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1.0 Introduction

This final report is prepared by Adiabatics, Inc. for the National Aeronautics
and Space Administrations' Lewis Research Center (NASA LeRC) per an SBIR
contract No. NAS3-24880 as amended in Modification No. 2. This report
documents the two-year SBIR Phase II program, from July 10, 1986 to September
10, 1988, to develop and test a prototype low-heat-rejection rotary engine.

This SBIR Phase II program was a result of the studies performed in the Phase I
contract entitled "Adiabatic Wankel-Type Rotary Engine" completed in 1985.
Under Phase I, an analytical study, significant results in areas such as
decreased  fuel consumption and increased power output were cited when
thermal -barrier (insulative) coatings were applied to internal components of
the rotary engine, and with the subsequent removal of the cooling system.

The work in this Phase II program was the first step in applying the ideas and
theory elaborated in Phase I to an actual engine. The objective of this Phase
IT project was to design, fabricate, procure, assemble, and test a prototype
low-heat-rejection rotary engine to see if the results of Phase I are actual
and that this type of engine can run dependably.

2.0 EXECUTIVE SUMMARY

This SBIR Phase II program accomplished the objective of advancing the
technology of the Wankel type rotary engine for aircraft applications through
the use of adiabatic engine technology. Curtiss-Wright and John Deere as part
of their "Technology Enablement" program for aircraft rotary engines have
identified a need for reduced heat rejection as a key technology for a highly
advanced aircraft engine [1].

Based upon the results of this program technology is in place to provide a
rotor (using either the available 17-4PH stainless steel rotor or preferably a
titanium alloy rotor) and side and intermediate housings (of preferably
titanium alloy) with proven thermal barrier coatings. These components by
themselves make a large improvement in the engine package by substantially
reducing the net heat transfer and thus reducing the size and weight of the
cooling systems (lube and coolant) and will also improve the efficiency of the
engine by improving the combustion through increased cycle temperatures. To
achieve the best overall powerplant package a single high temperature fluid
combining lubrication and rotor housing cooling should be incorporated.
Incorporation of a compounding cycle such as turbo-compounding or a bottoming
cycle will be even more attractive and show larger benefits as more heat is
diverted from coolant to the exhaust.

A detailed cycle analysis of the NASA 1007R Direct Injection Stratified
Charge (DISC) rotary engine was performed by ADAPCO, Inc. utilizing the DISC
cycle simulator developed by MIT under a program sponsored by NASA. The
analysis was calibrated by matching measured performance data supplied by John
Deere. The analysis was then conducted for two cases consisting of both an
uncooled engine with thermal barrier coatings on cast iron engine housings and
an intermediate case with thermal barrier coatings on water cooled aluminum
housings with thermal barrier coatings on the rotor in both cases. A finite
element model for the 1007R rotor and rotor housing was developed for each of
the three cases (standard water cooled, thermal barrier coatings with water
cooling, and thermal barrier coating with no cooling). Detailed thermal and



stress analyses were then performed for these three cases utilizing boundary
conditions as defined by the respective cycle simulations. This study
concluded that applying thermal barrier coatings to the rotor should be
successful and that it was unlikely that the rotor housing could be
successfully run with thermal barrier coatings as the thermal stresses were
excessive,

Concurrently with the analytical study all of the major internal engine
components including the rotors, rotor housings and side housings have been
coated with thermal barrier coatings and the components durability tested in a
racing Mazda engine for over 300 test hours. The Mazda engine was utilized for
this design and durability screening effort rather than the 1007R engine for
reasons of availability and cost effectiveness and because it runs hotter that
the DISC engine which serves to accelerate the testing.

The results of the iterative design, fabrication and testing cycles are
that successful designs for both the rotor and side housings with thermal
barrier coatings are proven and that the use of thermal barrier coatings on the
rotor housing appears to raise the inner surface temperature to the point where
available liquid lubricants are 1inadequate to lubricate the apex seal
interface.

Based upon the test results, components have been supplied to NASA for the
NASA 1007R engine which have been modified with thermal barrier coatings. The
plan is for NASA to have the components engine tested by John Deere’s Rotary
Engine Division to determine their performance in the DISC engine.

3.0 Background-Phase I

The SBIR phase I program was an analytical study of the potential benefits of
the adiabatic Wankel-type engine and advanced heat engine concepts. Also, the
design of adiabatic engine components, methods of applying ceramic (insulative)
materials, and the technical feasibility of an adiabatic Wankel engine concepts
were presented. The baseline engine selected for this study was the single
rotor 1007R engine built by John Deere and owned by NASA. The 1007R is a
highly advanced, stratified charge, 0.7 liter prototype engine.

The results of the Phase I study confirmed a significant improvement in the
performance of the Wankel engine when modified to be adiabatic. Also, advanced
concepts like  turbocompounding, advanced turbocharging, high compression
ratios, faster combustion, and reduced leakage showed significant improvements
in engine performance. An overall improvement of 25.5% in ISFC and 34.5% in
power output was predicted for the 1007R engine when 100% adiabatic and
turbocharged. The potential application and performance benefits of the
low-heat-rejection Wankel engine are extremely attractive for future advanced
power plants for aircraft, automotive, and industrial engines. These
discoveries and potential benefits are what prompted the funding of Phase II.

4.0 Techmical Approach

To meet the objectives of this Phase II project a management plan was developed
whereby Phase II was broken into two separate parts. The first part to be
performed by Adiabatics Inc. consists of development of insulated components.
A Management Plan submitted by Adiabatics Inc. at the beginning of the program
is found in Appendix A. The second part consists of testing the fully
insulated engine which will be performed by John Deere at a later date.



To meet the first contract objectives, a nine-task plan was developed is as
follows:

Tasks
1. Engine Selection and Baseline Testing,
2. Thermal Analysis,
3. Adiabatic Component Design,
4. High Temperature Apex/Side Seal Tribology,
5. Prototype Engine-Procurement/Assembly-Mazda 13,B
6. Engine Testing,
7. Prototype Engine-Procurement/Assembly-NASA 1007R,
8. Exhaust Energy Utilization. and
9. Reporting.
5.0 Discussion

The following sections detail each of the tasks from start to finish.

5.1.0 Task 1 Engine Selection and Baseline Testing

An economic and feasibility study was to be made to select the best rotary
engine available for modification to an adiabatic design. After selection of
the engine, an engine test plan was to be conceived and baseline testing
commenced. The candidate engine needed to be both easy and economical to
modify while offering as much control of the hot combustion as possible and
capable of producing enough power output to meet NASA's requirements for use in
light aviation.

5.1.1 Engine selection

Engine selection was based on the following criteria:

' Ease of modification and compatibility with insulated coating,

° Lowest cost,

'3 Availability of spare parts,

° Fuel 1introduction (fuel 1injection into the combustion chamber being

preferred), and

. Power output.
A survey of the available prototype and commercial Wankel rotary engines showed

the following existing engines:
Engine Comment

NASA 1007R Research Rig e Only one available
with John Deere
e Expensive
e Fuel injection system meets
requirements



John Deere RC1-60 e Not Available
(Curtiss-Wright)

Wedtech 312 c.c. e Small size
® Not stratified-
charge

e Combustion chamber
for natural gas fuel

OMC Rig Engine e OMC not interested
at NASA in supporting
Norton/Teledvne e Not Stratified charge

® ©5Small size
® Teledyne not interested

Mazda 13B (2 rotor) e Low cost
® Parts easily available
e Not stratified charge

Mazda 13B (1 rotor) e Expensive to
Research Rig fabricate
® NASA research rig
given to NSRDC

Ot the above engines, only the John Deere 1007R offered the desired power
output and fuel introduction system. The other engines are either not
available. too small, or not fuel injected. The problem with the 1007R is it
is a prototype engine and only one existed which was being used by John Deere.

The other engine which held some promise, was the naturally aspirated two-rotor
Mazda 13B. Though this engine is not fuel injected, parts are readily
available at 1low cost. Also, the Mazda has a power range comparable to the
1007R meaning both engines meet the requirements set by NASA.

The conclusion of this survey was to use the two-rotor Mazda 13B engine for
component screening (mechanical screening as opposed to performance
development) because of its low cost, availability of parts, and the maturity
of the engine. Once components were successfully tested for durability and
integrity in the Mazda, the knowledge gained would be used to modify parts for
a second engine - the NASA 1007R. Assembly and testing of the uncooled
adiabatic NASA engine will be under a contract performed at John Deere (the
1007R  will then be the advanced engine which strives for the goals outlined in
this SBIR Phase I report).

This selected approach was reviewed with Mr. William Hady at NASA LeRC on
November 12, 1986 which was followed by a Management Plan which detailed the
program.

A two-rotor Mazda 13B engine was purchased from Racing Beat Inc. of Anaheim.
California. The configuration of the engine is listed in the following table:



Table 1. Configuration of the Mazda 13B Engine

Model Mazda 13B

Displacement 1.308L(80 Cu In)

Rated Power 132KW (177 Horsepower)
Intake Ports 6 Side Ports (2 Valved)
Exhaust Ports 2 Peripheral

Exhaust Manifold Racing Type Header
Corporation Dellorto 48 DHLA (Dual

side draft)

Ignition Mazda Breakerless
distributor (Integral
Electronics)

Ignition Coils Mazda Transistor Ignition
Type
Flywheel Lightweight Steel Type

5.1.2 Engine Test Plan

With the test engine selected, the next step was to develop an engine test plan
(Appendix B) consisting of the following:

Descriptions of configurations being tested,

Test conditions,

Parameters to be measured,

Instrumentations, and

Detailed location of the thermocouples in the rotor housing and
intermediate housing.

5.1.3 Baseline Testing

The first test was to baseline the engine and refine the test facility. The
data gathered from the baseline test (Appendix C) were used for comparison
purposes in later tests to help evaluate changes brought about by testing
different insulated components. The baseline test ran approximately 23 hours.

The baseline test consisted of six (6) basic operations. The first three
operations were disassembly, inspection, and reassembly. The Mazda engine was
disassembled as specified in the 1987 Mazda shop manual. While disassembled,
the components were inspected as specified in the Mazda shop manual .

Before reassembly, the standard rotor housings and intermediate housing were
replaced with new housings which had been machined for thermocouple
installation. These  were the only internal components changed for
instrumentation and should not effect engine performance. Engine assembly was
done as specified in the Mazda shop manual .



The fourth step was to install the engine in test cell No. 2 and connect it to
the Eaton eddy-current-type dynamometer. All instrumentation was installed in
a standard manner and calibrated. Pictures of the Mazda engine mounted in the
test cell can be seen in figure 5.1.3-1.

The fifth operation was the test itself. Engine testing started with a
compression test, The compression tester takes six (6) measurements (one for
each rotor face). Next, the engine was started and run through the break-in

cycle which consisted of running at varying speeds with light to no-load.
During this run all systems were checked to make sure they were functioning
properly.

A test was to be run to develop the torque curve. From the torque curve 5 test
speeds were to be selected. Each of the five speeds were then to be run at
25%, 50%, 65%, 75%, and 100% of full load. All the parameters listed in the
engine test plan (found Appendix B) were to then be recorded at the various
speeds and loads.

The last operation was to be disassembly and re-inspection once the engine
completed testing.

