NASH CR-182233

ADIABATIC WANKEL TYPE ROTARY ENGINE

PHASE II FINAL REPORT

BY

R. KAMO, P. BADGLEY, AND D. DOUP

ADIABATICS, INC. COLUMBUS, INDIANA

PREPARED FOR

NASA LEWIS RESEARCH CENTER

CONTRACT NAS3-24880

(NASA-Ch-182233) ADIAEATIC WARKEL TYPE ECIARY ENGINE (Acialatics) 20% p CSCL 21% N89-17599

Unclas G3/07 0189642

SEPTEMBER 1988

	ميد سي		
1			

70272-101 REPORT DOCUMENTATION PAGE	I. REPURT NO.	2.	3. Recipient's Accession No.
4. Title and Subtitle	L		5. Report Date Sept. 1988
Adiabatic Wankel	Type Rotary Engine		5ept. 1908
7. Author(s)			8. Performing Organization Rept. No.
R. Kamo, P. Bado			AI-120
9. Performing Organization Name a	nd Address		10. Project/Task/Work Unit No.
Adiabatics, Inc.			
630 South Mapleto			11. Contract(C) or Grant(G) No.
Columbus, Indiana	4/201		(c) NAS3-24880
			(G)
12. Sponsoring Organization Name a			13. Type of Report & Period Covered
National Aeronaut Lewis Research Ce	ics and Space Admini	stration	
	McFadden, Mail Stop 7	77-6	14.
Cleveland, Ohio	44135		
Project Manager, 16. Abstract (Limit: 200 words)	J. McFadden, NASA-Le	wis Research	n Center, Cleveland, Ohio 44135
technology of the through the use o of this program, intermediate hous A detailed constrained Charge that applying the	Wankel type rotary of adiabatic engine to technology is in platings with thermal bacycle analysis of the (DISC) rotary enginermal barrier coating	engine for a echnology. ce to provide rrier coating NASA 1007R e was performs to the rot	Direct Injection rmed which concluded for should be
successful and th successfully run stresses were exc	at it was unlikely twith thermal barrier essive.	hat the roto coatings as	or housing could be the thermal
17. Document Analysis a. Descript	iors		
Wankel rotar engines, Turbocha	y engine, Adiabatic rging, Turbocompound	engine, Wank ·	el Simulation Model, Aircra
b. Identifiers/Open-Ended Terms			
			·
c COSATI Field/Group			

18. Availability Statement

Unclassified

19. Security Class (This Report)

Unclassified

20. Security Class (This Page)

Unclassified

21. No. of Pages

215

22. Price

ł		

ADIABATICS WANKEL TYPE ROTAY ENGINE PHASE II

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>
1.0	<u>Introduction</u>	1
2.0	Executive Summary	1
3.0	Background-Phase I	2
4.0	Technical Approach	2
5.0	Discussion	3 5 5 6
	5.3 Task III Adiabatic Component Design	8 8
	5.4 Task IV High Temperature Apex/Side Seal Tribology	14 14 16 20 28 28 29
	5.6.2 Rotor Housing	37
	5.7 Task VII Prototype Engine - Procurement/Assembly - NASA 1007R	54 54 60 64 64 76
6.0	Conclusions	76
7.0	Recommendations	82
	Appendix A	A-1 B-1
	Appendix B	G-1
	Appendix D	D-1

ADIABATICS WANKEL TYPE ROTAY ENGINE PHASE II

TABLE OF CONTENTS

<u>Section</u>							Ti	<u>[t]</u>	<u>Le</u>								<u>Page</u>
Appendix	E	;							٠								E-1
Appendix	F	•															F-1
Appendix	C	- 5	I													. G	-I-1
Appendix	C	G -	ΙI													G-	II-1
Appendix	H	ł															H-1
Appendix	. I	-															I - 1

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	<u>Page</u>
5.1.3-1 5.4-1	Mazda Engine Ready for Baseline Testing Scematic Drawing of Friction and Wear Test Rig Thermocouple Installation for Roller and Specimen	7 11
5.4-2	Temperature Measurement	12 13
5.5.0-1	Details of Zirconia Coating Applied to Mazda	15
5.5.0-2	13B Rotors	17
5.5.0-3	Machined Mazda Rotor with Lip Design Around the Combustion Chamber	18
5.5.0-4	Mazda Rotor After Adiabatics, Inc. Low Temperature Densification	19
5.5.1-1	Details of Zirconia Coating on Mazda 13B Intermiediate Housing	21
5.5.2-1	Stock Aluminum Mazda Rotor Housing After Zirconia (a) and Tribaloy 800 (b) Application	23
5.5.2-2	Failed Tribaloy 800 Coating on Mazda Stock Aluminum	27
	Rotor Housing	24 25
5.5.2-3 5.5.2-4	Coated Cast Iron Rotor Housing Showing "Mud" Cracks	23
5.5.2-4	After Zirconia Densification	27
5.6.0-1	Zirconia Coated Intermediate Housign Densified by Kaman Science's Process After Completing 51 Hours	
	of Testing	30
5.6.0-2	Change in Oil Temperature vs. Bmep Chart	31
5.6.0-3	Change in Oil Temperature vs. Bmep Chart	32
5.6.0-4	Change in Oil Temperature vs. Bmep Chart	33
5.6.0-5	Change in Oil Temperature vs. Bmep Chart	34
5.6.1-1	Rear Rotor Housing After 31 Hours of Testing Time	2.5
5.6.1-2	with Thermal-Barrier-Coated Rotor	35
3.0.1-2	Hours of Testing	36
5.6.1-3	Change in Oil Temperature vs. Bmep Chart	38
5.6.1-4	Change in Oil Temperature vs. Bmep Chart	39
5.6.1-5	Change in Oil Temperature vs. Bmep Chart	40
5.6.1-6	Change in Oil Temperature vs. Bmep Chart	41
5.6.1-7	Change in Oil Temperature vs. Bmep Chart	42
5.6.1-8	Change in Oil Temperature vs. Bmep Chart	43
5.6.1-9	Change in Oil Temperature vs. Bmep Chart	44
5.6.1-10	Change in Oil Temperature vs. Bmep Chart	45
5.6.1-11	Change in Oil Temperature vs. Bmep Chart	46
5.6.1-12	Change in Oil Temperature vs. Bmep Chart	47
5.61-13	Densified Zirconia Coated Mazda Rotor After 100	
J.U. I	Hours of Testing	48

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF ILLUSTRATIONS (Cont.)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
5.6.1-14	Stock Mazda Rotor (a) Compared with Densified Coated Rotor After 100 Hours Testing Together in One Build .	49
5.6.2-1	Failed Thermal Barrier Coating on Mazda Rotor Housing After 14 Hours of Testing	51
5.6.2-2	Coated Cast Iron Rotor Housign After Testing 16.75 Hours	52
5.6.2-3	Warped M2 Tool Steel Apex Seals Tested with Coated Cast Iron Rotor Housing	53
5.6.2-4	Warped Standard Cast Iron Apex Seals Tested with Coated Iron Rotor Housing	55
5.6.2-5	Coated Cast Iron Rotor Housing After 32.3 Hous of Testing	56
5.6.2-6	Adiabatics' Slurry Coating on a Mazda Side Seal (below Compared to a Stock Side Seal (top) After 32.5 Hours	
5.7.0-1	of Testing	57 :
5.7.0-2	Untouched Material Around the Combustion Chamber 1007R Rotor Shown (a) After Zirconia Application and	59
	(b) After Zirconia Densification	61
5.7.0-3	Details of the Thermal Barrier Coating on the 1007R Rotor	62
5.7.1-1	Details of Thermal Barrier Coating on the 1007R Aluminum Side Housing	63
5.7.1-2	1007R Side Housign After Machining (a) and Final Lapping (b)	65
5.7.1-3	Cracking Around the Crankshaft Hole of 1007R Side Housing After Final Lapping	66
5.7.2-1	Details of Thermal Barrier Coating on the 1007R Aluminum Rotor Housing	67
5.7.2-2	1007R Rotor Housign Shown After Zirconia (a) and	
5 8 1	Tribaloy 800 (b) Application	68 70

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF TALBES

<u>Table</u>		<u>Title</u>	<u>Page</u>
Table	1	Configuration of the Mazda 13B Engine	5
Table	2	Prototype Procurement - Mazda 13B	
Table	_	Testing Results - procured Mazda 13B Components	
Table		prototype Procurement - NASA 1007R	
Table		1007R Baseline Engine Basic Engine Configuration	
Table		Engine Operating Condisitons and Performance	72
Table		John Deere Test Data	73
Table	-	Energy Balance (simulation)	
Table		Baseline	
Table	_	Insulated, Cooled Engine	
Table		Insulated, Uncooled Engine Input.	

1		

1.0 Introduction

This final report is prepared by Adiabatics, Inc. for the National Aeronautics and Space Administrations' Lewis Research Center (NASA LeRC) per an SBIR contract No. NAS3-24880 as amended in Modification No. 2. This report documents the two-year SBIR Phase II program, from July 10, 1986 to September 10, 1988, to develop and test a prototype low-heat-rejection rotary engine.

This SBIR Phase II program was a result of the studies performed in the Phase I contract entitled "Adiabatic Wankel-Type Rotary Engine" completed in 1985. Under Phase I, an analytical study, significant results in areas such as decreased fuel consumption and increased power output were cited when thermal-barrier (insulative) coatings were applied to internal components of the rotary engine, and with the subsequent removal of the cooling system.

The work in this Phase II program was the first step in applying the ideas and theory elaborated in Phase I to an actual engine. The objective of this Phase II project was to design, fabricate, procure, assemble, and test a prototype low-heat-rejection rotary engine to see if the results of Phase I are actual and that this type of engine can run dependably.

2.0 **EXECUTIVE SUMMARY**

This SBIR Phase II program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Curtiss-Wright and John Deere as part of their "Technology Enablement" program for aircraft rotary engines have identified a need for reduced heat rejection as a key technology for a highly advanced aircraft engine [1].

Based upon the results of this program technology is in place to provide a rotor (using either the available 17-4PH stainless steel rotor or preferably a titanium alloy rotor) and side and intermediate housings (of preferably titanium alloy) with proven thermal barrier coatings. These components by themselves make a large improvement in the engine package by substantially reducing the net heat transfer and thus reducing the size and weight of the cooling systems (lube and coolant) and will also improve the efficiency of the engine by improving the combustion through increased cycle temperatures. To achieve the best overall powerplant package a single high temperature fluid combining lubrication and rotor housing cooling should be incorporated. Incorporation of a compounding cycle such as turbo-compounding or a bottoming cycle will be even more attractive and show larger benefits as more heat is diverted from coolant to the exhaust.

A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed by ADAPCO, Inc. utilizing the DISC cycle simulator developed by MIT under a program sponsored by NASA. The analysis was calibrated by matching measured performance data supplied by John Deere. The analysis was then conducted for two cases consisting of both an uncooled engine with thermal barrier coatings on cast iron engine housings and an intermediate case with thermal barrier coatings on water cooled aluminum housings with thermal barrier coatings on the rotor in both cases. A finite element model for the 1007R rotor and rotor housing was developed for each of the three cases (standard water cooled, thermal barrier coatings with water cooling, and thermal barrier coating with no cooling). Detailed thermal and

stress analyses were then performed for these three cases utilizing boundary conditions as defined by the respective cycle simulations. This study concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were excessive.

Concurrently with the analytical study all of the major internal engine components including the rotors, rotor housings and side housings have been coated with thermal barrier coatings and the components durability tested in a racing Mazda engine for over 300 test hours. The Mazda engine was utilized for this design and durability screening effort rather than the 1007R engine for reasons of availability and cost effectiveness and because it runs hotter that the DISC engine which serves to accelerate the testing.

The results of the iterative design, fabrication and testing cycles are that successful designs for both the rotor and side housings with thermal barrier coatings are proven and that the use of thermal barrier coatings on the rotor housing appears to raise the inner surface temperature to the point where available liquid lubricants are inadequate to lubricate the apex seal interface.

Based upon the test results, components have been supplied to NASA for the NASA 1007R engine which have been modified with thermal barrier coatings. The plan is for NASA to have the components engine tested by John Deere's Rotary Engine Division to determine their performance in the DISC engine.

3.0 Background-Phase I

The SBIR phase I program was an analytical study of the potential benefits of the adiabatic Wankel-type engine and advanced heat engine concepts. Also, the design of adiabatic engine components, methods of applying ceramic (insulative) materials, and the technical feasibility of an adiabatic Wankel engine concepts were presented. The baseline engine selected for this study was the single rotor 1007R engine built by John Deere and owned by NASA. The 1007R is a highly advanced, stratified charge, 0.7 liter prototype engine. The results of the Phase I study confirmed a significant improvement in the performance of the Wankel engine when modified to be adiabatic. Also, advanced concepts like turbocompounding, advanced turbocharging, high compression ratios, faster combustion, and reduced leakage showed significant improvements in engine performance. An overall improvement of 25.5% in ISFC and 34.5% in power output was predicted for the 1007R engine when 100% adiabatic and The potential application and performance benefits of the turbocharged.

low-heat-rejection Wankel engine are extremely attractive for future advanced

discoveries and potential benefits are what prompted the funding of Phase II.

for aircraft, automotive, and industrial engines.

4.0 Technical Approach

plants

To meet the objectives of this Phase II project a management plan was developed whereby Phase II was broken into two separate parts. The first part to be performed by Adiabatics Inc. consists of development of insulated components. A Management Plan submitted by Adiabatics Inc. at the beginning of the program is found in Appendix A. The second part consists of testing the fully insulated engine which will be performed by John Deere at a later date.

To meet the first contract objectives, a nine-task plan was developed is as follows:

Tasks

- 1. Engine Selection and Baseline Testing,
- 2. Thermal Analysis,
- 3. Adiabatic Component Design,
- 4. High Temperature Apex/Side Seal Tribology.
- 5. Prototype Engine-Procurement/Assembly-Mazda 13,B
- 6. Engine Testing,
- 7. Prototype Engine-Procurement/Assembly-NASA 1007R,
- 8. Exhaust Energy Utilization. and
- 9. Reporting.

5.0 **Discussion**

The following sections detail each of the tasks from start to finish.

5.1.0 Task 1 Engine Selection and Baseline Testing

An economic and feasibility study was to be made to select the best rotary engine available for modification to an adiabatic design. After selection of the engine, an engine test plan was to be conceived and baseline testing The candidate engine needed to be both easy and economical to commenced. modify while offering as much control of the hot combustion as possible and capable of producing enough power output to meet NASA's requirements for use in light aviation.

5.1.1 Engine selection

Engine selection was based on the following criteria:

- Ease of modification and compatibility with insulated coating,
- Lowest cost.
- Availability of spare parts,
- Fuel introduction (fuel injection into the combustion chamber being preferred), and
- Power output.

A survey of the available prototype and commercial Wankel rotary engines showed the following existing engines:

> Engine Comment

NASA 1007R Research Rig

- Only one available with John Deere
- Expensive
- Fuel injection system meets

requirements

John Deere RC1-60 (Curtiss-Wright)

Wedtech 312 c.c.

OMC Rig Engine at NASA

Norton/Teledyne

Mazda 13B (2 rotor)

Mazda 13B (1 rotor) Research Rig

Not Available

• Small size

- Not stratifiedcharge
- Combustion chamber for natural gas fuel
- OMC not interested in supporting
- Not Stratified charge
- Small size
- Teledyne not interested
- Low cost
- Parts easily available
- Not stratified charge
- Expensive to fabricate
 - NASA research rig given to NSRDC

Of the above engines, only the John Deere 1007R offered the desired power output and fuel introduction system. The other engines are either not available, too small, or not fuel injected. The problem with the 1007R is it is a prototype engine and only one existed which was being used by John Deere.

