects using more established programming
support environments.

We discovered that the demands on the host computer system were greater than
we had expected.
While the compiler is quite fast at 1000 lpm, adding the steps for the
assembler, linker and debugger table generation reduce the average to 250
lpm. Add to this the fact that the configuration manager enforces
recompilation of dependent packages and the result is longer processing times
on the VAX host than we originally planned. Table 5 indicates the amount of
host disk space required to support each project which is about twice what we
have experienced on other HOL based avionics projects. The increase is
explained by the additional files for configuration manager revision history,
for the debugger database and the symbol tables needed by the compiler for Ada
package specs and bodies. As far as code density on the target, we found the
average of nine to ten bytes per Ada statement to be the same as other HOLs
for the 80186.

This is in terms of both processing time and storage space.

We feel that Ada has brought some real benefits to the subsystems. Ada has
provided the discipline and checks to allow program builds to work the first
time in laboratory equipment. This greatly reduced debug time on the target
computer. Ada has helped offer us more portable code between host system
VAX's, personal computers and our target computers. And with the aid of
symbolic debugging tools, our verification tasks are simplified.

F.1.1.8

!

Simulation of the Space Station Information System in Ada*

James R. Spiegel

College Park, Maryland
Ford Aerospace & Communications Corporation

INTRODUCTION

The Flexible Ada Simulation Tool (FAST) is a discrete event
simulation language which is written in Ada. FAST has been used
to simulate a number of options for ground data distribution of
Space Station payload data. The results of these analyses
include on-board buffer requirements due to the TDRSS zone of
exclusion, as well as bandwidth versus buffer and bandwidth
versus delay tradeoffs within the ground system.

The fact that the Ada language is used for implementation
has allowed a number of useful interactive features to be built
into FAST and has facilitated quick enhancement of its
capabilities to support new modeling requirements. The use of
tasks and packages has enabled the development of an interactive
environment which allows the user to monitor and control the
simulation. As a simulation is executing, a concurrent display
task is updating pre-defined pages which contain simulation
output statistics. A user command interface allows the user to
pick from a number of display pages. This command interface also
allows the user to interactively modify network parameters (e.g.
number of servers or link bandwidth).

This paper discusses general simulation concepts, and then
how these concepts were implemented in FAST. The FAST design is
discussed, and it is pointed out how the use of the ADA language
enabled the development of some significant advantages over
classical FORTRAN based simulation languages. The advantages
discussed are in the areas of efficiency, ease of debugging, and
ease of integrating user code. The specific Ada language
features which enable these advanced are discussed.

SIMULATION CONCEPTS

FAST is a general purpose discrete event simulation tool.
Currently, there are a number of simulation languages that are
recognized in the field of discrete event simulation. The list
includes SLAM, GPSS, SIMSCRIPT, and others. The key feature that
defines a ttdiscrete event" simulation is that the state of the
modelled system changes at discrete points in time. The
simulation **language*t automatically performs the task of keeping
records of what events are planned to occur, and when they will

*Ada is a registered trademark of the U.S. Government (Ada Joint
Programming Office)

F.1 .2 .1

occur. The language also performs the task of maintaining
statistics that describe the performance of the network elements.
The job of the user of a simulation language is to model a given
system within the constraints of the particular language being
used.

The first step in the process is for the user make a
abstraction of the system. Essentially, this means applying the
terms of the simulation language such as lfresourcerl, I1queuel', and
Vraffic" to the user's particular problem. Figure 1 provides a
table of different types of systems that may be modelled, and the
associated meanings of each of the model elements.

One type of %etwork@' which FAST has been used to model is
the SSIS. In this case, the lttraffictl entities are data packets,
and the 'tserverstt or ltresourcesl1 are the communications links.
Simulations were performed to answer such questions as:

How much bandwidth is needed ?

How long will data be delayed ?

What percentage of the time is the link busy?

For this example, the answer to the second and third
questions The average wait time per
packet is dependent on the link bandwith. The bandwidth is thus
a 'Inetwork parameter1', while the delay times (queue statistics)
and the link ("resource1') utilization describe the system
performance. The objective of a simulation activity is to
predict the system performance as a function of the network
parameters. This is usually done by performing a number of
simulation "runs*', while varying the network parameters. The
result of each run is usually viewed as a point on a curve, and
this curve describes the system performance as a function of
input parameters.

are dependent on the first.

The methodology used to implement an event-driven simulation
is based on the concept of a future events queue. An event may

the system. Examples are when a data packet is generated, or
when a transmission has been completed. The future events queue
keeps a record of all of the events that may be planned. For
example, when the transmission of a packet is initiated the time
at which the transmission will be complete is calculated. This
event is placed on the future events queue.

I be defined as any action or condition that changes the state of

Each time an event occurs, a procedure is called that
implements the logic associated with that event. This logic

F.1.2.2

SYSTEM

SPACE STATION
INFORMATION SYSTEM

TRA FFlC

DATA, COMMANDS I

TELEPHONE

MAN UFACTURINC

COMPUTER K
L

CALLS

WIDGETS

RESOURCE

SPACE-GROUND LINKS
GROUND-GROUND LINKS
PROCESSORS

PROCESSORS
TASKS
BUSSES
DISKS

CIRCUITS
SWITCHES

WELDERS
PA1 NTE RS

BANK I CUSTOMER TELLER I
I LOCAL AREA NETWORK I MESSAGES BUSSES I

Figure 1 - General Purpose Simulation Concepts

F . 1 . 2 . 3

consists of decision making (is a link available?), updating the
state of the system (the link is now busy), and performing
calculations required to maintain statistics. When the
processing for a given event is complete, then the future events
queue is used to determine the next event.

One of the major problems in the area of simulation is
efficiency. The process of discrete event simulation is
inherently a Monte-Carlo process. This means that the input
traffic is described by a statistical model. The simulation is
thus performed using random inputs, and the statistics which
describe the network performance are expected to converge in
time. The number of events which need to be processed in order
to achieve statistical convergence is both very large, and
difficult to predict. The procedure usually adopted is to pick a
safe duration, and to use this for all runs. This often results
in two troublesome phenomena. The first is that more computer
time is used that is actually necessary for a given run. The
second is that the scope of the simulation activity is usually
limited by the computing resource.

Another limitation of general purpose modelling languages is
that they are usually not sufficient to model the complex
interactions of a real world systems. Many simulation languages
overcome by allowing the user to write his own procedures.
Mechanisms are provided for the user to write his own code
(usually in FORTRAN), and integrate user written procedures in
the model. The support available for this type of activity
varies among languages, but in almost no cases can the support be
considered ltfriendly1'. In most cases, the user is constrained to
the use of a number of cryptic conventions in order to integrate
his code. This process is both time-consuming and fraught with
hazards. The bottom line is that one has to be a simulation
llexpertlt in order to undertake such a task.

this

One final source of many headaches for users of simulation
languages is the area of debugging. This includes both debugging
of user written simulation routines (discussed in previous
paragraph), and the debugging of models which do not work.
Again, various languages provide various levels of support for
this activity. As a minimum, most languages have the capability
to list the names of what events occured and at what time. This
results
order to begin to understand where a problem is Once
this information is found, it is sometimes useful, but oftentimes
it does not shed enough light to solve the problem. When this
happens the user is left little option other than staring long
and hard at his input model, scratching his head, and trying to
determine why he got the unexpected output. He may change one
variable, rerun the model, and see what effect it had. When this
fails to shed light, he will change others as deemed appropriate.
This can be a very time consuming activity. Frustrated modellers
have even been known to blame hardware.

in a large listing which the user must search through in,
occuring.

F. 1.2.4

FAST CONCEPTS

?

Three areas have just been described in which improvement is
clearly welcome. These are :

o EFFICIENCY

o DEBUGGING

o EASE OF INTEGRATING USER CODE

FAST has been designed with the objective of alleviating
many of the obstacles which are encountered in these areas. In
order to understand how these areas are addressed, it is
necessary to first gain an appreciation for the overall FAST
environment. This section provides a general description of the
FAST environment, and then discusses the advances which have been
recognized in these three areas.

FAST provides an unusually friendly environment in which to
perform simulations. Figure 2 illustrates this I1environmentt1.
FAST is designed to run interactively from a terminal. When FAST
is running, most of the screen is dedicated to the display
window. The user may specify which page is to be displayed by
entering a llSET-PAGE1l command in the input window. Figures 3 and
4 show the menus of user commands and pre-defined display pages
which the user has to choose from. Figure 5 provides an example
of one of these display pages. The other two windows are the
error window, and the simulation state window. The error window
is used when there is a syntax error in the user input, or when
there is an error within the simulation run. The simulation
state window displays whether a simulation is running, stepping,
or suspended.

In a typical use of FAST, the user runs a simulation and
monitors a statistic of interest. When the statistic has
converged, the user changes the network parameters, and a new
simulation I1runtt is started. This environment presents a number
of advantages, the most important of which is that the user is
able to observe the statistic as it is updated in accord with the
progress of the system. obtained
confidence in the results is significantly reduced.

The period of time required to

F.1.2.5

I DISPLAY WINDOW

Figure 2 - The FAST Environment

+---+

IState menu commands: I
I
I

I
I Help
IHelp <Set-Page> -- Display page selection help I
I List -- List all state files I
I New [<filename>] -- Start a new state file I
lopen [<filename>] -- Open a state file I

ISet-Queue-Size <queue number> <size> -- Set size of one queue I

I Flush -- Flushes Statistics I
I SAVE -- Saves the current state file I
1 Close -- Close a state file I
I Print -- Print Simulation Results I
I Quit -- Return to limit menu I

-- Display this help screen

ISet-Speed <number of seconds from 1 to 60> -- Set refresh rate of display 1
ISet-Duration <simulation time> -- Set duration of simulation I

!Set-Resource-Size <resource number> <size> -- Set size of one resource I

Execution Suspended.
Input :

Figure 3 - Input Command Menu

F.1.2.6

1

+--
IPage Selection State menu commands:
I
]Set-Page Queue-Resource-Summary
ISet-Page Mark-Summary
ISet-Page Limit-Summary
ISet-Page Queue-Resource <queue number>
(Set-Page Queue <queue number>
ISet-Page Future-Events-Queue [amnber>]
ISet-Page Mark <mark number>
ISet-Page Passport-Summary [<number>]
ISet-Page Active Passports [<number>]
I

.------------------------------------- +
I
I

-- Display mark statistics I -- Display limit statistics I

-- Display a queue I -- Display Future Events Queue I

-- Display queue / resource stats I

-- Display statistics on one queue I

-- Display statistics on one mark I -- Display status of all passports I -- Display status of active passports1
I

Input :

Figure 4 - Display Page Menu

1

IQueue and resource summary
I
IQueue Arrivals Avg Length I----- -------- ----------

1 8153 1.0111
2 8251 0.0529

I
I

3 8153 4.3402
4 102 1.3550

I
I
I 5 600 27.1731
I
I
I
I
I
I
I

Current simulation time is 10000.0000

Avg Wait Avg Resource Usage

1.2401 0.4144
0.0642 0.4282
5.3238 2.1731

133.8373 1.0000
465.1406 1.0000

-------- ------------------

Execution Suspended
Input :

Figure 5 - Sample Queue-Resource-Summary Page

F.1.2.7

The user may control the execution of the simulation through
the use of %TEP1I, llSTOP1l, and I1RESTAFtT8l commands. In
addition, he may alter network parameters using the
llSET-QUEUE-SIZE1l or IISET-RESOURCEtl command. The result of these
ccapabilities is that an environment is provided in which the
user may monitor and control the simulation process.

b

EFFICIENCY

The ability to provide the capability to build and monitor
display pages was facilitated by the use of Ada tasking. The
FAST system consists of a number of tasks. One of these is the
simulation task, which performs the actual network simulation.
In addition, there are tasks for displaying pages, as well as
tasks to interact with the user.

There is no way of getting around the fact that Monte-Carlo
simulation takes a long time in order to achieve statistical
convergence. What FAST does provide, however, is a mechanism to
monitor the statistics in question. The user m a y monitor a
statistic during a simulation run, and when the statistic has
stabilized to the userls satisfaction, the run may be stopped.
This provides two advantages. The first is that a confidence
range may be established. The second is that the user does not
have to guess how long to run the simulation, thus saving a lot
of personal and CPU time.

DEBUGGING TOOLS

Clearly, for an event driven simulation, the future events

~ ability to view the future events queue on an event by event
basis is extremely valuable for debugging purposes. One of the
major advantages of FAST is that it does allow visibility into
the llinternalll structures of the simulation. These include both
a llFuture-EventS-Queuetl page, as well as an "Active-Passports1I
page. (A passport is a record that is used to keep track of the
traffic entities as they flow through the system). The
Future-Events-Queue lists which passports are scheduled to be
activated, and when. The Active-Passports page describes where
within the network each passport resides, as well as additional
information about the passport. The combination of these two
pages provides significant detail regarding the state of the
system. FAST also includes a feature called step mode, which
allows the user to instruct the model to process only one event
at a time. Using the pages in conjunction with the step mode the
user is able to observe the very fine details of the system, and
can do so at whatever level is deemed appropriate for determining

I queue is vital to the inner workings of the simulation. The

I F.1.2.8

exactly how the simulation is progressing.

In addition to the features that have been described, the
process of debugging is reinforced by an error management
philosophy that takes advantage of Ada's exception handling. If,
in the process of a simulation, a logical simulation error is
encountered (such as a queue overflow), this error is managed as
an exception. The simulation is suspended, and an error message
is displayed in the error window that describes the error. At
this point, the user is able to investigate why this error has
occured. All of the simulation structures are still in tact, so
the user may use the display capability to observe any of the
pre-defined pages.

One proven debugging technique is to use the "SET-DURATION"
command to a time just prior to the simulation error. A
llRESTART1l command will then cause the simulation to run to a
point just before the error occurs. The user may now proceed
using the STEP command to determine exactly when, where, and why
the error occured. Clearly, such a capability is invaluable in
the debugging process.

EASE OF - INTEGRATING USER CODE

FAST has been designed in such a way that makes adding user
modules safe, efficient, and easy. This is due to the fact that
an object oriented design has been implemented which not only
protects the system from the user, but also provides maximum
support for the user.

As an example, there is a 'IQUEUE1' package which contains the
data structures which are used to model the queues, and all of
the procedures and functions which operate on queues(e.g.
REQUEST, RELEASE). Within the queue package, all of the logic
which is needed to model the queue (First-In-First-Out) is coded.
All additional effort which is required in order to implement
these functions is provided by support packages. All of the
queue length statistics (average, standard deviation, maximum,
minimum) are maintained by a statistics package. Within the
queue package, whenever the queue length is altered, a message is
sent to the llSTAT1l package. Similarly, communications between
instances of queue and passport structures is through a message
oriented protocol similar to Smalltalk in nature. Real-time
displays are implemented through messages to a window manager
(also implemented in Ada).

All of these support packages which are currently used by
the existing FAST packages are available for user written

F . 1 . 2 . 9

packages. This means that the inclusion of user packages is both
safe and efficient. In addition, the debugging capabilities
significantly reduce the time necessary to test and integrate
large models. Finally, the user packages are written in Ada, and
are thus blessed with the inherent advantages therein.

The use of object oriented design has already provided
significant efficiencies in the development of the FAST system.
In addition to all of the classical arguments espoused by the
proponents of object oriented design, the methodology lends
itself particularly well to the implementation of a simulation
language. Specifically, objects that are built to model elements
are limited in scope and complexity to the problem of modelling
the logic of that element.

CONCLUSION

FAST uses the capbilities of the Ada language (packages,
tasking, and exception handling) in order to enhance a classical
simulation tool by providing an interactive, friendly simulation
environment. result is a tool which is easy for a beginner
to use, and significantly increase the productivity of an
experienced network simulation specialist.

The

F. 1.2.10

DESIGNING WITH ADA* FOR SATELLITE SIMULATION: A CASE STUDY

W. W. Agresti, V. E. Church, D. N. Card, P. L. Lo
Computer Sciences Corporation**

ABSTRACT

A FORTRAN-oriented and an Ada-oriented design for the same SyS-
tem are compared to learn whether an essentially different de-
sign was produced using Ada. The designs were produced by an
experiment that involves the parallel development of software
for a spacecraft dynamics simulator. Design differences are
identifieu in the use of abstractions, system structure, and
simulator operations. Although the designs were significantly
different, this result may be influenced by some special charac-
teristics discussed in the paper.

INTRODUCTION

Some early experiences using Ada for scientific applications
(e.g., [l]) showed that the design of the Ada system "looked
like a FORTRAN design." As part of an experiment on the effec-
tiveness of Ada, the experiment planners identified the follow-
ing factors that were believed to be prerequisites for obtaining
a new design, one that would take full advantage of Ada features:

0 The opportunity to set aside previous designs for the
system and work directly from system requirements

0 Training in design methods that exploit Ada's capabili-
ties

0 The encouragement to explore these new design methods

The purpose of this paper is to address the following question:

When these prerequisites were satisfied, was a different
design produced?

The experiment in progress is being conducted by the Software
Engineering Laboratory (SEL) [2] of the National Aeronautics and
Space Administration's Goddard Space Flight Center (NASA/GSFC).
NASA/GSFC and Computer Sciences Corporation (CSC) are cosponsors
of the experiment, which is supported by,personnel from all

*Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

**Authors' Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910

0217 F.1.3.1

three SEL participating organizations (NASA/GSFC, CSC, and the
University of Maryland).

The objective of the overall experiment is to determine the
effectiveness of Ada for flight dynamics software development at
NASA/GSFC. ((2 1 describes the characteristics of this environ-
ment.) The experiment, begun in January 1985, consists of the
parallel development, in FORTRAN and Ada, of the attitude dy-
namics simulator for the Gamma Ray Observatory (GRO) spacecraft.
When completed, the system is expected to comprise approximately
40,000 source lines of code to execute on a DEC VAX-l1/780 com-
puter. Additional information about the experiment is presented
in [3] .

Although the FORTRAN and Ada development teams are proceeding in
parallel, the FORTRAN team is further along, due, in part, to
the time necessary to train the Ada team in the Ada language and
design methods. Both teams have completed the critical design
review. This paper reports on a preliminary review of the de-
sign processes and products of both teams in order to address
the question of interest. The design problem is discussed, an
overview of the designs is presented, design processes and prod-
ucts are compared, and the results and their implication for
answering the question are summarized.

THE DESIGN PROBLEM

The purpose of the GRO dynamics simulator is to test and eval-
uate GRO flight software under conditions that simulate the ex-
pected in-flight environment as closely as possible [4] . The
simulator is represented as a control problem in Figure 1. The
right side of the figure models the onboard computer (OBC) flight
software. The OBC Model uses sensor data provided by the Truth
Model to determine the estimated attitude. Comparing the esti-
mated attitude to the desired spacecraft attitude, the OBC
determines the attitude error. Control laws are modeled within
the OBC to generate attitude actuator commands that will reduce
the attitude error.

The Truth Model, the left side of Figure 1, simulates the re-
sponse of the attitude hardware. The Truth Model updates and
interpolates the spacecraft ephemeris and environmental torques,
integrates the spacecraft equations of motion, and generates the
true attitude of GRO. The Truth Model produces sensor data cor-
responding to the attitude, for use by the OBC Model.

Both teams have the task of designing and developing software to
simulate the attitude dynamics and control shown in Figure 1.
An additional requirement on the FORTRAN team is to extract its
Truth Model and integrate it with the Goddard GRO Simulator
(GGS), a real-time simulator of the GRO OBC flight software.

0217 F.1.3.2

ORIGINAL PAGE IS
OF POOR QUALITY

F i g u r e 1. GRO Dynamics S i m u l a t o r a s a C o n t r o l Problem

OVERVIEW OF THE DESIGNS

I n t h i s h i g h - l e v e l look a t each d e s i g n , t h e o v e r a l l sys t em
s t r u c t u r e and t h e e x t e r n a l and i n t e r n a l data f l o w s a re d i s -
cussed. , Some simple q u a n t i t a t i v e measures are e x t r a c t e d from
e a c h d e s i g n .

System S t r u c t u r e

k t o p - l e v e l sys t em diagram f o r each d e s i g n i s shown i n F i g u r e s 2
and 3. To f a c i l i t a t e comparison, t h e i d e n t i c a l s y s t e m i n p u t and
o u t p u t o b j e c t s are p l a c e d a t t h e t o p and bot tom, r e s p e c t i v e l y ,
of each f i g u r e . The FORTRAN sys t em c o n s i s t s of t h e f i v e subsys -
t e m s i n t h e middle of F i g u r e 2. The A d a sys t em is t h e p r o d u c t

FORTRAN team method. So, a l t h o u g h "subsystem" w i l l be used t o
refer t o t h e major Ada u n i t s , t h e y a re , i n f a c t , A d a packages.
Fu r the rmore , t h e s i m u l a t i o n s u p p o r t subsys tem i n F i g u r e 3 is
r e a l l y a c o l l e c t i o n o f three Ada packages f o r t h e s i m u l a t i o n
timer, parameters, and ground commands. The Ada sys t em a p p e a r s
i n F i g u r e 3 as f i v e subsys tems o n l y t o i n v i t e compar ison w i t h
FORTRAN r e g a r d i n g t h e h i g h - l e v e l da ta f low.

* of a d e s i g n method (discussed below) t h a t d i f f e r s from t h e

The FORTRAN sys t em is composed of three d i s t i n c t programs: Pro-
f i l e , P o s t p r o c e s s o r , and S i m u l a t o r (T r u t h Model, OBC Model, and
S i m u l a t i o n Con t ro l - I /O) . A s separate programs, e a c h i n t e r a c t s
w i t h t h e user, a s shown by t h e e x t e r n a l da ta f l o w s i n F i g u r e 2.
The a s s ignmen t of p r o c e s s i n g f u n c t i o n s t o e a c h subsys tem is
shown i n F i g u r e 4 f o r b o t h t h e FORTRAN and A d a sys tems.

0217 F . 1 . 3 . 3

0RIG:FJAL FAGE IS
OF POOR QUALITY

0217

Figure 2. FORTRAN System Diagram

Figure 3. Ada System Diagram

F . 1 . 3 . 4

ORIGSNAL PAGE IS
OF POOR QUALITY

NUMBER
OF

W B R o U n l y u

U

a

W

TOTAL
W B R ~ E S

tm

87

az
TOTAL

WBMOQRAmS

Figure 4 . Allocation of Functions Among Subsystems

The Ada system is designed as a single program, with each sub-
system performing the functions listed in Figure 4 . The OBC
Model is functionally similar to its FORTRAN counterpart. The
Ada Truth Model incorporates the processing performed in the
FORTRAN Profile in addition to the FORTRAN Truth Model. (The
FORTRAN user has the option of choosing not to use Profile and
having those calculations performed in the Truth Model, thereby
mirroring the Ada design.) The Ada design pulls apart the simu-
lation control functions from the User Interface; these process-
ing elements are combined in the FORTRAN design. However, the
User Interface in Ada includes the results processing that, in
FORTRAN, is delegated to a separate program, the Postprocessor.
Both designs have major units named Truth Model and OBC Model to
reflect the underlying control problem illustrated in Figure 1.

External Data Flow

B o t h designs in Figures 2 and 3 show communication with nine
external objects (files or devices). Eight of the nine are
identical, the difference being the profile data file in FORTRAN
and the display format file in Ada. The FORTRAN design requires
the profile data file to decouple the Profile and Truth Model
processing. The use of a display format file in the Ada design
is motivated by reusability considerations. By keeping the de-
tailed formats of menus and displays on an external file, the
user interface is easier to reuse on a future simulator.

0217 F.1.3.5

The number of external data flows is greater in the FORTRAN de-
sign, as shown in Table l. Most of the additional data flows
arise from the separation of the FORTRAN design into three pro-
grams, requiring more data flows to and from the user and dis-
tinct data flows to the profile data and results output files
that decouple the programs. Also, as shown in Figure 2, the
star catalog external file is required in both Profile and the
Truth Model.

SEPARATE PROGRAMS

TASKS

' EXTERNALENTITIES

EXTERNAL DATA FLOWS

INTERNAL DATA ROWS

SUBROUnNEWSUBPROGRAMS

PACKAGES

Table 1. Simple Quantitative Design Characteristics

I CHARACTERISTIC FORTRANDESIGN I ADADESIGN I
3

5 (IN SIMULATOR
PROGRAM)

8

18

3

282

1

5

8

10

8

262

101

The Ada design (Figure 3) involves the minimum number of exter-
nal data flows. The details of accessing each file are confined
to a single subsystem.

Internal Data Flow

Table 1 shows that the Ada design has nine internal data flows,
versus three for the FORTRAN design. Of course, no more inter-
nal data flows are possible in the FORTRAN case because Profile
and the Postprocessor are separate programs. The three remain-
ing subsystems in the FORTRAN design exchange data with one
another via COMMON blocks. (Although the use of COMMON has been
criticized, empirical results from the flight dynamics environ-
ment has shown it to be effective [SI.)

Although the number of distinct data flows (connections) between
subsystems is greater in Ada, fewer data items pass over these
connections than in FORTRAN.. An example will show how various
Ada language features help to reduce the proliferation of data
item names.

Both designs provide for the recording of simulation analysis
results. In FORTRAN (Figure 2), these results pass from the

0217 F.1.3.6

?

Truth Model and OBC Model via COMMON to the Simulation Control-
1/0 Subsystem, which writes them to the external results output
file. In Ada (Figure 3) , the internal data flows from the Truth
Model, OBC Model, and Simulation Control carry results data to
the User Interface, which writes them to the results output file.

In the FORTRAN design, the results data record comprises 4 3 dis-
tinct variable names. In Ada, the results are passed under a
single identifier, Results Data, when a procedure, Put Results-
Data, in the User Interface is called by the Truth Model, OBC
Model, or Simulation Control. This reduction in the number of
iaentifiers is possible because of the use of Ada's variant rec-
ord feature. In the example, Results-Data can be either an
executed ground commana, parameter upoate, error message, or
analysis result. In Ada, the user can declare Results Data as
type RESULT, defined as a record type with a variant part as
follows :

type RESULT - KIND is (Error Msg, Log - Command, Results,
Parameters) ;

type RESULT (Kind: RESULT KIND:=Results) is -
record
case Kind is
when Error Msg I Log Command =>

Result-Line:
when Results 1 Parameters = >

Result-Rec: PARAM RESULT;

STRING (1. . 80) ;
-

end case;
end record:

Because of such features, the count of data items is consistently
lower over the Ada data flows than over the FORTRAN data flows.

COMPARING DESIGN PROCESSES

Differences in the design processes help to explain the differ-
ences in the delivered design products of the FORTRAN and Ada
teams. Two aspects of the design process--critical design
"drivers" and the use of design abstractions--will be examined.

Design Drivers

The design drivers--critical characteristics that strongly in-
fluence design decisions--are different for the two teams. The
FORTRAN team was influenced by its real-time processing require-
ment, previous designs, and schedule concerns. The Ada team was
influenced by its training in alternative design methods and the
opportunity to apply those methods.

Although the basic requirements for each team are identical, the
FORTRAN team has a real-time requirement, noted earlier, to in-
tegrate its Truth Model Subsystem with the Goddard GRO Simula-
tor. To help ensure that the Truth Model will complete its

0 217 F.1.3.7

processing in time to meet this requirement, the FORTRAN design
removes those computations that are not strongly attitude de-
pendent from the Truth Model to a separate Profile Program.
Then, instead of performing these calculations (such as environ-
mental torque and magnetic field) each iteration, the Truth
Model can simply read the necessary values from the Profile data
set (as shown in Figure 2) . This separation of the Profile cal-
culations from the Truth Model is further encouraged by the pre-
vious designs of dynamics simulators in FORTRAN, which also had
separate Profile Programs. The FORTRAN design also provides the
option, for qreater accuracy, of performing the Profile calcula-
tions within the Truth Model.

The Ada design, not required to meet the real-time constraint in
this experiment, includes in its Truth Model the calculations
performed in the FORTRAN Profile Program and FORTRAN Truth Model.
It will be of interest later to test whether the real-time re-
quirement can be met by the Ada design and by the FORTRAN design
under the option of performing Profile calculations inside its
Truth Model.

A strong driver of the FORTRAN design is the presence of a pre-
vious design, used successfully on past simulators. The parti-
tioning into subsystems in Figure 2 is identical to that of
previous simulators. With this legacy, the interfaces between
subsystems--a frequent problem area with original designs--are
clarified early in the project. With the interfaces relatively
clear, the subsystems can be assigned to individuals or small
subgroups for detailed design and implementation with the "de-
sign envelope" fairly well established.

The Ada design was intended to be an independent one, free of
the influence of past simulator designs. The subsystems that
evolved were the product of lengthy design discussions. The
similarity of the Ada subsystems to those in FORTRAN owes more
to both designs reflecting the underlying control problem of
Figure 1, rather than the Ada design copying the FORTRAN design.

The schedule constraints on the teams were different. To help
explain this difference, consider that the dynamics simulator is
a routine element of the set of ground support software for a
satellite mission. The entire complement of software has rigid
schedule constraints derived from launch dates. FORTRAN has
been used in the past and is being used now for the GRO attitude
ground support software. In such an environment, it is natural
that the FORTRAN team was perceived as building the real, opera-
tional software, even though the Ada product is also expected to
pass acceptance testing and to perform in an operational envi-
ronment.

The FORTRAN team generally had more schedule pressure than did
the Ada team, and this difference affected the design products
and methods. Both teams were charged with developing operational
software, but the Ada team was also encouraged to try Ada-related

0217 F. 1.3.8

design methods as a way of understanding their usefulness in the
flight dynamics environment. The FORTRAN team had more exclu-
sively practical concerns of meeting the development schedule.

Desiqn Abstractions

The use of abstraction was also different for each team. The
FORTRAN design products provide evidence of the procedural ab-
straction carried forward from earlier designs. An individual
subroutine may be thought of as a black box that will, for spec-
ified values of its input variables, produce the same specific
output values every time it is invoked. The input and output
quantities are transmitted via argument lists or COMMON. This
procedural abstraction can also be used at higher levels in the
system. For example, the Truth Model is a procedural abstrac-
tion possessing an identifiable function (computing the current
attitude state of the spacecraft), specific input quantities
(primarily parameter values and actuator commands), and specific
output quantities (primarily sensor data reflecting the time
attitude state) .
The FORTRAN design also has elements of being object oriented.
Functional processing at the lower levels is organized around
objects in the problem domain such as specific sensors and ac-
tuators. For example, the Truth Model contains a sensor model-
ing component that calls seven routines: one for each sensor
type, Anyone making a code modification due to a requirement
change relating to the fine Sun sensor will find a subroutine,
FSSMOD, described as modeling the fine Sun sensor. The use of
COMMON also reflects an orientation to objects. For example,
one COMMON block holds gyro parameters; another has FSS param-
eters; and so on.

Concurrent processes are used in the FORTRAN design to model the
concurrency that exists in the operational use of the simulator.
For example, an analyst may interrupt the processing to change
the value of a parameter. System services of the DEC V A X - 1 1 / 7 8 0
VMS operating system are used to implement the concurrent proc-
esses. Both the object-oriented features and the use of con-
currency are characteristics of past FORTRAN simulators,
demonstrating that reuse of design is the operative high-level
approach in the FORTRAN design,

1

The Ada design process was significantly different from that of
the FORTRAN team.
the design phase of the project.

The differences begin to emerge even before
*

The functional specifications and requirements document [4 1 for
the GRO dynamics simulator is influenced by the design legacy of
dynamics simulators developed within the organization. For ex-
ample, the document is organized by major subsystem because that
particular partitioning into subsystems (Figure 2) has persisted
through several simulator project teams. In effect, the highest
level design is completed during the requirements analysis phase.

0217 F.1.3.9

This encroachment of design on requirements actually provides a
welcome headstart to a team who will be following that design
and taking maximum advantage of the existing code based on that
design. While such a document fit in well with the projected
work of the FORTRAN team, it was not as helpful to the Ada team,
who wanted to produce an independent design, uninfluenced by
previous simulator designs.

A way out of this dilemma--the influence of the previous design
present in the requirements--was to recast the requirements in a
different form. The Ada team developed a specification for the
dynamics simulator using the Composite Specification Model (CSM)
161, which represents a system from the functional, dynamic, and
contextual views. Recasting the system requirements using CSM
served other purposes as well: It provided a testbed for the
CSM as a specification tool, and it allowed the Ada team, who
was relatively inexperienced in the application area, to analyze
the system requirements in a systematic manner. The result of
this exercise was a specification document [7] and a better
understanding of the needs of the system. For example, included
in [7] are PDL-like process specifications describing the re-
quired functional processing. The specification succeeded in
removing the inherited design from the system requirements and
served as a starting point for the Ada design.

The Ada language itself influenced the design team because the
team members knew that useful design abstractions could be rep-
resented in Ada. The team had been exposed to object-oriented
design, tne process abstraction methodology, and other approaches
during their training program, which included the development in
Ada of a 5700-line training exercise [3] . The principal design
abstractions used by the team were the state machine abstraction
and the representation of the system according to the orthogonal
views of a seniority hierarchy and a parent-child hierarchy [8].
The state machines are conveniently implemented as Ada packages
consisting of internal state data and a group of related proce-
dures that operate on that state data. The Ada design product
reflects this approach; the design includes 104 packages and
69 sets of state variables.

An instance of the seniority hierarchy is shown in Figure 5.
The team's design approach is to build the system as layers of
virtual machines 191. For example, Figure 5 shows that the OBC
package is senior to the Truth Model package. The arc between
the two pac-shows that OBC uses operations (subprograms) of
the Truth Model. Arcs do not go from a package to one that is
above it. In this way, each diagram expresses the relative
seniority of the packages [lo]. The orthogonal parent-child (or
inclusion) hierarchy provides for a package (like one of those
in Figure 5) to be represented on a separate diagram in terms of
its constituent elements; for example, subprograms, other pack-
ages, and state data.

0217 F.1.3.10

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 5. Ada Design: Seniority Hierarchy of Packages

In summary, the Ada team was able to use effective design ab-
stractions because they were confident that these abstractions
could be preserved in an Ada implementation.

COMPARING DESIGN PRODUCTS

The design documents were examined to determine any significant
differences. Some differences were noted earlier: the FORTRAN
design involving three programs; the different assignment of
functional processing to subsystems; and the data flow. Review
of the design documents revealed two more fundamental differ-
ences in the basic operation of each simulator, as specified by
the designs. These key differences can be shown by tracing the
operation of each simulator.

Figure 6 shows the logical relationships among the five tasks
that constitute the FORTRAN simulator program (i.e., excluding
Profile and the Postprocessor). The task called GROSS in Fig-
ure 6 is the main process started by the user via a RUN command.
GROSS remains an active process throughout the simulation run,
displaying a menu of user options at the user's terminal and
remaining ready to respond to a user request.

The SIMCON process, created by GROSS, controls the simulation.
AS suggested by the control loop in Figure 1, the simulation
involves iterating over the Truth Model and the OBC Model.
SIMCON directs this iteration. SIMCON wakes up the Truth Model
(TM) process, which computes the attitude state and deposits the
corresponding sensor data into a global COMMON section. When TM
is finished, it goes into hibernation, setting an event flag
that signals SIMCON to wake up the OBC process. OBC obtains the

0 217 F. 1.3.11

ORlGlfJAL PAGE IS
OF POOR QUALITY

onon
I
I
I

c u r r e n t s e n s o r da t a l e f t by TM, models t h e c o n t r o l laws, and
g e n e r a t e s a c t u a t o r commands t h a t a re placed i n a g l o b a l COMMON
s e c t i o n f o r access by TM on t h e n e x t i t e r a t i o n . Its work f i n -
i s h e d , OBC h i b e r n a t e s , s i g n a l i n g SIMCON t o w a k e u p SIMOUT t o
wri te an a n a l y s i s r e c o r d t o c a p t u r e t h e r e s u l t s o f t h i s i t e r a -
t i o n . When SIMOUT h i b e r n a t e s , SIMCON w a k e s u p TM t o b e g i n t h e
n e x t i t e r a t i o n .

I
I

, I

I
I r w a v r I
I
I

F i g u r e 6, FORTRAN Design: H i e r a r c h y o f Execu t ion T a s k s

I

I
. I

The FORTRAN user c a n s e t t h e c y c l e t i m e , which is t h e amount of
t i m e t h a t t h e s i m u l a t i o n clock is incremented . The c y c l e t i m e
d e t e r m i n e s when e v e n t s o c c u r i n t h e s i m u l a t i o n , f o r example,
when t h r u s t e r s f i r e , when new s e n s o r d a t a are g e n e r a t e d , and
when t h e s p a c e c r a f t a t t i t u d e s t a t e is updated. The FORTRAN de-
s i g n t h u s i n v o l v e s i t e r a t i n g o v e r t h e three processes (TM, OBC,
and SIMOUT) , w i t h t h e user-settable c y c l e t i m e d e t e r m i n i n g when
e v e n t s occur .

I
I I

F i g u r e 5 shows a n e x c e r p t from t h e Ada d e s i g n c o r r e s p o n d i n g t o
t h e s i m u l a t o r o p e r a t i o n , The n o t a t i o n i n t h e f i g u r e needs some

d e n o t e off-page c o n n e c t o r s , w i t h t h e l abe ls El, E2, etc., re-
f e r r i n g t o e x t e r n a l f i l e s and t h e l a b e l 1 d e n o t i n g package num-
ber 1 from a d i f f e r e n t diagram. A r c s show t h e d i r e c t i o n o f a
subprogram c a l l from a subprogram i n t h e c a l l i n g package t o a
subprogram i n t h e called package. More d e t a i l on t h e d e s i g n
n o t a t i o n is p r e s e n t e d i n [lo].

The p lacement of packages on d e s i g n d i ag rams such as F i g u r e 5
shows t h e s e n i o r i t y h i e r a r c h y described ear l ie r . Thus, i n Fig-
u r e 5, t h e S i m u l a t i o n C o n t r o l package is s e n i o r t o o t h e r pack-
a g e s on t h e d iagram; t h a t is, it u s e s services p rov ided by t h e s e
o t h e r packages and t h e y do n o t u s e i t s s e r v i c e s . The three

I e x p l a n a t i o n , The rounded r e c t a n g l e s are A d a packages. Circles

0217 F. 1.3.12

I
8

I
lm

1

OK
I
I I -

packages at the lowest level (which together constitute the sim-
ulation support subsystem of Figure 3) are junior to the pack-
ages higher in the diagram and as such are not the origin for
any arcs that terminate at higher level packages.

This more detailed examination of the operation of each simula-
tor revealed two clear differences in the Ada design: the pas-
sive role of the Truth Model and the separate timing of the OBC
and the Truth Model.

The Ada design represented by Figure 5 shows that, unlike the
FORTRAN design, the OBC and the Truth Model are - not at the same
level. The OBC calls the Truth Model to obtain sensor data when
the data are needed. The Truth Model is passive; it performs
processing and generates sensor data only when directed to do S O .

Both the OBC and the Truth Model are junior to Simulation Con-
trol in Figure 5, an arrangement that appears to mimic the
FORTRAN design. However, the Ada design notebook [ll], which
provides details of the actual calls made by Simulation Control,
shows the Ada design to be quite different. Recall that the
cycle time in FORTRAN affected both the OBC and the Truth Model.
In the Ada design, the timing of the OBC and the Truth Model is
separate: the Truth Model cycle time is under user control; OBC
timing is not. The Ada team chose to model faithfully the
spacecraft OBC flight software, whose timing is not under user
control. Because timing and event scheduling are central ele-
ments in any simulation, this difference is of a fundamental
nature and demonstrates that the Ada team was able to go back to
basic system requirements for their analysis.

CONCLUSIONS

The comparison of FORTRAN and Ada designs has revealed signifi-
cant differences in both the design processes and products. In
this experiment, the Ada design has been shown to be different
to a significant degree from the FORTRAN design. This result
differs from that reported in [l] for another monitored Ada de-
velopment project in a different environment.

The results have implications for other organizations contem-
plating the use of Ada. This experiment led to a design that
exploits Ada's features for expressing design abstractions.
However, this result was supported by (1) the use of a specifi-
cation method, CSM, to counteract the influence of design-laden
requirements; (2) the explicit allowance for the Ada team to
pursue new design methods, not requiring the team to take the
less costly route of reusing the existing design; and (3) train-
ing in alternative design methods.

ACKNOWLEDGMENTS

The Ada experiment is managed by F. McGarry and R. Nelson of
NASA/GSFC and actively supported by representatives from all SEL

0217 F. 1.3.13

participating organizations (NASA/GSFC, CSC, and the University
of Maryland), especially V. Rasili, G. Page, E. Katz, and
C. Brophy. The authors thank J. Garrick, S. DeLong, G. Coon,
D. Shank, and E. Seidewitz for their assistance.

REFERENCES

1.

2.

3.

4.

I

5.

6.

7.

8.

9.

10.

I 11.

V. R. Basili et al., "Characterization of an Ada Software
Development," Computer, September 1985, vol. 18, no. 9,
pp. 53-65

Software Engineering Laboratory, SEL-81-104, The Software
Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page,
et al., February 1982

W. W. Agresti, "Measuring Ada as a Software Development
Technoloqy in the Software Engineering Laboratory (SEL) ,"

Tenth Annual Software Engineering Workshop, Proceedings,
NASA/GSFC, December 1985

Computer Sciences Corporation, CSC/SD-85/6106, Gamma Ray
Observatorv (GRO) Dynamics Simulator Requirements and Math-
ematical Specifications, G. Coon, April 1985

D. N. Card, V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices," IEEE Transactions on
Software Engineerinq, February 1986, vol. SE-12, no. 2,
pp. 264-271

W. W. Agresti, "An Approach for Developing Specification
Measures," Proceedinqs, Ninth Annual Software Engineering
Workshop, NASA/GSFC, November 1984

Computer Sciences Corporation, CSC/TM-85/6108, Specification
of the Gamma Ray Observatory (GRO) Dynamics Simulator in Ada
(GRODY), W. W. Agresti, E. Brinker, P. Lo, et al., November
1985

V. Rajlich, "Paradigms for Design and Implementation in
Ada," Communications of the ACM, July 1985, vol. 28, no. 7,
pp. 718-727

E. W. Dijkstra, "The Structure of 'THE'-Multiprogramming
System," Communications of the ACM, May 1968, vo l . ll,,
no. 5, pp. 341-346

E. Seidewitz and M. Stark, "Toward a General Object-Oriented
Software Development Method," Proceedings, First Interna-
tional Symposium on Ada for the NASA Space Station, Houston,
Texas, June 1986

Computer Sciences Corporation, CSC/SD-86/6013, GRO Dynamics
Simulator in Ada (GRODY) Detailed Design Notebook,
W. Agresti, E. Brinker, P. Lo, et al., March 1986

, 0217 F. 1.3 . 14

N89- 16357

t

Max A. Turner
University of Houston-Clear Lake P.D. Van Buskirk

Lockheed Engineering and Management Services Co

(PRELIMINARY)
MODELING, SIMULATION AND CONTROL

FOR

A CRYOGENIC FLUID MANAGEMENT FACILITY

How relevant to the complex space station applications are academic
formulation and solution of control problems, based on recently published

textbook methodology complemented with limited laboratory scale experiments?
The textbook abstractions are often stripped of consideration of constraints
of prime concern to the field application:
economics, hazards analysis and fault tolerance. However, the approach of
the classroom - simplistic of necessity due to man-hour and funding
constraints -- serves as a starting point for formulating a "top-down
modular" definition of the problem and development of an overall perspective
for the research professor or student.
readily adapt to a position in team efforts with major funding.

process capacities, user demands,

The individual is thus conditioned to

As one of an ongoing series of term projects in Process Monitoring and
Control at UH-CL, the class in PROC 5232: Process Modeling, Simulation and
Control, has studied the synthesis of a control system for a cryogenic fluid
management facility.
instrumentation and control unique to the space station environment are prime
considerations.

The severe demands for reliability as well as

Realizing that the effective control system depends heavily on

quantitative description of the facility dynamics, a methodology for process
identification and parameter estimation is postulated. A block diagram of
the associated control system ie also postulated.
adaptive control strategy is developed utilizing optimization of the velocity
form control parameters - proportional gains, integration and derivative
time constants - in appropriate difference equations for direct digital
control.

Finally, an on-line

Of special concern are fhe communications, software and hardware
It is supporting interaction between the ground and orbital systems.

visualized that specialiets In the OSI/ISO utilizing the M a programming

language will Influence further development, testing and validation of the
simplistic models here presented for adaptation to the actual flight
environment.

F. 1.4.1

MODELING, SIMULATION AND CONTROL
FOR

CRYOGENIC FLUID MANAGEMENT FACILITY

Abstract Outline

1. PROCESS DESCRIPTION

1.1 Baseline Configuration: CFMFE Flight System . . . Figure 1.1.1-1.1.2
1 . 2 Functional Requirements and Constraints Table 1
1.3 Problem Identification

2 . MATHEMATICAL MODELING

2 . 1 1/0 Models and Classification of Variables . . Figure 2.1.1-2.1.3
2 . 2 Thermal Analysis, Degrees of Freedom and Control Loops

2 . 2 . 1 The Ground Fill Line
2 . 2 . 2 Loading the Supply Tank
2.2 .3 LH2 Transfer t o the Receiver Tank

2.3 Multiple Input/Multiple Output Control
Configurations Figure 2.3.1-2.3.2

2 . 4 Closed Loop Transfer Matrices Table 2.4
I 3. CONTROL SYNTHESIS

3.1 Suppress Disturbances Table 3.1
3 . 2 Ensure Stability and Fault Tolerance Within

Process Constraints Table 3 . 2
3 .3 Maximize Returns With Minimized Risk

and Uncertainty Figure 3 . 3

4 . EXPERT SYSTEMS DESIGN

4 . 1 Process Identification Table 4 . 1
4 . 2 Parameter Estimation Table 4 . 2
4 . 3 Adaptation to Change Table 4 . 3
4 . 4 Automated Contingency Analysis and

Artificial Intelligence Table 4 . 4

5 . ASSESSMENT OF ALTERNATIVES

6 . CONCEPT VALIDATION

7 CONCLUSIONS

8. APPENDIX i
1. Nomenclature and Subscripts
2. Physical Data

I 3. References

F.1.4.2

1. PROCESS DESCRIPTION

1.1 Baseline Configuration:
CFMFE Flight System

The initial concept is diagrammed in Figure 1.1. Assembled
as a module for mounting in the shuttle, it consists of three
submodules identified with successive operational stages :

a) chilldown of the Ground Fill Line on the pad;

b)

c) chilldown of the Transfer Line combined with chilldown

chilldown and filling of the Supply Tank on the pad;

and filling of the Receiver Tank in orbit.

The submodules for operational stages a) and b) are detailed in
Figure 1.1.1. The submodules for operational stages c) and d)
are detailed in Figure 1.1.2.

N O T I C E

At the deadline for submitting manuscripts this paper was

incomplete.

t Copies of the completed version will be made available at

the presentation to those who desire one.

Max Turner
UH-Clear Lake Box 329
2700 Bay Area Blvd.
Houston, TX 77058-1098
(713) 488-9480

F . 1 . 4 . 3

ORIGINAL PAGE IS
OF POOR QUALITY

F. 1.4.4

.
I

ORIGINAL PAGE IS
OF POOR QUALITY

i I

4 {I
j
i
1
I

1
j
i

j
I
j
j
I

I

I
I

I
1
I

I

I
I

. . . -. . . . - . ._: .-I

i-; ' I 4

! - k I ' 1

F . 1 . 4 . 6

ORIGINAL PAGE IS
W, POOR QUALITY

0
t+

CFMFE

1. PROCESS DESCRIPTION

1.2 Functional Requirements and Constraints

Time :

Pressure :

Temperature:

Chilldown time, 8 = 15 min.

Fill time, eF - 60 min.
C

= 1 atm 'min Minimum

Maximum excursion P - 85 psig (PSV spec) max

Minimum Tmin = 36.7'R (20.4'K)

Ambient

Maximum ATa7

T = 530°R

AT87max

a
= (TBD)

Conservation of H2: (TBD)

Hazards :

f

Zero-gravity :

Explosion and fire (TBD)

Destructive vibration (TBD)

and shock

Stress fractures (TBD)

Loss of power (TBD)

Liquid pressurization (TBD)

Chilldown of receiver tank system (TBD)

Filling receiver tank (TBD)

Contingency respondent and fault tolerant (TBD)

F.1.4.7

CFMFE

1. PROCESS DESCRIPTION
1.3 Problem Identification

1.3.1 Thermal balances and minimized system chilldown and fill times

On the pad:
1. The Ground Fill line
2. The CH2 Storage and Supply Tank

In orbit:
3. Chilldown time for the transfer line from the Supply Tank to the

Receiver Tank

4. Chilldown and fill time for the Receiver Tank

Special problems:

5 . Overpressures and destructive stresses
6. Delayed GH2 boiloff due to heat transfer

F.1 .4 .8

I

I

I

-4-
I

!

I

C
0

< . -. -, - . _ - . , -

~~

E

ORIGINAL PAGE 1
OF POOR QUALIT

,

F.1.4.10

of?fGIiVAL PAGE IS
OF POOR QUALITY

!

F. 1.4.11

CFMFE

2. MATHEMATICAL MODELING

2.2 Analysis, Degrees of Freedom and Control Loops

2.2.1 The Ground Fill Line

Physical model for an energy balance:
Assumptions:
1.
2. LH2 enters with quality x = 0
3.

4.

5. Significant thermal energy sources which limit the minimum

The aluminum tube is perfectly insulated

Until chilldown is essentially complete, the exit GH2 has a
quality of x = 1
Maximum chilldown rates are limited by the vent ing capacity of the
line

cooldown time are the concentrated masses associated with
stainless steel control valves and sensors.
The enthalpy of LH2 at near atmospheric pressure is given by: 6.

h = 278.4 + 4 4 1 . 8 ~ + 10.13 (T-21)

0 = 507.47 + 10.13T, kJ/kg using the unit K

= 218.63 + 2.425T, Btu/lbm using the unit OR

Reference: Perry and Green, Ch.E. Handbook, McGraw-Hi11 1984,
pp 3-1958

C = C = 10.13 kJ/kg°K at 21°K
Pf Pg

7. The heat capacity of A 1 is:

= - 0.1362 + 0.007528T - 0.00001356T2 kJ/kg°K 'vAl

with T in OK

-7 2 = - 0.03254 + 0.000999T - 9.99 x 10 T Btu/lbmoR 'vAl

with T in OR

Reference: Perry and Green, 1984, pp 3-135

8. The heat capacity of stainless steel is:

- - 0.0586 + 0.003219T - 5.078 x 10-6T2 kJ/kg°K
cV

cV

with T in OK

= - 0.0140 + 0.000428T - 3.75 x 10-7T2 Btu/lbzR

with T in OR using 1 Btu/lbmoB = 4.178 kJ/kg°K

F. 1.4.12

I

2.2.1 The Ground Fill Line

Assumptions (continued)

9. Radiation heat transfer rates across the annulus of concentric
tubes or spheres is nil compared to convective heat transfer rates
from A 1 to LH2:

q/A 2 300 Btu/hrftZ from A1 to LH2 at 36.7'R

4 4 0 2 q/A = F12 6 (T - T LH2) = 12.7 Btu/ft hr from StSt to A1
I - 0 f 8 , 0 9 9

1
- I at 530°R where F12 = I

- + - - I * I - + I 7t - 1 6 = .1713 x loo8 Btu/(ft €'2 hr 3 4 R)

Reference: Perry and Green, 1984

A1 St.St. 10. Thermal diffusivities, k/pCV: -
20°K 0.5 0.040

100°K 0.00023 - 9
300°K 0.00011 3.3

Reference: Perry and Green, 1984, pp 3-263
3 = 0.104 kg/m at 20.4'K ?GH2
3

e LH2 rn
= 70.57 kg/m at 20.4'K or 4.72 16 /ft3

3 3 11. Densities: eA1 = 2723 kg/m or 170 lbm/ft
= 7900 kg/m 3 or 492 lbrn/ft 3

Ps t s t
Reference: Perry and Green, 1984, pp 3-96

12. Thermal conductivities:

Reference: Perry and Green, 1984, pp 3-261

13. Convective heat transfer coefficients:

References: 1) Perry and Green, 1984, pp 10-23
2) H.H. Walters, AiResearch Manufacturing Compant

"Single-Tube Heat Transfer Tests with Liquid
Hydrogen", (see WADC Technical Report 59-423)

3) Drake et al., Arthur D. Little, Inc.
"Pressurized Cool-Down of a Cryogenic Liquid
Transfer system Containing Vertical Sections",
(testp yi&h LO21 . . .

F. 1.4.13

2.2.1 The Ground Fill Line

Assumptions (continued)

Walters -- LH2 tests:

film boiling: h = 460 to 540 Btu/hrftZ0R
for inlet (?) = 1.6 to 1.7 atm

Re = 3 x 10 0 5

nucleate boiling: h = 10 x value for film boiling

Drake et al. -- LO2 tests:
2 0

outlet pressure - 10 psig
2 0

film boiling: h = 300 Btu/ft hr R
for inlet pressure - 20 psig
h = 200 Btu/ft hr F
for i n l e t pressure - 10 psig

outlet pressure = 5.5 psig
20 = 500 Btu/hrft R (uncontrolled)

= 300 Btu/hrf t20R (controlled)

hmax

have

Re = 3 x 10

LH2 - assume:

0 5

14. Critical constants of H2: P = 12.8 atm
C

T = 33.3'K = 60.0°R
C

F. 1.4.14

F. 1 .4 .16

,o

r r -_-__

I
I
i

I
i
i

*..-.. . J

F.1.4.17

I
!
I

i 1
1
I

I
!

i

i

I
i

. , .. , -. .- ._ , . .

F. 1.4.19

.,-

ORIGINAL PACE IS
OF POOR QUALITY

I

I

I

.... ~ _. .

F.1.4.20

. -

--

F.1.4.22

ORIGINAL PAGE
OF POOR QUAL!'

