
*
A Database Management Capability for Ada

Arvola Chan
Sy Danberg

Stephen Fox
Terry Landers

Ani1 Nori
John M. Smith

Computer Corporation of America
4 Cambridge Center

Cambridge, MA 02142

This project is supported jointly by the Advanced Research Projects Agency of
the Department of Defense (DARPA) and the Naval Electronics Systems Com-
mand (NAVELEX) under contract N00039-82-C-0226. The views and conclu-
sions contained in this paper are those of the authors and should not be inter-
preted as necessarily representing the official policies, e i ther expressed or
implied, of DARPA, NAVELEX, or the U.S. Government.

* Ada is a Registered Trademark of the U.S. Government (AJPO)

"A Database Management Capability for Ada," by A. Chan, S. Danberg, S. Fox,
T. Landers, A. Nod, J.M. Smith, from Proceedings of the Annual Washington
Ada Symposium, blarch 1985. Copyright 1985 by Association for Computing
Machinery, Inc., reprinted by permission.

G.1.3.1

1. Introduction

The data requirements of mission-critical defense systems have been
increasing dramatically. Command and control, intelligence, logistics, and
even weapons systems are being required t o integrate, process, and share ever
increasing volumes of information. To meet this need, systems are now being
specified that incorporate database management subsystems for handling
storage and retrieval of information. Indeed, i t is expected that a large
number of the next generation of mission-critical systems will contain embed-
ded database management systems. Since the use of Ada has been mandated
for most of these systems, i t is important to address the issues of providing
database management capabilities that can be closely coupled with Ada.

Under sponsorship by the Naval Electronics Systems Command and the
Defense Advanced Research Projects Agency, Computer Corporation of Amer-
ica has been investigating these issues in the context of a comprehensive dis-
tributed database management project. The key deliverables of this project
are three closely related prototype systems implemented in Ada.

1. LDM (local data manager): an advanced, centralized database manage-
ment system that supports a semantically rich data model designed to
improve user productivity. It can be used either stand alone or as an
integral part of the other two prototype systems.

2. DDM (distributed data manager): a homogeneous distributed database
management system built on top of a collection of LDMs in a computer
network. It supports the transparent distribution and replication of data
in order to provide efficient access and high availability.

3. Multibase: a retrieval-only system that provides a uniform interface
through a single query language and database schema to data in preex-
isting, heterogeneous, distributed databases. I t utilizes LDM for manag-
ing its local workspace during the processing of a global query.

All three systems are designed to support identical interfaces for interac-
tive use and for use through application programs written in Ada. Fundamen-
tally, they support a "semantictt data model that captures more application
semantics than conventional data models. The interactive language is called
Daplex. Daplex has been designed to be an Ada compatible database sub-
language. The syntax of many of its constructs for data definition and data
manipulation has been borrowed from Ada. The application programming
interface is called Adaplex. It consists of an expression-level integration of
Daplex's data manipulation constructs with Ada. This paper identifies a set of
requirements for a modern database management capability for Ada that has
driven our design for the aforementioned prototype systems. It provides an
overview of the Daplex and Adaplex languages, and a summary of the func-
tional capabilities and technical innovations we have incorporated in the LDM,
DDM, and Multibase systems.

~ . 1 . 3 . 2

2. Requirements

Providing a database management capability for Ada is not an easy task.
Our goal is to provide a complete set of modern database management capabil-
ities which are consistent with the style and philosphy of Ada and which are
well integrated with the Ada language and its support environments. This sec-
tion summarizes the major requirements of a database management capability
for Ada. These requirements can be grouped into three general areas: classes
of databases that must be supported, operating environments, and compatibil-
ity with Ada.

CZasses of databases
Ada programs will need to access three classes of databases. The first

class consists of centralized databases. These databases reside at a single
location and are managed by a DBMS that executes on a single computer. The
second class consists of distributed databases. These databases can be frag-
mented, distributed, and replicated across a number of (possibly geographically
separated) sites. They are managed by a DBMS that executes on a number of
computers that are connected by a communications network. Distributed data-
bases provide improvements in reliability, survivability, and expandability over
centralized databases. The third class is pre-existing databases. These are
databases (possibly centralized or distributed) that are managed by existing
DBMSs. These DBMSs are not implemented in Ada. They provide different
sets of functional capabilities and support different interface languages. An
important requirement for an Ada database capability is to provide a single
Ada interface to all of the above classes of databases. In other words, the par-
ticular class of database being accessed should be transparent to the Ada data-
base application programmer.