The other engine which held some promise, was the naturally aspirated two-rotor Mazda 13B. Though this engine is not fuel injected, parts are readily available at low cost. Also, the Mazda has a power range comparable to the 1007R meaning both engines meet the requirements set by NASA.

The conclusion of this survey was to use the two-rotor Mazda 13B engine for component screening (mechanical screening as opposed to performance development) because of its low cost, availability of parts, and the maturity of the engine. Once components were successfully tested for durability and integrity in the Mazda, the knowledge gained would be used to modify parts for a second engine - the NASA 1007R. Assembly and testing of the uncooled adiabatic NASA engine will be under a contract performed at John Deere (the 1007R will then be the advanced engine which strives for the goals outlined in this SBIR Phase I report).

This selected approach was reviewed with Mr. William Hady at NASA LeRC on November 12, 1986 which was followed by a Management Plan which detailed the

A two-rotor Mazda 13B engine was purchased from Racing Beat Inc. of Anaheim. California. The configuration of the engine is listed in the following table:

Table 1. Configuration of the Mazda 13B Engine

Model Mazda 13B

Displacement 1.308L(80 Cu In)

Rated Power 132KW (177 Horsepower)

Intake Ports 6 Side Ports (2 Valved)

Exhaust Ports 2 Peripheral

Exhaust Manifold Racing Type Header

Corporation Dellorto 48 DHLA (Dual

side draft)

Ignition Mazda Breakerless

distributor (Integral

Electronics)

Ignition Coils Mazda Transistor Ignition

Type

Flywheel Lightweight Steel Type

5.1.2 Engine Test Plan

With the test engine selected, the next step was to develop an engine test plan (Appendix B) consisting of the following:

- Descriptions of configurations being tested,
- Test conditions,
- Parameters to be measured,
- Instrumentations, and
- Detailed location of the thermocouples in the rotor housing and intermediate housing.

5.1.3 Baseline Testing

The first test was to baseline the engine and refine the test facility. The data gathered from the baseline test (Appendix C) were used for comparison purposes in later tests to help evaluate changes brought about by testing different insulated components. The baseline test ran approximately 23 hours.

The baseline test consisted of six (6) basic operations. The first three operations were disassembly, inspection, and reassembly. The Mazda engine was disassembled as specified in the 1987 Mazda shop manual. While disassembled, the components were inspected as specified in the Mazda shop manual.

Before reassembly, the standard rotor housings and intermediate housing were replaced with new housings which had been machined for thermocouple installation. These were the only internal components changed for instrumentation and should not effect engine performance. Engine assembly was done as specified in the Mazda shop manual.

The fourth step was to install the engine in test cell No. 2 and connect it to the Eaton eddy-current-type dynamometer. All instrumentation was installed in a standard manner and calibrated. Pictures of the Mazda engine mounted in the test cell can be seen in figure 5.1.3-1.

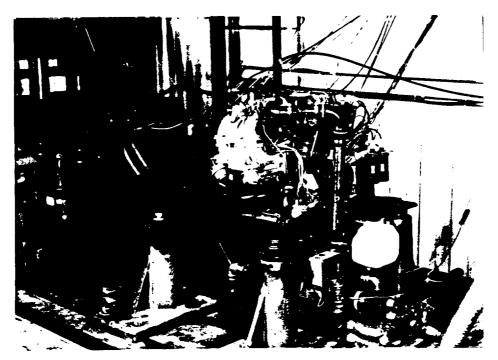
The fifth operation was the test itself. Engine testing started with a compression test. The compression tester takes six (6) measurements (one for each rotor face). Next, the engine was started and run through the break-in cycle which consisted of running at varying speeds with light to no-load. During this run all systems were checked to make sure they were functioning properly.

A test was to be run to develop the torque curve. From the torque curve 5 test speeds were to be selected. Each of the five speeds were then to be run at 25%, 50%, 65%, 75%, and 100% of full load. All the parameters listed in the engine test plan (found Appendix B) were to then be recorded at the various speeds and loads.

The last operation was to be disassembly and re-inspection once the engine completed testing.

Although test conditions were ideal problems were encountered. The engine developed excessive vibration at high speeds and problems were encountered controlling the dynamometer. This reduced testing speeds and loads. Upon post-disassembly a source of this problem was found. A needle type thrust bearing on the crankshaft had become pinched which inhibited its "free" rotation. Another source of the problem was found part way through the second test (the coated intermediate housing test). A factory mislabeled distributor caused the leading and trailing spark plugs to be fired in a backwards order. In other words, the trailing spark plugs fired first. These problems were corrected but their effect on the data remains unknown. Therefore, all comparisons of data are made under like conditions. For example, the data gathered from testing the engine with insulated rotors is compared with data gathered from testing with the insulated intermediate housing (with correct ignition in both cases). The baseline test is compared with the insulated intermediate housing test when both had incorrect ignition.

5.2 Task II Thermal Analysis


On April 1, 1987 a subcontract was let to (Appendix D) ADAPCO, Inc. for the thermal analysis on the 1007R engine. The purpose of this analytical effort was to determine the structural implications of an "adiabatic" direct-injection stratified charge (DISC) rotary engine. The analysis was to predict a thermal history to provide the basis for calculating the distortion, allowable clearances, and thermal stresses. These calculated stresses were then to be combined with rotating stresses and pressure loading stresses to provide input for component design.

The method for conducting this analysis was to be as follows:

- A NASA to furnish 1007R drawings and test data to ADAPCO,
- B NASA to furnish MIT stratified charge combustion model (DISC),
- C ADAPCO to incorporate 1007R geometry and run the MIT Model to generate boundary conditions,

AI-C/111-2A

AI-C/111-6A

Figure 5.1.3-1. Mazda Engine Ready for Baseline Testing.

- D ADAPCO to use John Deere data to verify model,
- E ADAPCO to generate FE model of 1007R rotor and rotor housing,
- F ADAPCO to use boundary conditions from C and run FE model, and
- G ADAPCO to prepare report.

A copy of ADAPCO's final report number 44-01-001 dated March 4, 1988 entitled "Heat Transfer and Structural Analysis of a Thermal Barrier Coated Direct Injection Stratified Charge Rotary Engine" is hereby submitted to NASA as appendix to this report.

The conclusion of ADAPCO's report was that the insulated rotor was the most likely component to survive in the adiabatic engine (though it showed high levels of stress in the coating around the "lip" of the combustion bowl). The stock aluminum 1007R rotor housing (coated with a combination of insulation and wear surface coating) when run with coolant was predicted as having a likely chance of failure. Due to the difficulty of applying thermal barrier coatings on aluminum, a coated cast iron rotor housing was modeled as an alternative to aluminum. The simulation predicted that the only outcome of using a coated cast iron rotor housing in a uncooled engine was coating failure. This failure was chiefly predicted because of the thermal expansion mismatches between the insulative coating on the trochoid contour and the cast iron.

5.3 Task III Adiabatic Component Design

Adiabatic component design was included in the subcontract with ADAPCO. Once ADAPCO had completed a computer simulation run of the baseline 1007R engine, ADAPCO was to proceed and modify the models for combustion and the FE models for the rotor and rotor housing to include selected low-heat-rejection conditions. These results were then used in an interactive manner to design insulated 1007R components. These preliminary designs were then coupled with the knowledge gained from screening tests in the Mazda engine.

Drawings, completed by Adiabatics, of the final modifications to the 1007R parts are included (Section 5.7 Prototype Engine - Procurement/Assembly - NASA 1007R).

5.4 Task IV High Temperature Apex/Side Seal Tribology

This Task is to evaluate and procure candidate apex seals, side seals, and high-temperature lubricants to be tested in the Mazda engine for later inclusion in the 1007R engine. The procurement of the apex and side seals is summarized in Table 2. The initial work performed in this task was to find material combinations which would be most likely to survive the harsh conditions encountered in a high-temperature engine.

Based on past experience with high temperature reciprocating piston engines, chrome-oxide or chrome-carbide coated piston rings rubbing against zirconia thermal-barrier coated liners densified with chrome oxide are the prime candidate materials.

Efforts were then spent trying to procure side seals and apex seals micropocketed and coated with thin [(0.051~mm~(0.002~inch)~to~0.127~mm~(0.005~inch)] layers of chrome oxide and or chrome carbide. Unfortunately, vendors could not be located to supply these components.

TABLE 2. PROTOTYPE PROCUREMENT - MAZDA 13B

				TYPE OF		CONDITION
	COMPONENT	QUANTITY	MATERIAL	COATING APPLIED	VENDOR	AFTER COATING
2	SIDE SEALS	m	STOCK CAST IRON	0.051mm (0.002 INCH) THICK PROPRIETARY SLURRY COATING -SLURRY THEN DENSIFIED	ADIABATICS ADIABATICS	EXCELLENT
2	SIDE SEALS	ဖ	STOCK CAST IRON	0.051mm (0.002 INCH) THICK CHEMICALLY DEPOSITED LAYER OF NICKEL, CHROME, AND BORON	снемкоте	EXCELLENT
3)	APEX SEALS	12	M2 TOOL STEEL	NONE	BOVER MACHINE	EXCELLENT
4	ROTORS	4	STOCK CAST IRON	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	APS MATERIALS KAMAN SCIENCES	EXCELLENT
5)	ROTORS	2	STOCK CAST IRON	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA	APS MATERIALS	EXCELLENT
(9	ROTOR	-	STOCK CAST IRON	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA-ZIRCONIA THEN DENSIFIED	APS MATERIALS ADIABATICS	EXCELLENT
12	INTERMEDIATE HOUSING	-	STOCK CAST IRON	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	APS MATERIALS KAMAN SCIENCES	EXCELLENT
8)	ROTOR HOUSING	8	STOCK	0.508mm (0.020 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN COVERED WITH TRIBALOY 800	APS MATERIALS STELLITE	EXCELLENT 1 SCRAP
6	CAST ROTOR HOUSINGS	2	CAST DUCTILE IRON	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	APS MATERIALS ADIABATICS	EXCELLENT

At this point two new approaches were utilized; the first, was an electro chemical coating process, and secondly, a slurry sprayed coating process applied at room temperature and low pressure.

The electro chemically deposited coating chosen for the side seal application was supplied by Cemkote, Inc. of Indianapolis, Indiana. The coating is called "Chem 2" and consists of nickel, chrome, and boron. Since this coating is chemically deposited, its application is very uniform across the entire surface. Before the side seals were coated, the Chem 2 coating was applied to specimens which Adiabatics tested in a wear test rig.

The wear and friction test rig was designed and built as a relatively quick and inexpensive way of screening materials under controlled test conditions. It employs the principle of a roller rotated against an oscillating bar specimen as shown in figure 5.4-1. The flat bar specimen is clamped to a steel bar which is supported by linear/rotary bearings and arranged for linear oscillation of \pm 6.3 mm by a motor-driven cam at a fixed 4 rpm. The loading of the test specimen on the roller is provided by applying dead weights on the pivoting support structure. The roller is driven by a constant speed electric motor and any desired roller speed can be set by adjusting the variable diameter pulleys.

Test environment control is provided by encasing the roller and test specimen in an insulated enclosure. Electrical heaters built into the walls of the enclosure are thermostatically controlled and the heating of the enclosed air provides a means for test temperature variation of the roller and specimen, up to 538 C. In figure 5.4-1 the enclosure is shown operating open-ended with connections to a coal burner and a suction fan. This arrangement is used to test materials in the environment of coal combustion products. The test temperature is regulated by the use of the in-line damper to control the flow rate of the combustion air and the heating coils.

The coal burner can also be replaced by a gas burner or a feeder of other environment contaminants, like coal powder without combustion.

The torque required to drive the roller is measured by an in-line torque meter and is continuously recorded on a chart recorder. The temperatures of the roller and the test specimen are monitored by thermocouples installed as shown in figure 5.4-2, and also recorded on the chart recorder. A drawing of the assembly of the major components of the friction and wear test rig is shown in figure 5.4-3.

The duration of a test or any event during the test is determined from the chart paper speed, selected as needed. From this recording and the load applied by weights, the force between the roller and the specimen is evaluated, the coefficient of friction can be calculated at any time during the test.

Wear values are obtained by measuring the weight loss during the test. This is done by weighing test parts before and after a test. A balance of 0.0001 gram resolution is used to weigh the specimens. The accuracy of the wear measurement is dependent on the amount of weight loss produced and the resolution of the scale. Hence, to ensure acceptable accuracy, the duration of tests was varied depending on the wear rate of the materials tested. Most of these tests were run for 18 hours while a few were as short as 15 minutes [2].

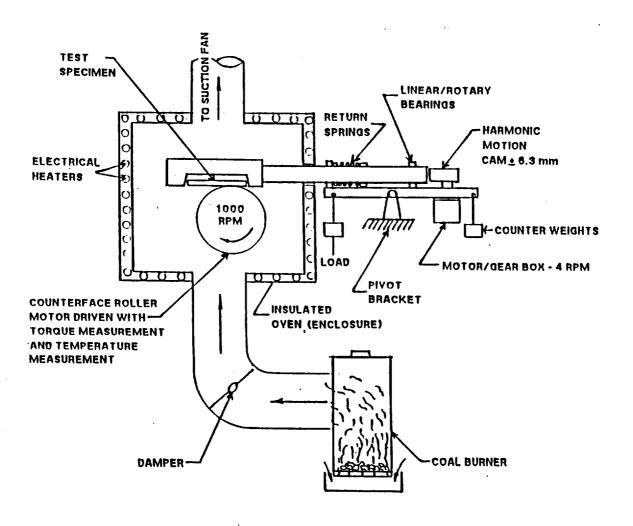
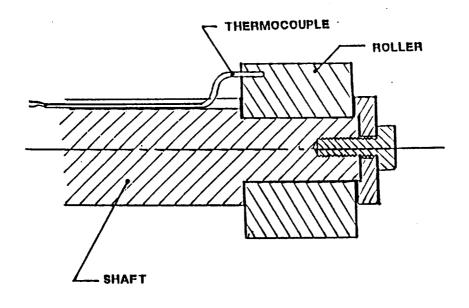



Figure 5.4-1. Schematic Drawing of Friction and Wear Test Rig.

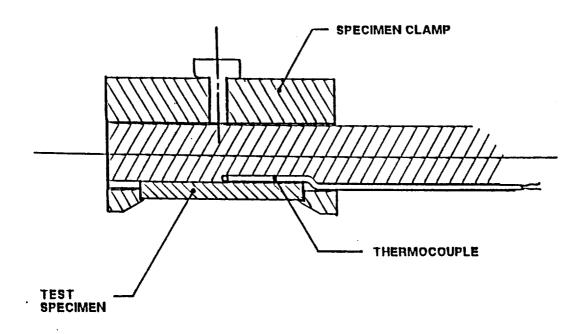


Figure 5.4-2. Thermocouple Installation for Roller and Specimen Temperature Measurement.

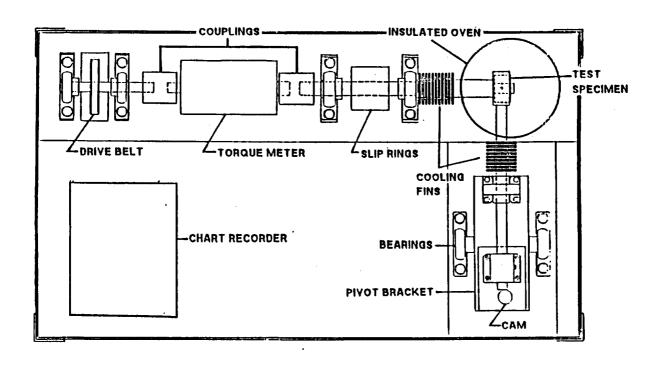


Figure 5.4-3. Drawing of Friction and Wear Test Rig Assembly.

