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SUMMARY

Thispaperdescribes a new technique for converting a constrained optimization problem

into an unconstrained problem. The technique transforms one or more objective functions into

reduced objective functions, which are analogous to goal constraints used in the goal programming

method. These reduced objective functions are appended to the set of constraints and an envelope

of the entire function set is computed using the Kreisselmeier-Steinhauser function. This envelope

function is then searched for an unconstrained minimum. The technique may be categorized as a

SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods

to find a constrained minimum without the "draw down" factor typical of penalty function

methods, and that the technique may be started from the feasible or infeasible design space. In

multiobjective applications, the approach has the advantage of locating a compromise minimum

design without the need to optimize for each individual objective function separately.

A description of the constrained to unconstrained conversion technique for multiobjective

problems is presented. This is followed by a description of the computer program KSOPT, which

implements the method as a general purpose optimization program written in the FORTRAN

language. A description of each subroutine in KSOPT is included. Finally, example problems are

solved demonstrating the use of KSOPT and the robustness of the method.



INTRODUCTION

Thepurposeof thispaperis threefold,first todescribeanewtechniquefor convertinga

constrainedoptimizationproblemto anunconstrainedone,secondto discusshow themethodis

naturallyextendedto multiobjectiveoptimizationproblems,andf'mallytopresentthecomputer

programKSOPTasageneralpurposeFORTRANsubroutinewhich implementsthisnew

technique.A descriptionof eachsubroutinein KSOPTis includedin appendixA.

Theconversiontechniqueusedin thisnewmethodemployingtheKreisselmeier-

Steinhauserfunction[l], whichwill bereferredto astheKS method,maybecategorizedasa

memberof theSequentialUnconstrainedMinimizationTechnique(SUMT)classof optimization

methods[2].SUMTmethodsin generalconvertaconstrainedoptimizationproblemintoan

unconstrainedoneusingapenaltyterm[3,4],composedfrom theconstraintequations,which is

summedwith anobjectivefunction.Problemsassociatedwith mostof thesepenaltymethodsare

thattheydonotpossesscontinuousfirst or secondderivatives,theymustbestartedfrom a

particularregionof thedesignspace,andtheuserisrequiredto specifyamultiplyingfactorwhose

valueis criticalto thebehaviorof theoptimizationmethod.Manyimprovementshavebeenmade

sinceinteriorandexteriorpenaltymethodswerefhstused.Thequadraticextendedinteriorpenalty

functionmethod[5],in fact,haseliminatedall of theabovementionedproblemsexcepttheneedfor

ausersuppliedmultiplyingor "draw-down"factor. TheKS methoddescribedin this paper

possessesthegoodqualitiesof theextendedpenaltyfunction,namelythecontinuityof derivatives

andthattheoptimizationmaybestartedfromeitherthefeasibleor infeasibledesignregions.The

draw-downfactorof thepenaltyfunctionmethodis notrequiredin theKS method,but thereis a

usersuppliedfactorrequired.Thedifferencein thesefactorswill bediscussedin detail laterin the

paper.

In thedesignof complexengineeringsystems,it is oftendifficult to selecta singleobjective

functionwhichwill satisfyall of thedesireddesignrequirements.Severaltechniqueshave

previouslybeendevelopedanddescribedfor multiobjectiveoptimization[6].Mostof theprevious

effortstoincludemultipleobjectivefunctionsin anumericaloptimizationmethodcanbeseparated
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into two techniques.Thefirst is toform a singlecompositeobjectivefunctionassome

combinationof theoriginalobjectivefunctionssuchasthesummationof eachobjectivefunction

multipliedbyajudgmentalweightingfactor. An exampleof thisapproachis theutility function

method.Thesecondapproachis to solvetheoptimizationproblemoncefor eachsingleobjective

functionandto usetheresultingoptimumobjectivefunctionordesignvariablevectorasatarget,

solvinganadditionaloptimizationproblemto attainasuitablecompromise.Examplesof this

approacharetheglobalcriterionformulation,gametheoryapproach,goalprogrammingmethod,

andgoalattainmentmethod.

TheKS methodis inherentlycapableof optimizingfor multipleobjectivefunctions.Any

numberof objectivefunctionsandconstraintsarecombinedusingtheKS functionto form asingle

compositefunction. Thiscompositefunctionis thenusedto solvetheoptimizationproblem.The

primaryadvantageof theKS methodfor multiobjectiveoptimization is the elimination of

potentially expensive separate optimizations for each objective function. In addition, each objective

function may retain its original scaling and units, such as a cost or return on investment objective in

dollars and a weight objective in pounds.



CONSTRAINEDTO UNCONSTRAINEDCONVERSION

BeforethenewKS methodconversiontechniqueis described,abrief reviewof the

classical constrained optimization problem is appropriate. Only inequality constraints will be

considered in this discussion, because the KS method does not handle equality constraints directly.

The typical definition of a constrained optimization problem is

Min Fm(X) m=1,2,3 .... M

gj(X) <_0 j=1,2,3 .... J (1)

X = Xl,X2,X3,...,x N

where the inequality constraints are defined to be violated if they have positive values and satisfied

if they have negative values. A typical formulation for these constraints would be

DEMAND(X) 1
gj(X) = CAPACITY-

(2)

gj(X) = 1 - DEMAND(X)
CAPACITY

The flu-st form imposes an upper limit and the second form imposes a lower limit on the value of

the DEMAND quantity. This formulation scales the constraint value to be in a small region,

usually between -1 and 1. This constraint scaling is not absolutely necessary for the KS method,

but improves the computational characteristics of the method by reducing problems associated with

large numbers.

The KS method combines one or more objective functions with all of the inequality

constraints to form a single composite KS function. An unconstrained optimization algorithm is

then used to find the minimum of this composite function, equivalent to other SUMT methods.

The KS function was fhst used by Kreisselmeier and Steinhauser[1] and is defined as
K

KS(X) = plog_k___1- ePfk(x) (3)

An alternate definition which reduces numerical difficulties caused by computing the exponential of

large numbers is

4



K

k=l
(4)

where fk(X) is a set of K functions, which in the context of this discussion are the objective

functions and constraints, and fmax is the maximum value of the set of functions evaluated at X and

taken to be a constant. Both forms of the KS function produce the same results, subject to round-

off errors. In addition, the fin:st derivatives with respect to the design variable set X for both KS

formulations have identical values, again subject to round-off errors. The first derivatives for both

KS formulations are

K a&(x)
Z ep&Cx)

_KS(X) k=l _Xn

K

DXn Z eP&_)

k=l

3KS(X)

_Xn

K  fk(X)
Z e(P&(X) - f_u)

k=l Ox n

K

Z e(P&(X)- f_,)

k=l

(5)

which require the current value of each function fk(X) and its first partial derivatives with respect to

the design variable set X. The second form of the KS function, equation (4), will be used in the

rest of this paper due to its superior numerical behavior.

The KS function defines an envelope surface in N-dimensional design space replacing the J

constraint surfaces and the M objective function surfaces. This envelope surface is continuously

differentiable and represents the maximum of the set of functions. The KS function has a property

such that

fmax < KS < fmax + loge(K)
p (6)

The term on the right hand side of equation (6) represents the worst case value of the KS function,

which occurs at a point where all of the functions intersect. In practice, the KS function surface is

influenced by only a few functions at any one point and the KS surface will be only slightly above

the maximum of the individual surfaces, approaching the maximum surface as the scalar multiplier



p increases.Typical valuesof thescalarp arebetween5 and200. Figure la showsa setof

curvesof onevariableandthecorrespondingKS functionsindicatedfor severalvaluesof the

scalarp. Figure lb showsin greaterdetail theregioncircled in figure la, wherecurve1andcurve

2 intersect.Thesefiguresgraphicallyshowtheability of theKS functionto form asingle

continuouscurvefollowing themaximumof a setof curves.NotethattheKS functionprovidesa

smoothtransitionfrom onecurveto another.Largervaluesof thescalar19"pull" theKS function

curvecloserto theactualcurveintersections,withcorrespondinglysharpergradienttransitionin

theseregions.This is functionallysimilarto thedraw-downfactorof penaltyfunctionmethods.

Thedraw-downfactorcontrolstherelationshipbetweenconstraintsandtheobjectivefunctionof

penaltyfunctionmethodswhereasin theKSmethodthemultiplier p controlsthedistancefrom the

KS surfaceto thesurfaceof maximumfunctionvalue.