Operating Environments
An Ada DBMS must be able to operate effectively in both an Ada program-

ming support environment (APSE) to facilitate the development of Ada data-
base application programs, and in an Ada run time environment to support the
execution of these programs. To provide for the needs of these two environ-
ments, the DBMS must have two operating modes: shared and embedded.
Shared mode is normally used in an APSE. A single copy of the DBMS supports
the simultaneous development of multiple Ada database application programs
in this mode. The interface between the application programs and the DBMS is
a loosely-coupled one, each being executed as a separate Ada program. Thus,
each application program can be changed without impacting the DBMS or other
application programs. Embedded mode is typically used in a run time environ-
ment. Once the application programs have stabilized, they can be loaded
together with the DBMS into a single Ada program. The applications and the
DBMS then operate as separate Ada tasks that synchronize and communicate
via rendezvous, thereby achieving a higher degree of interface efficiency at
the expense of reduced flexibility. Embedded mode is less flexible than shared
since a change to one application causes the other application and the DBMS to
be relinked.

Compatibility with Ada

G. 1.3.3

Ada has made a large contribution to improving program integrity through
strong type checking at compile t ime and constraint checking at run time. I t is
important that an Ada DBMS provides the same degree of integrity on the Ada
program data that i t manages. An Ada DBMS should support all of the Ada
data types, including derived types, subtypes, and type attributes. I t should also
support the same degree of run t ime constraint checking. Note tha t this can-
not be easily (or efficiently) accomplished by simply providing an Ada inter-
f ace to an existing (non-Ada) DBMS. Let us illustrate this wi th a simple exam-
ple. Suppose an Ada programmer wants to s tore a set of employee records in a
database. The Ada type definitions fo r this record may look like:

type YEARS is new INTEGER range 0..50;'

type EMPLOYEE Is
record

NAME : STRING(1 .30);
YEARS-OF-SERVICE : YEARS;
SALARY : INTEGER:

end record;

Suppose tha t the Ada programmer writes a program tha t contains a tran-
saction that adds one to the YEARS-OF-SERVICE component of each
employee record. There are two ways to process this transaction. One way is
to retrieve the YEARS OF SERVICE component for each record in the data-
base and return i t to t h e application program, add one and then store it back in
the database. This is a very inefficient way of processing since i t results in a
lot of data being sent from the DBMS to the application program and then back
again. A much more efficient method is to have the DBMS perform the update
directly. That is, the application program can instruct the DBMS to add one to
the YEARS OF SERVICE component of each record. This results in no data
being returned 6 the application program. However, the DBMS must now take
the responsibility of insuring that all new values of YEARS OF SERVICE
remain within the specified range. I t is not acceptable for the DBMSto blindly
change each value of YEARS - - OF SERVICE, only to have the application pro-
grams that retrieve the data at a later time discover tha t some values have
become illegal.

Data models and associated query languages have evolved significantly
over the past two decades. The early hierarchical models were superseded by
the network and relational models. The latter are in turn being superseded by
so-called semantic da ta models. Our overall DBMS project is based on a
semantically rich data model called Daplex which combines and extends the
key features of earlier data models. For example, Daplex's modelling con-
structs are a s t r ic t superset of those found in the relational model. Daplex is
designed to enhance the effectiveness and usability of database systems by
capturing more of the meaning of an application environment than is possible
with conventional data models. I t describes a database in te rms of the kinds of
entities that exist in the application environment, the classifications and
groupings of these entities, and the structural interconnections among them.
The semantic knowledge captured in Daplex is not only meaningful t o end

G.1.3.4

users, but is also usable by the database system and database administrator for
the purposes of query and physical schema optimization. For example,
knowledge of the nature of relationships between types of entities (Le.,
whether they are one-to-one, many-to-one, or many-to-many) can be used to
control the appropriate clustering of entities of different types that are likely
to be accessed together, both in a centralized and in a distributed environ-
ment.

The basic modelling constructs in Daplex are entities and functions. Enti-
ties correspond to conceptual objects. Entities are classified into entity types,
based on the generic properties they possess. Functions represent properties of
conceptual objects. Each function, when applied to an entity of appropriate
type, yields a single property associated with that entity. Such a property is
represented by either a single value or a set of values. These values can be
simple, being drawn from Ada supported scalar types and character strings, or
composite, consisting of references to entities stored in the database. We
illustrate these constructs with an example.

Consider a university database modelling students, instructors, depart-
ments, and courses. Figure 1 is a graphical representation of the definition - -- of

PERSON

NAME
AGE

ISA p $ S A

STUDENT

ADVISOR TITLE
SALARY I I %%TS I

INSTRUCTOR (COURSE1
ADVISOR TITLE

ROOM
CREDITS

+ SALARY

-
COURSES-TAUGHT

J
COURSES-TAUGHT

1 ENROLLMENTS 1
DEPT qTl4 DEPARTMENT 1 DEPT

FLOOR

DEPARTMENT DEPTI w I OEPT -
I I -

Figure 1. A Daplex Database

such a database. The rectangles depict entity types. The labels within the rec-
tangles depict functions that range over Ada scalar and string types. The
single-headed and double-headed arrows represent single-valued and set-valued

G.1.3.5

functions that map argument ent i ty types t o result types. The double-edged
arrows indicate isa (subtype) relationships.