The test results revealed that the Chem 2 is not very wear resistant but offered a very low friction coefficient.

A second set of rotor side seals was coated with a slurry coating developed by Adiabatics, Inc. The chrome molly chemical slurry type coating was sprayed at low velocity and room temperature to approximately a 0.051 mm (.002 inch) thickness. This coating is proprietary; therefore, its constituents are not listed. The results of the wear test showed this coating to be very resistive to wear.

For apex seals M2 tool steel was selected based on many tests of material specimens on Adiabatics' wear test rig, M2 was selected based on its resistance to wear and its high temperature capability. Two sets of apex seals were made from M2 tool steel by Boyer Machining, Inc. of Columbus, Indiana.

The last area of Task IV was selecting and procuring candidate high-temperature lubricants. A major portion of the Mazda testing was performed using a synthetic lubricant called SDL-1 which is sold through Bonneville Lubricants of Idaho Falls, Iowa.

This oil was chosen based on experience with reciprocating piston engine testing at Adiabatics.

Throughout all the coated component screening tests, oil temperatures varied between 93.33 C (200 F) and 126.67 C (260 F). No evidence of oil break down was noticed.

The stock John Deere 1007R apex seals and side seals will be suitable for running against the Tribaloy 800 coating on the aluminum side and rotor housing because Tribaloy 800 has excellent tribological characteristics and is compatible with the current John Deere seals. Therefore, no special side or apex seals were procured.

5.5 Task V Prototype Engine-Procurement/Assembly-Mazda 13B

The following is a listing of the low-heat-rejection components along with a description of how they were made.

5.5.0 Rotor

The rotor modification was application of thermal barrier coating to the combustion faces. The rotor combustion faces, with the exception of a 9.5 mm (0.375 inch) land at each apex (such that the apex seal was fully supported by the parent rotor material) and a 0.762 mm (0.030 inch) land along the side lands of the rotor, were machined to remove 0.762 mm (0.030 inch) of material. A 0.762 mm (0.030 inch) inlaid thermal barrier coating consisting of a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat covered with a 0.635 mm (0.025 inch) layer of plasma-sprayed zirconia was then applied onto the machined inset on the faces of the rotor. With the coating applied, the high spots were removed and the coating then densified with the Kaman KaRamic Process. In doing this, an impenetrable barrier was formed which protects the bond coat. A drawing detailing this coating procedure is shown in figure 5.5.0-1.

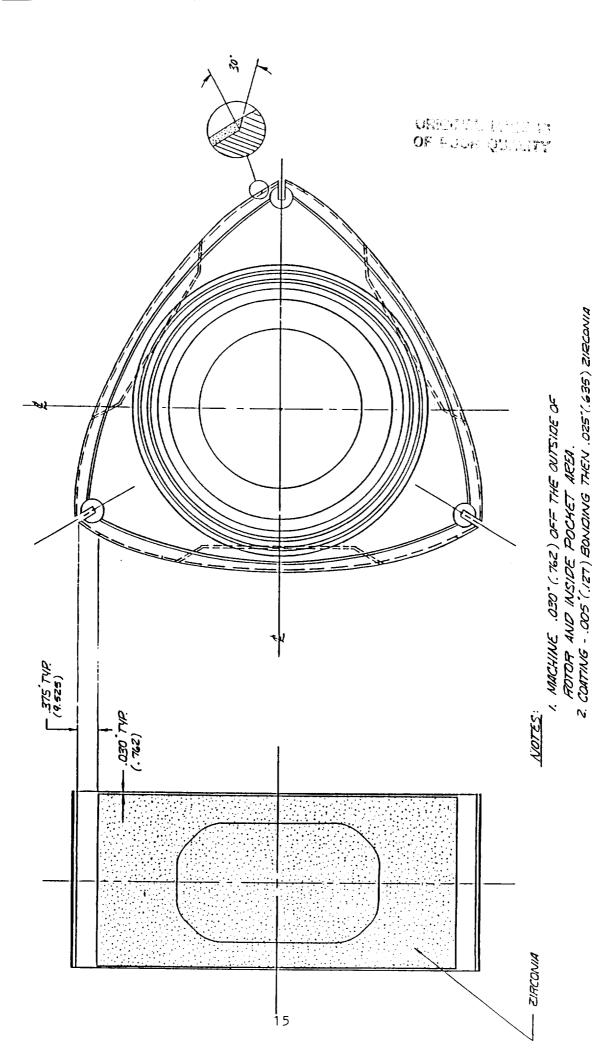


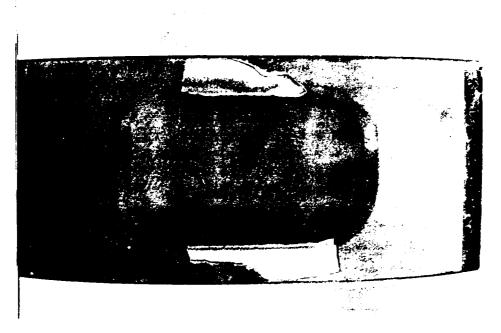
Figure 5.5.0-1, Details of Zirconia Coating Applied to Mazda 13B Rotors.

Two (2) rotors were processed as described above. During the densification process the coating on both rotors failed. Kaman Sciences Corp., who densified the pieces, claimed coating failure was caused by a problem with their oven. Densification is a process of filling the zirconia porosity near its outer boundaries with chrome oxide, thereby forming a barrier which protects the bond coating. To do this, a liquid chemical is applied to the zirconia and allowed to penetrate. Next, the whole part is heated to 537.8 C (1000 F) at which time the liquid chemical is converted into chrome oxide. Kaman said that oven temperatures reached 792.2 C (1458 F) which not only caused the coating to "pop off" but as discovered later, caused the rotor gear to lose its hardness. Since the gear is not replaceable these rotors could not be re-coated, and were therefore scrapped.

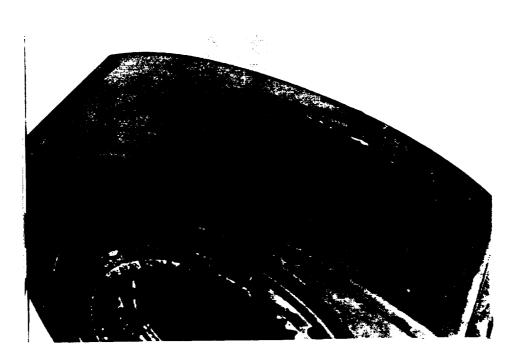
Two more rotors were machined and coated with plasma-sprayed zirconia. They were sent to Kaman Sciences for densification where, after one temperature cycle, the coating popped off (shown in figure 5.5.0-2) in the identical locations as before. Kaman claimed the problem this time was caused by "bad coating" and not their processing.

These last 2 rotors were recycled. The damaged coatings were sandblasted off and a thermal barrier coating was reapplied. These rotors were later tested in the engine without receiving densification.

Because zirconia is porous, the bond coat is susceptible to chemical attack in the engine which results in a shorter life. Therefore, one more attempt was made at densification. This time major changes were made in both the design of the rotor and the densification process itself. In every case the coatings failed in the same areas - along the lip of the combustion chamber (see figure 5.5.0-2). Therefore, a design change was made whereby a thin band of parent material was left untouched during machining around the lip of the combustion chamber (see figure 5.5.0-3). A new low-temperature process developed by Adiabatics which is not only better for the parts but it is non-toxic as well was applied. Through this combination of the lip design and the low temperature densification a first attempt provided one Mazda rotor successfully coated and densified. This rotor is shown in figure 5.5.0-4.


As a result, 2 different kinds of insulated rotors were successfully procured for testing in the 13B engine; firstly, 2 insulated rotors with undensified zirconia, and secondly, 1 insulated rotor densified by Adiabatics, Inc. incorporating a combustion chamber lip.

5.5.1 Side Housing


The initial approach to the side housing was to apply low-heat-rejection technology to only one side housing face in each combustion chamber by applying the insulation to both faces of the intermediate housing. To apply the thermal barrier coating, 0.762 mm thick (0.030 inch) of parent material was machined from both sides of the intermediate housing. A lip of parent material was left untouched during the machining operation around both the crankshaft hole and the intake port. This resulted in a coating which would be totally inlayed. Next, a 0.127 mm thick (0.005 inch) layer of NiCrAlY bond coat plus a 0.635 mm (0.025 inch) layer of plasma-sprayed zirconia was applied to the machined areas of the intermediate housing.

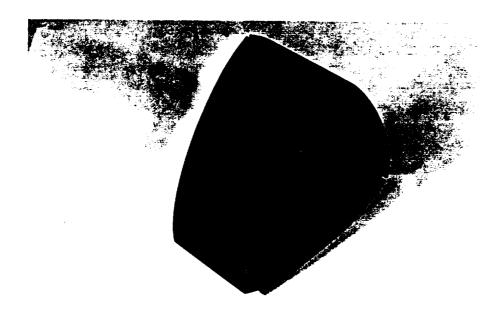
The coated housing was then machined back to maintain the original side housing thickness. The zirconia was then densified with chrome oxide by Kaman Sciences

ORIGINAL PAGE IS OF POOR QUALITY

AI-C/114-12

AI-C/114-13

Figure 5.5.0-2. Zirconia Coated Rotor After One Densification Cycle.


ORIGINAL PAGE IS OF POOR QUALITY

AI-C/128-8

Figure 5.5.0-3. Machined Mazda Rotor with Lip Design Around the Combustion Chamber.

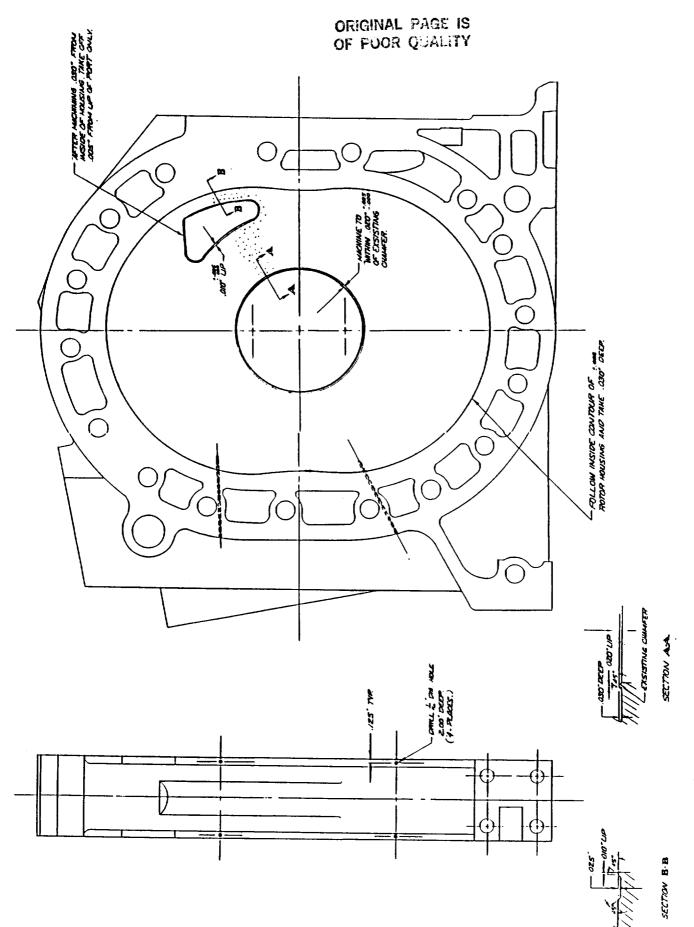
ORIGINAL PAGE IS OF POOR QUALITY

MAZDA 13B ROTOR COATED 0.030 in APS-PSZ AND LOW CYCLE LOW TEMPERATURE MODIFIED NC PROCESSING

AI-C/128-8

Figure 5.5.0-4. Mazda Rotor After Adiabatics, Inc. Low Temperature Densification.

- successfully. In this case the densification served 2 purposes: 1) as in the rotor application, densification acts to protect the bond coat, and 2) the very hard chrome oxide densification provides an excellent wear surface which is needed since the rotor side seals rub against the thermal barrier. All experience with reciprocating piston engines reveals that this densification process provides the best wear characteristics when applied on cylinder liners. After densification the housing was lapped to a surface roughness of 20 micro-inches. Ideally a surface roughness of less than 10 micro-inches was desired but could no be obtained. As a result of the difficulty during the lapping, the finished coating thickness was 0.508 mm (0.020 inch) instead of 0.762 mm (0.030 inch). A drawing detailing the coating process is shown in figure 5.5.1-1.


5.5.2 Rotor Housings

This component presented the greatest challenge to effectively reduce its heat rejection. The rotor housing material for both the Mazda and the 1007R engine is aluminum (the Mazda side housings are cast iron) which means that the existing technology for cast iron reciprocating engine parts can not be used because the temperatures to which the material is subject during processing is in excess of 537.8 C (1000 F). Therefore, either a different process was required or else the rotor housing must be made of material other than aluminum. Both approaches were followed.

The stock aluminum rotor housing was coated as follows:

- 1. The housing was sent to Eonic, Inc. where 0.508 mm (0.020 inch) of parent material was removed from the steel trochoid contour.
- 2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat plus a 0.381 mm (0.015 inch) layer of plasma-sprayed zirconia was applied to the machined trochoid contour.
- 3. The coated housing was sent back to Eonic, Inc. where the 0.254 mm (0.010 inch) of zirconia was ground off each side of the trochoid contour. This step was performed to ensure dimensional correctness and provide room for the wear coating.
- 4. The housing was sent to Stellite, Inc. where the ground zirconia was coated with more than a 0.254 mm (0.010 inch) layer of Tribaloy 800 which would act as a wear surface.
- 5. The housing was sent back to Eonic, Inc. for final grinding and lapping to the stock Mazda trochoid contour dimension.

This coating process was selected based on result of friction and wear testing with specimens (rollers) on Adiabatics' wear testing rig. The plasma-sprayed zirconia/Tribaloy 800 combination showed less wear with lower friction than combinations like plasma-sprayed zirconia/chrome oxide or zirconia/chrome carbide. Also, the zirconia/Tribaloy 800 specimen showed excellent adhesion characteristics. Its entire manufacturing process remains cool enough that aluminum is not damaged.

Details of Zirconia Coating on Mazda 13B Intermiediate Housing. Figure 5.5.1-1,

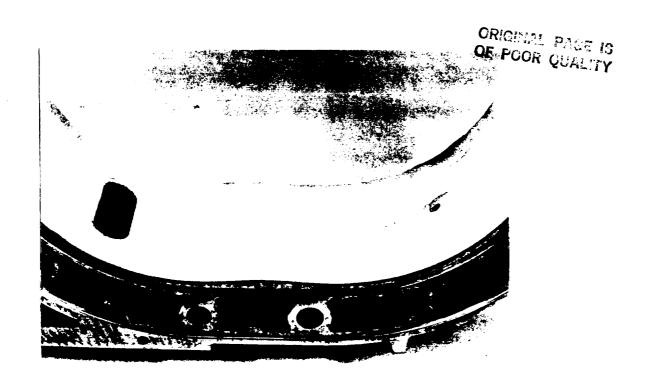
Photographs in figure 5.5.2-1 show the rotor housing after zirconia and Tribaloy 800 application. Two problems were encountered during the coating applications. During step 3 of the above process, areas of zirconia chipped when Eonic ground the zirconia to make room for the wear coating application. These chipped areas were repaired during step 4, application of the wear coating, by filling the damaged areas with Tribaloy 800.

Shown in figure 5.5.2-2, during step 5 Tribaloy 800 on one rotor housing tore during the grinding operation at Eonic. Therefore, only one of two rotor housings survived the coating operation.

