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Supercritical Flow Past a Symmetrical Bicircular Arc Airfoil

Abstract

Li and Holt (1981) developed a numerical scheme for
computing steady supercritical flow about symmetrical air-
foils and applied it to an ellipse for zero angle of attack.
In this study, an algorithmic description of this new scheme
is presented. Application to a symmetrical bicircular arc
airfoil is also proposed.

In Li and Holt's scheme, both Telenin's Method and the
Method of Lines are used. The flow field before the shock
is region 1. For transonic flow, singularity can be avoided
by integrating the resulting ordinary differential equations
away from the body. Region 2 contains the shock which will
be located by shock fitting techniques. The shock divides
region 2 into supersonic and subsonic regions and there is
no singularity problem i? this case. The Method of Lines
is used in this region agd it is advantageous to integrate
the resulting ordinary differential equation along the body
for shock fitting.

Coaxial coordinates have to be used for the bicircular
arc airfoil so that boundary values on the airfoil body can
be taken with one direction of the coaxial coordinates fixed.
To avoid taking boundary values at *« in the coaxial co-
ordinary system, approximate analytical representation of

the flow field near the tips of the airfoil is proposed.



1. Introduction

The major problem in transonic flow calculations is the
nonlinearity in the governing equations and it causes the
partial differential equations to change type within the
solution domain, from elliptic in the subsonic region to
hyperbolic in the supersonic region. The embedded super-
sonic region ends with a shock, which causes an additional
problem of handling the shock wave.

There are two major categories of finite difference
techniques developed to solve the transonic flow problem.
One solves the transonic small disturbance equations and the
other solves the full potential equations.

In the first category, Murman and Cole (1971) deveioped
the first efficient successive line overrelaxation (SLOR)
method for the transonic small disturbance equations. They
used a mixed finite difference system. The use of elliptic
or hyperbolic difference formulas depends on whether the
flow field is subsonic or supersonic. Shock capturing was
used to locate the shock. Krupp and Murman (1972) extended
the method to lifting airfoils and slender bodies. Later
Ballhaus, Jameson and Albert (1978) developed an implicit
approximate factorization algorithm for the solution of
steady transonic small disturbance equations and found it
to have a better rate of convergence than the SLOR algorithm.

In the second category Steger and Lomax (1972) treated
the transonic lifting airfoils by solving the full potential
equations using SLOR. Jameson (1974) improved it by intro-

ducing a rotated differencing scheme in which the direction




of upwind differencing is rotated to conform with the local
flow direction. The most recent work in this category
known to this author was done by Holst and Ballhaus, who
solved the full potential equations in conservation form

to ensure conservative shock capturing. They later used

an arbitrary mesh for the method and obtained good results.

Interpolation (semi-analytical) techniques that have
been used in this problem include the Method of Integral
Relations, Telenin's Method and the Method of Lines.
However, the scheme developed by Li and Holt is the first
one that can be generally applied to symmetrical airfoils
and yet is able to locate the shock completely.

In the Li and Holt scheme, the steady two-dimensional
full potential equations are solved by both Telenin's
Method and the Method of Lines. A doublet solution for
flow past a closed body is used as the far field boundary
condition. The strength of the doublet is a function of
both the profile of the airfoil and the flow field. There-
fore, it is an unknown aéd iterations on the strength of
the doublet have to be déhe to obtain the correct boundary
values on the airfoil. Jump conditions of the governing
equations are applied across the shock wave so that it is
perfectly sharp. éorrect shock location is obtained by
iterations and checks with the boundary conditions down-
stream of the shock. The iterations mentioned above are
two point boundary value problems and can be done efficiently

by Powell's method.




Analytical representation of the flow field near the
tips of the airfoil can be approximated by the subsonic
small disturbance flow. Analytical representation, as
described above, is required for the bicircular arc airfoil
because one of the coordinates in the coaxial system approaches
infinity at the two ends of the airfoil. These will be

further elaborated upon in section 3.1.



2. Formulation of the Problem

In this study, a two-dimensional uniform flow past a
symmetrical bicircular arc airfoil at zero angle of attack
is considered. The embedded supersonic region near the
maximum thickness section is as shown in Fig. 1. It is
assumed that the flow is both irrotational and isentropic.
In fact, it was shown by Li and Holt (1981) that for thin
airfoils with subsonic free streams, the shock wave strength

is sufficiently small and entropy changes can be neglected.

