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SUMMARY

This paper describes a new technique for converting a constrained optimization problem
into an unconstrained problem. The technique transforms one or more objective functions into
reduced objective functions, which are analogous to goal constraints used in the goal programming
method. These reduced objective functions are appended to the set of constraints and an envelope
of the entire function set is computed using the Kreisselmeier-Steinhauser function. This envelope
function is then searched for an unconstrained minimum. The technique may be categorized as a
SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods
to find a constrained minimum without the "draw down" factor typical of penalty function
methods, and that the technique may be started from the feasible or infeasible design space. In
multiobjective applications, the approach has the advantage of locating a compromise minimum
design without the need to optimize for each individual objective function separately.

A description of the constrained to unconstrained conversion technique for multiobjective
problems is presented. This is followed by a description of the computer program KSOPT, which
implements the method as a general purpose optimization program written in the FORTRAN
language. A description of each subroutine in KSOPT is included. Finally, example problems are

solved demonstrating the use of KSOPT and the robustness of the method.



INTRODUCTION

The purpose of this paper is threefold, first to describe a new technique for converting a
constrained optimization problem to an unconstrained one, second to discuss how the method is
naturally extended to multiobjective optimization problems, and finally to present the computer
program KSOPT as a general purpose FORTRAN subroutine which implements this new
technique. A description of each subroutine in KSOPT is included in appendix A.

The conversion technique used in this new method employing the Kreisselmeier-
Steinhauser function[1], which will be referred to as the KS method, may be categorized as a
member of the Sequential Unconstrained Minimization Technique (SUMT) class of optimization
methods[2]. SUMT methods in general convert a constrained optimization problem into an
unconstrained one using a penalty term[3,4], composed from the constraint equations, which is
summed with an objective function. Problems associated with most of these penalty methods are
that they do not possess continuous first or second derivatives, they must be started from a
particular region of the design space, and the user is required to specify a multiplying factor whose
value is critical to the behavior of the optimization method. Many improvements have been made
since interior and exterior penalty methods were first used. The quadratic extended interior penalty
function method[5], in fact, has eliminated all of the above mentioned problems except the need for
a user supplied multiplying or "draw-down" factor. The KS method described in this paper
possesses the good qualities of the extended penalty function, namely the continuity of derivatives
and that the optimization may be started from either the feasible or infeasible design regions. The
draw-down factor of the penalty function method is not required in the KS method, but there is a
user supplied factor required. The difference in these factors will be discussed in detail later in the
paper.

In the design of complex engineering systems, it is often difficult to select a single objective
function which will satisfy all of the desired design requirements. Several techniques have
previously been developed and described for multiobjective optimization[6]. Most of the previous

efforts to include multiple objective functions in a numerical optimization method can be separated



into two techniques. The first is to form a single composite objective function as some
combination of the original objective functions such as the summation of each objective function
multiplied by a judgmental weighting factor. An example of this approach is the utility function
method. The second approach is to solve the optimization problem once for each single objective
function and to use the resulting optimum objective function or design variable vector as a target,
solving an additional optimization problem to attain a suitable compromise. Examples of this
approach are the global criterion formulation, game theory approach, goal programming method,
and goal attainment method.

The KS method is inherently capable of optimizing for multiple objective functions. Any
number of objective functions and constraints are combined using the KS function to form a single
composite function. This composite function is then used to solve the optimization problem. The
primary advantage of the KS method for multiobjective optimization is the elimination of
potentially expensive separate optimizations for each objective function. In addition, each objective
function may retain its original scaling and units, such as a cost or return on investment objective in

dollars and a weight objective in pounds.



CONSTRAINED TO UNCONSTRAINED CONVERSION
Before the new KS method conversion technique is described, a brief review of the

classical constrained optimization problem is appropriate. Only inequality constraints will be
considered in this discussion, because the KS method does not handle equality constraints directly.
The typical definition of a constrained optimization problem is

Min F,(X) m=1,23,. M

gX)<0 j=1,2,3,.] 1)

X = X1,X2,X3,...,XN
where the inequality constraints are defined to be violated if they have positive values and satisfied

if they have negative values. A typical formulation for these constraints would be

o _ DEMANDX) _
&(X) = ~GAPACITY -
v _ 1 DEMAND(X)
&%) =1 -~ PACITY

The first form imposes an upper limit and the second form imposes a lower limit on the value of
the DEMAND quantity. This formulation scales the constraint value to be in a small region,
usually between -1 and 1. This constraint scaling is not absolutely necessary for the KS method,
but improves the computational characteristics of the method by reducing problems associated with
large numbers.

The KS method combines one or more objective functions with all of the inequality
constraints to form a single composite KS function. An unconstrained optimization algorithm is
then used to find the minimum of this composite function, equivalent to other SUMT methods.

The KS function was first used by Kreisselmeier and Steinhauser[1] and is defined as

K
KS(X) = é—logez ePf(X) 3)
k=1

An alternate definition which reduces numerical difficulties caused by computing the exponential of

large numbers is



K
KS(X) = fiay + % 10ge Y, ePh(X) - fum)
k=1

4)
where fx(X) is a set of K functions, which in the context of this discussion are the objective
functions and constraints, and f,,,, is the maximum value of the set of functions evaluated at X and
taken to be a constant. Both forms of the KS function produce the same results, subject to round-
off errors. In addition, the first derivatives with respect to the design variable set X for both KS

formulations have identical values, again subject to round-off errors. The first derivatives for both

KS formulations are

K
2 ePfi(X) fi(X)
OKS(X) k-1 O%n

K
axn 2 epfk(x)
k=1
‘ (5
CPREX) - fme) XD
JdKS(X) k=1 OXn
OXxp

K
z e(PFCX) - frn)
k=1

which require the current value of each function fi(X) and its first partial derivatives with respect to
the design variable set X. The second form of the KS function, equation (4), will be used in the
rest of this paper due to its superior numerical behavior.

The KS function defines an envelope surface in N-dimensional design space replacing the J
constraint surfaces and the M objective function surfaces. This envelope surface is continuously
differentiable and represents the maximum of the set of functions. The KS function has a property

such that

fmax < KS < fina + k’ge% ©)

The term on the right hand side of equation (6) represents the worst case value of the KS function,
which occurs at a point where all of the functions intersect. In practice, the KS function surface is
influenced by only a few functions at any one point and the KS surface will be only slightly above

the maximum of the individual surfaces, approaching the maximum surface as the scalar multiplier



p increases. Typical values of the scalar p are between 5 and 200. Figure 1a shows a set of
curves of one variable and the corresponding KS functions indicated for several values of the
scalar p. Figure 1b shows in greater detail the region circled in figure 1a, where curve 1 and curve
2 intersect. These figures graphically show the ability of the KS function to form a single
continuous curve following the maximum of a set of curves. Note that the KS function provides a
smooth transition from one curve to another. Larger values of the scalar p "pull" the KS function
curve closer to the actual curve intersections, with correspondingly sharper gradient transition in
these regions. This is functionally similar to the draw-down factor of penalty function methods.
The draw-down factor controls the relationship between constraints and the objective function of
penalty function methods whereas in the KS method the multiplier p controls the distance from the
KS surface to the surface of maximum function value.