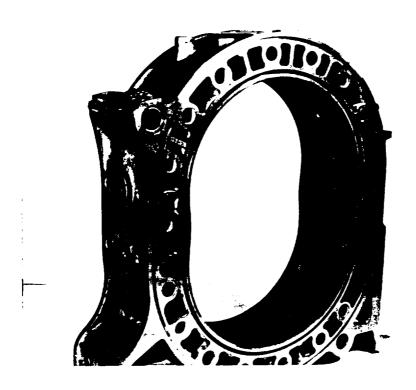
As an alternative approach, Mazda rotor housings cast from ductile iron were made and coated with a thermal barrier coating. The advantage of the cast iron is its ability to withstand high temperatures which means the zirconia can be densified with chrome oxide at 537.8 C (1000 F).

Essex Casting Company of Columbus, Indiana cast the rotor housings after which they were sent to Eonic to be machined. Eonic machined the oil pan and manifold flats and bolt holes plus exhaust port, tension bolt holes, water seal grooves, and dowel holes. Also, they ground the trochoid contour $0.762~\mathrm{mm}$ (0.030 inch) oversize to allow room for applying a thermal barrier coating. No cooling water passages were machined at this time.

Once the rotor housings were machined, they were sent to APS Materials, Inc. where a 0.127~mm (0.005~inch) layer of plasma-sprayed NiCrAlY bond coat plus a minimum of 0.635~mm (0.025~inch) plasma-sprayed zirconia was applied to the trochoid contour.


Then, the coated housings were sent back to Eonic where the coated trochoid contour was ground and lapped back to stock Mazda dimensions.

The coated and lapped rotor housings, were then densified the with 10 cycles of a high-temperature chrome-oxide treatment. Figure 5.5.2-3 shows pictures of a cast iron rotor housing in the different steps of the coating process.


Once the rotor housings were successfully coated and densified 3 holes were drilled along the top and bottom of the housing which served the purpose of permitting cooling water flow to the standard side housings. These cooling passages (shown in figure 5.5.2-3) are $9.04~\mathrm{mm}$ ($0.356~\mathrm{inch}$) diameter and are smaller than the tension bolt holes. The outside diameter of the cooling passages are located $17.78~\mathrm{mm}$ ($0.7~\mathrm{inch}$) away from the trochoid contour and do very little to cool the rotor housings themselves.

There were 2 problems during the coating process. While Eonic was grinding and lapping the zirconia-coated trochoid contour, small areas of the coating chipped. Adiabatics, Inc. repaired the chipped areas by filling them with a proprietary slurry coating. The other problem with the coating was that cracking occurred throughout the surface area. This was especially apparent after densification. Figure 5.5.2-4 shows the extent of the cracking when checked with dye penetrant. Although it is not an ideal coating, this type of cracking has been seen before and does not mean the parts cannot be used.

A summary of all the components procured for the Mazda 13B engine are listed in Table 2.

AI-C/131-6A

AI-C/142-23A

Figure 5.5.2-1. Stock Aluminum Mazda Rotor Housing After Zirconia (a) and Tribaloy 800 (b) Application.

ORIGINAL PAGE IS OF POOR QUALITY

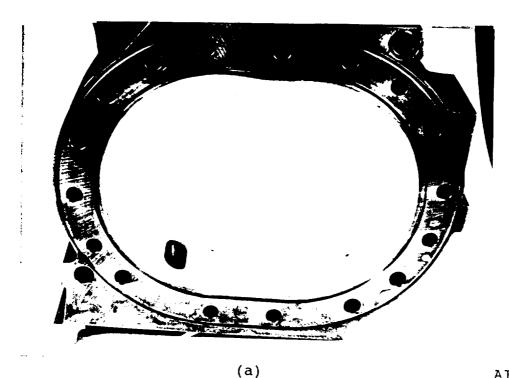

AI-C/155-15A

Figure 5.5.2-2. Failed Tribaloy 800 Coating on Mazda Stock Aluminum Rotor Housing.

AI-C/131-15A

Figure 5.5.2-3 Cast Iron Rotor Housing After Initial Machining.

AI-C/134-13

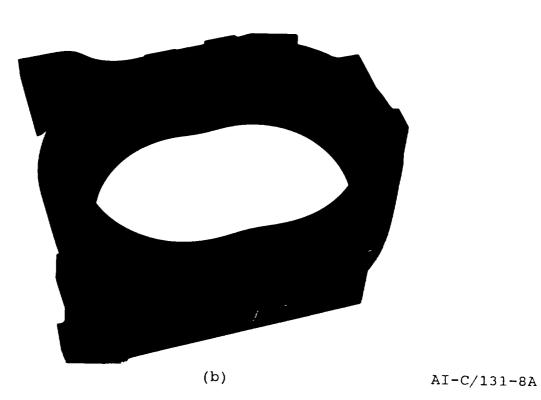
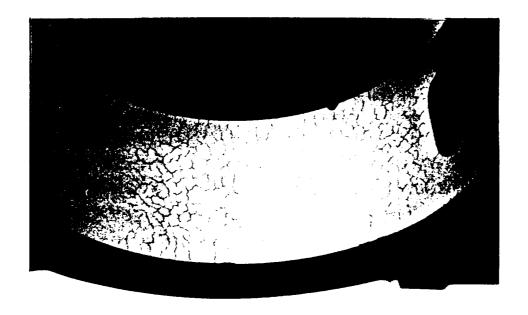



Figure 5.5.2-3 Cont. Cast Iron Rotor Housing After Zirconia Application (a) and After Zirconia Densification.

ORIGINAL PAGE IS OF POOR QUALITY

AI-C/149-23

Figure 5.5.2-4. Coated Cast Iron Rotor Housing Showing "Mud" Cracks After Zirconia Densification.

5.6 Task VI Engine Testing

Engine testing was to consist of separate engine builds and tests for thermal-barrier-coated rotors, rotor housings, and side housings along with a final test of the combination of all low-heat-rejection components assembled together. A minimum of 4 separate engine builds and test cycles were required. The actual number of engine builds was 10 which encompassed 8 different engine configurations. The sections that follow details the events of all the configurations tested with the exception of the baseline test. These tests serve the purpose of testing the individual coated components for integrity and durability.

After the baseline test, the engine test plan described the first thermal barrier component screening as being a test with coated rotors. However, at this time in the program procurement of the thermal barrier coated rotors was meeting difficulties which were discussed in Task V. Therefore, the first thermal-barrier-coated component tested was an insulated intermediate housing.

5.6.0 Intermediate Housing

After the baseline test, the Mazda engine was disassembled as specified in the Mazda shop manual. While disassembled, all the components were inspected as specified in the Mazda shop manual. A list of the measurements taken can be seen in Appendix E. Before reassembly, the standard intermediate housing was replaced with the coated housing. New stock side seals and button seals were installed against the coated housing. The rest of the engine used the seals and housings which were run during the baseline test. The engine was then reassembled as specified in the Mazda shop manual. The same engine parameters were measured as outlined for the baseline test plus the engine was run for endurance.

The assembled engine was mounted into test cell No. 2 and connected to an Eaton dynamometer via a driveshaft with a one degree offset. Once the engine was mounted the Digalog dynamometer controller was calibrated as specified in the Digalog manual. All other instruments were checked and calibrated to ensure correct readouts.

The engine was then filled with standard coolant and SDL-1 synthetic lubricant. The engine was tested for compression (results shown in Appendix E). After compression testing the engine was started and run through the break-in cycle. Engine break-in consisted of running the engine at varying speeds with light to no-loads. During this run all systems were checked for proper functioning and the timing set.

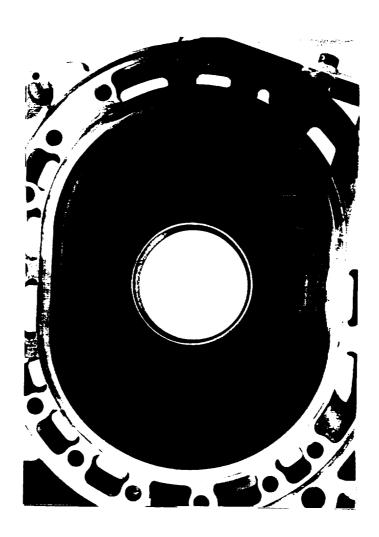
The different test loads and speeds are detailed in the data found in Appendix F. These speed and loads were the same points used during the baseline test. The only noteworthy difference between the baseline test and this insulated housing test was that oil temperatures were increased to 101.7 C (215 F) plus or minus a few degrees going into the engine.

Thirty hours into the endurance test a problem with the spark plug firing order was found. Due to a factory mislabeling of the distributor cap the leading and trailing spark plugs were firing in a backwards order. In other words the trailing plugs were firing first. This problem affected the performance of the engine and unfortunately had occurred throughout the baseline test as well. The wiring problem was corrected and 51 total hours of endurance testing was completed without further incident.

After completion of the 51 hour test the engine was disassembled and inspected. Wear was detected on the rotor side seals and rotor oil seals which were rubbing against the thermal barrier coating. Similarly, the zirconia-coated intermediate housing experienced minor wear where it was rubbed by the seals. The intermediate housing, seen in figure 5.6.0-1 was still reusable despite the wear, and the coating itself were in excellent condition. No damage to other parts were found during post inspection. One of the most likely reasons for the excessive seal wear was the rough surface of the coating after lapping. The seals appeared to have lapped the coating because after testing the coating was smoother (down to 2 micro-inches from 20 micro-inches of roughness in some areas). At the time the coated intermediate housing was tested no candidate side seals had been procured.

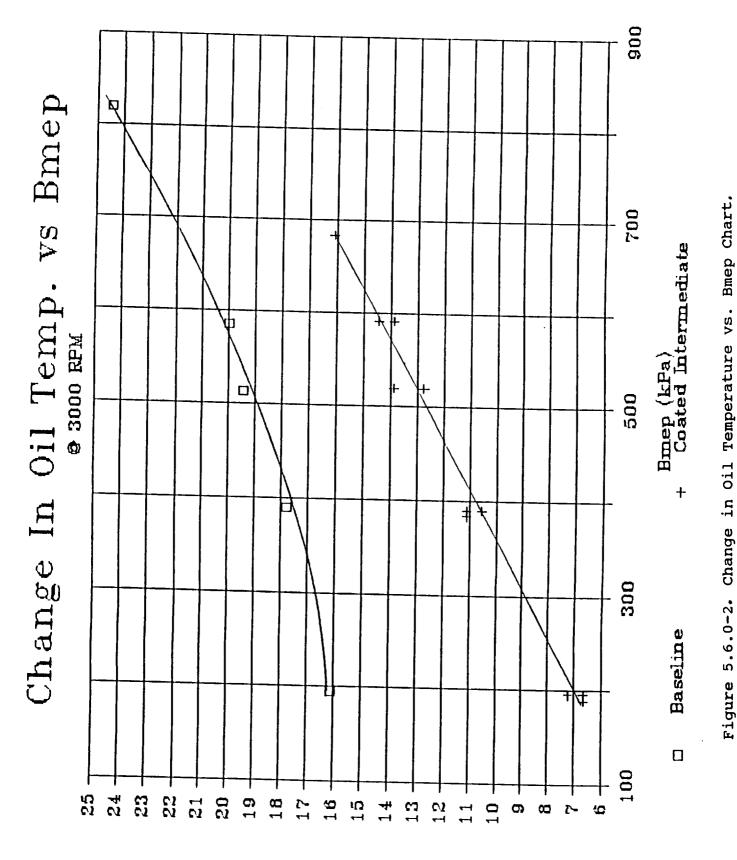
As was already mentioned, an ignition problem was found part way through the coated intermediate housing test. In an effort to make fair comparisons to the baseline test all data comparisons are made under like-conditions. For example, the baseline test data are compared to only that first portion of the coated intermediate housing test data when the ignition was incorrect. The rest of the data taken during the test with the coated intermediate housing can only be compared with that data taken during the test with coated rotors and coated rotor housings (ignition correct in these cases).

Figures 5.6.0-2 through 5.6.0-5 show the dramatic decrease in the amount of heat transferring into the oil system while testing the insulated intermediate housing as compared to the baseline test. These figures represent the oil temperature out of the engine subtracted by the oil temperature into the engine. Other areas such as power output and fuel consumption were basically unchanged by using the insulated housing.

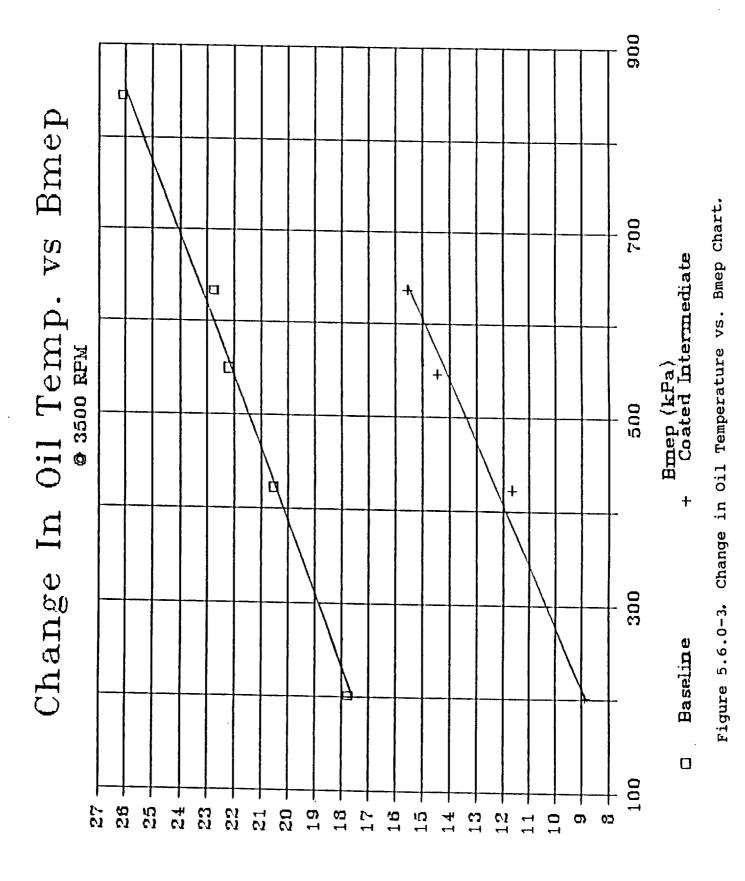

5.6.1 Rotor

The second thermal-barrier-coated component screening test was with 2 undensified zirconia-coated rotors. The coated rotors were installed in the engine via the same disassembly, inspection, and reassembly procedures used in previous builds. The same testing parameters were measured as in previous tests. Likewise, the same speeds, loads, ignition timing, break-in cycle, oil type and temperature, and coolant were used.