Although test conditions were 1ideal problems were encountered. The engine
developed excessive vibration at high speeds and problems were encountered
controlling the dynamometer. This reduced testing speeds and loads. Upon
post-disassembly a source of this problem was found. A needle type thrust
bearing on the crankshaft had become pinched which inhibited its "free"
rotation. Another source of the problem was found part way through the second
test (the coated intermediate housing test). A factory mislabeled distributor
caused the leading and trailing spark plugs to be fired in a backwards order.
In other words, the trailing spark plugs fired first. These problems were
corrected but their effect on the data remains unknown. Therefore, all
comparisons of data are made under 1like conditions. For example, the data
gathered from testing the engine with insulated rotors is compared with data
gathered from testing with the insulated intermediate housing (with correct
ignition in both cases). The baseline test is compared with the insulated
intermediate housing test when both had incorrect ignition.

5.2 Task II Thermal Analysis

On April 1, 1987 a subcontract was let to (Appendix D) ADAPCO, Inc. for the
thermal analysis on the 1007R engine. The purpose of this analytical effort
was to determine the structural implications of an "adiabatic" direct-injection
stratified charge (DISC) rotary engine. The analysis was to predict a thermal
history to provide the basis for calculating the distortion, allowable
clearances, and thermal stresses. These calculated stresses were then to be
combined with rotating stresses and pressure loading stresses to provide input
for component design.

The method for conducting this analysis was to be as follows:
A NASA to furnish 1007/R drawings and test data to ADAPCO,
B NASA to furnish MIT stratified charge combustion model (DISC),

C ADAPCO to incorporate 1007R geometry and run the MIT Model to generate
boundary conditions,
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D ADAPCO to use John Deere data to verify model,

E ADAPCO to generate FE model of 1007R rotor and rotor housing,
F ADAPCO to use boundary conditions from C and run FE model, and
G ADAPCO to prepare report.

A copy of ADAPCO's final report number 44-01-001 dated March 4, 1988 entitled
"Heat Transfer and Structural Analysis of a Thermal Barrier Coated Direct
Injection Stratified Charge Rotary Engine" 1is hereby submitted to NASA as
appendix to this report.

The conclusion of ADAPCO’'s report was that the insulated rotor was the most
likely component to survive in the adiabatic engine (though it showed high
levels of stress in the coating around the "lip" of the combustion bowl). The
stock aluminum 1007R rotor housing (coated with a combination of insulation and
wear surface coating) when run with coolant was predicted as having a likely
chance of failure. Due to the difficulty of applying thermal barrier coatings
on aluminum, a coated cast iron rotor housing was modeled as an alternative to
aluminum. The simulation predicted that the only outcome of using a coated
cast iron rotor housing in a uncooled engine was coating failure. This failure
was chiefly predicted because of the thermal expansion mismatches between the
insulative coating on the trochoid contour and the cast iron.

5.3 Task III Adiabatic Component Design

Adiabatic component design was included in the subcontract with ADAPCO. Once
ADAPCO had completed a computer simulation run of the baseline 1007R engine,
ADAPCO was to proceed and modify the models for combustion and the FE models
for the rotor and rotor housing to include selected low-heat-rejection
conditions. These results were then used in an interactive manner to design
insulated 1007R components. These preliminary designs were then coupled with
the knowledge gained from screening tests in the Mazda engine.

Drawings, completed by Adiabatics, of the final modifications to the 1007R
parts are included (Section 5.7 Prototype Engine - Procurement/Assembly - NASA
1007R).

5.4 Task IV High Temperature Apex/Side Seal Tribology

This Task 1is to evaluate and procure candidate apex seals, side seals, and
high-temperature lubricants to be tested in the Mazda engine for later
inclusion in the 1007R engine. The procurement of the apex and side seals is
summarized in Table 2. The initial work performed in this task was to find
material combinations which would be most 1likely to survive the harsh
conditions encountered in a high-temperature engine.

Based on past experience with high temperature reciprocating piston engines,
chrome-oxide or chrome-carbide coated piston rings rubbing against zirconia
thermal -barrier coated 1liners densified with chrome oxide are the prime
candidate materials.

Efforts were then spent trying to procure side seals and apex seals
micropocketed and coated with thin {(0.051 mm (0.002 inch) to 0.127 mm (0.005
inch)] layers of chrome oxide and or chrome carbide. Unfortunately, vendors
could not be located to supply these components.
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At this point two new approaches were utilized: the first, was an electro
chemical coating process, and secondly, a slurry sprayed coating process
applied at room temperature and low pressure.

The electro chemically deposited coating chosen for the side seal application
was supplied by Cemkote, Inc. of Indianapolis, Indiana. The coating is called
"Chem 2" and consists of nickel, chrome, and boron. Since this coating is
chemically deposited, its application is very uniform across the entire
surface. Before the side seals were coated, the Chem 2 coating was applied to
specimens which Adiabatics tested in a wear test rig.

The wear and friction test rig was designed and built as a relatively quick and

inexpensive way of screening materials under controlled test conditions. It
employs the principle of a roller rotated against an oscillating bar specimen
as shown in figure 5.4-1. The flat bar specimen is clamped to a steel bar

which is supported by linear/rotary bearings and arranged for linear
oscillation of + 6.3 mm by a motor-driven cam at a fixed 4 rpm. The loading of
the test specimen on the roller is provided by applying dead weights on the
pivoting support structure. The roller is driven by a constant speed electric
motor and any desired roller speed can be set by adjusting the variable
diameter pulleys.

Test environment control 1is provided by encasing the roller and test specimen
in an insulated enclosure. Electrical heaters built into the walls of the
enclosure are thermostatically controlled and the heating of the enclosed air
provides a means for test temperature variation of the roller and specimen, up
to 538 C. In figure 5.4-1 the enclosure is shown operating open-ended with
connections to a coal burner and a suction fan. This arrangement is used to
test materials in the environment of coal combustion products. The test
temperature 1is regulated by the use of the in-line damper to control the flow
rate of the combustion air and the heating coils.

The coal burner can also be replaced by a gas burner or a feeder of other
environment contaminants, like coal powder without combustion.

The torque required to drive the roller is measured by an in-line torque meter
and 1is continuously recorded on a chart recorder. The temperatures of the
roller and the test specimen are monitored by thermocouples installed as shown
in figure 5.4-2, and also recorded on the chart recorder. A drawing of the
assembly of the major components of the friction and wear test rig is shown in
figure 5.4-3.

The duration of a test or any event during the test is determined from the
chart paper speed, selected as needed. From this recording and the load
applied by weights, the force between the roller and the specimen is evaluated,
the coefficient of friction can be calculated at any time during the test.

Wear values are obtained by measuring the weight loss during the test. This is
done by weighing test parts before and after a test. A balance of 0.0001 gram
resolution is wused to weigh the specimens. The accuracy of the wear
measurement is dependent on the amount of weight loss produced and the
resolution of the scale. Hence, to ensure acceptable accuracy, the duration of
tests was varied depending on the wear rate of the materials tested. Most of
these tests were run for 18 hours while a few were as short as 15 minutes [2].
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The test results revealed that the Chem 2 1is not very wear resistant but
offered a very low friction coefficient.

A second set of rotor side seals was coated with a slurry coating developed by

Adiabatics, Inc. The chrome molly chemical slurry type coating was sprayed at
low wvelocity and room temperature to approximately a 0.051 mm (.002 inch)
thickness. This coating 1is proprietary; therefore, its constituents are not
listed. The results of the wear test showed this coating to be very resistive
to wear.

For apex seals M2 tool steel was selected based on many tests of material
specimens on Adiabatics’ wear test rig, M2 was selected based on its resistance
to wear and its high temperature capability. Two sets of apex seals were made
from M2 tool steel by Boyer Machining, Inc. of Columbus, Indiana.

The last area of Task IV was selecting and procuring candidate high-temperature
lubricants. A major portion of the Mazda testing was performed using a
synthetic lubricant called SDL-1 which is sold through Bonneville Lubricants of
Idaho Falls, Iowa.

This o0il was <chosen based on experience with reciprocating piston engine
testing at Adiabatics.

Throughout all the coated component screening tests, oil temperatures varied
between 93.33 C (200 F) and 126.67 C (260 F). No evidence of 0il break down
was noticed.

The stock John Deere 1007R apex seals and side seals will be suitable for
running against the Tribaloy 800 coating on the aluminum side and rotor housing
because  Tribaloy 800 has excellent tribological characteristics and is
compatible with the current John Deere seals. Therefore, no special side or
apex seals were procured.

5.5 Iask V Prototype Engine-Procurement/Assembly-Mazda 13B

The following is a listing of the low-heat-rejection components along with a
description of how they were made.

5.5.0 Rotor

The rotor modification was application of thermal barrier coating to the
combustion faces. The rotor combustion faces, with the exception of a 9.5 mm
(0.375 1inch) 1land at each apex (such that the apex seal was fully supported by
the parent rotor material) and a 0.762 mm (0.030 inch) land along the side
lands of the rotor, were machined to remove 0.762 mm (0.030 inch) of material.
A 0.762 mm (0.030 inch) inlaid thermal barrier coating consisting of a 0.127 mm
(0.005 1inch) layer of plasma-sprayed NiCrAlY bond coat covered with a 0.635 mm
(0.025 inch) layer of plasma-sprayed zirconia was then applied onto the
machined inset on the faces of the rotor. With the coating applied, the high
spots were removed and the coating then densified with the Kaman KaRamic

Process. In doing this, an impenetrable barrier was formed which protects the
bond coat. A drawing detailing this coating procedure is shown in figure
5.5.0-1.

14
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Two (2) rotors were processed as described above. During the densification
process the coating on both rotors failed. Kaman Sciences Corp., who densified
the pieces, claimed coating failure was caused by a problem with their oven.
Densification is a process of filling the zirconia porosity near its outer
boundaries with chrome oxide, thereby forming a barrier which protects the bond
coating. To do this, a liquid chemical is applied to the zirconia and allowed
to penetrate. Next, the whole part is heated to 537.8 C (1000 F) at which time
the 1liquid chemical 1is converted into chrome oxide. Kaman said that oven
temperatures reached 792.2 C (1458 F) which not only caused the coating to "pop
off" but as discovered later, caused the rotor gear to lose its hardness.
Since the gear i1s not replaceable these rotors could not be re-coated, and were
therefore scrapped.

Two more rotors were machined and coated with plasma-sprayed zirconia. They
were sent to Kaman Sciences for densification where, after one temperature
cycle, the coating popped off (shown in figure 5.5.0-2) in the identical
locations as before. Kaman claimed the problem this time was caused by "bad
coating" and not their processing.

These last 2 rotors were recycled. The damaged coatings were sandblasted off
and a thermal barrier coating was reapplied. These rotors were later tested in
the engine without receiving densification.

Because zirconia is porous, the bond coat is susceptible to chemical attack in
the engine which results in a shorter life. Therefore, one more attempt was
made at densification. This time major changes were made in both the design of
the rotor and the densification process itself. In every case the coatings
failed in the same areas - along the lip of the combustion chamber (see figure
5.5.0-2). Therefore, a design change was made whereby a thin band of parent
material was left untouched during machining around the lip of the combustion
chamber (see figure 5.5.0-3). A new low-temperature process developed by
Adiabatics which 1is not only better for the parts but it is non-toxic as well
was applied. Through this combination of the lip design and the low
temperature densification a first attempt provided one Mazda rotor successfully
coated and densified. This rotor is shown in figure 5.5.0-4.