I

Intertask Communication in Ada:
A Bus Interface Solution

This is a special two hour presentation by representatives of the
Weizmann Institute Rehovoi, Israel. The topics are listed below:

Statement of the problem: Intertask synchronization in real
time systems.

Hierarchical Partitions - a simpler reference model
Data Link Layer Regime:

provision for message cancellation.
Message Alphabets
Ada Oriented Protocols and extension to CSP.
VLSI Solution

The prioritized dialogue with

Flavia Rosenberg
Smil Ruhman
A. Pnueli

F.2.1

N89-16358

VERIFYING PERFORIUWCR REQUIRKKKHTS

BY
Dr. Joseph Cross
Sperry Corporation

St. Paul, MN
(612) 456-7316

INTRODUCZCION

The thesis presented in this paper is that today, it is in
general impossible to verify that the performance requirements on
a software program will be met. A n approach to a partial
solution to this problem is presented.

The next section of this paper, Problem Definition, defines
the problem to be addressed, and defines related terms as they
are used below.

The following section, Obstacles to Verifying Performance
Requirements, presents the reasons why performance requirements
are, today, difficult to verify.

The section on Methods for Verifying Performance Requirements
briefly presents methods in use today, and proposes an
alternative approach to overcome some of the remaining
difficulties.

P R O B W DEFINITION

A "performance requirement" is a requirement on the speed of a
function performed by software. Much of the following applies
equally well to requirements on the amount of memory used by a
software function. An example of a performance requirement is
"The interval between updates to each track shall be on the
average at most two seconds, and in no case longer than five
seconds." Note that while performance requirements are, at the
user level, generally stated in elapsed time, these requirements
may be recast at lower levels of design into units of processor
utilization.

"Verifying" a specific requirement on a specific software
development work product refers to determining whether that
requirement is fulfilled by that work product. The requirements
on the work products of each phase of software development are
results of the preceding phase, except for the system
requirements, which are input to the entire software development
process. A work product WP is said to satisfy a requirement R if

system produced according to the requirements set forth in WP

F.3.1.1

(and its sibling work products, if any) will meet the requirement
R. Verifying a software development work product in its entirety
also entails checking its completeness, consistency, feasibility,
and testability [11.

For example, to verify that a detailed design satisfies a
requirement, such as the example requirement above, is to
determine whether any system produced in accord with that
detailed design could fail to exhibit the required behavior.
Moreover, verifying the entire detailed design requires
determining whether there is at least one system that can be
built in accord with that detailed design.

Of course, what work products are produced and what are the
phases of software development depend on the approach to software
development in use. In the conventional approach, the phases are
requirements analysis, design (often subdivided into high-level
design and detailed design). and implementation; the work
products of which are a requirements specification, a design
document (or documents), and code, respectively. In the
operational approach to software development, the first phase
produces a prototype/executable specification, which is intended
to satisfyldefine all requirements except performance
requirements; then a second phase transforms that
prototype/executable specification into a program with the same
behavior except that the performance requirements are met [2].

In order to minimize the dependence of the following
discussion on the approach to software development in use, it
will be assumed below that the work product on which performance
requirements are to be verified is a body of compiled but
untested Ada (tm) code. (Ada is a registered trademark of the
U.S. Government, Ada Joint Program Office.) This body of code
could represent a detailed design in the conventional approach,
or an intermediate step in the transformation of a
prototype/executable specification in the operational approach.

In order to make the issues involved in the verification of
performance requirements as simple as possible, it will be
assumed that a target machine is given and fixed throughout the
discussion. Here "target machine" refers to the virtual machine
on which compiled code is to run: one or more processors,
memories, communication channels, together with run-time support
software such as operating systems. This target machine is
assumed to be the target of a valid implementation of the Ada
language.

Note that while the assumption of a single, known, target
machine is reasonable in the Space Station environment, it is not
reasonable in other environments in which the target machines
that will execute the software may be unknown. We are fortunate
in this regard. I

The term "mapping" will be used to refer to the association
between design-level objects and run-time objects. For example,
a subprogram may be mapped onto a segment of memory-resident
machine code, or it may be mapped into many similar segments of

~ F. 3.1.. 2

machine code (as it would be if it were inlined), or it may be
mapped into nothing (as may be the case for type conversion
functions). As another example, a data object may be mapped into
a location in the main memory of one computer, into a register of
one computer, or into several locations in several computers (as
would be the case if redundant data were being maintained).

The function of mapping a program is generally distributed
among the compiler, linker, loader, and run-time system.

Note that one of the goals of the Ada language design was to
include in the source code all details of the program that define
its semantics, except f o r pe rformance iss ues. That is, by
examination of only the source code of an Ada program, without
considering other information such as linker directives, it is
possible to determine (within limits) its behavior as an
input-output process: however, it is not possible to determine
its timing. For this reason, it is necessary to use additional
information, above and beyond the source code, to verify
performance requirements.

OBSTACLES To VERIFYING PERFORMANCE REQUIREMENTS

This section describes several reasons why verification of
performance requirements is not a straightforward task, even
given a design that has been carried to the level of compiled Ada
code, and a well-defined target machine.

UNSPECIFIED MAPPING ONTO THE TARGET

Perhaps the major obstacle to verifying performance
requirements on a design presented as Ada code is that lack of
information concerning the mapping of the program onto the target
machine. It is only in the mapping information that
performance-critical issues such as the following are dealt with:

* Optimizations. These include low-level optimizations
such as dead code detection and constraint check
elimination, and high-level optimizations such as
subprogram inlining and monitor task optimizations.

* Target resource allocation. This includes the
assignment of tasks to processors (whether the
assignment is static or dynamic), the allocation of
data to memory (registers or main memory, resident or
non-resident, and arrangement into memory banks or
pages), and backup and casualty configurations.

* Implementation dependencies. These include all the
implementation dependencies allowed by the Ada
language definition, such as the number of task
priorities, task scheduling algorithm within a
priority, and interrupt handling methods.

F.3.1.3

A s an example of t he importance of these i s s u e s , no te tha t it i s
p o s s i b l e t o cons t ruc t an A d a program tha t w i l l deadlock under one
legal task scheduling a lgo r i thm, but not under another legal task
schedul ing a lgor i thm.

Note t ha t a large amount of the opt imiza t ion and target
resource a l l o c a t i o n data can change as a r e s u l t of an appa ren t ly
small change i n the des ign . For example, the d e c l a r a t i o n of a
small data ob jec t can cause t he a l l o c a t i o n by the compiler of
s ta t ic data t o memory banks t o be s i g n i f i c a n t l y r e v i s e d , with
p o t e n t i a l l y important changes t o t iming . T h i s effect i s
p a r t i c u l a r l y pronounced i f a g l o b a l l y optimizing compiler i s
used.

NON-CATEGORICAL SPECIFICATIONS

A " c a t e g o r i c a l " s p e c i f i c a t i o n i s one which d e f i n e s only one
target system. O f cou r se , des ign s p e c i f i c a t i o n s are g e n e r a l l y
in tended t o be non-ca tegor ica l , t h a t i s , t o permit s u b s t a n t i a l
freedom i n their implementation.

The problem of non-categorical s p e c i f i c a t i o n s i s tha t i f t o o
much freedom of implementation remains, there can be a
combinatorial explosion in the number of cases requiring
examination i n order t o v e r i f y a requirement. For example,
cons ider a target machine tha t c o n s i s t s of 3 dissimilar
processors connected by communication channels . I f the program
c o n t a i n s 12 tasks, and i f t h e des ign does not c o n s t r a i n the

power (1?28) c o n f i g u r a t i o n s , each of which r e q u i r e s v e r i f i c a t i o n .
Each choice l e f t open by t h e des ign p o t e n t i a l l y m u l t i p l i e s t he
number of conf igu ra t ions tha t must be dealt w i t h i n v e r i f i c a t i o n .

I a l l o c a t i o n of tasks t o p rocesso r s , then there are 12 t o the t h i r d

NON-INVERTIBLE DATA DEPENDENCIES

The processing t i m e f o r some opera t ions depends on t h e input
cond i t ions t o t h o s e ope ra t ions (i . e . , i npu t data and r e t a i n e d
data). For example, the t i m e required by a track processing
ope ra t ion may depend on the number of c u r r e n t l y l i v e tracks. For
a given ope ra t ion , le t the func t ion that maps inpu t cond i t ions t o
process ing time of tha t ope ra t ion be called i t s data dependency
f u n c t i o n .

Data dependency f u n c t i o n s are o f t e n i n v e r t i b l e , a t least i n
the rough sense tha t the set of i npu t cond i t ions that r e s u l t i n
process ing times less t h a n some l i m i t can be determined. For
example, i t might be determined that the time necessary t o search
a track f i l e w i l l be less the 25 mil l i seconds i f there are no
more the 100 l i v e tracks t o be searched. T h i s s o r t of i nve r s ion
of the data dependency f u n c t i o n i s o f t e n s u f f i c i e n t t o v e r i f y
whether the ope ra t ion meets i t s performance requirements.

Unfortunately, data dependency func t ions are found in p r a c t i c e
that are not i n v e r t i b l e . That i s , there are opera t ions f o r which
t h e processing t i m e depends on t h e inpu t cond i t ions , but the

I

F.3.1.4

dependency is too complex to invert. Phrased otherwise, it is
impossible in practice to define the set of input conditions on
which the operation will complete within its prescribed time.

Examples of such non-invertible data dependencies can be found
in combinatorial algorithms, and in artificial intelligence
paradigms. Specifically, consider a backtracking algorithm --
depth first search for an optimum value using bounding functions.
It may happen that a long series of nodes will be generated and
expanded before it is discovered that this series does not lead
to an optimum, and must be discarded (the "garden path"
phenomenon). It is not in general possible to give a simple
condition defining those sets of input data that give rise to
this phenomenon. In such cases, it is impossible to discriminate
input conditions for which processing will be fast from input
conditions for which processing will be slow.

NON-DETERMINISTIC BEHAVIOR

Non-deterministic behavior of a program is behavior that
cannot be predicted from the input conditions. Non-determinism
can arise from the hardware level, as when two processors race
for access to a memory word, from the run-time software level, as
when the operating system takes varying times to respond to a
service request due to the varying activity of peripherals or to
the varying activity of other programs under its purview, and
from the software level, as from the Ada select statement and Ada
arithmetic, which are defined as (potentially) non-deterministic.

The property of being non-deterministic differs from being
non-categorical in that non-determinism may be a property of the
behavior of a single system, whereas only a specification can be
non-categorical. The property of being non-deterministic differs
from having a non-invertible data dependency function in that the
data dependency function of a non-deterministic process can only
be defined statistically, and that function may or may not be
invertible.

One example will s u f f i c e t o demonstrate the d i f f i c u l t i e s
presented by non-determinism to the verification process.
Consider a program that is deterministic except that the select
statement is implemented non-deterministically. That is, when
several rendezvous are possible, the choice of which to accept is
made at random. The state space of such a program branches each
time a select with two or more open accept branches is executed.
Therefore the number of distinct possible program behaviors can
grow rapidly with time, and it must be verified that all these
behaviors meet the requirements.

F.3.1.5

~~ ~

ADAPTIVE BEHAVIOR

Adaptive behavior refers to the aspects of a program's
behavior that change relatively slowly over time, for the purpose
of improving its performance. Examples of adaptive behaviors are
load balancing functions in distributed systems, and programs
that learn from experience.

Adaptive behavior can be implemented in a straightforward
manner, as by changing a vector of locations, and adaptive
behavior can be implemented by highly sophisticated means, as in
some learning programs that, in effect, modify the code that
performs some of their functions.

If the set of possible behaviors of an adaptive program is
reasonably small, then adaptation causes no great problems for
verification: each of the possible behaviors must be verified to
satisfy the requirements. If, on the other hand, the set of
possible behaviors is large, then verification may become
difficult or impossible.

METHODS FOR VERIFYING PKRFORMANCE REQUIREMENTS

Substantial work has been done in the area of dealing with
performance requirements. SREM [31 is a method of expressing
requirements, including performance requirements. SREM a l s o
provides a means to simulate the behavior of the specified
system. Unfortunately for our present purposes, the SREM
methodology is not well suited to producing Ada programs.

The Model system 141 generates programs (in PL/1) of a
restricted form from a specification expressed in an ad hoc
language. The system then estimates the performance of the
resulting system, using data generated as a by-product of the
program generation process together with inputs from the user on
the times of the target machine for "input, output, arithmetic,
comparison, and function operations."

Several methods support performance estimation based on
queueing theory. Examples are PAISLey [SI and SARA [63, and
Petri net approaches [" I . Such methods are effective when a
network of queues is an acceptable model of the execution
behavior of the software, and when statistical estimates of
timing (as opposed to guaranteed worst-case values) are
acceptable.

Note that none of the preceding techniques is intended to
solve exactly the problem addressed by this paper: validating
performance requirements on a detailed design expressed as Ada
code.

One popular non-method for dealing with performance
requirements needs to be noted. There is some feeling that any
concern for performance is improper, almost immoral, during
program design. This attitude will be called the DEMO
methodology (for DEliver Me from Optimizations). The DEMO

F.3.1.6

methodology cal ls f o r programs t o be designed e x c l u s i v e l y f o r
c o r r e c t n e s s , m o d i f i a b i l i t y , and m a i n t a i n a b i l i t y , and tha t
e f f i c i e n c y w i l l taken care of l a te r . The claim i s t h a t whatever
degree of e f f i c i e n c y i s called f o r can be provided,
au tomat i ca l ly , after the completion of detailed d e s i g n , by one of
three means:

* Compiler op t imiza t ions . "Any decent implementation"
of t he Ada language w i l l provided e x t e n s i v e , g l o b a l ,
op t imiza t ions , r e s u l t i n g i n a system tha t w i l l be as
e f f ic ien t as i f it had been optimized by hand.

* Recoding hot-spots i n t o low-level code. S ince most
of t he execut ion time i n many programs i s taken up by
a small propor t ion of t he l i n e s of code, t h o s e b locks
of code may be recoded i n t o assembly code, and good
e f f i c i e n c y thereby obtained a t small c o s t .

* Hardware. I f t he program does not run fast enough, a
faster computer should be used. It does not matter i f
no such computer i s a v a i l a b l e today , s i n c e i t w i l l be
a v a i l a b l e soon.

The DEMO a t t i t u d e probably developed i n response t o the o lde r ,
pre-software engineer ing a t t i t u d e that what makes sof tware good
was f i rs t , being e f f i c i e n t , followed c l o s e l y by meeting spec , and
a l l o t h e r va lues , such as m a i n t a i n a b i l i t y , were of i n s u f f i c i e n t
importance t o deserve mention. I f DEMO i s a r e a c t i o n t o t ha t
a t t i t u d e , i t i s l a r g e l y j u s t i f i e d , but neve r the l e s s it i s an
ove r reac t ion . Consider each of t he preceding three p o i n t s :

While ex tens ive , g l o b a l , op t imiza t ions are wi th in t h e s ta te of
the a r t , no A d a compiler known t o t h i s au thor provides t he
fac i l i t i es previous ly demanded of "decent implementations" o f t he
language. T h i s i s due t o two factors: the demand f o r reasonably
fast compilat ion, and t h e sepa ra t e compilation fac i l i t i es of t h e
language. The r e s u l t i s t h a t l o c a l l y , generated code i s not as
p a r t i c u l a r l y good, and g loba l op t imiza t ions are not performed a t
a l l . Hence w e cannot depend on compilers t o so lve our eff ic iency
problems today .

Recoding of hot-spots i n t o low-level code i s of course a
va luab le technique as far as it goes. It does not h e l p i n two
important cases: d i s t r i b u t e d i n e f f i c i e n c y , and hot assembly code.
The former refers t o i n e f f i c i e n c i e s tha t are widely spread
throughout a program; f o r example, a c u r r e n t l y popular Ada
compiler emits r e spec tab le code t o r e fe rence a r r a y s t h a t have an
index subtype such as 1..10, and h igh ly i n e f f i c i e n t code f o r
a r r a y s having the index subtype 0..9; no l o c a l i z e d recoding w i l l
h e l p . Hot assembly code refers t o t h e case i n which the
program's hot-spots are i n subrout ines tha t are a l ready i n
assembly code; i n p a r t i c u l a r , when the hot-spots are i n the
run-time support code. For example, a program that i s bound by
task suspension and d i s p a t c h times cannot be helped by recoding
i n t o low-level code.

F.3.1.7

The hardware s o l u t i o n depends on cos t - e f f ec t iveness . There i s
a balance between the c o s t of opt imizing sof tware , and
maintaining tha t optimized sof tware , a g a i n s t the c o s t of us ing of
a faster computers, t ak ing i n t o account weight , ' power, and
l o g i s t i c s i s s u e s . That balance cannot be c a s u a l l y t i p p e d i n
ei ther d i r e c t i o n , no matter how convenient i t would be f o r t h e
sof tware v a l i d a t i o n process .

The remainder of t h i s s e c t i o n concerns a proposed approach t o
so lv ing t h e problem def ined above.

The basis of t h i s approach i s a change i n viewpoint of t h e
meaning of a des ign . A design i s convent iona l ly considered t o
d e f i n e , roughly, an abstract computation (i . e . , a func t ion
mapping i n p u t s i n t o ou tpu t s) t oge the r w i t h a s t r u c t u r e for t h e
sof tware . Note that the meaning of " s t r u c t u r e of the sof tware"
i s not e n t i r e l y e v i d e n t : the s t r u c t u r e of the source code -- i t s
hierarchical decomposition of a program i n t o packages, tasks and
subprograms and t h e s e p a r a t e compilat ion s t r u c t u r e -- may be
q u i t e d i f f e r e n t from the s t r u c t u r e of the software a t run time.
For example, code of one subprogram may be consol idated i n t o the
code of many o thers by means of i n l i n i n g , and the program's
s ta t ic data may be d iv ided up a r b i t r a r i l y ac ross s e v e r a l
computers, and f u r t h e r i n t o r e s i d e n t and non-resident segments.
Convent ional ly , a "des ign" may spec i fy any o r a l l of these
sof tware s t r u c t u r e s .

For t he purposes of v e r i f y i n g performance requirements, l e t u s
adopt the fol lowing viewpoint on t h e meaning of "design" :

A DESIGN IS A CONSTRAIHT ON THE
INITIAL STATE OF THE TARGET MACHIHE

That is, of t he very large number of p o s s i b l e i n i t i a l states f o r
t h e target machine, a des ign selects a subse t of those states,
a l l of which presumably d e f i n e programs that w i l l perform
according t o t h e program's requirements. The word design w i l l be
used only i n t h i s sense below.

A des ign may be expressed as Ada code w i t h anno ta t ions , o r as
Ada code wi th a s e p a r a t e data s t r u c t u r e that c o n s t r a i n s t h e
mapping of the program onto the target machine. Examples of
data that may reasonably be included i n a design inc lude the
t y p e and c o n f i g u r a t i o n of t h e target computer processors ,
memories, and communication channels , the mapping of s ta t ic data
onto memories, the mapping of tasks (or task types) t o
p rocesso r s , and the i d e n t i f i c a t i o n of the run-time support code
and parameters (such as task scheduling a lgo r i thm) .

Even after the human des igne r s have expressed a l l t h e
informat ion t h e y have concerning the mapping of t h e program onto
t he target machine, a d d i t i o n a l information i s requi red from t h e
compiler concerning i t s mapping d e c i s i o n s . A form i n which t h i s
informat ion could be expressed w i l l be presented s h o r t l y . T h i s
information inc ludes data on the compi le r ' s choices of
op t imiza t ions , such as upmerging. i n l i n i n g , and code motion.

F.3.1.0

.

When all of the available information on the source code and
its mapping onto the target machine is available, then the
verification of performance requirements can proceed. The
essence of verifying performance requirements is to prove certain
statements about the program behavior correct. The statements to
be proven correct are the requirements ("The interval between
updates to each track shall be on the average at most two
seconds, and in no case longer than five seconds"), and the
hypotheses are the available rules about the program and its
mapping onto the target machine, together with some rules
defining the behavior of the target machine itself.

Since the verification of a requirement is likely to be a
long, but not particularly subtle, chain of reasoning, such
verifications are likely candidates for automation. For this to
be feasible, the data on the program will have to be expressed in
a form acceptable to a theorem-proving system, such as a Prolog
implementation [81 o r a rule-based system [91. For example, part
of one set of rules presented to the verifier, which expresses
the run-time structure of a subroutine, might have a semantic
content (but not a form) such as

1) Subroutine S117 is completed when Block249 is

2) Loop98 is completed when Boolean4276 is false.

completed and Loop98 is completed.

3) Block249 requires 79 milliseconds to complete.

4) Each iteration of Loop98 requires 182 milliseconds.

It is to be expected that attempts to verify requirements by
this method will initially fail, simply because the conclusion is
not justified by the available information. That is,
requirements will not be validated because there is not
sufficient data to establish that those requirements will be
satisfied by the final system.

When requirements cannot be validated due to the lack of
sufficient data, additional information must be made available.
Examples of such information would be a conclusion that is
justified by the available information but is too deep for the
verifier to discover (such as that some iterative process must
converge within a fixed number of iterations), o r information
that is added to the design in order to meet the performance
requirement (such as that when Condition equals Red, then the
availability of Processor Alpha to Program Zeta will be 10096.)
If such additional information does not permit the truth of the
requirement to be deduced, then that requirement must be reported
as not satisfied.

This is as it ought to be.

This rule-based verification approach has the following
strengths:

F.3.1.9

* Accuracy. If a requirement is verified by rule-based
verification, it is highly probable that any system
produced according to the design will satisfy the
requirement. Also, if a requirement is not verified
by this method, it is highly probable that some
system can be produced according to the design that
will not satisfy the requirement. The method is well
suited to handling worst-case requirements.

* Ability to handle non-determinism. In contrast to
simulation-based approaches, the rule-based
verification approach does not require that state
transitions be uniquely defined: a rule stating that
under certain conditions, either Process Alpha or
Process Beta will be dispatched is perfectly
accept able.

* Ability to accept non-categorical specifications. A
rule-based verification process is well suited to
handle non-categorical specifications.

* Ability to repeat a validation following a
modification. After a change to a design, such as
specifying pragma inline for a function, validation
may be repeated for only the cost of computer time.

This rule-based verification approach has the following
weaknesses:

* Required tool support. The major tool support
required to use rule-based verification is the
rule-based system processor, and the additional
function required of the Ada compiler (m. emission
of information on mapping decisions). Rule-based
system processors are commercially available, but the
modification to the Ada compiler is not trivial.

* Required human effort. Substantially more effort
than is traditionally expended will be required on
the part of the verifiers and the designers to
achieve verification under this approach.

* Inability to handle non-invertible data dependencies.
The use of a rule-based system will not solve the
problem of unpredictable processing time.

* Inability to handle adaptive behavior. The use of a
rule-based system will not solve the problem of
unpredictable processing.

F. 3.1.10

Today, it is impossible to verify performance requirements on
Ada software, except in a very approximate sense. There are
several reasons for this difficulty, of which the main reason is
the lack of use of information on the mapping of the program onto
the target machine.

An approach to a partial solution to the verification of
performance requirements on Ada software is here proposed, called
the rule-based verification approach. This approach is suitable
when the target machine is well-defined and when additional
effort and expense are justified in order to guarantee that the
performance requirements will be met by the final system.

REFERENCES

[ll B. W. Boehm, "Verifying and Validating Software Requirements
and Design Specifications," IEEE Software, pp. 75-88, Jan.
1984.

[21 P. Zave,"The operational versus the conventional approach to
software development," Communications of the ACM, pp.
104-118, Feb. 1984.

[31 M. W. Alford, "A requirements engineering methodology for
real-time processing requirements," IEEE Transactions on
Software Engineering, vol. SE-3, pp. 60-69, Jan. 1977.

[41 J. S. Tseng &., "Real-Time Software Life Cycle with the
Model System," IEEE Transactions on Software Engineering,
vol. SE-12, pp. 358-373, Feb. 1986.

[SI P. Zave, "An operational approach to requirements
specification for embedded systems," IEEE Transactions on
Software Engineering, vol. SE-8, pp. 250-269, May 1982.

[SI G. Estrin g& d., "SARA (System ARchitects Apprentice):
Modeling, Analysis, and Simulation Support for Design of
Concurrent Systems, I' IEEE Transactions on Software
Engineering, vol. SE-12, pp. 293-311, Feb. 1986.

[7] M. K. Molloy, "Discrete time stochastic Petri nets," IEEE
Transactions on Software Engineering, v o l SE-11, pp.
417-423, Apr. 1985.

[81 M. R. Genesereth and M. L. Ginsberg, "Logic Programming,"
Communications of the ACM, vol. 28, pp. 933-941, Sept. 1985.

[91 F. Hayes-Roth, "Rule-Based Systems," Communications of the
ACM, vOl. 28, pp. 921-932, Sept. 1985.

F.3.1.11

N89-16359
The "Computerization" of Programming:

Ada(tm)-Lessons Learned

Dennis D. Struble
Intermetrics, Inc.
733 Concord Ave.

Cambridge, MA 02138

1.0 Introduction

During the past four years, Intermetrics has constructed
one of the largest systems yet written in Ada.
the Intermetrics Ada compiler. As you might imagine,
Intermetrics has learned many lessons during the implementation
of its Ada compiler. This paper describes some of these
lessons, concentrating on those lessons relevant to large system
implementations.

This system is

As I considered what lessons to discuss an amusing thought
occured to me. Four years ago I gave a briefing at the Johnson
Spacecraft Center entitled "Ada: A Management Overview." At
that time, I was an ardent Ada proselytizer but one who had
never laid hands on an Ada compiler. In that briefing four
years ago I made several predictions about what it would be like
to manage an Ada project. Having spent the last two years
managing an Ada implementation, I thought I ought to determine
how accurate my predictions had been. (As you might guess, my
predictions turned out to be correct. If they hadn't, there
certainly would have been no point in admitting to them in this
paper. 1

Before I identify
the characteristics of
at Intermetrics. Then
describe some specific
predictions.

these predictions, I'll first describe
the Ada compiler implementation project
after listing the predictions I will
experiences which verify these

2.0 Project Description

The Intermetrics Ada compiler and linker comprise 400,000
lines of Ada code. The compiler is augmented by a program
library manager and by a set of tools which are together another
100,000 lines of Ada. The tool set includes a source lister
which optionally includes the generated assembly code, a
completeness checker, a body generator, the ByrOn(tm) design
language processor, a debugger, and a set of static and dynamic
program analyzers.

Ada'(tm) is a registered trademark of the U.S. Government (Ada
Joint Program Office).
Byron(tm) is a trademark of Intermetrics, Inc.

F.3.2.1

Intermetrics is currently completing a total of six
compilers under two government contracts and four commercial
contracts. The compilers generate code for the IBM 370, the
Sperry 1100, and the MIL-STD-17SOA instruction sets; this
generated code executes in six different run-time environments:
IBM MVS(tm), IBM CMS(tm1, Rmdahl UTS(tm1, Sperry 1100, and bare
1750A. The compilers are hosted under four different operating
systems: IBM MVS, IBM CMS, Amdahl UTS, Sperry 1100, and VAX
VMS (tm) .

All of these compilers have been developed in parallel and
all of the compilers share the same source code.
code is maintained under a configuration management system
designed specifically to support a multi-hosted and multi-
targeted compiler development environment.
staff at its peak included fifty software engineers.

The source

The development

The development environment for the Ada compilers is an IBM
3083 Model BX, running the Amdahl UTS operating system hosted
under VM.
developed using an Ada-subset compiler Intermetrics wrote in
Pascal.
December 1985 and was bootstrapped through itself in February
1986.

The production-quality compiler was initially

The production-quality compiler was validated in

3.0 The Predictions

Figures 3-1 and 3-2 are extracted from the four-year old
briefing I described above. The predictions contained in these
figures are self-explanatory. Of these predictions, the ones
concerning multi-tasking are, of course, not relevant to our
compiler. (Not yet at least: Intermetrics is anxious to modify
our compiler to become the first Ada compiler to take advantage
of the new generation of multi-micro machines.)

All the other predictions have turned out to be more or
less correct. One theme that runs through these predictions is
that with the introduction of Ada, the DoD is attempting to take
a major step forward in the "computerization of programming." I
use the term computerization of programming, rather than
"automatic programming" because I believe that for completely
new applications, such as Ada compilers and Space Station
software, automatic programming will never occur. On the other
hand, many of the tasks required in the programming of new
systems are amenable to much greater computerization. In
particular, Ada requires much more "bookkeeping" to be performed
by the compiler than do other languages.

IBM(tm), MVS(tm) and CMS(tm) are trademarks of the International
Business Machines Corporation.
UTS(tm) is a trademark of the Amdahl Corporation.
VAX(tm) and VMS(tm) are trademarks of the Digital Equipment
Corporation.

F.3.2.2

ORIGINAL PAGE OS
OF POOR QUALITY

I

U
U
T

*
U = W

II)

0
l! t

W V
R *
2

VI a w
-1 .
0 U

-

t
0
U

-
I -
r

a
a

I I
W

la
t

c
VI w
-1

C .

t * I

w o II

0

a m *

- w
a x
w m

d r
d
- Y s o

U
W

I I) C

I O
W 2 2
- *
0
U

r

- 0 t
0 0 0
- 0

n
cu
ce
0
4
v

v,
I
0
Y

..
4

I m

F.3.2.3

ORIGINAL PAGE IS
OF POOR QUALiTY

&
f z s
n 0 0 m 0 2

- 0
- I

m r
.* -u
a 2
0 * -
I K m
O W
rn - 0

u * r m -
I m x

*
2 c
L
V

h

I

- -
-
m

I 0

-1 W

Y 0

2
o m W Y

W I
2 3

-1U 2 W

c

-c
m -
m u
-.I W *

U K - w m e

u m O F
m

W C - 1

m w > - m y

(L -lU
0 -
1 0 e

I
0 u

1
. I

BB]

c
I
L -
c
t e
U

Y

I U

.1

a

- -
-
m
W .1

3
0
W I

0

-

. a

I Y O
0 X I
c w u zc
w o v
-1 w a W . 1

0

-
0

- r
0.1

Z B

W W 1-

e*.
m K c o u
v c w --
W . 1

c w u 0

c-

r m o

m o c
c i u a m

I t -
-I I- c
u -
W
x . Y
U Y -
.1 -*a

w c s
R . i . 1
- 0

w *
e Y I
o m 0
U I I -I
-a
o w e .1 c c

0 0 -
u u a
Y
X

-

m ~ =

u m L

I a a

- m a

'

Y

Y W

R

.1
0

r a
a I

* a.

F. 3.2.4

h

(u

re
0
cu
Y

..
cu
I
0

A more significant computerization of programming arises
because Ada fosters, if not requires, a database management
approach to the handling of software. That is, each Ada package
should be treated as a valuable, complex, and evolving piece of
data; database management facilities and procedures should be
provided that are commensurate with the value and complexity of
this data.

As Intermetrics has further computerized its software
implementation procedures through the use of Ada, Intermetrics
has learned several lessons which confirm those four-year-old
predictions, as well as some lessons that could not have been
anticipated four years ago. These lessons are described below.

4.0 Ada-Lessons Learned

The lessons Intermetrics has learned may be split into the
following categories: Ada Training, Ada Tools, and Ada Language
Use.

4.1 Ada Training

One of the predictions states that the use of Ada would
required well-educated software engineers. Implied by this
prediction is a possible short-fall in software engineers
trained in Ada and trained in the software engineering
principles that Ada encourages.

In fact, availability of trained Ada engineers has not been
a problem at Intermetrics. This is because the Intermetrics
Software Systems Group employees computer scientists who
specialize in support software. Most of our new employees
already know Ada and already know the system design principals
associated with Ada software engineering.

Ironically, in some cases this broad knowledge of modern
language technology has actually caused problems. Some
engineers who have worked with university-developed, state-of-
the-art languages expect Ada to behave the same way. Many of
these state-of-the-art languages emphasize expressability,
perhaps at the expense of run-time efficiency, whereas run-time
efficiency was a key criteria in the design of Ada (and has been
a key criteria in the development of the Intermetrics Ada
compilers.)

L

An example of the problems caused by an orientation to
state-of-the-art languages arises from the CLU programming style
which advocates regular use of "signals" to return status from
subprograms. Several new Intermetrics employees have assumed
that in a corresponding way, exceptions should be used in Ada
programming to return subprogram completion status. In fact,
Ada exceptions are intended for truly "exceptional"

F.3.2.5

I

circumstances. Efficient Ada compilers attempt to generate code
in such a way that exceptions require no processing time unless,
and until, the exception is signalled. However, when the
exception is signalled, substantially more processing is
required than simply returning an output parameter. Thus, use
of Ada exceptions is not analogous to use of CLU signals.
Through coding standards and code reviews, Intermetrics educates
its programmers into efficient use Ada programming.

4.2 Tool-Use Lessons

In using high-order languagas, Intermetrics of ten has found
that the quality of the compiler is more important than the
quality of the language. Certainly in the initial years of Ada
use, this will be the case. Three characteristics of Ada tool
usage are discussed below: the importance of the library
manager, the unfortunate variability among Ada compilers, and
the substantial computing resources required by Ada tools.

4.2.1 A Sophisticated Library Manager is Critical

During the parallel construction of the six compilers, all
of which share the same Ada program library, the necessity for a
database management approach to Ada software configuration
management became clear. It is the Ada program library manager
that provides this database management. This database manager
must provide the following services:

Separate development areas for projects and sub-
projects along with a facility to share formally
"released" packages among projects and sub-projects.

Management of variants of subsystems, where these
variants support rehosting or retargeting the overall
system.

Formal configuration management of successive versions
of subsystems.

An interactive facility that can answer queries
concerning the status of packages in the library as
well as queries concerning dependencies among
packages.

An interactive facility which supports constructing a
system by choosing specific variants and versions for
each sub-system.

F.3.2.6

4.2.2 All Ada's are not the same

has used three different Ada compilers and attempted to use a
fourth. The three successfully used compilers are the two
Intermetrics compilers and the DEC (tm) compiler. (One
Intermetrics compiler and the DEC compiler are validated
compilers.) Not surprisingly, these compilers do exhibit enough
variation that rehosting a large system from one compiler to
another is a substantial undertaking. Some of the major
differences Intermetrics encountered are listed below.

During the developement of its Ada compilers, Intermetrics

Three classes of differences were experienced: functional,
capcity, and performance. Two functional differences were
noteworthy: the first arises because Ada does not specify a
default elaboration order. Thus, unless pragma elaborate is
used exhaustively to explicitly order the complete elaboration,
a complex system may elaborate correctly using one compiler and
yet fail to elaborate using another.

The more troublesome functional problem involved the
different handling of un-initialized records. It is, of course,
incorrect to rely on un-initialized variables. Nevertheless, it
is common in large systems developed using a compiler that does
initialize all variables to zero by default, that this large
system will work correctly even though some variables are not
explicitly initialized. When such a large system is rehosted to
a compiler with a different default initialization, it becomes
extremely costly to identify the un-initialized objects.

At times potential customers have asked us to rehost our
compiler front-end and Byron tool set to systems already having
an Ada compiler. In one case we were unable to respond to the
request because the existing compiler did not have the capacity
necessary to compile the largest units in the Intermetrics
compiler. (Generally, the Intermetrics compilation units are
from ten to several hundred lines; however, there are a few very
large packages in the compiler. These packages include the
parser tables, the code-generator tables, and the DIANA access
package. 1

The most serious difference we encountered was the speed of
our compiler'as compiled by different compilers. We, of
course,'expected variation in the code quality among the
different compilers; when we forecast the speed of our compiler
on the VAX as compiled by the DEC Ada compiler, we took into
account the difference in code quality and difference in machine
speed. Nevertheless, our I/O-intensive, host-interface package,
which conforms to the CAIS file model, ran much more slowly on
the VAX than anticipated. We eventually identified Ada file
open and close operations as the cause of this anomaly. The
lesson is that for extrapolating the performance of a systems-
level Ada program, a simple comparison of code-quality is not
sufficient.

F.3.2.7

There are straightforward procedures which may be used to
avoid these compiler variability problems. Foremost is the
identification of those aspects of Ada which may vary from
compiler to compiler and establishment of coding standards
addressing these variations. If you know in advance that your
system will be rehosted to several compilers, investment in a
standards checker will definitely pay off.

For a large project such as the Space Station which will
have the resources to modify its compilers, it would be
appropriate to enhance each compiler to flag possible sources of
incompatibilities and to generate code that conforms with the
anomalies of other compilers. Fo.r example, Intermetrics is
considering adding a DEC-Ada compatibility option to the
Intermetrics compiler so that we may minimize the recurring cost
of rehosting the Intermetrics compiler to the VAX.

4.2.3 For Ada, Don't Underestimate the Computes!

Sure enough, Ada compilers have turned out to be big and to
be slow. Despite what some may hope, an A d a compiler will
always be slower than an equivalent Pascal or C compiler: it's a
simple issue of algorithmic complexity. Again, Ada is
attempting to computerize software engineering substantially
more than have previous languages: this computerization
requires substantial computing resources.

4.2.3.1 Compile and Link Speed

All potential Ada users are aware that average compilation
speed is a critical compiler characteristic. Nevertheless, in
addition to the average lines-per-minute speed of Ada compilers
there are several other compilation speed issues that are unique
to Ada. These are start-up overhead, speed of separate
compilation, and up-to-dateness checking.

Ada compilers have a start-up overhead greater than
previous compilers. This arises from the size of the compiler
executable and from the requirement to interact with a large
database, namely, the program library. Consequently, the cost
of compiling very small modules is greater than with previous
compilers. This cost should be taken into account when
estimating computing resource requirements and perhaps when
partitioning your system into compilation units.

One Ada's most valueable characteristics is its requirement
that the compiler verify module interfaces. Once again, this
further computerization requires processing time. Each package
that a given package "with's" must be accessed and its interface
information made available to the current compilation. Extended
chains of "with" dependencies across packages add further
accessing cost. Thus, the hierarchical structure of large

F.3.2.8

systems must be designed carefully to avoid including extraneous
dependencies among packages. Further the dependency structure
should be periodically re-assessed during a long implementation
effort to determine if adjustments to this structure would
improve compilation time.

Ada compilers and linkers are required to check the "up-to-
dateness" of Ada packages. In a large system with a complex
library structure, the look-up required to verify up-to-dateness
will be significant. Again an understanding of this issue is
important when evaluating Ada compilers and when estimating
required computer resources.

4.2.3.2 Disk Storage Requirements

Systems written in Ada will require substantially more disk
storage than previous systems. This arises from two factors.
First Ada requires a program library that maintains interface
information from preceding compilations. Secondly, and more
importantly, some Ada compilers, including the Intermetrics Ada
compilers, provide an open interface into the internal data
structures that describe the packages of the compiled system.
The Intermetrics Ada compilers provide this open interface
through DIANA. A program library containing a DIANA description
of each package in the system enables the construction of a set
of tools that can analyze these packages. These tools include
static analyzers, dynamic analyzers, debuggers, package status
reporting tools, and package documentation tools. An advantage
of an open interface is that a given project, like the Space
Station, can readily implement whatever analysis tools the
project requires.

*\

This open interface facility does have a computer resource
cost, namely more disk storage than required by previous
languages. In evaluating this cost, managers must recall that
with the advent of Ada compilers which provide a DIANA-based
program library, we are taking a significant step toward a
database-oriented view of software systems. Such a methodology
does imply the disk storage resources required for a large
database.

Recognizing that a given project may not want to provide
the resources necessary for a complete DIANA database, the
Intermetrics Ada compilers will provide the option to retain
only enough DIANA to support Ada interface checking. Even
though Intermetrics will provide this option, we do anticipate
that most projects will find the benefit provided by the DIANA-
based toolset will substantially outweigh the cost of the disk
storage.

- It is interesting to note that the issue of program library
size and program library functionality is only slowing beginning
to appear in various Ada compiler evaluation criteria. This is

F.3.2.9

I

because a sophisticated program librarian and its disk storage
requirements were never an issue with Ada's predecessors. With
Ada, the characteristics of the program library may well become
one of the key distinguishing characteristics of Ada compilers.
The functionality of the library will determine how effectively
a large number of programmers will be supported and how
effectively parallel development efforts will be supported. The
size of the program library will be an important parameter when
a manager budgets for computer resources.

4.3 Language-Usage Lessons

Building one of the first large systems in Ada is like
attending a grand buffet banquet in a foreign country. There's
a table full of goodies that look incredibly delicious. The
problem is: some of the goodies may not agree with you and there
are so many goodies it would be very easy to overeat. Listed
below are some of the Ada features that in some case turned out
to be a little too rich.

4.3.1 Beware Abstraction Overdose!

From its inception, the Intermetrics compiler was designed
and coded fully utilizing Ada's excellent support for data
abstraction. Each of the compiler's major data structures is
designed as a data abstraction with an appropriate set of access
procedures. The compiler's heavy reliance on abstractions has

standpoints.
I worked out well from both the robustness and flexibility

For example, the compiler was designed with a software
paging system that would manage the storage for the various
intermediate languages. During the first year, while the paging
system was being the implemented, a simple, memory-resident
system was used as a substitute- When the time came to switch
over to the paging system, we anticipated a lengthy integration '

and debugging phase, However, because the underlying
implementation of the storage primitives had been hidden, the
switch-over phase proceded with almost no bugs.

Data abstraction does, however, have a negative side: data
abstraction, particularly if overused, can substantially degrade
a system's performance. Going through multiple levels of
abstraction, each one of which is a procedure call, is
expensive. As we complete our compiler, we find ourselves
having to "collapse" some of these levels, specifically, the
parser's access to the parse tables and the code generator's
access to the code tables-

. Having experienced both the benefits and costs of heavy use
of data abstraction, we believe the best approach is to start
out with those abstractions that best support initial

F. 3.2 -10

development and integration. However, a project manager must
definitely budget time and effort to measure the cost of
abstraction usage once the system has been integrated. And
unfortunately, a project staff probably will need to tune some
of the abstraction usage in order to meet the project's
performance requirements.

4.3.2 Don't Touch that Spec (and leave my body alone too!)

A key Ada design prinicipal is the physical separation of
package specification code from package implementation code. An
intended benefit of this separation is the avoidance of re-
compilation that could result from changes to the implementation
code. Intermetrics experience shows, however, that the simple
division into spec's & bodies does not guarantee minimal
compilation.

To assure minimal re-compilation, management diligence is
required. Ada's strong interface checking has its downside. In
C, Pascal, or FORTRAN, modules are not strongly connected and
hence modules may be recompiled readily. In Ada, packages are
very strongly connected and if changes to packages are not
managed, one can spend enormous amounts of computer dollars re-
compiling.

The strongly connected aspect of Ada necessitates a
software development approach that emphasizes bottom-up coding
and unit testing. The hierarchy of packages must be built in a
manner that freezes the interfaces and thereby prevents
undesired recompilations. This development approach is, of
course, a standard aspect of good software engineering and most
projects do attempt to adhere to this approach. Nevertheless,
when using Ada, the cost of not following this approach become
greater since Ada will force recompilations whenever the
interfaces appear to have changed (even if the programmer knows
they haven' t) .

Another aspect of interface management arises because Ada's
spec and body separation is not as strong as normally believed.
Changes to generic bodies and to in-lined procedures will cause
recompilation. Consequently, managers must make sure that the
staff is aware of these possible body dependencies and structure
their packages to minimize re-compilation necessitated by
changes to both spec's and bodies.

In addition to fostering a package partitioning that
minimizes recompilation, a manager should also make sure the
project's APSE includes a what-if analyzer. A what-if analyzer
answers the question: "What .recornpilation would result if I make
the following change to this spec or to this body.'' This tool
is 'particularly valuable during maintenance when a substantial
change, for example for performance reasons, is being
contemplated. It is likely that a maintainer would not fully

F. 3.2.11

understand the recompilation dependencies in a large system. A
what-if analyzer could guide the design toward one which avoids
substantial recompilation.

4.3.3 Lady Lovelace, she doth nag.

Ada's pervasive constraint checking is thought by many to
be a meddlesome annoyance best handled by liberal use of pragma
subpress.
inception of its Ada development and our experience has shown
our perception to be correct.

Intermetrics did not agree with this view at the

Constraint checking has been perhaps the most valuable Ada
feature we've enjoyed during the compiler's development. The
positive attributes of contraint checking include:

Bugs manifest themselves very close to their "time of
occurrence." In developing a compiler this is
critical, sipce the generation of incorrect code, when
undetected, produces the most difficult bugs.
Fortunately, ninety percent of the time, our compiler
failed with a constraint check rather than blithely
generating incorrect code.

By providing appropriate exeception handlers, bug
occurrences can be made somewhat self-documenting.
That is, an exception handler can identify the context
in which the constraint error occured. For example,
when a contraint error occurs in our compiler, it
prints out the line number of the source line being
compiled and dumps the relevant internal data
structures. (This contrasts with the more
conventional, unadorned "memory exception" and
"operation exception". 1

Given self-documenting failures, contraint checking
allows an independent test group to play a much more
active and productive role in the checkout and debug
process.

Because of the value of constraint checking, Intermetrics
took special'care to design an optimizer that would remove all
unnecessary constraint checks. Unfortunately, with constraint
checking, the compiler can't do the whole job. Minimization of
constraint checking also requires good Ada programming. Precise
type definition is critical to avoid unnecessary constraint
checks. A carefully written Ada program compiled by a good Ada
compiler should result in no more checking-code than would an
equivalent C program containing that amount of assertion
checking mandated by good software engineering standards.

F. 3.2.12

I

While we were using our subset compiler for development, we
were concerned with the possibly unacceptable amount of
constraint checking that would exist in the completed compiler.
Fortunately, we were quite pleased with the contrast between no
constraint check elimination in the subset compiler and
excellent constraint check elimination in the production
compiler. In fact, Intermetrics currently plans to achieve its
performance requirements without resorting to pragma suppress.
Retaining the necessary constraint checks in the compiler will
markedly improve the maintainability of the compiler.

4.3.4 Look Ma - No Regressions!
The problem of regressions is indeed lessened in Ada.

Prior to Ada it was often the case that in fixing a bug in a
large, complex system other bugs were introduced into the
system. The strong structuring support and strong typing that
Ada provides make it more difficult to introduce incorrect fixes
into a large system.

This characteristic of a system written in Ada was clearly
indicated during both the validation and the bootstrap of our
compiler. We had expected, based on prior compiler experience,
that we would experience a two or three week "tail" at the end
of our pre-validation testing. This tail would occur as we
attempted to pass the final five percent of the ACVC suite. We
expected that a fix introduced to pass one of the last ACVC's
would cause one or two previously passing ACVC's to begin to
fail. In fact, this regression did not occur. Our rate of
getting new ACVC's to pass remained high right up through the
week in which the last ACVC's were passed.

A similar phenomenon occurred when we bootstrapped our
compiler. To manage the bootstrap process, we decided that we
would f irs t bootstrap the smallest compiler phase, using this
mini-bootstrap to expose the majority of compiler bugs we would
experience during the full bootstrap. This smallest phase is
the 70,000 line, global optimizer phase. Its bootstrap required
three months. During the three months 55 bugs were exposed and
fixed. This bug rate corresponds to 8 bugs for each new 10,000
lines of new code exposed to the compiler.

4

In forecasting the bootstrap of the remaining 330,000 lines
of the compiler, we estimated that these new lines would produce
bugs at 4 bugs per 10,000 lines, for a total of 130 bugs. Given
this number of bugs, we estimated it would require twelve weeks
to bootstrap the entire compiler. To our pleasant surprise, we
bootstrapped the compiler in five weeks and the additional
330,000 lines exposed only 10 new bugs!

F. 3.2.13

We attribute these two instances of fewer bugs than
expected to the "correctness" discipline which arises from
programming in Ada.
which have few "lingering" bugs and are readily maintainable.

Ada does indeed appear to result in systems

5.0 Conclusion

Intermetrics realized five years ago that writing a
production quality Ada compiler would be a tough job. Writing
the compiler in Ada itself made the job really tough.

This heightened difficulty arose not because Ada isn't an
excellent systems programming language. The difficulty arose
from a situation which occurs too often in our industry: the
dependence on a brand-new programing support environment for a
large systems programming effort.

Fortunately, this situation is behind us. Intermetrics has
a production quality, programming support environment that
efficiently supports continued development of the Intermetrics
Ada compilers. Intermetrics has also learned a great deal from
its 150 person-years of Ada development; hopefully, the lessons
described in this paper will benefit the planning and
implementation of the Space Station software.

F. 3 - 2 -14

.

N89-16360
A small evaluation suite

for Ada compilers

Randy Wilke, Daniel Roy

1 INTRODUCTION

After completing a small Ada pilot project (OCC simulator) for the
Multi Satellite Operations Control Center (MSOCC) at Goddard last
year, we recommended the use of Ada to develop OCCs.

To help MSOCC transition toward Ada, we recently developed a suite of
about 100 evaluation programs which can be used to assess Ada
compilers, namely:

o Compare the overall quality of the compilation system (e.g.,
ease of use, complexity, impact on the host computer, error
message quality).

o Compare the relative efficiencies of the compilers and the
environments in which they work (e.g., how long does it take
to compile and link a program?).

o Compare the size and execution speed of generated machine
code.

Another goal of the benchmark software was to provide MSOCC system
developers with rough timing estimate for the purpose of predicting
performance of future systems written in Ada.

2 SUITE DESCRIPTION

Two types of benchmarks were created, "statictf and "dynamictt. Static
benchmarks are used to assess the extent to which a compiler helps (or
hinders) the software development effort. Dynamic benchmarks measure
the efficiency of machine code generated by Ada compilers.

The Ada evaluation suite was developed in about 4 man-months on a
Digital Equipment Corporation (DEC) VAX-11/785 using the DEC Ada
Compilation System (V1.0) running under the VMS operating system
(V4.2). The evaluation suite source was then ported from the VAX to a
Data General Corporation (DG) MV/4000 via magnetic tape. The software
was rebuilt on the MV/4000 using the DG Ada Development Environment
(V2.3) running under the AOSIVS (V6.3) operating system.

F.3.3.1

2.1 Static Benchmark Programs

Two general classes of static evaluation programs were generated. The
first set of programs measures the time to compile various Ada
constructs such as:

o A null program to measure the minimum overhead.

o

o A program translated from Reference 2, dealing with stride

A program instantiating INTEGER - IO.

and non-stride array references.

o The DHRYSTONE synthetic benchmark program from Reference 3.

A compilation command procedure automatically measures the compile
time for every program of the benchmark suite.

The second set of static benchmark programs contain deliberately
induced errors in the source code. They are used to subjectively
evaluate how well compiler messages help the programmer identify some
common mistakes such as:

o Incorrect dereferencing of an object in a procedure call.

o Confusing type and subtype declarations.

o Common typos (missing "--" and ";", reference to a misspelled
variable, etc.)

o Forgetting to qualify items from "withed" packages. In this
case, a good message should mention the right package(s).

2.2 Dynamic Benchmark Programs

The dynamic benchmark programs measure the run time overhead
following Ada features:

for the

I - Control structures (CASE, IF-THEN-ELSE, LOOP).

-
- Procedure call overhead (including calling another language

Assignment statements including ACCESS types.
,

from Ada).

1 - Dynamic memory allocation.

F.3.3.2

- Sequential IO.

- Rendezvous (inter-task communication) and task activation.

- Using multi-tasking to overlap IO with CPU intensive
processing.

- Array referencing (stride and non-stride).

The chosen limited set of tests concentrates on the Ada language
features that are vital to MSOCC. However, the benchmark methodology
and the benchmark code structure provide a good framework to easily
create new benchmarks as the need arises.

An averaging technique is used to smooth the effects of random system
events that can be minimized but not eliminated from the
multi-programming environment. A llnullll loop is timed for several
iterations to compute the overhead for the loop. The ADA construct to
be benchmarked is then timed inside the same loop. The null loop time
is subtracted from the time of the loop containing the Ada construct,
and the result is divided by the number of iterations to produce the
time for one execution of the ADA construct. All timing is performed
using the CALENDAR.CLOCK routine.

A command procedure automatically logs all sysgen parameters as well
as the main process parameters (quotas, working set, etc.) before
running all tests with a programmable number of iterations. Timing
results are computed internally by every benchmark program and logged
in individual files (one such file per test).

2.2.1 Parallelism Test Programs Description

The programs that test the overlapping of input, output and CPU
processing with tasking warrant a more detailed discussion:

2.2.1.1 PAR BIG -
This program instantiates the SEQUENTIAL IO package for a file of big
record size (10 000 bytes per block) aEd reads, processes and writes
several records , overlapping sequential access input , CPU intensive
"processingll and sequential access output by using Ada tasking with
rendezvous. The overall run time should be compared to the overall
run time for SER - BIG described below.

If the compiler correctly implements the Ada tasking paradigm, the
processing task should be able to run while the I/O tasks are blocked.
Therefore, PAR BIG should run faster than SER BIG provided that the
rendezvous overhead is acceptable.

-

F . 3 . 3 . 3

2.2.1.2 SER - BIG

This program instantiates the SEQUENTIAL IO package for a file of big
record size (10 000 bytes per block) 70 serialize sequential access
input, CPU intensive "processing" and sequential access output in a
loop.

2.2.1.3

The same principles were applied to a file of nascom blocks (600
bytes). However, because modern operating systems very efficiently
buffer the data during sequential IO operations, the efficiency
advantage of tasking may be small (or non existent) for this test.

PAR - NB And SER - NB

2.3 Code Optimization Issues

One major concern, when doing simple dynamic benchmarks, is the
compiler optimizer. Host simple benchmark programs do not do any
reasonable work. One must be careful that the optimizer does not
recognize this fact and optimize the construct being benchmarked
completely out of the program. Even if the construct is still
present, there is concern as to whether the optimization would have
taken place in a "real" program to the extent that it took place in
the simple benchmark (e.g., all variables used in the benchmark ending
up in registers may not be realistic).