Convertingaconstrainedoptimizationproblemto anunconstrainedproblemrequiresthat

theobjectivefunctionsbecombinedwith theconstraintsin somemannersuchasisdonewith

penaltyfunctionmethods.Theresultingcompositefunctionis thenminimizedusingan

unconstrainedminimizationtechnique.Severaliterationsof calculatingthecompositefunction,

determiningasearchdirection,andperformingaone-dimensionalminimizationareneededto

convergeto theoptimumsolution.Thetechniqueusedin theKS methodfor forming the

compositefunctionis first to scaleandoffseteachobjectivefunctionsuchthatits valueatthestart

of aniterationis thesameasthemaximumconstraintvaluebutof oppositesign. As mentioned

earlier,theconstraintsareassumedto bescaledalready.Themodifiedobjectivefunctionstated

numericallyis
F_(X) -Fro(X) 1- gmax

FO (7)

whereF°misthevalueof them th objective function at the beginning of an iteration and gmax is the

maximum value of the set of inequality constraints evaluated at X and taken to be a constant for this

iteration. The value of Fro(X), the modified objective function, at the beginning of an iteration is

equal to the negative of gmax as shown in figure 2a. For the case of multiple objective functions,

6



the modified objective functions at the start of an iteration are shown in figure 2b. Note that all of

the objective functions intersect at the starting point of the iteration. Each scaled and offset

objective function is appended to the set of inequality constraints gj(X) to form a set of K functions

written as fk(X) where K is the sum of the number of objective functions M and the number of

constraints J.

fl(X) = F_(X)

f2(X) = F2(X)

fM(x) = F (X)

fM+l(X) = gl(X)

fM÷2(X)= g2(X)

(8)

fM+j(X) = gj(X)

These functions are then combined using the KS function of equation (4) to form a single

continuous composite KS function. The composite KS function represents the envelope of all

objective functions and constraints in the optimization problem, and is used with an unconstrained

optimization technique to f'md its minimum. Several iterations are usually required to f'md the

optimum solution to a problem. Since every objective function's scale and offset values are

selected at the beginning of each iteration, the composite KS function surface will be different for

every iteration.
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KSOPTGENERALPURPOSEOPTIMIZER

TheKS methodhasbeenincorporatedinto thegeneralpurposeconstrainedminimization

computerprogramKSOPT,writtenin theFORTRANprogramminglanguage.Theprogramwas

writtenwith therequirementsof providinga simpleuserinterface,havetheability to berestartedin

themiddleof anoptimizationproblem,andbewrittenusingamodularapproach.Modular

programmingtechniquesallowportionsof aprogramto bereplacedeasilyasnewandimproved

methodsandalgorithmsaredeveloped.In KSOPTthesearchdirectionalgorithmandtheone-

dimensionalminimizationalgorithmareexamplesof moduleswhichmightbereplaced.The

restartingrequirementsatisfiesaneedto beableto switchto a large,complexanalysisprocedure

whichwouldrequireall of thecomputingresourcesavailable,andthento restarttheoptimization

procedurelaterusingtheanalysisresults.Theuserinterfaceconsistsof two subroutines,onefor

initializingtheoptimization system and the other to perform the optimization (see appendix A for a

complete description of each subroutine). This program is used much like any other constrained

minimization program, where the user supplies arrays containing the design variables, objective

functions, and constraints. The restarting capability is provided by the user supplying a WORK

array, with sufficient computer storage space allocated, which will contain all of the constants and

arrays used by the optimizer. The user may save this array to some external storage device when

leaving the optimizer and restore the array before continuing with the optimization problem.

The user interface is shown in block diagram form in figure 3 and consists of the

subroutines KSINIT and KSOPT. Subroutine KSINIT initializes the optimizer with constant

parameters and initial values of the design variables. The user must supply the desired parameter

values and dimension the arrays sufficiently large for the specific problem being solved. The

minimum size requirements for each array are specified in appendix A in the description of

subroutine KSINIT. Subroutine KSOPT is called iteratively, where KSOPT returns the current

design variable vector and a flag, ISEL, indicating what action the user should take. If the flag is

set to 1, the user must compute the objective functions and constraints for the current design

variables. If the flag is 2, the user must compute the gradients of the objective functions and



constraintswith respectto thecurrentdesignvariables.After eitherone of these computations is

complete, the user returns the computed quantities to subroutine KSOPT. When the flag ISEL is

zero, the optimization is terminated and the optimum design variable vector is returned to the user.

For the user that wishes to know what the internal parameters of the KSOPT program are while

solving their optimization problem, the common block KSCOMM can be included in the user's

analysis program. A description of each variable in this common block is given in appendix A.

The user must be careful not to alter the values of any parameters in this common block. Appendix

B shows a sample FORTRAN program outline for solving an optimization problem, and is

intended only as a guide.

Figure 4 is a flow chart detailing the major functional blocks of the optimization program.

First, subroutine KSINIT is called to initialize the optimization problem, allocate space for internal

arrays, and test the initial design variable vectors for bounds violations. Then subroutine KSOPT

is called in a loop with the user supplied analysis procedures until the optimization problem is

solved. Internally KSOPT converts the constrained minimization problem to an unconstrained

problem using the KS method, and solves the unconstrained problem iteratively. Each iteration, as

shown in figure 4, involves first obtaining the initial objective function and constraint values from

user supplied analyses. Then gradients of the objective functions and constraints with respect to

the current design variables are obtained either from the user explicitly or by finite differences

using the user supplied analysis results. KSOPT then forms the composite KS function described

earlier in the constrained to unconstrained conversion technique, and the gradients of the composite

KS function with respect to the design variables. This single composite KS function and its

gradients define the unconstrained optimization problem to be solved. The unconstrained problem

for each iteration is then solved by first determining a search direction vector S using the Davidon-

Fletcher-Powell[7] (DFP) algorithm. With the search direction determined, a one-dimensional

search for the minimum of the composite KS function is performed using

xq = xq-I + o_*sq (9)



whereq denotesthecurrentiterationof theoptimizationprocedure.Theoptimumsteplengthct° is

definedasthedistancetravelledin thesqdirectionthatmakesthecompositeKS functiona

minimumwithoutviolatinganysideconstraints.Theoptimumlengthco*is foundby selectinga

trial valuefor ct,usingequation(9) tocomputeanewdesignvariablevectorX, havingtheuser

supplythenewobjectivefunctionsandconstraints,andcomputingthenewcompositeKS function

asseenin figure4. Theprocedurecontinuessteppingin thesqdirectionuntil thecompositeKS

functionno longerdecreases in value.

using the equation

Then a three point quadratic polynomial approximation[3]

Ace 2 + Btx + C = KS((_) (10)

is formed using the last three trial ct values and their corresponding composite KS function values.

When the set of three simultaneous linear algebraic equations are solved for the coefficients A, B,

and C, the value of ct* may be computed by differentiating equation (10) and setting the result

equal to zero

2Act* + B = 0 (11)

and the corresponding design variable vector is found using equation (9). The quadratic

polynomial approximation is repeated with additional trial design points until convergence is

achieved for the one-dimensional minimization, ending the current iteration. At the end of each

iteration a set of termination criteria are tested, and if they are not satisfied another iteraton is

performed using the final design variables from the previous iteration as the starting point. The

three termination criteria available in KSOPT are

1) Relative change of the composite KS function is less than some prescribed amount

for three consecutive iterations.

2) Absolute change of the composite KS function is less than some prescribed amount

for three consecutive iterations.

3) The maximum number of iterations is exceeded.

When any one of these termination criteria is satisfied, the optimization is terminated and the final

set of design variables are returned to the user.

10



This implementationof theunconstrainedminimizationproceduretreatssideconstraints

separatelyfrom theotherconstraints.Oftenit is desirableto approachsideconstraintsascloselyas

possiblewithoutviolating them. Formingsideconstraintsthesamewayasthoseof equations(2)

donotallowmanyoptimizationmethodsto approachthesideconstraintsclosely. In KSOPT, side

constraints are not included in the composite KS function but instead are tracked individually and

the one-dimensional minimization discussed above is terminated when a side constraint is

encountered. At the beginning of the next iteration a new search direction is computed. If the

proposed search direction would violate any currently active side constraints, the components of

the search direction vector corresponding to those design variables are set to zero and the DFP

algorithm is restarted using a steepest descent gradient. As long as no new side constraints become

active, the DFP algorithm continues to perform as usual while essentially using a subset of the

design variable vector. This method allows the DFP scheme to continue updating the Hessian

matrix, thus gaining the benefits of that algorithm, while following side constraints exactly. If a

design variable which was previously on a side constraint is directed back into the feasible design

space, its contribution to the Hessian matrix is once again included.