Converting a constrained optimization problem to an unconstrained problem requires that
the objective functions be combined with the constraints in some manner such as is done with
penalty function methods. The resulting composite function is then minimized using an
unconstrained minimization technique. Several iterations of calculating the composite function,
determining a search direction, and performing a one-dimensional minimization are needed to
converge to the optimum solution. The technique used in the KS method for forming the
composite function is first to scale and offset each objective function such that its value at the start
of an iteration is the same as the maximum constraint value but of opposite sign. As mentioned
earlier, the constraints are assumed to be scaled already. The modified objective function stated
numerically is

Emax (7)

where FQ is the value of the mth objective function at the beginning of an iteration and gmax is the
maximum value of the set of inequality constraints evaluated at X and taken to be a constant for this
iteration. The value of F5,(X), the modified objective function, at the beginning of an iteration is

equal to the negative of gmax as shown in figure 2a. For the case of multiple objective functions,



the modified objective functions at the start of an iteration are shown in figure 2b. Note that all of
the objective functions intersect at the starting point of the iteration. Each scaled and offset
objective function is appended to the set of inequality constraints g;(X) to form a set of K functions
written as fi(X) where K is the sum of the number of objective functions M and the number of

constraints J.
f1(X) = F{(X)

f2(X) = Fy(X)

fm(X) = Fy(X)
fmaX) = g1(X)
fm2(X) = g2(X)

®)

fraa(X) = gi(X)

These functions are then combined using the KS function of equation (4) to form a single
continuous composite KS function. The composite KS function represents the envelope of all
objective functions and constraints in the optimization problem, and is used with an unconstrained
optimization technique to find its minimum. Several iterations are usually required to find the
optimum solution to a problem. Since every objective function's scale and offset values are
selected at the beginning of each iteration, the composite KS function surface will be different for

every iteration.



KSOPT GENERAL PURPOSE OPTIMIZER

The KS method has been incorporated into the general purpose constrained minimization
computer program KSOPT, written in the FORTRAN programming language. The program was
written with the requirements of providing a simple user interface, have the ability to be restarted in
the middle of an optimization problem, and be written using a modular approach. Modular
programming techniques allow portions of a program to be replaced easily as new and improved
methods and algorithms are developed. In KSOPT the search direction algorithm and the one-
dimensional minimization algorithm are examples of modules which might be replaced. The
restarting requirement satisfies a need to be able to switch to a large, complex analysis procedure
which would require all of the computing resources available, and then to restart the optimization
procedure later using the analysis results. The user interface consists of two subroutines, one for
initializing the optimization system and the other to perform the optimization (see appendix A for a
complete description of each subroutine). This program is used much like any other constrained
minimization program, where the user supplies arrays containing the design variables, objective
functions, and constraints. The restarting capability is provided by the user supplying a WORK
array, with sufficient computer storage space allocated, which will contain all of the constants and
arrays used by the optimizer. The user may save this array to some external storage device when
leaving the optimizer and restore the array before continuing with the optimization problem.

The user interface is shown in block diagram form in figure 3 and consists of the
subroutines KSINIT and KSOPT. Subroutine KSINIT initializes the optimizer with constant
parameters and initial values of the design variables. The user must supply the desired parameter
values and dimension the arrays sufficiently large for the specific problem being solved. The
minimum size requirements for each array are specified in appendix A in the description of
subroutine KSINIT. Subroutine KSOPT is called iteratively, where KSOPT returns the current
design variable vector and a flag, ISEL, indicating what action the user should take. If the flag is
set to 1, the user must compute the objective functions and constraints for the current design

variables. If the flag is 2, the user must compute the gradients of the objective functions and



constraints with respect to the current design variables. After either one of these computations is
complete, the user returns the computed quantities to subroutine KSOPT. When the flag ISEL is
zero, the optimization is terminated and the optimum design variable vector is returned to the user.
For the user that wishes to know what the internal parameters of the KSOPT program are while
solving their optimization problem, the common block KSCOMM can be included in the user's
analysis program. A description of each variable in this common block is given in appendix A.
The user must be careful not to alter the values of any parameters in this common block. Appendix
B shows a sample FORTRAN program outline for solving an optimization problem, and is
intended only as a guide.

Figure 4 is a flow chart detailing the major functional blocks of the optimization program.
First, subroutine KSINIT is called to initialize the optimization problem, allocate space for internal
arrays, and test the initial design variable vectors for bounds violations. Then subroutine KSOPT
is called in a loop with the user supplied analysis procedures until the optimization problem is
solved. Internally KSOPT converts the constrained minimization problem to an unconstrained
problem using the KS method, and solves the unconstrained problem iteratively. Each iteration, as
shown in figure 4, involves first obtaining the initial objective function and constraint values from
user supplied analyses. Then gradients of the objective functions and constraints with respect to
the current design variables are obtained either from the user explicitly or by finite differences
using the user supplied analysis results. KSOPT then forms the composite KS function described
earlier in the constrained to unconstrained conversion technique, and the gradients of the composite
KS function with respect to the design variables. This single composite KS function and its
gradients define the unconstrained optimization problem to be solved. The unconstrained problem
for each iteration is then solved by first determining a search direction vector S usin g the Davidon-
Fletcher-Poweli[7] (DFP) algorithm. With the search direction determined, a one-dimensional
search for the minimum of the composite KS function is performed using

X4 =Xa91 4+ o*S¢ 9)



where q denotes the current iteration of the optimization procedure. The optimum step length o* is
defined as the distance travelled in the S9 direction that makes the composite KS function a
minimum without violating any side constraints. The optimum length o.* is found by selecting a
trial value for o, using equation (9) to compute a new design variable vector X, having the user
supply the new objective functions and constraints, and computing the new composite KS function
as seen in figure 4. The procedure continues stepping in the S9 direction until the composite KS
function no longer decreases in value. Then a three point quadratic polynomial approximation[3]
using the equation
Aca? + Ba + C=KS(w) (10)
is formed using the last three trial o values and their corresponding composite KS function values.
When the set of three simultaneous linear algebraic equations are solved for the coefficients A, B,
and C, the value of a* may be computed by differentiating equation (10) and setting the result
equal to zero
2A0* +B=0 (11)

and the corresponding design variable vector is found using equation (9). The quadratic
polynomial approximation is repeated with additional trial design points until convergence is
achieved for the one-dimensional minimization, ending the current iteration. At the end of each
iteration a set of termination criteria are tested, and if they are not satisfied another iteraton is
performed using the final design variables from the previous iteration as the starting point. The
three termination criteria available in KSOPT are

1) Relative change of the composite KS function is less than some prescribed amount

for three consecutive iterations.
2) Absolute change of the composite KS function is less than some prescribed amount
for three consecutive iterations.

3) The maximum number of iterations is exceeded.

When any one of these termination criteria is satisfied, the optimization is terminated and the final

set of design variables are returned to the user.

10



This implementation of the unconstrained minimization procedure treats side constraints
separately from the other constraints. Often it is desirable to approach side constraints as closely as
possible without violating them. Forming side constraints the same way as those of equations (2)
do not allow many optimization methods to approach the side constraints closely. In KSOPT, side
constraints are not included in the composite KS function but instead are tracked individually and
the one-dimensional minimization discussed above is terminated when a side constraint is
encountered. At the beginning of the next iteration a new search direction is computed. If the
proposed search direction would violate any currently active side constraints, the components of
the search direction vector corresponding to those design variables are set to zero and the DFP
algorithm is restarted using a steepest descent gradient. As long as no new side constraints become
active, the DFP algorithm continues to perform as usual while essentially using a subset of the
design variable vector. This method allows the DFP scheme to continue updating the Hessian
matrix, thus gaining the benefits of that algorithm, while following side constraints exactly. If a
design variable which was previously on a side constraint is directed back into the feasible design

space, its contribution to the Hessian matrix is once again included.