The DEC Ada Compiler has two optimization switches. One,
/OPTIMIZE=TIME will automatically treat small subroutines as though
the INLINE pragma had been invoked. The other, /OPTIHIZE=SIZE
performs all other optimization but does not do automatic INLINE
processing. The /OPTIHIZE=TIME switch does not result in automatic
INLINE processing if the body of the subroutine being called is
compiled separately.

We tried a method described in Reference 4 to trick the compiler into
not performing automatic INLINE processing. We rejected the method
because it introduced large delays that would have made timing
measurements of small constructs very imprecise.

Ye compiled all dynamic benchmarks with and without optimization.
Where significant differences resulted, the generated machine code was
examined to determine if the optimizer did its job "too well". In
such cases, the non-optimized version was used in test runs.

F. 3.3.4

3 COMPARING DEC ACS AND DG ADE

We were guests on both of the host machines and hence, were assigned
limited resources. Consequently, much effort was spent managing
resources, particularly disk space. On the ADE we were frequently
running at reduced priority, relative to all other system users.

This comparison between the ACS and the ADE is, perhaps, a little
unfair to the ADE. The VAX-11/785, which the ACS runs on, is about
twice as fast as the MV/4000 (1.2 MIPS vs 0.6 MIPS). Also, while DG's
AOSIVS is far superior to many operating systems, we believe that
DEC's VMS, in general, provides a significantly better software
development environment. These bias must be taken into consideration.

4

All static and dynamic benchmarks were developed on the DEC VAX-11/785
and ported to the DG MV/4000. There were no cases where the ADE
failed to compile a program that was successfully compiled the
ACS. was one instance where the ADE generated incorrect code,
and one program experienced runtime problems that were never solved.
Specifically, the following problems were encountered while porting
the benchmark suite:

under
There

- Due to bad code being generated for an explicit type
conversion, PAR - NB had to be recoded.

- PAR - BIG never ran successfully on the MV/4000.
- File IO and parallel processing programs had to be modified

on the the MV/4000 because the ADE does not handle
representation clauses for type trbytetl and generated code for
32 bit integer instead.

- An unhandled exception would randomly occur while using a
program (written in Ada) to unpack records from files that
had been transferred to the DG. The problem would go away by
rerunning the program with exactly the same input file.

The following additional subjective comparisons can be made:

1. Both systems use a lot of resources. The ADE makes
extravagant use of disk space and is also a CPU hog.

2. The MV/4000 text editor (SED) didn't seem as friendly as the
VAX's (EDT). This may have been due to lack of DG experience
on the part of the evaluators (we did not know how to use
SLATE).

As a rule, setting up command files to build and run things frequently
took an order of magnitude longer on the MV/4000.

F.3.3.5

3.1 Static Evaluation

3.1.1 Compilation Times

ACS and ADE compilation times for a subset of the benchmark suite are
compared in Figure F.3.3-1. For the sample, the ACS performed better
even if we allow for the difference in processor speeds. Differences
in the time required to perform disk IO is an additional, hard to
quantify factor.

The entire benchmark suite was compiled and linked in less than 40
minutes on the ACS and in about 3 hours on the ADE.

COMPILE TIME
(seconds)

Benchmark ACS (VAX 11-785) ADE (MV/4000)

COMP NULL
COHP-COMMENTS
COHP-INT IO
COMP-TEXT - - IO

MODUL~ BYTE

SUE CALL-o -
PAR-BIG -

ARRAY REF

RV A R 6 Y 100

6
5
11
7

31
28
20
18
69

24
32
65
20

142
92
94
105
264

Figure F.3.3-1, A Sample of Compilation Times.

3.1.2 Error Messages

Even though the ACS compile time messages were verbose at times, their
relevance and clarity were judged superior to those of the ADE.

In particular, the ACS makes generally good suggestions (adding
missing semicolons, guessing package name for missing qualification,
etc.) whereas the ADE suggested that a derived type was intended when
the problem was a confusion between type and subtype declarations.
This kind of suggestion can greatly confuse the novice programmer.

F.3.3.6

3.2 Dynamic Evaluation

,

Overall, the DEC ACS produced more efficient code than the DG ADE.
The rest of this section compares execution speeds for several classes
of benchmarks.

3.2.1 Common Features

Figure F.3.3-2 shows the measured run time for the most common Ada
constructs.

CONSTRUCT

Control
3 CASES

10 CASES
IF/THEN/ELSE
FOR LOOP (optimized)

Assignments
VARIABLE := VARIABLE
ACCESS VARIABLE := VARIABLE
VARIABLE := CONSTANT

VARIABLE := CONSTANT

VARIABLE := CONSTANT

(CONST < 2**8)

2**8 < CONST < 2**16

(CONST > 2**16)

Synthetic benchmark
DEIRY STONE

ACS/ADE OVERHEAD
(microsec)

average low high

2.611.5 2.6/0.8 2.6/1.9
2.9/1.3 2.9/1.3 2.9/1.6
4.6/1.6 4.4/1.6 4.7/1.6
1.516.0 1.5/6.0 1.7/6.0

0.713.4 0.613.4 0.7/3.5
3.015.4 3.0/5.0 3.2/5.4

0.712.6 0.7/2.6 0.8/2.6

1.1/2.6 1.W2.5 1.3/2.6

1.0/2.9 0.9/2.9 1.1/2.9

1.3/4.6 1.W4.6 1.7/4.6

Figure F.3.3-2, Common Ada construct run time overhead.

F.3.3.7

3.2.2 Procedure Call

Figure F.3.3-3 shows the run time overhead for procedure calls.

NUHBER OF
PARAMETERS

0

1
1
1

PARAMETER ACWADE CALL OVERHEAD
TYPE (microsec/call)

average low high

1 (C calls C) IN
1 (Ada calls C) IN

- 13/31 13/31 13/31

IN 17/37 16/36 17/37
OUT 16/37 16/37 16/37
INOUT 20/40 19/40 20/40

10
10
10

IN
OUT
INOUT

13/NA 13/NA 14/NA
15/NA 15/NA 16/NA

56/89
55/89 ~

86/121

56/89 56/172
55/89 55/90
86/121 86/124

10 element array IN 14/33 14/33 14/34
10 element array OUT 14/34 14/33 14/35
10 element array INOUT 14/34 14/33 14/35

100 element array IN 14/33 14/33 14/33

1000 element array IN 14/34 14/34 14/34

10000 element array IN 14/NA 14/NA 14/NA

Figure F.3.3-3, Procedure Call Overhead.

3.2.3 Hemory Allocation

Figure F.3.3-4 shows the overhead measured for dynamic memory
allocation.

NUHBER OF SIZE OF ACS/ADE ALLOCATION OVERHEAD
BUFFERS BUFFERS (millisec/allocation)

(by t-1 average low high

100
500
1000
1000

1000
lo00
100
500

0.9/5 .O 0.814.0 1.2/5.0
2.9/4.6 3.614.6 2.8/4.6
0.2/1.5 0.2/1.5 0.2/1.5
6.4/4.7 6.514.6 6.2/4.9

Figure F.3.3-4, Dynamic Hemory Allocation.

F.3.3.8

3.2.4 Sequential File I O

Figure F.3.3-5 shows the run time overhead measured for sequential IO.

RECORD SIZE ACS/ADE IO TIMES

(Bytes) (milliseconds/read) (milliseconds/write)

average low high average low high

4 0.6/7 0.6/7 0.617 0.5/5 0.5/5 0.5/5
600 4.0/50 3.0/50 5.0/50 11/120 8.0/120 13/120
10000 120/130 100/130 140/130 340/280 300/280 400/280

Figure F.3.3-5, Sequential IO.

3.2.5 Tasking

Figure F.3.3-6 shows the run time overhead measured for a rendezvous
between 2 tasks.

NUMBER OF
PARAMETERS

PARAMETER ACS/ADE RENDEZVOUS OVERHEAD
TYPE (millisedrendezvous)

average low high

0 - 1.8/11 1.8/11 1.8/12

1
1

IN 1.8/11 1.8/11 1.8/11
ACCESS 1.8/11 1.8/11 1.8/11

10 IN 1.8/12 1.8112 1.9/12

10 element array IN
100 element array IN

1000 element array I N

1.8/11 1.8/11 1.8/11
1.9/12 2.0/12 2.0/12

3.6/12 3.4/12 4.0/13

lk element array INOUT 3.4/13 3.3113 3.6/13

Figure F.3.3-6, Rendezvous Overhead.

F.3.3.9

Figure F.3.3-7 shows the run time overhead measured for
activation.

dynamic task

ACS/ADE TASK ACTIVATION OVERHEAD
(milliseconds/activation)

average low high

6.2114 6.0/14 6.4/14

Figure F.3.3-7, Task Activation Overhead.

Figure F.3.3-8 shows the run time measured for reading, processing and
writing number of 600 bytes (NASCOH) and 10 000 bytes records (BIG
BLOCKS) using tasking (PARALLEL) or not (SEkAL). Refer to the
description of PAR - BIG and SER-BIG given previously for details.

a

PROCESSING ACS/ADE TOTAL EXECUTION TIHE
MODE (seconds)

Two CONTROLLERS:

NASCOH BLOCKS
NASCOH BLOCKS

BIG BLOCKS
BIG BLOCKS

average low high

SERIAL 3.7/NA 3.4/NA 3.9/NA
PARALLEL 4.1/NA 3.9/NA 4.4/NA

SERIAL 6.6/NA 6.4/NA 6.8/NA
PARALLEL 4.5/NA 4.3/NA 4.8/NA

ONE CONTROLLER:

BIG BLOCKS SERIAL 7.5/NA 7.3/NA 7.7/NA
BIG BLOCKS PARALLEL 5.4/NA 5.2/NA 5.6/NA

NASCOH BLOCKS SERIAL NA/14 NA/14 NA/14
NASCOH BLOCKS PARALLEL NA/ 16 NA/16 NA/16

Figure F.3.3-8, Parallel Processing test.

Our results, obtained with the ACS, show that when separate
controllers are used for the input and the output, parallelism is
highest, allowing the PAR BIG multi-tasking program to run than
24% faster that its seriai counterpart.

Excellent buffering by the OS however, makes the serial program for
NASCOH blocks (SER - NB) run 10% faster that its multi-tasking
counterpart.

more

Lack of time and numerous problems with an unfamiliar environment
not allow us to run PAR-BIG on the ADE.

did

F. 3.3.10

3.2.6 An Interesting Math Routine

In Reference 3, it was shown that for two routines accessing an array
in a stride and non-stride manner, the F77 compilers produced
significantly slower code than the VAX FORTRAN and that all of the VMS
Pascal compilers considered generated very inefficient code.

Our results, presented in figure F.3.3-9, show that the VAX Ada code
for this test is not as efficient as the VAX FORTRAN code (execution
time for VAX FORTRAN is about half that for VAX Ada). This result
contradicts our own previous experience (see Reference 1) and the
results of other groups. DEC Ada is often found to be faster than DEC
FORTRAN V4.2 but we observe that DEC FORTRAN V4.3 produces
significantly faster code and that the ACS optimizer can be improved.
We hope that DEC Ada will benefit from the progress made for DEC
FORTRAN.

ACS on VAX 111785 CPU time
(seconds)

50 100 150 200
ITER- ITER- ITER- ITER-
ATIONS ATIONS ATIONS ATIONS
---_-- ------ ------ ------

STRIDING :
VAX FORTRAN (V4.3) 0.3 1.8 6.5 15.9
VAX ADA (V1 .O) 0.4 3.7 13.5 38.0

NON-STRIDING:
VAX FORTRAN (V4.3) 0.3 2.4 8.8 25.0
VAX ADA (V1.0) 0.3 2.8 10.2 26.9

Figure F.3.3-9, Array Reference Benchmark Execution Times.

4 CONCLUSION

In general, the ACS is a reasonable system to work with. The
following positive comments can be made:

- The ACS operates in a logical, easy to comprehend manner.
When assistance is required, documentation on operating the
ACS is complete, accurate, and easy to use. On-line help is
available.

- The LRM is generously supplemented with text and examples
specific to the DEC implementation.

F.3.3.11

- The ACS is well integrated into the DEC software development
and run-time environment. A run-time reference manual
provides practical information about internal details of the
DEC implementation and how Ada interfaces to VHS and other
high-level languages.

- Compilation speed is rapid enough for serious software
development (at least on a VAX-111785).

While ACS disk space requirements (per user library unit) are
high, "garbage" files, necessary to track compilation units,
were fewer than on ADE and were confined to the library
directory, rather than cluttering the user's working
directory.

-

- Run-time error messages were excellent. They were generally
very specific about the true nature of the problem and
provided the W S standard trace back information.

The following negative comments can be made about the ACS:

- The Ada rendezvous mechanism, which will be critical to HSOCC
realtime applications, incurred relatively high overhead.

- The ACS requires large amounts of disk space to maintain a
user library.

- In the single direct comparison between VAX Ada and VAX
FORTRAN (ARRAY REF), our results suggest that in spite of its
overall good quality, the DEC ACS code generator can be
improved.

- While the information contained in compiler error messages
usually identifies the offending line of code and the nature
of the error, the messages themselves tend to be verbose and
poorly worded. Much effort is required to extract the
information from the message.

The following positive comments can be made about the ADE:

1. The ADE feature.s a more extensive set of tools than the ACS
(e.g., a pretty printer).

2. The library manager can produce very useful cross reference
reports.

3. The symbolic debugger is friendly and more mature than
systems' debuggers.

other

F. 3.3.12

4. The ADE features an impressive number of packages (e.g.,
BIT OPS to alleviate the lack of representation clauses,
C-NT EXCEPTION ,to help determine the origin of an
exception) that would help alleviate some of the problems we
mentioned.

5. Overall, the ADE generated less efficient code than the ACS
but in a few cases, when the difference in CPU speed is
accounted for, the ADE generated code of equal or better
quality .

The following negative comments can be made about the ADE:

1. Run-time error messages were terrible. Frequently, system
limits are exceeded during program elaboration. When this
happens, the user is either presented with Wnhandled
exception in library unit prog", or "Constraint error in unit
main", and no additional information.

2. The compiler required a pragma or a compile switch to
explicitly declare a procedure to be the main program. The
concept is not part of the L R M and should not be necessary.

3. Compilation times were very slow, even considering the fact
that the MV/4000 is only a 0.6 MIPS machine.

4. PAR NB contained code which assigned an array to an array
wi tE an explicit type conversion (the arrays were declared as
different types). The DG compiler generated bad code which
caused the program to hard abort directly to the operating
system with no Ada exception raised. PAR - NB was recoded to
avoid the type conversion.

5. PAR - BIG never ran successfully on the MV/4000. An exception
was raised the first time that a read was attempted on its
input file. The reason for the exception was not apparent.
SER BIG did not have any problems reading the file. PAR - BIG
worEed correctly on the VAX.

6. The ADE doesn't support storage of 8-bit integers. It uses
32-bits for all integer variables, ignoring length
representation clauses. In order to compare ADE IO benchmark
results to ACS results, programs were modified on the MV/4000
to ensure that buffers were the same number of bytes.

7. There is no ADE compiler switch to turn off optimization.
Such a switch is frequently necessary when working with
symbolic debuggers and would have been useful in the
benchmarking process.

F. 3.3.13

8.

9.

10.

11.

12.

The user's guide was rather thin and did not provide much
insight into the ADE implementation of the Ada language.

The ADE LRM documentation did not include any ADE specific
description or examples.

Some of the library files that ADE needs to configure
compilation units must reside in the users working directory
rather than in the library directory. Users have a hard
enough time keeping their directories free of their own
"garbage" files without also having to worry about the ADE's.
The names generated for the ADE files have very long and
arcane embedded number sequences, making them unwieldy to
deal with on an individual basis.

The ADE makes extravagant use of disk space.

The W/4000 text editor (SED) didn't seem to us as friendly
as the VU'S (ED"). However, a colleague demonstrated a very
impressive Ada frame driven editor the he built using SLATE'S
macro capability.

Overall, the ADE is usable for investigating the Ada language but many
improvements are needed before it can be used as a production
compiler.

4 .1 For More Information

Two reports, available from the authors, document the suite and the
results of the comparison between DEC's ACS and DG's ADE:

o An - Evaluation -- Suite for - Ada Compilers, Century Computing,
Inc., Revision A, March 1986.

o A Comparison of the DEC Ada Compilation System and the DG Ada
Development Environment, Century Computing, Inc., Revision A,
March 1986.

- ---- ----

The source code for the suite and the RUNOFF source file for the
reports are also available from the authors on a W S BACKUP format
tape.

F. 3.3.14

5 BIBLIOGRAPHY

1.

2.

3.

4.

Evaluation of Ada in the MSOCC Environment, Final Report,
Century Computing, Inc., July 31, 1985.

---- -

--- Where are the Optimizing Compilers?, Wolfe/Macke, SIGPLAN
Notices, V20, #11, November, 1985.

Dhrystone: A Synthetic Systems Programming Benchmark,
Weicker, Comhnications of the ACM, Volume 27, Number 10,
October, 1984.

Evaluating the Performance Efficiency of Ada Compilers,
Bassman et al, Proceedings of the Washington Ada Symposium,
ACH, 1985.

- - -

.........................
Randy Wilke is a senior member of the technical staff at Century
Computing Inc. where he has been working since 1981. He received a
Bachelor of Science in Computer Science from the University of
Southern California in 1976.

Daniel Roy is a senior member of the technical staff at Century
Computing Inc. where he has been working since 1983. He received the
Diplome d'Ingenieur Electronicien (MSEE) from ENSEA in 1973 and the
Diplome d'Etudes Approfondies en Informatique (MSCS) from the
University of Paris VI in 1975.

Authors' current address:
Century Computing, Inc., 1100 West street, Laurel, Hd., 20707.
Tel: (301) 953-3330.

F. 3.3.15

N89-16361

PARANOIA ADA :

A DIAGNOSTIC PROGRAM TO EVALUATE

ADA FLOATING-POINT ARITHMETIC

May 12,1985

Chris Hjemstad
Package-Architects, Inc.
8950 Villa La Jolla Drive

Suite 1200
La Jolla, California 92037

(619) 587-1815

F.3.4.1

I INTRODUCIlON

Programmers have traditionally approached floating-point arithmetic with great
trepidation. Brown and Feldman in their landmark paper on model numbers call floating-
point arithmetic the "bete noire" (black beast) of computing. Programmers are haunted by
the suspicion that floating-point calculations harbor hidden errors. This resistance stems,
at least partly, from the variety of inconsistent floating-point representations
implemented over the years by different computer manufacturers.

In many respects, the programming language Ada' is not so much a breakthrough
in technology as it is an evolutionary melding of many advancements achieved by
computer science research during the 1970s. This is certainly the case with respect to
Ada's treatment of floating-point arithmetic. Ada explicitly adheres to concepts of
environmental inquiry initially proposed by Naur in 1967 and of model number
parameterization advanced by Brown and Feldman in 1980 and formalized by Brown in
1981. Following these precepts, Ada encourages the development of safe, transportable
numerical programs. This paper traces major historical efforts to establish effective
standards for floating-point arithmetic. It describes previously developed programs
written in languages such as FORT" and BASIC which partially undertake the testing
of conformance to such standards. It provides results obtained from a contemporary
program, Paranoia.Ada, which tests various aspects of floating-point arithmetic in the
context of the Ada programming language.

SPECIFICATION OF FLOATING-POINT ARITHMETIC

The last two decades have witnessed efforts within the computer science
community to establish floating-point arithmetic standards. These efforts have been
primarily motivated by a desire to perform consistent arithmetic in a common
transportable programming language across many different computing environments and
hardware architectures. Naur, writing in 1967, introduced the concept of an
"environmental inquiry" as a means of ascertaining the arithmetic characteristics of a
computing environment. His ideas where incorporated into the ALGOL 68 language and
are reflected in the "attribute" feature of Ada.

The International Federation for Information Processing (IFIP) Working Group
25 (Mathematical Software) introduced the concept of floating-point parameters as a
means of determining the characteristics of a specific programming environment's
floating-point arithmetic implementation. The design of FORTRAN 77 provided access

I to such floating-point parameters?

I 'Ada is a registered trademark of the US. Government, ATP0 (Ada Joint Program Office).

F3.4.2

BROWN-FELDMAN CONTRIBUTIONS

More recently, Brown and Feldman, using model number theory, further specified
floating-point parameterization. They defined a generalized standard representation of
floating-point numbers independent of underlying machine architecture. Their landmark
work resulted in precise definitions for floating-point arithmetic based on model numbers
and model intervals. They established rigorous theorems concerning the dependability of
computational results derived from operations that adhered to the basic model
definitions.2 They defined a standard model number representation as:

x = be f, where

b is the specified radix,

e is an integer exponent of specified range, and

f is the significand expressed as a base-b digit.

They identified seven model parameters as necessary to the specification of a
floating-point arithmetic implementation. Four parameters consist of basic integer values:

BASE

PRECISION

MNIMUM EXPONENT

MAXIMUM EXPONENT

b

P

emin

emax

Three additional parameters consist of floating-point values derivable from the
basic parameters:

MAXIMUM RELATIVE SPACING Epsilon = bl-p

SMALLEST POSITIVE NUMBER Sigma = bemh-1

LARGEST NUMBER Lambda = bemax(l-b'P)

F3.4.3

CURRENT IEEE STANDARDIZATION EFFORTS

Tko committees within the IEEE are working to further refine and extend the
Brown-Feldman model of floating-point arithmetic. Committee P754 is developing a
detailed specification to be applied to computers employing a binary representation. P854
is developing a compatible super-set specification that is both rad+ and word length
independent. The objective of both committees is to establish additional environmental
rules which will precisely define the outcome of all floating-point operations. Such rules
are intended to eliminate all implementation-dependent or ambiguous circumstances
with particular emphasis on consistent treatment of error conditions?

As an example of this focus, both IEEE draft specifications require the
implementation of at least the five following exception conditions:

0 Invalid operation

0 Division by zero

e Overflow

0 Underflow

0 Inexact result

ADA FLOATING-POINT PARAMETERIZATION

The design of floating-point arithmetic in the Ada programming language
explicitly complies with the Brown-Feldman model. It requires a limited, conservative
interpretation of the Brown-Feldman parameters. Ada assumes a binary representation
and arbitrarily assigns values to the other parameters based on the elemental precision
specification of DIGITS in a real object type definition. Although the minimal Ada model
number parameter values frequently result in an artificially limited precision range, they
do encourage portability, predictability and understandability.

Ada also allows for the specification of implementation-dependent "safe number" values.
Such safe numbers permit additional latitude in the programming of numerically
sophisticated procedures requiring greater exploitation of the complete underlying
hardware architecture. A comparison between the Brown-Feldman parameters against
Ada attributes relating to both the required model number values and implementation-
dependent values shows a close mapping:

F3.4.4

Brown-Feldman
Parameter

b

P

emax

emin

Epsilon

Sigma

Lambda

Model Number
At tribute

2
(BY DEFINITION)

TMANTISSA
(FUNCIION OF TDIGITS)

TEMAX
(4*TMANTISSA)

- TEMAX
(SYMMETRICAL RANGE)

TEPSILON
(2.0**(1- TMANTISSA))

TSMALL
(2.0*+(-TEh4AX - 1))

TLARGE
(2"TEMAX (1.0 -

2.0L*(-TMANTISSA)))

HISTORICAL FLOATING-POINT ARITHMETIC TESTS

Implementation-Dependent
Attribute

TMACHINE-RADIX

TMACHINE-MANTISSA

TSAFE-EMAX
TMACI-LTNE-EMAX

TMACHINE-EMIN

(Determined
by Paranoia.Ada)

TSAFE-SMALL

TSAFE-LARGE

A number of computer programs have been written in the last several years which
evaluate the quality of floating-point arithmetic implementations. One such program is
MACHAR written by Cody in 1979 and published in the classic reference, Sofhyare
Manual for the Elementary F~nctions.~ MACHAR, coded in FORTRAN 77, determines
thirteen characteristics of a floating-point arithmetic implementation such as radix,
precision, rounding phenomenon, underflow threshold and ovefflow threshold.

Another notable effort is the Arithmetic Unit Test Program developed by Schryer
in 1979. Results from the execution of this program were reported in the seminal Brown
and Feldman paper "Environmental Parameters and Basic Functions for Floating-Point
Computation"? Schryer's test program was also coded in FORTRAN 77 and calculates
the seven Brown-Feldman model parameters. The program was used to test Cray-1, IBM

F3.4.5

370, DEC VAX, Honeywell 6000 and Interdata 8/32 computers in support of Brown and
Feldman's research.

RECENT FLOATING-POINT ARITHMETIC TESTS

More recently, two members of the IEEE floating-point standardization
committees have written programs that perform even more sophisticated evaluations of
floating-point arithmetic implementations. Karpinsky's 1985 article, "Paranoia: A
Floating-Point Benchmark" describes the program Paranoia written by University of
California, Berkeley Professor W. M. Kahan.6 The article includes both Pascal and
BASIC source code listings of Guard, a subset version of the full Paranoia. Kahan's
original Paranoia is written in BASIC for the IBM (Intel 8088/8087) Personal Computer.
It has also been translated into FORTRAN, Pascal and "C" for execution on DEC VAX
and Sun Microcomputer (Motorola 68000) architectures?

ADA IMPLEMENTATION OF PARANOIA

In conjunction with its Ada evaluation activities, Package-Architects, Inc. has
converted the original Paranoia program to Ada. This converted program is called
Paranoia.Ada. Paranoia.Ada determines the floating-point characteristics of the
hardware supporting an Ada implementation. It also evaluates the accuracy, precision
and reliability of the basic, predefined Ada arithmetic operations. The program identifies
errors in floating-point computations and provides a report summarizing the overall
quality and acceptability of the floating-point computational capability.

Paranoia.Ada performs specific diagnostic tests related to the following aspects of
floating-point arithmetic:

0 Determination of correct mathematical operations on small integral values.

0 Calculation of radix, precision and Epsilon parameters.

0 Determination of normalization with respect to subtraction operations.

0 Determination of guard digits on subtraction, multiplication and division
operat ions.

0 Determination of rounding phenomenon (e.g. chopped, rounded or
rounded to even) on addition, subtraction, multiplication and division.

0 Determination of commutative multiplication properties.

0 Determination of underflow threshold values.

F3.4.6

0 Determination of rounding phenomenon on floating-point to integer
conversion operations.

0 Determination of overflow threshold values.

0 Evaluation of integer power arithmetic.

0 Evaluation of division by zero arithmetic.

Paranoia.Ada takes significant advantage of several advanced features of Ada. The
program relies on the Ada exception feature to detect and respond to error conditions
with less disruption to processing than occurs with conventional BASIC or Pascal
mechanisms. The program has been architecturally redesigned into forty-six separately
compiled units and consists of approximately twenty-five hundred semi-colon terminated
Ada statements. The program is implemented as a generic and is instantiated through the
specification of a DIGITS parameter or by reference to a predefined FLOAT-TYPE.

Because a number of validated Ada compilers do not provide the mathematical
functions required by the Paranoia algorithms, Paranoia.Ada contains a partial
mathematics library based on the Cody-Waite algorithms. The program can either use the
mathematics library provided by the compiler being tested or use its own independent
library for test calculations.

The program also includes a utility package called STOP-WATCH which provides
timing data related to test execution. The program measures the amount of CPU time
required to perform the floating-point diagnostic tests and the amount of time required to
generate the resulting output report.

PARANOIAADA DIAGNOSTIC EVALUATIONS

Paranoia.Ada replicates the test algorithms implemented in the original BASIC
language version and adheres to the evaluation criteria established by Professor Kahan.
Paranoia.Ada classifies errors detected in the course of its diagnosis into four categories.
Ranked according to increasing levels of severity, the error categories consist of flaws,
defects, serious defects and failures. Examples of errors associated with each category are
as follows:

J

Flaws: Comparison anomalies such as:
x /= -(-(X) or,
X/= Y but X - Y = 0.

F3.4.7

Defects:

Serious Defects:

Failures:

Range imbalance between overflow threshold and
underflow threshold.

Comparison anomalies such as:
z**x /= Z,*Z,*Z,* ZI.

Erroneously raised numeric errors.

An imbalance between the underflow threshold and
Epsilon.

Multiplication and subtraction operations yield
inconsistent underflow thresholds.

Absence of division by zero protection.

Absence of guard digits.

Underflow or overflow conditions not accompanied by
corresponding numeric errors.

Outright arithmetic errors such as:
2 + 2 = 5 .

Non-normalized subtraction.

Erroneous guard digits.

Underflow to negative number.

Accuracy deterioration approaching underflow.

I ParanoiaAda maintains a record of the errors encountered in the course of its
execution. In its summary report, the program generates an overall evaluation of the
tested floating-point implementation. Using IEEE Standards P754 and P854 as criteria,
the program rates the diagnosed arithmetic in terms of one of the following comments: i

€3.4.8

0 The arithmetic diagnosed appears excellent.

0 The arithmetic diagnosed seems satisfactory.

0 The arithmetic diagnosed seems satisfactory though flawed.

0

0

The arithmetic diagnosed may be acceptable despite inconvenient defects.

The arithmetic diagnosed has unacceptable serious defects.

0 A fatal failure may have spoiled this program's subsequent diagnoses.

EXECUTION OF PARANOIkADA AGAINST DEC ACS

Paranoia.Ada has been run extensively against the Digital Equipment Corporation
(DEC) Ada Compilation System (ACS) hosted on a VAX 785 computer. The VAX
architecture provides a rich and powerful floating-point arithmetic capability. The VAX
supports four floating-point representations. These four representations are avail able
through the Ada package SYSTEM pre-defined floating-point types F-FLOAT, D-FLOAT,
G-FLOAT and H-FLOAT. F-FLOAT is a 32 bit representation, D-FLOAT and G-FLOAT
are alternative 64 bit representations (selectable by a PRAGMA directive), and H-FLOAT
is a 128 bit representation.

'

The DEC ACS also provides for three pre-defined floating-point types in package
STANDARD. The compiler maps each of these types -- FLOAT, LONG-FLOAT, and
LONG-LONG-FLOAT - into the respective machine representation types F-FLOAT,
D-F'LOAT or G-FLOAT, and H-FLOAT. Paranoia.Ada has been run against all seven of
these pre-defined types as well as a user-defined type of SYSEM.MAX-DIGITS.
S m . M A X - D I G I T S forces the compiler to use the H-FLOAT representation. Sample
output reports from D-FLOAT, G-FLOAT, H-F'XDAT, and SYSTEM.MAX_DIGITS test runs
are supplied as attachments.

DIAGNOSTIC ANALYSIS
i

ParanoiaAda provides a consistent diagnosis of the eight tested floating-point
representations. The values calculated by the Paranoia.Ada algorithms match the values
reported by queries to corresponding Ada attributes. The program detects a similar set of
errors on all eight representations as well. One flaw and one serious defect pertaining to
underflow phenomena were discovered for each of the representations. The flaw involves
an inconsistency between comparison results and arithmetic results with numerical values
at or very close to the underflow threshold. The serious defect concerns the absence of a
numeric error when subtraction operations on such small numbers result in underflow.

F3.4.9

This specific circumstance is addressed by the IEEE standards. The DEC VAX
implementation appears to result in an underflow to zero but without a numeric error
being raised. The IEEE standards require that the underflow result be a non-normalized
"tiny" number accompanied by an exception.

Paranoia.Ada uncovers a second serious defect in the D-FLOAT floating-point
representation. In the VAX architecture, D-FLOAT representation is an extension of the
single-precision F-FLOAT representation. (G-FLOAT is the true double-precision
representation.) D-FLOAT has the same exponent range as F-FLOAT but uses an
additional 32 bits of storage to allow greater precision in the significand. This allocation
violates a requirement of the IEEE specification for balance between Epsilon and Sigma.
In Paranoia.Ada terms, Epsilon equates to a calculated unit in the last place value and
Sigma is the calculated underflow threshold value.

TIMING RESULTS

Execution and compilation timing data for each of the eight various DEC ACS
floating-point representations are presented in Table 1. Execution times are also
graphically depicted in Figure 1. (Since these data represent only a single sample for each
type, caution is advised against drawing unjustified general conclusions.) Report
generation times appear relatively consistent and provide a basis of comparison for the
execution time differences. The execution times appear to increase as a function of the
amount of precision provided by each type. Within the same precision, STANDARD pre-
defined types seem to take longer to execute than SYSTEM pre-defined types.

Compilation times for the seven pre-defined types are also relatively constant. For
these types, the DEC ACS compiles Paranoia.Ada at a rate of approximately six hundred
statements per minute. The compiler generates the SYSTEM.MAX-DIGITS version of the
program at a slightly slower rate.

SIGNIFICANCE OF RESULTS

Owing to the sophistication of its diagnostic algorithms, Paranoia.Ada places
heavy demands on the floating-point capabilities of an Ada compiler. The successful
compilation and execution of a program as numerically complex and devious as
Paranoia.Ada is a significant demonstration of a compiler's maturity, robustness and
completeness. ParanoiaAda is a practical exploration of Ada's floating-point capabilities.
It tests the fidelity of an Ada implementation to the concept of model numbers, assesses
the dependability of the arithmetic, and reveals Ada's suitability as an engine for further
serious numerical computations. ParanoiaAda, itself being a computationally intensive
program, establishes the appropriateness of Ada as a medium for numerically demanding
applications.

F3.4.10

c

U
5

m

2 a 8
F:
r-'

d
ij

c m

3 2 s 8

& 8
$3 8
s 8

E
F

4
V

F
8
8

C r-
8
8

8
8
8

c.(r-
8
8

F3.4.11

0 0 0 0 0 0 0
9 9
r(0

s
a

s
R

s s * p1
?
d

F3.4.12

CONCLUSION

Many essential software functions in the mission critical computer resource
application domain depend on floating-point arithmetic. Numerically intensive functions
associated with the Space Station project, such as ephemeris generation or the
implementation of Kalman filters, are likely to employ the floating-point facilities of Ada.
Paranoia.Ada appears to be a valuable program to insure that Ada environments and
their underlying hardware exhibit the precision and correctness required to satisfy mission
computational requirements.

As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an
Ada floating-point implementation. Equipped with such knowledge, programmers need
not tremble before the "black beast" of floating-point computation.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

W. J. Cody, "Floating-point Parameters, Models and Standards," in The
Relationship Between Numerical Computation and Programming Languages, J.K.
Reid, ed., North-Holland Publishing Co., Amsterdam, 1982, pp. 5 1-65.

W. S. Brown, "A Simple But Realistic Model of Floating-point Computation,"
ACM Transactions on Mathematical Software, Vol. 7 , No. 4, December 1981, pp.
445-480.

W. J. Cody, W. Kahan, et. al. "A Proposed Radix- and Word-length-independent
Standard for Floating-point Arithmetic," I€€E Micro, August 1984, pp. 86-100.

W. J. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1980.

W. S. Brown and S. I. Feldman, "Environmental Parameters and Basic Functions
for Floating-point Computation", ACM Transactions on Mathematical Software,
Vol. 6, No. 4, December 1980, pp. 510-523.

R. Karphsky, "Paranoia: A Floating-Point Benchmark", BYTE, Vol. 10, No. 2,
February 1985, pp. 223-235.

BASIC, FOR?", Pascal and "C" Paranoia source code is available from Mr.
Richard Karpinsky, IEEE P854 Mailings, U-76, University of California, San
Francisco, San Francisco, CA 94143.

F3.4.13

PARANOIA. ADA :

SAMPLE OUTPUT REPORTS

,

F3.4.14

Paranoia-Ada (R)

A Diagnost ic 8enc:hmar-k

Paranoia. Ada i s a program t o diagnose f loat ing-point . arithmet.ic
in the context o f the Ada(*) programming language. The program
evaluates the q u a l i t y o f a f loat ing-point . ar i t .hmet ic imp1ement.a-
t i o n w i t h respect t o the proposed IEEE Standards P754 and P854.

Paranoia - Ada i s der ived from the o r i g i n a l B A S I C pr-ogramming
language version o f Paranoia developed and copyr ighted by
Professor- bJ.fl. Kahan o f the Un ivers i ty o f Cal i for-nia, Berkeley I

The B A S I C Paranoia program i s described i n "Paranoia: A Float. ing-
Point. Benchmar-k" , b y Richard Karpinsky , Byte Magazine, V o l - 10,
No. 2, February 1985, PP. 223-235.

Paranoia. Ada rep l icat .es i n Ada the test. a lgor i thms o r i g i n a l l y
implemented i n BASIC and adheres t o the evaluat ion c r i t e r i a
establ ished b y Kahan.

Paranoia.Ada incorporates a major- s t r u c t u r a l redesign and
employs app l icab le Ada a r c h i t e c t u r a l and s t y l i s t i c features.

*: Ada i s a regist .ered trademark o f the U,S,Government.,
AJPO (Ada J o i n t Program Of f i ce)

(C) Package-A?-chltects, Inc. 19BC

F3.4.15

Paranoia Report f o r t.ype D-FLOAT
DEC ACS 1.0-7 VAX/7GS (VMS 4.2)

19 : 3c’ : 42 22-Apt- -1 YE:&

SYSTEM-NAME: VAX-VMS

S m a l l I n teg ra l Values Test

Radix, Precision, arid Closest Relat ive Separation Test

Normalized Subtraction Test

Guard D i g i t on Subtraction Test.

Guard D i g i t on Mu l t i p l i ca t i on Test

Guard D i g i t . on Div is ion Test

Rounding f o r Addition/Subtraction Test

Rounding fo r Mult ip l icat . ion Test

Rounding f o r Div is ion Test

Rounding Sticky B i t Test.

Commutative Mu1 t i p l i c a t i o n Test

Under- f 1 o w Test
FLAW:

Comparison says X /= 2, and yet X - 2 = 0.0
X = 4.040761~309516133E-39
z = 2.93e735~770557i~e~-~9

SERIOUS DEFECT:
Exception NUMERIC-ERROR was NOT ra ised to report
underflow for Y := X - 2
Confusion w i l l be caused when innocent statements
l i k e :

i f (x=z)
then ...
else . . . (f (x1-f (z))/(x-z) . . .

encounter d i v i s ion by zero although actual ly
X / 2 = 1.0 + 3.7500000000000000E-01

Range is too narrow, U1 ** 4 underflows
SERIOUS DEFECT:

Conversion Rounding Test

Overflow Test

Integer Power Test

Div is ion by Zero Test

F3.4.16

Paranoia Summary f o r type D-FLOAT
DEC ACS 1.0-7 VAX/7s5 (VMS 4.2)

SERIOUS DEFECTS discovered
FLAWS discovered

2
1

Small Integral Values -1.0, 0.0, 0 . 5 , 1.0, 2.0,
3.0, 4.0, 5.0, 8 . 0 , 9 .0 ,
24.0, 27.0, 32.0, and 240.0 are 0 .k .

Radix, Precision, and Closest Relative Separation

Ada Imp1 emen ta ti or1 At t t- ibu t.es

D-FLOAT'MACHINE-MANTISSA 56 bits
D-FLOAT'MANTISSA 31 bits
D-FLOAT'DIGITS 9 decimal digits
D-FLOAT'EPSILON

D-FLOAT 'MACHINE-RAD1 X 2

9,31322574&1547852E-10

Calculated Values
Radix
Pr ec is i on
UI Cl.0 - nextafter(l.0, 0.o)J

uz [nextafter-(i.O, 2.0) - 1.03
1,3877787607814457E-17

2.7755575&15628914E-17

2
56 digits o f Radix

Subtraction is normalized

Guard Digits

Suht.rac:t.ion: has guard digit
Multiplication: has guard digit
Division: has guard digit

Rounding
I

Ada Implementation Attributes
D-FLOAT'MACHINE-ROUNDS TRUE

Calculated Values
Addition/Subtraction: appears to be correctly rounded
Multiplication: appears to be correctly rounded
Division : appears to be correctly rounded
Sticky bit ; used incorrectly or not at all

Multiply commutes correctly for 20 pairs

Underflow

Ada Imp1 emen ta t ion Attributes
D-FLOAT'SMALL

F.3.4.17

Paranoia Summary for type D-FLOAT
DEC ACS 1.0-7 VAX/713S (VMS 4.2)

19: 38: 42 22-Apr--19UC

2.35098C7016445750E-38

. 2.9367356770557188E-39
. D-FLOAT'SAFE-SMALL

Calculated Values
EO - smallest positive number
UO - underflow threshold 2.938735t3770557188E-39

2.9387358770557lBlE-SY

Conversion from +-x.5 to INTEGER rounds FROM-ZERO

Overflow

Ada Implementation At.tributes
D-FLOAT'MACHINE-OVERFLOWS
D-FLOAT'LARGE

D-FLOAT'SAFE-LARGE

D-FLOAT ' LAST

2.1267647922655134E+37

1-7014118338124107E+38

1~701411~346046923E+38

TRUE

Calculated Values
vo - overflow saturation
V - overflow threshold 1.7014118346046923E+38

1.7014118346046923€+38

Integer Powers were calculated correctly

Division by 0.0 handled correctly

With respect to the proposed IEEE standards P754 and 9854:
The arithmetic diagnosed has unacceptable serious defects

Paranoia calculations elapsed time 0.9300 seconds
Paranoia report elapsed time . 0,6800 seconds

F3.4.18

Paranoia Report for type G-FLOAT
D€C ACS 1.0-7 VAX/7B5 (VMS 4.2)

20:05:18 22-Apr-1986

SYSTEM-NAME: VAX-VMS

Small Integral Values Test

R a d i x , Precision, and Closest Relative Separation Test.

Normalized Subtraction Test

Guard D i g i t on Subtraction Test

Guard D i g i t on Mult ip l icat ion Test

Guard D i g i t on Division Test

Rounding for Addition/Subtraction Test

Rounding for f lu l t ip l i ca t ion Test.

Rounding for- Division Test

Rounding Sticky B i t Test

Commutative Mult ip l icat ion Test

Under f 1 o w Test
FLAW:

Comparison says X /= 2, and y e t X - 2 = 0 .0
X = 7.648691388618505E-309
2 = 5.5C2684~4G266003E-309

Except.ion NUMERIC-ERROR w a s NOT raised to report
underflow f o r Y := X - 2
Confusion w i l l be caused when innocent statemer1t.s
l i k e :

SERIOUS DEFECT:

i f (x = z)
then ...
else ... (f(x)- f (z)) / (x-z) ...

encounter d iv is ion by zero although actual ly
X / Z = 1.0 + 3.750000000000000E-01

Conversion Rounding l e s t

Overflow l e s t

Integer Power l e s t

Div is ion by Zero l e s t

F3.4.19

Paranoia Summary for type G-FLOAT
DEC ACS 1.0-7 VAX/7l35 (VMS 4.2)

SERIOUS DEFECTS discovered
FLAWS discovered

20 : 05 : 1 e 22-Ap r- - 1 9Sdl

1
1

Small Integral Values -1.0, 0.0, 0.5 . 1.0, 2.0 ,
3.0, 4.0, 5.0 , 8 .0 , 9 .0 ,
24.0, 27.0, 32.0, and 240.0 are 0 . k .

Radix, Precision, and Closest Relative Separation

Ada Implemeri t.a t ion At t r ibu t.es
G-FLOAT'MACHINE-RADIX 2
G-FLOAT'HACHINE-flANTISSA 53 bits
G-FLOAT'MANTISSA 51 bits
G-FLOAT'DIGITS 15 decimal digits
G-FLOAT'EPSILON

8.881784197001252E-16

Calculated Values
Radix
Pr ec isi on
UI C1.0 - nextafter(l.0, O - o)]

U L ~ Cnext.after(l.0, 2.0) - 1-01 1.110223024625157E-16

2,220446049250313E-16

2
53 digits o f Radix

Subtraction is normalized

Guard Digits

Subtraction: has guard digit
Multiplication: has guard digit
Division: has guard digit

Rounding

Ada Implementation Attributes
G-FLOAT'HACHINE-ROUNDS TRUE

Calculated Values
Addition/Subtraction: appears to be correctly rounded
Nultiplication: appears to be correctly rounded
Division: appears to be correctly rounded
Sticky bit: used incorrectly or not at all

mltiply commutes correctly for 20 pairs

Underflow

Ada Implementation Attributes
G-FLOAT'SMALL

F3.4.20

Paranoia Summary for- type G-FLOAT
DEC ACS 1-0-7 V A X / 7 8 5 (VMS 4.2)

1.944692274331607E-62

5.562684646268003E-309
G-FLOAT'SAFE-SMALL

Calculated Values
EO - smallest positive number-
UO - underflow t.hr-eshold 5.56268464d268003E-309

5.56268464d268003E-309

Conversion from +-x .5 to INTEGER rounds FROM-ZERO

Overflow

Ada Implementation At. tr i butes
G-FLOAT'MACHINE-OVERFLOWS
G-FLOAT 'LARGE

G-FLOAT'SAFE-LARGE

G-FLOAT'LAST

2.571100870814383E+61

B.988465674311576E+307

B.988465C7431157YE+307

TRUE

Calculated Values
VO - overflow saturation
V - overflow threshold 8.988465674311579E+307

e . 9 8 8 4 ~ ~ 6 7 4 3 1 1 5 7 ~ ~ + ~ 0 7

Integer Powers were calculated correctly

Division by 0.0 handled correctly

3 with respect to the proposed IEEE standards P754 and P854:
The arithmetic diagnosed has unacceptable serious defects

Paranoia calculations elapsed time 1.2600 seconds
Paranoia report elapsed time 0.7100 seconds

F3.4.21

Paranoia Report for type H-FLOAT
DEC ACS 1.0-7 VAX/7eS (VMS 4.2)

20:47:00 22-Apr-1986

SYSTEfl-NAME: VAX-VMS

S m a l l Integral Values Test

Radix, Precision, and Closest. Relative Separation Test

Normalized Subtraction Test

Guard D i g i t on Subtraction Test

Guard D i g i t on Mult ip l icat ion Test

Guard D i g i t on Division Test

Rounding for Addition/Subtraction Test

I Rounding fo r f lu l t ip l icat ion Test

Rounding fo r Division Test
~

Rounding Sticky B i t Test

Commutative Mult ip l icat ion Test

Underflow Test
FLAW:

Comparison says X /= 2, and yet X - 2 = 0.0
x = 1.155722Y554447821427777954997043S2E-4932
2 = 8-4052578577802337656566945433043G2E-4933

Exception NUMERIC-ERROR was NOT raised to report
underflow fo r Y := X - 2
Confusion w i l l be caused when innocent statements
like:

SERIOUS DEFECT:

i f (x=z)
then -..
else ... (f(x)- f (z)) / (x-z) ...

encounter d iv is ion by zero although actual ly
X / 2 = 1.0 + 3.750000000000000000OOOOOOOOOOOOOOOE-01

Conversion Rounding Test

Overflow Test

Integer Power Test

Div is ion by Zero l e s t

F3.4.22

c

Paranoia Summary for type H-FLOAT
DEC ACS 1.0-7 VAX/785 (VMS 4.2)

SERIOUS DEFECTS discovered
FLAWS discovered

1
1

Small Integt-a1 Values -1.0, 0.0, 0 . S . 1.0, 2.0,
3.0, 4.0, 5.0, 8 .0 , 9 .0 ,
24 .0 , 27 -0 , 32-0, and 240.0 are 0.k.

Radix, Precision, and Closest Relative Separation

Ada Implementation Attributes
H-FLOAT*HACHINE-RADIX 2
H-FLOAT'MACHINE-HANTXSSA 113 bits
H-FLOAT'HANTISSA 111 bits
H-FLOAT'DIGITS 33 decimal digits
H-FLOAT'EPSILON

7.703719777548943412223911770339709E-34

Calculated Values
Radix 2
Pr ec is ion 113 digits o f Radix
U1 11.0 - nextafter(l.0, O . O)]

U2 Inextaft.er(l.0, 2-01 - 1-03 9.62964972193617926527988Y712924637E-35

1.925929944387235e53055977942584927E-34

Subtraction is normalized

Guard Digits

Sub t r ac ti on : has guard digit
Multiplication: has guard digit
Division: has guard digit

Rounding

Ada Implementation Attributes
H,FLOAT*flACHINE-ROUNDS TRUE

Calculated Values
Addition/Subtraction: appears to be correctly rounded
tlu 1 tip 1 ica t ion : appears to be correctly rounded
Division: appears to be correctly rounded
Sticky bit; used incorrectly or not at all

tlultiply commutes correctly for 20 pairs

Underflow

Ada Implementation Attributes
H-FLOAT'SMALL

F3.4.23

Paranoia Summary f o r type H-FLOAT
DEC ACS 1.0-7 VAX/785 (VMS 4.2)

20:47:00 22-Apr-1YE6

1.100i56821463791821093431802093605E-134
H-FLOAT'SAFE-SMALL

8.405257~57780233765656694543304382E-4Y33

Calculated Values
EO - smallest pos i t i ve number

UO - underflow threshold
8.4052578577802337656566945433043f52E-4933

6.4052578577802337656566945433043t32E-4933

Conversion from +-x.5 to INTEGER rounds FROM-ZERO

Overflow

Ada Implementation At t r ibu tes
H-FLOAT'MACHINE-OVERFLOWS TRUE
H-FLOAT'LARGE

H-FLOAT'SAFE-LARGE

H-FLOAT'LAST

4.542742026647543065933273799300027E+133

5.94~65747C786158825428796633140033140033€+4~31

5-94865747678615~@25421796633140035E+4931

Calculated Values
VO - overflow saturat ion

V - overflow threshold
5.948657476786158825428796633140035E+4931

5.948657476786158825428796633140035E+4931

Integer Powers were calculated cor rec t ly

D iv is ion by 0.0 handled cor rec t ly

With respect t o the proposed IEEE standards P754 and P854:
The ar i thmet ic diagnosed has unacceptable serious defects

I
Paranoia ca lcu lat ions elapsed time 3.7500 seconds
Paranoia repor t elapsed time 0.6900 seconds

F3.4.24

f

P a r a n o i a Report. for t .ype M A X - D I G I T S
DEC ACS 1.0-7 V A X / 7 8 5 (VHS 4 .2)

SYSTEM-NAME: VAX-VMS

Small I n t e g r a l V a l u e s T e s t

Radix, Pr -ec : i s ion , a n d Closest R e l a t i v e Separ -a t . ion T e s t

N o r m a l i z e d S u b t r a c : t . i on T e s t

G u a r d D i g 1 t. on Sub t rac : t . i on T e s t .

G u a r d D i g i t on M u l t . i p l i c a t i o n T e s t

G u a r d D i g i t . or1 D i v i s i o n T e s t ,

Rounding for Addi t i o n / S u b t . r a c t i o n T e s t

Round ing for- Mu1 t i p l i c : a t . i o n T e s t .

Rounding for D i v i s i o n T e s t

Round ing S t i c :ky B i t . T e s t .

Commuta t ive M u l t i p l i c a t i o n T e s t

Under f l o w T e s t
FLAW I

Compar i son says X /= 2, a n d ye t . X - 2 = 0 - 0
X = 1.1557229554447821427777954997043S2E-4932
2 = 8.4052S78577802337656566945433043I32E-4933

E x c e p t i o n NUMERIC-ERROR was NOT raised to report.
u n d e r f l o w for Y := X - 2
C o n f u s i o n w i l l be c a u s e d when i n n o c e n t s t . a t e m e n t . s
l i k e :

S E R I O U S DEFECT:

i f (x = z)
t h e n ...
else ... (f (x) - f (z)) / (x - z) ...

e n c o u n t e r d i v i s i o n b y zero a l t h o u g h a c t u a l l y
X / 2 = 1.0 + 3.750000000000000000OOOOOOOOOOOOOOOE-01

C o n v e r s i o n Round ing T e s t

O v e r f l o w T e s t

I n t e g e r Power lest

D i v i s i o n b y Zero T e s t

F3.4.25

Paranoia Summary for type MAX-DIGITS 20 : 09 : 27 2E:-Apr-l9i315
DEC ACS 1.0-7 VAX/7eS (VMS 4.2)

SERIOUS DEFECTS discovered
FLAWS discovered

1
1

Small 1rit.egral Values -1.0, 0 .0 , 0 .5 , 1-0, 2 .0 ,
3.0, 4.0, 5 . 0 , 6 . 0 , 9 .0 ,
24.0, 27.0, 32.0, and 240.0 are 0.k.

Radix , Precision , and Closest Relative Separat.ion

Ada 1 mpl emerc t.s t.i on At. t.r i bu t.es
MAX-DIGITS'MACHINE-RADIX 2
MAX-DIGITS'HACHINE-MANTISSA 113 b1t.s
MAX-DIGITS'MANTISSA 111 bits
MAX-DIGITS'DIGITS 33 dec:imal digits
MAX-DIGITS'EPSILON

7.70371977754t3Y43412223911770339709E-34

Calculated Values
Radix 2
P t- ec is i on 113 digits of Radix
UI c1.0 - next.aft.er(1.0, 0.O)I
~2 Cnextafter(l.0, 2 . 0) - 1-01 9.629649721936179265279889712929241537E-35

1.92592YP443872358S30559779425s4927E-34

, Subtraction is normalized

i Guard Digits

Sub t r ac t ion : has guard digit
Multiplication: has guard digit
Division : has guard digit

Rounding I

Ada Implementation Attributes
MAX-DIGITS'MACHINE-ROUNDS TRUE

Calculated Values
Addition/Subtraction: appears to be correctly rounded
Multiplication: appears to be correctly rounded
Division: appears to be correctly rounded
Sticky bit; used incorrectly or not at all

Multiply commutes correctly for 20 pairs

Underflow

Ada Implementation Attributes
MAX-DIGITS'SMALL

F3.4.26

Paranoia Summary for- type MAX-DIGITS 20:09:27 28-Apr-19&*
DEC ACS 1-0-7 VAX/7E15 (VMS 4.2)

1.1006,466214C;3791 I321 093431 802O936OSE-134
MAX-DIGITS'SAFE-SMALL

R.4052578577802337656566Y959J30433043I32E-4~~3

Calculated Values
EO - smallest. p o s i t i v e number

UO - under-f low threshold
8.40525765778023376565669454330433043~2E-4~33

~.405257857780233765656694543304382E-4933

Conversion from +-x .5 t o INTEGER rounds FROM-ZERO

Overflow

Ada 1mplement.at.ion Attr ibut.es
MAX-DIGITS'MACHINE-OVERFLOWS TRUE
MAX-DIGITS'LARGE

MAX-DIGITS'SAFE-LARGE

MAX-DIGITS'LAST

4.54274202~~8475430CS93~27~7~93000~7E+l3~

5.9486S747678615E~25428796633140033E+4931

5.946C5747678615~82542~796~33140035E+49Sl

Calculated Values
VO - overf low sat.urat.iorc

V - overf low t.hr-eshold
5.948657476786158825428796633140035€+4931

5-9486574767861588254287~6633140035E+4~~1

Integer Powers were calculat.ed co r rec t l y

D iv i s ion by 0.0 handled cor rec t ly

f W i t h respect t o the proposed IEEE standards P754 and P854:
The ar i thmet ic diagnosed has unacceptable serious defects

Paranoia calculations elapsed t ime 4.4200 seconds
Paranoia repo r t elapsed t ime 0.7100 seconds

F3.4.27

Interfacing Ada* and Other Languages

Paul B a f f e s a n d B r i a n W e s t

In termetr ics Inc.