2.1 Coaxial coordinates

Before proceeding further into formulation, the coaxial
coordinates system used in this study should be introduced.
It will be easier to understand the coaxial coordinates
system by referring to Fig. 2. In Milne~Thomson (1968),

it is defined as

z =1iccot 5 ¢ , ¢ =& +1in (2.1)

£ and n, the coaxial coordinates are defined as

¢ sinh n _ ¢ sin £ (2.2)

X = Goshn-cos £ ' Y~ cosh n-cos £ °

2c is the chord length of the airfoil. When £ =constant,
Eq. (2.2) is a circle whose center is the point (0, ¢ cot &)
with radius c cosec £. When n =constant, Egq. (2.2) is a
circle whose center is the point (¢ coth n, 0) with radius

¢ cosech n. The metric coefficient h is calculated to be

h = c(cosh n -cos E)—l (2.3)



u and v are velocities in £ and n directions, respectively.

2.2 Equations of motion

Continuity
) 9 _
3E (hpu) + N (hov) =0 , (2.4)
Irrotationality
3 3
3 (hv) - Pt (hu) = 0 , (2.5)

Bernoulli's equation

2 (2.6)

2 _ -
H+%q" = Hy = %qmax

o

H is the enthalpy per unit mass, q is the flow speed,'and

dax the maximum steady expansion speed.
By assuming perfect gas with constant specific heat
gives
H=——B_ : 2.7
(y=1)p (2.7)

>

and isentropic flow which further gives

pp' (2.8)
It follows that
0 - (&t (2.9)

Therefore, Eq. (2.6) can be written as

1
= (1-(=931 (2.10)

£
Po max
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If we express all variables in dimensionless form by dividing
distances by ¢, velocities by rax’ and the density by the
stagnant density Por retaining the same symbols for the non-

dimensional variations, Egs.

3 0 =
3E (puh) + n (pvh) =0 , (2.11)
5(vh) _ 8 -
32 = (uh) 0o (2.12)
1
2 Z)Y—l

o= (1-u-v . (2.13)

Equations (2.11), (2.12) and (2.13) are the three equations

of motion with the three variables u,v and p.



3. Numerical Methods

Telenin's Method as applied to two-dimensional problems
uses smooth interpolating polynomials to represent the
unknowns in one of the independent variables. The governing
partial differential equations are solved in their original
form, and thus we avoid the algebra required in the Method
of Integral Relations. The symmetry conditions of the present

problem suggest the use of Fourier series of the form

N

u(g,n) =L ai(g)cos(i-l)n ‘ (3.1)
i=1
N

v(g,n) =1 ai(E)sin(i-l)n ’ (3.2)
i=1

where N is the number of rays. In the present problem, the
left most and right most rays do not fall on n =-« and

n =+ due to the special handling of boundary conditions at
these two regions. On jth ray

N
. = .) = . i - . . 3.3
uJ u(E,qJ) iilal(g)cos(l l)r}J ( )

The matrix {cos(i-l)nj} can be inverted to obtain a;.,

N
a, = A..u, , i=1,...,N , (3.4)
i =1 ij75
where {A..} ={cos(j-1) }—l
ij J Ny .

From Eq. (3.1),

du(g,n,)
du TR s . . .
(3;)2 = 3 .i ai(E)(l i)sin(i l)nz (3.5)

i=1

Substituting Eq. (3.4) into (3.5) yields
N N

T (Z A,.u.)(l-i)sin(i-1)n (3.6)
i=1 j=1 133 2

au _



Equation (3.6) can also be written as

3u N N N
(=), =2 (I A.,.(l-i)sin(i-1)n_)u. =2 F, .u. (3.7)
an’ L 5=1 i=1 ij A j=1 2373
Similarly,
oV N
(ﬁ')g‘ =j£lGQjVj r Q/ = 1,2,.'.,N 4 (3.8)
where
N
ng =_E Bij(l-l)cos(l-l)nQ (3.9)
i=1
and
{B,.} = {sin(j-L)n )"t .
ij J

Equations (3.7) and (3.8) are used as interpolations of u and
v in the n direction; therefore, the resulting ordinary dif-
ferential equations can be integrated in the § direction.

The Method of Lines is very similar. Instead of interpolating
polynomials, the n derivatives are approximated by three-
point or five-point finite difference schemes.

