
The TAVERNS Emulator: An Ada simulation of the Space Station

Data Communications Network and software development environment

by Dr. Norman R. Howes

Introduction.

The Space Station DMS (Data Management System) is the onboard component of
the Space Station Information System (SSIS) that includes the computers, net-
works and software that support the the various core and payload subsystems of
the Space Station. Although some of the DMS software runs in the subsystem
computers, the subsystem computers themselves are not considered to be part of
the DMS. Also, the applications software that is specific to a subsystem
(e.g., the Communications and Tracking Subsystem) is not considered part of the
DMS.

The various core subsystems (there are 22 of them) are to be implemented on
Standard Data Processors (SDPs). This does not imply a standard computer has
already been selected for this role but that all subsystem computers are to
have the same instruction set architecture (ISA). It is also possible that a
single SDP may host more than one subsystem. A diagram of the DMS together
with the various subsystems is shown in Figure 1.

Figure 1 shows each SDP connected to a Core or Payload network via a Network
Interface Unit (NIU). The NIU is itself a computer, probably with the same ISA
as the SDP. The NIU hosts the Network Operating System (NOS) component of
the DMS. On the other hand, the SDP hosts the application software for one or
more subsystems. The SDP has an operating system (OS) of its own that is some
times referred to as the local operating system (LOS).

A great deal of the DMS software resides in the SDPs. Those parts of the DMS
software that provide the file management capability and the data base manage-
ment capability are examples of DMS software that resides in the SDPs. Most of
the DMS software that supports the actual transmission of data (both datagrams
and virtual circuit transmissions) resides in the NIU and is referred to in gen-
eral as the NOS.

The Ada packages of services available to the core or payload application pro-
grammer for (1) network communication, (2) file management, (3) database manage-
ment, (4) data acquisition and distribution and (5) crew workstation services
are documented in the DMS Test Bed Users’ Manual (NASA/JSC No. 22161).

F.4.3.1

1

1 I PAY LOAD PAY LOAD

pq - . -
CORE ff'RK

I 1

. . . BRIDGE

I I -I-- L_r_J
N I U . . . N I U

I

Figure 1

I The TAVERNS Concept.

TAVERNS is a distributed approach for development and validation of appli-
cation software for Space Station. The acronymn TAVERNS stands for Test
And Validation Environment for Remote Networked Systems. The TAVERNS
concept assumes that the different subsystems will be developed by different
contractors who may be geographically separated.

I

In this approach, each software development contractor for the station will be
provided with a miniature version of the Space Station DMS complete with three
SDPs. One of the SDPs is for developing the subsystem software, one hosts the
Displays and Controls software and the third hosts a simulation of the network
core subsystems (e%., ECLSS, C&T, CN&C, etc.) and the network loads. A diagram
of such a TAVERNS DMS Emulator is illustrated in Figure 2.

I The SDPs and NIUs on this mini Space Station DMS will host the same Serv-
ices as the real DMS, so to the applications programmer, it will appear that
the entire Space Station DMS environment is present. In turn, these TAVERNS
systems will be interfaced with the Space Station SSE (Software Support Envi-
ronment) and there will also be a TAVERNS on the station. In this way, soft-
ware can be developed and checked out by different contractors at different loc-
ations. Com2Ieted and tested applications can then be transferred to the SSE
for validation.

F . 4 . 3 . 2

I 2

After an Initial Operational Capability (IOC) has been achieved for the Sta-
tion, new validated software modules can be transmitted to the station where
they will be revalidated on the onboard TAVERNS before being placed in service.

T A V E R N S

SIMULATED LOADS DEVELOPMENT DISPLAYS & CONTROL
DYS SERVICES USER AlwcATKms DISPUY DRIVERS
CORE SuBmsmM USER NEWACE
NlWoRa LOADS

Figure 2

The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD
VAX in Building 16A. The software services described in the DMS Test Bed
Users’ Manual are being emulated on the VAX together with simulations of some
of the core subsystems and a simulation of the DCN. The TAVERNS Emulator
will be accessible remotely from any VAX that can communicate with the ASD
VAX.

The purpose of this simulation is to (1) test the functionality of the DMS Ser-
vices as documented in the DMS Test Bed Users’ Manual, (2) provide a DMS
software environment that is consistent with the one described in the Users’
Manual where subsystem test bed developers can attempt to interface their sub-
systems with one another and (3) provide an environment where the TAVERNS
concept itself can be evaluated and improved.