11



EXAMPLEPROBLEMS

A simpleone-dimensionaloptimizationproblemusingasingledesignvariable,one

objectivefunction,andtwo constraintswill beusedfor thefirst example.Thisproblemwas

chosenbecauseitsoptimizationcanbeclearlyshowngraphicallyto aidin understandingtheKS

method.Theobjectivefunctionis definedas
F(x) = x--_-2- 3x + 5__ (12)

20 5 2

and the two constraints are defined as

gl(x) = iog5(x----_-e X__54 (13)

= X___22+ X _ 2 (14)g2(x) 40 5

Analytical gradients are used in the optimization of this problem because both the objective function

and constraints are easily differentiated with respect to the single design variable x. The

optimization is started at point a of figure 5a, and the first iteration begins by computing the

modified objective function of equation (7). The scaled and offset objective function and the two

constraints are used to compute the composite KS function in figure 5b. The unconstrained DFP

search direction algorithm is then employed along with a one-dimensional minimization procedure

to find the minimum of the composite KS function curve, resulting in the iteration terminating at

point b where the composite KS function is minimum. Since the maximum constraint at point a

was violated, the KS method essentially removes the objective function from consideration for this

iteration and works to minimize the constraint violation. The minimum of the composite KS

function in figure 5b is the point where the two constraints intersect. The next iteration is started at

this point by scaling and offsetting the objective function again and computing the new composite

KS function shown in figures 6a and 6b. At the beginning of this iteration the constraints are

satisfied, and the objective function guides the design. The composite KS function shown in

figure 6b for this case is minimized, terminating at point c. The next two iterations are shown in

figures 7a through 8b. The design is being driven toward the point where constraint g2 is zero,

12



andthedesignoscillatesbetweenbeingdominatedby theobjectivefunctionandconstraintg2. At

the optimum point e in figure 9a, which for this example is the point where g2 is zero, the scaled

and offset objective function and constraint g2 are coincident because gmax is zero. The composite

KS function is influenced equally by the objective function and constraint g2, as seen in figure 9b.

At this point the composite KS function is a minimum, and constraint g2 is zero. Three

optimizations were performed for this example problem, all starting at the same initial design point

but using different initial values and ranges of the multiplying factor p. Table 1 summarizes the

results for each case showing the influence of the multiplier 13on the optimum solution and the

number of iterations required. As can be seen in table 1, larger values of p result in a smaller

optimum objective function and a value of constraint g2 closer to zero, but at the price of additional

iterations.

The second example is the classical three bar truss problem[8] modified to use steel and

titanium truss members, with two design variables, two objective functions, and six constraints[9].

This design problem was chosen to demonstrate the interaction of different material types in

designing a truss for multiple objectives. A description of the analysis procedure for the three bar

truss is given by Vanderplaats[3] starting on page 252. A diagram of the three bar truss, including

the material properties for steel and titanium and the two independently applied loads, is shown in

figure 10. The desired optimum solution is the three bar truss design which will simultaneously

minimize truss weight and material costs. The truss is symmetrical with the outer members made

of steel and the inner member made of titanium. The design variables are the cross sectional areas

of the truss members, denoted as A1 and A2 in figure 10. These areas are not allowed to be less

than 0.001 square inches. The constraints are yield stress limits on the members, with three

constraints for tensile loads and three for compressive loads. The first objective function is the

total weight of the three truss members. Since titanium is lighter than steel the minimum weight

design would use a larger titanium center member and smaller steel outer members. The second

objective function is total material cost. Here titanium is 60 times more expensive than steel,

leading to a design having a small titanium center member and larger outer steel members. The

13



optimumdesignwhenbothobjectivefunctionsareconsideredwill besomecompromisebetween

low weightandlow cost. To graphicallyillustratethisdesignproblem,contourplotswill beused

overaportionof thedesignspace.Theweightobjectivefunctionaloneis shownin figure 11asa

contourplotof total trussweightversusinnerandouterrodareas.Figure12showsthecontour

plotof thecostobjectivefunctionaloneversusinnerandouterrodareas.Only thetensileyield

stressconstrainton theoutertrussmembersis criticalin thisoptimizationproblem,andacontour

plot of its zerovalueis shownin figure 13.

In orderto seewhatthe limits of themultipleobjectiveoptimumdesignwere,thethreebar

trusswasoptimizedfor eachobjectivefunctionseparately.Table2 showstheresultsof optimizing

thetrussfor weightonly, for costonly, andfor weightandcostsimultaneously.Shownalong

with thefinal resultsarethetotalnumberof iterationsandthetotalnumberof analysesrequired.

Eachoptimizationproblemwasstartedwith boththeinnerandoutermembershavingacross

sectionalareaof onesquareinch. Thefinal resultsof table2 showthatthemultipleobjective

functiondesignis identicalto theminimumcostdesign.Thecostof titaniumis 60 timesgreater

thansteel,butsteelweighsonly 1.76timesgreaterthantitanium. Therefore,theoptimizer

acceptedaweightpenaltyof 0.24poundsin orderto reducethecostof thetrussby 15.50dollars.

Althoughtheresultsarenotpresentedin thisreport,reducingthecostof titaniumto 4 dollarsper

poundof weightstartsto movethecrosssectionalareaof thetitaniummemberawayfrom its

minimumvalue. Furtherreductionof thecostof titaniumproducesoptimumsolutionswhichuse

moretitaniumto reduceweight. Whenthecostof titaniumisreducedto thatof steel,theoptimum

solutionis identicalto theweightonly solution. It is thereforepossibleto changethe

multiobjectiveoptimumsolutionby weightingtheobjectivefunctions.

To illustratetheminimizationof themultipleobjectivefunctiondesignproblem,contour

plotsof thedesignspaceof thefirst six iterationsareshownin figures14through19. Thefirst

iterationstartsin figure 14with thecrosssectionalareasof thetrussmembersatonesquareinch.

Theline shownis thedirectioncomputedby theDFPalgorithmfor aone-dimensionalsearch,and

terminatesat thearrowheadwhereaminimumis foundin thisdirection. Figure15showsa

14



contourplotof thedesignspacefor theseconditeration. Notethatthecontoursof thedesignspace

changefromoneiterationto thenext. Thisis becausein theKS methodthemodifiedobjective

functionof equation(7) is computedatthebeginningof eachiteration,and,sincetheobjective

functionsaredependenton thecurrentdesignvariablevalues,thecompositeKS functionis

differentfor everyiteration. Iterations3 through6 areshownin figures16through19. Iteration6

terminatesatthepointwherethetitaniuminnertrussmemberreachesitsminimumsize.The

remainingiterationsmakeonly smallrefinementsto thisdesign.Theoptimumsolutionis shown

in figure20asacontourplotof thedesignspaceabouttheoptimumpoint. No furtherprogress

canbemadewithouteitherviolatingayieldstressconstraintor increasingoneof theobjective

functions.
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CONCLUDINGREMARKS

A newtechniquefor convertingaconstrainedoptimizationproblemintoanunconstrained

oneusingtheKreisselmeier-Steinhauserfunctionwaspresented.This technique,referredto asthe

KS method,canbecategorizedasaSequentialUnconstrainedMinimizationTechniquesimilarto

penaltyfunctionmethods.ThisnewapproachusestheKS functionto combineoneor more

objectivefunctionswith all of theproblemconstraintstoform asinglecontinuouslydifferentiable

envelopefunction. Thisenvelopefunctionis thenminimizedusingunconstrainedoptimization

techniques.Thismethodoffersseveraladvantagescomparedto penaltyfunctionmethods.One

advantageof theKS methodis theinherentability to optimizefor multipleobjectives,withoutthe

needtoperformanoptimizationoneachobjectivefunctionseparately.Also, thedesignmaybe

startedfrom afeasibleor infeasibleregionof thedesignspace,andthe"draw-down"factortypical

of penaltyfunctionmethodsis eliminated.