As a result, 2 different kinds of insulated rotors were successfully procured
for testing in the 13B engine; firstly, 2 insulated rotors with undensified
zirconia, and secondly, 1 insulated rotor densified by Adiabatics, Inc.
incorporating a combustion chamber lip.

5.5.1 Side Housing

The initial approach to the side housing was to apply low-heat-rejection
technology to only one side housing face in each combustion chamber by applying
the insulation to both faces of the intermediate housing. To apply the thermal
barrier coating, 0.762 mm thick (0.030 inch) of parent material was machined
from both sides of the intermediate housing. A lip of parent material was left
untouched during the machining operation around both the crankshaft hole and
the intake port. This resulted in a coating which would be totally inlayed.
Next, a 0.127 mm thick (0.005 inch) layer of NiCrAlY bond coat plus a 0.635 mm
(0.025 1inch) layer of plasma-sprayed zirconia was applied to the machined areas
of the intermediate housing.

The coated housing was then machined back to maintain the original side housing
thickness. The zirconia was then densified with chrome oxide by Kaman Sciences

16
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AI-C/114-12

AT-C/114-12

Figure 5.5.0-2. Zirconia Coated Rotor After One Densification
Cycle.
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AI-C/128-8

Figure 5.5.0-3. Machined Mazda Rotor with Lip Design Around
the Combustion Chamber.
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MAZDA 138 ROTOR COATED 0.030 in. APS-PSZ
AND LOW CYCLE LOW TEMPERATURE MODIFIED NC PROCESSING

Figure 5.5.0-4. Mazda Rotor After adiabatics, Inc.
Temperature Densification.



- successfully. In this case the densification served 2 purposes: 1) as in
the rotor application, densification acts to protect the bond coat, and 2) the
very hard chrome oxide densification provides an excellent wear surface which
is needed since the rotor side seals rub against the thermal barrier. All
experience with reciprocating piston engines reveals that this densification
process provides the best wear characteristics when applied on cylinder
liners. After densification the housing was lapped to a surface roughness of
20 micro-inches. Ideally a surface roughness of less than 10 micro-inches was
desired but could no be obtained. As a result of the difficulty during the
lapping, the finished coating thickness was 0.508 mm (0.020 inch) instead of
0.762 mm (0.030 inch). A drawing detailing the coating process is shown in
figure 5.5.1-1.

5.5.2 Rotor Housings

This component presented the greatest challenge to effectively reduce its heat
rejection. The rotor housing material for both the Mazda and the 1007R engine
is aluminum (the Mazda side housings are cast iron) which means that the
existing technology for cast iron reciprocating engine parts can not be used
because the temperatures to which the material is subject during processing is
in excess of 537.8 C (1000 F). Therefore, either a different process was
required or else the rotor housing must be made of material other than
aluminum. Both approaches were followed.

The stock aluminum rotor housing was coated as follows:

1. The housing was sent to Eonic, Inc. where 0.508 mm (0.020 inch) of
parent material was removed from the steel trochoid contour.

2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005
inch) layer of plasma-sprayed NiCrAlY bond coat plus a 0.381 mm (0.015
inch) 1layer of plasma-sprayed zirconia was applied to the machined
trochoid contour.

3. The coated housing was sent back to Eonic, Inc. where the 0.254 mm
(0.010 inch) of =zirconia was ground off each side of the trochoid
contour. This step was performed to ensure dimensional correctness
and provide room for the wear coating.

4. The housing was sent to Stellite, Inc. where the ground zirconia was
coated with more than a 0.254 mm (0.010 inch) layer of Tribaloy 800
which would act as a wear surface.

5. The housing was sent back to Eonic, Inc. for final grinding and
lapping to the stock Mazda trochoid contour dimension.

This coating process was selected based on result of friction and wear testing
with specimens (rollers) on Adiabatics’ wear testing rig. The plasma-sprayed
zirconia/Tribaloy 800 combination showed 1less wear with lower friction than
combinations like plasma-sprayed zirconia/chrome oxide or zirconia/chrome
carbide. Also, the =zirconia/Tribaloy 800 specimen showed excellent adhesion
characteristics. Its entire manufacturing process remains cool enough that
aluminum is not damaged.
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Photographs in figure 5.5.2-1 show the rotor housing after zirconia and
Tribaloy 800 application. Two problems were encountered during the coating
applications. During step 3 of the above process, areas of zirconia chipped
when Eonic ground the zirconia to make room for the wear coating application.
These chipped areas were repaired during step 4, application of the wear
coating, by filling the damaged areas with Tribaloy 800.

Shown in figure 5.5.2-2, during step 5 Tribaloy 800 on one rotor housing tore
during the grinding operation at Eonic, Therefore, only one of two rotor
housings survived the coating operation.

As an alternative approach, Mazda rotor housings cast from ductile iron were
made and coated with a thermal barrier coating. The advantage of the cast iron
is its ability to withstand high temperatures which means the zirconia can be
densified with chrome oxide at 537.8 C (1000 F).

Essex Casting Company of Columbus, Indiana cast the rotor housings after which

they were sent to Eonic to be machined. Eonic machined the oil pan and
manifold flats and bolt holes plus exhaust port, tension bolt holes, water seal
grooves, and dowel holes. Also, they ground the trochoid contour 0.762 mm

(0.030 1inch) oversize to allow room for applying a thermal barrier coating. No
cooling water passages were machined at this time.

Once the rotor housings were machined, they were sent to APS Materials, Inc.
where a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat plus a
minimum of 0.635 mm (0.025 inch) plasma-sprayed zirconia was applied to the
trochoid contour.

Then, the coated housings were sent back to Eonic where the coated trochoid
contour was ground and lapped back to stock Mazda dimensions.

The coated and lapped rotor housings, were then densified the with 10 cycles of
a high-temperature chrome-oxide treatment. Figure 5.5.2-3 shows pictures of a
cast iron rotor housing in the different steps of the coating process.

Once the rotor housings were successfully coated and densified 3 holes were
drilled along the top and bottom of the housing which served the purpose of
permitting cooling water flow to the standard side housings. These cooling
passages (shown in figure 5.5.2-3) are 9.04 mm (0.356 inch) diameter and are
smaller than the tension bolt holes. The outside diameter of the cooling
passages are located 17.78 mm (0.7 inch) away from the trochoid contour and do
very little to cool the rotor housings themselves.

There were 2 problems during the coating process. While Eonic was grinding and
lapping the =zirconia-coated trochoid contour, small areas of the coating

chipped. Adiabatics, Inc. repaired the chipped areas by filling them with a
proprietary slurry coating. The other problem with the coating was that
cracking occurred throughout the surface area. This was especially apparent
after densification. Figure 5.5.2-4 shows the extent of the cracking when

checked with dye penetrant. Although it is not an ideal coating, this type of
cracking has been seen before and does not mean the parts cannot be used.

A summary of all the components procured for the Mazda 13B engine are listed in
Table 2.
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AI-C/131-6A

AI-C/142-234

Figure 5.5.2-1. Stock Aluminum Mazda Rotor Housing After
Zirconia (a) and Tribaloy 800 (b)
Application.
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AI-C/155-154

Figure 5.5.2-2. Failed Tribaloy 800 Coating on Mazda Stoclk
Aluminum Rotor Housing.
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Figure 5.5.2-3 Cast Iron Rotor Housing After Initial Machining.
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(a) AI-C/134-13

(b) AI-C/131-8A
Figure 5.5.2-3 Cont. Cast Iron Rotor Housing After Zirconia

Application (a) and After Zirconia
Densification.
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AI-C/149-23

Figure 5.5.2-4. Coated Cast Iron Rotor Housing Showing "Mud"
Cracks After Zirconia Densification.
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5.6 Task VI Engine Testing

Engine testing was to consist of separate engine builds and tests for
thermal -barrier-coated rotors, rotor housings, and side housings along with a
final test of the combination of all low-heat-rejection components assembled

together. A minimum of 4 separate engine builds and test cycles were
required. The actual number of engine builds was 10 which encompassed 8
different engine configurations. The sections that follow details the events

of all the configurations tested with the exception of the baseline test.
These tests serve the purpose of testing the individual coated components for
integrity and durability.

After the baseline test, the engine test plan described the first thermal
barrier component screening as being a test with coated rotors. However, at
this time in the program procurement of the thermal barrier coated rotors was
meeting difficulties which were discussed in Task V. Therefore, the first
thermal -barrier-coated component tested was an insulated intermediate housing.

5.6.0 Intermediate Housing

After the baseline test, the Mazda engine was disassembled as specified in the
Mazda shop manual. While disassembled, all the components were inspected as
specified in the Mazda shop manual. A list of the measurements taken can be
seen in Appendix E. Before reassembly, the standard intermediate housing was
replaced with the coated housing. New stock side seals and button seals were
installed against the coated housing. The rest of the engine used the seals
and housings which were run during the baseline test. The engine was then
reassembled as specified in the Mazda shop manual. The same engine parameters
were measured as outlined for the baseline test plus the engine was run for
endurance.

The assembled engine was mounted into test cell No. 2 and connected to an Eaton
dynamometer via a driveshaft with a one degree offset. Once the engine was
mounted the Digalog dynamometer controller was calibrated as specified in the
Digalog manual. All other instruments were checked and calibrated to ensure
correct readouts.

The engine was then filled with standard coolant and SDL-1 synthetic

lubricant. The engine was tested for compression (results shown in Appendix
E). After compression testing the engine was started and run through the
break-in cycle. Engine break-in consisted of running the engine at varying

speeds with light to no-loads. During this run all systems were checked for
proper functioning and the timing set.

The different test loads and speeds are detailed in the data found in Appendix
F. These speed and loads were the same points used during the baseline test.
The only noteworthy difference between the baseline test and this insulated
housing test was that oil temperatures were increased to 101.7 C (215 F) plus
or minus a few degrees going into the engine.

Thirty hours into the endurance test a problem with the spark plug firing order
was found. Due to a factory mislabeling of the distributor cap the leading and
trailing spark plugs were firing in a backwards order. In other words the
trailing plugs were firing first. This problem affected the performance of the
engine and unfortunately had occurred throughout the baseline test as well.
The wiring problem was corrected and 51 total hours of endurance testing was
completed without further incident.
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After completion of the 51 hour test the engine was disassembled and

inspected. Wear was detected on the rotor side seals and rotor oil seals which
were rubbing against the  thermal barrier coating. Similarly, the
zirconia-coated intermediate housing experienced minor wear where it was rubbed
by the seals. The intermediate housing, seen in figure 5.6.0-1 was still

reusable despite the wear, and the coating itself were in excellent condition.
No damage to other parts were found during post inspection. One of the most
likely reasons for the excessive seal wear was the rough surface of the coating
after lapping. The seals appeared to have lapped the coating because after
testing the coating was smoother (down to 2 micro-inches from 20 micro-inches
of roughness in some areas). At the time the coated intermediate housing was
tested no candidate side seals had been procured.