We can obtain the expressions for 24 ana Y from Egs.

9 13
(2.11), (2.12) and (2.13). From Egq. (2.12)

oy oh _ , du . _ 3h

h 5 + v 5E h e + u 5 (3.10)
Therefore,

3V 1 du oh dh

— IR - — — - —_— cl

3E 5 [h - + u m v ag] (3.11)
But

sh _ _.2 _. sh _ _,2 _,

5 h® sinh n , 3E h™ sin £ (3.12)
and gives

3V _ 38 _ 4h sinh n + vh sin £ . (3.13)

an

[eP4
¥y



Similarly, from Egs. (2.11) and (2.13),

ju _ P
where
au . .

P = 2uv In " uh sinh n +vh sin ¢

+ (y-1) (1-u®-v%)[uh sinZ +vh sinh n - %%

u v

+2vu—8?+v5ﬁ ' (3.15a)

Q = (y-1) (1-u’-v?) -2u2 . (3.15b)

Therefore, the singular ellipse is obtained from Q =0, or

2 u2 _
v® o+ %5 = 1, ‘ (3.16)
q
where
*2  y-1
q = yFL - (3.17)

All points on the ellipse lie outside the sonic circle,
except for v=0, u= q*. Therefore, it is apparent that for
the supercritical flow as in the present problem, no
singularity will be encountered when integrating in the

§ direction, or away from the body. Therefore, for region 1
(see Fig. 4), we must integrate the resulting ODE's from

the body.

ou oV
ﬁandsﬁ-
when we interpolate in the { direction and integrate in the

The expressions for can be similarly obtained

n direction. This is applied to region 2 where supersonic
and subsonic regions are separated by the shock. 1In this

case, the singular ellipse is

wt o+ = =1 . (3.18)
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Any critical or supercritical flow has a point on the body
with u =0 and V'=q*, which is a point on the ellipse given
by (3.18). That shows that integration in the n direction
in region 1 always leads to at least one singularity at

sonic points on or near the body.

3.1 Boundary conditions

For the solution represented by Egqs. (2.11), (2.12)
and (2.13), we need the boundary values for u and v on the
body and at n = -, But to fit the shock, we also need the
boundary conditions at n =+« so that iterations can correct
the position of the shock by checking with values of u and
vatn =+,

On the body, the normal velocity is zero, or

u =20 for £ = Eo . (3.19)

Since the tangential component v is not known, the far field
boundary conditions are needed. Murman and Cole (1971)

derived an analytical solution for the far field by using

the transonic small-disturbance equation

(Ko, -%(v+l)¢i]x t oy, =0 (3.20)

with the variables and parameters defined by

y=673% , k= a-uw¥3 . (3.21)

The far field they obtained is that of the usual doublet

for a closed body
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0(x,9) ~ —2 X +oeen (3.22)

i» -
2mK? (x2-+Ky2)

where the doublet strength is

1
D=2 J F(X)dx-+%(Y+l)jJ {q;(x'y)}zdxdy . (3.23)
-1

-0

The perturbation velocities

| S | Q- .

qx ¢x ' qy ¢y (3.24)

Therefore
~2 L
- _ D (=x" +Ky") , DK Xy

q! = —By K , ql =- . (3.25)
with

q q .

X 2/3,v 4 ... Y - sq¢

o 1+6% 7 q! + rog T Sqg +- .- (3.26)

The flow velocities expressed in the £ and n directions

are given by

-4 -1 -1
u=gt (B8 =g [sinh n sin £ 9x
1
t o5 £ cosh n - L qy] : (3.27)
= 4 _ 1 1
V=3 (hn) = i [l —cosh 7 o5 Ix
- L 1 . (3.28)

sin £ sinh n qy

The coordinate n goes to *x» at the two ends of the
airfoil, but remains finite except at a small distance
very close to the tips. Analytical representation of the

flow field in these two regions has to be found so that
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boundary conditions can be taken at finite values of n.
Figure 3 shows the velocity distribution on the ellipse
with thickness ratio § =0.4 for M_=0.65 (Li and Holt 1981).
The velocity distribution near the two ends appears to be
symmetrical. Moreover, the velocity in this region is of
Mach number less than 0.8. Therefore, subsonic linearized
potential equation (Shapiro 1953) can be applied and used
as boundary conditions. The basic equation is
2. 3% . 3%
(1 -M)) 5 + 5 =0 . (3.29)
IxX Yy

It can also be written as

2 2
d % + 9 g =0 . (3.30)
ox' oy
where
x' = ——-———-x - (3031)
/1 -Mz
If we represent the airfoil profile as
y = 8£(x') , —— < x'< —S— (3.32)
. 2 2
V1 -M_ V1 -M_
and the potential as
¢ = Ux' +6¢1 ’ (3.33)

where 8 is the thickness ratio of the airfoil, then the
subsonic velocity distribution is known when ¢l is
determined.