One major difference between Daplex and the relational model is that
referential integrity constraints [DateBl], which are extremely fundamental in
database applications but not easily specifiable in a relational environment,
are directly captured. For example, when a student is inserted into the data-
base, the database system will ensure that it is assigned a valid instructor, Le.,
one that is existent in the database. Likewise, when an instructor is to be
removed from the database, the database system will see to it that no dangling
references result, Le., there are no more students in the database who have t h e
instructor in question as advisor.

Another important semantic notion captured in Daplex is that of a hierar-
chy of overlapping ent i ty types. In relational systems, a real-world ent i ty that
plays several roles in an application environment is typically represented by
tuples in a number of relations. In the university application environment, w e
might have an instructor enti ty named John Doe and a student ent i ty also
named John Doe. In this case, it might be desirable to impose the constraint
that the age of John Doe as an instructor should agree with the age of John
Doe as a student. One possible s t ra tegy in a relational system is to represent
this information only once by having a relation person that stores the age
information, and relying on joining operations t o determine the age informa-
tion for students and instructors. In Daplex, w e can specify that student and
instructor are subtypes of person whereby w e can utilize Daplex's function
inheritance semantics to simplify the formulation of queries and updates. Fig-
ure 2 shows a relational equivalent of the university database. Figures 3 and 4
I

PERSON (SSN, NAME, AGE)

STUDENT (SSN. ADV-SSN)

INSTRUCTOR (SSN. D E R)

COURSE (ROOM, CREDITS)

ENROLLMENTS (SSN. TITLE)

COURSES-TAUGHT (SSN. TITLE)

Figure 2. A Relational Schema

shows a Daplex query and i t s equivalent in SQL [DATE84]. The intent of this
query is to print the names of all students taking a class held at room "F320tt
and taught by an instructor in the "CS" department. Notice how explicit join
terms have to be introduced in the SQL query, which tend to obscure readabil-
ity. On the other hand, the absence of such constructs from the Daplex query
allows the query t o be read in a more or less English-like manner. A complete
description of the Daplex da ta model and access language can be found in
[SLRR84].

G.1 .3 .6

for each S in STUDENT where
"F320" is in ROOM(ENROLLMENTS(S))

DEPT(ADVISOR(S)) = CS

PRINT(NAME(S));

and

loop

end loop;

Figure 3. A Daplex Ouery

SELECT PERSON.NAME
FROM PERSON, STUDENT, ENROLLMENTS, COURSE, INSTRUCTOR

AND PERSONSSN = ENROLLMENTSSSN
AND ENROLLMENTSTITLE = COURSE.TITLE
AND COURSE.ROOM = "F320"
AND STUDENT.ADV-SSN I INSTRUCTOR.SSN
AND INSTRUCTOR.DEPT = CS

WHERE PERSONSSN = STUDENTSSN

Figure 4. An Equivalent SOL Ouery

I
4. Adaplex

Database environments for popular programming languages, notably C,
PL/1, COBOL, and Pascal, have resulted in extensions to the host programming
language. At the outset, it was not clear whether Ada would also need t o be
extended to accommodate database applications. This is because Ada contains
important new features not found in previous widely-used languages. In partic-
ular, Ada's package construct offers t he potential for defining a database
extension within the language itself.

There have actually been a number of proposals for coupling database
management capabilities to Ada through the package construct [HTVNSl,
NOKI83, VINE831. However, we feel that such approaches sacrifice usability
and data integrity for not extending Ada [SCDF85]. Since our goal is to design
the best Ada compatible language environment for developing database appli-
cation programs, i t is our desire to express as much of t h e database environ-
ment in Ada as possible, although not at the expense of database capabilities
and ease of use.

Two major capabilities that must be provided by a database programming
environment are schema definition (for describing the contents of the data-
base) and transaction definition (for specifying operations on the stored data).
In order to support database applications programming in Ada, i t is necessary
to couple the DBMS to an Ada programming support environment. One possible
approach for achieving such a coupling is illustrated in Figure 5. Notice that
both schema definition and transaction definition are separated from the Ada

Schema Transaction Ada
Definition Deflnition Program

b

Schema Transaction Ada
Compiler Optimizer Compiler

Program
Library I Transaction

Library I Schema
Library

DBMS

Figure 5. Coupling a DBMS with an Ada Programmmg Support Environment

application program.
This separation works for database schema definition since the output of

the schema compiler can be logically thought of as an Ada package containing
type definitions representing a database schema. The separation of transaction
definition from application program is less natural because parameters must be
passed from the application program to the DBMS and transaction results must
be bound to application program variables.