ThegeneralpurposeoptimizationcomputerprogramKSOPT,whichsolvesconstrained

optimizationproblemsusingtheKS method,wasalsodescribed.TheKSOPTprogramcansolve

singleobjectivefunctionandmultipleobjectivefunctionconstrainedminimizationproblems.It is

writtenin theFORTRANprogramminglanguage.A descriptionof eachsubroutinein KSOPTis

provided.Theprogramwasdevelopedwitheaseof use,arestartingcapability,andmodularityas

designgoals,providinguserswithasimpleinterfaceto theKS optimizationmethod.The

restartingcapabilityprovidestheuserwith aconvenientway to savethestateof theoptimization

procedurein themiddleof adesign,andcontinuewith theoptimizationlaterfrom thepointwhere

it wassaved.Modularityof theprogramcodeallowsthereplacementof portionsof the

optimizationprogramsuchasanalternatesearchdirectionmethodor one-dimensionalminimization

algorithm.TheKSOPTprogramcurrentlyusestheDFPalgorithmto find theunconstrainedone-

dimensionalsearchdirection,andathreepointquadraticpolynomialapproximationto find the

unconstrainedminimumfor eachiteration.Theuserselectableterminationcriteriaavailableare

relativeandabsolutechangein theunconstrainedKSfunctionandanupperlimit on thenumberof

optimizationiterationsthatareallowed.
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Two sampleoptimizationproblemswerepresentedto demonstratetheabilityof the KS

method to solve single and multiple objective function problems. The first example was an

academic problem with a single objective function, two constraints, and one design variable. It

was chosen because the optimization method could be clearly displayed graphically. The second

example was the classical three bar truss structural optimization problem extended to include both

weight and cost as objective functions, with six constraints and two design variables. This

problem demonstrated the KS method's ability to find a compromise optimum solution while

considering opposing objectives and using truss members with different material properties. The

results of both example problems were shown graphically step by step to further describe the KS

method.
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APPENDIXA

KSOPTSUBROUTINEDESCRIPTIONS

This appendixdescribeseachFORTRANsubroutineusedin thegeneralpurpose

optimizationprogramKSOPT. Thefirst two subroutinedescriptions,KSINIT andKSOPT,are

intendedasareferencefor theuserin choosingwhatvaluesto assignparametersandwhatstorage

requirementsareneededfor thearrays.Mostof theconstantparametershavedefaultvalues

indicated,andthedefaultselectionsarealwaystakenwhentheusersuppliesazerovaluefor a

parameter.Theremainingsubroutinedescriptionsareprovidedsothata usermaygainan

understandingof theinternalprocessesof theoptimizationprogram.Enoughinformationis

providedfor eachsubroutinesothatmodificationssuchasusinganalternateone-dimensional

searchalgorithmarepossible.Thisappendixcorrespondsto version2.1of thesoftware,dated

February7, 1989.
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SUBROUTINE KSINIT

PURPOSE: This subroutine initializes all of the optimization parameters based on user
supplied input and sets the default values of parameters the user does not
set. It also determines the amount of temporary storage required for these
parameters plus all of the arrays required during optimization and computes
the pointers to the start of each array. Finally, this subroutine scales the
initial design variable set, tests the design variables for side constraint
violations, and prints the initial design data.

USAGE: CALL KSINIT (X, XLB, XUB, SCALE, WORK, NDV, NCON,
NOB J, NSIDE, NSCALE, IPRNT, ITMAX, IGRAD,
ISDRST, RDFUN, ADFUN, FDELT, FDMIN,
RHOMIN, RHOMAX, RHODEL, NUNIT, IREQ)

INPUT PARAMETERS:

X -- Initial design variable array, dimensioned at least NDV
words long in the calling program.

XLB -- Array of lower bounds on the design variables, dimensioned
at least NDV words long in the calling program.

XUB -- Array of upper bounds on the design variables, dimensioned
at least NDV words long in the calling program.

SCALE Array of user supplied design variable scale values, which
are used to scale the design variable vector every NSCALE
iterations. It is dimensioned at least NDV in the calling

program.

WORK A working array which holds the 56 values contained in the
KSCOMM common block, plus all of the temporary arrays
used during the optimization. WORK must be dimensioned
large enough in the calling program to hold all of these
values. The parameter IREQ, computed here, holds the
minimum size in single precision words that are required for

the proposed optimization problem. No test is made to
determine whether or not the WORK array is large enough,
so the user must check this value and adjust the dimension of
the WORK array accordingly. The array should be
dimensioned in the calling program according to the

following formula:

SIZE = 58 + 3*NOBJ + NCON + 11*NDV +

NDV*(NDV-1)/2 + NOBJ*NDV + NCON*NDV
+ 2*MAX(2*NDV,NOBJ+NCON)

NDV -- The number of design variables, which must be at least one.

NCON -- The number of constraints, which may be zero.

NOBJ -- The number of objective functions, which must be at least
one.
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NSIDE

NSCALE

IPRNT

ITMAX

IGRAD

ISDRST

RDFUN

ADFUN

-- A non-zerovalueindicatesthatsideconstraintsareto be
consideredduringoptimization.

A flagindicatingwhichdesignvariablescalingoptionis to
beused.
=0 -- No scaling.
<0 -- Scalethedesignvariablesusingtheusersupplied

vectorSCALE.
>0-- Scalethedesignvariablesusingthecurrentdesign

variablesetasthescalefactors.Thedesignvariables
arere-scaledeveryNSCALEiterations.

A flag indicatingtheprint level,a 3digit number.
Hundredsdigit - One-dimensionalsearchprint:
0 = noprint
1= print alphaandKS functionateachproposedalpha
2 = print designvariablevectorateachproposedalpha

Tensdigit - Gradientprint:
0 = noprint
1= print gradientsof objectivefunctionsandconstraints

for everyiterationthatdesignvariabledatais printed

OnesDigit - Iterationdataprint:
0 = noprint
1= print initial andfinal iterationdata
2 = print all iterations
3 = alsoincludetheproposedsearchdirectionandthe

slope
4 = alsoincludetheapproximateHessianmatrix

-- Themaximumnumberof iterations.If azerois input, the
defaultof 20 iterationsis used.

A flagselectingthemethodof gradientcomputation.
0 = gradientsof theobjectivefunctionsandconstraints

arecomputedby finitedifferencesfrom within
KSOPT.

1 = theusersuppliesall gradientinformation.

Thenumberof iterationsthatoccurbeforethesearch
directionfindingprocessis restartedusingasteepestdescent
method.If inputaszero,thedefaultof NDV+I is used.

Terminationcriteria.Whentherelativechangein theKS
functionis lessthanthisvaluefor threeconsecutive
iterations,theoptimizationis terminated.If azerois input,
thedefaultof 0.0001is used.

Terminationcriteria.Whentheabsolutechangein theKS
functionis lessthanthisvaluefor threeconsecutive
iterations,theoptimizationis terminated.Thedefaultis
zero,whichmeansthis terminationcriteriais notused.
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FDELT Thestepsizeusedwhencomputingfinitedifference
derivatives,ff azerois input,thedefaultvalueof 0.01is
used,meaninga1percentstepsize.

FDMIN Theminimumabsolutestepsizeusedfor finite difference
computations.If azerois input,thedefaultvalueof 0.0001
is used.

RHOMIN -- Theinitial valueof theRHOmultiplierusedin theKS
function. If azerois input,thedefaultvalueof 5.0 is used.

RHOMAX Themaximumvalueof theRHOmultiplierusedin theKS
function. If azerois input,thedefaultvalueof 100.0is
used.

RHODEL Thisvalueis usedto incrementRHOduringoptimization.If
azerois input,thedefaultis computedbasedon thevalues
of RHOMIN andRHOMAX. In thiscase,RHODELwill be
between10.0and40.0. Theuserhowevermayset
RHODELto anypositivevalue. If theuserwantsRHODEL
tobezero,thenthevaluesfor RHOMIN andRHOMAX
shouldbesetequalto eachother.

NUNIT -- Thisis theFORTRANfile unit numberto beusedfor all
printedoutput.

OUTPUT PARAMETERS:

IREQ -- The required length of the WORK array.

NOTES: This subroutine is called by the user to set up an optimization problem. The
WORK array is loaded with initial values, and must not be altered until after

the completion of the optimization.

SUBROUTINES CALLED: KSCOMP
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SUBROUTINE KSOPT

PURPOSE: Thissubroutineis themaininterfacebetweentheoptimizerandtheuser. It
iscalledby theuser,who suppliesvaluesof theobjectivefunctions,
constraints,andgradientsif theappropriateoptionsareselected.KSOPT
thenperformstheoptimization,returninganupdatedvectorof design
variablesto theuserwhenevertheobjectivefunctions,constraints,or
gradientsneedto becomputed.

USAGE: CALL KSOPT (ISEL, X, OBJ, G, DF, DG, NOMAX, NGMAX,
WORK)

INPUT PARAMETERS:

OBJ -- Array of objective functions, dimensioned at least NOBJ
words long in the calling program.

G -- Array of constraints dimensioned at least NCON words long
in the calling program.

DF Matrix of the gradients of the objective functions. A two-
dimensional array with the first dimension being the
maximum number of objective functions and the second
dimension being the number of design variables.

DG Matrix of the gradients of the constraints. A two-
dimensional array with the first dimension being the
maximum number of constraints and the second dimension

being the number of design variables.

NOMAX -- The first dimension of the DF array as defined in the calling

program.

NGMAX -- The first dimension of the DG array as defined in the calling

program.