As was already mentioned, an ignition problem was found part way through the
coated intermediate housing test. In an effort to make fair comparisons to the
baseline test all data comparisons are made under 1like-conditions. For
example, the Dbaseline test data are compared to only that first portion of the
coated intermediate housing test data when the ignition was incorrect. The
rest of the data taken during the test with the coated intermediate housing can
only be compared with that data taken during the test with coated rotors and
coated rotor housings (ignition correct in these cases).

Figures 5.6.0-2 through 5.6.0-5 show the dramatic decrease in the amount of
heat transferring into the oil system while testing the insulated intermediate
housing as compared to the baseline test. These figures represent the oil
temperature out of the engine subtracted by the oil temperature into the
engine. Other areas such as power output and fuel consumption were basically
unchanged by using the insulated housing.

5.6.1 Rotor

The second thermal-barrier-coated component screening test was with 2
undensified zirconia-coated rotors. The coated rotors were installed in the
engine via the same disassembly, inspection, and reassembly procedures used in
previous builds. The same testing parameters were measured as in previous
tests. Likewise, the same speeds, loads, ignition timing, break-in cycle, oil
type and temperature, and coolant were used.

During the first part of the test the engine ran quite well; but, as the test
time was lengthened, carbon deposits built up on the rotors and rotor

housings. These deposits were observed through exhaust port inspection (by
removing the exhaust header and visually looking inside the engine through the
exhaust ports). Thirty-one hours into the test a major problem developed.

While running a point at 5000 rpm and 120 ft-1bs of torque the rear rotor
housing began to experience scuffing. The extent of the scuffing is shown in
figure 5.6.1-1. Although the front rotor housing did not have this problem, it
probably would have given more time.

The scuffing appeared to be caused from overheating the rotor housing plus oil
deposit build up on the rotor housing. Fortunately, the engine was shut down
before major damage occurred. Upon post-inspection, the only parts found
unusable were the apex seals which had uneven wear. The rotor housings were
cleaned up and the engine reassembled with new apex seals. The engine then
completed 100 hours of endurance tests successfully. A photograph of the
coated rotors is seen after testing seen in figure 5.6.1-2. It should be noted
that after scuffing had occurred the fifth and sixth auxiliary intake ports
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AI-C/122-4

Figure 5.6.0-1. Zirconia Coated Intermediate Housing Densified

by Kaman Science's Process After Completing 51
Hours of Testing.
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AT-C/126-4A

AI-C/126-34

Figure 5.6.1-1. Rear Rotor Housing After 31 Hours of Testing
Time with Thermal-Barrier-Coated Rotor.
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Figure 5.6.1-2. Undensified Circonia Cozted Mazdz: Rotor
AZter 100 Hours of Tecting.



were manually opened 1in an effort to introduce a cool combustion charge later
in the combustion cycle. These ports were left open for the remainder of the
testing. By opening these 2 ports, both the fuel consumption and the power
output did 1increase by a small amount. Data gathered from testing these
undensified rotors is found in Appendix G-1.

There was a dramatic decrease in the amount of heat transferring into the oil
system. Figures 5.6.1-3 through 5.6.1-7 show the data comparisons between the
coated intermediate housing and the undensified coated rotors. Here, ignition
timing was correct in both cases and though the 2 data plots are similar for
every speed and load, both cases are much lower than that of the baseline
test. The 2 coated rotors (combined in one assembly) are capable of reducing
heat transfer into the oil system more than when using the one coated
intermediate housing.

A second change in the data between the coated intermediate housing and the
coated rotors was a dramatic increase in exhaust temperatures in the case of
the coated rotors. Figures 5.6.1-8 through 5.6.1-12 show the comparison
between the coated intermediate housing and the undensified coated rotors.
Again, only data taken with correct ignition are compared.

One more candidate thermal-barrier-coated rotor was tested after completing the
100 hours of testing with the undensified zirconia-coated rotor. This test was
with 1 =zirconia-coated rotor densified by Adiabatics. This coated rotor was
run in the engine along with 1 stock rotor. All conditions of the test were
identical to the previous test including the open fifth and sixth intake

ports. This test used stock seals and housings. This endurance test ran 100
hours without incident. A photograph in figure 5.6.1-13 show the rotor after
testing. Everything passed inspection at the end of the test. It was noticed,

however, more carbon deposits had developed in the rotor housing run with the
stock rotor than in the rotor housing run with the coated rotor (seen in figure
5.6.1-14). The data gathered from the densified rotor test is found in
Appendix G-IT.

In both densified and undensified coated rotor durability tests the coating was
in excellent condition after testing.

5.6.2 Rotor Housing

With the screening test successfully completed for thermal-barrier coated
rotors and intermediate housing, testing proceeded to the rotor housings. The
first rotor housing tested was the thermal-barrier coated stock aluminum rotor
housing. As described in Task V, only 1 of 2 rotor housings survived the
coating process. Therefore, this test consisted of only 1 coated rotor housing
located in the front of the engine. High temperature apex seals made from M2
tool steel were used in the rotor placed in the coated rotor housing. The rest
of the engine was built using stock components. The engine was built and
tested in the same manner as in the previous tests including using the same
high-temperature lubricant SDL-1.

During the break-in cycle the engine ran well. Visual inspection through the
exhaust ports showed that the coating was holding up. As more testing time
elapsed it was noticed that blow-by was creeping up to 12.7 mm (one half inch)
of water whenever loads and or speeds were being changed. As the engine
remained at a new load and or speed, blow-by would slowly go back to zero.
Several low speed and low torque data points were run, but after 14.7 hours of
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AI-C/137-225

Figure 2.6.1-13. Densified Zirconia Coated Mazda Rotor
After 100 Hours cf Testing.
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AI-C/137-19A

AI-C/137-15k4

Figure 5.6.1-14. Stock Mazda Rotor (a) Compared with Densified
Coated Mazda Rotor After 100 Hours Testing
Together 1in One Bulld



engine testing visual inspection through the exhaust ports revealed coating
failure. Data gathered from the housing test is found in Appendix H. Photos
of the failed rotor housing are shown in figure 5.6.2-1.

When the coated stock aluminum rotor housings failed the apex seals which were
made form M2 tool steel were also destroyed.

A request was then made by Adiabatics to NASA for an additional one month
extension for testing coated cast iron rotor housings. This request was
granted at a meeting at NASA LeRC with the Project Manager on June 17, 1988.
This one month extension was later increased one additicnal month.

The screening test of the cast iron rotor housings consisted of an engine
configuration with 2 thermal-barrier-coated cast iron rotor housing (detailed

in Task V). The front rotor housing had a stock rotor and stock apex seals
plus 3 candidate side seals coated with Chem 2 (details in Task IV) which were
placed against a stock intermediate housing. The rear rotor housing had a

stock rotor and apex seals made of M2 tool steel plus 3 candidate side seals
coated by Adiabatics (detailed in Task IV) which were placed against the stock
intermediate housing. The engine was assembled and tested in the same manner
as in all the previous tests.

As soon as the engine was started, blow-by was noticed. The engine was given a
lengthy slow break-in but blow-by never returned to zero. Visual inspections
through the exhaust ports showed the coating on the rotor housings to be in
excellent condition After the break-in cycle the first 2 data points at 3000
Tpm Wwere run. At this point blow-by reached 3 inches of water and the engine
was shut down.

The engine was removed from the test cell, disassembled, and inspected. The
coating on both front and rear rotor housing was in excellent condition (see
figure 5.6.2-2). Likewise, the side seals coated by Adiabatics and the apex
seals made from M2 tool steel were in excellent condition. However, the Chem 2
coating on all 3 side seals located in the front rotor housing had worn off.
Also, after 16.75 hours into tests the stock apex seals in the front rotor
housing had become stuck. These were the only 2 major problems found. The
rest of the engine passed inspection.

Since the coating on the rotor housings was still in good condition, further
testing was performed. The engine was reassembled using the 2 coated cast iron
rotor housings with a complete set of new apex seals made from M2 tool steel.
The apex seals had not stuck previously. The same side seals were placed back

in the engine. At this point a lubricant change was made to 10W40 AMS-oil
instead of SDL-1. The engine was assembled and tested in the same manner as
before.

This build ran over 9 hours before the engine had to be disassembled again.
During this run blow-by remained =zero and the engine ran quite well. Then,
when trying to run a point at 3500 rpm a problem developed. A safety device
malfunctioned shutting the engine ignition off. This problem was quickly
corrected but the engine would not restart. A compression test on each rotor
housing showed the compression to be essentially zero. Upon post-disassembly
the reason for low compression was found. The seals which were made from M2
tool steel had warped (figure 5.6.2-3). The warpage occurred along the edge of
the apex seal which contacts the trochoid contour of the rotor housing.
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AI-C/137-14

AI-C/145-15

Figure 5.€.2-1. Failed Thermal Barrier Coating on Mazda Rotor
Housing After 14 Hours of Testing.
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AI-C/150-22A

Figure 5.6.2-2. Coated Cast Iron Rotor Housin

g After Testing
16.75 Hours.
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AI-C/150-254

Figure 5.6.2-3. Warped M2 Tool Steel Apex Seals Tested with
Coated Cast Iron Rotor Housing.



At this point the coating on the rotor housings was still in good condition so
the engine was reassembled for further testing. This build consisted of all
the previous components with the exception of the warped M2 apex seals which
were replaced with stock apex seals. It was hoped that the change in lubricant
to AMS-o0il would be sufficient to keep the apex seals from sticking. Other
components like the side seals which were coated by Adiabatics, Inc. and the
coated cast 1iron rotor housings were in good condition and therefore placed
back in the engine in their original locations.

The engine was reassembled and tested in the same manner as in the previous

tests. Again, while the engine was running a point at 3500 rpm the compression
was lost. The engine was disassembled and warped apex seals were again found
(5.6.2-4). Unfortunately, the coating on the rotor housings was also found to
be in bad condition. Small areas of coating had chipped at various areas

around the trochoid contour. In 1 area of the compression zones of the front
rotor housing the coating had separated from the parent material at the bond
coat. Between the problem with the apex seals and the coating failure on the
rotor housings, the testing was stopped at this point. The total testing time
for the cast iron rotor housings was 32.5 hours and the final condition of the
rotor housings can be seen in figure 5.6.2-5. A comparison between a stock
side seal and one of the slurry coated side seals (after testing) is shown in
figure 5.6.2-6. The data gathered from the testing of the cast iron rotor
housings is found in appendix I.

During the testing with coated cast iron rotor housings, housing temperatures
were observed as being twice as high as was observed during other testing.

Table 3 summarizes the results of the testing performed with the components
procured for the Mazda engine.

5.7 1Iask VII Prototype Epngine - Procurement/Assembly
-_NASA 1007R

The engine which will wultimately pursue the goals of the better efficiencies
discovered in Phase I is the NASA-owned 1007R engine built by John Deere.
Completion of this contract entails modifying four different components of a
1007R  engine with thermal-barrier coatings. Actual 1007R engine assembly and
testing will be performed by John Deere and is not included in this project.
The following is a description of the modifications of the 1007R components.