PJTRODUCTION

T h e D e p a r t m e n t Of D e f e n c e h a s man-
d a t e d t h e u s e o f Ada o n u p c o m i n g projects
i n v o l v i n g e m b e d d e d s y s t e m s o f t w a r e . N A S A
h a s a l s o i n d i c a t e d t h a t A d a h a s b e e n base-
l i n e d f o r t h e Space S t a t i o n p r o j e c t . Both
of t h e s e d e c i s i o n s w i l l r e q u i r e t h e con-
t r a c t o r c o m m u n i t y t o t r a n s i t i o n f r o m t h e i r
c u r r e n t non-Ada p r o g r a m m i n g e n v i r o n m e n t s .
E x i s t i n g s o f t w a r e , t h a t is p r o v e n a n d
v a l i d a t e d , w i l l m o s t l i k e l y c o n t i n u e t o be
u s e d d u r i n g t h e t r a n s i t i o n p e r i o d . During
t h i s p e r i o d new Ada programs a n d e x i s t i n g
p r o g r a m s i n o t h e r l a n g u a g e s may n e e d t o be
i n t e rf a c e d .

A . m y r i a d o f p o s s i b i l i t i e s e x i t s f o r
t h e s o l u t i o n o f t h e t r a n s i t i o n problem.
One se t o f s o l u t i o n s d e a l s w i t h t r a n s -
l a t i n g t h e s o u r c e code o f t h e o t h e r l a n -
guage i n t o Ada s o u r c e code or t h e i n t e r m e -
d i a t e l a n g a u q e u s e d b y t h e c h o s e n Ada
c o m p i l e r . A n o t h e r s o l u t i o n i n v o l v e s a
special i n t e r f a c e s u b r o u t i n e t h a t s w i t c h e s
f r o m t h e Ada r u n t i m e e n v i r o n m e n t t o t h e
r u n t i m e e n v i r o n m e n t o f t h e o t h e r lan-
guage . T h e l a t t e r s o l u t i o n w i l l be exam-
ined .

T h e a b o v e m e n t i o n e d non-Ada program-
ming e n v i r o n m e n t s c o n s i s t of many d i f f e r -
e n t p r o g r a m m i n g l a n g u a g e s l i k e FORTRAN.
PASCAL a n d HAL/S. While e a c h o f t h e s e
l a n g u a g e s is u n i q u e , t h e y a r e a l l m e m b e r s
o f t h e ALGOL f a m i l y o f p r o g r a m m i n g lan-
g u a g e s a n d s h a r e many i m p l e m e n t a t i o n c h a r -
acter is t ics . T h e r e f o r e , a n i n t e r f a c e s u b -
r o u t i n e c a n be a n a l y z e d f o r a n y o n e of
t h e s e l a n g u a g e a n d t h e r e s u l t s c a n t h e n be
e x t e n d e d t o t h e r e m a i n i n g l a n g u a g e s . HAL/S
w a s c h o s e n f o r t h i s examinat ion .

T h e H A L / S 360 compiler w h i c h r u n s
u n d e r t h e IBM M V S O p e r a t i n g Sys tem a n d t h e
Ada compiler w h i c h r u n s u n d e r t h e IBM
VM/SL O p e r a t i n g S y s t e m were s e l e c t e d f o r
t h i s s t u d y . T h e p r i m a r y criteria f o r t h e
s e l e c t i o n o f t h e HAL/S a n d Ada compilers
was t h a t t h e y were h o s t e d o n t h e same
m a c h i n e a r c h i t e c t u r e . B o t h compilers were
d e v e l o p e d by I n t e r m e t r i c s .

GEHERAL QVERVrrw p6. mE PROBLPl
I n t h i s s e c t i o n , t h e g e n e r a l i s s u e s

i n v o l v e d i n i n t e r f a c i n g a n y two d i f f e r e n t
h i g h - l e v e l l a n g u a g e s w i l l be e x p l o r e d .
T h i s e x p l a n a t i o n w i l l o u t l i n e t h e d i rez-
t i o n t a k e n b y t h e f o l l o w i n g s e c t i o n s . Snd
s h o u l d h e l p i n p r o v i d i n g a n o v e r v i e w of
t h e i n t r i c a c i e s i n v o l v e d i n s u c h a n i n t o -
gra t i o n .

The Language Envirorrcnt

Along w i t h a n y P r o g r a m m i n g L a n g u a g e
comes a se t of a s s u m p t i o n s u n d e r which
t h a t l a n g u a g e is r u n . T h i s set of assump-
t i o n s c a n be called t h e e n v i r o n m e n t of
t h a t l a n g u a g e , a n d c o n s i s t s o f b o t h a l g o -
r i t h m s a n d data s t r u c t u r e s . While t h e s e
may c o v e r a v a r i e t y o f s u b j e c t mat te r .
m o s t Algol-like l a n g u a g e e n v i r o n m e n t s c a n
be u n d e r s t o o d t h r o u g h a f e w basic i d e a s .

T h e f i r s t of t h e s e basic i d e a s is
known a s a r u n - t i m e s t ack . I n g e n e r a l ,
t h e r u n - t i m e s t a c k is u s e d t o k e e p track
of local data a n d register c o n t e n t s across
p r o c e d u r e calls a s t h e p r o g r a m is b e i n g
e x e c u t e d , I n t h i s w a y , t h e i n t e g r i t y of a
procedure c a n be m a i n t a i n e d w h i l e control
is passed t o a s u b p r o c e d u r e , a n d ther?
restored when t h e s u b p r o c e d u r e r e t u r n s .

A n o t h e r of t h e s e basic i d e a s c o n c e r n s
t h e i n t e r n a l r e p r e s e n t a t i o n o f da t a . For
example, o n e l a n g u a g e e n v i r o n m e n t might
u s e a s i g n e d m a g n i t u d e r e p r e s e n t a t i o n f o r
i n t e g e r s w h i l e a n o t h e r m a y u s e t w o s c o m -
p l e m e n t f o r m . N a t u r a l l y s u c h d e t a i l s are
n o t a n i n t e r f a c i n g c o n c e r n when a c a l l r n g
p r o c e d u r e a n d t h e called s u b p r o c e d u r e a re
w r i t t e n i n t h e same l a n g u a g e . However ,
care m u s t be t a k e n t o e n s u r e t h a t t h e s e
i n t e r n a l r e p r e s e n t a t i o n s a r e i d e n t i c a l
when two d i f f e r e n t l a n g u a g e s are involved .

A f i n a l basic c o n c e p t i n v o l v e s t h e
m a n a g i n g of r u n - t i m e e r r o r s . c o m m o n l y
known a s e x c e p t i o n h a n d l i n g , Most o f t e n , a
l a n g u a g e e n v i r o n m e n t w i l l p r o v i d e a large
c o l l e c t i o n o f p r o c e d u r e s c a l l e d a r u n - t i m e

Ada is a Registered Trademark of t h e U.S. D e p a r t m e n t o f D e f e n c e (Ada J o i n t P r o g r a m O f f i c e)

F.3.5.1

l ib rary w h i c h c o n t a i n s t h e mechan i sms f o r
d e a l i n g w i t h t h e s e e r r o r s . However , s i n c e
two d i f f e r e n t l a n g u a g e s w i l l u s e two sepa-
r a t e r u n - t i m e l i b r a r i e s , a n e r r o r occur-
r i n g i n a s u b p r o c e d u r e of o n e language
would p r o b a b l y n o t be u n d e r s t o o d b y t h e
c a l l i n g p r o c e d u r e of t h e o t h e r l a n g u a g e .
T h i s would p r e v e n t t h e c a l l i n g p r o c e d u r e
f r o m r e s p o n d i n g t o t h e e r r o r i n a p r o p e r
manner.

The Basic Interface

In l i g h t of t h e p r e v i o u s d i s c u s s i o n ,
t h e i n t e r f a c e b e t w e e n two d i s t i n c t lan-
g u a g e s b e c o m e s a ma t t e r of swi t ch ing envi -
r o n m e n t s . To a c c o m p l i s h t h i s a t run-time.
a special l i nk ing s u b r o u t i n e would need t o
be i n v o k e d f r o m t h e run - t ime l ibrary of
t h e c a l l i n g p r o c e d u r e . T h i s s u b r o u t i n e
would p r o v i d e t h e mechanism f o r s a v i n g t h e
p r e s e n t e n v i r o n m e n t o f t h e c a l l i n g Pro-
c e d u r e a n d i n i t l a t i n s t h e new e n v i r o n m e n t .
In t u r n , u p o n t e r m i n a t i o n of t h e called
s u b p r o c e d u r e , t h i s s u b r o u t i n e would r e g a i n
c o n t r o l a n d r e i n s t a t e t h e o ld environment.

Ada p r o v i d e s a n i n s t r u m e n t f o r i n t e r -
f a c i n g w i t h o t h e r l a n g u a g e s called t h e
PRAGMA INTERFACE d i r e c t i v e . T h e s e c t i o n s
t h a t f o l l o w t a k e i n t o c o n s i d e r a t i o n t h e
de ta i l s n e c e s s a r y f o r imp lemen t ing t h i s
mechanism.

P a r a m e t e r Parsing

Almost e v e r y s u b r o u t i n e m a k e s u s e of
parameter p a s s i n g , w h e t h e r i t accepts some
v a l u e or v a l u e s a s inpu t , or produces some
o u t p u t , or b o t h . T h i s p r o c e s s of e x -
c h a n g i n g i n f o r m a t i o n be tween p r o c e d u r e s is
p a r t of a l a n g u a g e e n v i r o n m e n t a n d t h u s
w i l l m o s t l i k e l y v a r y f r o m o n e l a n g u a g e t o
a n o t h e r . I n regards t o t h e H A L / S a n d A d a
c o m p i l e r s c i ted , t h e d i s c r e p a n c i e s are
drama tic.

The Proocdure Cal l

In m o s t c a s e s , a l l parameters are
p a s s e d t h r o u g h registers t o t h e called
s u b r o u t i n e . However , when t h e r e are n o t
e n o u g h registers for a l l of t h e p a r a m -
eters. a n o t h e r method is p u r s u e d . Th i s
method u s u a l l y i n v o l v e s p l a c i n g t h e param-
eter i n t e m p o r a r y s t o r a g e a n d p a s s i n g t h e
address o f t h i s l o c a t i o n i n s t e a d t o t h e
called subprocedu re.

B o t h H A L / S a n d Ada comply w i t h t h e
c o n v e n t i o n s o u t l i n e d a b o v e . H o w e v e r . t h e
s p e c i f i c registers u s e d b y t h e t w o lan-
g u a g e s t o a c c o m p l i s h t h e s e s t a n d a r d s are
n o t t h e same. F o r example HAL/S a n d Ada
u s e a d i f f e r e n t regis ter f o r a d d r e s s i n g
t h e temporary storage area where t h e ove r -
f l o w parameters a r e s t o r e d . I n add i t ion .
Ada m a y s t o r e its parameters i n m o r e t h a t
o n e place, d e p e n d i n g on w h e t h e r or n o t

t h e y were d y n a m i c a l l y a l l o c a t e d . Any
i n t e r f a c i n g s u b r o u t i n e would h a v e t o map
o n e set of register c o n v e n t i o n s t o t h e
o t h e r a n d a l s o be aware o f t h e d i f f e r e n t
l o c a t i o n s w h e r e t h e o v e r f l o w parameters
are stored.

The ?unction Cal l I

F u n c t i o n s , u n l i k e p r o c e d u r e s , r e t u r n
a v a l u e t o t h e c a l l i n g p r o c e d u r e . T h i s
v a l u e is r e t u r n e d v i a t h e u s e of a regis-
ter . A s w a s t r u e w i t h Parameter p a s s i n g .
t h i s register may c o n t a i n either t h e ac-
t u a l v a l u e or a r e f e r e n c e t o t h e l o c a t i o n
w h e r e t h e v a l u e is s a v e d . Again , each
l a n g u a g e w i l l u s e d i f f e r e n t c o n v e n t i o n s
f o r r e t u r n i n g t h i s v a l u e . In f a c t , t h e
H A L / S a n d Ada c o m p i l e r s c i t ed u t i l i z e
dif f e r e n t regis ters f o r t h i s pu rpose .

D a t a Represents tion

A prob lem related t o parameter pas-
s i n g arises f r o m how e a c h l anguage c h o o s e s
t o r e p r e s e n t its da ta t y p e s . T h e r e are a
v a r i e t y o f f a c t o r s i n v o l v e d i n d a t a repre-
s e n t a t i o n i n c l u d i n g t h e number o f b y t e s
u s e d . i n d e x i n g s c h e m e s . v a l u e restric-
t i o n s . a n d t h e a l g o r i t h m e m p l o y e d f o r
pack ing t h e r e p r e s e n t a t i o n s t o s a v e space.
S i n c e e a c h l a n g u a g e w i l l d i f f e r i n its
m e t h o d s of r e p r e s e n t a t i o n . s o m e scheme f o r
c o n v e r t i n g da t a b e t w e e n r e p r e s e n t a t i o n s
would h a v e t o be implemen ted b e f o r e any
i n t e r f a c i n g would be poss ib l e .

The Run-Time Stack

T h e objec t ive of t h e r u n - t i m e s t a c k
is t o k e e p t r a c k o f t h e f low of a program
d u r i n g its e x e c u t i o n ; namely , t o r e c o r d
t h e dynamic n e s t i n g o f t h e called proce-
d u r e s . To a c c o m p l i s h t h i s , t h e run-time
s t a c k c o n t a i n s t h e i n f o r m a t i o n n e c e s s a r y
t o describe t h e s t a t e of t h e p r o g r a m a t
a n y p o i n t d u r i n g its e x e c u t i o n . T h e pa r -
t i c u l a r s o f t h e run - t ime s t a c k a r e a l s o
implementation dependent .

The R A L S Run-Time Stack

HAL/S h a s a v e r y s t r a i g h t f o r w a r d
a p p r o a c h t o its run- t ime s t a c k d e s i g n . I t s
r u n - t i m e s t a c k is d i v i d e d i n t o " s t a c k
f r a m e s , " o n e f o r e a c h p r o c e d u r e c u r r e n t l y
b e i n g e x e c u t e d . T h e s e s t a c k f r a m e s are
f u r t h e r d i v i d e d i n t o two s e c t i o n s , T h e
f i r s t o f t h e s e is of a c o n s t a n t s i z e a n d
c o n t a i n s t h e fo l lowing : a register s a v e
area, a n area f o r t h e c u r r e n t c o d e base.
a n d a workspace f o r e x c e p t i o n handling.
T h e second s e c t i o n is o f v a r i a b l e size a n d
is u s e d t o s t o r e t h e p r o c e d u r e ' s local and
t e m p o r a r y v a r i a b l e s . T h e u s e s of t h e s e two
s e c t i o n s are explained belnw.

When a s u b p r o c e d u r e is called. a new
stack f r ame is created and p laced o n t o t h e
s t ack . T h e c o n t e n t s of a l l t h e c a l l i n g

p r o c e d u r e ’ s registers a r e t h e n s t o r e d i n
t h e regis ter s a v e a rea of t h i s new stack
frame. I n t u r n , when t h e called s u b p r o c e -
d u r e r e t u r n s c o n t r o l t o t h e c a l l i n g proce-
d u r e t h e s e s t o r e d register c o n t e n t s are
replaced i n t o t h e i r appropriate registers.
I n t h i s w a y , t h e c a l l i n g p r o c e d u r e ’ s reg-
i s t e r c o n t e n t s a r e n o t v i o l a t e d by t h e
called s u b p r o c e d u r e . T h e r e m a i n i n g f i x e d
p o r t i o n o f t h e s t a c k frame p r o v i d e s t h e
p r o c e d u r e w i t h r u n - t i m e c o n t r o l i n f o r m a -
t i o n . T h i s i n f o r m a t i o n i n c l u d e s : t h e
l o c a t i o n o f t h e f i r s t e x e c u t a b l e i n s t r u c -
t i o n f o r t h e c u r r e n t p r o c e d u r e , a tempo-
r a r y workspace. a n d a l i n k t o t h e e r r o r
library.

T h e s e c o n d s e c t i o n o f t h e r u n - t i m e
s t a c k is l e f t f o r t h e local a n d temporary
v a r i a b l e s o f t h e s u b p r o c e d u r e b e i n g e x e -
c u t e d . T h e s ize of t h i s s e c t i o n v a r i e s
f r o m p r o c e d u r e t o p r o c e d u r e d e p e n d i n g on
each p r o c e d u r e ’ s n u m b e r o f local a n d t e m -
p o r a r y var iables . T h e s i z e o f each p r o c e -
d u r e s t a c k f r a m e , h o w e v e r . is d e t e r m i n e d
a t compile t i m e . So w h i l e s t a c k f r a m e
s i z e s m a y v a r y from p r o c e d u r e t o proce-
d u r e , e a c h p r o c e d u r e ’ s p a r t i c u l a r s t a c k
f r a m e size is f i x e d a t e x e c u t i o n t i m e .

The R e a l Time E x e c u t i v e

Real t i m e e x e c u t i v e s a re u s e d t o
s y n c h r o n i z e a n d allow c o m m u n i c a t i o n be-
t w e e n t w o i n d e p e n d e n t l y e x e c u t i n g pro-
grams. Any program w h i c h d e p e n d s upon
s o m e rea l w o r l d e v e n t w i l l d e p e n d upon a
rea l t i m e e x e c u t i v e f o r p roper e x e c u t i o n .
T h e i n t e r n a l m e c h a n i s m s which i m p l e m e n t
r e a l t i m e e x e c u t i v e s a r e n o n t r i v i a l a n d
v a r y wide ly a m o n g t h e l a n g u a g e s t h a t p r o -
v i d e real t i m e f e a t u r e s . A l t h o u g h H A L / S
a n d Ada b o t h h a v e a p o w e r f u l se t o f real
t i m e e x e c u t i v e t o o l s , t h e s e t o o l s a re
u n a l i k e a n d t h e y r e q u i r e d i f f e r e n t ap-
p r o a c h s b y t h e a p p l i c a t i o n s p r o g r a m m e r for
s o l v i n g real t i m e p r o b l e m s , B e c a u s e t h e i r
s e t s of r e a l t i m e e x e c u t i v e s a re n o t t h e
s a m e , t h e H A L / S a n d A d a l a n g u a g e e n v i r o n -
m e n t s w i l l i n c o r p o r a t e d i f f e r e n t implemen-
t a t i o n schemes. To i n t e r f a c e t h e s e t w o
sets o f real t i m e e x e c u t i v e s would pose a n
e x t r e m e l y i n v o l v e d c h a l l e n g e .

The Run-Time L i b r a r y
a

E v e r y l a n g u a g e h a s a se t o f p r i m i t i v e
u t i l i t i e s which i t u s e s r e p e t i t i v e l y . T h i s
s e t of u t i l i t i e s is commonly called t h e
r u n - t i m e l ib rary . T h e r u n - t i m e l i b ra ry is
a u t o m a t i c a l l y l i n k e d w i t h t h e program’s
ob)ec t m o d u l e b e f o r e e x e c u t i o n . A s a re-
s u l t , e v e r y p r o c e d u r e or s u b p r o c e d u r e o f
t h e program c a n employ a n y r o u t i n e pro-
v i d e d by t h e run-t ime library.

Of c o u r s e , each l a n g u a g e w i l l h a v e a
u n i q u e r u n - t i m e l ib rary . One o f t h e more
s i g n i f i c a n t p rob lems a r i s i n g f r o m t h i s
c o n c e r n s e r r o r h a n d l i n g . When a n error
o c c u r s d u r i n g t h e e x e c u t i o n o f a program,
t h e problem is m o s t o f t e n m a n a g e d b y a
r o u t i n e i n t h e r u n - t i m e l i b ra ry . I f t h i s

were t o h a p p e n i n a ca l led s u b p r o c e d u r e of
a d i f f e r e n t l a n g u a g e , t h e r e w o u l d be n o
g u a r a n t e e t h a t t h e process u s e d t o h a n d l e
t h e e r ror w o u l d be u n d e r s t o o d by t h e cal-
l i n g p r o c e d u r e . T h i s problem is i m p o r t a n t
b e c a u s e some e r r o r s m a y r e q u i r e t e r m i n a -
t i o n o f t h e program. T h u s , if t h e ca l led
s u b p r o c e d u r e w e r e t o force t e r m i n a t i o n
be fo re r e t u r n i n g c o n t r o l , t h e c a l l i n g p r o -
c e d u r e w o u l d n o t be able t o e x i t i n a
g r a c e f u l m a n n e r , T h i s c o u l d r e s u l t i n a
l o s s of p e r t i n e n t i n f o r m a t i o n , Addit ion-
a l l y , similar e r r o r s may be h a n d l e d w i t h
d i f f e r e n t l e v e l s of s e v e r i t y by d i f f e r e n t
l a n g u a g e e n v i r o n m e n t s . I n p a r t i c u l a r , w h a t
may c a u s e a HAL/S program t o t e r m i n a t e m a y
o n l y ra ise a n e x c e p t i o n i n a n Ada program.
T h i s p r e s e n t s a f o r m i d a b l e problem f o r t h e
i n t e r f a c i n g su br ou t i n e .

Overvien of a n Interface S u b r o u t i n e

T h e i n t e r f a c e s u b r o u t i n e w o u l d oper-
a t e i n a s t r a i g h t f o r w a r d m a n n e r . T h e rou-
t i n e w o u l d f i r s t load t h e passed parame-
t e r s i n t o t h e regis ters . A p a r a m e t e r
w o u l d be passed e i t h e r b y its a c t u a l v a l u e
or b y a p o i n t e r , a m a c h i n e a d d r e s s . Veri-
f y i n g t h a t t h e pa rame te r s were pas sed i n
t h e correct f o r m a t w o u l d be t h e r e s p i r , -
s i b i l i t y o f t h e Ada a p p l i c a t i o n s program-
mer.

T h e n e x t s t e p i n t h e i n t e r f a c e sub-
r o u t i n e w o u l d be t o i n i t i a l i z e a new HAL/S
s tack f r a m e a n d b r a n c h t o t h e e n t r y p o i n t
o f t h e HAL/S e x e c u t a b l e c o d e , D u r i n g e x e -
c u t i o n , calls t o t h e HAL/S r u n - t i m e li-
b ra ry may be m a d e . To g u a r a n t e e proper
e x e c u t i o n . t h e Ada a p p l i c a t i o n s p r o g r a m m e r
w o u l d h a v e t o i n c l u d e a l l n e e d e d HAL/S
r u n - t i m e l i b r a r y r o u t i n e s i n t h e l o a d
m o d u l e . Upon f i n i s h i n g t h e normal e x e c u -
t i o n o f t h e H A L / S code, a b r a n c h would be
made back t o t h e l i n k i n g s u b r o u t i n e a n d
t h e o l d s t a c k f r a m e w o u l d be p o p p e d o f f
t h e s t a c k .

F i n a l l y , t h e i n t e r f a c e s u b r o u t i n e
w o u l d r e m o v e t h e p a s s e d parameters f r o m
t h e reg is te rs . B e f o r e a s s i g n i n g t h e s e
v a l u e s t o t h e i r a p p r o p r i a t e memory loca-
t i o n s , c o n s t r a i n t c h e c k i n g s h o u l d be per-
formed. Any c o n s t r a i n t v i o l a t i o n s h o u l d
raise a n e x c e p t i o n a n d t h e c o r r e s p o n d i n g
e x c e p t i o n h a n d l e r s h o u l d be i n v o k e d a t
t h a t t i m e ,

R e s t r i c t i o n s on the Interface

R e s t r i c t i o n s , u n f o r t u n a t e l y . w o u l d
h a v e t o be placed o n t h e ca l led H A L / S
p r o c e d u r e . T h e i n t e r f a c e s u b r o u t i n e would
r e s o l v e a s many o f t h e d i f f e r e n c e s b e t w e e n
t h e two r u n t i m e e n v i r o n m e n t s a s poss ib l e .
T h o s e d i f f e r e n c e s w h i c h c o u l d n o t be re-
s o l v e d w o u l d r e s u l t i n r e s t r i c t i o n s on t h e
i n t e r f a c e .

One r e s t r i c t i o n w o u l d i n v o l v e t h e way

F . 3 . 5 . 3

e r r o r s a r e h a n d l e d . Run- t ime e r ro r s i n
t h e H A L / S e x e c u t a b l e c o d e w i l l n o t raise
e x c e p t i o n s when t h e y occur. Some o f t h e s e
e x c e p t i o n s c o u l d be r a i s e d b y t h e i n t e r -
face s u b r o u t i n e when c o n s t r a i n t c h e c k i n g
is d o n e . O t h e r r u n - t i m e e r r o r s i n t h e
HAL/S code w o u l d go u n n o t i c e d a n d t h e
s u b s e q u e n t e x e c u t i o n w o u l d be i n d e t e r -
m i n a n t . N o t e t h a t t h e called HAL/S proce-
P u r e w o u l d h a v e t o h a v e a n appropr i a t e ON
ERROR IGNORE s t a t e m e n t or else t h e H A L / S
ccde c o u i d m a k e a n u n s u p p o r t e d o p e r a t i n g
s y s t e m call.

A n o t h e r r e s t r i c t i o n c o n c e r n s t h e vi-
s i b i l i t y of variables. A t t h e p o i n t o f t h e
HAL/S p r o c e d u r e ca l l i n t h e Ada p r o g r a m ,
scme o f t h e d e c l a r e d var iables may h a v e
v i s i b i l i t y . While a n Ada p r o c e d u r e called
f r o m t h e same p o i n t w o u l d be able t o ac-
cess t h e s e v i s ib l e v a r i a b l e s , t h e HAL/S
p r o c e d u r e c o u l d n o t . S u c c i n t l y , t h e only
w a y t h e Ada program a n d t h e H A W S proce-
d u r e c o u l d c o m m u n i c a t e w o u l d be v i a t h e
Passed parameters.

Y e t a n o t h e r r e s t r i c t i o n w o u l d be t h a t
t h e H A L / S p r o c e d u r e c o u l d n o t i n v o k e r e a l
t i m e e x e c u t i v e s . A d d i t i o n a l r e s t r i c t i o n s
may be t o l i m i t t h e u s e o f Ada real t i m e
e x e c u t i v e s a n d t o c i r c u m s c r i b e t h e u s e o f
1/0 i n t h e H A L / S p r o c e d u r e . T h e a b o v e t w o
D r o p o s e d l i m i t a t i o n s need f u r t h e r i n v e s t i -
ga t i o n .

BI BLI OGRAP HY

Aho. A l f r e d V . a n d U l l m a n , J e f f r e y D.,
p r i n c i p l e s ef & mDi ler Desi sn .
R e a d i n g : Addison-Wesley Pub1 i s h i n g
Company. 3 9 7 7 .

Booch. C r a d y . S o f t w a r e E n g i n e e r i n g w&
Ada. M e n l o P a r k : T h e Ben)amin/Cumminss
P u b l i s h i n g C o . I n c . , 1983.

R y e r . Michael J. P r o s r a m m i n Q HAL/S.
C a m b r i d g e : Intermetrics I n c . , 1980.

C o m p u t e r P r o g r a m D e v e l o p m e n t Specification
for t h e Ada I n t e g e r a t e d E n v i r o n m e n t .
IR-MA-300. C a m b r i d g e : I n t e r m e t r i c s
I n c . , 1984.

HAL/S-360 Compiler System S p e c i f i c a t i o n ,
IR-60-07. C a m b r i d g e : I n t e r m e t r i c s
I n c . , 1981.

C O "

I n t e r f a c i n g two separately d e v e l o p e d
compilers is a c o m p l e x task. T h e complex-
i t y a r i s e s b e c a u s e v e r y f e w d e s i g n s t a n d -
a r d s e x i s t f o r compiler d e v e l o p m e n t . This ,
c o u p l e d w i t h t h e many complicated d e s i g n
d e c i s i o n s i n h e r e n t i n compiler c o n s t r u c -
t i o n , v i r t u a l l y g u a r a n t e e s n o n c o m p a t i b i l -
i t y . T h e i n t e r f a c e s u b r o u t i n e which would
l i n k t h e t w o d i f f e r e n t r u n t i m e e n v i r o n -
m e n t s w o u l d r e s o l v e as many of t h e dis-
similari t ies a s p o s s i b l e . T h e d i f f e r e n c e s
t h a t c o u l d n o t be r e s o l v e d w o u l d be re-
s p o n s i b l e f o r t h e r e s t r i c t i o n s p l a c e d on
t h e i n t e r f a c e . Albe i t r e s t r i c t i o n s w o u l d
e x i s t , t h e r e s u l t i n g i n t e r f a c e may be w e l l
wor thwhi le .

F.3.5.4

Deferred Binding in the Ada Software Support Environment

Paul Brown
Hikkok % High Technologies Lab
University of Houston-Clear Lake

Houston, Texas

This is a late paper.
conference.

The author will provide copies at the

F.3.6.1

4

SOFTWARE ISSUES INVOLVED IN CODE TRANSLATION
OF C TO ADA PROGRAMS

Robert Hooi, Joseph Giarratano
University of Houston Clear Lake

ABSTRACT

It is often thought that translation of one programming
language to another is a simple solution that can be used to extend
the software life span or in re-hosting software to another
environment.

the disadvantages of direct machine or human code translation
versus that of re-design and re-write of the software. The
translation of the expert system language called C Language
Integrated Production System (CLIPS) which is written in C, to Ada,
will be used as a case study of the problems that are encountered.

This paper examines the possible problems, the advantages and

1 FUNDAMENTAL CONCEPTS

1.1 Introduction

CLIPS is a rule-based expert system language developed by the
Artificial Intelligence (AI) section of the Johnson Space Center.
The programming language C was used in the original implementation
of CLIPS, while Ada is used as the new target language.

In re-hosting the original version of CLIPS from C to Ada, two
approaches were attempted. The first approach was direct code
translation, while the second was a complete re-write and re-design
of the entire software.

1.2 Direct Code Translation As A Possible Amroach

The work involved in the development of large software systems
often represents huge amounts of time and expense. Monetary
investments and time involved in the development make it extremely
desirable to continue using these software systems for as long as
possible. A few reasons for re-hosting to a new hardware or
software environment are:

o software system -is still needed

o difficulty in locating technical support

o need to increase software versatility

o greater execution speed

o more economical hardware

At first sight, code translation may be seen as a simple,
inexpensive approach to a complex and difficult problem.
Translation seems to offer an attractive patch in extending the
versatility and life span of existing software systems without the
need to "re-invent the wheel".

F.3.7.1

1.3 Advantaqes Of Direct Code Translation

Direct code translation is often considered a very direct,
simple and desirable method of re-hosting existing software to
another environment. It offers a number of plausible advantages
that can be highly questionable in retrospect. These advantages
are :

o elimination of some of the software life cycle phases

o requires less time and effort compared to re-design and
re-write

o easily extended life span and software versatility

o elimination of human errors compared to re-design and re-
write.

These advantages will now be discussed in more detail.

1.3.1 Elimination Of Some Of The Software Life Cycle Phases

The major phases of the software life cycle 111 include:

1. requirement analysis 2. specifications/requirements

3. design 4. coding

5. verification and 6. maintenance and operation
validation

If carried out correctly, the most difficult work involved in
the software life cycle is in the early phases. Maintenance and
operation may be time consuming but lacks the complexity of the
first phases (1 - 3) of the life cycle, unless major changes are
desired after the software is released. In fact, studies have shown
that maintenance may account for up to 90% of costs for the
software life span [8 , 9] . One of the major reasons for the
development of Ada was to reduce maintenance costs. Direct code
conversion offers a simple short cut to avoid the early phases
(1 - 3) of the life cycle by:

o requiring only source code of the software

o minimizing verification and validation

o allowing re-use of test data from the original

o eliminating the need to do design conversion

o eliminating the need to understand the functionality of the
software, which is especially useful if the original
programmers have left

In cases where the documents of the early phases of the

F.3.7.2

software life cycle are missing or are poorly defined, direct code
translation means eliminating "re-inventing the wheel". There is no
need to derive a design if it is missing or to study and redefine
poorly written documents.

1.3.2 Requires Less Time and Effort Compared to Re-Desianins and
Re-Writinq

Direct code translation appears to be an attractive approach in
that it is theoretically a simple, mechanical process if the host
and target language are similar. There is little need to understand
the actual requirements, design or functionality of the program.
Much smaller machine and human resources are needed in performing
the translation. All that is required is a basic understanding of
the software tools and their interfaces, detailed knowledge of the
host and target languages, and the different hardware
specifications.

quickly and without the possibility of human error. In theory,
translation work is basically tedious but mechanical and simple in
nature. All that is required is a consistent, correct and accurate
equating of the original implementation with that of the target
language and its' environment. Also, once a translator is
available, it may be used on other software or the translator may
be sold for a profit.

Once a translator is built, code translation may proceed very

1.3.3 Easily Extended Life Span And Software Versatility

A re-write and re-design of a software system is expensive and
time consuming. It requires a considerable amount of professional
human expertise compared to direct code translation which could be
performed by either human or machine translators. If direct code
translation is done by human translators, it may be expensive and
time consuming, but it is still cheaper than a re-design and re-
write. The early phases (1-3) of the software life cycle can still
be skipped.

If the work is performed by a machine translator, it would
still be relatively inexpensive since the only real work would be
in the validation and verification of the accuracy of the results.
A certain amount of editing and debugging may be required, but the
work involved is relatively mechanical in nature while the
resources needed are still less than an actual re-design and re-
write.

The elimination of most of the work involved in the software
life cycle, plus the possible availability of a machine translator
and the ease involved in the work, could mean a saving in time. The
re-hosting and re-targeting work can be completed in a relatively
short period of time compared to re-design and re-writing.

1.4 Elimination of Human Error

Translation of computer software can be carried out either by a
human or machine translator. If the software is large, then the use
of a machine translator may be the least expensive approach,
whereas for small programs, a human translator may be the better
choice. The translated version is tested for accuracy and

F.3.7.3

correctness by computer programmers.

the computer languages and external interfaces involved in the
translation process. The work in general is very mechanical in
nature. The advantage of the mechanical translator compared to a
human is a reduction in software errors in the translation. The
disadvantages of machine translators is that the human may clean up
the code during translation because the human can understand the
semantics as well as just the syntax.

The requirements for a human translator is an understanding of

- 2 SOFTWARE ENGINEERING ISSUES INVOLVED IN DIRECT CODE TRANSLATION

2.1 Introduction

The process that direct code translation generally takes often
results in a failure to address certain design and implementation
issues in software engineering. These can develop into major
problems later on in the software life cycle. They are:

l o differences and incompatibilities in design methodologies

o differences and incompatibilities in language implementation

l o possible disregard of the richness of the target language
~

~

o possible inaccuracies and discrepancies between languages

o maintenance costs may well exceed savings of translation.

Unless the above issues are addressed, the problems and
I <isadvantages may outweigh all the advantages made in a direct code

translation.

2.2 Differences And Incompatibilities In Desiqn Methodologies

The types of available software tools have a profound effect on
aur thinking process and thus the design and development of the
software. The types of design methodologies used are often guided
as well as restricted by the software tools used in the
implementation of the actual program. It should be noted, however,
that methodologies are generally much easier to compromise than the
implementation language tools. The same rules apply to modern
software engineering principles and practice.

The principles of modern software engineering as incorporated
by languages such as Ada and Modula-2 are [2,3] are:

o modularity o abstraction o information hiding
o localization o uniformity o completeness
o confirmability

If the programming language used does not directly provide
support towards the above software engineering principles, then it
is difficult and often impractical to implement a design which
adheres to these concepts. The implementation language and design
methodologies used should be mutually cornpatible for best results.

F.3.7.4

So converting a BASIC program to FORTRAN IV would be reasonable
since they share similar software principles. Likewise conversion
from Modula-2 to Ada would be feasible since both languages support
the above modern engineering principles. Difficulties arise in the
translation of programs in a language like C to Ada since C does
not adhere to the above principles of Ada.

The use of an object-oriented design methodology [41, together
with an object oriented language such as Ada, forms a very highly
compatible choice towards the support and implementation of these
software engineering principles [lo]. If a programming language does
not readily support these concepts it will probably be absent in
the implementation. In languages which do not have this support it
may be too expensive and difficult to enforce these principles. In
most cases, the designers and implementors would probably choose a
design methodology that allows an easier implementation, rather
than one in which the language would have difficulty adhering to.

A major issue involved in directly translating a program to a
target language is that the type of methodology used is often
ignored. If the work is performed by computer programmers, then it
may be possible to modify and adapt some of the code to that of
Ada's object-oriented approach. It would be impossible for a simple
syntax-directed machine translator to do this completely, since it
involves a certain degree of independent thinking, analysis and
understanding of the original software. Thus, a machine translator
would have to understand the semantics as well as the syntax to do
a thorough job. Such a translator would have to include artificial
intelligence and expert system techniques and would be very
difficult to build. A simpler alternative would be to have a human
examine the code produced by the simple translator and polish it
up. However, this could still be a major task.

If the original implementation is not an object-oriented design
methodology, then it will not normally be present in the translated
version- For example, if the original does not support the concept
of information hiding, then the translated version will not. If the
original design methodology adheres to the concept of data flow
decomposition or the Jackson Design methodology [SI, then the
translated version certainly would not have any of Ada's object-
oriented approach.

A time factor should also be taken into account since the type
of methodology used is dependent on when it was first conceived.
Ada's object-oriented design methodology would certainly be absent
if the software was developed prior to the 1980's. This technical
gap may not be easily bridged in direct code translation unless the
languages are similar, such as Modula-2 and Ada.

The ability of the language to support these methodologies must
also be considered. For example, Ada's packages supports the
concept of information hiding, which may be simulated by CIS
statement "INCLUDE". However, this does not mean that C provides
the same capabilities or support of the concept of information
hiding found in Ada. There is no close equivalent in C to Ada's
private and limited private types or visibility controls,

of re-usable software components. For example, there are no
facilities in C to directly simulate Ada's generics.

is missing. The problem is compounded when the methodology used is

Translation becomes even more difficult concerning the concept

A major difficulty in translation occurs when the documentation

F.3.7.5

unknown and is not similar to Ada's object oriented approach. These
problems were found in the translation of CLIPS.

A certain amount of re-design and re-write was required in
certain program segmnents in order to conform to the language
implementation requirements of the target language (ADA). An
example is the difference between a C library program versus Ada's
packages. Each C library program has the function - "main", which
may make calls to other external library functions or functions
within the same file. The visibility rules in C allow calls by the
sub-program unit "main" to other functions located anywhere within
the file dependent upon the programmer's convenience. Ada's
visibility rules allow procedures and functions to be called by
other program units only if declared above it. An example found in
the CLIPS demonstrating C's visibility problems is shown below:

command-loop 0;
if (optIu-found == TRUE)

{displayfunctionso;}
1 J

command-loop ()

displayfunctions ()

Ada's visibility rules would require:

procedure Command-Loop is -- assumes converted to a procedure --
end Command-Loop;

procedure Display-Functions is

end Display-Functions;

procedure Main is

begin

Command-Loop;
if (Opt U Found = True) then - -

Displayfunctions;
c

end Main;

In view of the differences in design methodologies, it follows
that if the translation does not include the methodologies, then
the work is only partially complete. A translation without the
design methodology is not a true representation of the target
language's environment. It is therefore not possible to re-target
software correctly by direct translation if the design
methodologies are not considered in the work.

2.3 Differences And Incompatibilities In Lansuage Implementations

F.3.7.6

Discrepancies and incompatibilities between different computer
languages mean that what is considered as an acceptable programming
practice in one may not be permitted in another. C has weak typing,
which means that unless it well enforced, most data types can take
on any values assigned to them. If the program is to be properly
translated to Ada, then a number of conversions and data checks
must be included to restrict the values assigned to variables. This
is needed to accomodate the differences between C's weak typing
versus Ada's strict typing requirements.

The strength in Ada's requirement for strict typing enforces
program reliability and consistency, while C allows for greater
flexibility on the part of the programmer. The result in
accomodating the typing requirements of Ada is that the translated
version is seldom, if ever, smaller than the original. In the
translation of CLIPS to Ada, it was found that for every line of C
code, the average is generally two lines of Ada code. This does not
mean that Ada is a less efficient language compared to C, merely,
that Ada's strict typing enforces consistency and provides a more
reliable program. This is particularly important to the Space
Station since much of the software will support human lives and
also directly affect the longevity of the space station.

be corrected in the translated version is shown below:
An example from CLIPS demonstrating CIS weak typing which must

float tally = 0;

char lm;

int ten = 10;

tally = tally*lO + (lm - ' 0 ' 1 ;

The Ada version must have the following changes made:

o convert integer 10 to float

o convert data types: lm and l o ' to asc i i values

o convert the resulting arithmetic operations (lm - ' 0 ' 1
to float

o value initialized to tally changed to 0.0

tally := tally*l0.0 +
float(Character'Pos(1m) - Character'Pos('o'));

The complexity of the problem increases if the typing problem
occurs in the arguments of a subprogram call. Data conversion will
have to be made prior to actual passing of the values to the
subprogram call.

In addition to the weak typing problem, certain language
features in C which are not found in Ada have to be worked around.
This again accounts for some extra code being produced. An example
from CLIPS showing the auto increment is:

F.3.7.7

while ((atemp != null) && (++count != nnn))

versus Ada's version

while ((atemp /= null) and (count /= nnn)) loop

end loop;

count := count + 1;

Note that in this case, the lack of an auto increment or
decrement in Ada does not necessarily mean it is a slower language
at run time. Depending upon the compiler implementation, the
functionality is the same and should execute at similar speeds. The
major difference is that Ada aids readability, thus making it
easier to understand and maintain.

The extra code size may present several important problems:

o program efficiency could be sacrificed

o storage and execution speed becomes worse

o maintenance problem increase due to increased code size

Depending on where the increased code is generated source code,
code size could result in slower program execution. In a situation
where response time is crucial, such as real time execution,
anything that may reduce execution speed should be examined very
carefully to see if it could be acceptable.

For software systems that are relatively small, an increase in
size may not pose an important issue. However, as the magnitude and
complexity of the software increases, there will be a proportional
hardware demand. For example, consider a large embedded software
program occupying 100,000 blocks of disk space. Increasing the code
size by two times might exceed the remaining disk capacity. If this
rule is applied to software systems that are even larger, then
size requirements made by direct code translation may not be an
acceptable solution.

software maintenance would also grow. Issues in software
maintenance will be further examined later in this paper.

An increase in code size would also mean that the complexity of

Some of the results found in the translation of CLIPS to Ada:

Comparison of storage size for one of the files on the VAX:

original version: CL1PS.C occupies 175 blocks
translated version: CLIPS.ADA occupies 369 blocks

Comparison of code size for functions:

Excluding global data declarations, for function Rarray
the original occupies approximately 15 statements
Excluding global data declarations.
translated version occupies 26 statements.

Some factors contributing to an increase in code and storage

F. 3.7.8

size are:

o statement
others

terminators found in Ada - end if, end case and

o instantiations of generic 1/0 packages

o path names used in calls made to other packages

o absence of auto increment and decrement statements

o absence of statements with embedded functions and
statements in boolean tests, such as auto increments

Additional explanation of the reasons for the increase in code
and storage size will be discussed in the next section.

2.3.1 Possible Disresard Of The Richness Of The Tarset Lansuage

In order to translate as accurately as possible, the simple
syntax method is to equate statements found in the original with
that of the target language. This presents a disadvantage in that
much of the richness found in the target language is often ignored.
If the translation is done manually, then certain segments of the
original could be re-built to allow better usage of the target
language. The same cannot be easily applied if the work is
performed by machine translators unless semantic understanding is
also included.

Ada has a standard of 63 reserved words regardless of the
implementation versus C I S approximate 33 (including functions for
the C preprocessor). These 33 words of C depend upon the compiler,
version and host environment. Ada has, in addition, a number of
features which are not present in the standard C implementation.
They are:

o predefined language attributes

o predefined language pragmas

o predefined language environment:

o language predefined identifiers (package standard)

o utility packages such as system and calendar

o input and output packages

o ability for overloading, generics, multi-tasking, nested
generics and packages

The use of generics would drastically reduce the amount of code
found in the original, since functions with like actions but
different data types and properties can be grouped together and
placed in the same subprogram. As a generic unit, a template is
built to accommodate the function of a sub-program without specific
properties. The instantiation allows the properties to be set to

F.3.7.9

the generic package.
While C allows for greater flexibility in usage, the richness

of Ada permits better control, reliability and flexibility in the
programming environment. For example, in order to recover from run-
time errors, the C program will have to simulate what Ada naturally
does in its ability to raise and handle exceptions. A direct syntax
translation would result in having a simulation of run-time error
recovery in Ada, which ignores what the language is equiped to
perform naturally.

An example taken from CLIPS is:

if (notstate == 0)
{
if (btemp == NULL)

1 L
htemp -> locals = valuescopy(1ine->locals);

If the power of Ada is exploited correctly, then the structure
above could be combined, yet simplified as follows:

if (Notstate = 0) and then (Btemp = null) then
Htemp.Locals := Valuescopy (Line.Locals) ;

It should also be noted that since Ada data types are not case
sensitive, then capitalization of the variables could be used to
improve readability, and so provide better maintainability.

completely in direct translation. The increase in code and storage
size of the translated version is in no way an indication that the
original host language is a better software tool. The same rule
applies if the execution speed of the target language is reduced.
It does not mean that Ada is a less efficient language, merely that
it is not exploited fully.

The full power of the target language is seldom exploited

2.3.2 Pcssible Inaccuracies And Discrepancies Between Lanquaqes

Translation of language syntax is generally a very mechanical
process. To equate accurately, it necessary to consider the
semantics of a program, which is a much more difficult task.

The difficulty of the problem of correct semantic translation
increases with the magnitude and complexity of the software. In
addition, if the source in the original is poorly written and has a
very confusing implementation, the chances of a misinterpretation
increases. The main software issue is the program's reliability,
accuracy and correctness. If the semantics are misconstrued in a
subtle area that is difficult to detect, then locating and
debugging the logic problem would be equally difficult.

The differences and restrictions in language implementation are
a major cause of discrepancies in translation. For example, C
permits recursion for the arguments in a function call since the
values passed into the function can be changed. In contrast, the
parameters in Ada must be of a formal type, and changes to those
values are not allowed. To work around this problem, the translator
must decide whether to declare the values that are changed in the
function as global data types or convert it into a procedure. If
the values are changed into global data types, then the issues of

F. 3.7.10

localization and modularity are raised. In addition, care must also
be taken to ensure that those global values are correctly
initialized, changed or kept at each call. If the values are not
traced correctly, then the program execution may not function as
originally designed or there will be a set of global values created
at every subprogram unit that makes a call to that function. If a
function is converted into a procedure, then the calling process
made by the subprograms will have to be changed.

arguments in a function as follows:
An example from the CLIPS demonstrating the changes made to the

Any(code, values)
int code;

if (values->whoset == code)

else
values = values->next;

ret = -1;

return(ret);

Note that in C the arguments of a function are value
parameters. It can, however, perform as a variable, formal or value
parameter. Ada strongly enforces the type of parameter used, which
is defined in the subprogram arguments. For example:

push (first, second, third)

versus Ada's parameters

procedure Push
(First : in Integer;
Second : in out Float;
Third : out Boolean) ;

This ensures program reliability and consistency, as values
passed in are restricted to performing within the scope of their
declared type. The simple solution in translating from C to Ada is
to have all arguments declared as value parameters. In translating
the C code to Ada, unless checks are made to determine if the
arguments passed perform as a variable, formal or value parameter,
this particular strength in Ada will be ignored.

C is a case-sensitive language. A data type with the same name but
written in upper-case is a different variable to that which is in
lower-case. Caution must be taken to ensure that data types with
the same names but different cases be given different names. In
addition, variables in C may be reserved words in Ada. The
translator must be able to identify these and assign meaningful
substitutes.

Another possible semantic problem in direct translation is that

Examples taken from CLIPS to the problem above is shown below:

struct element *out;

while (out != NULL)

extern struct internode *AGENDA;

struct internode *agenda,*step,*past;

F.3.7.11

out = out->next; AGENDA = agenda;

In example (1) a compilation error would result if the
translation process does not substitute a different name to the
data type - "out". The data name ''out" is an Ada reserved word and
cannot be used as a variable name.

Example (2) can have unpredictable results, depending on the
translated version. Since Ada is not a case sensitive language, the
translated statement could really be doing nothing, unless a change
is made to either one of the two object names - "AGENDA'' or
"agendat1.

The ability of C to include function calls in test statements
further complicates the translation process since a patch must be
used to adapt to Ada's language requirements. Temporary variables
must be used in order to obtain the values required for the boolean
tests prior to the execution of the statements. Again, the issue is
not that Ada is a less efficient language, but that it enforces
program readability for better maintainability. An example from
CLIPS shows the problem:

if ((any(go,list) == -1) && ((second == -1) 1 ;
I (any(second,list) == -1)))

while an Ada patch solution would be:

First - Value, Second-Value : Integer := 0;

First-Value := Any (Go, List) ;
Second-Value := Any (Second, List 1;

if ((First Value = -1) and
(Second-= -1) or

((Second-Value = -1))) then

Bit manipulation [6,71 is another area that Ada does not
directly support, but is present in C. The translator must be able
to use an Ada implementation of the compiler that can perform a
representation of the size of the bit used. There are also bit

in order to translate correctly and accurately. Note that this
problem did not arise in the translation of CLIPS as there was no
bit manipulation used.

direct translation. For example, problems arise when the original
implementation performs systems calls using operating system
dependent control languages such as IBM JCL,DEC BLISS and DCL.
Problems occur also when the target language does not contain the
necessary interface features. Direct code translation is thus
dependent upon the implementation capabilities of the target
language and its host environment.

I manipulation operators in Ada similar in C. A patch must be found

In certain cases it may not even be possible to implement a

2 . 4 Maintenance Costs May Well Exceed Savinqs Made in Translation

I F.3.7.12

f

The quality of the simple syntax translation is at best
equivalent to the original. In most cases it is inferior to that
of the original. The reason is that direct translation copies over
the raw design and implementation of the original. If the source
code in the original is unstructured, cryptic and consists of
meaningless data names, then the translated version would bear the
same resemblance. As the old saying goes, "Garbage in, Garbage
out". Just because a program is translated to Ada does not
automatically make it a good program. In addition, the increase in
code to patch some of CIS weak typing serves only to complicate
the task of maintaining the software.

will be hard to translate or re-design correctly, Ideally, the
person who wrote the original code should also have been trained
in the target language. For example, the best person to write C
code would be an Ada programmer who knows C. A programmer who has
experiences with a more evolved language such as Ada, will write
better C than one who knows just c.

An example an equivalent translation from CLIPS is:

if (((element->state == ' 0 ' 1 I ! (element->state == 'nt)) & &
(element->type != FCALL) && (element->type != COAMP))

In any language, if the original has poorly designed code, it

{

if (element->name == list->name)
{
go = 0;
pkg = 0;
if (element->type == NUMBER)

if (element->ivalue != list->ivalue)
stop = -1;

The translated version in Ada is shown following:

(element.type /= FCALL) and (element.type /= COAMP 1) then
if (((elementostate = l o ') or (element.state='nI)) and

while ((list /= null) and (stop = 1) and (go = 1)) loop
if (elementoname = 1ist.name) then

go := 0;
pkg := 0;
if (element.type = NUMBER) then

if (element.ivalue /= 1ist.ivalue) then
stop = -1;

Note that the code and structure characteristics present in
the original can also be found in the translated version. These
are :

o meaningless, cryptic object names

o lack of capitalization standards for readerability

F.3.7.13

o poor structures and language usage

Code from CLIPS that has data types with meaningless names like

In the simple syntax translation of CLIPS to Ada, the general

jill, jack, junk, grab and has no documentation, will produce a
translated version with the same characteristics.

results obtained were that the translated version was worse than
the original. It is at best an Ada program written in C
methodology, with Ada structures looking like C structures. A
simple syntax translation of bad C code will produce bad Ada code.
However, this does not mean that good C code will produce good Ada
code, since much of the wealth of Ada is ignored. This defeats the
purpose of the translation to Ada, which is supposed to improve
maintainability and reliability. If the software lacks quality, it
cannot be easily built on, understood, modified and most important - maintained.
2.5 Summary

In view of today's rising software costs, where the bulk
(80% - 90%) of the expense lies in maintenance and operation,
direct translation may not be the best alternative in extending
the versatility and life span of a software system. It is at best
a patch and at worst an expensive solution when maintenance is
considered.

3 DIRECT TRANSLATION VERSUS
RE-WRITE AND RE-DESIGN OF COMPUTER SOFTWARE

3.1 An Evaluation Of Direct Translation

Simple syntax code translation may not be the ideal solution
to a difficult and complex problem. Yet it is not a totally
useless approach since there are certain values that are tied to
the process. For example, if the program is relatively small,
simple, and has a limited life span and usage, then translation
may well be the best approach. In certain cases, where a design
document is not present, a translation may be a possible method
used to build a prototype for study purposes prior to the actual
re-write of the entire software.

generally limited to small and simple programs. The cost of human
re-writing and re-design is best served in real-time code where
performance is critical. In the translation of CLIPS, it was found
that the time spent in the translation process was almost
equivalent to that used in the original implementation and was
thus self-defeating.