11



EXAMPLE PROBLEMS
A simple one-dimensional optimization problem using a single design variable, one
objective function, and two constraints will be used for the first example. This problem was
chosen because its optimization can be clearly shown graphically to aid in understanding the KS

method. The objective function is defined as

X2 _3x,5
FO=50"% *2 (12)
and the two constraints are defined as
= ._5_ X 4
g1(x) loge(x) 5 (13)
2
g2lx) = J5+ 52 (14)

Analytical gradients are used in the optimization of this problem because both the objective function
and constraints are easily differentiated with respect to the single design variable x. The
optimization is started at point a of figure 5a, and the first iteration begins by computing the
modified objective function of equation (7). The scaled and offset objective function and the two
constraints are used to compute the composite KS function in figure 5b. The unconstrained DFP
search direction algorithm is then employed along with a one-dimensional minimization procedure
to find the minimum of the composite KS function curve, resulting in the iteration terminating at
point b where the composite KS function is minimum. Since the maximum constraint at point a
was violated, the KS method essentially removes the objective function from consideration for this
iteration and works to minimize the constraint violation. The minimum of the composite KS
function in figure 5b is the point where the two constraints intersect. The next iteration is started at
this point by scaling and offsetting the objective function again and computing the new composite
KS function shown in figures 6a and 6b. At the beginning of this iteration the constraints are
satisfied, and the objective function guides the design. The composite KS function shown in
figure 6b for this case is minimized, terminating at point c. The next two iterations are shown in

figures 7a through 8b. The design is being driven toward the point where constraint g is zero,

12



and the design oscillates between being dominated by the objective function and constraint g2. At
the optimum point e in figure 9a, which for this example is the point where g2 is zero, the scaled
and offset objective function and constraint g; are coincident because g,y is zero. The composite
KS function is influenced equally by the objective function and constraint g2, as seen in figure 9b.
At this point the composite KS function is a minimum, and constraint g, is zero. Three
optimizations were performed for this example problem, all starting at the same initial design point
but using different initial values and ranges of the multiplying factor p. Table 1 summarizes the
results for each case showing the influence of the multiplier p on the optimum solution and the
number of iterations required. As can be seen in table 1, larger values of p result in a smaller
optimum objective function and a value of constraint g; closer to zero, but at the price of additional
iterations.

The second example is the classical three bar truss problem[8] modified to use steel and
titanium truss members, with two design variables, two objective functions, and six constraints[9].
This design problem was chosen to demonstrate the interaction of different material types in
designing a truss for multiple objectives. A description of the analysis procedure for the three bar
truss is given by Vanderplaats[3] starting on page 252. A diagram of the three bar truss, including
the material properties for steel and titanium and the two independently applied loads, is shown in
figure 10. The desired optimum solution is the three bar truss design which will simultaneously
minimize truss weight and material costs. The truss is symmetrical with the outer members made
of steel and the inner member made of titanium. The design variables are the cross sectional areas
of the truss members, denoted as A1 and A2 in figure 10. These areas are not allowed to be less
than 0.001 square inches. The constraints are yield stress limits on the members, with three
constraints for tensile loads and three for compressive loads. The first objective function is the
total weight of the three truss members. Since titanium is lighter than steel the minimum weight
design would use a larger titanium center member and smaller steel outer members. The second
objective function is total material cost. Here titanium is 60 times more expensive than steel,

leading to a design having a small titanium center member and larger outer steel members. The
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optimum design when both objective functions are considered will be some compromise between
low weight and low cost. To graphically illustrate this design problem, contour plots will be used
over a portion of the design space. The weight objective function alone is shown in figure 11 as a
contour plot of total truss weight versus inner and outer rod areas. Figure 12 shows the contour
plot of the cost objective function alone versus inner and outer rod areas. Only the tensile yield
stress constraint on the outer truss members is critical in this optimization problem, and a contour
plot of its zero value is shown in figure 13.

In order to see what the limits of the multiple objective optimum design were, the three bar
truss was optimized for each objective function separately. Table 2 shows the results of optimizing
the truss for weight only, for cost only, and for weight and cost simultaneously. Shown along
with the final results are the total number of iterations and the total number of analyses required.
Each optimization problem was started with both the inner and outer members having a cross
sectional area of one square inch. The final results of table 2 show that the multiple objective
function design is identical to the minimum cost design. The cost of titanium is 60 times greater
than steel, but steel weighs only 1.76 times greater than titanium. Therefore, the optimizer
accepted a weight penalty of 0.24 pounds in order to reduce the cost of the truss by 15.50 dollars.
Although the results are not presented in this report, reducing the cost of titanium to 4 dollars per
pound of weight starts to move the cross sectional area of the titanium member away from its
minimum value. Further reduction of the cost of titanium produces optimum solutions which use
more titanium to reduce weight. When the cost of titanium is reduced to that of steel, the optimum
solution is identical to the weight only solution. It is therefore possible to change the
multiobjective optimum solution by weighting the objective functions.

To illustrate the minimization of the multiple objective function design problem, contour
plots of the design space of the first six iterations are shown in figures 14 through 19. The first
iteration starts in figure 14 with the cross sectional areas of the truss members at one square inch.
The line shown is the direction computed by the DFP algorithm for a one-dimensional search, and

terminates at the arrowhead where a minimum is found in this direction. Figure 15 shows a

14



contour plot of the design space for the second iteration. Note that the contours of the design space
change from one iteration to the next. This is because in the KS method the modified objective
function of equation (7) is computed at the beginning of each iteration, and, since the objective
functions are dependent on the current design variable values, the composite KS function is
different for every iteration. Iterations 3 through 6 are shown in figures 16 through 19. Iteration 6
terminates at the point where the titanium inner truss member reaches its minimum size. The
remaining iterations make only small refinements to this design. The optimum solution is shown
in figure 20 as a contour plot of the design space about the optimum point. No further progress
can be made without either violating a yield stress constraint or increasing one of the objective

functions.
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CONCLUDING REMARKS

A new technique for converting a constrained optimization problem into an unconstrained
one using the Kreisselmeier-Steinhauser function was presented. This technique, referred to as the
KS method, can be categorized as a Sequential Unconstrained Minimization Technique similar to
penalty function methods. This new approach uses the KS function to combine one or more
objective functions with all of the problem constraints to form a single continuously differentiable
envelope function. This envelope function is then minimized using unconstrained optimization
techniques. This method offers several advantages compared to penalty function methods. One
advantage of the KS method is the inherent ability to optimize for multiple objectives, without the
need to perform an optimization on each objective function separately. Also, the design may be
started from a feasible or infeasible region of the design space, and the "draw-down" factor typical
of penalty function methods is eliminated.

The general purpose optimization computer program KSOPT, which solves constrained
optimization problems using the KS method, was also described. The KSOPT program can solve
single objective function and multiple objective function constrained minimization problems. It is
written in the FORTRAN programming language. A description of each subroutine in KSOPT is
provided. The program was developed with ease of use, a restarting capability, and modularity as
design goals, providing users with a simple interface to the KS optimization method. The
restarting capability provides the user with a convenient way to save the state of the optimization
procedure in the middle of a design, and continue with the optimization later from the point where
it was saved. Modularity of the program code allows the replacement of portions of the
optimization program such as an alternate search direction method or one-dimensional minimization
algorithm. The KSOPT program currently uses the DFP algorithm to find the unconstrained one-
dimensional search direction, and a three point quadratic polynomial approximation to find the
unconstrained minimum for each iteration. The user selectable termination criteria available are
relative and absolute change in the unconstrained KS function and an upper limit on the number of

optimization iterations that are allowed.
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Two sample optimization problems were presented to demonstrate the ability of the KS
method to solve single and multiple objective function problems. The first example was an
academic problem with a single objective function, two constraints, and one design variable. It
was chosen because the optimization method could be clearly displayed graphically. The second
example was the classical three bar truss structural optimization problem extended to include both
weight and cost as objective functions, with six constraints and two design variables. This
problem demonstrated the KS method's ability to find a compromise optimum solution while
considering opposing objectives and using truss members with different material properties. The
results of both example problems were shown graphically step by step to further describe the KS
method.
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APPENDIX A
KSOPT SUBROUTINE DESCRIPTIONS
This appendix describes each FORTRAN subroutine used in the general purpose
optimization program KSOPT. The first two subroutine descriptions, KSINIT and KSOPT, are
intended as a reference for the user in choosing what values to assign parameters and what storage
requirements are needed for the arrays. Most of the constant parameters have default values
indicated, and the default selections are always taken when the user supplies a zero value for a
parameter. The remaining subroutine descriptions are provided so that a user may gain an
understanding of the internal processes of the optimization program. Enough information is
provided for each subroutine so that modifications such as using an alternate one-dimensional
search algorithm are possible. This appendix corresponds to version 2.1 of the software, dated

February 7, 1989.
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SUBROUTINE KSINIT

PURPOSE: This subroutine initializes all of the optimization parameters based on user
supplied input and sets the default values of parameters the user does not
set. It also determines the amount of temporary storage required for these
parameters plus all of the arrays required during optimization and computes
the pointers to the start of each array. Finally, this subroutine scales the
initial design variable set, tests the design variables for side constraint
violations, and prints the initial design data.