5.7.0 Rotor

One 1007R rotor was machined to remove 0.762 mm (0.030 inch) of material on the
rotor combustion faces with the exception of a 9.5 mm (0.375 inch) land at each
apex (such that the apex seals are fully supported by the parent rotor
material) and a 0.762 mm (0.030 inch) land along the side lands. A thin band
of parent material was left untouched during machining around the lip of the
combustion chamber (figure 5.7.0-1). A 0.762 mm (0.030 1inch) 1layer of
plasma-sprayed =zirconia [including a 0.127 mm (0.005 inch) layer of NiCrAlY
bond coat] was then sprayed onto the resultant pocket in the faces of the rotor
and the high spots removed. The surface was then densified. The coating
densification process was the non-toxic, low-temperature process developed by
Adiabatics, Inc.
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AI-C/152-2A

Figure 5.6.2-4. Warped Standard Cast Iron Apex Seals Tested with
Coated Cast Iron Rotor Housing.
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AI-C/152-5A

AI-C/152-04
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Figure Coated Cast Iron Rotcr licusing After 32.2 H

of Testing.
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AI-C/152-3A

Figure 5.6.2-6. Adiabatics! Slurry Coating on a Mazda Side Seal
(below) Compared to a Stock Side Seal (top)
After 32.5 Hours of Engine Testing,
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AI-C/144-6

Figure 5.7.0-1. 1007R Rotor After Machining Process Showing the
Lip of Untouched Material Around the
Combustion Chamber.
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Photographs in figures 5.7.0-1 and 5.7.0-2 show the rotor in the different
phases of coating application. Figure 5.7.0-3 is a drawing which details the
coating on the rotor.

5.7.1 Side Housings

Both a front and a rear aluminum 1007R side housings were coated with
thermal -barrier coatings. Since these pieces are made of aluminum they could
not be densified with chrome oxide at 537.8 C (1000 F). Obviously, the
aluminum will not withstand such an extreme densification temperature.
Therefore an alternate wear coating was required.

The alternative was to spray the insulative coating first and then coat the
insulation with a wear coating. More specifically, spray on the zirconia and
then spray a wear surface directly on top the zirconia. The wear coating
selected was Tribaloy 800 (the same type of coating combination used in
modifying the aluminum Mazda rotor housing).

Two attempts were made to apply the zirconia/Tribaloy 800 combination onto the
side housings. The first attempt was as follows:

1. 0.889 mm (0.035 inch) of parent material was machined from the face of each
side housing in the area where the housing is exposed to the rotor.

2. The housing was sent to APS Material, Inc. where a 0.127 mm (0.005 inch)
layer of plasma-sprayed NiCrAlY bond coat plus a 0.508 mm (0.020 inch) layer of
plasma-sprayed zirconia was applied.

3. After the zirconia coating application the pieces were sent to a machine
shop where zirconia was ground to ensure dimensional correctness.

4. After grinding, the housings were sent to Stellite, Inc. to have the wear
coating applied. A jet coat process was used to apply more than a 0.254 mm
(0.010 inch) layer of Tribaloy 800.

At this point the coating process was stopped because Stellite, Inc. could not
get the T. Pictures of the Mazda engine mounted in the test cell can be seen
in figure 5.1.3-1.

The fifth operation was the test itself. Engine testing started with a
compression test. The compression tester takes six (6) measurements (one for
each rotor face). Next, the engine was started and run through the break-in

cycle which consisted of running at varying speeds with light to no-load.
During this run all systems were checked to make sure they were functioning
properly.

A test was to be run to develop inch) layer of plasma-sprayed zirconia and a
layer exceeding 0.254 mm (0.010 inch) thick of plasma-sprayed Tribaloy 800 were
applied. The drawing in figure 5.7.1-1 details the coating applied to the
side housings.

2. After coating the side housings were ground and lapped.

One of the 2 side housing completed the grinding and lapping operation
successfully. Unfortunately, the other side housing was under sprayed and
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(a) AT-C/145-14a
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Figure 5.7.0-2. 1007R Rotcr Shown (a, Zfter Zirconia Application
and (b After Zirconia Densification.
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therefore was shipped back to APS Material Inc. to have additional Tribaloy 800

applied. This housing was then reground and lapped. Pictures in figure
5.7.1-2 show the 1007R side housing after machining and after grinding and
lapping. After lapping was completed Adiabatics Inc. noticed some cracking

around the crankshaft hole in the area which had been built up (figure
5.7.1-3).

5.7.2 Rotor Housing

The aluminum 1007R rotor housing was coated with the same zirconia/Tribaloy 800
combination used on the aluminum side housing.

1. The rotor housing was sent to Eonic, Inc. where 0.889 mm (0.035 inch) of
parent material was removed.

2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005 inch)
bond coat plus 0.508 mm (0.020 inch) of zirconia was applied to the trochoid
contour and 0.635 mm (0.025 inch) of zirconia to the exhaust port.

3. With the zirconia applied the housing was then sent back to Eonic where the
coating on the trochoid contour was ground. The trochoid was ground to 0.254
mm (0.010 inch) over size (per side) to ensure dimensional correctness and
ensure room for the wear coating application.

4. After grinding, the rotor housing was sent back to APS Material, Inc. for
the application of a wear coating. Tribaloy 800 was plasma-sprayed on top of
the zirconia more than 0.254 mm (0.010 inch) thick.

5. After applying the Tribaloy, the housing was sent back to Eonic for final
grinding and lapping of the Tribaloy coating back to original dimensions.

A drawing detailing this coating 1is shown 1in figure 5.7.2-1. Pictures in
figure 5.7.2-2 show the rotor housing in different phases of coating
application.

Table 4 summarizes the components procured for the assembly of the insulated
1007R engine.

5.8 Task VIII Exhaust Energy Utilization

As an internal combustion engine 1is made more adiabatic a greater amount of
exhaust enthalpy will flow from the engine. That is, some of the energy which
would have been 1lost to engine coolant, lubrication, radiation and convection
will appear in the exhaust gas in the form of a higher exhaust temperature.
This higher exhaust temperature represents a large energy flow which can be
recovered.

An analvtical assessment was made of compounding a turbocharged 1007R John
Deere rotary engine. The engine specifications and data for 2 test conditions
are tabulated in Tables 5, 6, and 7. These data were employed in a rotary
engine simulation which works on an energy balance of the engine, and was used
to determine additional energy which would become available as the engine was
insulated and the coolant was removed. An energy balance of the baseline
noninsulated, cooled engine appears in Table 8. Changes (percentages) in heat
rejection to the o0il, coolant, and radiation due to insulation and coolant
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(a) AI-C/141-19

(b) AI-C/155-12A

Figure 5.7.1~2. 1007R Side Housing After Maching (a) and Final
Lapping (b).
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AI-C/155-17A

Cracking Around the Crankshaft Hole of 1007R
Side Housing After Final Lapping.

Figure 5.7.1-3.
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(a) AI-C/146-20

(b) AI-C/152-17A

Figure 5.7.2-2. 1007R Rotor Housing Shown After Zirconia (a) and
Tribaloy 800 (b) Application.



OF FULL o,y

L

AI-C/155-15A

Figure 5.7.2-2 Cont. 1007R Rotor Housing After Final Lapping.
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Table 5. 1007R Baseline Engine Basic Engine Configuration

ENGINE TYPE

Rotary Turbocharged DISC

ECCENTRICITY (in) 0.607
TROCHOID GENERATING RADIUS (in) 4.221
CHAMBER DEPTH (in) 3.036
DISPLACEMENT (in? ) 40.42
COMPRESSION RATIO 7.500
PORT TIMING (deg. ATC):

INTAKE PORT OPENS -626.3

INTAKE PORT CLOSES -229.5

EXHAUST PORT OPENS 208.7

EXHAUST PORT CLOSE

610.5
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TABLE 7

ENGINE 0701-3

JOHN DEERE TEST DATA

COMPRESSION RATIO: 7.5
TURBOCHARGER: AIRESEARCH T04, 1.3 A/R

POINT NO. - 54
ENGINE SPEED RPM 7990
LOAD 1b 102.6
BRAKE POWER HP 136.6
BMEP psi 167.6
BSFC l1b/HP-hr 0.5098
FUEL-AIR RATIO - 0.0378
AIR FLOW 1b/hr 1840
FUEL - JET A
T TEST CELL AMB F 97
T AIR PLENUM F 83
T AIR FILTER F 82
T AIR BOTTLE F 80
T COMP IN F 81.
T COMP OUT F 263
T ENG IN F 119
P BAROMETRIC in Hg 29.84
P COMP IN in H20 -18.5
P COMP OUT in Hg 31.3
P ENG IN in Hg 24.3
RPM TURBO RPM 99500
FUEL FLOW, TOTAL 1b/hr 69.66
TUEL FLOW, PILTO lb/hr 6.11
T FUEL, MAIN Cc 38
T FUEL, PILTO C 37
MAIN INJ PRES psi 10000
PILOT INJ PRES psi 7000
T TURBINE IN F 1423
T TURBINE OUT F 1361
P TURBINE IN in Hg 12.7
P TURBINE OUT in H20 -5.3
OIL FLOW gal/min 4.61
P OIL psi 63
T ENG OIL IN F 173.4.
T ENG OIL OUT F 213.2
T T/C OIL OUT F 192
COOLANT FLOW 1b/hr 1613
T COOLANT IN F 177.8
T COOLANT OUT F 184.5
DELTA T COOLANG F 7.0
P COOLANT IN psi 19.4
P COOLANT, ROT hsg psi 12.0
P COOLANT, DE hsg psi 10.5
P COOLANT OUT psi 8.0
T INTERCOOLER IN F 79.4
T INTERCOOLER OUT F 92.2

73

57
8003
120.6
160.9
197.0
0.5066
0.0417
1950
JET A
88

76

74

72

73
272
119
29.88
=-21.5
34.2
29.4
104060
81.50
5.49
39

36
15000
7000
1457
1425
15.0
-4.8
4.87
61
174
217
195
1599
175.1
182.7
7.6
20.0
12.8
10.8
8.4
77
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TABLE 7 JOHN DEERE TEST DATA (Cont.)

ENGINE 0701-3

POINT NO. - 54 57
IGNITION START deg BTC 53 56
IGNITION END deg BTC 7 5 ATC
PILOT START deg BTC 52 55
PILOT END deg BTC 3 10 ATC
MAIN START deg BTC 51 52
MAIN END deg BTC 8 ATC 10
T ENG OIL OUT DE F 238 243
T ENG OIL OUT ADE F 217 221
T ROTOR hSG DE F 360 377
T ROTOR hsg ADE F 379 392
T ROTOR hsg #1 F 207 204
T ROTOR hsg #2A F 223 221
T ROTRR hsg #2B F 220 219
T ROTOR hsg #3A F 238 236
T ROTOR hsg #3B F 230 228
T ROTOR hsg #4A F 231 235
T ROTOR hsg #4B F 244 253
T ROTOR hsg #5 F 196 191
T ROTOR hsg #5A F 215 215
T ROTOR hsg #5B F OUT 212
T ROTOR hsg #6A F 199 198
T ROTOR hsg #6 F 190 188
T ROTOR hsg #6B F 206 208
T ROTOR hsg #7A F 191 192
T ROTOR hsg #7B F 195 195
T DE hsg #32 F 192 194
T DE hsg #33 F OUT ouT
T DE hsg #34 F 223 228
T DE hsg #35 F 214 217
T DE hsg #36 F 214 219
T DE hsg #37 F 196 197
T DE hsg #38 F 198 200
T ADE hsg #39 F 199 201
T ADE hsg #40 F 209 211
T ADE hsg #41 F 199 201
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Energy In

Heat Input

Heat Input

Air Input

+

Coolant Rej.