Ada features of the TAVERNS Emulator

Purposes (1) and (2) above are of special interest to the software engineer or
programmer who will be designing or coding programs in Ada. In a way, the DMS
Services as described in the Users’ Manual can be thought of as an extension of
the Ada language for distributed applications. These services are actually pack-
ages of utilities (subprograms or tasks) for performing certain operations such

F . 4 . 3 . 3

3

as transmitting a message from one subsystem to another or opening a file at a
remote node (subsystem) and reading records from it.

These utilities are not only written in Ada but their intent is to operate on
Ada data structures in a transparent manner. For instance most data communica-
tions networks with which anyone has any experience only allow a user to trans-
mit data in a single predefined format such as in ASCII or binary packets. These
packets may be as small as a single character as with asynchronous communica-
tions or a large binary block as with synchronous communications. On the other
hand, when using an object oriented language like Ada what one would like to do
is transmit an entire Ada object without first having to convert it into an
ASCII or binary string.

The DMS Test Bed Users' Manual describes Ada oriented utilities such as this
for transmitting Ada objects, writing Ada objects to remote files, etc. In
fact, the Users' Manual describes even higher level services that use various
Ada objects. For instance, one of the most frequently needed communications cap-
abilities for the Space Station core subsystems is a request to read a set of
measurements. By a measurement is meant the reading of a certain sensor (such
as temperature or pressure) or the determining of the state of something (such
as a valve being open or closed).

For most applications more than one measurement needs to be read at a time. The
DMS provides a service for assigning logical "set names" to a set of measure-
ments and a service for requesting the reading of a whole set of measurements
by issuing a single command. When such a request is made, the DMS returns all
of the readings in an Ada structure that depends on variant records that is op-
timized for this application and is independent of the Ada types that corres-
pond to the various measurements in the measurement set. Furthermore, not all
the measurements in the set have to be located at the same node on the network.

The Ada Simulation

The Ada simulation is being designed to run in a single VAX with access from
another VAX. The intent here is for the VAX in which the simulation runs to
represent all of the TAVERNS system except the SDP node and the other VAX
represent the SDP. The user of the TAVERNS Emulator can develop Ada code
on any VAX and then link to the TAVERNS Emulator VAX via the simulated
DMS Services thereby simulating the way a contractor would develop Space Sta-
tion applications software on the SDP node of a TAVERNS system. A diagram
of the Ada simulation is shown in Figure 3.

The Ada simulation is being developed in two phases. The first phase configu-
ration is shown in Figure 3. The first phase consists of a demonstration in

F . 4 . 3 . 4

4

which the user's only participation is that of responding to prompts on the dis-
play. In this configuration, the display handler software consists of the Ada
procedures that control the menus from which the user chooses options during
the demonstration and the various screens the user sees as part of the demon-
stration.

USER VAX ASD VAX

SIMULATED SDP

Figure 3

SIMULATED DCN &
SUBSYSTEMS

For the most part the DMS Services software maps the various DMS service
commands onto the appropriate VAX VMS or DECNET service or combin-
ation of services'to accomplish the specified DMS service. Where no exist-
ing combination of VAX services will accomplish a DMS service the neces-
sary Ada subprograms are being developed.

The simulation software that runs in the ASD VAX is based on deterministic
models of three subsystems for the first phase demonstration. These are the
Communications and Tracking (C&T) Subsystem, the Environmental Control and
Life Support (ECLS) Subsystem and the Mass Memory Management (MMM)
Subsystem. The C&T and ECLS subsystems are modeled as a set of meas-
urements. During the demonstration the values of the measurements change
in accordance with a predetermined algorithm. The MMM subsystem is modeled
as a set of data structures that relate which files belong to which subsystems
and how files are related to each other through directories.

The demonstration consists of prompting the users for which sets of measurements
the user wants to see displayed; using the DMS Services to request a reading
of these measurements across the network (across the physical network between
VAXs), to reply to the request at the other end of the network and to build the

F . 4 . 3 . 5

5

display in response to the user's request; and using the DMS Services to handle
the supporting file management functions (the globally known measurement names
are stored on a remote file). This last feature may seem a bit contrived as it
was incorporated into the demonstration in order to insure that the function-
ality of the distributed file handling services of the DMS were tested. In the
real DMS the globally known names may well be stored at every node.