In the course of our project, two approaches for handling transaction
definition have been considered. The first approach is similiar to the one used
for schema definition. A transaction definition is passed to the transaction
optimizer which generates an Ada package that implements (Le. calls the
DBMS to execute) the transaction. The package is then loaded with the appli-
cation program. This approach, however, leaves the applications programmer
with a rather complicated interface. The programmer must learn a transaction
definition language which is quite distinct from Ada. Besides, parameter pass-
ing between the application program and the package that implements the
transaction is cumbersome. Since Ada is a strongly typed language, it might be
necessary to use an intermediate representation like character strings for pass-
ing certain parameters. This has a number of drawbacks. First, the program-
mer must explicitly encode and decode these strings. Second, compile time
type checking cannot be performed on the contents of these strings. In gen-
eral, such a parameter passing mechanism can be quite inefficient.

These difficulties lead us to adopt a second approach which permits the
application programmer to embed transaction definitions directly in an Ada
program. The result is an integrated language, called Adaplex, which provides
a tight coupling between Ada and our transaction definition language. No
changes were made to existing Ada constructs. The new constructs that were
added are treated in an Ada compatible manner. The coupling is achieved at
the expression level. Applications programmers are free to use Ada

G. 1.3.8

Schema
Definition

Integrated
Application
Program

Preprocessor 1
Transaction
Definition

Compiler I Schema I Transaction
Optimizer I I

Ada
Program

To Ada
Compiler

Figure 6. Configuration ol Maplex Programming Tools

expressions, control structures, and subprogram calls within a transaction
definition. Because of Adaplex's uniform syntax and semantics, we expect it to
be very easy to learn and use by trained Ada programmers.

For portability reasons, a preprocessor is used to decompose applications
programs written in Adaplex into a transaction part and an Ada program part.
The transaction part is forwarded to the transaction optimizer and the Ada
part to the Ada compiler. The preprocessor is a very powerful tool. I t provides
the same integrity checking across the application program/DBMS interface
that the Ada compiler provides for an Ada program.

The schema compiler, transaction optimizer, preprocessor, and DBMS form
the minimum set of program development tools required for the database
environment. Their combined configuration is shown in Figure 6. Any one of
the Multibase, LDM, DDM systems can be substituted in place of the box
labelled DBMS. Provided all these tools are written in Ada, database schemas,
application programs, and databases may be ported between Ada installations.

Fundamentally, Adaplex adds two constructs to Ada, the database declara-
tion and the atomic statement. These constructs provide for schema definition
and transaction definition respectively. A database declaration specifies the
data objects in a database, the types of those data objects, and their

G.1.3.9

database UNIVERSITY is

type DEPT-NAME is (CS. €E. MA).
type YEARS Is new INTEGER range 0 .. 120;
UNKNOWN-AGE constant YEARS = 0;

type COURSE is
entity

TITLE
ROOM
CREDITS

end entity

: STRING (1 . . 6)
. STRING (1 .. 5);
' INTEGER range 1 .. 4;

type PERSON is
entity

NAME STRING (1 30).
AGE YEARS : = UNKNOWN-AGE.
SSN INTEGER;

end entity;

subtype INSTRUCTOR is PERSON
entity

DEPT : DEW-NAME;
COURSES-TAUGHT : set of COURSE:

end entlty;

subtype STUDENT is PERSON
entity

DORM : !STRING (1 .. 10);
ADVISOR : INSTRUCTOR withnull;
ENROLLMENTS : set of COURSE;

end entity;

overlap INSTRUCTOR with STUDENT;

unique TITLE within COURSE;

end UNIVERSITY:

Figure 7. An Pdaplex Database Declaration

consistency/inte@ty requirements. Database declarations are processed by
the schema compiler. Figure 7 shows the database declaration for the univer-
sity database that was depicted graphically in Figure 1. In addition to the type
and subtype declarations, several constraint statements have been specified.

indicates that it is legal for a PERSON entity to be both a STUDENT and
INSTRUCTOR simultaneously.

unique TITLE within m;
indicates that all COURSE entities must have unique TITLES.

overlap lWTRWKR w i t h STUDENT;

with UNIVERSITY; use UNIVERSITY;

ADD-COURSE
declare

NEW-COURSE COURSE.
atomic

NEW-COURSE ' = new COURSE (TITLE = > "CS-101".
ROOM = > GET-ROOM(CS). -
CREDITS = > 3):

Include NEW-COURSE into
COURSES-TAUGHT

(I In INSTRUCTOR where NAME (I) = "Adam Jones");
exception

end atomlc:

when UNIQUENESS-CONSTRAINT = >
PUT-LINE("Dupl1cate course name");

Figure 8. An Adaplex Database Transaction

A database is similar to a package since it is a related collection of data
and type declarations. However, a database differs from a package in three
principal ways. First, there are explicit protocols within Adaplex for several
independent main programs to share the use of a database. Second, a strong
discipline is imposed on the specifications allowed in a database declaration.
Third, database declarations are developed interactively via the schema com-
piler, and they are stored for future reference in the schema library.