TABLE 8. : ENERGY BALANCE (simulation)

= Energy Out

Air Input = Coolant Rej. -~ 0il Rej. - Inter-Cooler Rej.
- Radiation Rej. - Exhaust Rej. - Work Out

fi i, * (F/A) * 6H, = + 1,502,323.2 BTU/Hr

Majy * Cp * Tip = + 248,676.5 BTU/Hr

= Mool * Cp cool * AT = - 107,548.7 BTU/Hr

0il Rej. = p * Q * C, * AT = - 43,557.9 BTU/Hr

p

Inter-Cocler Rej. = m * C, * AT = - 67,651.2 BTU/Hr

p

Radiation Rej. = 0il Rej. = - 43,5557.9 BTU/Hr

Work Out =

Bhp

Exhaust Rej.

Balance

Assumptions

*

2545 BTU/Bhp°Hr = - 409,490.5 BTU/Hr
= m * p * T = - 1,022,749.7 BTU/Hr
+ 56,443.8 BTU/Hr

3% error

Fuel Enthalpy Neglected
Radiation Rej. = 0il Rej.
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removal were obtained from a study performed by ADAPCO. It was decided that
the percentage changes in heat rejection would be more approximate rather than
the absolute changes reported by ADAPCO for addition of insulation and removal
of engine coolant. These percentages were obtained from the heat transfer
rates in Table 6.

The simulation was calibrated to the John Deere data (point 57) for a

baseline. The output from the simulation appears as the baseline data in Table
9.

The specific heat rejections to coolant and o0il were then successively changed
by the percentages developed from Table 6. The input and output for an
insulated, cooled engine appears in Table 10, Input and output for the
insulated, uncooled engine appears in Table 11.

The additional power 1in the exhaust 1is plotted in figure 5.8-1. A nearly
linear relationship exists between % adiabacity and % power gain.
Approximately 7.5 % additional power becomes available for 20.8% adiabacity
(insulated, cooled), and 14.9 % additional power becomes available for 41.6%
adiabacity (insulated, uncooled). A portion of this additional power can be
recovered in the bottoming cycle. The amount of recovery then is dependent on
the efficiency of the bottoming cycle used. As mentioned above a value of 50%
was assumed. Then the recoverable power is shown in figure 5.8-1 to be 3.75%
of the rotary engine brake power for 20.8% adiabacity and 7.45% for 41.6%
adiabacity.

This analysis 1indicated that a significant amount of additional power becomes
available in the exhaust gas by adding thermal insulation to the engine and
removing the engine coolant.

5.9 TIask IX Reporting

Quarterly  Technical and Progress Reports were submitted throughout the
program. Each task was reported in each progress report. One copy of the
Final Report draft shall be submitted for review in lieu of the 4 copies
specified.

6.0 CONCLUSIONS

1. Application of adiabatic (low heat rejection) engine technology to the
rotary (Wankel type) engine 1is highly dependent upon the materials
used for the basic engine components.

2. Fundamental work on increasing the permissible operating temperature
of the apex seal/rotor housing tribological system is required before
the adiabatic technology can be successfully applied to a complete
engine.

3. Successful low heat rejection major engine components have been
designed, analyzed, fabricated and tested in a Mazda gasoline rotary
engine and low heat rejection components fabricated for the NASA 1007R
stratified charge engine. The 1007R components are available for
testing by John Deere’s Rotary Engine Division.

ORIGINAL PAGE ig
OF POOR QUALITY
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TABLE 9 BASELINE

INPUT

INLET TEMPERATURE - DEGREES F

INLET PRESSURE - IN HG ASB

INTAKE PRESSURE DROP - IN H20
COMPRESSOR EFFICIENCY

INTERCOOLER COOLANT IN TEMP - F
INTERCOOLER EFFECTIVITY

BASELINE EXHAUST ENTHALPY - BTU/MIN

QUTPUT

BMEP - PSI

FMEP - PSI

BSFC - LBS/BHP/HR
ISFC - LBS/IHP/HR

FUEL AIR RATIO
FRICTION HORSEPOWER
COMPRESSOR MASS FLOW - LBS/HR

COMPRESSOR PRESSURE RATIO

TURBINE PRESSURE RATIO

COMPRESSOR HORSEPOWER

ADDITIONAL POWER FOR TURBOCOMPOUNDING

COOLANT HEAT REJECTION - BTU/MIN
LUBE OIL HEAT REJECTION - BTU/MIN
INTERCOOLER HEAT FLOW - BTU/MIN
RADIATION HEAT REJECTION - BTU/MIN
ENGINE THERMAL EFFICIENCY

AMBIENT PRESSURE - IN HG
COMPRESSOR INLET
COMPRESSOR OUTLET

ENGINE INLET

TURBINE INLET

TURBINE OUTLET

AMBIENT TEMPERATURE - F
COMPRESSOR INLET
COMPRESSOR OUTLET
ENGINE INLET

TURBINE INLET

TURBINE OUTLET

77

73.00
29.88
21.50
75.00
77.0
80.00
18095.30

197.0000
37.0000
0.5076
0.4272
0.0420
30.3000
19443.0000

2.26
1.46
34.30
0.00

1792.000
673.000
1132.000
673.000
0.272

29.88
28.30
63.95
59.81
43.77
29.88

73.
73.
258.
113.
1573.
1410.



TABLE 10 INSULATED COOLED ENGINE

INPUT

INLLET TEMPERATURE - DEGREES F
INLET PRESSURE - IN HG ABS

INTAKE PRESSURE DROP - IN H20
COMPRESSION RATIO

DESIRED FUEL AIR RATIO

APPARENT VOLUMETRIC EFFICIENCY
FRICTION REDUCTION PERCENTAGE
ISFC REDUCTION PERCENTAGE
COMPRESSOR EFFICIENCY

INTERCOOLER COOLANT IN TEMP - F
INTERCOOLER EFFECIVITY

COOLANT - SPECIFIC HEAT REJECTION
LUBE - SPECIFIC HEAT REJECTION
BASELINE EXHAUST ENTHALPY - BTU/MIN

OUTPRUT

BMEP - PSI

FMEP - PSI

BSFC - LBS/BHP/HR

ISFC - LBS/IHP/HR

FUEL FLOW - CU MM PER STROKE
ACTUAL FUEL AIR RATIO
FRICTION HORSEPOWER
COMPRESSOR MASS FLOW - LBS/HR
COMPRESSOR PRESSURE RATIO
TURBINE PRESSURE RATIO
COMPRESSOR HORSEPOWER
ADDITIONAL POWER FOR TURBOCOMPOUNDING

COOLANT HEAT REJECTION - BTU/MIN
LUBE OIL HEAT REJECTION - BTU/MIN
INTERCOOLER HEAT FLOW - BTU/MIN
RADIATION HEAT REJECTION - BTU/MIN
ENGINE THERMAL EFFICIENCY

AMBIENT PRESSURE - IN HG
COMPRESSOR INLET
COMPRESSOR OUTLET

ENGINE INLET

TURBINE INLET

TURBINE OUTLET

AMBIENT TEMPERATURE - F
COMPRESSOR INLET
COMPRESSOR OUTLET
ENGINE INLET

TURBINE INLET

TURBINE OUTLET

78

73.000
29.880
21.500
7.500
0.042
125.000
15.000
-22.500
75.000
77.000
80.000
8.821
3.573
18095.300

197.0000
37.0000
0.5076
0.4272
93.5805
0.0420
30.3000
1944.0000
2.2600
1.4600
34.3000
24.0000

1120.000
564.000
1132.000
564.000
0.272

29.88
28.30
63.95
59.81
43.77
29.88

73.
73.
258.
113.
1573.
1410.



TABLE 11 INSULATED UNCOOLED ENGINE

INPUT

INLLET TEMPERATURE - DEGREES F
INLET PRESSURE - IN HG ABS

INTAKE PRESSURE DROP - IN H20
COMPRESSION RATIO

DESIRED FUEL AIR RATIO

APPARENT VOLUMETRIC EFFICIENCY
FRICTION REDUCTION PERCENTAGE
ISFC REDUCTION PERCENTAGE
COMPRESSOR EFFICIENCY

INTERCOOLER COOLANT IN TEMP - F
INTERCOOLER EFFECIVITY

COOLANT - SPECIFIC HEAT REJECTION
LUBE - SPECIFIC HEAT REJECTION
BASELINE EXHAUST ENTHALPY - BTU/MIN

OUTPUT

BMEP - PSI

FMEP - PSI

BSFC - LBS/BHP/HR

ISFC - LBS/IHP/HR

FUEL FLOW - CU MM PER STROKE
ACTUAL FUEL AIR RATIO
FRICTION HORSEPOWER
COMPRESSOR MASS FLOW - LBS/HR
COMPRESSOR PRESSURE RATIO
TURBINE PRESSURE RATIO
COMPRESSOR HORSEPOWER
ADDITIONAL POWER FOR TURBOCOMPOUNDING

COOLANT HEAT REJECTION - BTU/MIN
LUBE OIL HEAT REJECTION - BTU/MIN
INTERCOOLER HEAT FLOW - BTU/MIN
RADIATION HEAT REJECTION - BTU/MIN
ENGINE THERMAL EFFICIENCY

AMBIENT PRESSURE - IN HG
COMPRESSOR INLET
COMPRESSOR OUTLET

ENGINE INLET

TURBINE INLET

TURBINE OUTLET

AMBIENT TEMPERATURE - F
COMPRESSOR INLET
COMPRESSOR OUTLET
ENGINE INLET
TURBINE INLET
TURBINE OUTLET

79

73.000
29.880
21.500
7.500
0.042
125.000
15.000
-22.500
75.000
77.000
80.000
6.510
2.636
18095.300

197.0000
37.0000
0.5076
0.4272
93.5805
0.0420
30.3000
1944.0000
2.2600
1.4600
34.3000
24.0000

349.000
534.000
1132.000
534.000
0.272

29.88
28.30
63.95
59.81
43.77
29.88

73.
73.
258.
113.
1573.
1410.
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Application of insulating coatings to the engine’s rotor, by plasma
spraying partially stabilized zirconia (PSZ2) followed by surface
densification, has proven to be successful. A similar coating with
high temperature chrome oxide densification to provide a good wear
surface was successful on the Mazda cast iron side housings. However,
application of the same material to the aluminum side housings and
aluminum rotor housing of the 1007R engine is not possible because the
processing temperatures required to obtain good wear surfaces are
above the maximum permissible temperature to which the aluminum can be
exposed.

A layered coating consisting of PSZ and Tribaloy 800 has been applied
to the aluminum 1007R components to provide a thermal Dbarrier
insulating layer with a good tribological surface. Testing by John
Deere is required to demonstrate the integrity of this coating.