Simple syntax translation should be avoided if the target
environment has a very different design methodology. It can be
strongly considered if the target is a different host machine or a
new version of the same language and design methodology.

Because of the expense involved, human translation is

3.2 An Evaluation Of Re-Design and Re-Write

The re-design and re-write approach should be strongly

F. 3.3.14

considered if a well documented design along with the specification
exists. The original types of methodology used may be incompatible
with the target , but it may be converted and adapted to the
requirements of the new design methodology. The reason is that if
the design is clear and well documented, it can be easily
understood, worked upon and modified to fit any methodology. Coding
is a relatively simple and mechanical process if a good design
exists. The most difficult work involved in the development of any
software is still the early phases of the life cycle. If a design
exists, it can be studied, the weaknesses can be avoided in the
implementation, and the strengths enhanced further.

The only part of software that can be transparent to all
languages and host machines is the design and its' specifications.
Once the design is converted to suit the requirements of the new
methodology, it can be ported to the new target language and host
machine. "Re-inventing the wheel" can be avoided only if a design
is present.

3.3 Summary

Simple syntax translation or re-design and re-write are
alternatives that can be used, but these have to be carefully
considered before either one is adopted. Re-design and re-write
should be strongly considered if a design is present. Translation
may be considered if the goal is to port the software to a
different host machine or up-date the software.

Considering the fact that neither of the two approaches is
exactly easy to adopt, a few possible alternatives can be taken
into account. These are:

o interface the original with Ada

o implementing the new software in Ada and port the data
produced by the old software to be processed in the new
environment

Interfacing Ada with other languages can be done using the Ada
language's predefined pragma INTERFACE. Consideration should be
given to the possible restrictions due to the different
implementations of the compile. The reason being that this pragma
is an implementation feature dependent upon the Ada environment.
Certain implementations may allow for full usage, while others may
be used partially and some none at all [6 1 .

In cases where the host hardware is out-dated and an Ada
compiler may not be available or an interface with the target
language cannot be made, then it may be advisable to use the old
software to generate the data. Any additional processing that is
not dependent on the old software may have the new implementation
developed in Ada. The data generated can be ported and executed in
a new host environment.

Conclusion

Direct code translation or re-write
the only available solutions. There are
easy solutions to the problem. In terms

and re-design may not be
basically no cheap and
of today's need to reduce

F.3.7.15

the cost of software maintenance, plus the greater importance of
software reliability, it may be much better to rebuild the entire
system correctly. The advantage is that the faults and weaknesses
are known and can be avoided. A better, more reliable software
system can be built in place of the original.

Acknowledqements

Support for this work was provided by NASA Contract NAS9-17010,
Task No. B13.C

References

I 2.

3 .

I
4 .

6.

7.

8.

9.

Giarratano, Joseph, Foundations of Computer Technolouy, pub. by
Howard W. Sams, 1982.

Douglas T. Ross, Hohn B. Goodenough, C.A. Irvine, IISoftware
Engineering: Process, Principle, and Goals" Computer, May 1975.

B. W. Boehm, J. R. Brown, M. Lipow "Quantitative Evaluation of
Software Quality", Proceedings of the Second International
Conference on Software Engineering, pp. 592-605, 1976.

Grady Booch, "Object Oriented Development" IEEE Transactions
on Software Engineering, Vol. SE-12, No. 2 February 1986.

J. R. Cameron, Vwo Pairs of Examples in the Jackson Approach
To System Development" Proceedings of the 15th Hawaii
International Conference on System Sciences, January 1982.

Donald G. Martin, IINon-Ada to Ada Conversionff, Journal of
Pascal, Ada, & Modula-2, Vo1.4, No.6, pp. 36-40 (1985).

Douglas L. Brown, From Pascal To C - An Introduction to the C
proqramminq Lanquaqe, Wadsworth Publishing Company, 1985.

Girish Parikh, The Guide to Software Maintenance Winthrop
Publishers, Inc, 1982.

Ian Sommerville, Software Enqineerins Addison-Wesley
Publishing Company, 1985.

10. Mark W. Borger, "Ada Software Design Issues'' Journal of
Pascal, Ada, & Modula-2, Vol. 4, No.2, pp. 7-14, 1985

F. 3.7.16

N89-16365 -
REEOSTING AND RETARGETING AN Ada COMPILER

A D E S I G N STUDY

Ray Robinson

Harris Government Systems Sector, Software Operat ion

The goa l of t h i s s tudy was t o develop a p l an f o r r e h o s t i n g
and r e t a r g e t i n g t h e A i r Force Armaments Labora tory /Flor ida
S ta t e Un ive r s i ty Ada cross-compiler. Th i s compiler was
v a l i d a t e d i n September, 1985 using ACVC 1.6, is w r i t t e n i n
Pascal, is hos ted on a CDC Cyber 178, and is t a r g e t e d t o
(i.e.8 produces code f o r) an embedded Z i log 28002. The
s tudy was performed t o determine t h e f e a s i b i l i t y , cost8
time, and t a s k s required t o r e t a r g e t t h e compiler t o a DEC
VAX 11/78x and r ehos t it t o an embedded U . S . Navy AN/UYK-44
computer .
Major t a sks i d e n t i f i e d dur ing t h i s s tudy were r e h o s t i n g t h e
compiler f ront-end, r e w r i t i n g t h e back-end (code g e n e r a t o r) ,
t r a n s l a t i n g t h e run-time environment from 28002 assembly
language t o AN/UYK-44 assembly language, and developing a
l i b r a r y manager. The Navy's MTAsS/M so f tware development
too l set, which is c u r r e n t l y used t o develop FORTRAN,
CMS-11, and assembly programs f o r t h e AN/UYK ser ies , will
provide an assembler, a l i n k e r - l o a d e r t and a s imula to r .
Reuse of t h e s e three t o o l s reduces t h e p r o j e c t ' s c o s t by a t
l eas t a f a c t o r of two and e l i m i n a t e s t h e r isk a s s o c i a t e d
w i t h developing them.

The r e s o u r c e s required t o r ehos t and r e t a r g e t t h e compiler
were es t ima ted a t nine people for f i f t e e n months, f o r a
t o t a l of 135 months of e f f o r t . The product of this e f f o r t
w i l l be an Ada cross-compiler which passes t h e ACVC 1.6
v a l i d a t i o n tests. The unpred ic t ab le c o s t of v a l i d a t i n g t h e
compiler using the l a t e s t v e r s i o n of ACVC is n o t i n c l u d e d i n
t h i s estimate.

The au tho r was t h e t e c h n i c a l l e a d e r of t h e r e h o s t / r e t a r g e t
s tudy and is c u r r e n t l y involved i n t h e development of t h e
Tester Independent Software Support System (TISSS) . H i s
educa t ion i n c l u d e s a B.S. i n Engineer ing from U.T.
Chattanooga, a M.S. i n Chemical Engineering and a M.S. i n
Informat ion and Computer Science from Georgia I n s t i t u t e of
Technology, and work i n p rogres s l e a d i n g t o a M.S. i n Space
Technology from F l o r i d a I n s t i t u t e of Technology.

Ray Robinson
505 John Rodes Blvd., Bldg. 1
Melbourne, FL 32902
(305) 242-5678

F . 4 . 1 . 1

Considerations for the Task Management Function of
the NASA Space Station Flight Elements' Operating

System Software

Larry Fishtahler
Computer Sciences Corporation
Silver Spring, Maryland 20910

This is a late paper. The author will provide copies at the
conference.

F.4.2.1

The TAVERNS Emulator: An Ada simulation of the Space Station

Data Communications Network and software development environment

by Dr. Norman R. Howes

Introduction.

The Space Station DMS (Data Management System) is the onboard component of
the Space Station Information System (SSIS) that includes the computers, net-
works and software that support the the various core and payload subsystems of
the Space Station. Although some of the DMS software runs in the subsystem
computers, the subsystem computers themselves are not considered to be part of
the DMS. Also, the applications software that is specific to a subsystem
(e.g., the Communications and Tracking Subsystem) is not considered part of the
DMS.

The various core subsystems (there are 22 of them) are to be implemented on
Standard Data Processors (SDPs). This does not imply a standard computer has
already been selected for this role but that all subsystem computers are to
have the same instruction set architecture (ISA). It is also possible that a
single SDP may host more than one subsystem. A diagram of the DMS together
with the various subsystems is shown in Figure 1.

Figure 1 shows each SDP connected to a Core or Payload network via a Network
Interface Unit (NIU). The NIU is itself a computer, probably with the same ISA
as the SDP. The NIU hosts the Network Operating System (NOS) component of
the DMS. On the other hand, the SDP hosts the application software for one or
more subsystems. The SDP has an operating system (OS) of its own that is some
times referred to as the local operating system (LOS).

A great deal of the DMS software resides in the SDPs. Those parts of the DMS
software that provide the file management capability and the data base manage-
ment capability are examples of DMS software that resides in the SDPs. Most of
the DMS software that supports the actual transmission of data (both datagrams
and virtual circuit transmissions) resides in the NIU and is referred to in gen-
eral as the NOS.

The Ada packages of services available to the core or payload application pro-
grammer for (1) network communication, (2) file management, (3) database manage-
ment, (4) data acquisition and distribution and (5) crew workstation services
are documented in the DMS Test Bed Users’ Manual (NASA/JSC No. 22161).

F.4.3.1

1

1 I PAY LOAD PAY LOAD

pq - . -
CORE ff'RK

I 1

. . . BRIDGE

I I -I-- L_r_J
N I U . . . N I U

I

Figure 1

I The TAVERNS Concept.

TAVERNS is a distributed approach for development and validation of appli-
cation software for Space Station. The acronymn TAVERNS stands for Test
And Validation Environment for Remote Networked Systems. The TAVERNS
concept assumes that the different subsystems will be developed by different
contractors who may be geographically separated.

I

In this approach, each software development contractor for the station will be
provided with a miniature version of the Space Station DMS complete with three
SDPs. One of the SDPs is for developing the subsystem software, one hosts the
Displays and Controls software and the third hosts a simulation of the network
core subsystems (e%., ECLSS, C&T, CN&C, etc.) and the network loads. A diagram
of such a TAVERNS DMS Emulator is illustrated in Figure 2.

I The SDPs and NIUs on this mini Space Station DMS will host the same Serv-
ices as the real DMS, so to the applications programmer, it will appear that
the entire Space Station DMS environment is present. In turn, these TAVERNS
systems will be interfaced with the Space Station SSE (Software Support Envi-
ronment) and there will also be a TAVERNS on the station. In this way, soft-
ware can be developed and checked out by different contractors at different loc-
ations. Com2Ieted and tested applications can then be transferred to the SSE
for validation.

F . 4 . 3 . 2

I 2

After an Initial Operational Capability (IOC) has been achieved for the Sta-
tion, new validated software modules can be transmitted to the station where
they will be revalidated on the onboard TAVERNS before being placed in service.

T A V E R N S

SIMULATED LOADS DEVELOPMENT DISPLAYS & CONTROL
DYS SERVICES USER AlwcATKms DISPUY DRIVERS
CORE SuBmsmM USER NEWACE
NlWoRa LOADS

Figure 2

The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD
VAX in Building 16A. The software services described in the DMS Test Bed
Users’ Manual are being emulated on the VAX together with simulations of some
of the core subsystems and a simulation of the DCN. The TAVERNS Emulator
will be accessible remotely from any VAX that can communicate with the ASD
VAX.

The purpose of this simulation is to (1) test the functionality of the DMS Ser-
vices as documented in the DMS Test Bed Users’ Manual, (2) provide a DMS
software environment that is consistent with the one described in the Users’
Manual where subsystem test bed developers can attempt to interface their sub-
systems with one another and (3) provide an environment where the TAVERNS
concept itself can be evaluated and improved.

Ada features of the TAVERNS Emulator

Purposes (1) and (2) above are of special interest to the software engineer or
programmer who will be designing or coding programs in Ada. In a way, the DMS
Services as described in the Users’ Manual can be thought of as an extension of
the Ada language for distributed applications. These services are actually pack-
ages of utilities (subprograms or tasks) for performing certain operations such

F . 4 . 3 . 3

3

as transmitting a message from one subsystem to another or opening a file at a
remote node (subsystem) and reading records from it.

These utilities are not only written in Ada but their intent is to operate on
Ada data structures in a transparent manner. For instance most data communica-
tions networks with which anyone has any experience only allow a user to trans-
mit data in a single predefined format such as in ASCII or binary packets. These
packets may be as small as a single character as with asynchronous communica-
tions or a large binary block as with synchronous communications. On the other
hand, when using an object oriented language like Ada what one would like to do
is transmit an entire Ada object without first having to convert it into an
ASCII or binary string.

The DMS Test Bed Users' Manual describes Ada oriented utilities such as this
for transmitting Ada objects, writing Ada objects to remote files, etc. In
fact, the Users' Manual describes even higher level services that use various
Ada objects. For instance, one of the most frequently needed communications cap-
abilities for the Space Station core subsystems is a request to read a set of
measurements. By a measurement is meant the reading of a certain sensor (such
as temperature or pressure) or the determining of the state of something (such
as a valve being open or closed).

For most applications more than one measurement needs to be read at a time. The
DMS provides a service for assigning logical "set names" to a set of measure-
ments and a service for requesting the reading of a whole set of measurements
by issuing a single command. When such a request is made, the DMS returns all
of the readings in an Ada structure that depends on variant records that is op-
timized for this application and is independent of the Ada types that corres-
pond to the various measurements in the measurement set. Furthermore, not all
the measurements in the set have to be located at the same node on the network.

The Ada Simulation

The Ada simulation is being designed to run in a single VAX with access from
another VAX. The intent here is for the VAX in which the simulation runs to
represent all of the TAVERNS system except the SDP node and the other VAX
represent the SDP. The user of the TAVERNS Emulator can develop Ada code
on any VAX and then link to the TAVERNS Emulator VAX via the simulated
DMS Services thereby simulating the way a contractor would develop Space Sta-
tion applications software on the SDP node of a TAVERNS system. A diagram
of the Ada simulation is shown in Figure 3.

The Ada simulation is being developed in two phases. The first phase configu-
ration is shown in Figure 3. The first phase consists of a demonstration in

F . 4 . 3 . 4

4

which the user's only participation is that of responding to prompts on the dis-
play. In this configuration, the display handler software consists of the Ada
procedures that control the menus from which the user chooses options during
the demonstration and the various screens the user sees as part of the demon-
stration.

USER VAX ASD VAX

SIMULATED SDP

Figure 3

SIMULATED DCN &
SUBSYSTEMS

For the most part the DMS Services software maps the various DMS service
commands onto the appropriate VAX VMS or DECNET service or combin-
ation of services'to accomplish the specified DMS service. Where no exist-
ing combination of VAX services will accomplish a DMS service the neces-
sary Ada subprograms are being developed.

The simulation software that runs in the ASD VAX is based on deterministic
models of three subsystems for the first phase demonstration. These are the
Communications and Tracking (C&T) Subsystem, the Environmental Control and
Life Support (ECLS) Subsystem and the Mass Memory Management (MMM)
Subsystem. The C&T and ECLS subsystems are modeled as a set of meas-
urements. During the demonstration the values of the measurements change
in accordance with a predetermined algorithm. The MMM subsystem is modeled
as a set of data structures that relate which files belong to which subsystems
and how files are related to each other through directories.

The demonstration consists of prompting the users for which sets of measurements
the user wants to see displayed; using the DMS Services to request a reading
of these measurements across the network (across the physical network between
VAXs), to reply to the request at the other end of the network and to build the

F . 4 . 3 . 5

5

display in response to the user's request; and using the DMS Services to handle
the supporting file management functions (the globally known measurement names
are stored on a remote file). This last feature may seem a bit contrived as it
was incorporated into the demonstration in order to insure that the function-
ality of the distributed file handling services of the DMS were tested. In the
real DMS the globally known names may well be stored at every node.

The second phase of the simulation will consist of a set of transportable Ada
packages for the user's host VAX that will enable the user to call the DMS Ser-
vice utilities from user written application programs. The user's requests for
remote services will be transmitted to the Ada simulation running in the ASD
VAX for servicing. In the second phase simulation, the user's host VAX will
appear as a node on the DCN and requests for local services will be considered
to be remote since the simulation will only reside in the ASD VAX and not a re-
mote user VAX.

Datagram Service Simulation

The Datagram Service is simulated on the VAX using six Ada tasks as shown in
Figure 4. Three of these tasks run in each of the two VAXs involved in the
sirnulation. Task SEM is a semaphore that controls access to the underlying
DECNET network "file" (DECNET looks like a file to an Ada subprogram or task).
Tasks INQUEUE and OUTQUEUE continually pass a token back and forth
across DECNET until one of the OUTQUEUE tasks has a datagram to trans-
mit. When this task gains possession of the token it transmits its datagramls)
and then goes back to circulating the token.

The simulated Datagram Services such as SEND or RETRIEVE are procedures
that either place a datagram in an outgoing queue or fetch one from an incoming
queue. The datagram service supported by the simulated DMS services is a very
Ada oriented service in that the datagrams themselves are Ada objects that are
prefaced by a header that contains the transmission parameters.

Package DATAGRAM is a generic package that a user of the Datagram Services
instantiates for each different Ada object to be transmitted. At the receiving
end, the type of object being transmitted can be determined by first examining
the header.

The format of the SEND command for datagrams is:

SEND(MESSAGE,ADDRESS); or SEND(MESSAGE,NAME);

where MESSAGE is the datagram to be transmitted and ADDRESS is the logical

F.4.3.6

6

network address of its destination. When the alternate form of the command is
used, the parameter NAME is the name of a list of addresses to which the data-
gram is to be sent. The simulated Datagram Service supports a multicast cap-
ability for selectively sending datagrams to a list of predefined addresses.
The command for assigning a logical name to a list of addresses is the MULTI-
CAST command and its format is:

MULTICAST(N AME,AddressList);

where NAME is the name to assign to the list of addresses and AddressList is
a linked list of addresses. A broadcast capability to all nodes on a given LAN
or to all nodes on the network is provided by supplying a "broadcast address"
in the first form of the SEND command shown above. The ability to scan the in-
coming datagram queue for messages with a specific combination of transmission
parameters (e.g., priority, time-tag, etc.) is provided by the SCAN command
which returns the message count (number of messages) with this combination of
transmission parameters.

OUEUE DECNET OUEUE
'FILE'

OUTOUEUE - H i / - . -.-.-.- ..-_.

!
!

IWOUEUE

Figure 4

OUEUE

A message can be physically retrieved from the incoming queue using the RET-
RIEVE command. The RETRIEVE utility provides selective retrieval for a speci
fic combination of transmission parameters or it can be used without parameters
to retrieve the highest priority message in the incoming queue.

F . 4 . 3 . 7

Virtual Circuit Service Simulation

When the information exchange between subsystems of the DMS must simulate a
continuous dialogue over a physical circuit or when near real time transmissions
are necessary it is usually more efficient to establish a "virtual circuit"
between the subsystems. Some of the advantages of a DMS virtual circuit are:

(I) the routing information (source and destination address) does not,

(2) network bandwidth is reserved for the dialogue, insuring a certain

(3) messages are always received and handled in the same sequence they

have to be provided to the NOS for every transmission,

maximum transmission delay and

are transmitted.

The simulation of the virtual circuit capability on the TAVERNS Emulator is
very similar to that of the datagram service. The main difference is that ded-
icated incoming and outgoing queues are established for each circuit in both the
subsystem requesting the connection and the subsystem being connected. The other
main difference is that virtual circuit traffic is "multiplexed" over the DEC-
NET connection to simulate the reservation of bandwidth but the ability to as-
sure a maximum transmission delay of the order of magnitude anticipated for near
real time communications on the station is not possible using DECNET when other
users are on the system.

To establish a connection (virtual circuit) an Ada subprogram or task calls the
CONNECT procedure and to deallocate a circuit (and its associated queues) the
DISCONNECT procedure is used. Once a connection is established the connected
Ada subprograms can transmit and receive using the XMIT and RECV commands
whose formats are:

XMIT(MESSAGE,CIRCUIT); and RECV(MESSAGE,CIRCUIT);

where MESSAGE is the Ada object to be transmitted and CIRCUIT is the circuit
number assigned to the virtual circuit by the NOS at the time of connection.
The Ada procedures that provide the virtual circuit capability are contained in
the generic package VIRTUAL (this does not include the connection service). An
Ada subprogram using the virtual circuit capability must instantiate a version
of this package for each different Ada object that will be transmitted.

Data Acquisition and Distribution Services Simulation

The DMS Data Acquisition and Distribution (DAD) Service is layered over the
datagram and virtual circuit services provided by the DMS. Which of these un-
derlying services is used depends upon whether the usage of the DAD service is

F . 4 . 3 . 8

8

periodic or not (as will be explained below). As previously mentioned, one of
the key features of the DMS Services is the ability to request readings of sets
of measurements. The simulation of this service in the TAVERNS Emulator is
based on the following (simplified) Ada measurement object defined by:

type MEASUREMENT(REP RepType; dl, d2, d3: positive) is
record

NAME: string(1 . . 15);
case REP is

when FLOATPNT
when FIXEDPNT
when TEXT => TXT : string(1 . . dl);
when FLOATARRAY1 => FVAL1: FLTARRAYl(1 . . dl);
when FLOATARRAY2 => FVAL2: FLTARRAY2(1 . . dl, 1 . . d2);

=> FVAL : float;
=> IVAL : integer;

end case;
end record;

where the discriminant REP is a variable of the enumeration type RepType
that includes an entry for each data structure that the Data Acquisition and
Distribution (DAD) Services supports and where dl, d2 and d3 are parameters
that indicate the size of arrays, strings, etc. to be associated with a meas-
urement as i t s "value".

Measurements are known globally by their NAME which is recorded in the
NAME field of the MEASUREMENT variant record object. Each measurement
is owned by some subsystem and this ownership is known to the DMS Services.
The value of a measurement is stored in the variant part of the MEASURE-
MENT record object and can be of any type for which a corresponding entry in
RepType exists. The enumeration list for RepType shown above is only rep-
resentative as many of the types are yet to be determined.

The package DATAREQUEST contains the procedures for preparing a request
message for transmission. They are REQUEST, MAKESET, GETSET and
READNEXT. The MAKESET procedure associates a name with a list of
measurements. The format of the MAKESET command is then defined by

MAKESET(SetName,Measuremen tlist)

where SetName is the name to be assigned to the measurement set and Measure-
mentList is a list of measurement names. The REQUEST command requests the
reading of a set of measurements. The format of the REQUEST command is:

REQUESTISetName) or REQUEST(SetName,PERIOD)

F . 4 . 3 . 9

9

The second form of this command utilizes the PERIOD parameter which is a req-
uest for a periodic reading of the measurement set every PERIOD seconds where
PERIOD The following steps outline
the requesting procedure.

is a non negative floating point number.

(1) call the MAKESET procedure to create the named measurement set,
(2) call the REQUFST procedure to request the reading of the set,
(3) call the GETSET procedure to obtain the set name of the next meas-

urement set that has been successfully processed as a result of a
previous REQUEST and

(4) use the STATUS parameter of the GETSET command to determine if the
reading of a set has been completed.

The format of the GETSET command is:

GETSET(SetName,STATUS,TIME)

where SetName is the name of a previously requested measurement set whose
processing has been completed at the time returned in the TIME parameter.
Once a set name is obtained from the GETSET utility, the measurements in
the set can be read using the READNEXT procedure whose command format is:

READNEXT(SetName,MEAS)

where MEAS is of type MEASUREMENT. To use the measurement’s name as
an operand is straightforward since i ts type is known to always be a 15 char-
acter string. To perform an operation on a measurement’s value, however,
involves examination of the discriminant of MEAS since MEAS is a variant
record. The STOP command is used to stop an active periodic REQUEST. The
format of this command is:

STOP(SetName).

The DATAREPLY package provides the necessary procedures to be used in res-
ponding to a REQUEST. These utilities are: REPLY, SETNAME, NEXTNAME,
and WRITENEXT. They are similar in nature to the utilities provided
in the DATAREQUEST package.

F. 4.3.10

10

,
c

A STUDY OF THE USE OF ABSTRACT TYPES FOR THE
REPRESENTATION OF ENGINEERING UNITS IN

INTEGRATION AND TEST APPLICATIONS

Charles S. Johnson

ABSTRACT

Physical quantities using various units of measurement can
be well represented in Ada by the use of abstract types.
Computation involving these quantities (electric potential,
mass, volume) can also aut-atically invoke the computation and
checking of some of the “implicitly associable attributes of
measurements. Quantities can be held internally in SI units,
transparently to the user, with automatic conversion. Through
dimensional analysis, the type of the derived quantity resulting
from a computation is known, thereby allowing dynamic checks of
the equations used. Through error analysis, the precision with
which a quantity is measured can be correctly propagated into
the result of a computation involving that quantity. The output
of both measured and computed quantities can automatically be
rounded to the correct significance, and labeled with the
correct units.

The impact of the possible implementation of these
techniques in integration and test applications is discussed.
The overhead of computing and transporting measurement
attributes is weighed against the advantages gained by their
use. The construction of a run-time interpreter using physical
quantities in equations can be aided by the dynamic equation
checks provided by dimensional analysis. The overhead of
responding to measured and computed system variables in real-
time systems can be decreased in the case where only the
significant changes in data values are responded to. The
effects of higher levels of abstraction on the generation and
maintenance of software used in integration and test
applications are also discussed.

INTRODUCTION

Data abstraction should, in the near future, become the
most important tool used in the Ada development of replacements
to current systems functioning in the area of Integration and
Test (I t T) . This importance stems from the urgent need to
maintain Test Procedure/ Test System Independence. This
independence promotes both the reusability of Test Procedures
and the possibility of modifying physical device information in
the Test System, at run-time, without affecting procedures using
logical access methods. This is necessary to decrease turn-
around time due to modifications of the Test System/ Test
Article hardware configurations.

F.4.4.1

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)
System, which is the I & T subset of the User Interface Language
(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the feasibility of supporting the abstract
data types used in I & T, specifically, engineering units. The
Ada environment used was that of VAX Ada under VAX/VMS.

SYSTEM CONCEPT

There is a direct correlation between the effectiveness of
computer systems and the fidelity with which objects in those
systems simulate the behavior of the external phenomena that
they are intended to represent. [l] The definition of objects
is then akin to a simulation effort: complete with objectives
outlining progress towards simulation goals, and constraints
which limit the scope of the effort.

The goal of object definition for measurements and
quantities used in Integration and Test applications is to
create objects representing the physical quantities that are
measured, tracking a magnitude for the quantity, and the type of
quantity. The quantities (VOLTS, METERS/SECOND, PSI) should
interact with other quantities in the same way that real
physical phenomena do:

V = IR
PV = nRT

In other words, arithmetical operations
quantities correctly into new quantities.
useful if the creation, input, and output

should convert the
Also it would be

of those quantities
could be performed using any unit or scaie of measure (length in
METERS or MICRONS or CUBITS). It would be nice, as well, to know
the precision with which a measurement was made, so that it can
be determined if it represents a significant change from the
last measurement. That precision, or measurement error, should
propagate correctly during computation as well.

The objectives which mark progress towards these goals can
be established. The quantities and units should be easy to
define and use. The quantities should convert correctly upon
input in different units. The quantities should convert
correctly upon computation, and if the resultant quantity is of
the incorrect type, an exception should be created, because the
equation is incorrect (or the result type is wrong). Precision
should be computed correctly for the different arithmetic
operations. Finally, if the wrong units are selected for input
or output, an exception should be generated.

The constraints which confine the scope of the effort can
be defined. It is important that the support of the
features of the system should not incur excessive system

F.4.4.2

processing or storage size overhead, because too much time and
space costs money (space less than time these days). Tne
resulting packages should not be too complex, relying instead on
algorithms and structures that are just complex enough to create
a useful result. Lastly, the development should be constrained
against passing the point of diminishing returns. If a
feature is difficult to implement and yields little in tangible
results, it should be forgone.

PHYSICAL QUANTITIES

The tracking and converting of types of quantities is
simply and efficiently d o h in computer programs by dimensional
analysis. [2] This involves some fairly simple physics, f o r
example, the average acceleration of a body can be computed by
the equation:

Average Acceleration (m/s2) = Change
Time of Change (s)

which uses the units m = meters and s = seconds. The average
force applied to the same body can be computed by:

Average Force (N) = Mass of Body (Kg)
* Average Acceleration (m/s2)

which uses the units N = newtons and Kg = kilograms as well as
meters and seconds. What can be seen from combining the units of
these equations is the following units equivalency:

newtons (N) kilograms (Kg) * meters (m)
seconds squared (s2)

The units like kilograms, meters and seconds are called base
units, and the units like newtons are called derived units.
These are all SI units, standardized by the IS0 Resolution RlOOO
in 1969, and documented in the Le Systeme Internationale
de'Unites (BIPM), but conversions exist for all other forms of

c units as well. If a matrix of derived units versus their base
units is made, the dimensionality of derived units in their base
units can be shown (Table F.4.4-1). The newtons unit shows a one
in the kilograms column, a one in the meters column and a -2 in
the seconds column, because seconds squared is reciprocal.

This dimensional analysis can be done for most units in any
of the systems (English, CGS, etc.). Some units, however, are
truly dimensionless. An example is the decibel and the Richter
scale units, which are logarithms of ratios of units which
cancel out. Some units just do not fit into dimensional
analysis. AC circuit impedance equations do not cancel nicely,
for instance, and AC units would probably have to be defined as
dimensionless for those equations to correctly cancel. This
simple dimensional analysis, as a whole, probably deals badly
with sinusoidal phenomena.

F.4.4.3

TABLE F.4.4-1: PARTIAL TABLE OF UNIT DIMENSIONALITY

For each unit, the dimensionality is given versus each base
unit from which it is derived (meter, kilogram, second,
ampere, kelvin, candela & mol), along with the scale and
offset required (1.0, 0.0 for SI derived units).

Base Units SI Conversion

b Derived Units A a K cd mol

-1

-2
1

1

newton : N
hertz : Hz
jou1e:J
watt: W
volt : v
lumen: lm
henry:H
mo1arity:M
astron. unit:AU
footpound:ft-lb
knot: kt

fahrenheit:OF
slug

Scale, Offset

1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1.0, 0.0
1000.0, 0.0
1.4963+11, 0.0
1.356, 0.0
0.5144, 0.0
14.5939, 0.0

1

2
2
2

2
-3
1
2
1

I

1

1
1
1

1

1

1

-

S

-
-2
-1
-2
-3
-3

-2

-2
-1

7

I 1 I I I 0.5556, 255.37
The advantages of this method of tracking dimensions are

mostly in verification of physical equations used in I C T
applications. Even very complex equations involving many factors
can be analyzed. During addition and subtraction operations, the
two input quantities and one output quantity must be identical
dimensionally. During multiplication the dimensions are added,
and in division they are subtracted. If the result type doesn't
match the computed dimensionality, it is an error. Dimensions
can be stored as integers of range -20..20, and the overhead
involved in integer arithmetic and compares is probably little.

The disadvantages are that it doesn't deal well with AC
quantities and the like, which would require a complicated and
unwieldy solution, yielding few tangible returns. Also, there
are several correct dimensional solutions, any of which can be
misapplied to a problem, with no detectable dimensional error
(series/ parallel DC circuit equations).

MEASURED PHYSICAL QUANTITIES

The measurement of physical quantities always incurs a
measurement error which can be assigned to the measured quantity
at it's source, as it enters the system. This precision is key
to any analysis of the significance of the measured quantity. If
two sequential measurements of the same phenomena are obtained,

F.4.4.4

and their difference is less than the precision by which they
are measured, then there is no significant difference, and the
measurement is considered the same, experimentally. The scope of
use for measurement precision would then be anywhere, in the
system, after the conversion from raw data (counts) into
engineering units. It should be noted here, that the measurement
precision analysis discussed is different from the significant
change analysis used in the front end processing of raw Counts
in the Launch Processing System (LPS), which is a digital
process for raw data concentration to remove line jitter.

Error propagates (increases) as measurement values are
combined by physical equations to yield resultant quantities. If
the precision is an available attribute of the measured
quantity, then the precision of all computed quantities can
likewise be computed and carried along with the measurement. The
computation of propagated error from the mathematical operations
applied to quantities is shown in Table F.4.4-2. The relative-
type error, on the right, looks like it will produce many
occasions of division by zero, and is therefore not useful. The
absolute-type of error, in the center, looks to produce a divide
by zero only when the operation is a divide by zero (in error),
and seems optimal.

For quantities introduced into the system without a
measurement, such as constants, the precision input would be
derived from the number of significant digits (+/- one half of
the last digit).

TABLE F.4.4-2: FORMULAE FOR LIMITING ERROR

For the following mathematical functions: f(x, y) : given
that x and y are the exact values, a and b are
measured approximations, and the deltas for a and
their limiting errors.

their
b are

Type Of Bounds For The
Function Absolute Error

Bounds For The
Relative Error

X + Y

X-Y

X * Y

X/Y

X”

DERIVED TYPES SOLUTION

The simple object-oriented approach to measured quantities
would be to consider units to be classes of measurements, and to
make them derived types of a bask record type which would have

F.4.4.5

the components mentioned: measured value and precision, and
dimensional values. Then the combinations of these types would
be performed by defining, for example, a multiply function that
takes inputs of AMPS and OHMS and makes VOLTS. To define the
legal combinations for just a few types would be laborious,
there are just too many relationships. The simple approach is
too complex.

DISCRIMINANT TYPE SOLUTION

A solution for the representation of physical quantities
using discriminant records is pointed to in Hilfinger [3] . It is
not written exactly in Ada, though, for he presents a case for
possible changes in the language. The record discriminants are
the dimension values and the units scale factor, which would
then prevent assignment of dissimilar units of the same
dimensionality. For example, quantities in meters could not be
assigned to quantities in feet, although the dimensionality is
the same. Assignment of dissimilar constrained records is then
accomplished by the overloading of the assignment operator ":=" I

with a function that re-scales the internal value to the new
scale factor, and creates the correct and matching constraint
values.

In current Ada, however, only discrete discriminants are
legal, which disallows units scale factor as a discriminant
(because it is a real type), and the ":=" operator cannot under
any circumstances be overloaded. So it doesn't work in standard
Ada.

An attempt can be made to standardize that approach, but
there are some problems without the fixes to Ada. If the scale
value were kept as a record component, instead of a
discriminant, it will be modified upon assignment (not a
constraint anymore). This negates the ability to keep scale in
the quantity, and the quantity scaled as feet, instead of
meters .

If the scale for an engineering unit alone is kept, then
offset units, such as degrees fahrenheit (not aligned with
absolute 0 OK) cannot be used.

There is also unnecessary run-time overhead to re-scaling
every time a computation is made, and possible rounding error in
the scale, which may drift. The rounding error in the scale is
probably the reason why Ada doesn't allow it or any other real
type to be used as a record discriminant.

CLOSELY-COUPLED DISCRIMINANT TYPES SOLUTION

A further redefinition of an object can be accomplished
with differentiation [l] , when the object definition has become
too amorphous to simulate the target phenomena. Differentiation
could be considered a fine structure definition technique for
systems, whereas Object-Oriented Design or Functional
Decomposition are gross structure definition techniques.

A separation of the object definition for physical
quantities is made, into two closely-coupled objects, QUANT and

F . 4 . 4 . 6

UNIT. QUANT is the measured quantity, and UNIT is one possible
engineering unit for a quantity. They have attributes in common,
the dimensional values. They also have unshared attributes.

UNIT is a private dimensionally-constrained discriminant
record which contains the scale and offset for the engineering
unit it represents, and can have for components other
engineering unit attributes, such as the text label for output
functions, or an input prompt text.

QUANT is a private dimensionally-constrained discriminant
record which contains the measured value stored in SI units (no
re-scaling), and can have for components other measurement
attributes, such as measurement precision or identification of
source device or process.

Arithmetic interactions of real types with type QUANT
should be similar to those between scalars and vectors, only
multiplication and division being allowed for scaling the QUANT
values. Arithmetic interactions of real types with type UNIT
should be similar to those between scalars and unit vectors, and
therefore a QUANT is the outcome. Any arithmetic interaction cf
a UNIT with a UNIT or a QUANT should produce a QUANT, converting
the pure to the impure, so to speak. QUANT objects should
arithmetically combine to produce QUANT objects, of course.

With these definitions for the private types and arithmetic
functions, it is simple to define several QUANT subtypes for the
physical quantities (LENGTH, MASS, VELOCITY, POTENTIAL, WORK,
INDUCTANCE, etc.) and to define several UNIT constants (deferred
constants in the package) for the engineering units (FT, KG,
KPH, VOLTS, FT-LB, HENRYS, etc.). It should be simple to create
values for QUANT on the fly:

PIPE-LENGTH : LENGTH := 5 * FT;
GAS-CONSTANT : CONSTANT QUANT :=

8.31434 * JOULES / (DEG-K * MOLS) ;

Functions for creating new UNIT constants on the fly will
be necessary, since they cannot be produced arithmetically or
defined externally to the package. 1/0 functions for QUANT
Values will also require a UNIT constant as a parameter, for
scaling to/from SI units. A function for extracting the value of
a QUANT object as a real variable, will also require a UNIT
parameter and a conversion.

It would be possible, with a private dimensionally-
constrained discriminant record variant, to create one type by
lumping both QUANT and UNIT attributes together (one
discriminant chooses which). This, however, is an
unsatisfactory technique. With variant objects, the programmer
always has to check what he has, before he can use it. The
overhead of such checking is little, but the complication is now
pushed into the application, instead of being in the package.
This would seem to be a reversal of the purpose of abstraction.

Measurement precision could be included as a component in
the QUANT definition by the use of the absolute precision
computations listed in Table F.4.4-2. The absolute quantity

F.4.4.7

precision would then be computed into any result, like the
dimensionality and the measured value itself.

The offset component of the UNIT type, could be used for
more than just offset temperature scales (Celsius, fahrenheit) .
Any differential scale could be represented by an engineering
unit. In an example, cargo positional coordinates could be
internally held in a centralized coordinate scheme. Differential
voltages or pressure readings from sensors could also be related
to some reference point.

If the pre-defined UNIT constants were ordered into a
table, the 1/0 functions could, given a quantity of unknown
type, select an output label and scaling, or an input prompt.
This might be particularly useful in the generation of reports
or ad hoc queries, which would use computation involving
quantities and creating new quantities on the fly.

USE OF DISCRIMINANT TYPES IN GENERICS

Along with the useful constraining features of discriminant
records, comes the difficulty of matching them with generic
formal parameters. To instantiate a generic software component
with a formal parameter matching a discriminant private type,
the type must be constrained (no unconstrained types in
generics), and the type of constraint passed as a generic formal
parameter first. Then the discriminant type is passed, as a
discriminant generic formal parameter. It is fairly obvious that
most generic software will be produced, not of this type, but
using the type private, with accompanying functions of that type
(as in the generic sort function in most textbooks).

This problem can be handled, for any unconstrained
discriminant type (QUANT, UNIT) with constrained subtypes
(VOLTAGE, POWER), by declaring a non-discriminant record type
which contains the unconstrained discriminant type. To
instantiate a generic sort function, the enclosing record type
would have to be passed to the generic, for the creation of an
array type (for sorting), and an ordering function gg>88 for the
enclosing type would also have to be defined and passed.

This is somewhat of a kludge, in that the constraints do
not apply within the scope of the generic component.
Simply put, the discriminant types feature of Ada somewhat
precludes the use of generic software in a straightforward
manner

ANALYSIS OF OVERHEAD FOR USAGE OF OBJECT DEFINITION

The storage overhead can be estimated on the assumption of
bytes for dimensional integers and 4-byte floating point
representation for the measurement itself and for it's
precision. This gives a 2X storage increase for carrying the
dimensions and another 1X for the precision, up to 4X for
everything. In communications, with all of the rest of the
overhead involved in sending a measurement in a packet, this
probably is not significant (other measurement information,

F.4.4.8

status, device status, send/receive addresses, transaction ID,
packet ID, etc.) .

The computational overhead for the dimensional analysis
feature, which uses integers, is thought to be small compared to
the floating point math involved in each multiply and divide
for the measurement itself. This is thought even though there
are seven dimensional integers being added for every measurement
being multiplied (inversely for divides). Measurement adds and
subtracts simply involve comparing for the dimensions (can't add
VOLTS to WATTS).

The computational overhead for the precision feature, if
absolute error is propagated by a floating point representation,
is about 1X for adds, subtracts and the power function, 2X for
multiplies, and 4X for divides. This can be seen in the central
column of Table F.4.4-2.

ADVANTAGES OF DIMENSIONAL ANALYSIS FEATURE

The low computational overhead incurred by this feature is
more than compensated by the advantages it carries. These are in
the area of verification, validation, and run-time
interpretation support.

During the development of I & T software, the use of
constrained types to represent quantities should make possible
the verification by dynamic analysis of that software. Even the
most complex equations using dimensional variables, can be
checked for the correct and allowable combination of subtypes,
and for the return of the correct types of physical quantities.
However, this will not catch those mistaken computations which
return the correct quantity type, incorrectly computed.

The dimensional analysis method, since it is a dynamic
feature of programs using it, and not a static feature, will
lend itself well to validation of programs as well. In large I t
T applications (for example LPS), the binding of logical
measurement designation to physical device parameters is delayed
for as long as it is possible. This allows the modification
of hardware parameters with the minimum impact on the software
system. The optimum circumstance would involve run-time binding

configuration could be changed at test-time without having to
patch the system, as is done now.

In that desired situation, there will be a large separation
between the analysis of the logical nature of a program
(equations) , which would occur during development and
verification, and the physical validation of the program against
the model, or components of the Test System. As the distance
between the verification of the logical and the validation of
the logical-to-physical widens, the potential for dynamic
problems to escape unnoticed should increase. If methods for
logical verification of programs at run-time are used, such as
dimensional analysis of equations by the method proposed, the
possibility of catching these dynamic problems increases.

This problem of run-time dynamic analysis is exacerbated in
the use of I & T command languages such as the User Interface

- I of the logical level to the physical, so that the hardware

F.4.4.9

Language (UIL) and it's subset, the Space Station Operations
Language (SSOL). The commands in these languages are interpreted
at run-time, and are formulated by the user at the terminal, on-
orbit. The use of complex equations in these languages to
perform control functions is proposed. Syntax checking can be
performed easily by the User Interface, but checks for
correctness of the physical equations used will require some
facility, such as dimensional analysis. If dimensional
analysis were used, the internal checks in the interpreter
program would be automatic against every statement using
physical quantities, and exceptions would be generated on a
statement by statement basis.

ADVANTAGES OF COMPUTATION OF PRECISION FEATURE

As the complexity of systems increases, leading up to the
Space Station era, so does the number of levels of integration
to be passed through by components before their operational use.
In some shuttle payloads from ESA, there are already 7 levels of
integration. If Ada is to become widespread in it's use as the I
& T language supporting these levels of integration, then the
Ada software products must be promotable between levels of
integration. This does not imply a need to run the same
procedure at a higher level, although that may be a requirement.
What it does require is that lower level software components be
incorporated by some method of abstraction into higher level
components, up through launch operations and on-orbit
operations.

At each level of abstraction, component level state,
control and measurement variables are presented as parameters to
higher-level integration software, simplifying interfaces at the
subsystem, and then the system level. This continues until at
the on-orbit user interface level, simple designators for
systems are connected to a large tree of state, control and
measurement variables extending all the way back down the
integration chain.

In systems using abstracted measurement variables, knowing
the significance of measurements at all levels is an important
issue. Control logic algorithms which attempt to establish set
points to an insignificant range are erroneous. Commands which
effect an insignificant change in an effector are meaningless,
and consume system resources in their performance. Measurements
which involve insignificant changes in levels should not be
communicated.

communication overhead becomes more of an issue, as we
progress from tightly-coupled shared-memory systems (like LPS),
to loosely-coupled distributed systems (like GDMS prototypes).
Distributed systems have failure modes related to communication
loading (traffic jams), which can be abated somewhat by data
concentration.

concentration of data at the very lowest level of
measurement has, and will probably continue to be performed on
the raw data by bit-oriented algorithms. After the basic
measurements have been converted to ei'gineering units, however,

F. 4.4.10

there are data concentration possibilities, based on
significance and propagated significance, that affect
communications, and the stimulus and response of the system.

GENERAL ADVANTAGES OF DATA ABSTRACTION APPLY

The systems supporting the future I t T applications
described in the last section, will be highly distributed. They
will contain components from several levels of integration and
will also need to be programmed at the highest level possible.
The programs which drive the higher-level system functioning
should not be bogged down with detailed data analysis.
Facilities supporting the propagation of information concerning
the validity of measurements and the validity of algorithms
concerning those measurements should be basic to the system.
Complex programs integrating the functioning of a distributed I
t T system will be inherently more maintainable and reusable if
kept at highest possible level of data, system and resource
abstraction. Greater readability and verifiability of software
components, and greater reliability and ease of validation of
the system code is then possible. Finally, the design and
development of the user interface level applications becomes
easier, the higher the level of abstraction that is achieved for
the system components and measurements.

ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank my
wife, Bronwen Chandler, for her support.

REFERENCES

1. Johnson, C., 1986. "Some Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typesv1, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station.

2. Karr, M., and Loveman, D. B. 111. May 1978. "Incorporation
of Units Into Programming Languages", Communications of the
ACM, Vol. 21, No. 5.

3. Hilfinger, P. N. 1983. Abstraction Mechanisms and Language
Design. Cambridge, Massachusetts: The MIT Press.

F.4.4.11

Rdes ign: A Data D i c t i o n a r y w i t h Re la t iQna l Database Des ign
C a p a b i l i t i e s i n Ada

Anthony A. Lekkos
Teresa Ting-Yin Kwok

1

U n i v e r s i t y of Hous ton , Clear L a k e

1. I n t r o d u c t i o n

Data D i c t i o n a r y is d e f i n e d t o be t h e set of a l l d a t a
a t t r i b u t e s , which describe d a t a o b j e c t s i n terms of t h e i r
i n t r i n s i c a t t r i b u t e s , s u c h a s name, t y p e , s i z e , format and
d e f i n i t i o n . I t is r e c o g n i z e d as t h e da tabase f o r t h e
I n f o r m a t i o n Resource Management -- t o f a c i l i t a t e
u n d e r s t a n d i n g and communicat ion a b o u t t h e r e l a t i o n s h i p
be tween system a p p l i c a t i o n s and s y s t e m d a t a u s a g e and t o
a s s i s t i n a c h i e v i n g d a t a independence by p e r m i t t i n g s y s t e m
a p p l i c a t i o n s t o access d a t a w i t h o u t knowledge o f t h e
l o c a t i o n or s t o r a g e cha rac t e r i s t i c s o f t h e d a t a i n t h e
s y s t e m [A l l e n 8 2] .

T h e f o l l o w i n g a re c o n s i d e r e d t o be its p r i m a r y
o b j e c t i v e s : -

1. To a c h i e v e c o n t r o l o f t h e d a t a r e s o u r c e , by
p r o v i d i n g a n i n v e n t o r y o f t h a t r e s o u r c e . To
e n f o r c e s t a n d a r d s and v a l i d a t i o n .

2 . To c o n t r o l t h e c o s t s of d e v e l o p i n g and m a i n -
t a i n i n g a p p l i c a t i o n s .

3 . To p r o v i d e f o r i ndependence o f m e t a d a t a
across comput ing e n v i r o n m e n t s , improving
r e s i l i e n c y t o t h e e f f e c t s o f hardware and
s o f t w a r e c h a n g e s [A l l e n 8 2] .

Much of t h e i m p o r t a n c e o f a d a t a d i c t i o n a r y h a s been
r e c o g n i z e d , y e t , l i t t l e o f i t h a s been u t i l i z e d t o s u p p o r t
a n a u t o m a t e d database d e s i g n .

*
Ada is a r e g i s t e r e d t r ademark o f t h e U.S Government- Ada
J o i n t Program O f f i c e .
S u p p o r t e d by NASA/JSC-UHCL Ada-Beta s i t e Con t rac t.

F.4.5.1

A research and development effort to use ADA at UHCL
has produced a data dictionary with database design
capabilities. This project supports data specification and
analysis and offers a choice of the relational, network, and
hierarchical model for logical database design. It provides
a highly-integrated set of analysis and design
transformation tools which range from templates for data
element definition or modification, spreadsheet for defining
functional dependencies, normalization, to logical design
generator.

2 . The Data Dictionary with Database DeSiqn Capabilities

2.1 The Data Dictionary

The structure for the data dictionary is essentially
relational in nature with the data element definition
normalized to third normal form, while the related projects
are kept in another relation. Further, the dictionary is
furnished with the following facilities:-

Define --
creates a new data element entry in the data
dictionary. A template is used to enter the
data element name, type, size, range,
description, validation rules, picture,
intensity, display attribute, should the
element type be enumeration, the enumeration
list could also be entered.

Modify --
changes any data element specification
created with "Define". If the data element
name is changed, it creates a new data
element under this new name -- essentially,
it performs a "Copy" function under this
circumstance. Again, a template is used for
all field entries.

Search --
retrieves data element specifications from
the data dictionary and displays them on
screen, This differs from "Report" in that
only data element names are displayed. A
global search could be done by entering an
II * II . A list of names will be displayed on
screen one page at a time,

F.4.5.2

P u r g e --
removes a d a t a e l e m e n t from t h e d a t a
d i c t i o n a r y i f t h e d a t a e l e m e n t is used o n l y
i n t h e current p r o j e c t . The e l e m e n t is n o t
purged i f i t is used by o t h e r p r o j e c t s .

T r a n s f e r --
impor t s d a t a e l e m e n t d e f i n i t i o n s from an
e x t e r n a l t e x t f i l e o r e x p o r t s d a t a e l e m e n t
d e f i n i t i o n s t o an e x t e r n a l t e x t f i l e . All of
t h e e l e m e n t s cou ld be imported o r e x p o r t e d
a l l a t once , o r they c o u l d be imported o r
e x p o r t e d i n d i v i d u a l l y , o r t hey cou ld be
imported o r expor t ed a c c o r d i n g t o p r o j e c t s .

Repor t --
l ists i n d e t a i l t h e d a t a e l e m e n t d e f i n i t i o n
f o r a s i n g l e d a t a e l e m e n t o r a series of
d a t a e l e m e n t s . The l i s t i n g c o u l d go t o t h e
t e r m i n a l o r t o t h e system p r i n t e r . I f
t e r m i n a l is chosen a s t h e o u t p u t d e v i c e , t h e
da t a e l e m e n t d e f i n i t i o n w i l l be d i s p l a y e d on
screen one page a t a t i m e .

2.2 F u n c t i o n a l Dependencies

Given a p r o j e c t w i t h i ts own set of d a t a e l e m e n t s , one
can proceed t o d e f i n e f u n c t i o n a l dependenc ie s amongst d a t a
e l e m e n t s . The f o l l o w i n g f a c i l i t i e s a re provided :-

Clear --
which c l e a r s o u t a l l p r e v i o u s l y d e f i n e d
f u n c t i o n a dependencies .

S p r e a d s h e e t --
d a t a e l e m e n t names are d i s p l a y e d i n rows and
columns i n a s p r e a d s h e e t . E n t e r i n g appro-
p r i a t e symbols i n co r re spond ing p o s i t i o n s o r
"cells" w i l l d e f i n e f u n c t i o n a l dependenc ie s
amongst e l e m e n t s . Using t h e t ab key o r a r row
keys , one can move around t h e cells . Should
t h e a r row go beyond bounds t h e s p r e a d s h e e t
w i l l move one column l e f t / r i g h t o r one row
up/down dependent on t h e a r row key h i t and
i t s p o s i t i o n . One can a l s o move t h e
s p r e a d s h e e t one page a t a t i m e by p r e s s i n g
Func t ion key 1, 2, 3 o r 4 t o go up, down,
l e f t or r i g h t .

F.4.5.3

The following symbols are used to define functional
dependencies :-

==> means row element determines column element

<== means column element determines row element

K E Y means element is a key, row element name should
be the same name as column element

N/A means not applicable, row element name should be
the same as column element name where the
element is not a key

+=> means concatenation of row elements to identify
column element

<=+ means concatenation of column elements to
identify row element

To make the spreadsheet even more convenient to use,
there are a few hidden keys :-

R = Refresh --
the screen is refreshed, in addition
todisplaying symbols used to define elements
functional dependencies, the complementary
symbols are also displayed.

H = Help --
help can be invoked.

B = Beginning'--
spreadsheet moves to the beginning of the
list of data elements row-wise or column-
wise.

E = End --
spreadsheet moves to the end of data element
list row-wise or column-wise.

F = Find --
gets a particular data element which will be
displayed in the middle of the list row-wise
or column-wise .

F.4.5.4

T = Toggle --
Toggles t h e symbol, f o r example, p r e s s i n g "TI'
a t a p l a c e where i t d i s p l a y s "N/A" w i l l
change t h e symbol t o " K E Y " .

To update t h e f u n c t i o n a l dependenc ie s , one
o n l y needs t o b l a n k o u t t h e e n t r y , en te r
a p p r o p r i a t e symbols o r j u s t t o g g l e t h e
symbols.

P = P r i n t --
w i l l p r i n t o u t t h e f u n c t i o n a l dependenc ie s t o
t h e screen o r t o a f i l e .

2.3 Database Design Genera tor

Af t e r t h e f u n c t i o n a l dependenc ie s a r e d e f i n e d , t h e
n o r m a l i z a t i o n t o o l can be u t i l i z e d t o a u t o m a t i c a l l y
no rma l i ze t h e r e l a t i o n s i n t h i r d normal form. Each t a b l e
s t r u c t u r e is d i s p l a y e d and a name should be g iven .