WORK The work array as defined in subroutine KSINIT. This
array must not be changed by the user during the
optimization.

OUTPUT PARAMETERS:

ISEL Flag requesting user supplied information.
0 = Optimization terminated, user should exit.
1 = User computes objective functions and constraints

corresponding to the current X-vector.
2 = User computes gradients of the objective functions

and constraints corresponding to the current X-
vector. This option will only be used if IGRAD is
set to 1 (see KSINIT).

X -- Current set of design variables.
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NOTES:

10

This subroutine is called in a loop combined with the user's analysis
procedures. The output parameter ISEL should be tested to determine what
action the user's program should take. An example is:

PROGRAM TEST
DIMENSION ...

CALL KSINIT (...)
CONTINUE

CALL KSOPT (ISEL,X,OBJ,G,DF,DG,NOMAX,NGMAX,WORK)

IF (ISEL .EQ. 1) THEN

•.. USER SUPPLIED ANALYSIS ...

GO TO 10

ENDIF

IF (ISEL .EQ. 2) THEN

... USER SUPPLIED GRADIENTS ...

SUBROUTINES

GOTO 10

ENDIF

OTHERWISE ASSUME ISEL IS ZERO, CONTINUE WITH THE REST
OF YOUR PROGRAM.

CALLED: KSANDO
KSCOMG
KSCOMP
KSDFP
KSDFUN
KSFUN
KSGRAD
KSONED
KSPRNT
KSSCAL
KSSIDE
KSUNSC
KSXLIM
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SUBROUTINE

PURPOSE:

KSCOMG

Copy values from the WORK array to the common block KSCOMM. The

common block values are stored in the WORK array for ease of restarting
an optimization by requiring that only the WORK array be saved.

USAGE:

INPUT PARAMETERS:

OUTPUT

CALL KSCOMG (WORK)

WORK

PARAMETERS:

none

NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED:

-- The work array as defined in subroutine KSINIT.

none
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SUBROUTINE

PURPOSE:

KSCOMP

Copy values from the common block KSCOMM to the WORK array. The
common block values are stored in the WORK array for ease of restarting

an optimization by requiring that only the WORK array be save.

USAGE:

INPUT PARAMETERS:

WORK

OUTPUT PARAMETERS:

NOTES:

SUBROUTINES

CALL KSCOMP (WORK)

-- The work array as defined in subroutine KSINIT.

none

This subroutine is not called by the user.

CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSPRNT

This subroutine contains most of the print statements used in the optimizer.
It prints the user selected data pertaining to each iteration at the beginning of
the iteration.

CALL KSPRNT (IPFLAG, IPRNT1, IPRNT2, X, OBJ, G, DF, DG,
ISID, SCALE, NOMAX, NGMAX, ITEMP, WORK)

PARAMETERS:

IPFLAG

IPRNT1

IPRNT2

X

OBJ

G

DF

DG

ISID

SCALE

NOMAX

NGMAX

ITEMP

WORK

PARAMETERS:

none

NOTES:

SUBROUTINES

-- A flag to indicate whether to print normal iteration data or the
f'mal optimization data.
1 = print the iteration data
2 = print the final optimization data

-- Ones digit of the IPRNT flag from subroutine KSINIT.

-- Tens digit of the IPRNT flag from subroutine KSINIT.

-- Current set of design variables.

-- Current vector of objective function values.

-- Current set of constraints.

-- Current matrix of objective function gradients.

-- Current matrix of constraint gradients.

-- Integer array containing flags indicating whether side

constraints have been encountered for each design variable.

-- Current design variable scale values.

-- Number of objective functions.

-- Number of constraints.

-- A temporary integer array dimensioned at least 2 * NDV in
the calling program.

-- The work array as defined in subroutine KSINIT.

This subroutine is not called by the user.

CALLED: KSUNSC
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSSIDE

This subroutine checks the side constraints imposed on the design variables
and sets a vector of flags to indicate bounds activity. In addition, if a design
variable is at a side constraint, and the gradient of the KS function for that

particular design variable would move the design past the side constraint,
then that term of the gradient vector is set to zero.

CALL KSSIDE (X, XLB, XUB, ISIDE, DFUN, NDV, NSIDE)

PARAMETERS:

X

XLB

XUB

DFUN

NDV

NSIDE

PARAMETERS:

ISIDE

NOTES:

SUBROUTINES

-- Current scaled design variable vector.

-- Scaled lower bounds values for design variables.

-- Scaled upper bounds values for design variables.

-- Array of gradients of the KS function.

-- Number of design variables.

-- Flag indicating whether side constraints are to be considered
(see KSINIT).

-- Integer array containing flags indicating whether side
constraints have been encountered for each design variable.

This subroutine is not called by the user.

CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSSCAL

This subroutine computes a new design variable scaling vector, if automatic
scaling was selected in subroutine KSINIT, and re-scales the design
variables and the upper and plower bounds.

CALL KSSCAL (X, X0, XLB, XUB, SCALE, NDV, NSIDE, NSCALE)

PARAMETERS:

X

X0

XLB

XUB

SCALE

NDV

NSIDE

NSCALE

PARAMETERS:

X

NOTES:

SUBROUTINES CALLED:

-- Current scaled design variable vector.

-- Scaled design variable vector from beginning of the current
iteration.

-- Scaled lower bounds values for design variables.

-- Scaled upper bounds values for design variables.

-- Vector of current design variable scale values.

-- Number of design variables.

-- Flag indicating whether side constraints are to be considered
(see KSINIT).

-- Flag indicating which design variable scaling method is
being used (see KSINIT).

-- Current design variable vector with new scale factors
applied.

This subroutine is not called by the user.

none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

KSUNSC

This subroutine converts the scaled design variable vector used in KSOPT
to the unscaled vector used by the user for analysis.

CALL KSUNSC (X, SX, SCALE, NDV)

PARAMETERS:

SX

SCALE

NDV

OUTPUT PARAMETERS:

NOTES:

SUBROUTINES

-- Vector of scaled design variables.

-- Vector of design variable scale factors.

-- Number of design variables.

X -- Current design variable vector.

This subroutine in not called by the user.

CALLED: none

30



SUBROUTINE

PURPOSE:

KSXLIM

This subroutine tests the current design variable vector against its upper and
lower bounds, and adjusts the design variables so that they do not violate
those bounds. This adjustment is primarily to compensate for numerical
errors that might result in a very slight violation of a bound.

USAGE:

INPUT PARAMETERS:

X

XLB

XUB

NDV

NSIDE

PARAMETERS:

X

OUTPUT

NOTES:

SUBROUTINES

CALL KSXLIM (X, XLB, XUB, NDV, NSIDE)

-- Current scaled design variable vector.

-- Scaled lower bounds values for design variables.

-- Scaled upper bounds values for design variables.

-- Number of design variables.

-- Flag indicating whether side constraints are to be considered
(see KSINIT).

-- Scaled design variable vector adjusted for bounds violations.

This subroutine in not called by the user.

CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

NOTES:

KS

This subroutine computes the Kreisselmeier-Steinhauser function value
given a vector of input values. The algorithm used here offsets the input
values by the maximum input value to eliminate numerical overflow

problems.

CALL KS (F, G, NG, RHO)

PARAMETERS:

G

NG

RHO

PARAMETERS:

F

SUBROUTINES

-- Vector of input values used to compute the KS function.

-- The number of input values in the G vector.

-- The multiplier used in the KS function.

-- The value of the KS function.

This subroutine is not called by the user, but since it is a general purpose
subroutine for evaluating the KS function it may prove useful in other

applications.

CALLED: none
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SUBROUTINE KSD

PURPOSE: This subroutine computes the first partial derivative of the Kreisselmeier-
Steinhauser function given a vector of input values and the derivatives of
those values with respect to some user specified parameter. The algorithm
used here offsets the input values by the maximum input value to eliminate
numerical overflow problems.

USAGE: CALL KSD (DF, G, DGDX, NG, RHO)

INPUT PARAMETERS:

G -- Vector of input values used to compute the KS function.

DGDX -- Vector of first partial derivatives of the input values with
respect to some user specified parameter.

NG -- The number of input values in the G vector.

RHO -- The multiplier used in the KS function.

OUTPUT PARAMETERS:

DF -- The value of the first partial derivative of the KS function
with respect to some user specified parameter.

NOTES: This subroutine is not called by the user, but since it is a general purpose
subroutine for evaluating the first partial derivative of the KS function it
may prove useful in other applications.

SUBROUTINES CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSFUN

This subroutine computes the Kreisselmeier-Steinhauser function consisting
of the objective functions and constraints of the optimization problem. This
is the subroutine that computes the unconstrained function which is
minimized to solve the optimization problem.