USAGE: CALL KSINIT (X, XLB, XUB, SCALE, WORK, NDV, NCON,

INPUT PARAMETERS:
X

XLB

XUB

SCALE

WORK

NCON
NOBJ

20
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NOBJ, NSIDE, NSCALE, IPRNT, ITMAX, IGRAD,
ISDRST, RDFUN, ADFUN, FDELT, FDMIN,
RHOMIN, RHOMAX, RHODEL, NUNIT, IREQ)

Initial design variable array, dimensioned at least NDV
words long in the calling program.

Array of lower bounds on the design variables, dimensioned
at least NDV words long in the calling program.

Array of upper bounds on the design variables, dimensioned
at least NDV words long in the calling program.

Array of user supplied design variable scale values, which
are used to scale the design variable vector every NSCALE
iterations. It is dimensioned at least NDV in the calling
program.

A working array which holds the 56 values contained in the
KSCOMM common block, plus all of the temporary arrays
used during the optimization. WORK must be dimensioned
large enough in the calling program to hold all of these
values. The parameter IREQ, computed here, holds the
minimum size in single precision words that are required for
the proposed optimization problem. No test is made to
determine whether or not the WORK array is large enough,
so the user must check this value and adjust the dimension of
the WORK array accordingly. The array should be
dimensioned in the calling program according to the
following formula:

SIZE = 58 + 3*NOBJ + NCON + 11*NDV +
NDV*(NDV-1)/2 + NOBJ*NDV + NCON*NDV
+ 2*MAX(2*NDV ,NOBJ+NCON)

The number of design variables, which must be at least one.

The number of constraints, which may be zero.

The number of objective functions, which must be at least
one.



NSIDE

NSCALE

IPRNT

IGRAD

ISDRST

RDFUN

ADFUN

A non-zero value indicates that side constraints are to be
considered during optimization.

A flag indicating which design variable scaling option is to

be used.

=0 -- No scaling.

<0 --  Scale the design variables using the user supplied
vector SCALE.

>0 --  Scale the design variables using the current design
variable set as the scale factors. The design variables
are re-scaled every NSCALE iterations.

A flag indicating the print level, a 3 digit number.
Hundreds digit - One-dimensional search print:

0= noprint

1 = print alpha and KS function at each proposed alpha
= print design variable vector at each proposed alpha

2

Tens digit - Gradient print:

0 no print

1 print gradients of objective functions and constraints
for every iteration that design variable data is printed

nes Digit - Iteration data print:

no print

print initial and final iteration data

print all iterations

also include the proposed search direction and the
slope

also include the approximate Hessian matrix

¢
0
1
2
3
4

The maximum number of iterations. If a zero is input, the
default of 20 iterations is used.

A flag selecting the method of gradient computation.

0= gradients of the objective functions and constraints
are computed by finite differences from within
KSOPT.

1= the user supplies all gradient information.

The number of iterations that occur before the search
direction finding process is restarted using a steepest descent
method. If input as zero, the default of NDV+1 is used.

Termination criteria. When the relative change in the KS
function is less than this value for three consecutive
iterations, the optimization is terminated. If a zero is input,
the default of 0.0001 is used.

Termination criteria. When the absolute change in the KS
function is less than this value for three consecutive
iterations, the optimization is terminated. The default is
zero, which means this termination criteria is not used.
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FDELT

FDMIN

RHOMIN

RHOMAX

RHODEL

NUNIT

OUTPUT PARAMETERS:
IREQ

The step size used when computing finite difference
derivatives. If a zero is input, the default value of 0.01 is
used, meaning a 1 percent step size.

The minimum absolute step size used for finite difference
computations. If a zero is input, the default value of 0.0001
1s used.

The initial value of the RHO multiplier used in the KS
function. If a zero is input, the default value of 5.0 is used.

The maximum value of the RHO multiplier used in the KS
function. If a zero is input, the default value of 100.0 is
used.

This value is used to increment RHO during optimization. If
a zero is input, the default is computed based on the values
of RHOMIN and RHOMAX. In this case, RHODEL will be
between 10.0 and 40.0. The user however may set
RHODEL to any positive value. If the user wants RHODEL
to be zero, then the values for RHOMIN and RHOMAX
should be set equal to each other.

This is the FORTRAN file unit number to be used for all
printed output.

The required length of the WORK array.

NOTES: This subroutine is called by the user to set up an optimization problem. The
WORK array is loaded with initial values, and must not be altered until after
the completion of the optimization.

SUBROUTINES CALLED:
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SUBROUTINE KSOPT

PURPOSE: This subroutine is the main interface between the optimizer and the user. It
is called by the user, who supplies values of the objective functions,
constraints, and gradients if the appropriate options are selected. KSOPT
then performs the optimization, returning an updated vector of design
variables to the user whenever the objective functions, constraints, or
gradients need to be computed.

USAGE: CALL KSOPT (ISEL, X, OB]J, G, DF, DG, NOMAX, NGMAX,

INPUT PARAMETERS:
OBJ

G

DF

DG

NOMAX

NGMAX

WORK

OUTPUT PARAMETERS:
ISEL

WORK)

Array of objective functions, dimensioned at least NOBJ
words long in the calling program.

Array of constraints dimensioned at least NCON words long
in the calling program.

Matrix of the gradients of the objective functions. A two-
dimensional array with the first dimension being the
maximum number of objective functions and the second
dimension being the number of design variables.

Matrix of the gradients of the constraints. A two-
dimensional array with the first dimension being the
maximum number of constraints and the second dimension
being the number of design variables.

The first dimension of the DF array as defined in the calling
program.

The first dimension of the DG array as defined in the calling
program.

The work array as defined in subroutine KSINIT. This

array must not be changed by the user during the
optimization.

Flag requesting user supplied information.

0= Optimization terminated, user should exit.

1= User computes objective functions and constraints
corresponding to the current X-vector.

2= User computes gradients of the objective functions

and constraints corresponding to the current X-
vector. This option will only be used if IGRAD is
set to 1 (see KSINIT).

Current set of design variables.
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NOTES:

SUBROUTINES CALLED:

24

10

This subroutine is called in a loop combined with the user's analysis
procedures. The output parameter ISEL should be tested to determine what
action the user's program should take. An example is:

PROGRAM TEST
DIMENSION ...

CALL KSINIT (...)
CONTINUE

CALL KSOPT (ISEL,X,0BJ,G,DF,DG,NOMAX,NGMAX,WORK)
IF (ISEL .EQ. 1) THEN
... USER SUPPLIED ANALYSIS ...
GO TO 10
ENDIF
IF (ISEL .EQ. 2) THEN
... USER SUPPLIED GRADIENTS ...

GOTO 10
ENDIF

OTHERWISE ASSUME ISEL IS ZERO, CONTINUE WITH THE REST
OF YOUR PROGRAM.