An atomic statement specifies a compound operation which must be indi-
visibly executed with respect to a database. The preprocessor extracts tran-
sactions from atomic statements for processing by the transaction optimizer.
Figure 8 shows an Ada code fragment containing an atomic statement. This
transaction creates a new COURSE entity and indicates that the course will be
taught by the instructor named Adam Jones. Notice that the database type
declarations are made visible by the with and use statements. The expression
level integration of Daplex and Ada is illustrated by calling an Ada subpro-
gram, GET ROOM, to generate a value to assign to the ROOM function. Since
COURSES &e constrained to have unique TITLES, it is possible that the create
statement may fail. An exception handler is included to cleanly handle this
error.

An atomic statement is similar to a block in the sense that it is a compound
statement that has associated declarations and exception handlers. However,
an atomic statement differs from a block in three ways. First, atomic state-
ments are executed indivisibly with respect to databases. Second, strong dis-
ciplines are imposed on the contents, nesting, parallel execution, and excep-
tion handling of atomic statements. Third, atomic statements are transformed
by the preprocessor to extract database transactions.

A complete description of the Adaplex language can be found in [SFLSS].
A detailed discussion on our rationale for developing Adaplex can be found in
[SFL83, SCDF851.

G. 1.3.11

5. LDY

LDM is a general purpose system for defining, storing, retrieving, updating,
sharing, and protecting formatted information. While its users may be geo-
graphically distributed, LDM and its data must be centrally located. LDM is
designed to provide all the functions typically found in a modern database sys-
tem, including:

logical and physical database definition,
logical and physical database reorganization,
a fully integrated data dictionary facility,
an authorization mechanism for controlling database access,
optimized selection of access paths for transactions,
interference-free concurrent access by multiple users/transactions,
automatic recovery from transaction failures, software crashes, and
media failures,
a dumping utility for taking a consistent snapshot of the entire database,
a reload utility for restoring a database to a previously saved state.

LDM's main design objectives are transportability and high performance.
Transportability is achieved by the use of Ada as the implementation language
and by using a modular system architecture which is greatly facilitated by
Ada's packaging construct and separate compilation mechanism. A description
of LDM's component architecture can be found in [CFLR81]. High perfor-
mance, on the other hand, requires the introduction of a number of technical
innovations in the areas of physical data structuring, query optimization, con-
currency control, and recovery management as identified below.

LDM is designed to provide complete physical data independence. It sup-
ports flexible physical structuring options so that a database administrator can
tailor the physical representation of a database according to application
requirements [CDFLSZ]. LDM employs special data structures for the efficient
maintenance of referential integrity and other contraints associated with type
overlaps in a generalization hierarchy. It also provides a wide range of options
for the clustering of entities that belong to a generalization hierarchy. LDM
supports dynamic data structures (namely, linear hashing (LARS801 and B-trees
[COME79]) to eliminate the need for periodic reorganization. In order to sup-
port the efficient traversal of interentity references, LDM implements a
pointer validation scheme that minimizes the updating costs associated with
the use of dynamic data structures.

The design of LDM is geared towards the processing of repetitive transac-
tions in a database applications programming environment. Transactions are
compiled, thereby permitting the costs for parsing, authorization checking, and
access path optimization to be amortized over multiple execution. LDM is also
designed to optimize a much larger class of queries than relational systems. In
particular, we have developed efficient strategies for processing queries with
outerjoins and nested quantifiers [RCDFSZ, DAYA83Al. At the same time, the
amount of effort that LDM will expend to optimize a transaction template can
be controlled by a user (in the form of a pragma). Thus, a user can ensure that
the effort for optimizing a given transaction tc rnplate is commensurate with

G. 1.3.12

the savings that can be expected to accrue over repeated execution.
LDM implements an integrated concurrency control and recovery mechan-

ism which has the advantage of improving concurrency while simplifying tran-
saction and system recovery. Specifically, LDM implements a multiversion
mechanism that allows each read-only transaction to see a consistent snapshot
of the database without having to synchronize with update transactions
[CFLN82]. The essence of this mechanism is that update transactions create
new versions of data objects without overwriting their previous versions. An
efficient scheme is used to determine the appropriate version of different data
objects each read-only transaction should see, and to identify those old ver-
sions that can be garbage collected. Since database dumps can be considered
as read-only transactions that access the entire database, they can also be
taken non-intrusively (Le., without requiring the quiescence of concurrent
updates).

In addition to being a stand-alone centralized database system, LDM also
functions as an integral part of DDM and Multibase.

6. DDM

DDM is a homogeneous distributed database system built on top of a collec-
tion of LDMs running at different sites connected by a computer network.
From the end-users' point of view, DDM performs precisely the same opera-
tions supported by LDM. This is because all complexities introduced by frag-
mentation, distribution, and replication of a database are hidden from end-
users. Users access a distributed and replicated database in DDM just as they
would access a centralized database in LDM. In a distributed environment, a
copy of LDM and a copy of DDM are installed on each of several computers in
a computer network where data is distributed / replicated. Each LDM is
responsible for managing all locally stored data at its resident site. Each DDM
cooperates with all other DDMs in the network in order to hide the distribution
and replication .of data from end users and applications. As a truly distributed
system, DDM delivers the benefits of improved processing capacity, communi-
cations efficiency, survivability, and modular upward scaling. DDM provides
the following important facilities.