CALL KSFUN (FUN, OBJ, G, RHO, FSCALE, OFFSET, NCON,
NOB J, TEMP)

PARAMETERS:

OBJ

G

RHO

FSCALE

OFFSET

NCON

NOBJ

TEMP

PARAMETERS:

FUN

NOTES:

SUBROUTINES

-- Current vector of objective function values.

-- Current vector of constraint values.

-- The multiplier used in the KS function.

-- Vector of objective function scale values.

-- Vector of objective function offset values.

-- Number of constraints.

-- Number of objective functions.

-- Temporary array dimensioned at least NOBJ + NCON in the
calling program.

-- The value of the KS function based on the objective
functions and constraints.

This subroutine is not called by the user.

CALLED: KS
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SUBROUTINE KSDFUN

PURPOSE: Thissubroutinecomputestheftrstpartialderivativeof theKreisselmeier-
Steinhauserfunctionwhichconsistsof theobjectivefunctionsand
constraintsof theoptimizationproblem.This is thesubroutinethat
computesthegradientsof theunconstrainedfunctionwhichis minimizedto
solvetheoptimizationproblem.

USAGE: CALL KSDFUN (DFUN, OBJ, FSCALE, OFFSET, DF, G, DG, RHO,
NDV, NCON, NOB J, TEMP1, TEMP2)

INPUT PARAMETERS:

OBJ -- Current vector of objective function values.

FSCALE -- Vector of objective function scale values.

OFFSET -- Vector of objective function offset values.

DF -- Current matrix of objective function gradients.

G -- Current vector of constraint values.

DG -- Current matrix of constraint gradients.

RHO -- The multiplier used in the KS function.

NDV -- Number of design variables.

NCON -- Number of constraints.

NOBJ -- Number of objective functions.

TEMPI -- Temporary array dimensioned at least NOBJ + NCON in the
calling program.

TEMP2 -- Temporary array dimensioned at least NOBJ + NCON in the
calling program.

OUTPUT PARAMETERS:

DFUN -- Vector of the ffl'st derivatives of the KS function based on

the gradients of the objective functions and constraints.

NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED: KSD
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

KSGRAD

This subroutine computes the gradients of the objective functions and
constraints by finite differences, if that option was selected in subroutine
KSINIT. Only a forward difference scheme is used, but tests are made to
determine if the finite difference step would violate an upper bound. In this

case, backward differencing is used for the particular design variable.

CALL KSGRAD (INEXT, X, X0, XLB, XUB, G, GO, OBJ, OBJ0, DF,
DG, SCALE, DELX, NDV, NCON, NOB J, NSIDE,
FDELT, FDMIN)

PARAMETERS:

INEXT

X

X0

XLB

XUB

G

GO

OBJ

OBJ0

DF

DG

SCALE

NDV

NCON

NOBJ

NSIDE

FDELT

FDMIN

-- Flag indicating which design variable is currently being

perturbed for finite differencing. If zero, indicates the initial
call to this subroutine in which initial values of the design
variables, constraints, and objective functions are saved.

-- Current scaled design variable vector.

-- Vector holding a copy of the current design variables.

-- Scaled lower bounds values for design variables.

-- Scaled upper bounds values for design variables.

-- Current vector of constraint values.

-- Vector holding a copy of the current constraints.

-- Current vector of objective functions.

-- Vector holding a copy of the current objective functions.

-- Current matrix of objective function gradients.

-- Current matrix of constraint gradients.

-- Current design variable scale values.

-- Number of design variables.

-- Number of constraints.

-- Number of objective functions.

-- Flag indicating whether side constraints are to be considered
(see KSINIT).

-- Step size used to compute finite differences.

-- Minimum step allowed for finite differences.
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OUTPUT PARAMETERS:

INEXT Flag indicating which design variable has been perturbed for
finite difference calculations. If zero, then the finite
differencing is complete.

X Vector of scaled design variables with one variable perturbed
for finite difference calculations. If INEXT is zero, then this
is the current scaled design variable vector.

DELX -- The design variable step size being used for finite differences
on the current design variable.

NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSANDO

This subroutine computes the scale factor and offset for each objective
function, which are used when assembling the KS function for the
unconstrained minimization problem.

CALL KSANDO (OBJ, G, FSCALE, OFFSET, NCON, NOBJ)

PARAMETERS:

OBJ

G

NCON

NOBJ

PARAMETERS:

FSCALE

OFFSET

NOTES:

SUBROUTINES CALLED:

-- Current vector of objective functions.

-- Current vector of constraints.

-- Number of constraints.

-- Number of objective functions.

-- Vector of objective function scale values.

-- Vector of objective function offset values.

This subroutine is not called by the user.

none
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SUBROUTINE KSONED

PURPOSE: This subroutine performs a one-dimensional minimization on the
unconstrained KS function given search direction. Termination of the

minimization occurs when the minimum of a quadratic curve placed through
three points is found to within a preset tolerance.

USAGE:
CALL KSONED (INEXT, JTRY, X, X0, XLB, XUB, FUN, FUN0, S,

SLOPE, ALPHA, ALPMAX, NDV, A1, A2, A3, F1,
F2, F3, FTEST, NSIDE, LIMIT, NUNIT, IPRNT3,
SCALE, TEMP, ISDFLG)

INPUT PARAMETERS:

INEXT Flag indicating which part of this subroutine is to be

executed at this time. This is used to control what phase of
the one-dimensional search is currently in use.

X -- Current scaled design variable vector.

X0 -- Scaled design variables at start of the current iteration.

XLB -- Scaled lower bounds values for design variables.

XUB -- Scaled upper bounds values for design variables.

FUN -- Current value of the unconstrained KS function.

FUN0 -- Value of KS function at start of the current iteration.

-- Vector containing the search direction to be used for the one-
dimensional minimization of the unconstrained KS function.

SLOPE -- Initial slope of the search direction vector.

NDV -- Number of design variables.

NSIDE -- Flag indicating whether side constraints are to be considered.

NUNIT -- FORTRAN file unit number to be used for printed output.

IPRNT3 -- Hundreds digit of the IPRNT flag from subroutine KSINIT.

SCALE -- Current design variable scale values.

TEMP -- Temporary array dimensioned at least NDV in the calling
program.

OUTPUT PARAMETERS:

INEXT Flag indicating which part of this subroutine is to be
executed the next time it is entered. If zero, the one-
dimensional minimization is complete.
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NOTES:

SUBROUTINES

JTRY A counter to track how many times a quadratic interpolation
has been performed during the one-dimensional
minimization. If this counter reaches 15, the minimization is

terminated for this iteration.

X -- The scaled design variable vector which has been stepped in
the search direction. This is the next trial design point.

ALPHA

ALPMAX

The distance in the one-dimensional search direction that the

design variables have been moved.

The maximum distance that can be moved in the search

direction before encountering a side constraint.

A1

A2

A3

F1

The first abscissa of the three point quadratic curve which is
interpolated for a minimum. This variable holds the distance

alpha for point 1.

The second abscissa of the three point quadratic curve which

is interpolated for a minimum. This variable holds the
distance alpha for point 2.

The third abscissa of the three point quadratic curve which is

interpolated for a minimum. This variable holds the distance
alpha for point 3.

The first ordinate of the three point quadratic curve which is

interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point A 1.

F2 The second ordinate of the three point quadratic curve which

xs interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point A2.

F3 The third ordinate of the three point quadratic curve which is

Interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point A3.

FFEST

LIMIT

The value of the unconstrained function interpolated from a

three point quadratic curve.

A flag indicating when a new side constraint is encountered.
0 = No new side constraints encountered
1 = One or more new side constraints encountered

ISDFLG A flag indicating whether or not to restart the DFP algorithm
with the steepest descent method. A value of zero means to
restart the DFP.

This subroutine is not called by the user.

CALLED: KSQMIN
KSQUAD
KSUNSC
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SUBROUTINE KSDFP

PURPOSE: Thissubroutinecomputestheone-dimensionalsearchdirectionfor the
unconstrainedminimizationproblemusingamodifiedversionof the
Davidon-Fletcher-Powell(DFP)searchalgorithm.Themodifiedmethod
keepstrackof sideconstraintsandrestartstheDFPalgorithmwith a
steepestdescentmethodwheneverasideconstraintis encountered.As long
asthedesignstaysonasideconstraint,theDFPalgorithmis usedasusual
butthecomponentof thesearchdirectioncorrespondingthedesignvariable
whichis ata sideconstraintis forcedto bezero.