Conclusive data on reduction of heat rejection is not available from
the Mazda testing but will be generated when the components are tested
in the stratified charge combustion engine by John Deere. Examination
of the data from the Mazda engine testing with the insulated
components result in the conclusion that dramatic reductions in heat
rejection are achievable with todays coating technology. For
instance, looking at Figure 5.6.1-8, adding only 0.75 mm of coating to
the rotors raised the peak exhaust temperature 90 C. from 730 to 820
C. and Figure 5.6.1-3 shows that the temperature rise in the lube oil
in the engine dropped more than 20 percent. Application of 0.5 mm of
insulating coating to both sides of the Mazda intermediate housing
(the two end housing sides were not coated) reduced the temperature
rise in the 1lube oil by 50 percent (Figure 5.6.0-3). If similar
results are observed on the stratified charge combustion engine,
reductions of heat transfer to the lube oil of 75 percent or greater
are expected.

Testing of the coated aluminum and coated cast iron rotor housings was
not sufficient to demonstrate the thermal performance of the coating
systems as the coatings failed before adequate data could be
obtained. A conclusion which can be drawn from the rotor housing
testing is that successfully coating the aluminum rotor housing with
an insulating material with good tribological properties may not be
possible. The aluminum rotor housings tested on the Mazda engine
failed in the zirconia layer probably from the combination of high
compressive loads under the apex seals and high tensile loads caused
by the high thermal expansion of the aluminum housing. The coating
failure may have been aggravated by either a poor quality PSZ plasma
spray or damage to the PSZ caused by the trochoid grinding process.
Based on these results, the processing of the rotor housing for the
1007R engine has been closely watched at every step to improve the
quality of the resulting coating which will hopefully provide
sufficient life to enable heat rejection data to be obtained.

Testing of the special coated cast iron Mazda rotor housings with
minimal cooling (no cooling passages in the high heat flux area) were
more successful, in that the coatings did not fail immediately (they
were used for three engine builds). The engine ran very well with the
cast iron housings and sounded different (less high frequency noise)
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at low power levels and experienced failures of the apex seal system
which terminated each test as the power was increased. The apex seal
system failures included severe bowing of the seals (indicating that
the wear surface was running significantly higher temperature than the
inner surface of the seal), accelerated apex seal wear and sticking of
the seals in the rotors. These failures are due to breakdown of the
lubrication system at the very high surface temperatures which were
experienced on the inner surface of the insulated cast iron rotor
housing. Based wupon extrapolation of the rotor housing heat flux
thermocouple data, the temperature of the cast iron and coating
interface was in excess of 244 C. as compared to 103 C. for the
baseline engine at the same load. The baseline engine had a wall
temperature of 127 €. at full 1load. While the absolute values of
these data are highly questionably (actual temperatures are known to
be higher) the data does show that the minimally cooled, insulated
cast iron housing runs significantly hotter than the standard cooled
aluminum housing. This high temperature operation breaks down the
lubricating oil causing an increase in friction and also forms hard
deposits (which cause the apex seals to stick).

9. As discussed separately in the ADAPCO report the conclusion of the
cycle analysis, thermal analysis and stress analysis are that the
design approach to insulating the rotor is sound and has acceptable
stress levels. However, it is predicted that the insulated aluminum

rotor housing with water cooling and the uncooled, insulated, cast
iron rotor housing both have excessively high stress levels and will
fail. ADAPCO does point out that their analysis could be greatly
improved with additional fundamental property data for the coating
systems and by using a more sophisticated cycle analysis and transient
thermal analysis.

10. Analysis of the cycle simulation data, with various degrees of heat
rejection reduction, shows that for a 40 percent reduction of heat
rejection to the coolant and lube that an additional 15 percent of the
rated engine power 1is available in the exhaust for compounding
Trecovery.

1.0 = RECOMMENDATIONS

This program has concluded that it is possible to reduce the heat rejection
of high performance rotary engines by using state-of-the-art thermal barrier
coatings provided that the basic engine components are made of compatible
materials. In order to improve the engine for aircraft applications (or other
applications which are weight sensitive) it is necessary to find an alternative
to aluminum and cast iron for the engine housings and rotors. A material with
low density and good high temperature strength 1is required. A study to
identify an optimal material to replace aluminum or ductile iron for high
temperature piston engines [3] has identified a titanium alloy (Ti6242) as
having the desired properties and which also has low thermal conductivity.

It is recommended that a technology demonstrator engine be designed using
the Ti6242 alloy with thermal barrier coatings on the side housings, rotors and
(to a limited extent) the rotor housing. The design should prove that titanium
is a superior material for a high performance aircraft engine and that the
resulting engine will be inherently more reliable (as compared to an engine
with aluminum housing castings). A techno-economic analysis should then be
performed to determine the cost and marketing implications.
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It is recommended that efforts be continued (by NASA and others) to develop
high temperature lubrication systems which are applicable to the apex seal.
This effort should include high temperature liquid lubrication, dry lubrication
systems and work on material compatibility.

RECOMMENDATION FOR TESTING AT JOHN DEERE

It is recommended that the components be tested together in one engine
build to determine the performance implications in the stratified charge
combustion engine. Testing should be done with an eye to obtaining as much
data as possible before coating failure occurs. The coated rotor (which should
survive any coating failure of the rotor housing or side housings) should then
be tested by itself for durability and performance. If the rotor coating is
damaged, Adiabatics, Inc. will recoat it for free.
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ADIABATIC WANKEL TYPE ROTARY ENGINE
CONTRACT NAS3-24880

STATEMENT OF WORK
INTRODUCT ION

The objective of this project is to design, fabricate, procure,
assemble and test a prototype low heat rejection rotary engine
based on studies performed in the SBIR Phase I contract entitled
“Adiabatic Wankel TYPE Rotary Engines” completed in 1985. A
program consisting of eight (8) tasks was formulated to accomplish
this project as follows:

I Engine Selection and Baseline Test

II Thermal Analysis

III Adiabatic Component Design

IV High Temperature Apex/Side Seal Tribology

v Prototype Engine - Procurement/Assembly - MAZDA 13B
Vi Engine Testing

VII Prototype Engine - Procurement - NASA 1007R

VIII Exhaust Energy Utllization

The following 18 a narrative description of the work plan for each
task.

TASK I Engine Selection_and Baseline Test

This first task starts with selection and purchase of a test
engine followed by instrumentation of the engine and baseline
testing. Per the conclusions of the first quarterly report and
review at a meeting with Mr. William Hady att. NASA LeRC
November 12, 1986 a Mazda 13B engine of tLhe latest
configuration was procured. Based on engine availability and
suitability for test cell operation the engine was purchased
(following approval from Hr. William lady) from Racinm Beat.,



Inc. of Anaheim California, The configuration of the engine
is listed in the following table:

Model Mazda 13B

Displacement 1.308 L (80 Cu In)

Rated Power 132 KW (177 Horsepower)

Intake Ports 6 Side Ports (2 Valved)

Exhaust Ports 2 Peripheral

Exhaust Manifold Racing Type Header

Carburetion Dellorto 48 DHLA (Dual sidedraft) ,
Ignition Distributor Mazda Breakerless (Integral
Electronics)

Ienition Coils Mazda Transistor Ignition Type

Flywheel Lightweight Steel Type

The plan 18 to use this engine for component.  sereening
(mechanical 8creening as opposed to performance development),
The logiec behind this approach is that the addition of low
heat rejection components to a homogeneous charge engine will
ralse the temperature of the gases during the compression
stroke and increase the tendency of the engine  to detonate

(early combustion). To counteract this phenomena special
fuels with very high octane numbers will have to be used along
with power reductions. A test plan for the engine is to be

prepared which includes engine and test cell instrumentation,
assembly instructions, test cell installation detalls and the
actual listing of tests to be run. An eddy current type dyno
matched to the Mazda engine is being used for this project.

Because the selected engine is a mature product the initial
testing is 1limited to refinement of the test facility and
baseline performance measurements of the engine with no
endurance or durability testing. A partial listing of the:
parameters which are be measured and the measuring method are
a3 follows:



Engine Speed Spead pickup on dyno.

Torque Load Cell on dyno.
Fuel Flow Mass Type Flouwmeter
Air Flow Mass Type Floumeter
Intake Temperature Thermocouple
Exhaust Temperature Thermocouple
Coolant In Temperature Thermocouple
Coolant Out Temperature Thermocouple

011l In Temperature Thermocouple

011 Out Temperature Thermocouple

Rotor Housing Temperature Thermocouple

Side Housing Temperature Thermocouple
Coolant Pressure Bourdon tube gage
01l Pressure Bourdon tube gage
Barometric Pressure Mercury Barometer
Wet and Dry Bulb Amb Temps. Sling Psychrometer

Following receipt of the inputs from NASA the detailed test
plan will be finalized and submitted to HASA {for approval.

Following approval of the test plan the Contractor will
conduct the test program and prepare and issue an informal
test report.

Task I1I____Thermal_Analysis

A thermal analysis shall be conducted for NASA's 1007R engine
to obtain a thermal history including Lhe temperature
distribution in the rotor and rotor housings during rated and
peak torque operating conditions.

The analysis shall provide the basis for calculating the
distortion, allowable clearances and thermal stresses in these
. components. The thermal stresses obtained in this analysis
shall be combined with the rotating stresses and pressure
loading stresses to provide input for the component design to
be performed in Task 111 - Adliabatic Component Design.

After completion of the thermal analysis, the Contractor shall
prepare an informal report and present it Lo the NASA Project
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III. .

Manager for his approval. Upon approval, the Contractor‘shall
proceed with the design of all the adiabatic components as
determined in Task III - Adiabatic Component Design.

The following method will be used to accomplish this task: .

a, NASA to furnish 1007R drawings and test data to ADAPCO.

b. NASA to furnish MIT Stratified Charge Combustion Model.

c. ADAPCO will incorporate 1007R geometry and run the MIT
model to generate boundary conditions.

d. ADAPCO to use John Deere data to verify model.

e. ADAPCO to generate FE model of 1007R rotor and rotor hsg.

f. ADAPCO to use boundary conditions from c. and run FE
analysis.

g. ADAPCO to prepare informal report.

Adiabahicmﬂgmpqnentmueaign

Following completion of TASK 2, the Contractor will upon
approval from NASA's Project Mansger have ADAPCO proceed to
modify the models for combustion and the FE models for the
rotor and rotor housing to include selected low heat rejection
components and to run the models and analysis at the low heat
rejection conditions. These results will be used 1in an
iterative manner to design the actual modifications to the
1007R parts. Detailed drawings of the modifications will be
completed by Contractor personnel and submitted to the Project
Engineer for approval. Upon approval, the Contractor may
initiate procurement of the adiabatic components outlined in
task IV - High Temperature Apex/Side Seal Tribology and task
VI - Prototype Engine Procurement - NASA 1007R.

le__High_IgmpgxaLnxgmApexASidemSaalMT:ibqlogy

The Contractor shall evaluate and procure candidate apex
seals, side seals and high temperature lubricants as follows:

Based on experience from reciprocating adlabatic engine
testing four candidate sets each of Apex seals anud side seals

A-6



for high temperature operation along with high tewmperature oil
for two o1l changes will be procured for the 1007R engine.
The same candidate apex seal and side seal designs will be
procured for the Mazda engine along with the same high
temperature oil. The apex seals and high temperature oil will
be run in the Mazda engine build with the low heat rejection
rotor housing and the side seals and high temperature lube
will be run in the engine build with the low heat rejection
side housings.