An integrated global schema that encompasses data stored at all sites.
DDM maintains a global directory in order to keep track of the distribu-
tion and replication of data. I t automatically maps transactions on the
global schema into subtransactions on data stored at individual LDMs.

0 Complete physical data independence. The database administrator is free
to tune parameters involving the physical distribution, replication, and
representation of the stored data, without affecting the external view of
the database.
Mutual consistency of replicated data. Users deal with logical data only.
Propagation of updates to redundant copies of updated data is managed by
the system.
Atomicity of distributed transactions. DDM guarantees than no partial
effects of one transaction will be seen by another. If a transaction is
unable to complete, all of its effects on the database are automatically
undone.

G.1.3.13

Continued operation in spite of site failures. Users can continue to per-
form retrieval and update operations, even though some copies may be
temporarily inaccessible. These latter copies are brought up to date by
the system before being used for processing subsequent transactions.
Dynamic integration of new sites. No quiescence of on-going activities is
needed for reconfiguration of the system.

As in LDM, our main design objectives for DDM are transportability and
performance. Again, we have introduced a number of technical innovations in
the areas of data allocation, query optimization, concurrency control, and
recovery management in order to obtain good performance. These are sum-
marized below.

DDM supports flexible database fragmentation and allocation that can be
used to improve locality of reference and efficiency of query processing
[CDFR83]. Each database managed by DDM is optionally divided into a
nslmber of groups of data fragments, based on the likelihood of their being used
together. Each group of data fragments constitutes a unit for allocation and
may optionally be replicated at as many sites as desired. For a replicated frag-
ment group, two kinds of copies are distinguished. Online copies are used for
processing transactions. Offline copies serve as warm standbys that can
quickly (and automatically) be upgraded to online status in order to retain a
desired degree of resiliency as sites storing online copies fail. When specifying
the replication parameters for a fragment group, a database administrator
indicates the number of desired online copies and those sites whose copies are
to be kept online preferrably. DDM will then strive to keep those copies at the
preferred sites online, but dynamically bringing copies stored at other sites
online to maintain the desired level of resiliency when necessary.

Unlike previous systems, DDM is designed to take into consideration data-
base fragmentation and replication in its selection of strategies for processing
transactions [CDFG83]. Whereas most previous studies on distributed query
optimization assume the distribution of joins over unions, DDM will consider
the options of using left distribution, right distribution, or no distribution at all
when processing queries that involve such operations. DDM treats each frag-
ment group as an integral data unit during the optimization process. Both
compile time and run time optimization are performed. Compile time optimi-
zation seeks to identify a good order for processing the high level data manipu-
lation operations on fragment groups without binding operations and copies to
sites. This is because the choice of which copy of a fragment group to use for
processing a transaction cannot be made until the availability of sites at run
time is known. By dividing the optimization into two stages, DDM maximizes
the amount of preanalysis done at compile time while ensuring the validity and
optimality of the generated access plans.

DDM's concurrency control mechanisms are extensions of those used in
LDM. Again, a multi-version mechanism is used to eliminate conflicts between
read-only and update transactions [CGSSI. In addition to improving parallel-
ism, this mechanism greatly facilitates the taking of global checkpoints. Such
a checkpoint may be necessary if one wants to reset a distributed database to a
previous globally consistent state after the log data in one or more sites is
damaged. With respect to replica control, DDM provides a balance between
synchronization overhead and failure resiliency. Essentially, updates are pro-
pagated to online copies synchronously. Offline copies are only updated in a
background batched fashion.

G. 1.3.14

Because DDM is designed for distributed command and control applica-
tions, survivability is a very important issue. A special transaction commit
algorithm is used to ensure that distributed transactions are terminated in a
timely fashion, even in the presence of site failures, so that resources at the
remaining operational sites can be fully utilized (without being tied down by
incomplete transactions). DDM is designed to recover automatically from
total failures wherein all of the sites coordinating a transaction or all of the
sites storing replicated copies of a fragment group fail simultaneously. Previ-
ous systems have treated such failures as catastrophes and required human
intervention for recovery. In order to speed up the availability of data at a
recovering site, DDM employs an incremental site recovery strategy. Essen-
tially, the fragment groups stored at the recovering site are prioritized and
brought up to date one at a time (with the assistance of other replication sites).
As soon as a fragment group is brought online, it can be used for processing
new transactions without having to wait for the recovery of other fragment
groups.

7. Multibase

Multibase is designed to provide a logically integrated, retrieval-only, user
interface to a physically nonintegrated environment containing pre-existing
databases. These databases may reside on different types of database manage-
ment systems, at different physical locations, and on different types of
hardware.