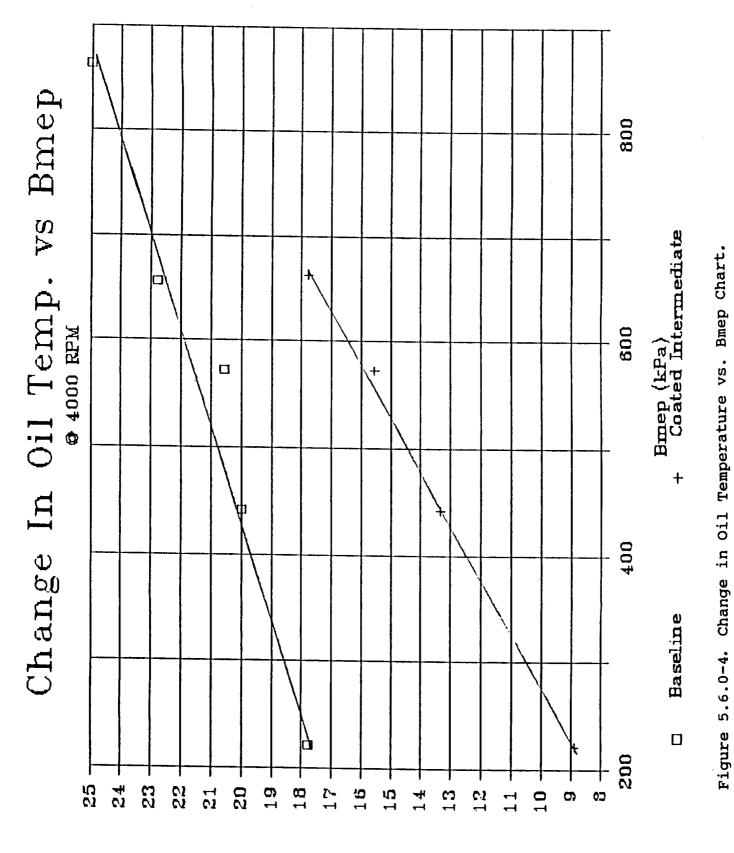
During the first part of the test the engine ran quite well; but, as the test time was lengthened, carbon deposits built up on the rotors and rotor housings. These deposits were observed through exhaust port inspection (by removing the exhaust header and visually looking inside the engine through the exhaust ports). Thirty-one hours into the test a major problem developed. While running a point at 5000 rpm and 120 ft-1bs of torque the rear rotor housing began to experience scuffing. The extent of the scuffing is shown in figure 5.6.1-1. Although the front rotor housing did not have this problem, it probably would have given more time.


The scuffing appeared to be caused from overheating the rotor housing plus oil deposit build up on the rotor housing. Fortunately, the engine was shut down before major damage occurred. Upon post-inspection, the only parts found unusable were the apex seals which had uneven wear. The rotor housings were cleaned up and the engine reassembled with new apex seals. The engine then completed 100 hours of endurance tests successfully. A photograph of the coated rotors is seen after testing seen in figure 5.6.1-2. It should be noted that after scuffing had occurred the fifth and sixth auxiliary intake ports

CHARMS PAGE IS OF FOOR QUALITY



AI-C/122-4


Figure 5.6.0-1. Zirconia Coated Intermediate Housing Densified by Kaman Science's Process After Completing 51 Hours of Testing.

Change in Oil Temp. (deg. C)

Change In Oil Temp. (deg. C)

Change In Oil Temp. (deg. C)

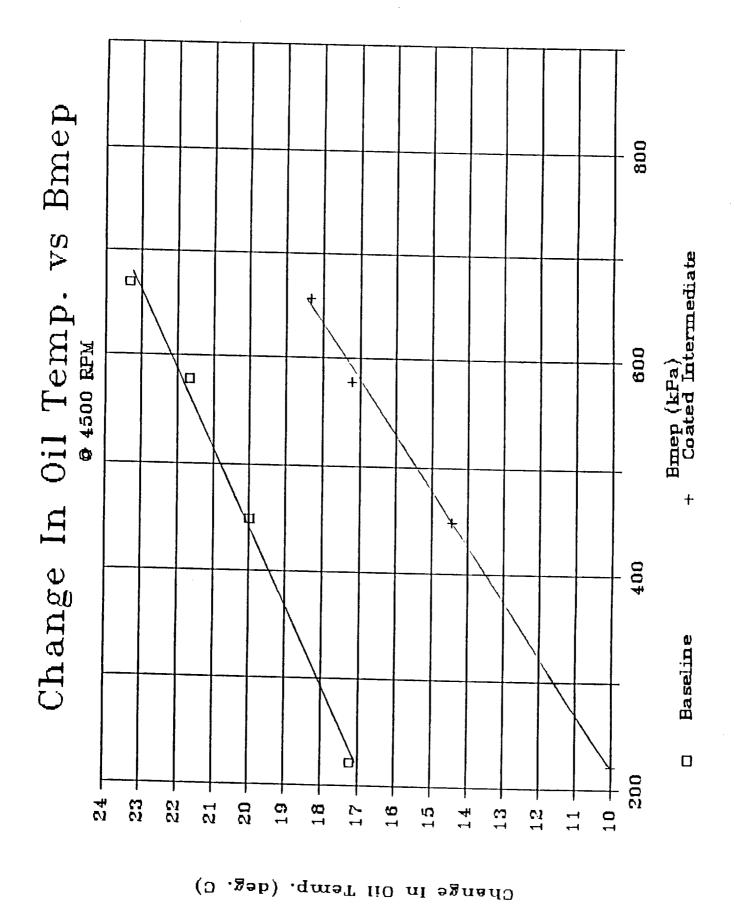
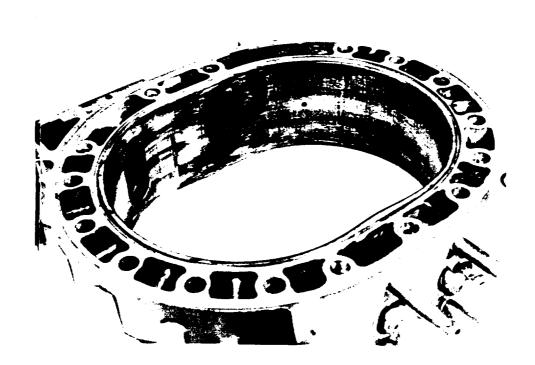
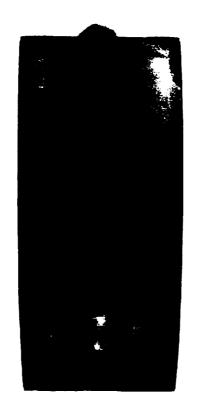



Figure 5.6.0-5. Change in Oil Temperature vs. Bmep Chart.

ORIGINAL PAGE IS OF POOR QUALITY


AI-C/126-4A

AI-C/126-3A

Figure 5.6.1-1. Rear Rotor Housing After 31 Hours of Testing Time with Thermal-Barrier-Coated Rotor.

ORIGINAL PAGE IS OF POOR QUALITY

AI=C/130-1

Figure 5.6.1-2. Undensified Zirconia Coated Mazda Rotor After 100 Hours of Testing.

were manually opened in an effort to introduce a cool combustion charge later in the combustion cycle. These ports were left open for the remainder of the testing. By opening these 2 ports, both the fuel consumption and the power output did increase by a small amount. Data gathered from testing these undensified rotors is found in Appendix G-I.

There was a dramatic decrease in the amount of heat transferring into the oil system. Figures 5.6.1-3 through 5.6.1-7 show the data comparisons between the coated intermediate housing and the undensified coated rotors. Here, ignition timing was correct in both cases and though the 2 data plots are similar for every speed and load, both cases are much lower than that of the baseline test. The 2 coated rotors (combined in one assembly) are capable of reducing heat transfer into the oil system more than when using the one coated intermediate housing.

A second change in the data between the coated intermediate housing and the coated rotors was a dramatic increase in exhaust temperatures in the case of the coated rotors. Figures 5.6.1-8 through 5.6.1-12 show the comparison between the coated intermediate housing and the undensified coated rotors. Again, only data taken with correct ignition are compared.

One more candidate thermal-barrier-coated rotor was tested after completing the 100 hours of testing with the undensified zirconia-coated rotor. This test was with 1 zirconia-coated rotor densified by Adiabatics. This coated rotor was run in the engine along with 1 stock rotor. All conditions of the test were identical to the previous test including the open fifth and sixth intake ports. This test used stock seals and housings. This endurance test ran 100 hours without incident. A photograph in figure 5.6.1-13 show the rotor after testing. Everything passed inspection at the end of the test. It was noticed, however, more carbon deposits had developed in the rotor housing run with the stock rotor than in the rotor housing run with the coated rotor (seen in figure 5.6.1-14). The data gathered from the densified rotor test is found in Appendix G-II.

In both densified and undensified coated rotor durability tests the coating was in excellent condition after testing.

5.6.2 Rotor Housing

With the screening test successfully completed for thermal-barrier coated rotors and intermediate housing, testing proceeded to the rotor housings. The first rotor housing tested was the thermal-barrier coated stock aluminum rotor housing. As described in Task V, only 1 of 2 rotor housings survived the coating process. Therefore, this test consisted of only 1 coated rotor housing located in the front of the engine. High temperature apex seals made from M2 tool steel were used in the rotor placed in the coated rotor housing. The rest of the engine was built using stock components. The engine was built and tested in the same manner as in the previous tests including using the same high-temperature lubricant SDL-1.

During the break-in cycle the engine ran well. Visual inspection through the exhaust ports showed that the coating was holding up. As more testing time elapsed it was noticed that blow-by was creeping up to 12.7 mm (one half inch) of water whenever loads and or speeds were being changed. As the engine remained at a new load and or speed, blow-by would slowly go back to zero. Several low speed and low torque data points were run, but after 14.7 hours of

Figure 5.6.1-3. Change in Oil Temperature vs. Bmep Chart.

Change In Oil Temp. (deg.

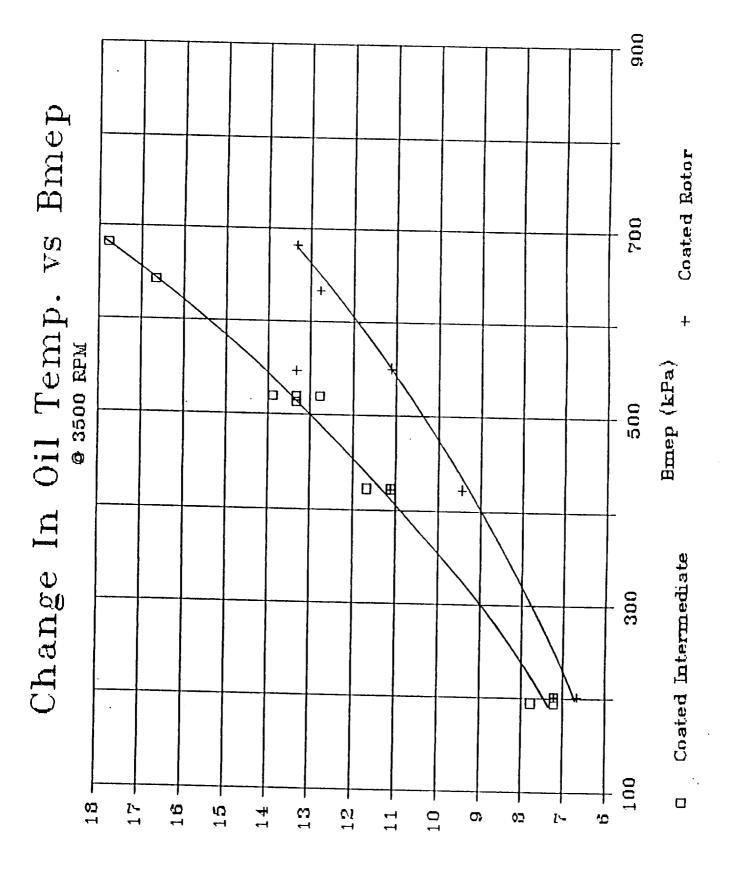


Figure 5.6.1-4. Change in Oil Temperature vs. Bmep Chart.

Change In Oil Temp. (deg.

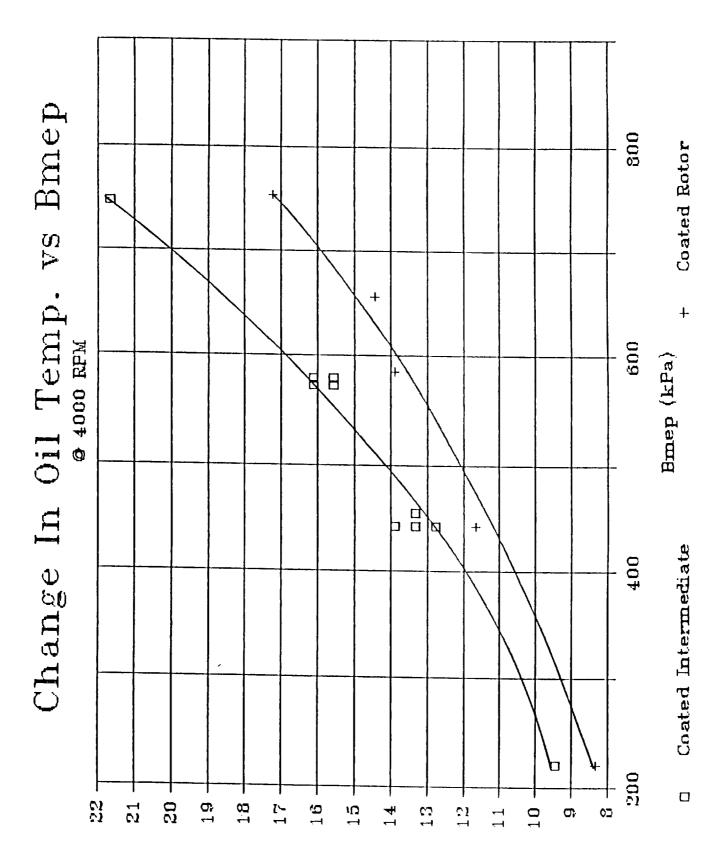


Figure 5.6.1-5. Change in Oil Temperature vs. Bmep Chart.

Change in Oil Temp. (deg. C)

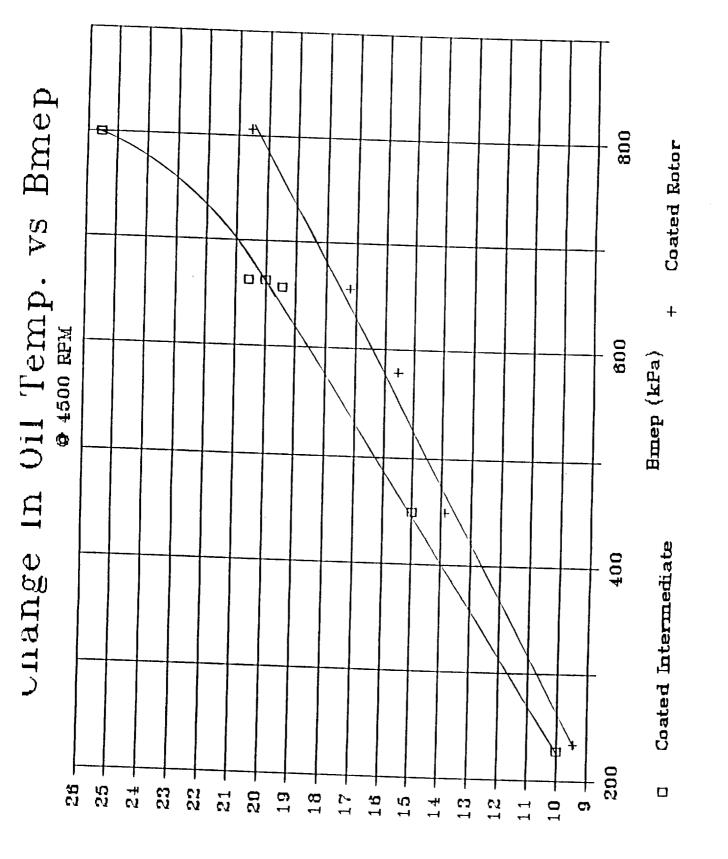


Figure 5.6.1-6. Change in Oil Temperature vs. Bmep Chart.