KSANDO
KSCOMG
KSCOMP
KSDFP
KSDFUN
KSFUN
KSGRAD
KSONED
KSPRNT
KSSCAL
KSSIDE
KSUNSC
KSXLIM



SUBROUTINE KSCOMG
PURPOSE: Copy values from the WORK array to the common block KSCOMM. The
common block values are stored in the WORK array for ease of restarting
an optimization by requiring that only the WORK array be saved.
USAGE: CALL KSCOMG (WORK)
INPUT PARAMETERS:
WORK -- The work array as defined in subroutine KSINIT.
OUTPUT PARAMETERS:
none

NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE  KSCOMP
PURPOSE: Copy values from the common block KSCOMM to the WORK array. The
common block values are stored in the WORK array for ease of restarting
an optimization by requiring that only the WORK array be save.
USAGE: CALL KSCOMP (WORK)
INPUT PARAMETERS:
WORK -- The work array as defined in subroutine KSINIT.
OUTPUT PARAMETERS:
none

NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE KSPRNT

PURPOSE: This subroutine contains most of the print statements used in the optimizer.
It prints the user selected data pertaining to each iteration at the beginning of
the iteration.

USAGE: " CALL KSPRNT (IPFLAG, IPRNT1, IPRNT2, X, OBJ, G, DF, DG,

INPUT PARAMETERS:
IPFLAG

IPRNT1
IPRNT2
X

OBJ

G

DF

DG
ISID

SCALE
NOMAX
NGMAX
ITEMP

WORK
OUTPUT PARAMETERS:

none

ISID, SCALE, NOMAX, NGMAX, ITEMP, WORK)

A flag to indicate whether to print normal iteration data or the

final optimization data.
1= print the iteration data
2= print the final optimization data

Ones digit of the IPRNT flag from subroutine KSINIT.
Tens digit of the IPRNT flag from subroutine KSINIT.

Current set of design variables.

Current vector of objective function values.
Current set of constraints.

Current matrix of objective function gradients.
Current matrix of constraint gradients.

Integer array containing flags indicating whether side

constraints have been encountered for each design variable.

Current design variable scale values.
Number of objective functions.

Number of constraints.

A temporary integer array dimensioned at least 2 * NDV in

the calling program.
The work array as defined in subroutine KSINIT.

NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED:

KSUNSC
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SUBROUTINE  KSSIDE

PURPOSE: This subroutine checks the side constraints imposed on the design variables
and sets a vector of flags to indicate bounds activity. In addition, if a design
variable is at a side constraint, and the gradient of the KS function for that
particular design variable would move the design past the side constraint,
then that term of the gradient vector is set to zero.

USAGE: CALL KSSIDE (X, XLB, XUB, ISIDE, DFUN, NDV, NSIDE)
INPUT PARAMETERS:

X -- Current scaled design variable vector.

XLB -- Scaled lower bounds values for design variables.

XUB -- Scaled upper bounds values for design variables.

DFUN -- Array of gradients of the KS function.

NDV -- Number of design variables.

NSIDE -- Flag indicating whether side constraints are to be considered

(see KSINIT).
OUTPUT PARAMETERS:

ISIDE -- Integer array containing flags indicating whether side
constraints have been encountered for each design variable.

NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE KSSCAL

PURPOSE: This subroutine computes a new design variable scaling vector, if automatic
scaling was selected in subroutine KSINIT, and re-scales the design
variables and the upper and plower bounds.

USAGE: CALL KSSCAL (X, X0, XLB, XUB, SCALE, NDV, NSIDE, NSCALE)

INPUT PARAMETERS:
X
X0

XLB
XUB
SCALE
NDV
NSIDE

NSCALE

OUTPUT PARAMETERS:

-- Current scaled design variable vector.

-- Scaled design variable vector from beginning of the current
iteration.

-- Scaled lower bounds values for design variables.
-- Scaled upper bounds values for design variables.
-~ Vector of current design variable scale values.

-- Number of design variables.

-- Flag indicating whether side constraints are to be considered
(see KSINIT).

-- Flag indicating which design variable scaling method is
being used (see KSINIT).

X -- Current design variable vector with new scale factors
applied.
NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED:

none
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SUBROUTINE KSUNSC

PURPOSE: This subroutine converts the scaled design variable vector used in KSOPT
to the unscaled vector used by the user for analysis.

USAGE: CALL KSUNSC (X, SX, SCALE, NDV)
INPUT PARAMETERS:

SX -- Vector of scaled design variables.
SCALE  -- Vector of design variable scale factors.
NDV -- Number of design variables.

OUTPUT PARAMETERS:

X -- Current design variable vector.
NOTES: This subroutine in not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE KSXLIM

PURPOSE: This subroutine tests the current design variable vector against its upper and
lower bounds, and adjusts the design variables so that they do not violate
those bounds. This adjustment is primarily to compensate for numerical
errors that might result in a very slight violation of a bound.

USAGE: CALL KSXLIM (X, XLB, XUB, NDV, NSIDE)
INPUT PARAMETERS:

X -- Current scaled design variable vector.
XLB -- Scaled lower bounds values for design variables.
XUB -- Scaled upper bounds values for design variables.

&
<

Number of design variables.

NSIDE -- Flag indicating whether side constraints are to be considered
(see KSINIT).

OUTPUT PARAMETERS:

X -- Scaled design variable vector adjusted for bounds violations.
NOTES: This subroutine in not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE KS

PURPOSE: This subroutine computes the Kreisselmeier-Steinhauser function value
given a vector of input values. The algorithm used here offsets the input
values by the maximum input value to eliminate numerical overflow
problems.

USAGE: CALL KS (F, G, NG, RHO)

INPUT PARAMETERS:

G -- Vector of input values used to compute the KS function.

NG -

The number of input values in the G vector.

RHO

The multiplier used in the KS function.

OUTPUT PARAMETERS:

F -- The value of the KS function.

NOTES: This subroutine is not called by the user, but since it is a general purpose
subroutine for evaluating the KS function it may prove useful in other
applications.

SUBROUTINES CALLED: none
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SUBROUTINE KSD

PURPOSE: This subroutine computes the first partial derivative of the Kreisselmeier-
Steinhauser function given a vector of input values and the derivatives of
those values with respect to some user specified parameter. The algorithm
used here offsets the input values by the maximum input value to eliminate
numerical overflow problems.

USAGE: CALL KSD (DF, G, DGDX, NG, RHO)
INPUT PARAMETERS:

G -- Vector of input values used to compute the KS function.
DGDX -- Vector of first partial derivatives of the input values with
respect to some user specified parameter.

NG -- The number of input values in the G vector.
RHO -- The multiplier used in the KS function.

OUTPUT PARAMETERS:

DF -- The value of the first partial derivative of the KS function
with respect to some user specified parameter.

NOTES: This subroutine is not called by the user, but since it is a general purpose
subroutine for evaluating the first partial derivative of the KS function it
may prove useful in other applications.

SUBROUTINES CALLED: none
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SUBROUTINE
PURPOSE:

USAGE:

KSFUN

This subroutine computes the Kreisselmeier-Steinhauser function consisting
of the objective functions and constraints of the optimization problem. This
is the subroutine that computes the unconstrained function which is
minimized to solve the optimization problem.

CALL KSFUN (FUN, OBJ, G, RHO, FSCALE, OFFSET, NCON,

INPUT PARAMETERS:

OBJ

G

RHO
FSCALE
OFFSET
NCON
NOBJ
TEMP

OUTPUT PARAMETERS:

NOTES:

SUBROUTINES CALLED:
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NOBJ, TEMP)

Current vector of objective function values.
Current vector of constraint values.

The multiplier used in the KS function.
Vector of objective function scale values.
Vector of objective function offset values.
Number of constraints.

Number of objective functions.

Temporary array dimensioned at least NOBJ + NCON in the
calling program.

The value of the KS function based on the objective
functions and constraints.

This subroutine is not called by the user.

KS



SUBROUTINE KSDFUN

PURPOSE: This subroutine computes the first partial derivative of the Kreisselmeier-
Steinhauser function which consists of the objective functions and
constraints of the optimization problem. This is the subroutine that
computes the gradients of the unconstrained function which is minimized to
solve the optimization problem.

USAGE: CALL KSDFUN (DFUN, OBJ, FSCALE, OFFSET, DF, G, DG, RHO,
NDV, NCON, NOBJ, TEMP1, TEMP2)

INPUT PARAMETERS:

OBJ -- Current vector of objective function values.