Before local databases can be accessed through Multibase, the local host
systems must be connected to a communications network. This network can be
local or geographically distributed. After Multibase has been connected to the
same communications network, a global user can access data in the local data-
bases through Multibase using a single query language. Each local site main-
tains autonomy for local database updates. Local applications can continue to
operate using the existing local interfaces, as before.

Multibase presents the end user or application program with the illusion of
a single, integrated, non-distributed database. Specifically, Multibase assumes
the following responsibilities:

0 providing a global and consistent picture of the available data,
knowing the locations for the database items,
transforming a query expressed in the global query language into a set of
subqueries expressed in the different languages supported by the target
systems,
formulating an efficient plan for executing a sequence of subqueries and
data movement steps,
implementing an efficient plan for accessing the data at a single target
site,
moving the results of the subqueries among the sites,
resolving incompatibilities between the databases (such as difference in
naming conventions and data types),

G. 1.3.15

resolving inconsistencies in copies of the same information that are stored

combining the retrieved data to correctly answer the original request.
in different databases, and

Global Data Manager
(GDW

Multibase has three key design objectives: generality, compatibility, and
extensibility. To satisfy the first objective, Multibase has been designed to be
a general tool, capable of providing integrated access to various database sys-
tems used for different applications. Multibase has not been engineered to be
an interface for a specific application area. The second requirement of Multi-
base is that it co-exists and be compatible with existing database systems and
applications. No changes or modifications to local databases, DBMS's, or appli-
cation programs are necessary to interface Multibase with systems already in
operation. The local sites retain full autonomy for maintaining the databases.
All local access and application programs can continue to operate without
change under Multibase. The third design objective is that it must be rela-
tively easy to couple a new local system into an existing Multibase
configuration.

All these objectives are achieved by designing a modular architecture for
Multibase and by making the system largely "description driven" [LR82].
Multibase's modular architecture isolates those parts of the system that deal
with specific aspects of a local system. Because of this, a Multibase
configuration can be expanded to include a new DBMS in a short period of t i m e
and with little impact on the existing Multibase software. Descriptions are
used throughout Multibase to tailor general modules for specific applications,
users, and databases. These descriptions are written by the database
administrator(s) who is responsible for tailoring a Multibase configuration.

Flgun 9. Multibase Component Architecture

The component architecture of Multibase is illustrated in Figure 9. There
are two types of modules: a global data manager (GDM) and a local database
interface (LDI). All global aspects of a query are handled by the GDM. All
specific aspects of a local system are handled by an LDI. There is one LDI for

G. 1.3.16

each local host DBMS accessed by Multibase. The GDM makes use of LDM as
an internal DBMS to manage its workspace. The LDM is used to store the
results of the Daplex singlesite queries which are processed by the LDI's and
to perform all the required steps of the final query for combining and format-
ting the data.

It should be mentioned that Multibase does not provide the capability to
update data in the local databases or to synchronize read operations across
several sites. This is because implementing global concurrency control
mechanisms for read or update operations would have necessitated the global
process to request and control specific resources offered by the local systems
(Le., locking local database items) as required to ensure consistency across the
databases. However, most systems do not make available to an external pro-
cess the services necessary to implement global concurrency control. Since
Multibase is designed to operate without requiring modifications to existing
systems, the tools necessary to ensure consistency across databases are not
globally available. Thus, autonomy of database update is maintained locally,
and Multibase provides the global user with the same level of data consistency
that the local host DBMSs provide to each local database user.

In addition to the highly modular and description driven architecture, the
design of Multibase has required research in the areas of schema integration,
global query optimization, and local query optimization. Our results in each of
these areas have been reported in [KG81, DAYA84a1, [DAYA83b, GY84,
DAYA84b1, and [DG82] respectively.

8. Status

Designs of the Daplex and Adaplex languages are complete. Prototype ver-
sions of Multibase and LDM which support most of the described capabilities
have been implemented. Implementation of DDM is well underway. To date,
the systems contain approximately 500,000 lines of Ada source code. Most of
the implementation was done in an Ada-subset using an Ada-to-Pascal transla-
tor [SOFT81]. The systems were then converted to full Ada using the DEC VAX
Ada compiler [DEC85]. Development is continuing using both VAX Ada and
Rational's Ada Development Environment [RAT85]. The initial target environ-
ment for all three systems is VAX VMS. The current systems support an
interactive version of Adaplex (Le., Daplex).

9. References

[CDFG83b]
A. Chan, U. Dayal, S. Fox, N. Goodman, D. Ries, D. Skeen. "Over-
view of an Ada Compatible Distributed Database Manager." ACM
SIC MOD Conference Proceedings, 1983.

A. Chan, S. Fox, S. Danberg, W. Lin, A. Nori, D. Ries. "Storage and
Access Structures to Support a Semantic Data Model." VLDB Confer-
ence Proceedings, 1982.