A t t h i s p o i n t , a l l t h e t a b l e s s o created a re i n t h i r d
normal form.

For a p p l i c a t i o n o r implementat ion r e a s o n s , one may have
t o v i o l a t e t h e rules f o r n o r m a l i z a t i o n o r t o keep c e r t a i n
r e l a t i o n s n o t i n t h i r d normal form. A " m a i n t a i n - t a b l e "
f a c i l i t y is p rov ided s o t h a t a d a t a b a s e d e s i g n e r can d e f i n e
h i s own t a b l e w i t h i t s own se t of keys and a t t r i b u t e s .
Moreover, he c a n rename a t a b l e , d e l e t e a t ab le , d e l e t e
c e r t a i n keys o r a t t r i b u t e s i n a t ab l e o r add ce r t a in keys
o r a t t r i b u t e s i n a t ab le . T h e system w i l l n o t r e -no rma l i ze
t h e s e t a b l e s . T h e r e is one c o n s t r a i n t , however, t h e keys
and/or a t t r i b u t e s had t o be d e f i n e d i n d a t a d i c t i o n a r y .

Again a s p r e a d s h e e t is employed t o d e f i n e t h e
r e l a t i o n s h i p s amongst r e l a t i o n s , be i t one-to-one, one- to-
many, many-to-many o r n o - r e l a t i o n s .

A refresh f u n c t i o n w i l l n o t be a p p l i c a b l e i n t h i s c a s e
as t h e r e l a t i o n s h i p be tween t h e row r e l a t i o n and t h e column
r e l a t i o n may n o t be r e c i p r o c a l .

A p a r e n t - c h i l d g raph cou ld be g e n e r a t e d a f t e r t h e
r e l a t i o n s h i p s are d e f i n e d . The g raph cou ld be p r i n t e d o u t
t o t h e sys tem p r i n t e r o r t o t h e screen.

The c o n c e p t u a l schema is t h e n g e n e r a t e d and o u t p u t goes
t o t h e screen and a t e x t f i l e so t h a t t h e d e s i g n e r can v i e w
i t and make m o d i f i c a t i o n s i f n e c e s s a r y . S i n c e t h e d a t a
e l e m e n t s used a re governed by t h e da t a d i c t i o n a r y ,
c o n s i s t e n c y , i n t e g r i t y and v a l i d i t y can be ach ieved e a s i l y .

F.4.5.5

FOllOWing is a SQL-type l o g i c a l d e s i g n i n t e r f a c e so
g e n e r a t e d :-

R e m
R e m SQL/DS Database D e s i g n I d e n t i f i c a t i o n S e c t i o n
R e m
R e m Appl ica t ion : DIS
R e m
R e m Date created: 6/6/86
R e m

R e m SQL/DS Database Tables Create Commands S e c t i o n
R e m ..

Create T a b l e DEPT
(DEPT NAME Char (32) n o t n u l l ,
BUDGFT Number (7) I
DE PT-MGR C h a r (32) I
LOCATION C h a r (32)) ;

Create Unique I n d e x DEPT - I N D E X on DEPT (DEPT - NAME) ;

2 r e a t e Table EMPLOYEE
(EMP NAME C h a r (32) n o t n u l l ,
DEPT NAME C h a r (32) I
EMPLZNT DATE C h a r (8) ,
POS I TI OK C h a r (32) 1

SALARY Number (7)) ;

3 r e a t e Unique Index EMPL - I N D E X on EMPLOYEE (EMP - NAME I

:rea te Tab le PROJECT
(PROJ NAME C h a r (32) n o t n u l l ,
DEPT-NAME C h a r (32) I
CHAREE NO Number (4) 8

COMPL EATE C h a r (8)
PROJ - EEADER C h a r (32)) ;

:reate Unique I n d e x PROJ I N D E X on PROJECT (PROJ NAME);

:reate T a b l e EMP - PROJ
(EMP NAME C h a r (32) n o t n u l l ,
PRO5 NAME C h a r (32) n o t n u l l ,

EMPPROJ-DATE - C h a r (8)) ;

- -

CHAREED HRS Number (4) ,

:reate Unique Index EMPPROJ I N D E X on EMP PROJ - -
(EMP - NAME, PROJ - NAME) ;

3. User Interface

F . 4 . 5 . 6

Much of t h e work f o r m a i n t a i n i n g t h e d a t a d i c t i o n a r y is
done t h r o u g h a template, e . g . , d e f i n e and mod i fy , user o n l y
n e e d s t o f i l l i n t h e b l a n k s , o t h e r w o r k l i k e d e f i n i n g
f u n c t i o n a l d e p e n d e n c i e s and r e l a t i o n s h i p s amongs t t a b l e s is
done t h r o u g h a spreadshee t . The w h o l e s y s t e m is menu d r i v e n
w i t h t h e f i r s t two rows of t h e s c r e e n ded ica t ed t o commands.
To go up t o t h e command l i n e , o n e o n l y n e e d s t o press <F2>.
One c a n t h e n u s e Tab, o r arrows t o move a c r o s s t h e command
l i n e . A < r e t u r n > selects t h command. T h e 2 4 t h row on t h e
s c r e e n is d e d i c a t e d t o f u n c t i o n key e x p l a n a t i o n w h i l e t h e
23 rd row is used f o r message l i n e and t h e 22nd row is used
f o r prompt l i n e . The r e s t of t h e s c r e e n w i l l be u s e d f o r
d i s p l a y or f o r t h e template. Help c o u l d be invoked
t h r o u g h o u t t h e s c r e e n s .
R e f e r e n c e s

[Al l en821 F rank W. A l l e n , Mary E. S. Loomis, Michael V.
Mannino "The I n t e g r a t e d D i c t i o n a r y / D i r e c t o r y
System" 8 ACM Comp. S u r v e y , l 4 : 2 , 1982.

[G o l d s t e i n 8 5 1 R o b e r t C. G o l d s t e i n "Database :Technology and
Management John Wiley and Sons , I n c . , 1985.

[C u r t i c e 8 4 1 R.M. C u r t i c e " I R M A : An Automated L o g i c a l Data
Base Des ign and S t r u c t u r e d A n a l y s i s T o o l " ,
I E E E Database Eng. 7:4 , December 1984.

f R e i n e r 8 6 1 David R e i n e r , G r e t c h e n Brown, Mark F r i e d e l l ,
e t a l , "A Database D e s i g n e r ' s Workbench"
s u b m i t t e d t o D i j o n ER C o n f e r e n c e , 1986.

Database Des ign Tool f o r t h e R e l a t i o n a l Model
of Data", I E E E Database Eng. 7 :4 , December
1984.

[B J o r n e r s t e d t 8 4 1 A . B j o r n e r s t e d t and C. H u l t e n " R E D 1 : A

F.4.5.7

ORIGINAL PAGE IS
OF POOR QUALITY

N 8 9 - 1 6 3 6 9

Ah!Help: A G e n e r a l i z e d On-l ine Help F a c i l i t y

Wong N a i Yu*
Charmiane Mantocth*
A l e x S o u l a h a k i l

i. I n t r o d u c t i o n

commerc ia l ly a v a i l a b l e , s o f t w a r e package s imply work. I t m u s t have
c e r t a i n c h a r a c t e r i s t i c s t h a t make i t m a r k e t a b l e . Among t h e s e , u s e r
r r i e n d l i n e s s and p o r t a b i l i t y are o f major impor t ance .

I n tlie u s e r f r i e n d l i n e s s c a t e g o r y , a great forward s t e p was
t aken w i t h t h e i n t r o d u c t i o n of o n - l i n e h e l p f a c i l i t i e s , r e l i e v i n g t h e
?;ser from c o n t i n u a l l y t u r n i n g t o cumbersome manuals f o r a s s i s t a n c e .
The o n - l i n e h e l p f a c i l i t y w e have d e s i g n e d is n e i t h e r un ique nor
i e v o l u t i o r i a r y . I t is a s i m p l e program which was o r i g i n a l l y d e s i g n e d
to work i n c o n j u n c t i o n w i t h a s c r e e n g e n e r a t i o n package . I t is, how-
tbver , i ndependen t o f i t and is, t h e r e f o r e , p o r t a b l e . The o n l y i ~ e w
i s p e c t i n t r o d u c e d by t h i s package is t h a t i t is w r i t t e n i n Ada and
l i t i l i z e s c :e r ta in Ada f a c i l i t i e s , s u c h as b i n a r y f i l e s and Direc t - Io ,
which makc implemen ta t ion n e a t e r , s i m p l e r and more s t r a i g h t - f o r w a r d
' han l a n g a a g e s have h e r e t o f o r e a l lowed . I n a d d i t i o n , t h e pragrcim
u s e s o n l y s t a n d a r d Ada g e n e r i c s , t h u s a d d i n g t o i t s p o r t a b i l i t y .

f i l e s i n t e x t u a l f o r m a t . The program t h e n b u i l d s a b i n a r y f i l e ,
c r e a t i n g and s t o r i n g a n index f o r t h e named f i l e . T h i s i ndex , cllong
w i t h s e c o n d a r y i n d i c e s c r e a t e d f o r f u r t h e r h e l p on s p e c i f i c c h o i c e s
m d e a v a i l a b l e t o t h e u s e r , is la te r used t o access t h e h e l p f i : \?
d s s o c i a t e d w i t h t h e program c u r r e n t l y b e i n g used by t h e u s e r . Lpon
c x i t i n g t h e h e l p mode, t h e u s e r is r e t u r n e d t o t h e p o i n t front where
'-he on- l i i i e h e l p was r e q u e s t e d .

I n modern-day programming i t is n o t s u f f i c i e n t t h a t a l a r g e ,

The c o n c e p t behind t h i s package is t o a l l o w t h e b u i l d i n g of h e l p

,.1. Design C o n s i d e r a t i o n s
The b a s i c and o v e r a l l purpose of t h i s program was t o produf.t . ;1

c o n v e n i e n t , e a s y t o u s e , g e n e r a l purpose o n - l i n e h e l p f a c i l j t y .
Convenience and ease of use f rom t h e e n d - u s e r ' s point of view, i JW--
e v e r , u s u a l l y means time consuming, d i f f i c u l t programming f u t t1.v
L o w l e v e l d e s i g n e r . I t also g e n e r a l l y means t h a t t h e r e is CI loit;
a f g e n e r a l i t y a n d / o r p o r t a b i l i t y .

d e c i d e d t h a t a n implemen to r /des igne r s h o u l d be ab le t o p r o v i d e a n
o n - l i n e h e l p menu and a s s o c i a t e d v e r b a l d e s c r i p t i o n s i n t e x t u a l
format , v i a a t e x t f i l e . The program s h o u l d t a k e ove r from t h e r e
and create t h e a c t u a l manual which t h e u s e r sees. The t e x t f i l e
method does , however, p r e s e n t c e r t a i n r e s t r i c t i o n s . I t is h i g h l y
f o r m a t t e d , meaning t h e d e s i g n e r of a n o n - l i n e h e l p manual m u s t be
f a m i l i a r w i t h t h e r u l e s imposed by t h e program. We f e l t t h i s t o
be o n l y a minor inconven ience i n compar ison t o t h e advant-ages t o
be g a i n e d by t h e program.

u s e o f a f u n c t i o n key, be a b l e t o ca l l a n o n - l i n e h e l p f a c i l i t y
p e r t i n e n t t o whatever mode/program he o r s h e happened t o be i n .

I n o r d e r t o combine t h e s e seemingly i n c o n g r u e n t f e a t u r e s w e

The main d e s i g n c o n s i d e r a t i o n s were t h a t t h e u s e r shou ld , by

F.4.6.1

I
I
I
I
I
I
I
I
I
I

PAYROLL / PERSONELL SYSTEM

SOCIAL SECURITY NUMBER:
LAST NAME:
F I R S T NAME:
MIDDLE I N I T I A L :
STREET ADDRESS:
CITY AND STATE:
Z I P CODE:

I
I
I
I
I
i
I
I
I
I

I I

USER PRESSES F1 FOR HELP

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-
I GENERAL COMMANDS => FUNCTION KEY CALLS I
I GENERAL PANEL DESCRIPTION I
I PANEL ATTRIBUTE DESCRIPTIONS I

I USE ^U TO MOVE UP, ^ D TO MOVE DOWN, I
I RETURN TO SELECT OPTION I
--.--

I
I
I
I
i
I
I
I
I
I
I
I
I
I

USER USES A D TWICE A N D SELECTS PANEL ATTRIBUTE
GESCRIPTIONS BY HITTING RETURN

--------------------__________________^_----------

I DATA DICTIONARY INDEX I
I I
I SSN LAST NAME F I R S T NAME I
I ADDRESS CITY AND STATE ZIP CODE I
I I

I I ...
I I USE ^ U TO MOVE UP, ^D TO MOVE DOUN, i I
I I ^L TO MOVE LEFT, *R TO MOVE RIGHT, I I
I I RETURN TO SELECT OPTION I I

I I ---

USER USES "D, ^ R TWICE A N D SELECTS ' Z I P CODE'

Figure 1. T y p i c a l session from user's po in t of v i e w

F.4.6.2

1 ZIP CODE I
I I
I ENTER ONLY THE 5 DIGIT ZIP CODE; 9 I
I DIGIT ZIP CODES ARE NOT YET SUPPORTED I
I EXAMPLE: 77001 I
I I
I I
I I USE RETURN TO ACCESS MAIN MENU I I
I I I I
I I
I I

RETURN GETS USER BACK TO MAIN MENU FROM
WHERE FURTHER HELP M A Y BE OBTAINED OR
THE USER M A Y EXIT BACK TO THE PROGRAM

Figure 1, continued.

8
J

F . 4 . 6 . 3

Thus,
was i
user '

S
S

the program had to be smart enough to know where the call
sued from, call the appropriate menu/manual, respond to the
inputs and then return the user to the point from which the

help call was made. Ue also decided that, in order to improve the
user friendliness aspect of the program, the user should have little
or no typing to do - i.e., the program should be able to respond to
special purpose function key inputs.

Of course, the use of the help manual itself must be self-
descriptive in order to relieve the user from having to turn to
a manual on the on-line help manual.

point of view, might look like.
Figure 1 shows what a typical session, from the end-users

3. Implementation Particulars

3 . 1 The Text File

help facility has certain restrictions and rules. Figure 2
illustrates what the text file should "look" like.

the help file is identified within the program. This name is
not seen by the user, o n l y by the program. This name should
always be the first line of the text file.

introduction - i.e., a name with which or by which the user can
identify the help package accessed. This name also appears on
a line by itself. Following the introduction name is the textual
description of the introduction itself.

which will be made available to the user, along with the expla-
nation which will be provided if the user selects that option,
appears. Each name (including the introduction name) appears on
a separate line and each description or explanation is terminated
with a # terminator, also on a line of its own.

the text file are:

The text file created by the implementor of a particular

The name of the help file corresponds to the name by which

Following the name of the help file comes the "name" of the

Following the introduction, the name of each menu selection

The current limits imposed on the names and descriptions in

- the names are limited to 15 character in length, - the textual descriptions for each menu option and for the
introduction are limited to 24 lines of 80 characters each,
and

- 65 such descriptions (including the introduction description)
can exist.
These limits are, of course, program constants that can be

changed, as necessary, to meet the requirements at hand.

3.2 The help file package
Once the text file has been created, the creator can incor-

porate his or her help facility into the general help package by
calling a program called PROTOTYPE. The basic task of PROTOTYPE
is to create a binary file containing the information of the text
file.

When PROTOTYPE is called, the contents of a binary file called

F . 4 . 6 . 4

Payroll/personel
Payroll system
This panel allows input of new or update of existing
personell records regarding payroll

SSN
The employee's social security number, in the following
format: 111 22 3333

Last name
Employee's last name, up to 20 characters in length.
Upper and/or lowercase letters may be used.

First name
Employee's first name, up to 20 character's in length.
Upper and/or lower case letters may be used.
Example: Employee's name is Marie Elizabeth Ogden;

enter Marie as first name, even if employee goes
by a different name.

Figure 2. Partial contents of a typical text file
containing information to produce an on-line
help manual

F.4.6.5

1 N D E X . B I N are loaded i n t o memory. T h i s b ina ry f i l e is s t r i c t l y a
set of names and a s s o c i a t e d i n d i c e s (o r r e a d / w r i t e head p o s i t i o n s) .
F igure 3 i l l u s t r a t e s t h e c o n t e n t s of 1NDEX.BIN.

PROTOTYPE f i r s t r e a d s t h e name o f t h e he lp package from t h e
t e x t f i l e . This name is s t o r e d i n t he nex t a v a i l a b l e p o s i t i o n i n
a n a r r a y o f r eco rds which c o n t a i n s h e l p panel names and p o i n t e r s
to t h e i r arrays o f menu s e l e c t i o n op t ions , described below. The
f i r s t p o s i t i o n i n t h e a r r ay c o n t a i n s a count of t h e t o t a l number
o f h e l p f i l e s a v a i l a b l e ; t h i s number m u s t be updated each t i m e a
new h e l p f a c i l i t y is added t o t h e s y s t e m . The i n d i c e s o r p o i n t e r s
associated w i t h each name are a c t u a l l y read/write head p o s i t i o n s
i n t o 1 N D E X . B I N i t s e l f where t h e set o f menu s e l e c t i o n s are l i s t e d
i n a n a r ray associated w i t h t h a t p a r t i c u l a r h e l p package.

After t h e h e l p package name, i n t h e t e x t f i l e , t h e in t roduc -
t i o n and menu s e l e c t i o n names, a long w i t h t h e i r d e s c r i p t i o n s , are
found. PROTOTYPE r e a d s t h e name o f t h e i n t r o d u c t i o n or menu selec-
t i o n o p t i o n and s t o r e s t h e name i n t h e nex t a v a i l a b l e p o s i t i o n i n
an a r r a y of menu s e l e c t i o n names f o r t h a t p a r t i c u l a r h e l p f a c i l i t y .
Once aga in , t h e f irst element o f each o f these a r r a y s c o n t a i n s a
count o f t h e number of menu s e l e c t i o n o p t i o n s (i n c l u d i n g t h e i n t r o -
d u c t i o n) a v a i l a b l e through t h e package. (The a c t u a l p o s i t i o n of
t h e i n t r o d u c t i o n name is always t h e second array p o s i t i o n s i n c e
i t is a lways t h e f irst d e s c r i p t i o n t o follow t h e h e l p package name
i n t h e t e x t f i l e .) PROTOTYPE then reads t h e t e x t u a l d e s c r i p t i o n
a s s o c i a t e d wi th t h e l a s t name read and when t h e t e rmina to r (#) i s
encountered, i t performs a DIRECT-IO write of t h e d e s c r i p t i o n i n t o
a f i l e called DIRECT.BIN. The r e a d / w r i t e head p o s i t i o n o f t h e
write is s t o r e d i n 1 N D E X . B I N a long w i t h t h e menu s e l e c t i o n / i n t r o -
d u c t i o n name w i t h which i t is a s s o c i a t e d .

have occurred, PROTOTYPE performs a DIRECT-IO write o f t h e up-
dated v e r s i o n of 1NDEX.BIN. Any v i o l a t i o n of syntax r u l e s en-
countered i n t h e t e x t f i l e du r ing t h e above p rocess causes a n
a b o r t , w i t h no updat ing of t h e 1 N D E X . B I N b ina ry f i l e .

The second d i r e c t i o or b ina ry f i l e is t h e DIRECT.BIN men-
t i oned above. I t s imply c o n t a i n s t h e t e x t u a l d e s c r i p t i o n s , i n
b ina ry form, which t h e h e l p packclge w i l l u s e .

F igu re 4 i l l u s t r a t e s t h e r e l a t i o n s h i p between 1 N D E X . B I N
and DIRECT.BIN.

When EOF is encountered i n t h e t e x t f i l e , and no v i o l a t i o n s

4 . Discuss ion

g e n e r a l menu where one of t h r e e g e n e r a l o p t i o n s can be s e l e c t e d .
These are:

1- a set o f g e n e r a l i z e d commands/keys which p e r t a i n t o a l l

When t h e u s e r r e q u e s t on-l ine h e l p he o r she f irst g e t s a

h e l p packages - e.g., how t o save h i s / h e r work, how t o e x i t
t o t h e system wi thout s av ing t h e work, etc.

a g e n e r a l d e s c r i p t i o n o f t h e h e l p package i t s e l f and of t h e
program/package w i t h which i t is a s s o c i a t e d .

3- A l i s t i n g of t h e menu s e l e c t i o n o p t i o n s a v a i l a b l e t o t h e u s e r .

2- The i n t r o d u c t o r y s e c t i o n t o t h e h e l p f a c i l i t y which c o n t a i n s

F.4.6.6

I# of h e l p I index of I index of I I index of I
I f a c i l i t i e s I o p t i o n l i s t I o p t i o n l i s t I I o p t i o n l i s t I
I I I I ... I I
I I h e l p pkg I h e l p pkg I I h e l p pkg I
I I name I name I I name I
I I I I 1 1

up t o 501 s u c h r e c o r d s

I # of I index i n t o I index i n t o I I index i n t o I
I o p t i o n s I DIRECT.BIN I DIRECT.BIN I I DIRECT.BIN I
I I I I ... I I

- 1 I name of I name of I I name of I
I I o p t i o n I o p t i o n I I o p t i o n I
I I I I I I

up t o 64 r e c o r d s / a r r a y
up t o 501 such a r r a y s (1 pe r h e l p

f a c i 1 i t y 1

Figure 3. The basic s t r u c t u r e of t h e d i r e c t - i o
f i l e 1NDEX.BIN

F . 4 . 6 . 7

\- I
I I I I

I I I I

I
I
I
I I
I I I

I I ' ; l e 13 I I I ... I I 3 I

' A 1 8 I ' c I I I I

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I

-
I
I
I
I
I
I
I

ARRAY OF HELP FACILITY NAHES/INDICES
i I
I I

I
I
1
I
I
I
I
I
I
I
I
I
I

I I I I I
I

I I I I

I

I . .. ' I d 503 I504 I I I

I 'H6C I i Q & E I I I I
I

ARRAYS OF OPTION INDICES INTO DIRECT.BIN I
I

DIRECT. BIN

I
I

I I
I I I

I I I
I
I

31

I 1
I I I I
1 -

I I I I
I I
I UP TO 65 SUCH 'RECORDS' PER HELP FACILITY I
I I

Figure 4. Rela t ionsh ip between INDEX. BIN and
DIRECT.BIN

F.4.6.8

Each s c r e e n produced by a u s e r s e l e c t i o n c o n t a i n s a gene ra l
s e t o f d i r e c t i o n s f o r c u r s o r movement, r e t u r n i n g t o prev ious sc reens ,
e x i t i n g , etc.

When t h e use r selects o p t i o n 1 above, PROTOTYPE is by-passed
and t h e ON-LINE-HELP package ca l l s a panel g e n e r a t i o n package t o
produce t h e "genera l he lp t t sc reen , s i n c e t h e c o n t e n t s o f t h i s s c r e e n
are t h e same r e g a r d l e s s of where i t was called from.

Options 2 and 3, on t h e o t h e r hand, u s e t h e informat ion creaLed
by PROTOTYPE d i scussed above. When e i the r of these is selected,
1 N D E X . B I N is opened and t h e name of t h e h e l p package a s s o c i a t e d w l t h
t h e program t h e u s e r is i n is searched f o r . When l o c a t e d , t h e
p o i n t e r s i n t o DIRECT.BIN are made a v a i l a b l e through t h e a r ray o f
p o i n t e r s a s s o c i a t e d w i t h t h a t name. I f o p t i o n 2 was selected, t h e
i n t r o d u c t i o n s e c t i o n p o i n t e r (which , as mentioned ear l ier , is
always t h e second record of t h e p a r t i c u l a r a r r a y) is used a s t h e
read/write head p o s i t i o n i n t o DIRECT.BIN where t h e t e x t u a l des--
c r i p t i o n can be found.

a v a i l a b l e is produced on t h e s c r e e n . T h i s l i s t i n g is a v a i l a b l e d i -
r e c t l y from 1 N D E X . B I N s i n c e t h e names o f t h e menu o p t i o n s (a long w i t h
t h e i r i n d i c e s i n t o DIRECT.BIN1 are s t o r e d t h e r e i n . S ince t h e menu
s e l e c t i o n i t e m s are l i s t e d i n t h e o rde r i n which they appear i n t h e
1 N D E X . B I N array f o r t h a t package, keeping t rack of t h e c u r s o r move-
ment, through s imple a d d i t i o n and s u b t r a c t i o n , a l s o keeps t r a c k of
t h e index i n t o t h e a r r a y DIRECT.BIN f o r t h e element po in t ed t o by
t h e c u r s o r . Thus, when t h e u s e r does select a menu op t ion , t h e
index i n t o DIRECT.BIN is d i r e c t l y a v a i l a b l e and t h e r eques t ed in -
format ion c a n be d i sp layed .

F i g u r e s 5 and 6 i l l u s t r a t e ac tua l s c r e e n s which t h e
u s e r might encounter ; these are s e l f - d e s c r i p t i v e .

When t h e u s e r e x i t s t h e h e l p mode, he o r s h e is r e t u r n e d t o
t h e p o i n t from which t h e h e l p cal l was made. T h i s is made p o s s i b l e
by sav ing t h e u s e r ' s l a s t used ' s c reen ' i n a b u f f e r whose c o n t e n t s
are re -d isp layed when t h e he lp f a c i l i t y is e x i t e d .

I f o p t i o n 3 was selected by t h e u s e r , a l i s t i n g of menu op t i i)n s

5 . Summary and conc lus ion

t h e h e l p f a c i l i t y is r e l a t i v e l y s imple. I t is made unique by t h e
f a c t t h a t it is w r i t t e n i n Ada and u s e s a s p e c t s of t h e language which
make informat ion r e t r i e v a l r a p i d and s imple . S p e c i f i c a l l y , t h e
DXRECT-IO f a c i l i t y a l lows f o r random access i n t o t h e h e l p f i l e s . I t
is unnecessary t o d i s c u s s t h e advantages o f random access over sequen-
t i a l access.

The mere f a c t t h a t t h e program is w r i t t e n i n Ada impl i e s a sav ing
i n terms o f l i n e s o f code. This i n t r o d u c e s t h e p o s s i b l i t y of even-
t u a l l y a d a p t i n g t h e program t o r u n a t t h e micro-computer l e v e l , a
major c o n s i d e r a t i o n i n t h i s day and age .

i t is p o r t a b l e t o o t h e r systems. T h i s is ano the r a s p e c t w h i c h m u s t
a l w a y s be t aken i n t o c o n s i d e r a t i o n i n w r i t t i n g any sof tware packaye
i n t h e modern day world o f computer programming.

A s c an be deduced from t h e above d i s c u s s i o n s , t h e i dea behind

Add i t iona l ly , s i n c e t h e program uses only s t a n d a r d Ada g e n e r i c s ,

F.4.6.9

I 1
I I
I I COMMANDS ON PANEL I I
I I PANEL PREFACE => B R I E F I N T R O TO CURRENT I I
I I PANEL I I
I I DATA DICTIONARY I I

I I
I I
I I RETURN TO A C T I V E COMMAND MENU I I
I I I I
I I

~~

I I U S E ^U TO MOVE UP, ^D TO MOVE DOUN, 1 I
I . I RETURN TO S E L E C T O P T I O N I 1
I I 1 I
I I

I P A N E L COMMAND D E F I N I T I O N I
I I
I S A V E => S A V E S A L L I N P U T TO DATABASE I
I E X 1 T I
I LOAD I
I E R A S E I
I HELP I
I I
I I
I I
I I U S E ^U TO HOVE U P , ^D TO HOVE DOUN, RETURN TO I I
I I S E L E C T O P T I O N I I

I I

Figure 5 .

F.4.6.10

I
I
I
I
I
I
I
I
I
I
I
1

P A N E L P R E F A C E

I
I U S E RETURN T O A C C E S S COWUAND MENU I I

T H I S P A N E L ALLOWS FOR I N P U T O F EMPLOYEE
P A Y R O L L R E L A T E D I N F O R M A T I O N . I N F O R M A T I O N
CURRENTLY H E L D ON A P A R T I C U L A R EMPLOYEE
MAY BE A L T E R E D OR UPDATED V I A T H I S P A N E L .

Figure 6 .

*Graduate students at The University of Houston--Clear Lake, Houston, Texas

c

F.4.6.11

SESSION F.5

Panel Chair:

REUSABILITY PANEL

Delores S. Moorehead
Intermetrics
Houston, Texas

Panel Members:

Ron McCain
IBM Federal Systems Division
Houston, Texas

Ed Berard
EVB Software Engineering, Inc
Rockville, Maryland

Daniel McNichol
McDonnell-Douglas Astronautics Co.
St. Louis, Missouri

Rick Blumberg
Planning Research Corp.
McLean, Virginia

Norm Nise
California State Polytechnic University
and
Rockwell International
Downey, California

Elizabeth Wald
Naval Research Laboratory/STARS

F.5.1

SESSION F.6

Panel Chair:

DISTRIBUTED Ada PANEL

Roger Racine
The Charles Stark Draper Laboratory
Cambridge, Massachusetts

Panel Members:

Mike Kamrad
Honeywell Systems and Research Center
Minneapolis, Minnesota

Pat Rogers (Charles W. McKay)
University of Houston-Clear Lake
Houston, Texas

Trevor Mudge
Department of Electrical Engineering
University of Michigan
Ann Arbor, Michigan

e
4

F.6.1

Application and Systems Software
in Ada: Development Experiences

Jim Kuschill
Computer Representatives, Inc.

Santa Clara, California

This presentation focuses on two issues:
its existing commercial software products to Ada and the the
technical challenges we faced both before and during the rewrite
process. The presentation will cover the following:

I. Environment

why CRI chose to convert

A. Began the rewrite of software written in SPL and FORTRAN
to Ada in 1983.
1. Software included: relational DBMS, 4GL tools, and

project management system.

11. Why Ada?
A. Current and future maintenance considerations.
B. Transportability had tremendous marketing advantages.

111. Planning Challenges
A. Shortage of available programmers.
B.
C.

Learning curve amongst own personnel.
Unknown degree of diffulculty in the use of Ada for the
development of application software.

IV.

V.

t

Technical Challenges
A.

B.

C.

Strong typing requirements of Ada affected the data
conversions necessary for relational accessing.
Ada packaging functions forced some new coding and
routines to be written for an already mature product.
Overloading capability smoothed the transition between
some functions.

Opinions and Results
A. The re-write process totaling approximately 250,000

lines of code is now in alpha test (will be in beta by
the time of the SIGAda Conference).
The learning curve was shorted than expected and
differed by the nature of the language each programmer
was accustomed to using previously.
Maintenance problems and costs, as demonstrated during
development will be vastly reduced as a result of Ada.
The structure of Ada forces the writing of better
routines, therefore better software.
The time between a successfully compiled program and a
completed program is drastically reduced because of Ada
strict coding requirements.

B.

C.

D.

E.

G. 1.1.1

N89-16370

Software Development: The PRODOC Environment
and Associated Methodology

Joseph H. Scandura, Ph. D.
University of Pennsylvania

In its most basic sense software development involves describing the
tasks to be solved -- including the given objects and the operations
to be performed on those objects. Moreover, such descriptions must
be precise in order for a computer (or human) to perform as desired.
Unfortunately, the way people describe objects and operations
typically bears little resemblance to source code in most
contemporary computer languages.

There are two potential ways around this problem. One is to allow
users to describe what they want the computer to do in everyday,
typically imprecise English (or to choose from a necessarily limited
menu of choices). This approach has some obvious advantages and a
considerable amount of research is underway in the area. The
approach, however, also has some very significant limitations: (a) it
currently is impossible to deal with unrestricted English, and this
situation is unlikely to change in the foreseeable future; and (b)
even if the foregoing limitation is eventually overcome, the approach
would still require the addition of complex, memory intensive "front
ends". These "front ends" interact with the user ' s typically
imprecise English statements and effectively "try to figure out" what
the user intends. The result invariably is a system which is both
sluggish in performance and limited in applicability.

The PRODOC methodology and software development environment is based
on a second, we believe sounder, more flexible and possibly even
easier to use approach. Rather than "hiding" program structure,
PRODOC represents such structure graphically using visual programming
techniques. In addition, the program terminology used in PRODOC may
be customized so as to match the way human experts in any given
application area naturally describe the relevant data and operations.
This customized termiriology is all based on a uniform, very simple
syntax that might easily be learned by an intelligent human (in a few
minutes time). The approach taken with PRODOC is general, as well as
efficient and easy to use.

PRODOC employs a unique graphically supported approach to software
development, and supports the entire systems software development
process, from requirements definition and system design to
prototyping, code generation and maintenance. Although radically
different at a superficial level, PRODOC draws generally on our
extensive research in structural learning (the science of cognitive,
instructional and intelligent systems engineering, Scandura, 1986).
It represents a major step in the direction of automating the process
of Structural (cognitive task) Analysis (e.g., Scandura, Durnin &
Wulfeck, 1974; Scandura, 1977, 1982, 1984a, 1984b). More
specifically, a special rule construct (not to be confused with
production rules) plays a particularly central role in PRODOC.

G.1.2.1

c-6

In the next section, we define more precisely what we mean by a rule
and show how rules can be represented as Scandura FLOWforms. Next,
we describe the PRODOC system itself. FinalXy, we provide an
overview of the IMS System Development Methodology using PRODOC.

RULE CONSTRUCT

Rules have three major components: a domain or set of data structures
on which the rule operates, a range or set of structures which the
rule purports to generate and a procedure (egg., Scandura, 1970).
Rules have been shown to provide a convenient way to represent a wide
variety of human cognitive processes as well as arbitrary computer
systems (e.g., Heller & Reif, 1984; Scandura, 1969, 1971, 1973, 1977;
Scandura & Scandura, 1980).

The term "rule" corresponds directly to the concept of a program.
The "procedure" component of a rule (lge., step-by-step prescriptions
for carrying out the rule) corresponds directly to the procedural
portion of a program. "Domain" and "Range" components of rules

Input, output and intermediate (local) structures. Collectively,
they correspond to the data structures on which programs operate.
These correspondences are summarized below:

, define problem schemes (i . e . , classes of problems) and refer to
I

Program Rule
/ \ / \

/ \ / \
/ \ / \

Data Procedure I \
Structures DomainIRange Procedure

(inputloutput) Structures

In general, the execution of rule procedures involves both testing
conditions and carrying out operations. Where the internal structure
of a rule procedure is unimportant, the rule is "atomic" or
elementary -- i.e., is viewed as nondivisible for present purposes.
Those familiar with production rules will note that PRODOC rules are
more general. The procedures of production rules consist solely of
operations and, consequently, correspond to "atomic" rules.

In programming parlance, atomic rules correspond to program
"subroutines." These include PRODOC "library rules". The extended
version of PRODOC makes it possible to create libraries of such
rules. These libraries make it easy for nonprogrammers (as well as
programmers) to construct executable PRODOC rules.

As mentioned above, rules may be written in a language which is
either understandable to humans andlor interpretable by computer. In
either case, however, the same basic form of representation may be
used. FLOWforrns are easily understood by most people and can be used
to represent arbitrary procedures (whether rule procedures or program
procedures). I
Like all structured procedures, FLOWforms may be refined arbitrarily.
They are used for two purposes, one to represent procedures and two,

G.1.2.2

to represent input/output data structures.

Roughly speaking, a procedure or algorithm is a recipe, process,
technique, or systematic method for doing something. (The term
"algorithm" is often preferred in computer science.) More precisely,
according to Knuth (19681, a procedure or algorithm must:

(1) always terminate after a finite number of steps,
(2) include only definite steps that are precisely defined,

with actions that can be carried out rigorously
and unambiguously,

(3) have an associated (possibly empty) class of inputs,
or domain,

(4) generate at least one output, and
(5) be effective in the sense that all of the operations to be

performed must be sufficiently basic that,
in principle, they can be done exactly and in finite time
by a person using pencil and paper.

Not all procedures are structured, however. Structured procedures
are composed of substructures (components) or elements which have
unique points of entry and exit. In order to insure this property,
each step in a structured procedure must be decomposable into one of
three basic types of components;

(a) Sequence of steps or operations,
(b) Conditional steps or branching (selection) and
(c) Iteration or looping*

These types are illustrated below both in terms of traditional
flowcharts and Scandura F'LOWforms. In the former case (a) the
rectangles represent arbitrary operations (e.g., add a and b) and the
diamonds represent (b) arbitrary selection or "if" conditions (e.g.,
If the building is over 20' tall, then...) and (c) arbitrary looping
("while") conditions te.g., While there is still further to go...).

(a)

In Scandura FLOWform these three types of components are represented
as shown below. -

I A I
I - 1

I B I
i C i I M

[ELSE I C I

-
(WHILE C I
I I I

ID0 I A I
I I I
I 1 I

I I

Sequence Selection (I F . . T " . . E L S E) Iteration (WHILE..DO)
G.1 .2 .3

These three basic types of decomposition are univerally applicable
and independent of any particular programming language tor any
natural language for that matter). Moreover, used in combination via
successive refinement, they have been proven adequate for any system
design or programming t a s k . Hence, there is no loss of generality in
requiring that a procedure be structured.

Nonethless, it is often convenient to allow certain variations on the
above. Some common variations on selections and iterations are shown
below.

8

I 1 I I 1 I 1
I CASE OF I I I I I FOR I
1 - I I I I -

I - I D 0 I I
I UNTIL I I I I

11-
1 -

Iteration Iteration

Selection (CASE) (REPEAT.. .UNTIL) (FOR...DO)

Although it does not fall into one of the three basic classes, Pascal
also supports a WITH (Record..Do) structure. This is represented in
nOWforms as:

I I
I WITH record I
1-
ID01 I--i <-- field variables
I 11-

0 I .
I I 1 . I . I I I
I I 1 . I .
I 11-

with (Pascal only)

G.1.2.4

In Scandura FLOWforms, sequence structures are often displayed using
PRODOC with indentation to show level of refinement. This makes it
easier to move about and otherwise manipulate FLOWforms on the
screen.
variety of structure (decomposition) types follows:

A sample FLOWform showing such indentation along with a

CSAMPLE-RJ:sample-FLOWform_structures Copyright 1986 Scandura

1 1
I IF I

I
I
I T " I
I
I I I

I I
I

I

1 1 1 I I - .
i i i I I I I
I I I I l==Tl I

Comands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,A,z,g,l,w,?,Fl,Esc

Parenthetically it is worth noting that F'LOWform procedures may be
recursive as long as the language in question supports recursion.
This l a certainly the case, for example, with Pascal, C, Ada and
Lisp. This is not the case, however, with high level library rules
(see next section) used in conjunction with PRODOC. To help insure
future generalizability of the PRODOC system, library rules fully
reflect all of the constraints imposed on the rule construct as
defined in the structural learning theory (e.g., Scandura, 1977,
1981). In that theory, the role of recursion is handled exclusively
in terms of higher order rules (which may operate on other rules) and
an universal control mechanism. Recursion is not allowed In
individual rules. This restriction has been shown to have important

.

implications for diagnostic testing and learning (e.g. , Scandura,
1980.)

Scandura F'LOWforms also are used to represent rule domain (input) and
range (output) structures. In general, domain and range structures
may be characterized mathematically as partial orderings. The

G.1.2.5

various components/elements may be viewed as ordered sets whose
elements in turn may be ordered sets.

In the structure below, set A has elements B and C; B has elements E,
F and H; C has G and H. Although element H appears twice in this
FLOWform, it is simply a different display of the same element
(something you will see when you edit one of them).

Although this representation looks similar to the CASE structure, the
similarity is a bit deceptive. In procedures, CASE structures have
both condition variables and operations. The condition occupies a
distinguishing position to the right of the word "CASE" and may be
thought of as the first CASE element.

CSAMPLE3:Sample-DOMAIN-FLOWform Copyright 1986 Scandura

t 1

I I
I CDOMAINJ : I
I t
I (CAJ: I
1 1 1

I I (CBJ: I
l l l t
I I I ItEJ: I
1 1 1 ' I
1 1 1 1 I
I I I ICFJ: I
1 1 1 ' I
l l l r I
I I I ICHJ: I
1 1 1 ' i
I I '

I I I
I I i iCH3: I
1 1 1 '
Commands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,̂ ,z,g,l,w,'?,Fl,Esc

Notice that this representation is not quite a tree since element H
belongs to both sets B and C. Of course, partial orderings do

G.1.2.6

include trees as a common subset. A simple example of a tree is
given below.

Animals

/ \
/ \

Mammals . Reptiles
I \

/ \
/ \

Subhumans . . Humans

Since rule data structures are restricted to partial orderings it is
true that FLOWforlns cannot directly represent cyclical relationships.
In the case of software development, however, this restriction is

more apparent than real. Cyclic relationships can serve two quite
different purposes:

(1) They can be used to summarize connections among nodes (e . g . ,
computer terminals) in a complex system.

(2) They can be used to represent nonhierarchical data structures,
where the relatiomhips are not necessarily monotonic.

In the former case, for example, the connections typically represent
a sharing of data represented by the nodes. Just as data at any
given node can be operated on by resident programs, programs also are
needed to transfer data from one node to another. Thus, the cyclic
networks themselves correspond to sets of programs, each of which may
be represented in terms of a rule FLOWform. Such networks, in
effect, provide a convenient way to represent the overall high level
structure of a system of programs but they say relatively little
about software development per se.

The figure below illustrates the latter case -- data which a program
procedure might operate on.

Arch

/ I \
/ I \

/ I \
/ I \

consists of
\
\

/ I
/ I

/ I
/ I

/ I

\
\
\

pillar 1 .-not- pillar 2 top
-touch 2

In this case, notice that the nodes "pillar 1" and "pillar 2" are
superordinate to each other. This is not allowed in a partial
ordering relationship. As with successive top-down structured
refinement of procedures, most software engineers favor a

G.1.2.7

hierarchical (partially ordered) approach to data structure design.
Thus, for example, the above Arch structure might be represented
hierarchically as

Arch

/ \
/ \

.
Supports . Top

/ \
/ \

Pillar 1 . . Pillar 2

where the definition of "supports" may include "not touching". In
fact, the latter figure seems more natural. Accordingly, arches
consist of two types of entity: supports and tops. In turn, (at
least) two supports are needed.

Nonetheless, it is fair to ask whether cyclic relationships are
necessary for some purposes.
answer to this question, it would appear that the answer is "no".
Just as any procedure can be represented as a structured procedure,
cyclic data structures can be represented in terms of partial
orderings. To m e this, notice that cycles correspond to lnflnite
hierarchies te.g, pillar 1 --> pillar 2 - - > pillar 1 --) pillar 2
- -> 1.

While we do not know of any definitive

However, any given cycle can be realized only a finite number of
times in the real world. Hence, cyclical relationships can be
represented by finite successive refinement of the cycles in
question. Consider, for example, the cyclic graph on the left
(below) and the equivalent partial ordering on the right.
cyclic graph looks simpler, it camouflages the fact that the cycle I s
repeated only twice.

While the

B

A A .
/*:\ / \

/ \ ; * / \
. c B . . c

\
\

. A
/ \

/ \
B . . c

\
\

/ \
/ \

B . . e

. A

In effect, the apparent loss of representational simplicity is at
least partially overcome by the more precise characterization
provided by the partial ordering. The suppression of such details is

G.1.2.8

not appropriate in actual software development.

It would appear, just as one can always construct a structured
procedure equivalent to given "spagetti" code, one can always
construct a partially ordered data structure that is equivalent to
any given cyclical data structure.

PRODOC

Using PRODOC, rule data structures and procedures are constructed in
a top-down structured fashion and represented in terms of Scandura
FLOWforms. As we have seen, FLOWforms look similar to
Nassi-Shneiderman flow charts, but they make better use of the
rectangular screen and allow simultaneous display of as many (or as
few) levels of representation as may be desired.

A procedure F'LOWform with several levels of refinement might be
displayed by PRODOC as illustrated below.
example, data structures and procedures each consist of a single high
level description (component). Various components, in turn, are
decomposed into one or more lower level elements.

At the highest level, for

............................
Insert FLOWform showing several levels
PRODOC consists of four distinct but complementary and fully
compatible software productivity and quality assurance environments.
Each of these environments (described below) makes use of Scandura
FLOWforms.

Relationships among the first three PRODOC environments as well as
the way they may be used in developing applications software is
represented schematically on the following page.

(1) Applications Prototyping Environment (with interpreter and
expert assistant generator) (PRODOCea) - is suitable for use by
nonprogrammers as well as programmers for designing, documenting,
implementing, and maintaining software systems in an integrated,
graphically supported, top-down structured environment. In addition
to English text, the availability of greatly simplified, high level
library rules makes PRODOCea ideal for rapid prototyping.
availability of graphical support for input and output data
structures also makes it possible to directly reflect arbitrary
semantic properties.

The current version of PRODOCea employs a fairly general but
relatively low level set of library rules designed largely for
testing purposes. The current library includes a variety of:

The

input/output operations Ce.g., display (ELEMENT,

G.1.2.9

CSGRT3:sort

Sort up to 500 numbers;print result

05-12-86

Copyright 1986 Scandura

I 1 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
i
I
I

I
I

I

jwrite (' H o w many numbers (1 to 500) to be sorted? ') I
I
(readln (n) I
I
I .. I
I . Prompt user, then get numbers. * I
I 1

I t i
I I .. I
I I . Get the numbers from the user. * I

I (writeln ('Enter below numbers to be sorted. Press <Return> after each.') I

I I I

I IFOR i:=1 to n I
I I I
I ID0 (readln tatiJ) I
I ' I
I .. I
I . Sort them. - 1
I
IFOR i:= 1 to n-1 I
I I
ID0 I .. I
I I . Scan thru items and swap if necessary. * I
I I
I IFOR j:= 1 to n -i I

I

I 1
I ID0
I I
I I
I I
I I
t I
I I
I I
I t
I I
I 1
I I
I I
I I

I .. I
(. Compare and swap if necessary. - 1

jIF at
I
I T "
I
I
I
I
I
I
I

jJ> aCj+lJ
1

I
I .. I
I . Swap - 1
I ,
I Itemp:= atj3 I
I I
iaCj3:= aCj+lJ I

I laCj+lJ:= temp I

I 1 ~-

(.. I
I . Identify and then print the resulting ordered set. * I
I I ~~~

- ~

I
I lwriteln I
I t i
I (writeln ('The resulting order is:') I

.. I
I I . Print the result. * I
I I---- I

I (FOR i:= 1 to n I
I I I
I ID0 (writeln taCi3:2) I
1 1 1

G. 1.2.10

~

IMS's PRODOC I Software Development Environment:

- - 3 - - -
- - 1 7 -

c Examplesol Appllcation
7 - - - (S p r f i c App1 icat ion

\ FUTURE OPT/ON/
Domain Expert Using PRODOCea Domaffi €xpeft uses com~utefL?eed

Stfuc?ura/ AnS/YsIs
1

/

FLOWform Specification
of Application

I
1

Expert Assistant
Using PRODOCea

Domain Expert or Systems Designer
Using PRODOCea

I n t erpre t ab1 e FLOWf orm
Using .L i brary Rules

Systems Designer or
Programmer

d Using PRODOClp

)Clp

Programmer
Us i ng PRODOCpp

I
f Library-based 1

FLOWf o m Enhanced
wi th Pascal
Pseudocode PRO[

(automatic)
(Pascal only)

PRODOCpp
(automatic 1

PRODOClp
(automatic)

(Pascal only)

I Source Code I

Pascal, C or Ada
Pseudocode

,'

G.1.2.11

DISPLAY-PAlWETERS), load (DOS-NAME, DRIVE, FILE-TYPEIJ,

other operations C(e.g., insert-component-after (VALUE, SEX',
PREVIOUS-COMPONENT), delete-component (SET, COMPONENTIJ,

functions Ce.g., add (ADDEND 1, ADDEND 21, modulo (X, BASE),
find (VALUE, SFT)J,

conditions Ce.g., match (STRING 1, STRING 21 , less-than (X,Y)J,

logical connectives Ce.g., and (EXPRESSION 1, EXPRESSION 213,

and assignment (i.e., ELEMENT := VALUE).

The user also has the option of creating hierarchies of input/output
data structures which directly reflect the reality they represent.
Alternatively, inessential aspects of this structure may be
suppressed. In this case, PRODOC automatically generates a formal
equivalent of the needed data structures (i.e., declarations). Once
"initialized" in this way, PRODOC library rules may be executed
immediately in interpretive mode for purposes ranging from simple
execution to debugging.

In conjunction with PRODOC's Library Generation facilities (see (4)
below), custom versions of PRODOCea (and PRODOClp) can quickly be
created to accommodate library rules to facilitate rapid prototyping
in arbitrary semantic properties.

A unique feature of PRODOCea is its ability to immediately execute
not only interpretable library rules but statements written in
ordinary English. This makes it possible to actually run through a
proposed system design before it has even been prototyped in terms of
high level library routines, let alone reduced to standard program
code. An additional advantage is that it makes the difficult and
expensive process of developing many expert systems almost trivial.
Once an (nonprogrammer) expert knows what a human/computer assistant
is to do, it is a simple task to develop a computerized expert
assistant or performance aid to assist less qualified personnel in
performing the required tasks.

(2) Applications Prototyping Environment (for use with a Pascal
compiler) (PRODOClp) - is identical to PRODOCea in so far as
prototype design and the use of library rules in rapid prototyping is
concerned. Instead of an interpreter, however, PRODOClp includes a
much generalized code generator which makes,it possible to
arbitrarily mix Pascal code with library rules, thereby gaining the
prototyping advantages of any number of customized, arbitrarily high
level languages, along with the flexibility of Pascal. This feature
makes it possible, for example, for a programmer to speed up or
otherwise add finishing touches to a working prototype created by a
nonprogrammer.

(3) Programming Productivity Environment (PRODOCpp) - has all of the
design, etc. features of PRODOCea. PRODOCpp comes in standard form
which supports source code in any programming language.

G.1.2.12

(Incidentally, PRODOC can be used as a full-function idea processor.
This text, for example, was prepared using PRODOC exclusively.)

In addition, pseudo code support is available as an option for
Pascal, C, Ada and other programming languages. For example, Pascal,
C and Ada syntax and other routine aspects of code generation te.g.,
BEGINS..ENDS, etc.) are all generated automatically. The result
effectively combines the clarity and ease of use of high-level fourth
generation languages with the flexibility of third.generation
languages. These options also include syntax checking, consistency
checking and automatic declarations generation. Current plays call
for adding pseudo code support for other third and fourth generation
languages as needed.

A sample FLOWform for sorting numbers and the corresponding Pascal
source code are shown on the next page.
.............................
Insert Sort FLOWform and Code
(4) Library Generator (PRODOClg) - makes it possible to integrate
available rule libraries and new library rules into either PRODOC
prototyping environment, thereby creating customized versions of
PRODOC for particular families of applications. Since this requires
access to PRODOC source code, customized versions of PRODOC will
normally involve a collaborative effort involving our development
team and software specialists in particular application areas.

The use of PRODOClg in developing customized versions of PRODOCea and
PRODOClp is represented schematically on the next page.

G. 1.2.13

ORIGINAL PAGE IS
OF POOR QUALITY

CSDRflrsort

Sort up to 500 numbersfprint result

01 -23-86

Copyright 1906 Scandurr

crite ('Wow many numbrrr (1 to 500) to be sorted? ' 1

wadln (n)

writeln ('Entmr below numbrrr to be sorted. Press <Ruturn> after each.')

FOR i r - l to n

rradln (r t i l) -
:OR irr 1 t o n-1

x)

Do

-

IF atjl> afJ*13 I
THEN

-
wr 8 teln

writeln ('The resulting order is:')

FOR i t = 1 t o n

uritrln (a[i'J:2)

G . 1.2.14

PROGRAn sort;

VAR n : INTEGER1
L : INTEGER;
a : ARRAYt1..5003 OF INTEGER;
j : INTEGER;
temp : INTEGER;

BEGIN
(Sort up to 500 numberstprint result 3
BEG IN
write ('How many numbers (1 to 500) to be EiDrted?
readln (n);
(Prompt user) then get numbers. 3
BEG IN

' 1 ;

nriteln ('Enter below numbers to be sorted. Press <Return> after each.');
(Get the numbers from the user. 3
FOR i:=l to n DO

reodln (atill
END 1

FOR i i - 1 to n-1 DO
Sort them. 3

(Scan thru items and snap if necessary. 3
FOR ji- 1 to n -i DO

(Compare and snap if necessary. 3
BEG IN
IF atj3> atj+13 THEN

(Swap 1
BEGIN
temp:= atjli

otj+13:= temp
atj3:= aCj+131

END
END 1

< Identify and the? print the resulting ordered set. 3
BEG IN

nr i teln;
nriteln ('Thr resulting order is:');
(Print the rcrrult. 3
FOR i1- 1 to n DO

nriteln (afiJr2)
END

END
END 0

G. 1.2.15

IMS's Structural Analysis Methodology and
PRODOClg Library Generator:

Customer

I MS,
I nc.

- - -
- c Application Domain

Domaln Expert uses
Structural Analysls 7 compu?ertzed

t o ldentlfy Structura/

7 -

I

structural Anal ysls 7 Icompu?ertzed
*&-- - - & - ---I

Basic Job Components
I

Programmer uses
PRODOCpp

t o code

~

[Atomic Library Rules

I
PRODOC 1 g

automat lcal ly
produces

Pascal Source Code k
IMS uses proprietary tools

t o create

Customized Versions of
PRODOCea and PRODOClp I

G.1.2.16

OVERVIEW OF THE SYSTEM DEVELOPMENT METHODOLOGY

Collectively, the various PRODOC environments provide a complete
software development system, including requirements definition,
systems design and documentation, prototype development, code
generation and program maintenance. For this purpose, rules
(represented in terms of data structure and procedure FLOWforms)
provide an unique visual and uniform type of representation that can
be used throughout.

The PRODOCea applications prototyping environment is designed
primarily for use by system designers (in conjunction with intended
users). (Given some initial training, in fact, it also can and has
been used independently by end users.)