We can use plane source with strength I'(x) so as to

satisfy the boundary conditions of the subsonic small-




disturbance flow. Hence

cl
b, = J EX any(xt-x)2 +y* ax (3.34)
_C'
where
c' = —S (3.35)
/1-M

On the surface of the thin airfoil

30 _ cer sy D
5% = SE'(x') gig ) (3.36)

If we expand %% and 5%% about y =0, substituting them into

(3.36) and compare the first order (in §) terms, we get

8(1)1
5y (x',0) = u £'(x") . (3.37)
From Egs. (3.34) and (3.37), and letting t =box!
39 L-x'
1 1 J v T(x'+yt)
— = == —————%—— dt . (3.38)
oy 2T _x' 1+t
Y
Letting y » 0,
oo o
1 J 1 dt
_ = == T (x'+yt) (3.39)
24 —e 2T 1+¢2
=% I'(x") . (3.40)
Therefore, we finally obtain
rx') = 2u_f'(x") (3.41)
and ¢l can thus be determined.
= 3¢ = 9
qy " qy 3y (3.42)

13.



14.

are then used as boundary conditions for the region where

n goes to ifw,

3.2 Jump conditions

The shock wave on the downstream side of the supersonic
flow over the maximum thickness region of the body is handled
by shock-fitting in the present problem. The shock wave is
modelled by a jump discontinuity in the solution and the
jump conditions are satisfied exactly so that the shock
wave is perfectly sharp. Instead of the usual Rankine-
Hugoniot relations, the jump conditions can be derived from
the equations of motion in the present problem. Applying
the two-dimensional form of the divergence theorem to

Egs. (2.4) and (2.5), we get

<puh>(dn)s -<ovh>(dE)s =0 (3.43)
and

<Vh>(dn)s +<uh>(d£)s =0 (3.44)

where < > denote a jump in the guantity across the shock and
subscript s denotes an element in the shock surface. Equa-

tions (3.43) and (3.44) can also be written as

<puh>ng - <pvh> =0 (3.45)
and

<vh>né + <uh> =0 , (3.46)
where

n; = (g%)s , the shock wave angle . (3.47)

The metric coefficient h is continuous and has the same
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value on both sides of the shock surface and can be dropped

from Eqs. (3.45) and (3.46). Hence the final form of the

jump conditions is

<pu>né -<pv> =0 , (3.47)

<v>né +<u> =0 . (3.48)

3.3 Implementation of the numerical scheme

Telenin's Method and the Method of Lines as applied to
elliptic partial differential equations solve a Dirichlet
problem as a Cauchy problem. It is inherently unstable with
respect to the prescribed data. This phenomenon is known
as Hadamard instability. Jones, South and Klunker (1972)
encountered Hadamard instability in applying the Method of
Lines and found growth in error proportional to exp(NE),
where N is the number of rays and £ the direction of
integration. To have sufficient number of rays to repre-
sent the variables near *the body, we are thus restricted
in the direction of integration, ¢. Following Li and
Holt (1981), the present problem can be solved in two stages
to overcome the difficulty. 1In the first stage, a very
coarse representation of the variables is used, which
enables us to integrate the equations away from the body
to the far field without instability problems. We will
obtain a supercritical shock free flow, which is unstable
and not likely to occur in practical sicuations. The coarse

solution provides a fairly good representation of the flow



field away from the body where the flow is smooth. The
coarse solution at an intermediate value of &, say Ei,

is used as the outer boundary condition. Therefore, a
larger number of rays can be used for the refined solution
near the body. We have to choose Ei so as to avoid having
rays of constant £ with values close to Ei to pass through
the sonic line that will cause difficulty when integrate
through this line. The two regions of integration are
shown in Fig. 4.