FSCALE -- Vector of objective function scale values.

OFFSET  -- Vector of objective function offset values.

DF -- Current matrix of objective function gradients.

G -- Current vector of constraint values.

DG -- Current matrix of constraint gradients.

RHO -- The multiplier used in the KS function.

NDV -- Number of design variables.

NCON -- Number of constraints.

NOBJ -- Number of objective functions.

TEMP1 -- Temporary array dimensioned at least NOBJ + NCON in the
calling program.

TEMP2 -- Temporary array dimensioned at least NOBJ + NCON in the
calling program.

OUTPUT PARAMETERS:

DFUN -- Vector of the first derivatives of the KS function based on
the gradients of the objective functions and constraints.

NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: KSD
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SUBROUTINE
PURPOSE:

USAGE:

KSGRAD

This subroutine computes the gradients of the objective functions and
constraints by finite differences, if that option was selected in subroutine
KSINIT. Only a forward difference scheme is used, but tests are made to
determine if the finite difference step would violate an upper bound. In this
case, backward differencing is used for the particular design variable.

CALL KSGRAD (INEXT, X, X0, XLB, XUB, G, GO, OBJ, OBJ0, DF,
DG, SCALE, DELX, NDV, NCON, NOBJ, NSIDE,
FDELT, FDMIN)

INPUT PARAMETERS:

36

INEXT -- Flag indicating which design variable is currently being
perturbed for finite differencing. If zero, indicates the initial
call to this subroutine in which initial values of the design
variables, constraints, and objective functions are saved.

X -- Current scaled design variable vector.

X0 -- Vector holding a copy of the current design variables.

XLB -- Scaled lower bounds values for design variables.

XUB -- Scaled upper bounds values for design variables.

G -- Current vector of constraint values.

GO -- Vector holding a copy of the current constraints.

OBJ -- Current vector of objective functions.

OBJO -- Vector holding a copy of the current objective functions.

DF -- Current matrix of objective function gradients.

DG -- Current matrix of constraint gradients.

SCALE  -- Current design variable scale values.

NDV -- Number of design variables.

NCON -- Number of constraints.

NOBJ -- Number of objective functions.

NSIDE -- Flag indicating whether side constraints are to be considered
(see KSINIT).

FDELT -- Step size used to compute finite differences.

FDMIN  -- Minimum step allowed for finite differences.



OUTPUT PARAMETERS:

INEXT  -- Flagindicating which design variable has been perturbed for
finite difference calculations. If zero, then the finite
differencing is complete.

X -- Vector of scaled design variables with one variable perturbed
for finite difference calculations. If INEXT is zero, then this
is the current scaled design variable vector.

DELX -- The design variable step size being used for finite differences
on the current design variable.

NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: none
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SUBROUTINE  KSANDO

PURPOSE: This subroutine computes the scale factor and offset for each objective
function, which are used when assembling the KS function for the
unconstrained minimization problem.

USAGE: CALL KSANDO (OBJ, G, FSCALE, OFFSET, NCON, NOBJ)
INPUT PARAMETERS:

OBJ -- Current vector of objective functions.
G -- Current vector of constraints.

NCON -- Number of constraints.

NOBIJ -- Number of objective functions.

OUTPUT PARAMETERS:

FSCALE -- Vector of objective function scale values.
OFFSET -- Vector of objective function offset values.
NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED: none
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SUBROUTINE KSONED

PURPOSE: This subroutine performs a one-dimensional minimization on the
unconstrained KS function given search direction. Termination of the
minimization occurs when the minimum of a quadratic curve placed through
three points is found to within a preset tolerance.

USAGE: CALL KSONED (INEXT, JTRY, X, X0, XLB, XUB, FUN, FUNO, S,

INPUT PARAMETERS:
INEXT

X0

XUB
FUN
FUNO

SLOPE
NDV
NSIDE
NUNIT
IPRNT3
SCALE
TEMP

OUTPUT PARAMETERS:
INEXT

SLOPE, ALPHA, ALPMAX, NDV, Al, A2, A3, Fl,
F2, F3, FTEST, NSIDE, LIMIT, NUNIT, IPRNT3,
SCALE, TEMP, ISDFLG)

Flag indicating which part of this subroutine is to be
executed at this time. This is used to control what phase of
the one-dimensional search is currently in use.

Current scaled design variable vector.

Scaled design variables at start of the current iteration.
Scaled lower bounds values for design variables.

Scaled upper bounds values for design variables.

Current value of the unconstrained KS function.

Value of KS function at start of the current iteration.

Vector containing the search direction to be used for the one-
dimensional minimization of the unconstrained KS function.

Initial slope of the search direction vector.

Number of design variables.

Flag indicating whether side constraints are to be considered.
FORTRAN file unit number to be used for printed output.
Hundreds digit of the IPRNT flag from subroutine KSINIT.,
Current design variable scale values.

Temporary array dimensioned at least NDV in the calling
program.

Flag indicating which part of this subroutine is to be
executed the next time it is entered. If zero, the one-
dimensional minimization is complete.
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NOTES:

Al

A3

F1

F2

F3

FTEST

LIMIT

ISDFLG

A counter to track how many times a quadratic interpolation
has been performed during the one-dimensional
minimization. If this counter reaches 15, the minimization is
terminated for this iteration.

The scaled design variable vector which has been stepped in
the search direction. This is the next trial design point.

The distance in the one-dimensional search direction that the
design variables have been moved.

The maximum distance that can be moved in the search
direction before encountering a side constraint.

The first abscissa of the three point quadratic curve which is
interpolated for a minimum. This variable holds the distance
alpha for point 1.

The second abscissa of the three point quadratic curve which
is interpolated for a minimum. This variable holds the
distance alpha for point 2.

The third abscissa of the three point quadratic curve which is
interpolated for a minimum. This variable holds the distance
alpha for point 3.

The first ordinate of the three point quadratic curve which is
interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point Al.

The second ordinate of the three point quadratic curve which
is interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point A2.

The third ordinate of the three point quadratic curve which is
interpolated for a minimum. This variable holds the
unconstrained KS function value corresponding to point A3.

The value of the unconstrained function interpolated from a
three point quadratic curve.

A flag indicating when a new side constraint is encountered.
0= No new side constraints encountered
1= One or more new side constraints encountered

A flag indicating whether or not to restart the DFP algorithm
with the steepest descent method. A value of zero means to
restart the DFP.

This subroutine is not called by the user.

SUBROUTINES CALLED:
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SUBROUTINE  KSDFP

PURPOSE: This subroutine computes the one-dimensional search direction for the
unconstrained minimization problem using a modified version of the
Davidon-Fletcher-Powell (DFP) search algorithm. The modified method
keeps track of side constraints and restarts the DFP algorithm with a
steepest descent method whenever a side constraint is encountered. As long
as the design stays on a side constraint, the DFP algorithm is used as usual
but the component of the search direction corresponding the design variable
which is at a side constraint is forced to be zero.

USAGE: CALL KSDFP (X, ISIDE, ISACT, DFUN, NDV, S, SLOPE, Y, P, H,

INPUT PARAMETERS:
X
ISIDE

ISACT

DFUN

ISDFLG

OUTPUT PARAMETERS:

ISDFLG)

Current scaled design variable vector.

Integer array containing flags indicating whether side
constraints have been encountered for each design variable.

Integer array which is the same as the ISIDE array except
that this array indicates which side constraints were active
the last time the DFP algorithm was restarted with the
steepest descent method.

Vector of the first derivatives of the KS function based on
the gradients of the objective functions and constraints.

Number of design variables.
The search direction vector from the previous iteration.

The vector of gradients of the unconstrained function being
minimized from the previous iteration.

The vector of scaled design variables from the previous
iteration.

The lower triangular part of the partial Hessian matrix,
stored as a vector in row order.

A flag indicating whether or not to restart the DFP algorithm

with the steepest descent method. A value of zero means to
restart the DFP.