Change In Oil Temp. (deg. C)

OPACTO A STATE OF OF POOR QUALITY

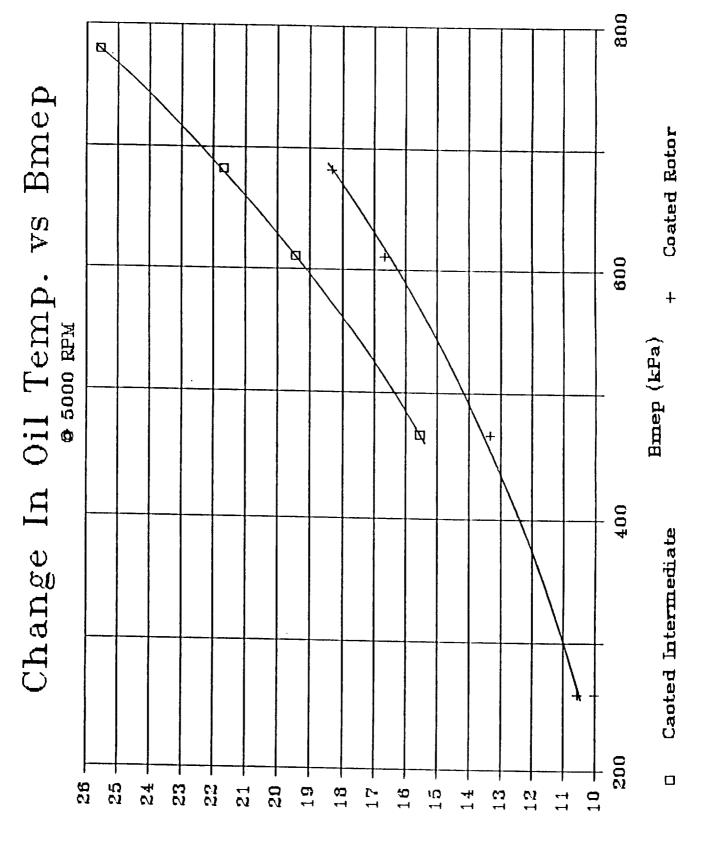


Figure 5.6.1-7 Change in Oil Temperature vs. Bmep Chart,

Change in Oil Temp. (deg. C)

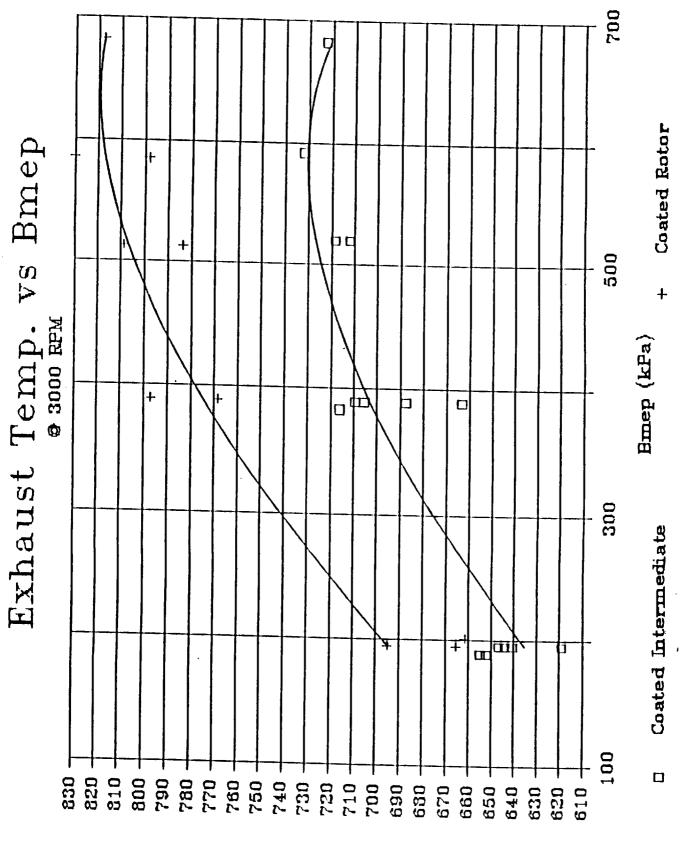


Figure 5.6.1-8. Change in Exhaust Temperature vs. Bmep Chart,

Exhanat Temp. (deg. C)

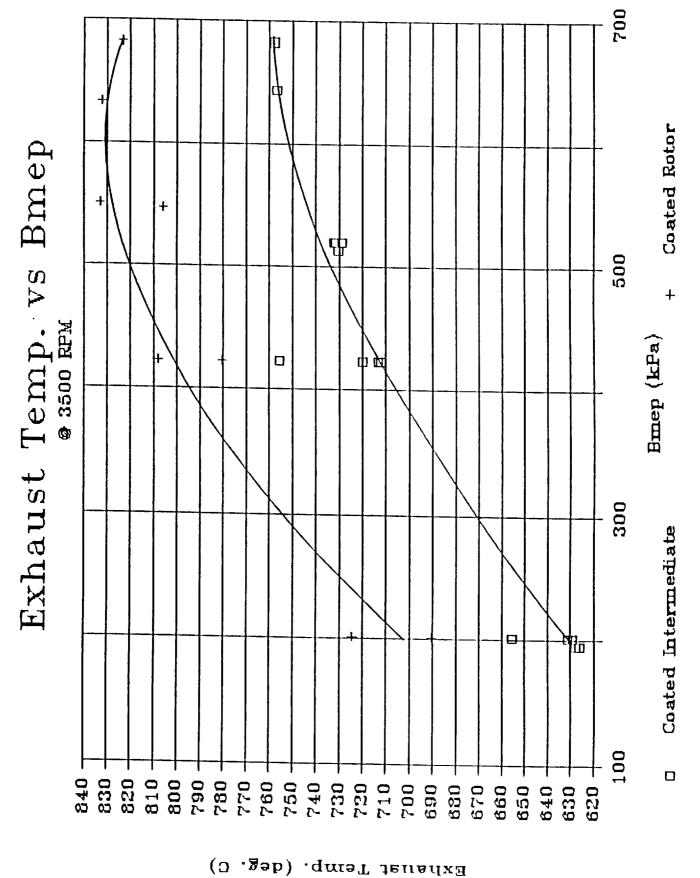
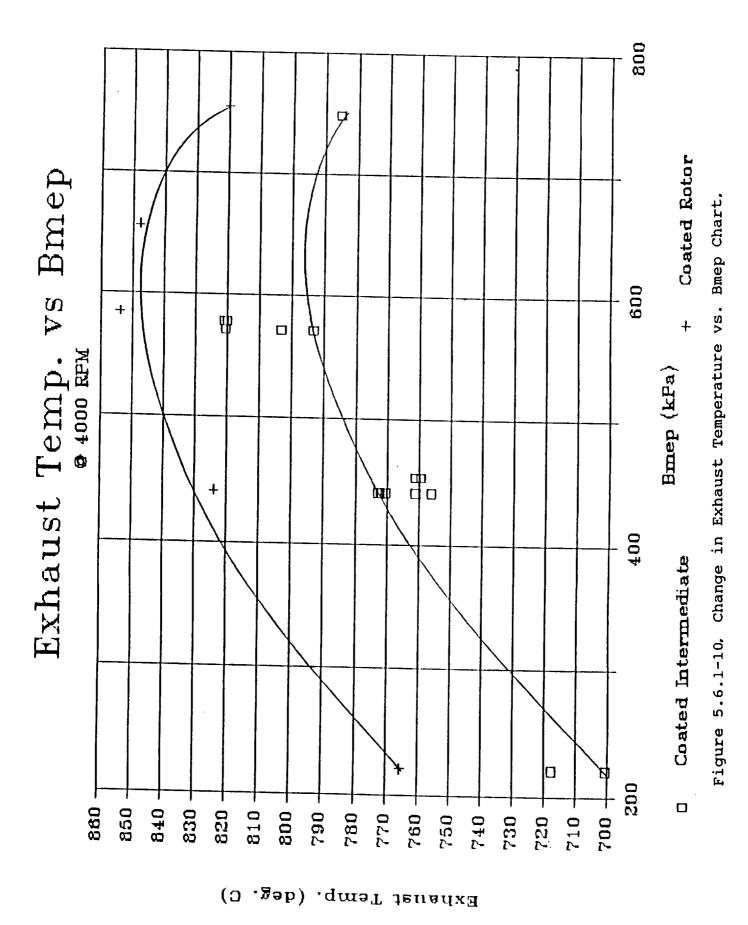
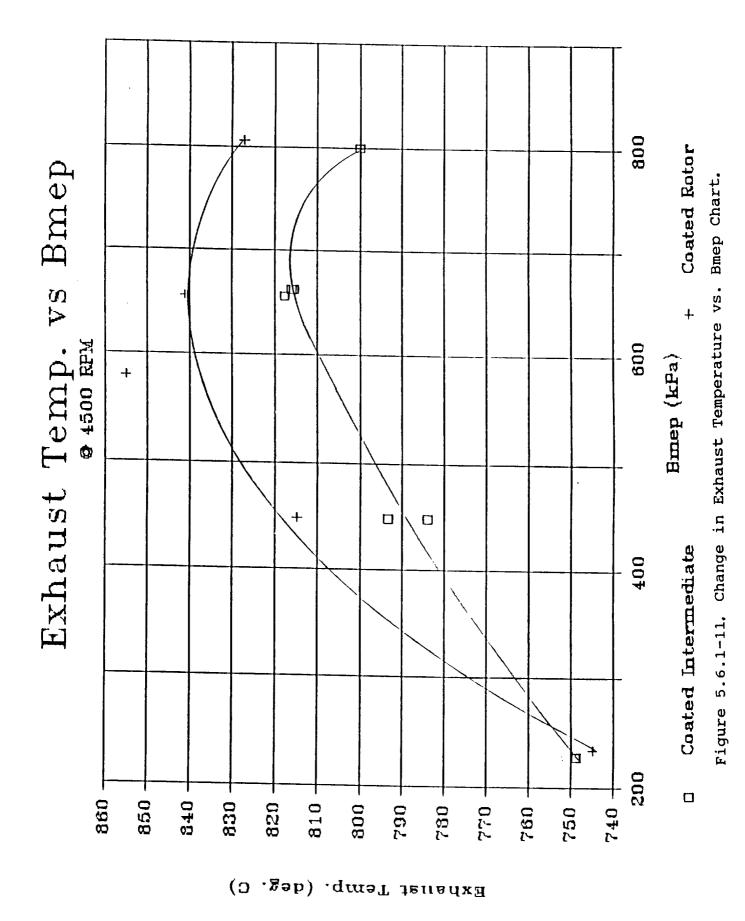




Figure 5.6.1-9. Change in Exhaust Temperature vs. Bmep Chart.

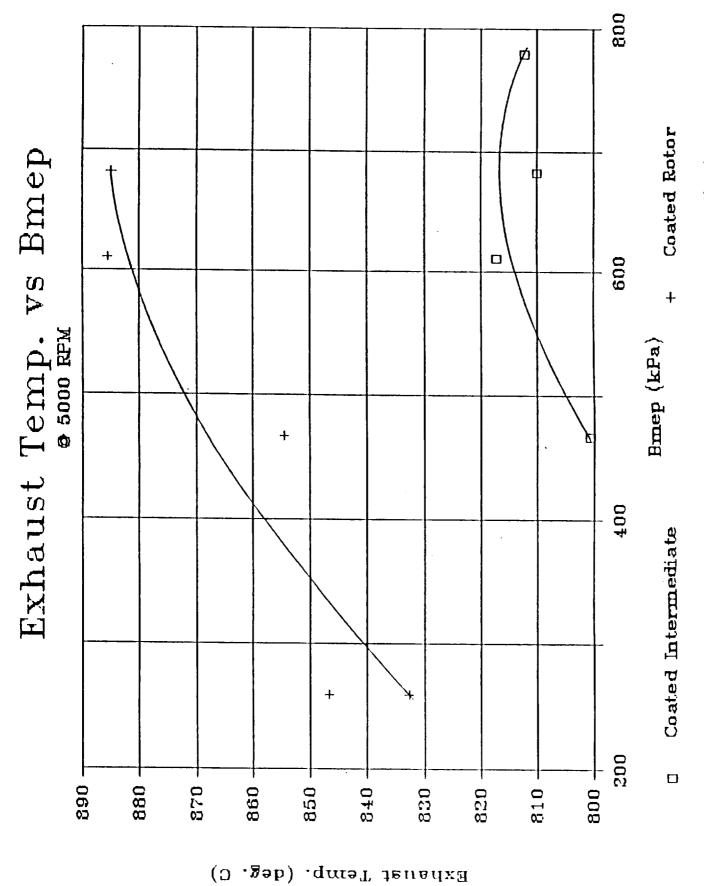



Figure 5.6.1-12. Change in Exhaust Temperature vs. Bmep Chart.

ORIGINAL PAGE IS OF POOR QUALITY

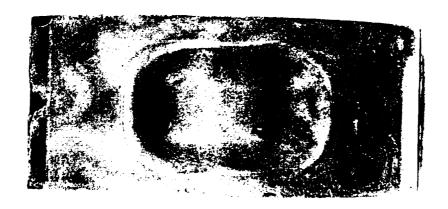

AI-C/137-22A

Figure 5.6.1-13. Densified Zirconia Coated Mazda Rotor After 100 Hours of Testing.

ORIGINAL PAGE IS OF POOR QUALITY

AI-C/137-19A

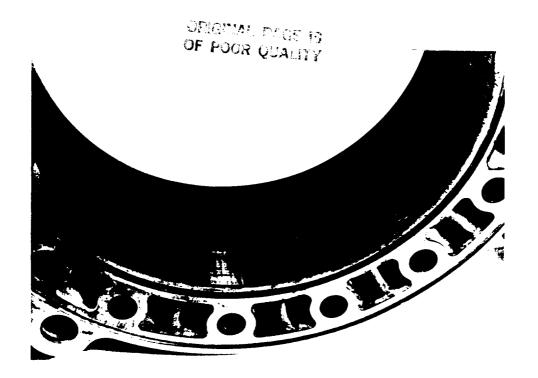
AI-C/137-15A

Figure 5.6.1-14. Stock Mazda Rotor (a) Compared with Densified Coated Mazda Rotor After 100 Hours Testing Together in One Build.

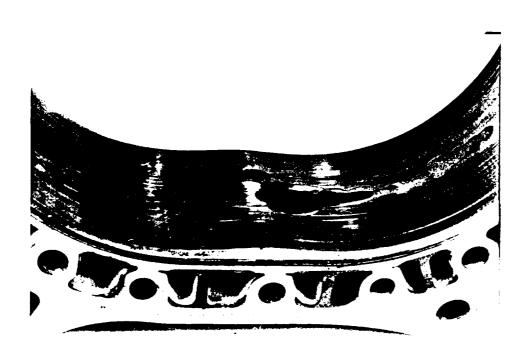
engine testing visual inspection through the exhaust ports revealed coating failure. Data gathered from the housing test is found in Appendix H. Photos of the failed rotor housing are shown in figure 5.6.2-1.

When the coated stock aluminum rotor housings failed the apex seals which were made form M2 tool steel were also destroyed.

A request was then made by Adiabatics to NASA for an additional one month extension for testing coated cast iron rotor housings. This request was granted at a meeting at NASA LeRC with the Project Manager on June 17, 1988. This one month extension was later increased one additional month.

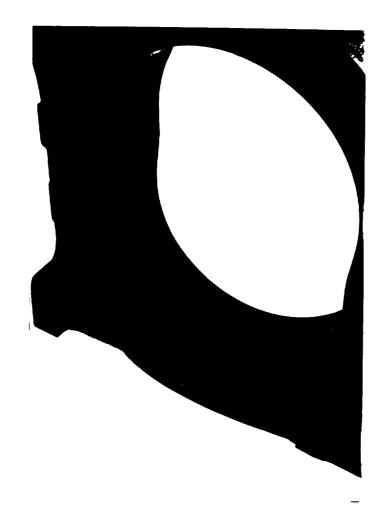

The screening test of the cast iron rotor housings consisted of an engine configuration with 2 thermal-barrier-coated cast iron rotor housing (detailed in Task V). The front rotor housing had a stock rotor and stock apex seals plus 3 candidate side seals coated with Chem 2 (details in Task IV) which were placed against a stock intermediate housing. The rear rotor housing had a stock rotor and apex seals made of M2 tool steel plus 3 candidate side seals coated by Adiabatics (detailed in Task IV) which were placed against the stock intermediate housing. The engine was assembled and tested in the same manner as in all the previous tests.