An algorithmic description of the numerical scheme
proposed for the present problem is presented as follows.
First, we need to
(a) obtain the simultaneous ordinary differential equ;—

tions (Egs. (3.13), (3.15)) by interpolating the

variables in one direction.

(b) estimate the tangential velocity on the surface of
the airfoil.

(c) obtain an analytical representation of the flow field
near n =+ as boundary conditions.

(d) estimate the doublet strength D for the far field
doublet solution (Eq. (3.22)).

The computational procedures are then

1. integrate the ode's with large steps in £ and n.

Use Telenin's Method for the coarse solution to

obtain a coarse solution. Integration in the second

quadrant only is required as the shock free flow is

symmetrical.

16.



(a)

(b)

10.

17.

integrate in ¢ direction and compare with the far
field doublet solution.

correct the estimates for tangential velocities and
repeat until the difference between the far field
solutions falls within tolerance. It can be done
effectively with Powell's Method which will be
briefly explained in section 3.3a.

recalculate D with the results obtained in 2(a)

and repeat 2 and 2(a) until values of D converge.

the coarse solution hence obtained at Ei is used as
boundary conditions for the refined solution.

divide the flow field into two regions (Fig. 4) and
refine the mesh.

repeat the procedure 2 for the refined solution in.
region 1.

For region 2, the ode's are integrated in the n
direction.

estimate the location of the shock. The shock wave
is normal on the sq;facé. The jump conditions ((3.47),
(3.48)) are fully specified when the shock location is
known.

integrate in the n direction, apply jump conditions
across the shock. Check with the downstream boundary
conditions.

correct the shock location with Powell's Method.
Lastly, recalculate doublet strength D with the solu-

tion obtained and repeat the whole procedure. The



18.

whole computation is complete when values of D at
successive iterations agree to within the prescribed

tolerance.

The numerical scheme is briefly summarized by the flow

chart in Fig. 5.

3.3a Powell's Method

Powell's Method is essentially that of least squares
minimization. A concise description of Powell's method can

be found in section 6.9 of Numerical Methods in Fluid

Dynamics by Holt [1984]. This method is best explained
by example. |

In the procedure 2 of the numerical procedure, the
difference between the two far field solutions €4 depends
on the initial guess of the tangential velocity, Vj.
Then the method minimizes

ei (3.49)
1

[ e I~

i
with respect to Vl,Vz,...,Vﬁ. Zef is minimized by making

. . . > .
changes to Vj according to the direction 8V given by

N N aek Bek N aek
Z { Z _-—_}GV- = - Z € ~<7 i=l’2'oo-'N
j=1 k=1 Vi 3 T =1 kY
(3.50)
New values of V are given by
V=TV, .+AV , : (3.51)

old

in which A is chosen such that Zei is minimized along the
direction §V. The required A can be chosen by evaluating

€ at different values of .




4. Conclusion

The application of the composite numerical scheme
developed by Li and Holt (198l) to a bicircular arc'air—
foil is proposed. As coaxial coordinates have to be used,
analytical representation of the flow field near the two
tips of the airfoil is required as boundary conditions.
The analytical representation can be easily constructed
by assuming a' subsonic small-disturbance flow at the two
ends of the airfoil. An algorithmic description of the

numerical scheme is also presented.

February 1989
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u, SONIC LINE

Fig. l(a) Unstable Supercritical Shock Free Flow Field.
Upper Half Plane.

SONIC LINE

Fig. 1(b) Typical Supercritical Flow Field. Upper
Half Plane.



Fig. 2 The construction of coaxial coordinates, n =2n(ry/rj),
Eo =61 —82. The half-plane with negative y is used.
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to initiate with
boundary conditions
and doublet strength Di

to compute coarse solution

integrate ODE's in ¢ direction
iterate for correct Vi's on surface with Powell's method
recalculate D and repeat until it converges to Dj

coarse solution at gj used
as boundary conditions

to compute refined solution

integrate ODE's in ¢ direction for region 1

iterate for correct Vi's on surface with Powell's method

integrate ODE's in direction for region 2

apply jump conditions across the shock

shock location is adjusted with Powell's method and
checked with the downstream BC's

recalculate D
obtain D

s

\ Yes
Is |Df-Dj[ < tolerance? N

A
o
]
lw)

F 3
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Fig. 5 Flow chart of the numerical scheme