In this context, PRODOCea can be used in system analysis and
requirements definition. System analyses will normally involve very
high level descriptions of the various system states (data
structures) and processes In ordinary English. Data FLOWforms will
normally be used to describe the states, and transitions between
states will be described at a high level in terms of procedure
FLOWforms. Should the designer wish, these descriptions may include
hardware, personnel and other development requirements.

During the requirements definition phase, users will develop more
detailed descriptions of the key states and transitions. This is
accomplished by successive refinement of the very high level system
descriptions, all in an integrated environment.

PRODOCea makes it possible to "execute" these systems analyses and/or
requirement definitions dynamically. That is, one can simulate
transitions between various states of the to-be-developed system,
thereby giving the user a better feeling for how the system might
operate in practice.

As is well known, the distinction between requirements definition and
program design is largely arbitrary and depends on one's perspective.
In the former case, definition of the key states of the system, and

of the transition procedures connecting them are described in largely
functional, real world terms. Conversely, program designs typically
are represented in terms of constructs associated with programming
languages.

I

The various PRODOC prototyping environments are associated with given
atomic rule libraries. Since rule libraries are designed to
accommodate particular families of applications, both the data
structures these rules operate on, as well as the rules themselves,
directly reflect application realities.

Consequently, library rules (including both data structures and

G.1.2.17

~

atomic rules) might be used directly in the case of requirements
definition. Indeed, the resulting definitions might be interpreted
directly (by PRODOCea) where the terminal (most refined) elements of
the key transition procedures correspond to atomic rules in the
associated library.

It may, in fact, still be possible to directly create an operational
system even where the terminal elements of a systems definition or
design are not already available as library rules. This might be
accomplished in either of two ways:

(1) New library rules might be selected from available libraries
and/or created (e.g., using PRODOCpp). These new rules can be
integrated automatically to form a new Library using PRODOClg.
PRODOClg generates complete Pascal code which can, in turn, be linked
with either PRODOC prototyping environment to create a custom version
(of either). This new custom version, then, can be used to directly
interpret the original systems definition or design (formulated in
terms of atomic rules in the new library).

(2) The requirements definition stage might be further developed as
normally is done into a detailed system design. In this case the
data structures and procedures (represented in terms of applications
reality) are reformulated in terms of data structures and operations
more closely associated with some target source language. These more
detailed designs, then, are converted to code using PRODOCpp. For
this purpose, one can enter complete source code using PRODOCpp's
default "text" files. Alternatively, in conjunction with available
lanquaqe-specific files, one can simply enter pseudo code. In the
latter case, syntax and consistency checking and declarations and
source code generation, may be performed automatically.

PRODOClp serves a supplemental role in the above context. For
example, Pascal pseudo code can be used to supplement whatever
library rules happen to be used in a given design. This can be done

I without restriction. Given the resulting 1ibrarylPascal pseudo code
combination, PRODOClp can be used to generate complete Pascal source
code ready for compilation.

PRODOClp also serves a useful role even where all elements of a
design consist of library rules. Although the design can be
interpreted, tested and debugged using PRODOCea, execution efficiency
car. usually be greatly improved via compilation. In this case,
PRODOClp can be used to convert the given design (represented solely

I in terms of library rules and meaningful data structures) into
I complete Pascal source code ready for compilation.

Perhaps the single most important advantage in following the
foregoing methodology is that of program maintenance. Given the
integrated, fully interchangeable nature of the various PRODOC
environments, there is no justifiable reason why system requirements
or design, program documentation, or code should ever get out of
synchronization. Consequently, finding one's way around in even very
complex systems is several orders of magnitude easier than is
normally the case. Furthermore, the prirtted documentation provides

G.1.2.18

additional features that are especially useful with large system
segments.

In developing smaller programs, of course, it may be possible to
bypass some of the above steps. Thus, one ha5 the choice of creating
and simply using an applications prototype as is, or of designing and
coding the program using PRODOCpp directly (e.g., in conjunction with
particular sets of PRODOCpp pseudo code language support files).

At this point, it may be unclear how we propose to deal with the
various other representational systems that are commonly used by
designers. In this regard, we take essentially the same position
that Martin and McClure (1985) take with respect to their "action
diagrams": Although the methodologies may appear to differ, all of
the commonly used forms of representation are either equivalent (to
ours) or incomplete. In fact, while action diagrams are formally
equivalent to procedure FLOWforms, we do not believe that they
display overall structure nearly as clearly.

By way of summary, using PRODOC has the advantage of placing
requirements definition, systems design, prototyping and program
coding (not to mention system maintenance) on the same plane. System
designs, prototypes, and program code are viewed within an integrated
environment, which is far easier to understand, revise, debug, and
modify than is normally the case. Put somewhat differently,
developing and maintaining executable (interpretable or compilable)
prototypes and/or source code is a natural extension of system design
and documentation, and vice versa. In short, PRODOC supports the
entire systems software management and development process, from
requirements definition to code generation.

Those of us who have been involved In the creation of PRODOC are fond
of pointing out that PRODOC has literally been indispensable in its
own creation. Indeed, we would not even consider taking on a new
programming task without using PRODOC.

G.1.2.19

REFERENCES

Heller, J. I. and Reif, F. Prescribing effective human
problem-solving processes: Problem description in physics. Cognition
and Instruction, 1, 177-216, 1984.

Knuth, D. E. The Art of Computer Programming Vol. 1: Fundamental
Algorithmes. Reading, MA: Addison-Wesley, 1968.

Martin, J. and Mc Clure, C. Action Diagrams: Clearly Structured
Program Design. Englewood Cliffs, NJ: Prentice-Hall, 1985.

Scandura, J. M. New directions for theory and research on rule
learning: 11. empirical research, Acta Psychologica, 1969, 29,
101-133.

Scandura, J. M. The role of rules in behavior: toward an operational
definition of what (rule) 1s learned. Psychological Review, 1970, 77,
516-533 .

I
Scandura, J. M. Deterministic theorizing in structural learning:
three levels of empiricism. Journal of Structural Learning, 1971, 3,
21-53.

Scandura, J. M. Structural Learning I: Theory and Research.
London/New York: Gordon and Breach Science Pub., Inc., 1973.

Scandura, J. M. Problem Solving: A StructuralIProcess Approach with
Instructional Implications. New York: Academic Press, 1977.

Scandura, J. M. Theoretical foundations of Instruction: a systems
alternative to cognitive psychology. Journal of Structural Learning,
1980, 6, 347-394.

Scandura, J. M. Problem solving in schools and beyond: transitions
from the naive to the neophyte to the master. Educational
Psychologist, 1981, 16, 139-150.

Scandura, J. M. Structural (cognitive task) analysis: a method for
analyzing content. Part I: background and empirical research. Journal
of Structural Learning, 1982, 7, 101-114.

I

Scandura, J. M. Structural analysis. Part 11: toward precision,
objectivity and systematization. Journal of Structural Learning,
1984, 8, 1-28. (a)

Scandura, J. M. Structural analysis. Part 111: validity and
reliability. Journal of Structural Learning, 1984, 8, 173-193. (b)

Scandura, J. M. Structural learning: the science of cognitive,
instructional and intelligent systems engineering. Journal of
Structural Learning, 1985, 8, 1-ii.

Scandura, J. M. PRODOC: The PROfessional self-Documenting programming
productivity environment. Journal of Structural Learning, 1986, 9,

G. 1.2.20

101-105.

Scandura, J. M., Durnin, J. H. and Wulfeck, W. H. Higher-order rule
characterization of heuristics for compass and straight-edge
constructions in geometry. Artificial Intelligence, 1974, 5,
149-183.

Scandura, J. M. and Scandura, A. B. Structural Learning and Concrete
Operationst An Approach to Piagetian Conservation. New Yorkr Praeger
Sci. Publ., Inc. 1980.

G.1.2.21

*
A Database Management Capability for Ada

Arvola Chan
Sy Danberg

Stephen Fox
Terry Landers

Ani1 Nori
John M. Smith

Computer Corporation of America
4 Cambridge Center

Cambridge, MA 02142

This project is supported jointly by the Advanced Research Projects Agency of
the Department of Defense (DARPA) and the Naval Electronics Systems Com-
mand (NAVELEX) under contract N00039-82-C-0226. The views and conclu-
sions contained in this paper are those of the authors and should not be inter-
preted as necessarily representing the official policies, e i ther expressed or
implied, of DARPA, NAVELEX, or the U.S. Government.

* Ada is a Registered Trademark of the U.S. Government (AJPO)

"A Database Management Capability for Ada," by A. Chan, S. Danberg, S. Fox,
T. Landers, A. Nod, J.M. Smith, from Proceedings of the Annual Washington
Ada Symposium, blarch 1985. Copyright 1985 by Association for Computing
Machinery, Inc., reprinted by permission.

G.1.3.1

1. Introduction

The data requirements of mission-critical defense systems have been
increasing dramatically. Command and control, intelligence, logistics, and
even weapons systems are being required t o integrate, process, and share ever
increasing volumes of information. To meet this need, systems are now being
specified that incorporate database management subsystems for handling
storage and retrieval of information. Indeed, i t is expected that a large
number of the next generation of mission-critical systems will contain embed-
ded database management systems. Since the use of Ada has been mandated
for most of these systems, i t is important to address the issues of providing
database management capabilities that can be closely coupled with Ada.

Under sponsorship by the Naval Electronics Systems Command and the
Defense Advanced Research Projects Agency, Computer Corporation of Amer-
ica has been investigating these issues in the context of a comprehensive dis-
tributed database management project. The key deliverables of this project
are three closely related prototype systems implemented in Ada.

1. LDM (local data manager): an advanced, centralized database manage-
ment system that supports a semantically rich data model designed to
improve user productivity. It can be used either stand alone or as an
integral part of the other two prototype systems.

2. DDM (distributed data manager): a homogeneous distributed database
management system built on top of a collection of LDMs in a computer
network. It supports the transparent distribution and replication of data
in order to provide efficient access and high availability.

3. Multibase: a retrieval-only system that provides a uniform interface
through a single query language and database schema to data in preex-
isting, heterogeneous, distributed databases. I t utilizes LDM for manag-
ing its local workspace during the processing of a global query.

All three systems are designed to support identical interfaces for interac-
tive use and for use through application programs written in Ada. Fundamen-
tally, they support a "semantictt data model that captures more application
semantics than conventional data models. The interactive language is called
Daplex. Daplex has been designed to be an Ada compatible database sub-
language. The syntax of many of its constructs for data definition and data
manipulation has been borrowed from Ada. The application programming
interface is called Adaplex. It consists of an expression-level integration of
Daplex's data manipulation constructs with Ada. This paper identifies a set of
requirements for a modern database management capability for Ada that has
driven our design for the aforementioned prototype systems. It provides an
overview of the Daplex and Adaplex languages, and a summary of the func-
tional capabilities and technical innovations we have incorporated in the LDM,
DDM, and Multibase systems.

~ . 1 . 3 . 2

2. Requirements

Providing a database management capability for Ada is not an easy task.
Our goal is to provide a complete set of modern database management capabil-
ities which are consistent with the style and philosphy of Ada and which are
well integrated with the Ada language and its support environments. This sec-
tion summarizes the major requirements of a database management capability
for Ada. These requirements can be grouped into three general areas: classes
of databases that must be supported, operating environments, and compatibil-
ity with Ada.

CZasses of databases
Ada programs will need to access three classes of databases. The first

class consists of centralized databases. These databases reside at a single
location and are managed by a DBMS that executes on a single computer. The
second class consists of distributed databases. These databases can be frag-
mented, distributed, and replicated across a number of (possibly geographically
separated) sites. They are managed by a DBMS that executes on a number of
computers that are connected by a communications network. Distributed data-
bases provide improvements in reliability, survivability, and expandability over
centralized databases. The third class is pre-existing databases. These are
databases (possibly centralized or distributed) that are managed by existing
DBMSs. These DBMSs are not implemented in Ada. They provide different
sets of functional capabilities and support different interface languages. An
important requirement for an Ada database capability is to provide a single
Ada interface to all of the above classes of databases. In other words, the par-
ticular class of database being accessed should be transparent to the Ada data-
base application programmer.

Operating Environments
An Ada DBMS must be able to operate effectively in both an Ada program-

ming support environment (APSE) to facilitate the development of Ada data-
base application programs, and in an Ada run time environment to support the
execution of these programs. To provide for the needs of these two environ-
ments, the DBMS must have two operating modes: shared and embedded.
Shared mode is normally used in an APSE. A single copy of the DBMS supports
the simultaneous development of multiple Ada database application programs
in this mode. The interface between the application programs and the DBMS is
a loosely-coupled one, each being executed as a separate Ada program. Thus,
each application program can be changed without impacting the DBMS or other
application programs. Embedded mode is typically used in a run time environ-
ment. Once the application programs have stabilized, they can be loaded
together with the DBMS into a single Ada program. The applications and the
DBMS then operate as separate Ada tasks that synchronize and communicate
via rendezvous, thereby achieving a higher degree of interface efficiency at
the expense of reduced flexibility. Embedded mode is less flexible than shared
since a change to one application causes the other application and the DBMS to
be relinked.

Compatibility with Ada

G. 1.3.3

Ada has made a large contribution to improving program integrity through
strong type checking at compile t ime and constraint checking at run time. I t is
important that an Ada DBMS provides the same degree of integrity on the Ada
program data that i t manages. An Ada DBMS should support all of the Ada
data types, including derived types, subtypes, and type attributes. I t should also
support the same degree of run t ime constraint checking. Note tha t this can-
not be easily (or efficiently) accomplished by simply providing an Ada inter-
f ace to an existing (non-Ada) DBMS. Let us illustrate this wi th a simple exam-
ple. Suppose an Ada programmer wants to s tore a set of employee records in a
database. The Ada type definitions fo r this record may look like:

type YEARS is new INTEGER range 0..50;'

type EMPLOYEE Is
record

NAME : STRING(1 .30);
YEARS-OF-SERVICE : YEARS;
SALARY : INTEGER:

end record;

Suppose tha t the Ada programmer writes a program tha t contains a tran-
saction that adds one to the YEARS-OF-SERVICE component of each
employee record. There are two ways to process this transaction. One way is
to retrieve the YEARS OF SERVICE component for each record in the data-
base and return i t to t h e application program, add one and then store it back in
the database. This is a very inefficient way of processing since i t results in a
lot of data being sent from the DBMS to the application program and then back
again. A much more efficient method is to have the DBMS perform the update
directly. That is, the application program can instruct the DBMS to add one to
the YEARS OF SERVICE component of each record. This results in no data
being returned 6 the application program. However, the DBMS must now take
the responsibility of insuring that all new values of YEARS OF SERVICE
remain within the specified range. I t is not acceptable for the DBMSto blindly
change each value of YEARS - - OF SERVICE, only to have the application pro-
grams that retrieve the data at a later time discover tha t some values have
become illegal.

Data models and associated query languages have evolved significantly
over the past two decades. The early hierarchical models were superseded by
the network and relational models. The latter are in turn being superseded by
so-called semantic da ta models. Our overall DBMS project is based on a
semantically rich data model called Daplex which combines and extends the
key features of earlier data models. For example, Daplex's modelling con-
structs are a s t r ic t superset of those found in the relational model. Daplex is
designed to enhance the effectiveness and usability of database systems by
capturing more of the meaning of an application environment than is possible
with conventional data models. I t describes a database in te rms of the kinds of
entities that exist in the application environment, the classifications and
groupings of these entities, and the structural interconnections among them.
The semantic knowledge captured in Daplex is not only meaningful t o end

G.1.3.4

users, but is also usable by the database system and database administrator for
the purposes of query and physical schema optimization. For example,
knowledge of the nature of relationships between types of entities (Le.,
whether they are one-to-one, many-to-one, or many-to-many) can be used to
control the appropriate clustering of entities of different types that are likely
to be accessed together, both in a centralized and in a distributed environ-
ment.

The basic modelling constructs in Daplex are entities and functions. Enti-
ties correspond to conceptual objects. Entities are classified into entity types,
based on the generic properties they possess. Functions represent properties of
conceptual objects. Each function, when applied to an entity of appropriate
type, yields a single property associated with that entity. Such a property is
represented by either a single value or a set of values. These values can be
simple, being drawn from Ada supported scalar types and character strings, or
composite, consisting of references to entities stored in the database. We
illustrate these constructs with an example.

Consider a university database modelling students, instructors, depart-
ments, and courses. Figure 1 is a graphical representation of the definition - -- of

PERSON

NAME
AGE

ISA p $ S A

STUDENT

ADVISOR TITLE
SALARY I I %%TS I

INSTRUCTOR (COURSE1
ADVISOR TITLE

ROOM
CREDITS

+ SALARY

-
COURSES-TAUGHT

J
COURSES-TAUGHT

1 ENROLLMENTS 1
DEPT qTl4 DEPARTMENT 1 DEPT

FLOOR

DEPARTMENT DEPTI w I OEPT -
I I -

Figure 1. A Daplex Database

such a database. The rectangles depict entity types. The labels within the rec-
tangles depict functions that range over Ada scalar and string types. The
single-headed and double-headed arrows represent single-valued and set-valued

G.1.3.5

functions that map argument ent i ty types t o result types. The double-edged
arrows indicate isa (subtype) relationships.

One major difference between Daplex and the relational model is that
referential integrity constraints [DateBl], which are extremely fundamental in
database applications but not easily specifiable in a relational environment,
are directly captured. For example, when a student is inserted into the data-
base, the database system will ensure that it is assigned a valid instructor, Le.,
one that is existent in the database. Likewise, when an instructor is to be
removed from the database, the database system will see to it that no dangling
references result, Le., there are no more students in the database who have t h e
instructor in question as advisor.

Another important semantic notion captured in Daplex is that of a hierar-
chy of overlapping ent i ty types. In relational systems, a real-world ent i ty that
plays several roles in an application environment is typically represented by
tuples in a number of relations. In the university application environment, w e
might have an instructor enti ty named John Doe and a student ent i ty also
named John Doe. In this case, it might be desirable to impose the constraint
that the age of John Doe as an instructor should agree with the age of John
Doe as a student. One possible s t ra tegy in a relational system is to represent
this information only once by having a relation person that stores the age
information, and relying on joining operations t o determine the age informa-
tion for students and instructors. In Daplex, w e can specify that student and
instructor are subtypes of person whereby w e can utilize Daplex's function
inheritance semantics to simplify the formulation of queries and updates. Fig-
ure 2 shows a relational equivalent of the university database. Figures 3 and 4
I

PERSON (SSN, NAME, AGE)

STUDENT (SSN. ADV-SSN)

INSTRUCTOR (SSN. D E R)

COURSE (ROOM, CREDITS)

ENROLLMENTS (SSN. TITLE)

COURSES-TAUGHT (SSN. TITLE)

Figure 2. A Relational Schema

shows a Daplex query and i t s equivalent in SQL [DATE84]. The intent of this
query is to print the names of all students taking a class held at room "F320tt
and taught by an instructor in the "CS" department. Notice how explicit join
terms have to be introduced in the SQL query, which tend to obscure readabil-
ity. On the other hand, the absence of such constructs from the Daplex query
allows the query t o be read in a more or less English-like manner. A complete
description of the Daplex da ta model and access language can be found in
[SLRR84].

G.1 .3 .6

for each S in STUDENT where
"F320" is in ROOM(ENROLLMENTS(S))

DEPT(ADVISOR(S)) = CS

PRINT(NAME(S));

and

loop

end loop;

Figure 3. A Daplex Ouery

SELECT PERSON.NAME
FROM PERSON, STUDENT, ENROLLMENTS, COURSE, INSTRUCTOR

AND PERSONSSN = ENROLLMENTSSSN
AND ENROLLMENTSTITLE = COURSE.TITLE
AND COURSE.ROOM = "F320"
AND STUDENT.ADV-SSN I INSTRUCTOR.SSN
AND INSTRUCTOR.DEPT = CS

WHERE PERSONSSN = STUDENTSSN

Figure 4. An Equivalent SOL Ouery

I
4. Adaplex

Database environments for popular programming languages, notably C,
PL/1, COBOL, and Pascal, have resulted in extensions to the host programming
language. At the outset, it was not clear whether Ada would also need t o be
extended to accommodate database applications. This is because Ada contains
important new features not found in previous widely-used languages. In partic-
ular, Ada's package construct offers t he potential for defining a database
extension within the language itself.

There have actually been a number of proposals for coupling database
management capabilities to Ada through the package construct [HTVNSl,
NOKI83, VINE831. However, we feel that such approaches sacrifice usability
and data integrity for not extending Ada [SCDF85]. Since our goal is to design
the best Ada compatible language environment for developing database appli-
cation programs, i t is our desire to express as much of t h e database environ-
ment in Ada as possible, although not at the expense of database capabilities
and ease of use.

Two major capabilities that must be provided by a database programming
environment are schema definition (for describing the contents of the data-
base) and transaction definition (for specifying operations on the stored data).
In order to support database applications programming in Ada, i t is necessary
to couple the DBMS to an Ada programming support environment. One possible
approach for achieving such a coupling is illustrated in Figure 5. Notice that
both schema definition and transaction definition are separated from the Ada

Schema Transaction Ada
Definition Deflnition Program

b

Schema Transaction Ada
Compiler Optimizer Compiler

Program
Library I Transaction

Library I Schema
Library

DBMS

Figure 5. Coupling a DBMS with an Ada Programmmg Support Environment

application program.
This separation works for database schema definition since the output of

the schema compiler can be logically thought of as an Ada package containing
type definitions representing a database schema. The separation of transaction
definition from application program is less natural because parameters must be
passed from the application program to the DBMS and transaction results must
be bound to application program variables.

In the course of our project, two approaches for handling transaction
definition have been considered. The first approach is similiar to the one used
for schema definition. A transaction definition is passed to the transaction
optimizer which generates an Ada package that implements (Le. calls the
DBMS to execute) the transaction. The package is then loaded with the appli-
cation program. This approach, however, leaves the applications programmer
with a rather complicated interface. The programmer must learn a transaction
definition language which is quite distinct from Ada. Besides, parameter pass-
ing between the application program and the package that implements the
transaction is cumbersome. Since Ada is a strongly typed language, it might be
necessary to use an intermediate representation like character strings for pass-
ing certain parameters. This has a number of drawbacks. First, the program-
mer must explicitly encode and decode these strings. Second, compile time
type checking cannot be performed on the contents of these strings. In gen-
eral, such a parameter passing mechanism can be quite inefficient.

These difficulties lead us to adopt a second approach which permits the
application programmer to embed transaction definitions directly in an Ada
program. The result is an integrated language, called Adaplex, which provides
a tight coupling between Ada and our transaction definition language. No
changes were made to existing Ada constructs. The new constructs that were
added are treated in an Ada compatible manner. The coupling is achieved at
the expression level. Applications programmers are free to use Ada

G. 1.3.8

Schema
Definition

Integrated
Application
Program

Preprocessor 1
Transaction
Definition

Compiler I Schema I Transaction
Optimizer I I

Ada
Program

To Ada
Compiler

Figure 6. Configuration ol Maplex Programming Tools

expressions, control structures, and subprogram calls within a transaction
definition. Because of Adaplex's uniform syntax and semantics, we expect it to
be very easy to learn and use by trained Ada programmers.

For portability reasons, a preprocessor is used to decompose applications
programs written in Adaplex into a transaction part and an Ada program part.
The transaction part is forwarded to the transaction optimizer and the Ada
part to the Ada compiler. The preprocessor is a very powerful tool. I t provides
the same integrity checking across the application program/DBMS interface
that the Ada compiler provides for an Ada program.

The schema compiler, transaction optimizer, preprocessor, and DBMS form
the minimum set of program development tools required for the database
environment. Their combined configuration is shown in Figure 6. Any one of
the Multibase, LDM, DDM systems can be substituted in place of the box
labelled DBMS. Provided all these tools are written in Ada, database schemas,
application programs, and databases may be ported between Ada installations.

Fundamentally, Adaplex adds two constructs to Ada, the database declara-
tion and the atomic statement. These constructs provide for schema definition
and transaction definition respectively. A database declaration specifies the
data objects in a database, the types of those data objects, and their

G.1.3.9

database UNIVERSITY is

type DEPT-NAME is (CS. €E. MA).
type YEARS Is new INTEGER range 0 .. 120;
UNKNOWN-AGE constant YEARS = 0;

type COURSE is
entity

TITLE
ROOM
CREDITS

end entity

: STRING (1 . . 6)
. STRING (1 .. 5);
' INTEGER range 1 .. 4;

type PERSON is
entity

NAME STRING (1 30).
AGE YEARS : = UNKNOWN-AGE.
SSN INTEGER;

end entity;

subtype INSTRUCTOR is PERSON
entity

DEPT : DEW-NAME;
COURSES-TAUGHT : set of COURSE:

end entlty;

subtype STUDENT is PERSON
entity

DORM : !STRING (1 .. 10);
ADVISOR : INSTRUCTOR withnull;
ENROLLMENTS : set of COURSE;

end entity;

overlap INSTRUCTOR with STUDENT;

unique TITLE within COURSE;

end UNIVERSITY:

Figure 7. An Pdaplex Database Declaration

consistency/inte@ty requirements. Database declarations are processed by
the schema compiler. Figure 7 shows the database declaration for the univer-
sity database that was depicted graphically in Figure 1. In addition to the type
and subtype declarations, several constraint statements have been specified.

indicates that it is legal for a PERSON entity to be both a STUDENT and
INSTRUCTOR simultaneously.

unique TITLE within m;
indicates that all COURSE entities must have unique TITLES.

overlap lWTRWKR w i t h STUDENT;

with UNIVERSITY; use UNIVERSITY;

ADD-COURSE
declare

NEW-COURSE COURSE.
atomic

NEW-COURSE ' = new COURSE (TITLE = > "CS-101".
ROOM = > GET-ROOM(CS). -
CREDITS = > 3):

Include NEW-COURSE into
COURSES-TAUGHT

(I In INSTRUCTOR where NAME (I) = "Adam Jones");
exception

end atomlc:

when UNIQUENESS-CONSTRAINT = >
PUT-LINE("Dupl1cate course name");

Figure 8. An Adaplex Database Transaction

A database is similar to a package since it is a related collection of data
and type declarations. However, a database differs from a package in three
principal ways. First, there are explicit protocols within Adaplex for several
independent main programs to share the use of a database. Second, a strong
discipline is imposed on the specifications allowed in a database declaration.
Third, database declarations are developed interactively via the schema com-
piler, and they are stored for future reference in the schema library.

An atomic statement specifies a compound operation which must be indi-
visibly executed with respect to a database. The preprocessor extracts tran-
sactions from atomic statements for processing by the transaction optimizer.
Figure 8 shows an Ada code fragment containing an atomic statement. This
transaction creates a new COURSE entity and indicates that the course will be
taught by the instructor named Adam Jones. Notice that the database type
declarations are made visible by the with and use statements. The expression
level integration of Daplex and Ada is illustrated by calling an Ada subpro-
gram, GET ROOM, to generate a value to assign to the ROOM function. Since
COURSES &e constrained to have unique TITLES, it is possible that the create
statement may fail. An exception handler is included to cleanly handle this
error.

An atomic statement is similar to a block in the sense that it is a compound
statement that has associated declarations and exception handlers. However,
an atomic statement differs from a block in three ways. First, atomic state-
ments are executed indivisibly with respect to databases. Second, strong dis-
ciplines are imposed on the contents, nesting, parallel execution, and excep-
tion handling of atomic statements. Third, atomic statements are transformed
by the preprocessor to extract database transactions.

A complete description of the Adaplex language can be found in [SFLSS].
A detailed discussion on our rationale for developing Adaplex can be found in
[SFL83, SCDF851.

G. 1.3.11

5. LDY

LDM is a general purpose system for defining, storing, retrieving, updating,
sharing, and protecting formatted information. While its users may be geo-
graphically distributed, LDM and its data must be centrally located. LDM is
designed to provide all the functions typically found in a modern database sys-
tem, including:

logical and physical database definition,
logical and physical database reorganization,
a fully integrated data dictionary facility,
an authorization mechanism for controlling database access,
optimized selection of access paths for transactions,
interference-free concurrent access by multiple users/transactions,
automatic recovery from transaction failures, software crashes, and
media failures,
a dumping utility for taking a consistent snapshot of the entire database,
a reload utility for restoring a database to a previously saved state.

LDM's main design objectives are transportability and high performance.
Transportability is achieved by the use of Ada as the implementation language
and by using a modular system architecture which is greatly facilitated by
Ada's packaging construct and separate compilation mechanism. A description
of LDM's component architecture can be found in [CFLR81]. High perfor-
mance, on the other hand, requires the introduction of a number of technical
innovations in the areas of physical data structuring, query optimization, con-
currency control, and recovery management as identified below.

LDM is designed to provide complete physical data independence. It sup-
ports flexible physical structuring options so that a database administrator can
tailor the physical representation of a database according to application
requirements [CDFLSZ]. LDM employs special data structures for the efficient
maintenance of referential integrity and other contraints associated with type
overlaps in a generalization hierarchy. It also provides a wide range of options
for the clustering of entities that belong to a generalization hierarchy. LDM
supports dynamic data structures (namely, linear hashing (LARS801 and B-trees
[COME79]) to eliminate the need for periodic reorganization. In order to sup-
port the efficient traversal of interentity references, LDM implements a
pointer validation scheme that minimizes the updating costs associated with
the use of dynamic data structures.

The design of LDM is geared towards the processing of repetitive transac-
tions in a database applications programming environment. Transactions are
compiled, thereby permitting the costs for parsing, authorization checking, and
access path optimization to be amortized over multiple execution. LDM is also
designed to optimize a much larger class of queries than relational systems. In
particular, we have developed efficient strategies for processing queries with
outerjoins and nested quantifiers [RCDFSZ, DAYA83Al. At the same time, the
amount of effort that LDM will expend to optimize a transaction template can
be controlled by a user (in the form of a pragma). Thus, a user can ensure that
the effort for optimizing a given transaction tc rnplate is commensurate with

G. 1.3.12

the savings that can be expected to accrue over repeated execution.
LDM implements an integrated concurrency control and recovery mechan-

ism which has the advantage of improving concurrency while simplifying tran-
saction and system recovery. Specifically, LDM implements a multiversion
mechanism that allows each read-only transaction to see a consistent snapshot
of the database without having to synchronize with update transactions
[CFLN82]. The essence of this mechanism is that update transactions create
new versions of data objects without overwriting their previous versions. An
efficient scheme is used to determine the appropriate version of different data
objects each read-only transaction should see, and to identify those old ver-
sions that can be garbage collected. Since database dumps can be considered
as read-only transactions that access the entire database, they can also be
taken non-intrusively (Le., without requiring the quiescence of concurrent
updates).

In addition to being a stand-alone centralized database system, LDM also
functions as an integral part of DDM and Multibase.

6. DDM

DDM is a homogeneous distributed database system built on top of a collec-
tion of LDMs running at different sites connected by a computer network.
From the end-users' point of view, DDM performs precisely the same opera-
tions supported by LDM. This is because all complexities introduced by frag-
mentation, distribution, and replication of a database are hidden from end-
users. Users access a distributed and replicated database in DDM just as they
would access a centralized database in LDM. In a distributed environment, a
copy of LDM and a copy of DDM are installed on each of several computers in
a computer network where data is distributed / replicated. Each LDM is
responsible for managing all locally stored data at its resident site. Each DDM
cooperates with all other DDMs in the network in order to hide the distribution
and replication .of data from end users and applications. As a truly distributed
system, DDM delivers the benefits of improved processing capacity, communi-
cations efficiency, survivability, and modular upward scaling. DDM provides
the following important facilities.

An integrated global schema that encompasses data stored at all sites.
DDM maintains a global directory in order to keep track of the distribu-
tion and replication of data. I t automatically maps transactions on the
global schema into subtransactions on data stored at individual LDMs.

0 Complete physical data independence. The database administrator is free
to tune parameters involving the physical distribution, replication, and
representation of the stored data, without affecting the external view of
the database.
Mutual consistency of replicated data. Users deal with logical data only.
Propagation of updates to redundant copies of updated data is managed by
the system.
Atomicity of distributed transactions. DDM guarantees than no partial
effects of one transaction will be seen by another. If a transaction is
unable to complete, all of its effects on the database are automatically
undone.

G.1.3.13

Continued operation in spite of site failures. Users can continue to per-
form retrieval and update operations, even though some copies may be
temporarily inaccessible. These latter copies are brought up to date by
the system before being used for processing subsequent transactions.
Dynamic integration of new sites. No quiescence of on-going activities is
needed for reconfiguration of the system.

As in LDM, our main design objectives for DDM are transportability and
performance. Again, we have introduced a number of technical innovations in
the areas of data allocation, query optimization, concurrency control, and
recovery management in order to obtain good performance. These are sum-
marized below.

DDM supports flexible database fragmentation and allocation that can be
used to improve locality of reference and efficiency of query processing
[CDFR83]. Each database managed by DDM is optionally divided into a
nslmber of groups of data fragments, based on the likelihood of their being used
together. Each group of data fragments constitutes a unit for allocation and
may optionally be replicated at as many sites as desired. For a replicated frag-
ment group, two kinds of copies are distinguished. Online copies are used for
processing transactions. Offline copies serve as warm standbys that can
quickly (and automatically) be upgraded to online status in order to retain a
desired degree of resiliency as sites storing online copies fail. When specifying
the replication parameters for a fragment group, a database administrator
indicates the number of desired online copies and those sites whose copies are
to be kept online preferrably. DDM will then strive to keep those copies at the
preferred sites online, but dynamically bringing copies stored at other sites
online to maintain the desired level of resiliency when necessary.

Unlike previous systems, DDM is designed to take into consideration data-
base fragmentation and replication in its selection of strategies for processing
transactions [CDFG83]. Whereas most previous studies on distributed query
optimization assume the distribution of joins over unions, DDM will consider
the options of using left distribution, right distribution, or no distribution at all
when processing queries that involve such operations. DDM treats each frag-
ment group as an integral data unit during the optimization process. Both
compile time and run time optimization are performed. Compile time optimi-
zation seeks to identify a good order for processing the high level data manipu-
lation operations on fragment groups without binding operations and copies to
sites. This is because the choice of which copy of a fragment group to use for
processing a transaction cannot be made until the availability of sites at run
time is known. By dividing the optimization into two stages, DDM maximizes
the amount of preanalysis done at compile time while ensuring the validity and
optimality of the generated access plans.

DDM's concurrency control mechanisms are extensions of those used in
LDM. Again, a multi-version mechanism is used to eliminate conflicts between
read-only and update transactions [CGSSI. In addition to improving parallel-
ism, this mechanism greatly facilitates the taking of global checkpoints. Such
a checkpoint may be necessary if one wants to reset a distributed database to a
previous globally consistent state after the log data in one or more sites is
damaged. With respect to replica control, DDM provides a balance between
synchronization overhead and failure resiliency. Essentially, updates are pro-
pagated to online copies synchronously. Offline copies are only updated in a
background batched fashion.

G. 1.3.14

Because DDM is designed for distributed command and control applica-
tions, survivability is a very important issue. A special transaction commit
algorithm is used to ensure that distributed transactions are terminated in a
timely fashion, even in the presence of site failures, so that resources at the
remaining operational sites can be fully utilized (without being tied down by
incomplete transactions). DDM is designed to recover automatically from
total failures wherein all of the sites coordinating a transaction or all of the
sites storing replicated copies of a fragment group fail simultaneously. Previ-
ous systems have treated such failures as catastrophes and required human
intervention for recovery. In order to speed up the availability of data at a
recovering site, DDM employs an incremental site recovery strategy. Essen-
tially, the fragment groups stored at the recovering site are prioritized and
brought up to date one at a time (with the assistance of other replication sites).
As soon as a fragment group is brought online, it can be used for processing
new transactions without having to wait for the recovery of other fragment
groups.

7. Multibase

Multibase is designed to provide a logically integrated, retrieval-only, user
interface to a physically nonintegrated environment containing pre-existing
databases. These databases may reside on different types of database manage-
ment systems, at different physical locations, and on different types of
hardware.

Before local databases can be accessed through Multibase, the local host
systems must be connected to a communications network. This network can be
local or geographically distributed. After Multibase has been connected to the
same communications network, a global user can access data in the local data-
bases through Multibase using a single query language. Each local site main-
tains autonomy for local database updates. Local applications can continue to
operate using the existing local interfaces, as before.

Multibase presents the end user or application program with the illusion of
a single, integrated, non-distributed database. Specifically, Multibase assumes
the following responsibilities:

0 providing a global and consistent picture of the available data,
knowing the locations for the database items,
transforming a query expressed in the global query language into a set of
subqueries expressed in the different languages supported by the target
systems,
formulating an efficient plan for executing a sequence of subqueries and
data movement steps,
implementing an efficient plan for accessing the data at a single target
site,
moving the results of the subqueries among the sites,
resolving incompatibilities between the databases (such as difference in
naming conventions and data types),

G. 1.3.15

resolving inconsistencies in copies of the same information that are stored

combining the retrieved data to correctly answer the original request.
in different databases, and

Global Data Manager
(GDW

Multibase has three key design objectives: generality, compatibility, and
extensibility. To satisfy the first objective, Multibase has been designed to be
a general tool, capable of providing integrated access to various database sys-
tems used for different applications. Multibase has not been engineered to be
an interface for a specific application area. The second requirement of Multi-
base is that it co-exists and be compatible with existing database systems and
applications. No changes or modifications to local databases, DBMS's, or appli-
cation programs are necessary to interface Multibase with systems already in
operation. The local sites retain full autonomy for maintaining the databases.
All local access and application programs can continue to operate without
change under Multibase. The third design objective is that it must be rela-
tively easy to couple a new local system into an existing Multibase
configuration.

All these objectives are achieved by designing a modular architecture for
Multibase and by making the system largely "description driven" [LR82].
Multibase's modular architecture isolates those parts of the system that deal
with specific aspects of a local system. Because of this, a Multibase
configuration can be expanded to include a new DBMS in a short period of t i m e
and with little impact on the existing Multibase software. Descriptions are
used throughout Multibase to tailor general modules for specific applications,
users, and databases. These descriptions are written by the database
administrator(s) who is responsible for tailoring a Multibase configuration.

Flgun 9. Multibase Component Architecture

The component architecture of Multibase is illustrated in Figure 9. There
are two types of modules: a global data manager (GDM) and a local database
interface (LDI). All global aspects of a query are handled by the GDM. All
specific aspects of a local system are handled by an LDI. There is one LDI for

G. 1.3.16

each local host DBMS accessed by Multibase. The GDM makes use of LDM as
an internal DBMS to manage its workspace. The LDM is used to store the
results of the Daplex singlesite queries which are processed by the LDI's and
to perform all the required steps of the final query for combining and format-
ting the data.

It should be mentioned that Multibase does not provide the capability to
update data in the local databases or to synchronize read operations across
several sites. This is because implementing global concurrency control
mechanisms for read or update operations would have necessitated the global
process to request and control specific resources offered by the local systems
(Le., locking local database items) as required to ensure consistency across the
databases. However, most systems do not make available to an external pro-
cess the services necessary to implement global concurrency control. Since
Multibase is designed to operate without requiring modifications to existing
systems, the tools necessary to ensure consistency across databases are not
globally available. Thus, autonomy of database update is maintained locally,
and Multibase provides the global user with the same level of data consistency
that the local host DBMSs provide to each local database user.

In addition to the highly modular and description driven architecture, the
design of Multibase has required research in the areas of schema integration,
global query optimization, and local query optimization. Our results in each of
these areas have been reported in [KG81, DAYA84a1, [DAYA83b, GY84,
DAYA84b1, and [DG82] respectively.

8. Status

Designs of the Daplex and Adaplex languages are complete. Prototype ver-
sions of Multibase and LDM which support most of the described capabilities
have been implemented. Implementation of DDM is well underway. To date,
the systems contain approximately 500,000 lines of Ada source code. Most of
the implementation was done in an Ada-subset using an Ada-to-Pascal transla-
tor [SOFT81]. The systems were then converted to full Ada using the DEC VAX
Ada compiler [DEC85]. Development is continuing using both VAX Ada and
Rational's Ada Development Environment [RAT85]. The initial target environ-
ment for all three systems is VAX VMS. The current systems support an
interactive version of Adaplex (Le., Daplex).

9. References

[CDFG83b]
A. Chan, U. Dayal, S. Fox, N. Goodman, D. Ries, D. Skeen. "Over-
view of an Ada Compatible Distributed Database Manager." ACM
SIC MOD Conference Proceedings, 1983.

A. Chan, S. Fox, S. Danberg, W. Lin, A. Nori, D. Ries. "Storage and
Access Structures to Support a Semantic Data Model." VLDB Confer-
ence Proceedings, 1982.

[CDFL82]

G. 1.3.17

[CDFRSS]
A. Chan, U. Dayal, S. Fox, D. Ries. "Supporting a Semantic Data
Model in a Distributed Database System." VLDB Conference Proceed-
ings, 1983.

A. Chan, S. Fox, W. Lin, A. Nori, D. Ries. '!The Implementation of an
Integrated Concurrency Control and Recovery Scheme." ACM SIG-
MOD Conference Proceeding, 1982.

A. Chan, S. Fox, W. Lin, D. Ries. "The Design of an Ada Compatible
Local Database Manager." Technical Report CCA-81-09, Computer
Corporation of America.

A. Chan, R. Gray. "Implementing Distributed Read-only Transac-
tions." To appear in IEEE Transactions on Software Engineering, Vol.
SE-11, No. 1, February 1985.

C. Date. "Referential Integrity." VLDB Conference Proceedings,
1981.

C. Date. A Guide to DB2, Addison Wesley, 1984

U. Dayal. "Processing Queries with Quantifiers: A Horticultural
Approach." ACM PODS Conference Proceedings, 1983.

U. Dayal. "Processing Queries over Generalization Hierarchies in a
Multidatabase System." VLDB Conference Proceedings, 1983.

U. Dayal, H. Hwang. "View Definition and Generalization for Data-
base Integration in Multibase: A System for Heterogeneous Distri-
buted Databases." IEEE Transactions on Software Engineering, Vol.
SE-10, No. 4, November 1984.

U. Dayal. "Query Processing in a Multidatabase System." in Query
Processing in Database Systems, (W. Kim, D. Batory, D. Reiner, edi-
tors), Springer Verlag, 1984.

Digital Equipment Corporation. "Developing Ada Programs on
VAX/VMS." 1985.

U. Dayal, N. Goodman. "Query Optimization for CODASYL Database
Systems." ACM SIGMOD Conference Proceedings, 1982.

N. Goodmam, D. Skeen, A. Chan, U. Dayal, S. Fox, D. Ries. "A
Recovery Algorithm for a Distributed Database Management Sys-
tem." ACM PODS Conference Proceedings, 1983.

[CFLN82]

[CFLRSl]

[CG85]

[DATE811

[DATE841

[DAYA83a]

[DAYA83bl

[DAYA84a]

[DAYA84b]

[DEC 8 51

[DG82]

[GSCDSS]

G. 1.3.18

[GY84]
D. Goldhirsh, L. Yedwab. "Processing Read-only Queries over Views
with Generalization." VLDB Conference Proceedings, 1984.

H. Hwang, U. Dayal. "Using Semiouterjoins to Process Queries in a
Multidabase System." ACM PODS Conference Proceedings, 1984.

J. Holland, K. Tai, M. Van Name. "An Ada Relational Database Inter-
face Using Abstract Data Types." TR 81-07, North Carolina State
University, 1981.

R. Katz, N. Goodman. "View Processing in Multibase - A Hetero-
geneous Database System." in Entity-Relationship Approach to Infor-
mation Modelling and Analysis, (P. Chen, editor), ER Institute,
Saugus, CA, 1981.

T. Landers, R. Rosenberg. "An Overview of Multibase." in Distributed
Databases, (H. Schneider, editor), North Holland Publishing Company,
1982.

Nokia Data Terminal Systems. "MPS 10 Database Management Sys-
tem Functional Description." Version 1.0, June 1983.

Rational, Inc. "Rational Environment Reference Summary." 1985.

D. Ries, A. Chan, U. Dayal, S. Fox, W. Lin, L. Yedwab. "Decompila-
tion and Optimization of Adaplex: A Procedural Database Language."
Technical Report, Computer Corporation of America, 1982.

J. Smith, A. Chan, S. Danberg, S. Fox, A. Nori. "A Tool Kit for Data-
base Programming in Ada." To appear in International Ada Confer-
ence Proceedings, 1985.

J. Smith, S. Fox, T. Landers. "Adaplex: Rationale and Reference
Manual." Technical Report, Computer Corporation of America, 1983.

S. Fox, T. Landers, D. Ries, R. Rosenberg. "Daplex User's Manual."
Technical Report CCA-84-01, Computer Corporation of America,
March 1984.

SofTech, Inc. "Interim Ada-to-Pascal Translation Tool Language
Reference Manual." TP 124, September 1981.

[HD84]

[HTVNSl]

[KG811

[LR82]

[NOKISS]

[RAT851

[RCDF82]

(SCDF851

[SFL83]

[SLRR84]

[SOFT811

[SWK76]

C

M. Stonebraker, E. Wong, P. Kreps. "The Design and Implementation
of INGRES." ACM T r m c t i o n s on Database Systems, Vol. 1, No. 3,
September 1976.

G.1.3.19

[VINE831
D. Vines, Jr. "An Interface to an Existing DBMS from Ada (IDA)." GTE
Network Systems, 1983.

G. l . 3.20

N89-16372
A Study of MAPSE Extensions ----

h v i d Auty, SofTech, Inc.
Robert Charette, SofTech, Inc.

Charles McKay, UHCL High Technology Laboratory

1. h e r v i e w

This p r o j e c t was i n i t i a t e d to s tudy t h e t e c h n i c a l i s s u e s of ex tending t h e
MAPSE to suppor t t h e l i fe c y c l e of l a r g e , canplex d i s t r i b u t e d systems such as
t h e Space Station Program (SSP). The work h a s been d i v i d e d i n t o two phases .
Phase-one, c o v e r e d by t h i s r e p o r t , i d e n t i f i e s a l i s t of a d v a n c e d t e c h n i c a l
tools needed to extend t h e MAPSE t o meet t h e needs b e l i e v e d to be inhe ren t i n
t h e Software S u p p o r t Envi ronment (SSE). O f s e c o n d a r y i m p o r t a n c e was t h e
i d e n t i f i c a t i o n of a list of advanced management tools.

Phase two, which is on-going a t t h i s time, is t o s t u d y and document t h e
major t e c h n i c a l i s s u e s i n a d d i n g t h e s e t o o l s t o t h e MAPSE a s a n i n t e g r a t e d
e x t e n s i o n e v o l v i n g i n t o an a p p r o p r i a t e SSE. The i n t e n t is t o p r o v i d e a
framework for understanding and e v a l u a t i n g t h e subsequent deve lopnen t and/or
procurement of such tools.

This p a p e r h a s been e x t r a c t e d from t h e f u l l i n t e r i m r e p o r t on t h e p h a s e
one efforts. It inco rpora t e s j u s t t h e d e s c r i p t i o n of SSE requirements , and a
l ist of t h e t o o l s i d e n t i f i e d . Other t o p i c s a d d r e s s e d i n t h e i n t e r i m r e p o r t
i n c l u d e an o u t l i n e of t h e p r i n c i p l e requirements for a MAPSE, a d e s c r i p t i o n of
t h e l i f e c y c l e model and a d e s c r i p t i o n of t h e tools i n t h e c o n t e x t of t h e l i f e
c y c l e model.

For t h e purpose of t h i s paper, t h e b a s i s l i f e c y c l e model is an adap ta t ion
of t h e symbolic r e p r e s e n t a t i o n of McDermid and Ripken (1984) t o t h e model
descr ibed i n L b D Standards 2167 and 2168. 'ke model p a r t i t i o n s t h e process of
software deve lopnen t i n t o t h e fo l lowing phases:

p l : System Requirements Analysis ,
p2: Software Requirements Analysis ,
p3: Prel iminary Design,
p4: Detai led Design,
p5: Coding and bit Tes t
p6: Cunputer Software bmponent In t eg ra t ion

The o u t p u t s from e a c h p h a s e are t h e formal r e v i e w documents used fo r
v e r i f i c a t i o n and v a l i d a t i o n , which a l s o form t h e i n p u t s t o t h e s u c c e e d i n g
phases . A l l documents and d e v e l o p m e n t i n f o r m a t i o n are m a i n t a i n e d i n an
i n t e g r a t e d l i f e c y c l e p r o j e c t o b j e c t base which s e r v e s t o c e n t r a l i z e and
c o n t r o l t h e d e v e l o p m e n t p r o c e s s . A l l a c t i v i t i e s and t o o l s work w i t h t h i s
p r o j e c t object base t o m a i n t a i n t h e p a r a l l e l p r o c e s s e s of c o n f i g u r a t i o n and
q u a l i t y control.

G.2.1.1

2.0 A Brief Descr ipt ion of Support Ehvironment Requirements
i n the Context of the Life Cycle Model

2.1 System Fkquirements Analysis

2.1.1 C h a r a c t e r i s t i c s , P r i n c i p l e s and Methods

S e v e r a l a c t i v i t i e s s h o u l d b e pu r sued d u r i n g r e q u i r e m e n t s i n t e r p r e t a t i o n ,
f e a s i b i l i t y s t u d i e s , and a n a l y s i s .

Seman t i c I n f o r m a t i o n C a p t u r e - S u p p o r t i n g i n t e r p r e t a t i o n , t h e c a p t u r e of
requirements i n the f w a semantic model i n v o l v e s i d e n t i f y i n g key terms,
c a t e g o r i z i n g t h e terms, d e f i n i n g t h e terms, and i d e n t i f y i n g t h e r e l a t i o n s
between the terms. Ihe c a p t u r e of semantic information creates a record ing
of t h e s e m a n t i c model of t h e r e q u i r e m e n t s , which becomes p a r t of t h e
base l ine . Assuning t h e semantic information is machine-encoded, it might be
expressed i n a formal language such as Problem Statement Language (PSL) or i n
a c o m b i n a t i o n of formal g r a p h i c s and text e x p r e s s i o n s u c h as Software
Requirements h g i n e e r i n g Methodology (SREM).

Semantics Analys is - Chce t h e requirements are expressed i n t h e c o n t e x t of a
semantic model, t he model r e l a t i o n s can be used for a sys temat ic a n a l y s i s of
t h e completeness and cons i s t ency of the requirements. This is achieved by
a s k i n g q u e s t i o n s which are answered w i t h t h e a i d of t h e r e l a t i o n s , s u c h a s
"Are there a n y o t h e r p r o c e s s e s which s h o u l d be r e l a t e d t o Process A by t h e
' p r e d e c e s s o r of' r e l a t i o n ? "

T r a c e a b i l i t y may be e s t a b l i s h e d t h r o u g h r e f e r e n c e r e l a t i o n s be tween
r e q u i r e m e n t s and s p e c i f i c a t i o n , d e s i g n and c o d e , e tc . The r e l a t i o n a l
a n a l y s i s can be used t o assess t h e impac t of r e q u i r e m e n t s c h a n g e s on t h e
b a s e l ined products.

The semantic a n a l y s i s a c t i v i t y a i d s d e v e l o p m e n t b y i d e n t i f y i n g areas of
requirements i ncunp le t eness or inconsis tency.

F e a s i b i l i t y -- and Risk Analys is - Eva lua t ing t h e f e a s i b i l i t y of requirements is a
F e a s i b i l i t y should be viewed from s i g n i f i c a n t p a r t of requirements a n a l y s i s .

t h e p e r s p e c t i v e s of des ign , performance and cost.

Design f e a s i b i l i t y i n v o l v e s f ind ing a t least one des ign t h a t satisfies t h e
requirements. Any approach from t r i a l design to pro to typing is appropr i a t e .
Per formance f e a s i b i l i t y is a s p e c i a l case of d e s i g n f e a s i b i l i t y a n a l y s i s .
hce a t r i a l des ign is e s t a b l i s h e d , modeling is an e f f e c t i v e technique for
ana lyz ing performance. Cost f e a s i b i l i t y i n v o l v e s e s t ima t ing costs based on
t h e t r i a l design. Cost a n a l y s i s must cons ider t h e t h r e e key elements: t h e
d e v e l o p m e n t p h a s e , t h e o p e r a t i o n s p h a s e , and t h e p h a s e for c o n t i n u i n g
adap ta t ion .

2.1.2 Requirements on t h e Support Ehvironment

The r e q u i r e m e n t s on t h e s u p p o r t e n v i r o n m e n t d a t a base, d e r i v e d from
requirements a n a l y s i s , are:

c.2.1.2

Basel ined Products - ?he semantic information is the o n l y data associated wi th
r e q u i r e m e n t s a n a l y s i s t h a t s h o u l d be b a s e l i n e d . It s h o u l d be unde r
conf igu ra t ion c o n t r o l and s u b j e c t to change o n l y as requirements changes are
approved. of each phase
(which must be d icho tanous ly demonstrated a t acceptance test time) b u t also
the %houldstV which have l i f e c y c l e i m p l i c a t i o n s t h a t cannot be dichotomously
d e m o n s t r a t e d a t a c c e p t a n c e test time and which may r e q u i r e t h e d e s i g n of
special metrics and i n s t r u n e n t a t i o n to support their a n a l y s i s a t subsequent
p o i n t s i n t h e l i f e cycle.

Ease l ined data should n o t o n l y i n c l u d e t h e

Non-Basel ined Data - Any i n f o r m a t i o n associated w i t h m o d e l i n g , s i m u l a t i o n ,
pro to typing , or semantic a n a l y s i s should be saved temporar i ly . It should be
used later i n requirements a n a l y s i s i t e r a t i o n or other a c t i v i t i e s .