As soon as the engine was started, blow-by was noticed. The engine was given a lengthy slow break-in but blow-by never returned to zero. Visual inspections through the exhaust ports showed the coating on the rotor housings to be in excellent condition. After the break-in cycle the first 2 data points at 3000 rpm were run. At this point blow-by reached 3 inches of water and the engine was shut down.


The engine was removed from the test cell, disassembled, and inspected. The coating on both front and rear rotor housing was in excellent condition (see figure 5.6.2-2). Likewise, the side seals coated by Adiabatics and the apex seals made from M2 tool steel were in excellent condition. However, the Chem 2 coating on all 3 side seals located in the front rotor housing had worn off. Also, after 16.75 hours into tests the stock apex seals in the front rotor housing had become stuck. These were the only 2 major problems found. The rest of the engine passed inspection.

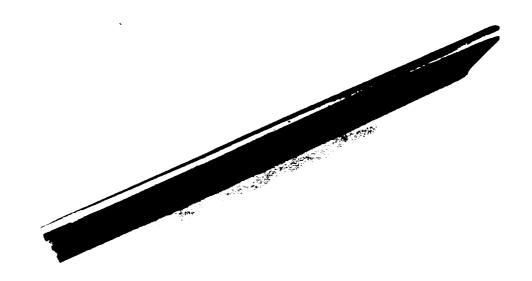
Since the coating on the rotor housings was still in good condition, further testing was performed. The engine was reassembled using the 2 coated cast iron rotor housings with a complete set of new apex seals made from M2 tool steel. The apex seals had not stuck previously. The same side seals were placed back in the engine. At this point a lubricant change was made to 10W40 AMS-oil instead of SDL-1. The engine was assembled and tested in the same manner as before.

This build ran over 9 hours before the engine had to be disassembled again. During this run blow-by remained zero and the engine ran quite well. Then, when trying to run a point at 3500 rpm a problem developed. A safety device malfunctioned shutting the engine ignition off. This problem was quickly corrected but the engine would not restart. A compression test on each rotor housing showed the compression to be essentially zero. Upon post-disassembly the reason for low compression was found. The seals which were made from M2 tool steel had warped (figure 5.6.2-3). The warpage occurred along the edge of the apex seal which contacts the trochoid contour of the rotor housing.


AI-C/137-14

AI-C/145-15

Figure 5.6.2-1. Failed Thermal Barrier Coating on Mazda Rotor Housing After 14 Hours of Testing.


ORIGINAL PAGE IS OF POOR QUALITY

AI-C/150-22A

Figure 5.6.2-2. Coated Cast Iron Rotor Housing After Testing 16.75 Hours.

ORIGINAL PAGE IS OF POOR QUALITY

AI-C/150-25A

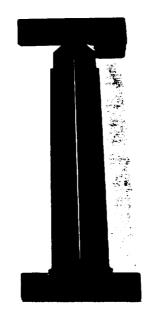
Figure 5.6.2-3. Warped M2 Tool Steel Apex Seals Tested with Coated Cast Iron Rotor Housing.

At this point the coating on the rotor housings was still in good condition so the engine was reassembled for further testing. This build consisted of all the previous components with the exception of the warped M2 apex seals which were replaced with stock apex seals. It was hoped that the change in lubricant to AMS-oil would be sufficient to keep the apex seals from sticking. Other components like the side seals which were coated by Adiabatics, Inc. and the coated cast iron rotor housings were in good condition and therefore placed back in the engine in their original locations.

The engine was reassembled and tested in the same manner as in the previous tests. Again, while the engine was running a point at 3500 rpm the compression was lost. The engine was disassembled and warped apex seals were again found (5.6.2-4). Unfortunately, the coating on the rotor housings was also found to be in bad condition. Small areas of coating had chipped at various areas around the trochoid contour. In 1 area of the compression zones of the front rotor housing the coating had separated from the parent material at the bond coat. Between the problem with the apex seals and the coating failure on the rotor housings, the testing was stopped at this point. The total testing time for the cast iron rotor housings was 32.5 hours and the final condition of the rotor housings can be seen in figure 5.6.2-5. A comparison between a stock side seal and one of the slurry coated side seals (after testing) is shown in figure 5.6.2-6. The data gathered from the testing of the cast iron rotor housings is found in appendix I.

During the testing with coated cast iron rotor housings, housing temperatures were observed as being twice as high as was observed during other testing.

Table 3 summarizes the results of the testing performed with the components procured for the Mazda engine.


5.7 <u>Task VII Prototype Engine - Procurement/Assembly - NASA 1007R</u>

The engine which will ultimately pursue the goals of the better efficiencies discovered in Phase I is the NASA-owned 1007R engine built by John Deere. Completion of this contract entails modifying four different components of a 1007R engine with thermal-barrier coatings. Actual 1007R engine assembly and testing will be performed by John Deere and is not included in this project. The following is a description of the modifications of the 1007R components.

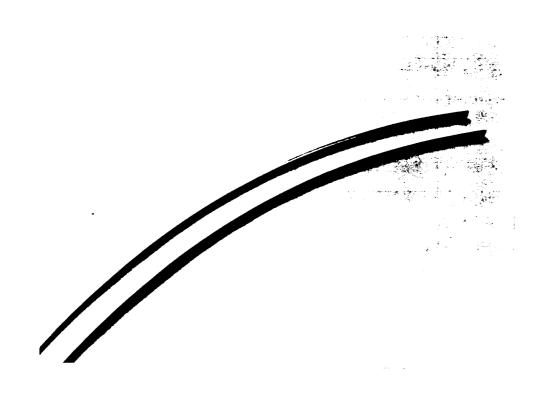
5.7.0 Rotor

One 1007R rotor was machined to remove 0.762 mm (0.030 inch) of material on the rotor combustion faces with the exception of a 9.5 mm (0.375 inch) land at each apex (such that the apex seals are fully supported by the parent rotor material) and a 0.762 mm (0.030 inch) land along the side lands. A thin band of parent material was left untouched during machining around the lip of the combustion chamber (figure 5.7.0-1). A 0.762 mm (0.030 inch) layer of plasma-sprayed zirconia [including a 0.127 mm (0.005 inch) layer of NiCrAlY bond coat] was then sprayed onto the resultant pocket in the faces of the rotor and the high spots removed. The surface was then densified. The coating densification process was the non-toxic, low-temperature process developed by Adiabatics, Inc.

ORIGINAL PAGE IS OF POOR QUALITY

AI-C/152-2A

Figure 5.6.2-4. Warped Standard Cast Iron Apex Seals Tested with Coated Cast Iron Rotor Housing.


AI-C/152-5A

AI-C/152-6A

Figure 5.6.2-5. Coated Cast Iron Rotor Housing After 32.3 Hours of Testing.

ORIGINAL PACE IS OF POOR QUALITY



AI-C/152-3A

Figure 5.6.2-6. Adiabatics' Slurry Coating on a Mazda Side Seal (below) Compared to a Stock Side Seal (top) After 32.5 Hours of Engine Testing.

TABLE 3. TESTING RESULTS - PROCURED MAZDA 13B COMPONENTS

SCRAP	31	PLASMA- SPRAYED ZIRCONIA DENSIFIED	CAST DUCTILE IRON	8	H) CAST ROTOR HOUSINGS
SCRAP	14	PLASMA- SPRAYED ZIRCONIA TRIBALOY	STOCK ALUMINUM	-	G) ROTOR HOUSING
GOOD- (SLIGHT WEAR)	51	PLASMA- SPRAYED ZIRCONIA DENSIFIED	STOCK CAST IRON	-	F) INTERMEDIATE
EXCELLENT	100	PLASMA- SPRAYED ZIRCONIA DENSIFIED	STOCK CAST IRON	-	E) ROTOR
EXCELLENT	100	PLASMA- SPRAYED ZIRCONIA	STOCK CAST IRON	7	D) ROTORS
SCRAP	14 MAX	NONE	M2 TOOL STEEL	12	C) APEX SEALS
SCRAP	10	CHEM 2	STOCK CAST IRON	ဖ	B) SIDE SEALS
EXCELLENT	31	SLURRY	STOCK CAST IRON	က	A) SIDE SEALS
AFTER TESTING	HOURS TESTED	COATING APPLIED	MATERIAL	QUANTITY	COMPONENTS
CONDITION	TOTAL	3 dal			

AI-C/144-6

Figure 5.7.0-1. 1007R Rotor After Machining Process Showing the Lip of Untouched Material Around the Combustion Chamber.

Photographs in figures 5.7.0-1 and 5.7.0-2 show the rotor in the different phases of coating application. Figure 5.7.0-3 is a drawing which details the coating on the rotor.

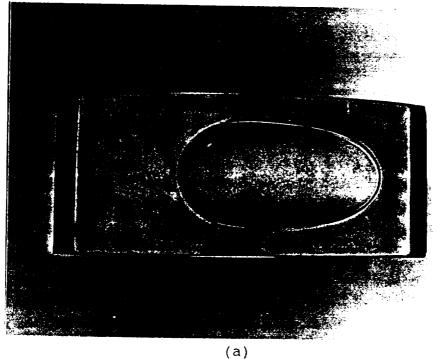
5.7.1 Side Housings

Both a front and a rear aluminum 1007R side housings were coated with thermal-barrier coatings. Since these pieces are made of aluminum they could not be densified with chrome oxide at 537.8~C~(1000~F). Obviously, the aluminum will not withstand such an extreme densification temperature. Therefore an alternate wear coating was required.

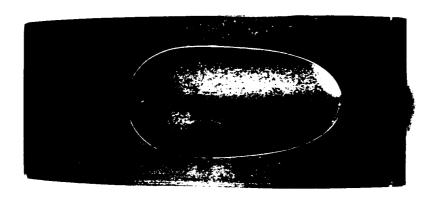
The alternative was to spray the insulative coating first and then coat the insulation with a wear coating. More specifically, spray on the zirconia and then spray a wear surface directly on top the zirconia. The wear coating selected was Tribaloy 800 (the same type of coating combination used in modifying the aluminum Mazda rotor housing).

Two attempts were made to apply the zirconia/Tribaloy 800 combination onto the side housings. The first attempt was as follows:

- $1. \quad 0.889 \quad mm \quad (0.035 \text{ inch}) \text{ of parent material was machined from the face of each side housing in the area where the housing is exposed to the rotor.}$
- 2. The housing was sent to APS Material, Inc. where a 0.127~mm (0.005~inch) layer of plasma-sprayed NiCrAlY bond coat plus a 0.508~mm (0.020~inch) layer of plasma-sprayed zirconia was applied.
- 3. After the zirconia coating application the pieces were sent to a machine shop where zirconia was ground to ensure dimensional correctness.
- 4. After grinding, the housings were sent to Stellite, Inc. to have the wear coating applied. A jet coat process was used to apply more than a 0.254~mm (0.010 inch) layer of Tribaloy 800.

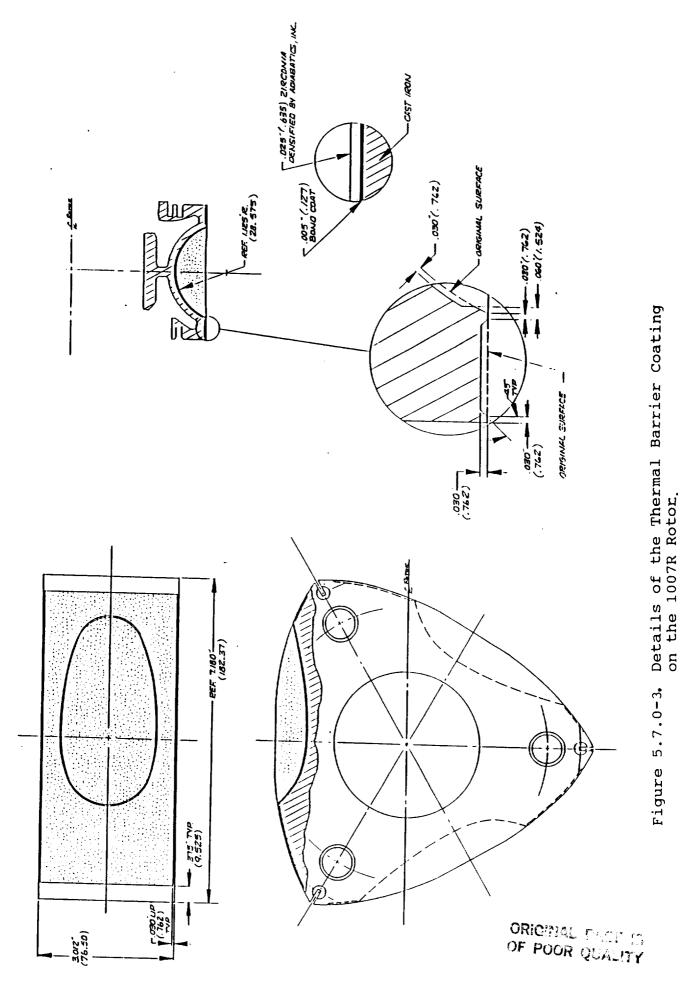

At this point the coating process was stopped because Stellite, Inc. could not get the T. Pictures of the Mazda engine mounted in the test cell can be seen in figure 5.1.3-1.

The fifth operation was the test itself. Engine testing started with a compression test. The compression tester takes six (6) measurements (one for each rotor face). Next, the engine was started and run through the break-in cycle which consisted of running at varying speeds with light to no-load. During this run all systems were checked to make sure they were functioning properly.


A test was to be run to develop inch) layer of plasma-sprayed zirconia and a layer exceeding $0.254~\mathrm{mm}$ ($0.010~\mathrm{inch}$) thick of plasma-sprayed Tribaloy 800 were applied. The drawing in figure 5.7.1-1 details the coating applied to the side housings.

2. After coating the side housings were ground and lapped.

One of the 2 side housing completed the grinding and lapping operation successfully. Unfortunately, the other side housing was under sprayed and


AI-C/145-14A

(b)

AI-C '145-19A

Figure 5.7.0-2. 1007R Rotor Shown (a) After Zirconia Application and (b) After Zirconia Densification.