USAGE: CALL KSDFP (X, ISIDE, ISACT, DFUN, NDV, S, SLOPE, Y, P, H,
ISDFLG)

INPUT PARAMETERS:

X -- Current scaled design variable vector.

ISIDE -- Integer array containing flags indicating whether side

constraints have been encountered for each design variable.

ISACT Integer array which is the same as the ISIDE array except
that this array indicates which side constraints were active

the last time the DFP algorithm was restarted with the
steepest descent method.

DFUN -- Vector of the first derivatives of the KS function based on

the gradients of the objective functions and constraints.

NDV -- Number of design variables.

S -- The search direction vector from the previous iteration.

Y -- The vector of gradients of the unconstrained function being
minimized from the previous iteration.

P -- The vector of scaled design variables from the previous
iteration.

H -- The lower triangular part of the partial Hessian matrix,
stored as a vector in row order.

ISDFLG A flag indicating whether or not to restart the DFP algorithm
with the steepest descent method. A value of zero means to
restart the DFP.

OUTPUT PARAMETERS:

X -- The next trial scaled design variable vector.

ISACT -- If a steepest descent restart was performed, this vector

contains the currently active side constraint flags.
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NOTES:

SUBROUTINES

S -- The current search direction vector, normalized to unit

length.

SLOPE

Y

-- The slope of the normalized search direction vector.

-- A copy of the vector of gradients of the unconstrained
function being minimized.

P

H

-- A copy of the current scaled design variable vector.

-- The lower triangular part of the partial Hessian matrix,
stored as a vector in row order.

ISDFLG A flag indicating whether or not to restart the DFP algorithm
with the steepest descent method. This flag is reset to zero if
a steepest descent restart was performed.

This subroutine is not called by the user.

CALLED: KSHMUL
KSVPRD
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

SUBROUTINES

KSQUAD

This subroutine computes the minimum of a quadratic curve passing
through three points. The middle point of the curve must be less than the
two end points.

CALL KSQUAD (A1, A2, A3, F1, F2, F3, ASTAR, FTEST)

PARAMETERS:

A1

A2

A3

F1

F2

F3

PARAMETERS:

ASTAR

FTEST

NOTES:

CALLED:

-- The abscissa of the first point on the curve.

-- The abscissa of the second point on the curve.

-- The abscissa of the third point on the curve.

-- The ordinate of the first point on the curve.

-- The ordinate of the second point on the curve.

-- The ordinate of the third point on the curve.

-- The interpolated value of the abscissa.

-- The interpolated value of the ordinate.

This subroutine is not called by the user.

none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

OUTPUT

KSQMIN

This subroutine determines which three points of the four provided to use

for the next quadratic interpolation.

CALL KSQMIN (A1, A2, A3, ALPHA, F1, F2, F3, FUN)

PARAMETERS:

A1

A2

A3

ALPHA

F1

F2

F3

FUN

PARAMETERS:

A1

A2

A3

F1

F2

F3

NOTES:

SUBROUTINES

The abscissa of the first point on the previously interpolated
curve.

The abscissa of the second point on the previously
interpolated curve.

The abscissa of the third point on the previously interpolated
curve.

The previously interpolated value of the abscissa.

The ordinate of the first point on the previously interpolated
curve.

The ordinate of the second point on the previously

interpolated curve.

The ordinate of the third point on the previously interpolated
curve.

The previously interpolated value of the ordinate.

-- The new abscissa of the first point of the quadratic curve.

-- The new abscissa of the second point of the quadratic curve.

-- The new abscissa of the third point of the quadratic curve.

-- The new ordinate of the first point of the quadratic curve.

-- The new ordinate of the second point of the quadratic curve.

-- The new ordinate of the third point of the quadratic curve.

This subroutine is not called by the user.

CALLED: none
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SUBROUTINE KSHMUL

PURPOSE: Thissubroutinemultipliesa lower triangularmatrixby avector,returninga
vector. Thematrixis usuallytheHessianmatrix,andthemultipliedvector
is usuallythevectorof gradientsof theunconstrainedfunctionbeing
minimized.Theresultingvectorwould thenbethesearchdirectionvector.

USAGE: CALL KSHMUL (A, B, X, NROW)

INPUT PARAMETERS:

A -- The lower triangular part of the matrix, stored as a vector in

row order. This is the Hessian matrix for this application.

B The vector to be multiplied by A. For this application, it is a

vector of gradients of the unconstrained function being
minimized.

NROW -- The number of rows and columns in the matrix. This is the

same as the number of design variables for this application.

OUTPUT PARAMETERS:

X -- The vector resulting from the multiplication of matrix A by
vector B. For this application, it would be the search
direction vector.

NOTES: This subroutine is not called by the user, but is a generic routine which may
be useful in other applications.

SUBROUTINES CALLED: none
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SUBROUTINE

PURPOSE:

USAGE:

INPUT

KSVPRD

This subroutine performs the dot product of two vectors.

CALL KSVPRD (X, Y, PROD, NROW)

PARAMETERS:

X

Y

NROW

OUTPUT PARAMETERS:

NOTES:

SUBROUTINES

-- The first vector to by multiplied.

-- The second vector to be multiplied.

-- The number of points in each vector.

PROD -- The dot product of vectors X and Y.

This subroutine is not called by the user, but is a generic routine which may

be useful in other applications.

CALLED: none
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COMMON BLOCK KSCOMM

PURPOSE: This common block holds all of the parameters required by the optimization
routine. The common block is copied into the WORK array every time
subroutine KSOPT returns to the user, and saving the contents of the
WORK an'ay will allow the optimization problem to be restarted at a later
time from where it left off. This is particularly important when the
optimizer and the analysis procedure cannot reside in the computer's
memory at the same time.

PARAMETERS:

IFSCL -- Pointer to the beginning of the objective function scaling
vector.

IFOFF -- Pointer to the beginning of the objective function offset
vector.

ISX -- Pointer to the beginning of the scaled design variable vector.

ISX0 Pointer to the beginning of the scaled design variable vector
saved at the beginning of the current iteration. Used to
compute finite difference gradients.

ISXLB -- Pointer to the beginning of the scaled lower bounds vector.

ISXUB -- Pointer to the beginning of the scaled upper bounds vector.

ISCL -- Pointer to the beginning of the design variable scaling
vector.

IG0 Pointer to the beginning of the constraint vector saved at the
beginning of the current iteration. Used to compute finite
difference gradients.

IDF -- Pointer to the beginning of the gradient vector of the
unconstrained KS function being minimized.

ISLP -- Pointer to the beginning of the one-dimensional search
direction.

IOBJO Pointer to the beginning of the objective function vector
saved at the beginning of the current iteration. Used to
compute finite difference gradients.

IY Pointer to the beginning of a vector where the gradients of
the unconstrained KS function from the previous iteration
are stored. Used to compute the search direction from the
DFP algorithm.

IP Pointer to the beginning of a vector where the scaled design
variables from the previous iteration are stored. Used to
compute the search direction from the DFP algorithm.
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IH

ISIDE

ISACT

IDOBJ

IDG

ITMP1

ITMP2

INEXT

JNEXT

JSEL

ITCNT

ICNTR

ICNTA

ISDFLG

ISDRST

Pointerto thebeginningof thevectorwherethelower
triangularpartof theapproximateHessianmatrix is stored.

Pointertothebeginningof anintegervectorcontainingflags
indicatingwhethersideconstraintboundarieshavebeen
encounteredfor eachdesignvariable.

Pointerto thebeginningof anintegervectorcontainingthe
sameflagsastheISIDEvector,exceptthatthisvector
correspondsto thesideconstraintactivitythe lasttimethe
DFPalgorithmwasrestartedwith thesteepestdescent
method.

Pointerto thebeginningof thevectorcontainingthe
gradientsof theobjectivefunctionswith respectto thescaled
designvariables.

Pointertothebeginningof the vector containing the
gradients of the constraints with respect to the scaled design
variables.

Pointer to the beginning of a temporary scratch vector
dimensioned as the maximum of 2 * NDV or NCON +

NOBJ.

Pointer to the beginning of a temporary scratch vector
dimensioned as the maximum of 2 * NDV or NCON +
NOBJ.

Flag usually used to indicate which design variable is begin
perturbed for finite difference gradient calculations. During
a one-dimensional search, it is used to indicate which part of
subroutine KSONED is to executed next.

-- A counter indicating how many quadratic minimizations have
been attempted in the current one-dimensional search.

-- Flag indicating which part of subroutine KSOPT is to be
executed next.

-- The number of the current iteration.

-- A counter indicating how many consecutive iterations have
satisfied the termination criteria for relative function change.

-- A counter indicating how many consecutive iterations have
satisfied the termination criteria for absolute function change.