The second phase of the simulation will consist of a set of transportable Ada
packages for the user's host VAX that will enable the user to call the DMS Ser-
vice utilities from user written application programs. The user's requests for
remote services will be transmitted to the Ada simulation running in the ASD
VAX for servicing. In the second phase simulation, the user's host VAX will
appear as a node on the DCN and requests for local services will be considered
to be remote since the simulation will only reside in the ASD VAX and not a re-
mote user VAX.

Datagram Service Simulation

The Datagram Service is simulated on the VAX using six Ada tasks as shown in
Figure 4. Three of these tasks run in each of the two VAXs involved in the
sirnulation. Task SEM is a semaphore that controls access to the underlying
DECNET network "file" (DECNET looks like a file to an Ada subprogram or task).
Tasks INQUEUE and OUTQUEUE continually pass a token back and forth
across DECNET until one of the OUTQUEUE tasks has a datagram to trans-
mit. When this task gains possession of the token it transmits its datagramls)
and then goes back to circulating the token.

The simulated Datagram Services such as SEND or RETRIEVE are procedures
that either place a datagram in an outgoing queue or fetch one from an incoming
queue. The datagram service supported by the simulated DMS services is a very
Ada oriented service in that the datagrams themselves are Ada objects that are
prefaced by a header that contains the transmission parameters.

Package DATAGRAM is a generic package that a user of the Datagram Services
instantiates for each different Ada object to be transmitted. At the receiving
end, the type of object being transmitted can be determined by first examining
the header.

The format of the SEND command for datagrams is:

SEND(MESSAGE,ADDRESS); or SEND(MESSAGE,NAME);

where MESSAGE is the datagram to be transmitted and ADDRESS is the logical

F.4.3.6

6

network address of its destination. When the alternate form of the command is
used, the parameter NAME is the name of a list of addresses to which the data-
gram is to be sent. The simulated Datagram Service supports a multicast cap-
ability for selectively sending datagrams to a list of predefined addresses.
The command for assigning a logical name to a list of addresses is the MULTI-
CAST command and its format is:

MULTICAST(N AME,AddressList);

where NAME is the name to assign to the list of addresses and AddressList is
a linked list of addresses. A broadcast capability to all nodes on a given LAN
or to all nodes on the network is provided by supplying a "broadcast address"
in the first form of the SEND command shown above. The ability to scan the in-
coming datagram queue for messages with a specific combination of transmission
parameters (e.g., priority, time-tag, etc.) is provided by the SCAN command
which returns the message count (number of messages) with this combination of
transmission parameters.

OUEUE DECNET OUEUE
'FILE'

OUTOUEUE - H i / - . -.-.-.- ..-_.

!
!

IWOUEUE

Figure 4

OUEUE

A message can be physically retrieved from the incoming queue using the RET-
RIEVE command. The RETRIEVE utility provides selective retrieval for a speci
fic combination of transmission parameters or it can be used without parameters
to retrieve the highest priority message in the incoming queue.

F . 4 . 3 . 7

Virtual Circuit Service Simulation

When the information exchange between subsystems of the DMS must simulate a
continuous dialogue over a physical circuit or when near real time transmissions
are necessary it is usually more efficient to establish a "virtual circuit"
between the subsystems. Some of the advantages of a DMS virtual circuit are:

(I) the routing information (source and destination address) does not,

(2) network bandwidth is reserved for the dialogue, insuring a certain

(3) messages are always received and handled in the same sequence they

have to be provided to the NOS for every transmission,

maximum transmission delay and

are transmitted.

The simulation of the virtual circuit capability on the TAVERNS Emulator is
very similar to that of the datagram service. The main difference is that ded-
icated incoming and outgoing queues are established for each circuit in both the
subsystem requesting the connection and the subsystem being connected. The other
main difference is that virtual circuit traffic is "multiplexed" over the DEC-
NET connection to simulate the reservation of bandwidth but the ability to as-
sure a maximum transmission delay of the order of magnitude anticipated for near
real time communications on the station is not possible using DECNET when other
users are on the system.