The next trial scaled design variable vector.

If a steepest descent restart was performed, this vector
contains the currently active side constraint flags.
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The current search direction vector, normalized to unit
length.

SLOPE  -- The slope of the normalized search direction vector.
Y -- A copy of the vector of gradients of the unconstrained
function being minimized.
p -- A copy of the current scaled design variable vector.
H -- The lower triangular part of the partial Hessian matrix,
stored as a vector in row order.
ISDFLG -- A flag indicating whether or not to restart the DFP algorithm
with the steepest descent method. This flag is reset to zero if
a steepest descent restart was performed.
NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED: KSHMUL
KSVPRD
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SUBROUTINE  KSQUAD

PURPOSE: This subroutine computes the minimum of a quadratic curve passing
through three points. The middle point of the curve must be less than the
two end points.

USAGE: CALL KSQUAD (Al, A2, A3, F1, F2, F3, ASTAR, FTEST)

INPUT PARAMETERS:

Al -- The abscissa of the first point on the curve.
A2 -- The abscissa of the second point on the curve.
A3 -- The abscissa of the third point on the curve.
F1 -- The ordinate of the first point on the curve.
F2 -- The ordinate of the second point on the curve.
F3 -- The ordinate of the third point on the curve.

OUTPUT PARAMETERS:
ASTAR  -- The interpolated value of the abscissa.
FTEST -- The interpolated value of the ordinate.
NOTES: This subroutine is not called by the user.
SUBROUTINES CALLED:; none



SUBROUTINE  KSQMIN

PURPOSE: This subroutine determines which three points of the four provided to use
for the next quadratic interpolation.

USAGE: CALL KSQMIN (A1, A2, A3, ALPHA, F1, F2, F3, FUN)

INPUT PARAMETERS:
Al

A2

A3

ALPHA
F1

F2

F3

FUN
OUTPUT PARAMETERS:

The abscissa of the first point on the previously interpolated
curve.

The abscissa of the second point on the previously
interpolated curve.

The abscissa of the third point on the previously interpolated
curve.

The previously interpolated value of the abscissa.

The ordinate of the first point on the previously interpolated
curve.

- The ordinate of the second point on the previously

interpolated curve.

The ordinate of the third point on the previously interpolated
curve.

The previously interpolated value of the ordinate.

Al -- The new abscissa of the first point of the quadratic curve.

A2 -- The new abscissa of the second point of the quadratic curve.

A3 -- The new abscissa of the third point of the quadratic curve.

F1 -- The new ordinate of the first point of the quadratic curve.

F2 -- The new ordinate of the second point of the quadratic curve.

F3 - The new ordinate of the third point of the quadratic curve.
NOTES: This subroutine is not called by the user.

SUBROUTINES CALLED:
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SUBROUTINE KSHMUL

PURPOSE: This subroutine multiplies a lower triangular matrix by a vector, returnin ga
vector. The matrix is usually the Hessian matrix, and the multiplied vector
is usually the vector of gradients of the unconstrained function being
minimized. The resulting vector would then be the search direction vector.

USAGE: CALL KSHMUL (A, B, X, NROW)
INPUT PARAMETERS:

A -- The lower triangular part of the matrix, stored as a vector in
row order. This is the Hessian matrix for this application.

B -- The vector to be multiplied by A. For this application, it is a
vector of gradients of the unconstrained function being
minimized.

NROW -- The number of rows and columns in the matrix. This is the

same as the number of design variables for this application.
OUTPUT PARAMETERS:
X -- The vector resulting from the multiplication of matrix A by
vector B. For this application, it would be the search

direction vector.

NOTES: This subroutine is not called by the user, but is a generic routine which may
be useful in other applications.

SUBROUTINES CALLED: none
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SUBROUTINE  KSVPRD

PURPOSE: This subroutine performs the dot product of two vectors.
USAGE: CALL KSVPRD (X, Y, PROD, NROW)

INPUT PARAMETERS:

X -- The first vector to by multiplied.
Y -- The second vector to be multiplied.
NROW -- The number of points in each vector.

OUTPUT PARAMETERS:
PROD -- The dot product of vectors X and Y.

NOTES: This subroutine is not called by the user, but is a generic routine which may
be useful in other applications.

SUBROUTINES CALLED: none
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COMMON BLOCK KSCOMM

PURPOSE:

PARAMETERS:

This common block holds all of the parameters required by the optimization
routine. The common block is copied into the WORK array every time
subroutine KSOPT returns to the user, and saving the contents of the
WORK array will allow the optimization problem to be restarted at a later
time from where it left off. This is particularly important when the
optimizer and the analysis procedure cannot reside in the computer's
memory at the same time.

IFSCL -- Pointer to the beginning of the objective function scaling
VECtOr.

IFOFF -- Pointer to the beginning of the objective function offset
VECtOr.

ISX -- Pointer to the beginning of the scaled design variable vector.

ISX0 -- Pointer to the beginning of the scaled design variable vector

saved at the beginning of the current iteration. Used to
compute finite difference gradients.

ISXLB -- Pointer to the beginning of the scaled lower bounds vector.

ISXUB  -- Pointer to the beginning of the scaled upper bounds vector.

ISCL -- Pointer to the beginning of the design variable scaling
VeCtor.

IGO -- Pointer to the beginning of the constraint vector saved at the

beginning of the current iteration. Used to compute finite
difference gradients.

IDF -- Pointer to the beginning of the gradient vector of the
unconstrained KS function being minimized.

ISLP -- Pointer to the beginning of the one-dimensional search
direction.

IOBJO -- Pointer to the beginning of the objective function vector

saved at the beginning of the current iteration. Used to
compute finite difference gradients.

IY -- Pointer to the beginning of a vector where the gradients of
the unconstrained KS function from the previous iteration
are stored. Used to compute the search direction from the
DFP algorithm,

IP -- Pointer to the beginning of a vector where the scaled design

variables from the previous iteration are stored. Used to
compute the search direction from the DFP algorithm.
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IH

ISIDE

ISACT

IDOBJ

IDG

ITMP1

ITMP2

INEXT

INEXT

JSEL

ITCNT
ICNTR

ICNTA

ISDFLG

ISDRST

Pointer to the beginning of the vector where the lower
triangular part of the approximate Hessian matrix is stored.

Pointer to the beginning of an integer vector containing flags
indicating whether side constraint boundaries have been
encountered for each design variable.

Pointer to the beginning of an integer vector containing the
same flags as the ISIDE vector, except that this vector
corresponds to the side constraint activity the last time the
DFP algorithm was restarted with the steepest descent
method.

Pointer to the beginning of the vector containing the
gradients of the objective functions with respect to the scaled
design variables.

Pointer to the beginning of the vector containing the
gradients of the constraints with respect to the scaled design
variables.

Pointer to the beginning of a temporary scratch vector
dimensioned as the maximum of 2 * NDV or NCON +
NOBJ.

Pointer to the beginning of a temporary scratch vector
dimensioned as the maximum of 2 * NDV or NCON +
NOBJ.

Flag usually used to indicate which design variable is begin
perturbed for finite difference gradient calculations. During
a one-dimensional search, it is used to indicate which part of
subroutine KSONED is to executed next.

A counter indicating how many quadratic minimizations have
been attempted in the current one-dimensional search.

Flag indicating which part of subroutine KSOPT is to be
executed next.

The number of the current iteration.

A counter indicating how many consecutive iterations have
satisfied the termination criteria for relative function change.

A counter indicating how many consecutive iterations have
satisfied the termination criteria for absolute function change.

Flag indicating when the DFP algorithm is to be restarted
with a steepest descent method. When the flag is zero, a
restart is performed.

The number of iterations between steepest descent restarts.



IFNCL

NUNIT

NCON

NOBJ
NSIDE

NSCALE

IPRNT

IGRAD

DRHO

RHOMAX
FUNO

SLOPE

DELX

ALPHA

A counter indicating the total number of times the objective
functions and constraints have been computed by the user.