Flag indicating when the DFP algorithm is to be restarted
with a steepest descent method. When the flag is zero, a
restart is performed.

-- The number of iterations between steepest descent restarts.
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IFNCL

NUNIT

NDV

NCON

NOBJ

NSIDE

NSCALE

IPRNT

ITMAX

IGRAD

RDF

ADF

FDL

FDM

RHO

DRHO

RHOMAX

FUN0

SLOPE

DELX

ALPHA

-- A counterindicatingthetotalnumberof timestheobjective
functionsandconstraintshavebeencomputedbytheuser.

-- TheFORTRANunit numberthatall printedoutputgoesto.

-- Thenumberof designvariables.

-- Thenumberof constraints.

-- Thenumberof objectivefunctions.

-- A flag indicatingwhethersideconstraintsareto be
considered.Zeromeansnosideconstraints.

-- A flag indicatingwhichdesignvariablescalingoptionis to
beused(seeKSINIT).

-- A flag indicatingwhatlevelof printedoutputto use(see
KSINIT).

-- Themaximumnumberof iterationsallowed.

-- A flag selectingthemethodof gradientcomputation(see
KSINIT).

-- ThesameasRDFUN (seeKSINIT).

-- ThesameasADFUN (seeKSINIT).

-- ThesameasFDELT (seeKSINIT).

-- ThesameasFDMIN (seeKSINIT).

-- Thecurrentvalueof themultiplyingfactorusedin theKS
function.

-- Theamountby whichRHOis incrementedduringthe
optimization.

-- ThemaximumvaluethefactorRHOmayhave.

-- Thevalueof theunconstrainedKS functionatthebeginning
of thecurrentiteration.

-- Theslopeof thesearchdirectionobtainedwith theDFP
algorithm.

-- Theincrementappliedto adesignvariablefor computing
finitedifferencegradients.

-- Thedistancemovedduringthecurrentone-dimensional
search.
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ALPMAX

A1

A2

A3

F1

F2

F3

FTEST

LIMIT

-- Themaximumdistancethatmaybetravelledduringthe
currentone-dimensional search before a side constraint is
encountered.

-- Holds a value of ALPHA used for quadratic minimization.

-- Holds a value of ALPHA used for quadratic minimization.

-- Holds a value of ALPHA used for quadratic minimization.

-- Holds a value of the unconstrained KS function used for

quadratic minimization.

-- Holds a value of the unconstrained KS function used for

quadratic minimization.

-- Holds a value of the unconstrained KS function used for

quadratic minimization.

-- Holds the interpolated value of the unconstrained KS
function resulting from a quadratic minimization.

-- A flag indicating when a side constraint has been
encountered during the current one-dimensional search.
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APPENDIXB

GENERICFORTRANEXAMPLE PROGRAMOUTLINE USING KSOPT

PROGRAMEXAMPLE

DIMENSIONWORK(500)

TheWORK arrayholdsall of KSOPTsconstantsandarraysfor restarting
purposes.Theusershouldneveralterthisarray.

DIMENSION X(5), OBJ(3),G(12)

X is thedesignvariablearray.
OBJis theobjectivefunctionarray.
G is theconstraintarray.

DIMENSION XLB(5), XUB(5), SCALE(5)

XLB is the design variable lower bounds array.
XUB is the design variable upper bounds array.
SCALE is the design variable scaling array.

DIMENSION DF(3,5), DG(12,5)

DF is the matrix of gradients of the objective functions.
DG is the matrix of gradients of the constraints.

NDV = 5
NCON = 12
NOBJ = 3
NSIDE = 1
NSCALE = 4
IPRNT = 012
IGRAD = 1

The above parameters do not have default values. See appendix A
for a complete description of each one.

rFMAX = 0
ISDRST = 0
RDFUN = 0.0
ADFUN = 0.0
FDELT = 0.0
FDMIN = 0.0
RHOMIN = 0.0
RHOMAX = 0.0
RHODEL = 0.0

The above parameters are all set to zero, and their default values

will be used by KSOPT. See appendix A for a complete description
of each one.
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10

NUNIT = 6

PrintedoutputisdirectedtoFORTRANunit number6

x(1) ... x(5) = ...
XLB(1) ... XLB(5) = ...
XUB(1) ... XUB(5) = ...
SCALE(l) ... SCALE(5)--...

Initialize the design variable vector, the upper and lower
bounds, and if necessary, the design variable scaling vector.

CALL KSINIT (X, XLB, XUB, SCALE, WORK, NDV, NCON, NOB J, NSIDE,
NSCALE, IPRNT, ITMAX, IGRAD, ISDRST, RDFUN, ADFUN,
FDELT, FDMIN, RHOMIN, RHOMAX, RHODEL, NUNIT, IREQ)

KSINIT is called to initialize the KSOPT optimization procedure.

NOMAX = 3
NGMAX = 12

NOMAX is the first dimension of ,array DF above.
NGMAX is the first dimension of array DG above.

CONTINUE

CALL KSOPT (ISEL, X, OBJ, G, DF, DG, NOMAX, NGMAX, WORK)

KSOPT is called in a loop to solve the optimization problem.

IF (ISEL .EQ. 0) THEN

ENDIF
STOP "The optimum has been found"

IF (ISEL .EQ. 1) THEN

ENDIF

Compute the objective functions and
constraints for the current design variables.

IF (ISEL .EQ. 2) THEN

ENDIF

Compute the gradients of the objective
functions and constraints with respect to the

current design variables.

GO TO 10

END
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Example Problem 1 Case 1 Case 2 Case 3

Number of Iterations 12 17 19

Number of Analyses 121 156 211

Design Variable Value 5.6518 5.7562 5.7781

Constraint 1 -2.2512 -2.2974 -2.3087

Constraint 2 -0.0635 -0.0176 -0.0061

Objective Function 0.7061 0.7030 0.7025

Initial RHO Value 20 20 50

Final RHO Value 20 80 200

Table 1. Final Optimization Results for Example Problem 1 for Three Ranges of Rho.

Example Problem 2 Weight Only Cost Only Weight and Cost

Number of Iterations 9

Number of Analyses 96

Outer Member Area (sq. in.) 0.4456

Inner Member Area (sq. in.) 0.3977

Yield Stress Constraint 0.0007

Truss Weight (pounds) 4.19

Truss Material Cost (dollars) 17.36

6 14

66 171

0.5553 0.5553

0.0010 0.0010

-0.0004 0.0068

4.43 4.43

1.86 1.86

Table 2. Final Optimization Results forthe Three Bar Truss Example Problem.
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I START 1

nitialize design variab!es,
ower ana upper oounas,
scale factors, and
optimization parameters.

J Call subroutine KSINIT J

Call subroutine KSOPT J_

YES

YES

Perform analysis using design
variables supplied by KSOPT.
Compute objective functions
and constraints.

I Compute gradients of objectivefunctions and constraints with
=1 respect to design variables

I supplied by KSOPT.

Figure 3. Block Diagram of an Optimization Procedure Using the KSOPT Program.
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START)

KSINIT

I Initialize internal parameters I KSOPTCheck for bounds violations.

I Begin an ite_tion using I_current design variables.

Get objective functions, constraints, I
ana their gradients with respect to the rcurrent design vadables from the user.

Com.#ute composite KS function and I
gradients of composite KS function with l

respect to the current design variables. I

I Calculate search direction vector S. J

Calculate tnal design variable vector and get

bjective functions and constraints from user. _

until one-dimensional minimum is found.

.............. ____st ..........................
[sto 1

Figure 4. Flow Chart of the KSOPT Optimization Program.
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10 Inches 10 Inches

A2

(Titanium)

A1 A1

(Steel) (Steel)

10 Inches

20000 Pounds 20000 Pounds

Material Properties Steel Titanium

Young's Modulus (psi)

Density (pounds/cu. in.)

Cost (dollars/pound)

Tensile Yield Stress (psi)

Compressive Yield Stress (psi)

30,000,000 15,500,000

0.282 0.160

0.41 25.00

36,000 110,000

27,000 82,500

Figure 10. Three Bar Truss Example Problem with Material Properties Specified.
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Figure 13. Contour Plot of Outer Truss Member Tensile Stress Constraint.
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Figure 14. Contour Plot of the Three Bar Truss Design Space for Iteration 1.
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Figure 15. Contour Plot of the Three Bar Truss Design Space for Iteration 2.
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Figure 16. Contour Plot of the Three Bar Truss Design Space for Iteration 3.
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Figure 17. Contour Plot of the Three Bar Truss Design Space for Iteration 4.
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Figure 18. Contour Plot of the Three Bar Truss Design Space for Iteration 5.
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