To establish a connection (virtual circuit) an Ada subprogram or task calls the
CONNECT procedure and to deallocate a circuit (and its associated queues) the
DISCONNECT procedure is used. Once a connection is established the connected
Ada subprograms can transmit and receive using the XMIT and RECV commands
whose formats are:

XMIT(MESSAGE,CIRCUIT); and RECV(MESSAGE,CIRCUIT);

where MESSAGE is the Ada object to be transmitted and CIRCUIT is the circuit
number assigned to the virtual circuit by the NOS at the time of connection.
The Ada procedures that provide the virtual circuit capability are contained in
the generic package VIRTUAL (this does not include the connection service). An
Ada subprogram using the virtual circuit capability must instantiate a version
of this package for each different Ada object that will be transmitted.

Data Acquisition and Distribution Services Simulation

The DMS Data Acquisition and Distribution (DAD) Service is layered over the
datagram and virtual circuit services provided by the DMS. Which of these un-
derlying services is used depends upon whether the usage of the DAD service is

F . 4 . 3 . 8

8

periodic or not (as will be explained below). As previously mentioned, one of
the key features of the DMS Services is the ability to request readings of sets
of measurements. The simulation of this service in the TAVERNS Emulator is
based on the following (simplified) Ada measurement object defined by:

type MEASUREMENT(REP RepType; dl, d2, d3: positive) is
record

NAME: string(1 . . 15);
case REP is

when FLOATPNT
when FIXEDPNT
when TEXT => TXT : string(1 . . dl);
when FLOATARRAY1 => FVAL1: FLTARRAYl(1 . . dl);
when FLOATARRAY2 => FVAL2: FLTARRAY2(1 . . dl, 1 . . d2);

=> FVAL : float;
=> IVAL : integer;

end case;
end record;

where the discriminant REP is a variable of the enumeration type RepType
that includes an entry for each data structure that the Data Acquisition and
Distribution (DAD) Services supports and where dl, d2 and d3 are parameters
that indicate the size of arrays, strings, etc. to be associated with a meas-
urement as i t s "value".

Measurements are known globally by their NAME which is recorded in the
NAME field of the MEASUREMENT variant record object. Each measurement
is owned by some subsystem and this ownership is known to the DMS Services.
The value of a measurement is stored in the variant part of the MEASURE-
MENT record object and can be of any type for which a corresponding entry in
RepType exists. The enumeration list for RepType shown above is only rep-
resentative as many of the types are yet to be determined.

The package DATAREQUEST contains the procedures for preparing a request
message for transmission. They are REQUEST, MAKESET, GETSET and
READNEXT. The MAKESET procedure associates a name with a list of
measurements. The format of the MAKESET command is then defined by

MAKESET(SetName,Measuremen tlist)

where SetName is the name to be assigned to the measurement set and Measure-
mentList is a list of measurement names. The REQUEST command requests the
reading of a set of measurements. The format of the REQUEST command is:

REQUESTISetName) or REQUEST(SetName,PERIOD)

F . 4 . 3 . 9

9

The second form of this command utilizes the PERIOD parameter which is a req-
uest for a periodic reading of the measurement set every PERIOD seconds where
PERIOD The following steps outline
the requesting procedure.

is a non negative floating point number.

(1) call the MAKESET procedure to create the named measurement set,
(2) call the REQUFST procedure to request the reading of the set,
(3) call the GETSET procedure to obtain the set name of the next meas-

urement set that has been successfully processed as a result of a
previous REQUEST and

(4) use the STATUS parameter of the GETSET command to determine if the
reading of a set has been completed.

The format of the GETSET command is:

GETSET(SetName,STATUS,TIME)

where SetName is the name of a previously requested measurement set whose
processing has been completed at the time returned in the TIME parameter.
Once a set name is obtained from the GETSET utility, the measurements in
the set can be read using the READNEXT procedure whose command format is:

READNEXT(SetName,MEAS)

where MEAS is of type MEASUREMENT. To use the measurement’s name as
an operand is straightforward since i ts type is known to always be a 15 char-
acter string. To perform an operation on a measurement’s value, however,
involves examination of the discriminant of MEAS since MEAS is a variant
record. The STOP command is used to stop an active periodic REQUEST. The
format of this command is:

STOP(SetName).

The DATAREPLY package provides the necessary procedures to be used in res-
ponding to a REQUEST. These utilities are: REPLY, SETNAME, NEXTNAME,
and WRITENEXT. They are similar in nature to the utilities provided
in the DATAREQUEST package.

F. 4.3.10

10