The FORTRAN unit number that all printed output goes to.
The number of design variables.

The number of constraints.

The number of objective functions.

A flag indicating whether side constraints are to be
considered. Zero means no side constraints.

A flag indicating which design variable scaling option is to
be used (see KSINIT).

A flag indicating what level of printed output to use (see
KSINIT).

The maximum number of iterations allowed.

A flag selecting the method of gradient computation (see
KSINIT).

The same as RDFUN (see KSINIT).
The same as ADFUN (see KSINIT).
The same as FDELT (see KSINIT).

The same as FDMIN (see KSINIT).

The current value of the multiplying factor used in the KS
function.

The amount by which RHO is incremented during the
optimization.

The maximum value the factor RHO may have.

The value of the unconstrained KS function at the beginning
of the current iteration.

The slope of the search direction obtained with the DFP
algorithm,

The increment applied to a design variable for computing
finite difference gradients.

The distance moved during the current one-dimensional
search.
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ALPMAX

& B

F2

F3

FTEST

LIMIT

The maximum distance that may be travelled during the
current one-dimensional search before a side constraint is
encountered.

Holds a value of ALPHA used for quadratic minimization.
Holds a value of ALPHA used for quadratic minimization.

Holds a value of ALPHA used for quadratic minimization.

Holds a value of the unconstrained KS function used for
quadratic minimization.
Holds a value of the unconstrained KS function used for
quadratic minimization.
Holds a value of the unconstrained KS function used for
quadratic minimization.

Holds the interpolated value of the unconstrained KS
function resulting from a quadratic minimization.

A flag indicating when a side constraint has been
encountered during the current one-dimensional search.
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APPENDIX B
GENERIC FORTRAN EXAMPLE PROGRAM OUTLINE USING KSOPT

PROGRAM EXAMPLE
DIMENSION WORK(500)

The WORK array holds all of KSOPT's constants and arrays for restarting
purposes. The user should never alter this array.

DIMENSION X(5), OBJ(3), G(12)

X is the design variable array.
OBl is the objective function array.
G is the constraint array.

DIMENSION XLB(5), XUB(5), SCALE(5)

XLB is the design variable lower bounds array.
XUB is the design variable upper bounds array.
SCALE is the design variable scaling array.

DIMENSION DF(3,5), DG(12,5)

DF is the matrix of gradients of the objective functions.
DG is the matrix of gradients of the constraints.

NDV
NCON
NOBJ
NSIDE
NSCALE
IPRNT
IGRAD

(W]

— O W=
]
N

T T T T I T |

The above parameters do not have default values. See appendix A
for a complete description of each one.

ITMAX
ISDRST
RDFUN
ADFUN
FDELT
FDMIN
RHOMIN
RHOMAX
RHODEL

Sooocooo00
SCOOoOOoOOO

The above parameters are all set to zero, and their default values
will be used by KSOPT. See appendix A for a complete description
of each one.
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NUNIT =6
Printed output is directed to FORTRAN unit number 6

X(1) ... X(5) =
XLB(1) ... XLB(S) =
XUB(1) ... XUB(G) =

SCALE(1l) ... SCALE(®)

Initialize the design variable vector, the upper and lower
bounds, and if necessary, the design variable scaling vector.

CALL KSINIT (X, XLB, XUB, SCALE, WORK, NDV, NCON, NOBJ, NSIDE,
NSCALE, IPRNT, ITMAX, IGRAD, ISDRST, RDFUN, ADFUN,
FDELT, FDMIN, RHOMIN, RHOMAX, RHODEL, NUNIT, IREQ)

KSINIT is called to initialize the KSOPT optimization procedure.

NOMAX
NGMAX

3
12

NOMAX is the first dimension of array DF above.
NGMAX is the first dimension of array DG above.

CONTINUE
CALL KSOPT (ISEL, X, OBJ, G, DF, DG, NOMAX, NGMAX, WORK)
KSOPT is called in a loop to solve the optimization problem.

IF (ISEL .EQ. 0) THEN
STOP " The optimum has been found "
ENDIF

IF (ISEL .EQ. 1) THEN
Compute the objective functions and

constraints for the current design variables.
ENDIF

IF (ISEL .EQ. 2) THEN
Compute the gradients of the objective
functions and constraints with respect to the

current design variables.
ENDIF

GO TO 10
END



Example Problem 1 Case 1 Case 2 Case 3
Number of lterations 12 17 19
Number of Analyses 121 156 211
Design Variable Value 56518 5.7562 5.7781
Constraint 1 -2.2512 -2.2974 -2.3087
Constraint 2 -0.0635 -0.0176 -0.0061
Obijective Function 0.7061 0.7030 0.7025
Intial RHO Value 20 4] 0
Final RHO Value 0] 80 200

Table 1. Final Optimization Results for Example Problem 1 for Three Ranges of Rho.

Example Problem 2 Weight Only CostOnly  Weight and Cost
Number of Iterations 9 6 14
Number of Analyses 9% 66 171

Outer Member Area (sq. in.) 0.4456 - 0.5553 0.5553
Inner Member Area (sq. in.) 0.3977 0.0010 0.0010
Yield Stress Constraint 0.0007 -0.0004 0.0068
Truss Weight (pounds) 419 443 443
Truss Material Cost (dollars)  17.36 1.86 1.86

Table 2. Final Optimization Resutts for the Three Bar Truss Example Problem.
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Figure 1a. Example of KS Function Characteristics for Various Rho Values.
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Figure 1b. Detail of KS Function for Increasing Values of Rho.
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START l

Initialize design variables,
lower and upper bounds,
scale factors, and
optimization parameters.

Call subroutine KSINIT

Call subroutine KSOPT

YES

YES

NO

Figure 3. Block Diagram of an Optimization Procedure Using the KSOPT Program.

Perform analysis using design
variables supplied by KSOPT.
Compute objective functions
and constraints.

Compute gradients of objective
functions and constraints with
respect to design variables
supplied by KSOPT.




l START '

i KSINIT

Initialize internal parameters.
Check for bounds violations. KSOPT

Begin an iteration using
current design variables. |

y

! Get objective functions, constraints,
. and their gradients with respect to the
/ current design variables from the user.

Compute composite KS function and
gradients of composite KS function with
respect to the current design variables.

i
Calculate search direction vector S.

i

Calculate trial design variable vector and get |
objective functions and constraints from user. [*

Compute composite KS function and loop
until one-dimensional minimum is found.

Has
design satisfied
termination
criteria?

Figure 4. Flow Chart of the KSOPT Optimization Program.
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Figure 5a. One-Dimensional Design Problem Starting at Point a.
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Figure 7a. One-Dimensional Design Problem Starting at Point c.
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10 Inches 10 Inches

A2
(Titanium)

10 Inches

20000 Pounds 20000 Pounds
Material Properties Steel Titanium
Young's Modulus (psi) 30,000,000 15,500,000
Density (pounds/cu. in.) 0.282 0.160
Cost (dollars/pound) 0.41 25.00
Tensile Yield Stress (psi) 36,000 110,000
Compressive Yield Stress (psi) 27,000 82,500

Figure 10. Three Bar Truss Example Problem with Material Properties Specified.
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Figure 11. Contour Plot of Three Bar Truss Member Weight.
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Figure 12. Contour Plot of Three Bar Truss Member Cost.
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Figure 13. Contour Plot of Quter Truss Member Tensile Stress Constraint.
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Figure 14. Contour Plot of the Three Bar Truss Design Space for Iteration 1.
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Figure 15. Contour Plot of the Three Bar Truss Design Space for Iteration 2.
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Figure 16. Contour Plot of the Three Bar Truss Design Space for Iteration 3.
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Contour Plot of the Three Bar Truss Design Space for Iteration 4.
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Figure 18. Contour Plot of the Three Bar Truss Design Space for Iteration 5.
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