Y ____Prototype Engine - Procurement/Assembly. - Hazda 13B

The Contractor shall procure, fabricate, modify, and aszsenble
a complete prototype adiabatic rotary engine utilizing those
parts and or components obtained in performance of Tasks I,
III and 1V. This engine 1is teo be used f[or s=creening
components for later inclusion in the 1007R engine. A series
of screening tests are to be planned wherein a concept can be
tested individually for mechanical and tribological integrity.

YI __ _Engine_ Testing

The Contractor shall install the Mazda 13B rotary engine and
auxiliary componénts from Task IV (High Temperature Apex/Side
Seal Tribology) to his test facility and make all necessary
preparations for testing. Prior to commencing the engine
testing a test plan will be prepared and approved by the NASA
Project Manager. The engine testing shall consist of separate
engine builds and tests for the rotor, rotor housing, and side
housings along with a final test of the complete engine. A
nminimum of four separate engine build and test ocycles are
required.



YII. Prototype Engine - Procurement.- NASA 1007R

The Contractor 1is to provide thermal barrier cocatings for the
following parts of the NASA 1007R engine:

Note: The parts to be coated are NASA owned parts which are
presently at John Deere.

ROTOR - The 1007R rotor will be machined and coated the same
as the Mazda rotor.

SIDE HOUSINGS - The present 1007TR side housings are aluminum
and present the same problem as the aluminum rotor housings.
Depending upon the results from the Mazda testing and the
thermal analysis program, either zirconia coated aluminum
housings with the three cycle coating or plasma sprayed

chrome-oxide or the K-Ramic coated cast iron housings will be
supplied.

ROTOR HOUSING - The selection of rotor housing material and
coating will be dependant upon the reanlts of the Mazda
testing and the thermal analysis,

The testing of the 1007R components will be accomplished by
John Deere and is not included in this project,

YIII_Exbhaust Lnerey Utilization

The Contractor shall conduct a study on methods of recovering
waste energy from the exhaust of the adiabatic rotary engine
using exhaust gas data from the 1007R engine and the results
of the thermodynamic modeling of that engine with low heat
rejection components. The results of this study will be
presented to the NASA Project Manager for his approval.

Reporting_Requirements

Reporting shall be in accordance with the Reports of Work
attachment except as modified below:

1. A Quarterly Technical and Progress Report shall be
substituted in lieu of the Monthly Report,
A-8 =
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Each task shall be reported in the Quarterly Progress
Report.

The Quarterly Progress Report shall include the number of
labor hours expended for each category of labor for the
quarter as well as cumulative totals.

One (1) copy of the Final Report draft shall be submitted
for review in lieu of the four (4) copies specified.
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ENGINE TEST PLAN

The engine test plan encompasses five engine configuration tests: the standard
engine, the standard engine with coated rotors, the standard engine with coated
intermediate housing, the standard engine with coated rotor housings, and the
standard engine with a combination of all above mentioned coated components. The
purpose of the engine tests is to screen components for later inclusion on the 1007R

engine. The data from the testing will be analyzed to determine the change in heat
rejection.

The first test configuration, the standard engine, is being run to develop baseline
information. Because the selected engine is a mature product the initial testing is

limited to refinement of the test facility and performance measurements of the

engine with no endurance or durability testing.

The test consists of engine preparation, instrumentation, and machining of the
engine rotor housings and intermediate housing to enable installation of

thermocouples. The assembled engine will be placed on the test stand and connected
to an Eaton eddy current type dynamometer Model AD-8081.

The following parameters will be measured and recordeds

Engine Speed Speed pickup on dyno.
Torque Load cell on dyno.
Fuel Flow Mass type flow meter.
Intake Temperature Thermocouple

Exhaust Temperature

Coolant In Temperature
Coolant Out Temperature "
0il In Temperature
0il Out Temperature
Rotor Housing Temperature

8ide Housing Temperature

(Continued on next page.) B-2



Intake Pressure Mercury Manometer

+ Exhaust Pressure Mercury Manometer
Blow by Mercury Manometer
Coolant Pressure Bourdon Tube Gauge
0il Pressure Bourdon Tube Gauge
Barometric Pressure Mercury Barometer

Wet & Dry Bulb Amb,. Temps. Sling Psychrometer

(For locations of rotor housing and intermediate housing thermocouples see
Figures 1 & 2.)

Periodic visual inspection through the exhaust ports and pre and post test

measurements of the wear surfaces will be performed.

The second engine configuration to be tested is the baseline engine with the
addition of two insulated rotors. The two rotors will be coated with plasma sprayed
zirconia and then densified with a chrome oxide coating. This test will include an
endurance test at various loads to ensure proper component screening. The same

parameters will be measured as outlined in the first test configuration.

The third engine configuration tested is the baseline engine with a coated

intermediate housing and coated side seal. This test will also be performed under

endurance conditions and the test will measure the same parameters as above.

The fourth engine configuration tested is the baseline engine with coated rotor

housings and coated apex seals. Testing will be done in the same manner as above.

The last engine configuration tested is with a combination of all coated

components. This test will be performed if all components endure the previous

tests. The same parameters will be measured.

Once the test program is performed, Adiabatics, Inc. will prepare and issue an
informal test report.
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STATEMENT OF WORK

The purpose of this program is to determine the structural
implications of an "adiabatic" direct injection stratified charge
combustion rotary (Wankel) type engine.

To'accomplish this program ADAPCO is to perform the following tasks
using the NASA (John Deere) 1007R engine as the candidate engine:

1.

Generate the three dimensional ANSYS finite element model for the
rotor and rotor housing using the drawings generated by John
Deere.

Using the MIT DISC model, generate the thermal and pressure
boundary conditions for the above engine at rated and torque peak
conditions.

Compare the results of the above analysis with test data supplied
by John Deere and iterate the model as necessary such that the
predicted pressures and temperatures agree with the measurements.

Using the above boundary conditions along with inertia loads and
assembly loads, run the FE models and determine the deflections,
stresses and temperatures of the components.

Run the MIT DISC model for the adiabatic configuration assuming a
.030 inch plasma sprayed zirconia thermal barrier coating
densified from chrome oxide on the combustion face of the rotor,
the side housings and the rotor housing to determine the pressure
and temperature boundary conditions for the insulated engine.

Modify the FE models to include the thermal barrier coatings.

Run the FE models with and without coolant in the rotor housing.
Reiterate back through task 5 as necessary such that the MIT DISC
and ANSYS surface temperatures are in agreement.

Analyze the results of the above run to determine if the
stresses, temperature and deflections are acceptable. If they
are not acceptable, modify the models to incorporate design
changes to make the values acceptable and recycle until a
satisfactory solution is found.

REPORTING

An interim report and a final report which details all of the effort
and results shall be prepared and submitted per the schedule. A
magnetic tape copy of the completed ANSYS finite element models is
required.

SCHEDULE

Program start date

1 April 1987

Interim report due - 1 July 1987
Program complete - 1 October 1987
Final report due - 1 November 1987
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The five pages that follow are a description of the pre and post test
measurement procedures. The procedures are described in the 1987
Mazda shop manual. All measurements not recorded were checked and
were OK.

MAIN BEARING

1. Check the main bearing clearance.
Measure the inner diameter of the main
bearing and the outer diameter of the
eccentric shaft main journal.

standard Clearance: 0.04 - 0.08mm
(.0016 - .0031 in)

Clearance Limit: 0.10mm
(.0039 in.)

ROTOR HOUSING

1. Check the width difference of the rotor
housing. Measure the rotor housing
width at the points A,B,C, and D as
shown in the figure.

2. Check the difference between the value
of point A and the minimum value among
the points B, C, and D.

Difference Limit: O.06mm
(.0024 in.)
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ROTOR

Check the clearance between the side
housing and rotor.

Measure the rotor housing width and the
maximum rotor width at three points.

Standard Clearance: 0.12 - 0.21mm
(.0047 - .0083 in.)

Clearance Limit: .004 in.

2. Check the corner seal bores for wear

49 0839 {5

1) If neither end of the gauge goes into
the bore, use the original corner
seal.

2) If only one end of the gauge goes
into the bore, replace the corner
seal.

3) If both ends of the gauge go into the
bore, replace the rotor.

3. Check the rotor bearing clearance.
Measure the inner diameter of the rotor
bearing and the outer diameter of the
eccentric shaft rotor journal. Standard

Clearance: 0.04 - 0.08mm
(.0016 - .0031 in.)

Clearance Limit: 0.10mm
(.0039 in.)



ROTOR OIL SEAL

1. Check the o0il seal 1lip width.

Lipwidth: .0.05mm
(.020 in max.)

2. Check o0il seal protrusion.

Protrusion: 0.05mm
(.020 in min.)

APEX SEAL

1. Measure the height of the apex seal at
two points.

Standard Height: 8.0mm
(.315 in.)

Height Limit: 6.5mm
(.256 in.)

2.Check the apex seals for warpage.

Warpage Limit: 0.06mm
(0.0024 in.)




79.9~80.1 mm
(3.146~3.154 in)
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APEX SEAL cont.
3. Check the clearance of the apex seal and
the groove.

Standard Clearance: 0.062 - 0.102mm
(.0024 - .004 in.)

Clearance Limit: 0.15mm
(.0059 in.)

4. Check the apex seal spring for wear and
free height.

Free Height Limit:

Long Spring 4, 6mm
(.181 in.)

5. Measure the apex seal length.

SIDE SEAL
1. Check side seal protrusion.

Protrusion: 0.5mm
(.020 in.) min.



SIDE SEAL cont.

2. Check the clearance between the side
seal and the groove.

Standard Clearance: 0.028 - 0.078mm
(.0011 - .0031 in.)

Clearance Limit: 0.10mm
(.0039 in.)

3. Check the clearance between the side
seal and the corner seal.

Standard Clearance: 0.05 - 0.15mm
(0.0020 - 0.0059 in.)

Clearance Limit: 0.4mm
(.016 in.)

CORNER SEAL

Check the corner seal protrusion.

Protrusion: 0.5mm
(.020 in) min.
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X Fre % Fost Compression Tests %X

Rotor Compression
flank Fre Fost
Bulid Number Mo . {kg/Cmsqg) Lrpm) {kg/lmsag) (rpm)

Derns1tied Cr 4 frant 1 7 N& NA
roated rotor 2 & "
rotor A H.7 "
test
FERE 1 TNT 201 NA (A
rotar 2 7OE "
= H.6 "
Coated DY 1 front 1 9.2 21é NA NA
Alumincun rotor 2 s "
rotor = 2.4 "
housing
test rEar 1 5.5 oLy MNE N&
rotor z i "
= 7 "
Coated Dy 2 front 1 8.5 213 NA MA
cast iron rotor 2 8.9 "
rotor s 3.4 "
housirng
test Fear 1 F.7 215 NA NA
rotor 2 .0 "
z 2.5 "
Coated Dy = fromt 1 4.7 217 Q.0 220
cast 1ron rotor 2 4.0 0.
irotor = 3.2 Q.0
housing
test FEar i 4.2 nA3 (W 219
rotor =2 4.0 G.O
3 4.1 0.0
Coated D) 4 front i 8.1 221 0.0 212
zast i1ron rotor 2 7.9 Q.0
rotor = 7.9 0.0
housing
test rear 1 7.1 22 0.0 205
rotor 2 5.7 0.0
3 7.1 Q.0
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Standard Clearance
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