Measurement Data - S e v e r a l measurements of the requirements a n a l y s i s a c t i v i t y
and its o u m s should be captured:

- Size of the d a t a base for semantic in format ion , - Complexity of t h e requirements as measured by t h e r e l a t i o n s h i p s i n the

- Nunber of i n c o n s i s t e n c i e s or m i s s i o n s found.
semantic information and

2.2 Software Requirements Spec i f i ca t ion

2.2.1 Characteristics, F r i n c i p l e s and Methods

Formal Record in - The s p e c i f i c a t i o n i n f o r m a t i o n mus t be recorded i n some

modes and func t ions . It should have t h e c h a r a c t e r i s t i c s of being minimal,
unders tandable , accurate and p r e c i s e , and e a s i l y modified. 'he s p e c i f i c a t i o n
should use a formal no ta t ion to fac i l i t a te formal c o r r e c t n e s s a n a l y s i s and
automated a n a l y s i s of t h e s p e c i f i c a t i o n easier.

suitable _Ir_g orm. As a minimun, t h e s p e c i f i c a t i o n should describe i n t e r a c t i o n s ,

C o m p l e t e n e s s A n a l y s i s - T h i s is done by t r y i n g o u t a d e s i g n of t h e sys t em.
Completeness a n a l y s i s gene ra t e s ques t ions which can h e l p i d e n t i f y information
a b s e n t from t h e r e q u i r e m e n t s . I n many cases, t h i s a c t i v i t y is done d u r i n g
requirements a n a l y s i s .

Correc tness Demonstration - The s p e c i f i c a t i o n must be shown as c o n s i s t e n t with
t h e r e q u i r e m e n t s . S i n c e t h e r e q u i r e m e n t s may n o t be s ta ted i n a formal
manner; a r i g o r o u s p r o o f of t h e i r c o n s i s t e n c y may n o t be p o s s i b l e . The
c o r r e c t n e s s demonstration is t h e n produced t h r o u g h a s u b j e c t i v e , i n f o r m a l
a n a l y s i s based on t h e semantics information from requirements a n a l y s i s .

Consis tency Ana lys i s - Any method for performing t h i s a n a l y s i s depends on the
7 G i X T h e s p e c i f i c a t i o n information. E a formal s p e c i f i c a t i o n language is

used, c e r t a i n k inds of problems may be detected by ana lyz ing t h i s nota t ion .
I n o t h e r cases, t h e c o n s i s t e n c y of t h e s p e c i f i c a t i o n i n f o r m a t i o n must be
j u d g e d on a less p r e c i s e basis . A good example of t h e s t a t e - o f - t h e - a r t i n
s p e c i f i c a t i o n methods is t h a t advocated by the Naval Research Laboratory, and
used t o d e v e l o p t h e s p e c i f i c a t i o n of t h e A-7 f l i g h t program. The
s p e c i f i c a t i o n docunent i n c l u d e s formal, t a b u l a r no ta t ion which l e n d s i t se l f
to completeness and cons i s t ency ana lyses .

~ . 2 . 1 . 3

2.2.2

The r e q u i r e m e n t s on t h e s u p p o r t e n v i r o n m e n t da t a base, d e r i v e d from t h e
s p e c i f i c a t i o n ac t i v i t y are :

Basel ined Products - lhe s p e c i f i c a t i o n information is base l ined . Any modeling
information produced should be base l ined i f it is c r u c i a l to the l i f e cycle
suppor t of the software.

Non-Basel ined - Data - T h i s material i n c l u d e s p a r t i a l s p e c i f i c a t i o n s u n d e r
deve lopnen t , a l t e r n a t e s p e c i f i c a t i o n , and d i a g n o s t i c information produced by
s p e c i f i c a t i o n a n a l y s i s tools.

Measurements - Examples of use fu l measurements data to be captured are: effort
and r e source data concerning the deve lopaen t of the s p e c i f i c a t i o n , size data ,
n m b e r of errors and changes made, and s u b j e c t i v e measures of the q u a l i t y and
c a n p l e t e n e s s of the s p e c i f i c a t i o n .

Requirements on the Support Ehvironment

2.3 Prel iminary and Detailed Design

2.3.1 Characteristics, Principles and Methods

A des ign is the t r a n s l a t i o n of the "shallst l *om requirements a n a l y s i s i n t o Ada
package s p e c i f i c a t i o n s . F u n c t i o n a l r e q u i r e m e n t s s h o u l d be t r a n s f o r m e d i n t o
f u n c t i o n a l Ada s p e c i f i c a t i o n s t h a t c a n be checked by an Ada Compi le r . Non-
f u n c t i o n a l r e q u i r e m e n t s (i.e., c o n s t r a i n t s) s h o u l d be t r a n s f o r m e d i n t o a
d i s c i p l i n e of Ada comnents tha t can be checked by other APSE tools.

Three areas of d e s i g n s u p p o r t are i d e n t i f i e d : f o r m a l r e c o r d i n g of s y s t e m
des ign , formal record ing of data and program des ign , and c r e a t i v e aids.

Formal Recording of System k s i g n - There are s e v e r a l methods i n v o l v e d i n
record ing the system design.

Information-Hiding - lhis method i n v o l v e s i s o l a t i n g information wi th in modules.
The modu le l i m i t s are d e f i n e d by the i n f o r m a t i o n (d e s i g n d e c i s i o n s , da t a
d e f i n i t i o n s , etc.) t o be isolated. Design is based on t h e e x p e c t e d c h a n g e s
to the informat ion , t h u s l o c a l i z i n g t h e effect of f u t u r e changes.

Module S p e c i f i c a t i o n - Focusing on module s p e c i f i c a t i o n s y i e l d s a d e s c r i p t i o n
allows o t h e r s to determine the i n t e n t of a c a n p l e t e module by reading

the module s p e c i f i c a t i o n .

- Use H i e r a r c h y - F o c u s i n g on the u s e h i e r a r c h y y i e l d s a d e s c r i p t i o n which
e x p l a i n s which p rograms depend o n t h e correct i m p l e m e n t a t i o n of a g i v e n
module to produce correct r e s u l t s .

Formal Recording of Data and Program Design - lhe techniques and methods for
the formal r eco rd ing of data des ign and program des ign are:

G.2.1.4

Program Design Lan uage (PDL) - 'Ihe wri t ing of d a t a and progran des ign i n a PDL

s u f f i c i e n t l y low- leve l to suppor t d i r e c t coding, and is f l e x i b l e enough to
l e a v e m e ques t ions unanswered while t h e des igner proceeds with t h e design.
(i.e., Ada Source c o d e w i t h Ada t tstubstt .)

is a u s e f u l + tec n i q u z r f o r m a l l y r e c o r d i n g t h e program d e s i g n . It is

S t e p w i s e Ref inement - T h i s method g o e s hand i n hand w i t h PDL. With s t e p w i s e
r e f i n e m e n t , s p e c i f i c a t i o n s for t h e lower l e v e l c o d e become p a r t o f t h e
d o c u m e n t a t i o n of t h e p rocedure . T h i s makes t h e . i n t e n t of t h e c o d e much
clearer.

Abstract ion of Data Types - With a b s t r a c t i o n , t h e des igne r can d e v e l o p d e t a i l s
where t h e y are needed. This p e r m i t s i n f o r m a t i o n - h i d i n g a s well a s a more
independent implementation of t h e system.

Creative Aids - Many c r e a t i v e techniques exist for design. A des igne r chooses
t e c h n i q u e s b a s e d on t h e i r i n d i v i d u a l a p p r o a c h t o c r e a t i v i t y . Some p r e f e r
g r a p h i c t e c h n i q u e s w h i l e o t h e r s do n o t . The c h o i c e of c r e a t i v e t e c h n i q u e s
should be l e f t to t h e i n d i v i d u a l , whereas t h e techniques for formal record ing
must be standard.

-- Data and Cont ro l Flow Analys is - Module decomposition and func t ion a l l o c a t i o n
An example

Described below are some r e p r e s e n t a t i v e c r e a t i v e a i d s :

are based upon t h e d a t a and c o n t r o l flows requi red by t h e system.
is St ruc tured Design.

Data S t r u c t u r e Transformation - Pans fo rma t ion is a des ign technique i n which
t h e s t r u c t u r e of t h e i n p u t and o u t p u t d a t a d e t e r m i n e s t h e structure of t h e
program.

-

Graphic Decomposition Techniques - Graphs showing h i e r a r c h i c r e l a t i o n s d e p i c t
An example i s S t r u c t u r e d A n a l y s i s and t h e d e c o m p o s i t i o n a t many l e v e l s .

Design Technique (SADT).

Graphic Cont ro l Descr ip t ions - Other ways of showing t h e c o n t r o l flows i n t h e
progran are Petri Nets and Warnier-Q-r diagrams.

2.3.2 Requirements on the Support Ehvironment

As w i t h t h e o t h e r a c t i v i t i e s of d e v e l o p m e n t , t h e da t a base mus t c o n t a i n
information on t h e design.

B a s e l i n e d P r o d u c t s - Throughout t h e l i f e of t h e s y s t e m , t h e most r e c e n t l y
The . sys tem

.
a p p r o v e d form of t h e d e s i g n must be s t o r e d i n t h e d a t a base.
design is en te red before t h e des ign of v a r i o u s subsystems or modules.

Non-Baselined Data - T h i s i n c l u d e s p r e l i m i n a r y d e s i g n s a s well a s g r a p h i c
d i s p l a y s used d u r i n g t h e c r e a t i v e p r o c e s s . Graph ic d i s p l a y s i n c l u d e tree
structures, b l o c k d i ag rans , and o t h e r material created by des ign tools. ?he
d a t a base must p rov ide for main ta in ing t h e temporary des igns developed before
one is a c t u a l l y chosen and base l ined .

-

G.2.1.5

Measurements - These should i n c l u d e module in te rconnec t ion measurements, such
as data bindings. lhese should a lso i n c l u d e lower design measurements, such
a s cyclomatic c o m p l e x i t y , and operators and ope rands . Many of these
measurements are norma l ly taken on the completed code, b u t with good, low-
l e v e l PDL, t hey can be taken (or approximated) dur ing design.

Archiva l - Data - Archived data should c a p t u r e t h e mot iva t ion behind t h e choice
of design. lhe archived data should also i n c l u d e past des igns e v o l v e d from
use or rejected dur ing developl lent a l o n g wi th the reasons for the r e j e c t i o n .

2.4 Coding and kit Tes t , Cunputer Software Component I n t e g r a t i o n

2.4.1 Qlaracteristics, P r i n c i p l e s and Methods

'his s e c t i o n w i l l focus on the unique requirements of deve lop ing d i s t r i b u t e d
systems.

Des igns which map program e n t i t i e s across d i s t r i b u t e d p r o c e s s i n g r e s o u r c e s
s h o u l d be s p e c i f i e d i n two complemen ta ry p a r t s . F i r s t , t h e f u n c t i o n a l
r e q u i r e m e n t s s h o u l d be d e m o n s t r a t e d t o . be met by t h e program d e s i g n by
execut ing the progran i n the h o s t environment. (Le., compile and execute t h e
Ada s o u r c e code on t h e h o s t s y s t e m w i t h o u t r e g a r d t o p r o p e r t i e s o f
d i s t r i b u t i o n .) Second, t h e n o n - f u n c t i o n a l r e q u i r e m e n t s (i.e., c o n s t r a i n t s)
such a s the l o c a t i o n each program e n t i t y is to be ass igned , t iming c o n s t r a i n t s ,
s i z i n g c o n s t r a i n t s , etc. should be mapped to a s imula to r for a n a l y s i s of t h e
i m p l i c a t i o n s of imposing t h e s e r e s t r i c t i o n s upon the des ign which was proven i n
t h e f irst s t e p . Tuning of a s s i g n m e n t s , code, algorithms and s t r u c t u r e s c a n
t a k e p l a c e i n t h e h o s t e n v i r o n m e n t u n t i l t h e s imulator p r o v i d e s a d e g r e e of
confidence. Load modules can then be b u i l t and moved to the t a r g e t environment
or to a t a r g e t test bed for further study. lhe implementation should produce
an e f f e c t i v e , u n d e r s t a n d a b l e t r a n s f o r m a t i o n of t h e d e s i g n . The a u t o m a t i c
gene ra t ion of appropr i a t e comnents i n the source code can ease the more complex
process of maintenance i n a d i s t r i b u t e d environment.

lhe fol lowing are some key aspects of implementation:

Standard I n t e r f a c e Set to a Catalog of Runtime Support Environment Fea tu res and
ODtions. - T h i s i n t e r f a c e set e s T a b l i s h e s a v i r t u a l Ada machine. The

--- -
~ - -

c a n p i l a t i o n system produces target code that u s e s the s e r v i c e s provided by
t h e s tandard i n t e r f a c e set. lhe requested s e r v i c e determine which modules of
the runt ime suppor t l i b r a r y are to be exported to the target environment.

Target Network Topolo y S p e c i f i c a t i o n - This allows t h e des igner to s p e c i f y t h e

The d e s i g n a l so i d e n t i f i e s t h e communica t ions s u p p o r t
symbolic names + or remote area networks, local area networks, and i n d i v i d u a l
p r o c e s s i n g nodes.
a v a i l a b l e to l i n k t h e v a r i o u s e n t i t i e s of the network.

Targe t Node Resources S p e c i f i c a t i o n - This allows t h e des igner to s p e c i f y the
ha rdware r e s o u r c e s for e a c h node i d e n t i f i e d w i t h t h e n e t w o r k t o p o l o g y
s p e c i f i e r . The sys t em w i l l r e t a i n t h i s i n f o r m a t i o n i n t h e p r o j e c t ob jec t
base a l o n g wi th the c o l l e c t i o n of software resources that w i l l be assigned to
t h i s node l a t e r i n t h e d e s i g n . 'he d e s i g n e r d e c l a r e s t h e i n s t r u c t i o n set
a r c h i t e c t u r e s a v a i l a b l e , t h e memory banks and t h e i r a t t r i b u t e s , t h e buses and
t h e i r a t t r i b u t e s , and t h e comnunications l i n k s that are a v a i l a b l e .

G.2.1.6

P a r t i t i o n i n g and A l l o c a t i o n Spec i f i ca t ion - After the M a source code has been
t r a n s f o r m e d x t o a DIANA r ep resen ta t ion and executed to demonstrate t ha t it
meets the f u n c t i o n a l requirements of the program, a d i s c i p l i n e of ComEntS
and key wrds such as " locat ion" can be used to map each program e n t i t y t o a
symbolic l o c a t i o n . This symbolic l o c a t i o n c o r r e s p o n d s t o t h o s e node and
ne twork i d e n t i f i c a t i o n s p r e v i o u s l y en tered with the topology s p e c i f i c a t i o n
and t h e node r e sources s p e c i f i c a t i o n . 'lhese non-funct ional requi rements are
added as a t t r i b u t e s to t h e DIANA r ep resen ta t ions .

D i s t r ibu ted Workload Simulat ion - After t h e symbolic l o c a t i o n a s s i g n n e n t s and
o t h e r c o n s t r a i n t s h a v e b e e n a d d e d t o t h e a t t r i b u t e s o f t h e D I A N A
r e p r e s e n t a t i o n , the wrkload s imula to r examines t h e p r o j e c t object base to
determine c h a r a c t e r i s t i c s of t h e a l r e a d y e x i s t i n g w r k l o a d (i f any) and to
select empi r i ca l estimates of comnunications d e l a y s , p rocess ing throughput ,
and o t h e r r e l e v a n t estimators. A s imula t ion is then provided for a n a l y s i s .
If the a n a l y s i s i n d i c a t e s t h e design approach is n o t feasible, new approaches
t o d i s t r i b u t i o n can be p r o v i d e d by r e t u r n i n g t o t h e p a r t i t i o n i n g and
a1 l o c a t i o n spec i f i ca t ion .

D i s t r i b u t e d Program B u i l d i n g - When t h e work load s i m u l a t i o n i n d i c a t e s a
feasible des ign , the process of b u i l d i n g new l o a d modules i n c l u d e s examining
t h e symbolic l o c a t i o n assignments added to the DIANA tree and looking these
u p i n t h e p r o j e c t object base t o d e t e r m i n e what t y p e of i n s t r u c t i o n set
a r c h i t e c t u r e t h e p a r t i c u l a r e n t i t y ' s object code is to be generated for. If
t h e code is t o be added t o t h e workload of an e x i s t i n g s y s t e m , it is a l s o
necessary to i d e n t i f y i f a d d i t i o n a l modules or new v e r s i o n s of the run time
l i b r a r y need to be added or i f a d d i t i o n a l hardware is l i k e l y to be needed to
accomnodate the inc rease i n workload. lhe end r e s u l t of the program b u i l d i n g
a c t i v i t y is to prepare a l o a d module c o n s i s t i n g of a p p l i c a t i o n s code and t h e
n e c e s s a r y s u p p o r t from t h e r u n time l i b r a r y for each of t h e p r o c e s s o r s
affected by the d i s t r i b u t i o n of the progran e n t i t i e s .

-- Run Time Support Environment Monitoring - If l i f e and p rope r ty are to depend
upon t h e program m e e t i n g both its f u n c t i o n a l and i ts n o n - f u n c t i o n a l
requirements , it may be d e s i r a b l e to prepare t h e program for execut ion i n a
t a r g e t testbed. to be e f f e c t i v e , the testbed should be f u l l y in s t runen ted
and i n t e r a c t with the host environment. ?his r e q u i r e s the suppor t of a run
time m o n i t o r for e a c h processor i n t h e t a r g e t t e s t b e d t o i n t e r a c t w i t h t h e
i n s t r u n e n t a t i o n and host environment to p rov ide meaningful information.

2.4.2 Requirements on the Support Fhvirorment

The most impor tan t requirements and o p p o r t u n i t i e s for the suppor t envrionment
l i fe c y c l e project object base becane e v i d e n t fran t h i s phase. ?he r e s u l t s are
smarized below:

Base l ined Products - zhe f b n c t i o n a l requirements are similar to those described
i n t h e p r e c e d i n g s e c t i o n s . However, o p p o r t u n i t i e s a r i s e d u e t o t h e
r e q u i r e m e n t s for t h e D I A N A r e p r e s e n t a t i o n i n the implementation phase. An
es t imated t e n to twenty times the processing time is requ i r ed to c o n v e r t Ada
s o u r c e code t o D I A N A r e p r e s e n t a t i o n a s compared t o c o n v e r t i n g t h e D I A N A
r e p r e s e n t a t i o n to object code for the t a r g e t environment. Furthermore source

G.2.1.7

code and object code can both be reconstructed from the DIANA representation.
Since the Stoneman requirements f o r t he MAPSE provides a unique
identification for each object produced (which includes history attributes
identifying the time, date, t oo l s , etc. used t o manipulate the object) , an
enormous amount of on-line storage space can be conserved i n the project
object base i f the DIANA representation is maintained as the baseline.

The other important implication for baseline control as a r e s u l t of t h i s
phase is the identification and maintenance of the network topology and the
network node resources described i n the preceding section

Non-Baselined Data - The temporary storage required for t h i s category is
similar to the functional requirements l i s t e d i n t he other sections of t h i s
report. However, the savings and storage space made possible by the
utilization of DIANA representation described above may be significant even
for temporary stor age r equi r emen t s .

Measurement - Data - A nunber of metrics regarding the utilization of these tools
is desirable. Knowing who is using the too ls for what projects, and knowing
the frequency of reference can provide valuable management ins igh t s .

2.5 Verification and Validation

2.5.1 Qlaracteristics, Frinciples and Methods

The methods linked w i t h correctness analysis are e i ther s t a t i c analysis or
dynamic analysis. Stat ic analysis includes, i n order of increasing r igor ,
reviews, inspections, and proofs of correctness. Dynamic analysis includes a l l
t e s t i ng t e c h iques .
Reviews - Reviews determine the internal completeness and consistency of system

requirements and software specification, design and test information. ?hey
a l so assess i ts consistency wi th i t s predecessor information. Reviews
involve a broad range of people, including developers, managers, users, and
outside experts or specialists. A review m u s t have specific objectives and
questions to be addressed. Ihe review findings generate rework tasks for the
dev e l owen t group.

Inspections - Inspections evaluate the correctness of component l e v e l
specification, des ign , code, t e s t plans, and test resu l t s . They are more
formal and rigorous than reviews. An inspection involves a small group of
people of a specific make-up, and follows a well4efined procedure.

Proofs of Correctness - All developnent products should be verified with an
infomy1 proof of correctness. Certain cr i t ical kernels of code or special
applications may require a formal proof of correctness.

Testing - Dynamic execution of the system or system canponent with know inpu t s
i n a known environment is a %estn. If t h e test result is consistent w i t h
the expected result, the canponent is deemed correct i n the limited context
of the t e s t . ?he following baselined documents are created r e l a t i v e to
tes t ing :

G.2.7.8

- Test Plan - Defines the scope, approach, and resource needed for
tes t ing .

- Test Procedures - Provides a detailed description of the steps and test
data associated with each test case.

- Test Results - bcunents the results of each test run. Ulsuccessful
runstrigger trouble reports which must be addressed by the developnent
group.

h e relationships between system fbnctions and component or system test cases
should be c l e a r l y established. Then, when changes are made to par ts of a
system, a subset of test cases can be identified which w i l l test the system
suff ic ient ly . This process is ca l led regression testing. Effective
regression t e s t ing is a good way to reduce software developnent costs.

2.5.2 Requirements on the Support Fnvironment

The requirements on the Support Environment data base, derived from the
correctness analysis, are smarized below:

Baselined Products - Test plans, test procedures and test results (of correctly
They are controlled by configuration executed t e s t s) are a l l baselined.

management. h e results of inspections and proofs might also be baselined.

Non-Baselined Data - 'zhe non-baselined data includes wrk-in-progress, static
analysis da-rouble reports, and debug data. Temporary storage of t h i s
type of information is required.

Measurement Data - A number of measurements associated w i t h correctness
analysis should be captured. These include: nunber of modifications to a
u n i t , nunber of errors found per nit, nunber of test runs, nunber of errors
by error category, and test coverage.

-

2.6 Project Management Support

2.6.1 Characteristics, Principles and Methods

Estimation - Most resource estimation techniques use the m asurement from
prior projects to estimate resources. Support of estimation methods requires
a data base of comprehensive measurements including such software system
parameters a s s ize of source code, source language, development resources
expended, and canplexity measures.

Precedence Networks - This planning method is used to analyze task dependencies
and to determine the c r i t i c a l path of development a c t i v i t i e s . Such an
analysis is usually needed to define a real is t ic schedule. It is also useful
i n evaluating contingencies and creating contingency plans.

Change Control - This is the core of configuration management. It controls a l l
?he approval process for changes might be a s changes to baselined products.

follows :

c.2.1.9

- The w r i t t e n r e q u e s t for change is s u b m i t t e d t o the c o n f i g u r a t i o n
It might cane fran a change i n requi rements or from managanent function.

a t r o u b l e report docunenting a defect.

- An assessment is made of the t e c h n i c a l f e a s i b i l i t y of t h e change, and its
If it has the p o t e n t i a l to endanger l i f e

- The change is approved or disapproved based on its p o t e n t i a l effect upon

impact on schedule and budget.
and proper ty , a separate s a f e t y assessment may be made.

s a f e t y , i ts v a l u e and its cost.

- The developnent p l an is modified and r e sources ad jus t ed to add approved
changes.

- The f u l l y v e r i f i e d change is entered i n t o the new base l ine .

2.6.2 Requirements on the Support Ehvironnent

lhe a c t i v i t y of management imposes the fo l lowing requirements on the suppor t
environment data base.

Base l ined Products - The developnent p l a n , a l though n o t a part of t h e software
system or its descr ipt ive information, should be maintained as a baselined
product to i n s u r e proper management of changes to t h e plan. Configurat ion
management data and q u a l i t y assurance p l a n s should a l so be base l ined .

Non-Basel ined Data - S i g n i f i c a n t amounts of informat ion associated with the
management m u s n kep t temporar i ly . lhis information i n c l u d e s engineer ing
change requests, t r o u b l e reports, resource a l l o c a t i o n p l a n s , actual r e source
u t i l i z a t i o n reports, t e c h n i c a l mi l e s tone s t a t u s , a c t i o n i t e m s t a t u s , and the
r e s u l t s of q u a l i t y assurance reviews.

Measurement Data - Many measurements are of i n t e r e s t t o management. These
inc lLde the number of engineer ing change proposals (ECP), and t r o u b l e reports
(TR), time to process an ECP or TR, resource use for each ECP or TR, resource
use by p r o j e c t a c t i v i t y , and software size and complexi ty measures.

-

C.2.1.10

3.0 Tools to Extend the MAPSE

Data Entry --
Problem Expression Editor (for requirements analysis, specification)
Syntax/Template Directed Editor Menu Manager
Waphics Package (GKS, 2D, 3)
Mrd Processing integrated with O-aphics and Electronic Mail
Network comnunications across hosts and targets

Library Aids

Semantics Information Browser
Reuseable Cunponents Ekowser
Dictionary and Schema Tools

-
Diana Pee Ekowser

bst CLP script Manager

Management Aids -

Report Generator b n g e Request Packer
(Integrated Text and O-aphics Forms Generator)
Automated Precedence Network
Autanated Work Breakdown Structure
Schedule Generator

Resource Scheduling Aid
Event FlagaSignals Generator

(signal path planning)

Syntax/Semantics Analysis

Requirements Language Processor
Requirements In format ion Analyzer
Design Specification Language Processor
PDL Syntax Analyzer
Design bmplexi t y/Metr i c s Analyzer

Pro0 f/Asser tion Checker

Veri fyer / Asser tion Analyzer
Theorem Prover
Symbolic Execution System

Implementation Support

Compilation &der Analysis
Automated Recanpilation
Elaboration &pendencies Analyzer
Change Control and Impact Assessment
Generic Usage Report Generator

Consistenc y/Completeness
Checker

Standards Checker
Requirements to Design

Pacer/Checker

C a l l Pee Report Generator
Performance Metrics Analyzer
Ckoss-Re fer ence Generator
Statement Rof i le Generator
Diana Pee Fkpander

G.2.1.11

T e s t Generation. Analvsis. Automation

Test Harness PDL Interpreter
Generic Instantiation Harness
Test h t a Cenerator
Black Box Test Generator Test h p l e t e n e s s / Con si stenc y
hta Extraction and Reduction Analyzer
Test Results Canparator
Target System Testbed (f u l l y instrunented) Target Ehulation/Simulation
Ehv ironmen t Simulator/ St imula tor Scenario Generator
Fkrformance b n i t o r Fault Stimulator/Analyzer

Test Coverage Analyzer

Modeling/Simulation

Resource Estimator
Modeling Tool
Froto typing/ Simulation Capability

Run-Time System Support

Runtime Support Dependencies Analyzer
System Timing Analyzer
System Tasking Analyzer

Distributed Target System Support

Target M e Resources Editor
Target Netwrk Topology Editor
Partitioning and Allocation Eijitor
Distributed System Generator (progran bui lder)

Expert Systems

Real-Time Assistant
Faul t-Tolerance Assistant
Reuseable Components Assistant
Upgrade bad, Test and Integration Planning Aid

(for non-stop nodes)

krformance M e 1
Reliability Model

Runtime Monitor

S y s t e m Storage Analyzer

Distributed mrkload
simulator

Expert System Generator

G.2.1.12

N $ 9 - 1 6 3 1 3

Ada Structure Design Language
ASDL

Lutfi Chedrawi, M.S.
Applied Technology Division

System Engineering Department

Computer Sciences Corporation

Abstract
An artist acquires all the necessary tools before painting a

scene. In the same analogy, a software engineer needs the necessary
tools to provide hidher design with the proper means for
implementation. Ada provides these tools. Yet, as an artist's
painting needs a brochure to accompany it for further explanation
of the scene, an Ada design also needs a document along with it to
show the design in its detailed structure and hierarchial order.

Ada could be self-explanatory in small programs not exceeding
fifty lines of code in length. But, in a large environment, ranging
from thousands of lines and above, Ada programs need to be well
documented to be pressrved and maintained. The language used to
specifg an Ada document is called Ada Structure Design Language
CASDL). This language sets some rules to help derive a well
formatted Ada detailed design document. The rules are defined to
meet the needs of a project manager, a maintenance team, a
programmer and a system designer. This paper will explain in detail
the design document templates, the document extractor, and the
rules set forth by the Ada Structure Design Language. -
Rda covers the different scopes under the software engineering

spectrum. The Rda scopes can range from real time systems,
scientific applications and other known software applications to

software engineering concepts.
Keeping this in mind, Ada can become very complicated when

designing large projects governed by manu different tasks, generic
entities and overloading mechanisms. Therefore, design documents
are needed to clarifu some of the obscurities that might arise when
designing large systems. The design document should also accomodate
for the tools provided by Ada and support the Ada language by
showing the program, entities, and tasks at the functional level.
The d8sign method, called Ada Structure Design Language CASDL),
approaches Ada from two different levels :

1 abstract problems mapping, object oriented programming and new

o Ths specification level.
o The functional level.

G.2.2.1

ORlG~NkP PAGE IS
OF POOR QUALITY

-- <m>
-- - * Packago TASKS-INPUT-QUEUE * -- E m -

- <m>
-- - * * -- * Author I L u t f i C h o d r u i *
- - * c o m p a n y I csc * -- * Job ordor I * - * Contract I * -- * * -

G.2.2.2

G.2.2.3

2.0 ASDL levels:

tinn lmvel:
ASDL, at this level, will suffice the specification definition

and description of a system and put the following at hands :

structure.
o Requirements : statement definition of the overall

o Author 8
History updates : a log file of updates will provide another

programmer and the system manager with
history information of all changes made.
This pin-points the responsible person far
the changes made and ksep track of program
progression.
Tracking rssponsibilities is needed by the
system manager in case anu ambiguities ever
arise that need further explanation or
further documentation to help clarify the
changes made.

each entitu.

throughout its life cucle. ASDL will
provide all the clues for a maintenance
team to keep track of the environment.

o Independability : interfaces and hierarchies definitions of

o maintainability : the system will be easily maintained

ASDL, at this level, provides programmers with tools for
It debugging ease and managers with prospects on design clarity

allows, the docurnentation of :
.

o Requirements : statement definition of an entity.
o Structured

analysis : explaining the input/output and

design : defining the functional flow of each

specifications of each entity.
o Structured

entity.

I 3.0 ASDL format

CISDL will show the declaration of an entity. The data structure,
functions, procedures, tasks, and packages are explained at this
level in a general form without going into details. The
specification level design document using ASDL is shown in example
-1-. CI further investigation of this example allows us to identify
different entries within the specification level format. Each entry
permits the documentation of a part of the sustsm that meets the
needs of the different classes of people involved. All entries are
mapped to a static form which allows the derivation of a
specification level template. The template skeleton is static on

G.2.2.4

the outside, but the explanation within each entry can be
dynamically filled with information to preserve the creator’s
integrity to express his own design documents.

The template entries for the specification level format serve as
a road map to each or all individuals involved in the design of the
entitu. ASDL specification template Format holds the following
entries:

o entity overview
o internal routines
o exceptions
o external references
o external routines
o change history
o dependency tree

The entity overview entry identifies the function of an entity.
This entry serves all the classes of people involved in the
development of the project. Tho information covered in this entry
should hold the important features governining an entity. Not only
would this entry serve as information coverage of the entity but
also acts as a fast index to the contents of the entity under
development or investigation.
The internal routines entru covers the naming definitions and the

entity internal routines descriptions. A maintenance team can make
use of this entry bg utilizing the explanation provided to
understand the problem statement definition and to identify the
internal routines. Both, the project developers and system
maintainers hold the responsibility of keeping the informetion
within this entry up to date.
The exceptions, external references and external routines entries

exclusively permit the system designers and project managers to
recognize the sustem exceptions handling mechanism and to
understand the system components interaction. The system designers
can keep a close watch OF the sglstem by making sure that all errors
are handlgd and a safe passage is assured bg(the exceptions
handlers. tloreover, the exception entry will provide a fast summary
of all exceptions occuring within an entity. In the same manner,
the external references and routine entries will allow the project
managers to check the entity interaction at both the gengral
C External references) and spec if ic levels Cexternal
references’internal routines.)
The historu changes entry, allows the system maintainers to log

all the changes made to the entitu throughout its life cycle.
Horeover the sgstem developers can communicats among each other by
notifuing through this entry other team members of important
changes.
The tree dependency nicely shows in a graphic form the entity

internal hierarchu. This entru is intended to serve all the people
involved in the project.

7

G . 2 . 2 . 5

. ..
, .

0RlGiN.N P X E fS
OF POOR QUALITY

packagw body TASKS-INPCTT-QUEUE $ 8

procwdurw DEALLOCATE i s naw UJCHEKED-DECKLOCATION (QUEUE, WEUE-ACCESS)I

-- I n p u t quwuw m a n r w r --? w i l l rwtrwiuw i n f o r m a t i o n from t h e input -- quww

t n k t ype INPUT-QUEUE-WWMSER 1 8
e n t r y PUT (ELEMENT I i n OBJECT);
e n t r y GET (E LMEM i ou t OBJECT))
e n t r y PUEUE,SIZE (SIZE-OF-QUEUE I o u t INTEGER) I

end i

OUEUE-ER I I NfUT-QUEUE-r(PIE#GER I

Pt.?P. - 8

- <ew>
task body INPUT-QUEuE,I'W&GER I 8

- SIZE -> t o r e t u r n t h w 8izw o f tho i n p u t quwuw I n twrms o f nunkr -- o f nod- i n t h w quwue.

SIZE

-- Func t ion 1 - - - -- -
- In I

-- I n O u t 1

- out I

1 natural 1- 0 ;

t o manag. t h e input quww. I t w i t t u r p u t s on or t d r w s
an objwct o f f t h w quwuw. The GET wntry t o g w t an o b j w c t
o f f t h w queue is gurrdwd 80 thw task uill nakw the
requwstor W a i t u n t i l an o b j 8 c t i 8 p u t on t h w quwuw.
Thf8 task w i l l m8n8ge the q u w e 8 i z e and r e t u r n i t 8
V A l U W Uhm rwuestwd.

w4

N / A

N/4

G . 2 . 2 . 6

-- <m>
proc.do+o M

- $unction a t o cal l tho input quwo nnagmr task so i t c m got n -- objoet o f f tho quwo.

- I n 8)ryA

-Is out CWCI - out I ol.mnt -> tho oh joct t o bo rorutned frm t b quouo.

- Functiorr I t o crll tiu input guru. rnrJII tamk w i t w put rn -- O b j e c t 01) th. quw.. - I n a el-t e) t h 0bf-t to k Put 00 th * . r u e

- I n Out I W A

- ou* I EVA

- Fatetian I t o call ttr input pucluo - t u & se i t c m got thm - sire o f th. qum.

- Ln aw

- Z n k r r W A

-nlAlg.rltA I
c r r n - rwndoxuous w i t h ttm input quouo u ~ a y o r tW to get thwquwo - size
md;

-
-

ond TASKSJtWUT-PUEUE(

Exanple -2- I Ada functional Am01 dosign do-t using ASDL.

G. 2.2.7

ASDL will describe the system in a more detailed functional flow.
ASDL will require system developers to combine Ada keywords and the
english language to bring about a detailed flow of the entity, yet
not cryptic to the designers or software maintainers. The system
manager can also check the system logic and design structure for
ambiguity, clarity, performance and possible implementation Ci.e
whether the entity can be implemented as described or whether the
implementation is not possible due to misinterpretation of problem
definition, requirements need, Ada weaknesses, etc....).

ASDL functional level format holds four entries as shown in
example -2-. The "in", "in out" and "out" entries correspond to Ada
parameters passing descriptions. The inclusion of these entries
will entitle the system maintainers, developers, designers and
managers to understand the input/output of system components.
tloreover, a functional flow design is given by the algorithm entry
to show the structure in its more detailed english like design.
Finally, ASDL tends to be similar to PDL (Process Design

Language) at this level, which proves to be advantageous since no
training is needed for individuals already familiar with PDL.

9 . 0 ASDL rules

In general, ASDL does not impose any rigid rules. The ASDL rules
for the specification level format should insure the derivation of
a design document. The rules are set to give a detailed explanation
of entities interactions, entity specification and data
representation. The specification level format can be mapped onto
the following rules :

o new updates should be entered when necessary
o dependency tree should be leveled to show the new entities in
their hierarchial depth

o history logs updates should cover the changes made
o the information should be entered under the specified field

to insure the extractor ability to perform its functions.

At this level, ASDL requires developers to respect the outer and
inner structures of Ada blocks, statements and looping mechanisms.
The Ada keywords should be entered to show the Ada flow as if it
was coded. Moreover, the Ada keywords should be combined with a
detailed explanation in english to show the flow of Ada statements.
The advantages of combining Ada keywords and English words will
divulge when the implementation phase takes place. The proJect's
implementation will become a matter of mapping the algorithm to Ada

I code

G.2.2 .8

5.0 ASDL extractor

5 . 1 The formiter =&Ea&QL
ASDL extractor is envisioned as a formatter extractor with menu

driven options. When asked to format a documsnt written by ASDL,
the extractor will prompt the requestor with a menu. The menu
selection can be accessed through cursor control.
ASDL formatter extractor should come with default values to allow

simple extracting and echo printing of text to the specifisd
destination file. On the other hand, if required, thm extractor
should perform all the necsssary tasks to derive a well formattsd
Ada design document including centering of titles, margin
Justification, page numbering and other functions found in
wordprocessors. Noreover, the extractor can control the part of
text to be extracted from the document by a simple turn on/off
flags or toggle keus Cif an interactive session is requested.]
Those flags are shown in example 1 & 2 as * @ ' , ' # * signs preceded
and succeded bu ' < ' and ' > ' designators. -
In summary, ASDL will prolonge the software life cycls. In

addition, it will allow the documentation of large systems
otherwise might become very difficult to understand. Finally, ASDL
will act as a communicae to all the classes of individuals involved
in the system development.

* Flda is a registered trademark OF the U.S qovernment, Ada Joint

UI ASDL extractor is still under development.
Program office.

G.2.2.9

REFERENCES

C13 Barns, J. G. P. Programming In Ada. Addison-Wesley Publishing
Company. Second Ed.

C23 Booch, G. Software Engineering With Ada. BenJamin/Cummings.

C33 Caine S. and Kent G. PDL - A Tool For Software Design. IEEE
Computer Society Press.

CY3 Linger C., Mills H. and Witt B. Structured Programming,
Addison-Wesley Publishing Company.

C53 Privitera J. P. Ada Design For The Structured Design
Methodology. IEEE Computer Society Press.

C63 --- , Reference Manual for the Ada programming Language.
A d a Joint Program Office, Department of Defense.

C73 Zelkowitz M . , Shaw A . and Gannon J. Principles OF Software
Engineering Design. Prentice-Hall, Inc.

G.2.2.10

N89-16314

In a software system the size of the Space Station software Support

Environment (SSE), no one software development or implementation

mathodology is presently powerful enough to provide safe, reliable,

maintainable, costatiactive real-time or near real-time software. In

an environment that mu& survive one of the harshest and lengthiest

lifetimes, software must be produced that wffl perform as predicted,

from the ftrst time it is executed to the last. many of the software

challenges that will be faced will require strategias borrowed from

"Artificial Intelligence (AI)." In the statement of Work (SOW) for the

SSE, AI is the only development area mentioned as an example of a

legitimate r'648on for a waiver from the overall requirement to usb

the Ada" programming language for software development. While it
A h r c C R @ g i d u d Tr- of- IhtM States 8.rcnmt, M a 3.w Program

UtJm

G.2.3.1

is recognized that some solutions are not readily amenable to solution

in contemporary Ada Programming Support Environmenb (APSES),

it is clearly the intent of the 3OW that there be one development

language for all of space Station software so that configuration

management, systum definition and reuse of verified and validated

software be as simple and as off icient as pogsible. This paper will

attempt to def ine the limits of the applicability of the Ada language,

APSES (of which the SSE wiU be a spacial case), and software

engineering to AI solutions by describing Q scenario that involves

many facets of AI methodologies.

The scenario itself is fairly simple. It involves the Space Station, an

undocked Space shuttle, and a robot unattached to either the Space

Station of' the nearby Shuttle (the robot is quipped with vision

sensors, a propulsion systam with translational and rotational jets,

and manipulatos/grapplers). The robot wffl start In prorlmity to the

Station either stationkeeping or performing a low priority task that

may be preempted. A t the request of one o! the spacialists onboard i
G.2.3.2

2

the Station the robot begins to maneuver itself to the nearby Shuttle.

If the Shuttle is near enough, the robot will be guided by the Station

Trqjectorg Control Program. If the Shuttle is any appreciable

distance away the robot will request Guidance, navigation and

Control ("lac) programs necesmry to compute and maintain a

tmJectory to the Shuttle. I t may also request the Station Trajectory

Control Program to calculate intermediate vectors that it will use to

compare against during the rendezvous. While all of this was

happening, the specialist onboard the Station identified and requested

a software load in addition to the OnhC software being loaded by the

robot. This software included a vision system, general QnhC

prognuns to be used in proximity operations at the end of the

rendornous (tnls could be detailed enough to allow the robot to literally

settle down in a specifled pit ion and attitude in the cargo deck of the

specified Shuttle without any human intervention, or it might allow a

specialist onboard the Shuttle to intemctivelg guide the robot to the

deslred location and attitude) and a task identification that will

establish whether or not this task may be preempted and, if it can, by

what other tasks or levels of tasks. Once the necessary software has

been loaded, the robot is essentially a free agent and must vie with

other agents for Station computing resources. As soon as it begins an

escape trajectory, the robot begins to interface with the Station

Collision Avoidance Program (CAP) to establish and maintain a clear

trajectory. V e r y likely the robot and the Station wffl enter a dialogue,

with the robot proposing a trajectory and the CAP either accepting

the pn>pOsad trajectory or denying it. If the trajectory is denied, it is

the responsibility of the robot to calculate another trajectory, using

Stution computing facilities if nacessary. This cycle of calculation,

proposal, and verification wffl proceed until an acceptable trajectory

is proposed, acceptcrble meaning that the propoeed trajectory does

not involve undue risk of collision between the robot and the Station

or the robot and other free flyers, and that the proposed trajectory is

reasonable given the mount of propulsive and non-propulsive

consumables that have been budgeted for this tusk (a configuration

item that will be maintained by the Station Object Basa). The robot is

responsible for calculating a trajectory that meets the specified goals :

~

G.2.3.4

4

that the rendezvous occur within a specified amount of time, that the

rendezvous cost no more than a specified amount of non-reusable

resources, and that the rendezvous occur with a specified object

(rather than that the rendezvous occur at a specified place). The

Station maintains configuration control over trajectories using the

CAP and will not allow trajectories that violate safety standards.

After 'the robot has negotiated a safe trajectory, it still must maintain

a dialogue with the Station 50 that both are aware of the robot's

current and predicted pi t ion in any given time quanta. This

dialogue is necessary to keep the CAP current and 80 that the robot

may be informed of any changes in the trajectory or in the task.

When the robot arrives in near proximitv to the Shuttle it has been

assigned to rendezvous with, it will announce itself to 'the Shuttle

COmpUbm. At this point, depending On the Software loaded at the

Station, the robot may or may not be able to proceed to dock without

any human intervention. I! it is capable, the robot will inform the

G.2.3.5

3

Shuttle computers, and begin a docking sequence. A t any time the

humans onboard may elect to override the automatic docking

sequence and control the robot through their onboard computers. If

the robot has not been loaded with the appropriate software, it will

announce this and wait for further instructions. Shuttle spacialists

may decide to either load the software nemssary for an automatic

docking sequence into the robot, or manually control the docking

sequence.

I Once the robot is securely docked, a spacialist in the cargo bay begins

refurbishment and outfitting of the robot. The old I

manipulatoxdgrapplers are removed and new once are attached.

The robot is refilled with consumables for the next segment of its task

and, in parallel with all of this activity, new SOnwara is loaded into the

robot. This new software will guide the robot to a satallite at a

gaosyrchronous altitude, diract the robot to grapple the satellite

(which wffl require the robot to make Contact with the satellite in a

very speclfic attitude with vow specific rotational and translational

G.2.3.6

6

f

velocities as well as a sequence of grapple maneuvers that must be

performed as directed to ensure stability), and return to the Shuttle or

to the Sation so that the satellite may be repaired. Alternatively, if

the repair is simple enough (such as increasing the spin of the

satellite) the robot may perform the indicated repair and return to

the Station (if supplies of consumables allow return to the Station

rather than refueling at the mutt&). The cloee in proximity

operations immediately preceding the grapple will requira a number

of real-time computations. The robot must visually confirm that the

satellite is the correct one, that the approach is proceeding nominally,

and that grapples are being manipulated in the correct sequence and

towards the correct targets on the satellite. TraJactory programs in

the robot must calculate burns that will match translational and

mtutional velocities of the two vehicles and manipulator control

p-s must monitor and guide grapplers from an unsteady

platform toward targets that are moving. As soon as the manipulaotr

control program confirms that the satellite has been securely

grappled, the robot begins to contact the Station. I t reports the

G.2 . 3.7
7

succwstul completion of rendezvous, approach and grapple and again

enters negotiation with the CAP, this time for a return trajectory.

When a acceptable traJectory (which will be based on new mass

properties and different consumables lcmdings that reflect the current

robot/sabllite pair’s configuration characteristics) has baan agreed to

by both parties, the robot will begin its trip home to the Station. As

before, the robot will maintain contact with the CAP and perform

maneuvers as required or as requestad bg the CAP until it is docked at

the Station.

This scenario illustrates the flexibiltiy offered by allowing a

general-purpose robot to serve as an free agent to perform a task that

would be uneconomical if parformed by humans or it performed bg a

robot that could not perform unless guided b$~ humans or Shuttle or

station computers. A robot may be treated as an agent and allowed to

compete with other agents for computing and other shareable

resources to maximize the efficient use of thaee mwurces. Obviously

computing time and consumables will both be at a premium for the

G . 2 . 3 . 8
8

Station since neither is a renewable resource. Just as obviously, it is

more off icient to sand a robot to do many tasks rather than sanding a

manned vehicle with the life-support system that it must provide.

An added benefit to treating the robot as a separate agent is that in

the event of a communication failure the robot would be able to

continue the task until such time as communications a m restored or

the t ~ s k mires communication (such as the negotiation for

trajectories described before). This also makes efficient use of human

resources and offloads computing work to the responsible agent - the

robot. A subtle, but important, benefit is that this approach separates

the specialists from details about how the robot fullfills the task

assigned to it (similar to the way that object-oriented design hides

implementation details from the user) allowing himher to worrg

about the overall task rather than details that are subJect to change

dwmidlg (such as a trajactory that mills the task requirement

without violating Station safety constraints).

All of the software discussed in this paper should be implemented in

G.2.3.9
9

AdaM to ensure consistancy of inbrface between the Goitware

modules. The Adan construct of packages will allow software to be

developed in modules that are additive to the total software

functionality. The time is now to start deciding not w h e w Ada"

should be used for AI applications on the Station, but how to efficiently

use the power of AdaM to develop software maules that are

sufticiently well engineered to meet real-time requirements in

problem spces that may not allow a complete description at any

given time. To inkoduce another language on Station doubles the

complexity of configuration management. To introduce another

language on Station that cannot suppo~% strong twin$ will double

again the configuration management task. It is clear that AdaM is

for mang applications in AI, but it is not clear that another

language is -for AI applications or that a trade off between

power in expressing a solution using a traditional' AI language (Le.

Lisp, Prolog) and the resources required to maintain any type of

configuration control (including verification, validation, testing and

safety data) over a configuration item produced using that language

G. 2.3.10
10

~~ ~
~~ ~-~

l

is worth the price. Perhaps it is too early to tell, but it is my hop that I

by discussing now what the Station will require in the future we may

have a -tal vision of our intermediate and long-term goals and the

tools we will use to reach those goals. I think that discussing scenarios

such as the one above will prove fruitfull in determining the direction

that the Space Station SSE will take. I

Gilbert marlowe

600 Qcmini Blvd.
Houston, Texas 77068

C/O Rockwell shuttle WMtiOnS Company (RSOC)

(7 13) 282-2760

Special thanks to Dr. Charles W. McKay for his support and guidance.
Thanks also to Lisa Willingham for moral support and the abilty to listen to

me ramble cm long after a mere mortal would have gone to sleep.

G. 2.3.11
11

N89-16375 -
TION ADA RUNT= SUPPORT FOR

Edward J. Monteiro
McDonnell Douglas Astronautics Co. - Houston

16055 Space Center Blvd.
Houston, Texas 77062

(713) 280-1629

The Space Station Data Management System (DMS), associated computing subsystems,
and applications have varying degrees of reliability associated with their operation.
On one hand, payload applications and associated processing can fail or have
interrupted service without endangering the operation or safety of the Station. On
the other hand, subsystems such as the Environmental Control and Life Support
Subsystem (ECLSS) must be fail safe. The Guidance and Control subsystem must be
non-stop in nature. These different levels of reliability require corresponding levels
of support from the runtime environment.

A model has been developed [McKay 861 which allows the DMS runtime environment
to appear as an Ada virtual machine to applications executing within it. This model is
modular, flexible, and dynamically configurable to allow for evolution and growth
over time.

Support for Fault-tolerant computing is included within this model. The basic
primitive involved in this support is based on atomic actions [Grey 78, Lampson 811.
An atomic action posesses two fundamental properties: 1) It is indivisible with
respect to concurrent actions and 2) it is indivisible with respect to failure. These
properties allow rollback and recovery to occur in systems which encounter
erroneonous computing. Using this primitive as a building block, higher levels of
fault-tolerant support can be achieved. A transaction is a collection of atomic actions
which collectively appear to be one action. Transactions may be nested, providing
even more powerful support for reliability. Transactions and nested transactions
exhibit the same fundamental properties as an atomic action. This abstraction has
found widespread usage in database technology and non-stop computing
environments [Meuller 84, Comm 851.

This paper describes a proposed approach to providing support for nested atomic
transactions within the Ada runtime model developed for the Space Station
environment. The level of support is modular, flexible and dynamically configurable
just like the overall runtime support environment. These characteristics of the
model allow for the varying needs of reliability to be met under conditions where
fault avoidance cannot be guaranteed. The paper discusses:

D

a) the requirements which must be addressed in the Space Station DMS
e n v i r o n m e n t .

b) an overview of the transaction model

c) the proposed protocol model

d) an example of its use

e) the Ada syntax and semantics associated with the protocol

f) and, other modules needed to complement the transaction model

G.3.1 .I

REUSABLE SOFTWARE PARTS AND THE
SEMI-ABSTRACT DATA TYPE

Sanford G. Cohen
McDonnell Douglas Astronautics Company

P.O. Box 516
St. Louis, Mo. 63166

The development of reusable software parts has been an area of
intense discussion within the software engineering community for
many years. More recently, Ada has been promoted as having the
facilities for developing reusable software. However, there have
been few attempts to validate reusability concepts in practice for
real-time embedded applications such as missile navigation,
guidance and control. For these applications parts must not only
be reusable, but they must also be efficient and easy to use.

Missile guidance, navigation and control applications are noted
for severe constraints in terms of processor size and
computational requirements. In this paper, the author describes
an approach for developing reusable parts for these applications
which meet the following reusability criteria:

1. Reusable: Capable of being used/reused in a wide
spectrum of applications within the domain for which the
parts were developed.

2. Tailorable: Capable of being customized to the precise
requirements of the using/reusing applications.

3 . Efficient: Capable of operating within an environment
which is severely constrained in terms of both memory and
execution cycles.

4 . Simple to Use: Capable of being effectively used by the
average software engineer.

5. Protected Against Misuse: Capable of detecting obvious
misuse.

F
Validating the feasibility of developing reusable parts which
possess these characteristics is the basis of the Commom Ada
Missile Packages Program (CAMP), an Air Force sponsored program
under contract tot he McDonnell Douglas Astronautics Co. - St.
Louis. Under CAMP, over 200 reusable software parts have been
developed, including parts for navigation, Kalman Filter, signal
processing and autopilot. This paper is an outgrowth of work done
on that project.

G. 3.2.1

The author presents six different methods for designing reusable
software parts. (These methods are illustrated in the
accompanying figure.) The author examines these methods through
determining the impact of each method on developing a single part.
He compares the methods against four evaluation criteria:

1. Appropriateness of the interface

2. Control for preventing misuse

3. Availability of needed mathematical operators and
functions

4 . Degree to which user's job is simplified

Each of these criteria is essential for developing parts which can
be used, are reusable and are sufficiently efficient for missile
navigation, guidance and control applications.

The author proposes the use of a generic approach, called the
"Semi-Abstract Data Type" method, for developing reusable parts
and provides a rationale for this selection. The semi-abstract
data type method makes full use of Ada's generic and strong data
typing facilities to create parts which are reusable, tailorable,
simple to use and protected from misuse. The method achieves
efficiency through the choice of data structures which are
compatible with efficient algorithms and through implicit
definition of user data structures.

G.3.2.2

Informal Report by the ARTEWG*

Mike Kamrad
Honeywell Systems and Research Center

Minneapolis, Minnesota

*ARTEWG - Ada Run-Time Environment Working Group
This session will provide a status report and an update on the
ARTEWG activities.

G.3.3.1

SESSION G.4

Session Chair:

COMPUTERS FOR ADA

Charlie Randall
GHG Corp.
Houston, TX
and
Rod Bown
University of Houston - Clear Lake

The following presentations are informal.

G.4.1

G.4.2

G.4.3

Language Directed Machine
Lawrence Greenspan
Ronald Singletary
Sanders Associates
Nashua, New Hampshire

Ada Port to the ELXSI System
Ralph Merkle
ELXSI
San Jose, California

Message Passing Concurrent
Processing Architecture
Tony Anderson
Intel Scientific Computers
Beaverton, Oregon

G.4.1

SESSION 6.5

Session Chair:

DIALOG WITH THE NASA
SOFTWARE WORKING GROUP

Robert Nelson
Goddard SFC
and helper Richard Kessinger SOFTECH

This session provides an opportunity for the NASA Software Working
to identify their existence, role and scope. The audience is
invited to participate in a question/answer session.

CONCLUDING REMARKS

Jack Garman, NASA Lyndon B. Johnson Space Center
and
Charles W. McKay, University of Houston-Clear Lake

6.5.1