[CDFL82]

G. 1.3.17

[CDFRSS]
A. Chan, U. Dayal, S. Fox, D. Ries. "Supporting a Semantic Data
Model in a Distributed Database System." VLDB Conference Proceed-
ings, 1983.

A. Chan, S. Fox, W. Lin, A. Nori, D. Ries. '!The Implementation of an
Integrated Concurrency Control and Recovery Scheme." ACM SIG-
MOD Conference Proceeding, 1982.

A. Chan, S. Fox, W. Lin, D. Ries. "The Design of an Ada Compatible
Local Database Manager." Technical Report CCA-81-09, Computer
Corporation of America.

A. Chan, R. Gray. "Implementing Distributed Read-only Transac-
tions." To appear in IEEE Transactions on Software Engineering, Vol.
SE-11, No. 1, February 1985.

C. Date. "Referential Integrity." VLDB Conference Proceedings,
1981.

C. Date. A Guide to DB2, Addison Wesley, 1984

U. Dayal. "Processing Queries with Quantifiers: A Horticultural
Approach." ACM PODS Conference Proceedings, 1983.

U. Dayal. "Processing Queries over Generalization Hierarchies in a
Multidatabase System." VLDB Conference Proceedings, 1983.

U. Dayal, H. Hwang. "View Definition and Generalization for Data-
base Integration in Multibase: A System for Heterogeneous Distri-
buted Databases." IEEE Transactions on Software Engineering, Vol.
SE-10, No. 4, November 1984.

U. Dayal. "Query Processing in a Multidatabase System." in Query
Processing in Database Systems, (W. Kim, D. Batory, D. Reiner, edi-
tors), Springer Verlag, 1984.

Digital Equipment Corporation. "Developing Ada Programs on
VAX/VMS." 1985.

U. Dayal, N. Goodman. "Query Optimization for CODASYL Database
Systems." ACM SIGMOD Conference Proceedings, 1982.

N. Goodmam, D. Skeen, A. Chan, U. Dayal, S. Fox, D. Ries. "A
Recovery Algorithm for a Distributed Database Management Sys-
tem." ACM PODS Conference Proceedings, 1983.

[CFLN82]

[CFLRSl]

[CG85]

[DATE811

[DATE841

[DAYA83a]

[DAYA83bl

[DAYA84a]

[DAYA84b]

[DEC 8 51

[DG82]

[GSCDSS]

G. 1.3.18

[GY84]
D. Goldhirsh, L. Yedwab. "Processing Read-only Queries over Views
with Generalization." VLDB Conference Proceedings, 1984.

H. Hwang, U. Dayal. "Using Semiouterjoins to Process Queries in a
Multidabase System." ACM PODS Conference Proceedings, 1984.

J. Holland, K. Tai, M. Van Name. "An Ada Relational Database Inter-
face Using Abstract Data Types." TR 81-07, North Carolina State
University, 1981.

R. Katz, N. Goodman. "View Processing in Multibase - A Hetero-
geneous Database System." in Entity-Relationship Approach to Infor-
mation Modelling and Analysis, (P. Chen, editor), ER Institute,
Saugus, CA, 1981.

T. Landers, R. Rosenberg. "An Overview of Multibase." in Distributed
Databases, (H. Schneider, editor), North Holland Publishing Company,
1982.

Nokia Data Terminal Systems. "MPS 10 Database Management Sys-
tem Functional Description." Version 1.0, June 1983.

Rational, Inc. "Rational Environment Reference Summary." 1985.

D. Ries, A. Chan, U. Dayal, S. Fox, W. Lin, L. Yedwab. "Decompila-
tion and Optimization of Adaplex: A Procedural Database Language."
Technical Report, Computer Corporation of America, 1982.

J. Smith, A. Chan, S. Danberg, S. Fox, A. Nori. "A Tool Kit for Data-
base Programming in Ada." To appear in International Ada Confer-
ence Proceedings, 1985.

J. Smith, S. Fox, T. Landers. "Adaplex: Rationale and Reference
Manual." Technical Report, Computer Corporation of America, 1983.

S. Fox, T. Landers, D. Ries, R. Rosenberg. "Daplex User's Manual."
Technical Report CCA-84-01, Computer Corporation of America,
March 1984.

SofTech, Inc. "Interim Ada-to-Pascal Translation Tool Language
Reference Manual." TP 124, September 1981.

[HD84]

[HTVNSl]

[KG811

[LR82]

[NOKISS]

[RAT851

[RCDF82]

(SCDF851

[SFL83]

[SLRR84]

[SOFT811

[SWK76]

C

M. Stonebraker, E. Wong, P. Kreps. "The Design and Implementation
of INGRES." ACM T r m c t i o n s on Database Systems, Vol. 1, No. 3,
September 1976.

G.1.3.19

[VINE831
D. Vines, Jr. "An Interface to an Existing DBMS from Ada (IDA)." GTE
Network Systems, 1983.

G. l . 3.20