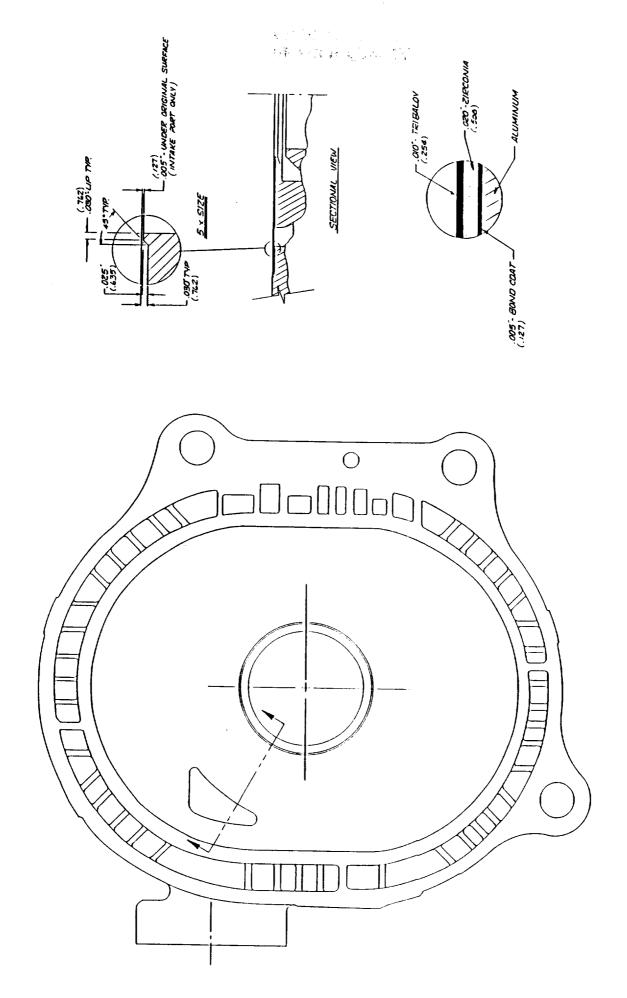


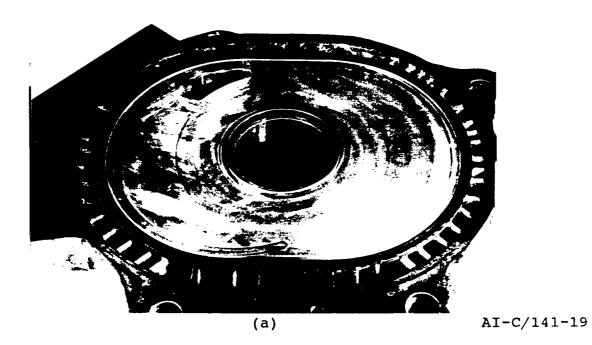
Figure 5.7.1-1. Details of Thermal Barrier Coating on the 1007R Aluminum Side Housing.

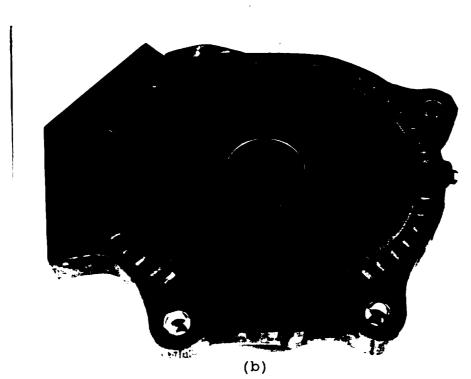
therefore was shipped back to APS Material Inc. to have additional Tribaloy 800 applied. This housing was then reground and lapped. Pictures in figure 5.7.1-2 show the 1007R side housing after machining and after grinding and lapping. After lapping was completed Adiabatics Inc. noticed some cracking around the crankshaft hole in the area which had been built up (figure 5.7.1-3).

5.7.2 Rotor Housing

The aluminum 1007R rotor housing was coated with the same zirconia/Tribaloy 800 combination used on the aluminum side housing.

- 1. The rotor housing was sent to Eonic, Inc. where 0.889 mm (0.035 inch) of parent material was removed.
- 2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005 inch) bond coat plus 0.508 mm (0.020 inch) of zirconia was applied to the trochoid contour and 0.635 mm (0.025 inch) of zirconia to the exhaust port.
- 3. With the zirconia applied the housing was then sent back to Eonic where the coating on the trochoid contour was ground. The trochoid was ground to 0.254 mm (0.010 inch) over size (per side) to ensure dimensional correctness and ensure room for the wear coating application.
- 4. After grinding, the rotor housing was sent back to APS Material, Inc. for the application of a wear coating. Tribaloy 800 was plasma-sprayed on top of the zirconia more than 0.254 mm (0.010 inch) thick.
- 5. After applying the Tribaloy, the housing was sent back to Eonic for final grinding and lapping of the Tribaloy coating back to original dimensions.

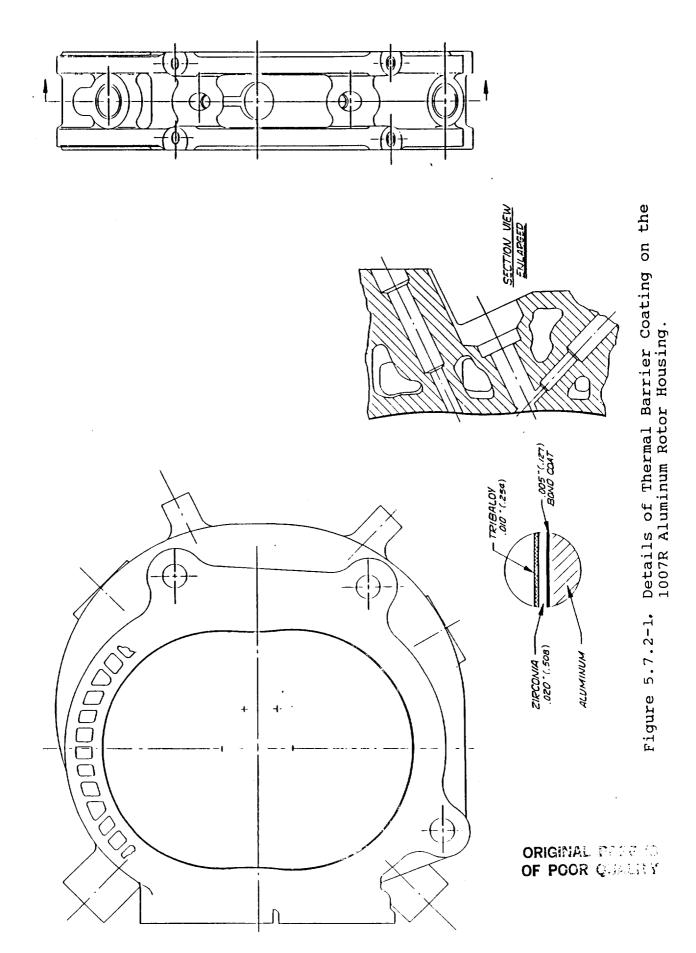

A drawing detailing this coating is shown in figure 5.7.2-1. Pictures in figure 5.7.2-2 show the rotor housing in different phases of coating application.

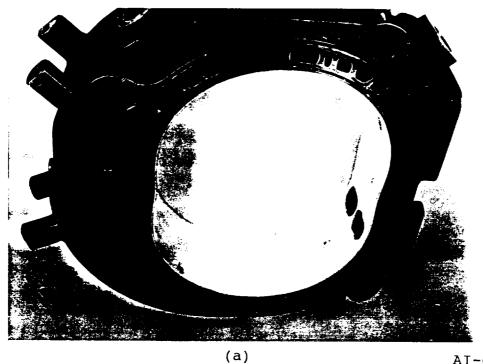

Table 4 summarizes the components procured for the assembly of the insulated 1007R engine.

5.8 Task VIII Exhaust Energy Utilization

As an internal combustion engine is made more adiabatic a greater amount of exhaust enthalpy will flow from the engine. That is, some of the energy which would have been lost to engine coolant, lubrication, radiation and convection will appear in the exhaust gas in the form of a higher exhaust temperature. This higher exhaust temperature represents a large energy flow which can be recovered.


An analytical assessment was made of compounding a turbocharged 1007R John Deere rotary engine. The engine specifications and data for 2 test conditions are tabulated in Tables 5, 6, and 7. These data were employed in a rotary engine simulation which works on an energy balance of the engine, and was used to determine additional energy which would become available as the engine was insulated and the coolant was removed. An energy balance of the baseline noninsulated, cooled engine appears in Table 8. Changes (percentages) in heat rejection to the oil, coolant, and radiation due to insulation and coolant


AI-C/155-12A


Figure 5.7.1-2. 1007R Side Housing After Maching (a) and Final Lapping (b).

AI-C/155-17A

Figure 5.7.1-3. Cracking Around the Crankshaft Hole of 1007R Side Housing After Final Lapping.

AI-C/146-20

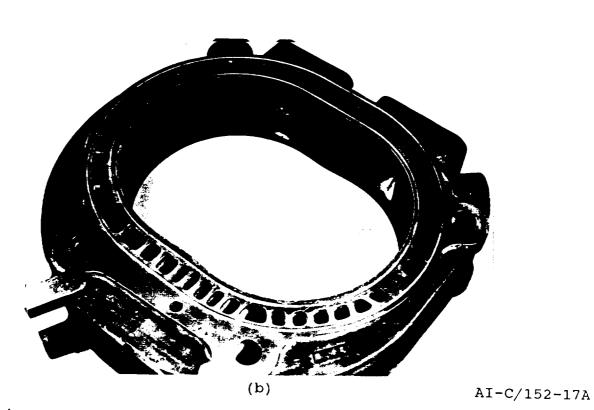
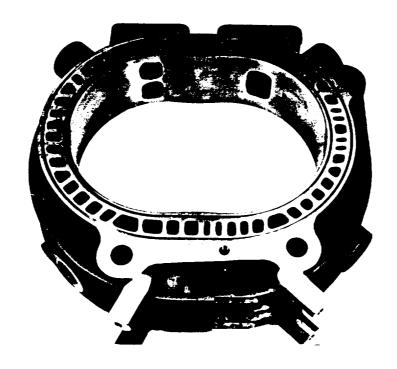



Figure 5.7.2-2. 1007R Rotor Housing Shown After Zirconia (a) and Tribaloy 800 (b) Application.

AI-C/155-15A

Figure 5.7.2-2 Cont. 1007R Rotor Housing After Final Lapping.

TABLE 4. PROTOTYPE PROCUREMENT - NASA 1007R

NOIT	DATING	<u> </u>					-
CONDITION	AFTER COATING	EXCELLENT	EXCELLENT	EXCELLENT	1 CRACKED	EXCELLENT	EXCELLENT
	VENDOR	APS MATERIALS	APS MATERIALS	APS MATERIALS	APS MATERIALS 1 CRACKED	APS MATERIALS	APS MATERIALS
TYPE OF	COATING APPLIED	0.762mm (0.030 INCH) THICK LAYER OF PLASMA-SPRAYED ZIRCONIA	-ZIRCONIA THEN DENSIFIED	0.889mm (0.035 INCH) THICK LAYER OF PLASMA-SPRAYED ZIRCONIA	-ZIRCONIA THEN COVERED WITH TRIBALOY 800	0.762mm (0.030 INCH) INLAYED LAYER OF	PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN COVERED WITH TRIBALOY 800
MATERIAL		STAINLESS STEEL		STOCK ALUNIMUN		STOCK ALUNIMUN	
VEITNALLO		-		8		-	
COMPONENT		ROTOR		SIDE HOUSING		ROTOR HOUSING	
		-		5		3	

Table 5. 1007R Baseline Engine Basic Engine Configuration

ENGINE TYPE	Rotary Turbocharged DISC
ECCENTRICITY (in)	0.607
TROCHOID GENERATING RADIUS (in)	4.221
CHAMBER DEPTH (in)	3.036
DISPLACEMENT (in')	40.42
COMPRESSION RATIO	7.500
PORT TIMING (deg. ATC):	
INTAKE PORT OPENS	-626.3
INTAKE PORT CLOSES	-229.5
EXHAUST PORT OPENS	208.7
EXHAUST PORT CLOSE	610.5

Table 6. Engine Operating Conditions and Performance

		INSULATED UNCOOLED	8000	1.98	119	1.50	Time Average: 1494 Energy Basis: 2435	62.12	Light Diesel	87.52	1929	0.0454	213.5		261.5		0.1055 0.0420 0.0271 0.1746
	MIT-DISC SIMULATION	INSULATED WATER COOLED	8000	1.98	119	1.50	Time Average: 1494 Energy Basis: 2390	61.95	Light Diesel	87.97	1939	0.0454	213.0	1	260.8		0.1052 0.0445 0.0869 0.2366
and Performance		BASELINE ENGINE	8000	1.98	119	1.50	Time Average: 1463 Energy Basis: 2350	61.61	Light Diesel	88.25	1946	0.0453	211.8	l	259.4	ı	0.1075 0.0522 0.1391 0.2988
Engine Operating Conditions	BASELINE ENGINE JOTI	TEST DATA (POINT 57)	8003	1.98	119	1.50	1457	61.65	Jeth	81.50	1950	0.0418	195	160.9	238.8	197.0	. 0.305 (est.)
Table 6.	IAL PAG	GE IS	ENGINE SPEED (RPH)	INTAKE PRESSURE (acm)	INTAKE TEMPERATURE (F)	EXHAUST PRESSURE (atm)	EXHAUST TEMPERATURE (F)	PEAK PRESSURE (acm)	FUEL TYPE	FUEL FLOW (1b/hr)	AIR FLOW (lb/hr)	FUEL-AIR RATIO	INDICATED POWER (HP)	BRAKE POWER (HP)	NET INDICATED MEP (psi)	BRAKE MEP (psi)	HEAT LOSS (Btu/cycle) ROTOR. SIDE HOUSING TROCHOID HOUSING

TABLE 7 JOHN DEERE TEST DATA

ENGINE 0701-3 COMPRESSION RATIO: 7.5 TURBOCHARGER: AIRESEARCH T04, 1.3 A/R

54 57 POINT NO. 8003 7990 RPM ENGINE SPEED 120.6 102.6 LOAD 1b 160.9 BRAKE POWER HP 136.6 167.6 197.0 **BMEP** psi 0.5066 lb/HP-hr 0.5098 **BSFC** 0.0417 0.0378 FUEL-AIR RATIO 1950 1840 lb/hr AIR FLOW JET A JET A FUEL F 97 88 T TEST CELL AMB 83 76 F T AIR PLENUM 74 82 F T AIR FILTER 72 80 F T AIR BOTTLE 73 F 81. T COMP IN 272 T COMP OUT F 263 F 119 119 T ENG IN 29.88 in Hg 29.84 P BAROMETRIC -18.5 -21.5 in H20 P COMP IN 34.2 31.3 P COMP OUT in Hq 29.4 24.3 P ENG IN in Hg 104060 RPM TURBO RPM 99500 69.66 81.50 FUEL FLOW, TOTAL lb/hr 5.49 lb/hr 6.11 TUEL FLOW, PILTO 39 38 T FUEL, MAIN C 36 C 37 T FUEL, PILTO 15000 10000 MAIN INJ PRES psi 7000 PILOT INJ PRES psi 7000 1423 1457 T TURBINE IN F 1425 F 1361 T TURBINE OUT 12.7 15.0 in Hq P TURBINE IN -4.8 in H20 -5.3 P TURBINE OUT 4.87 4.61 gal/min OIL FLOW 61 63 P OIL psi 173.4 174 F T ENG OIL IN 217 F 213.2 T ENG OIL OUT 195 F 192 T T/C OIL OUT 1599 1613 COOLANT FLOW lb/hr 175.1 177.8 T COOLANT IN F 184.5 182.7 T COOLANT OUT F 7.6 F 7.0 DELTA T COOLANG 20.0 19.4 P COOLANT IN psi 12.8 P COOLANT, ROT hsg 12.0 psi P COOLANT, DE hsg 10.8 10.5 psi 8.4 8.0 P COOLANT OUT psi 77 79.4 F T INTERCOOLER IN

92.2

F

T INTERCOOLER OUT

91

TABLE 7 JOHN DEERE TEST DATA (Cont.)

ENGINE 0701-3

POINT NO.	_	54	57
IGNITION START	deg BTC	53	56
IGNITION END	deg BTC	7	5 ATC
PILOT START	deg BTC	52	55
PILOT START PILOT END	deg BTC	3	10 ATC
MAIN START MAIN END	deg BTC	51	52
MAIN END	deg BTC	8 ATC	10
T ENG OIL OUT DE	F	238	243
T ENG OIL OUT ADE	F	217	221
T ROTOR hSG DE T ROTOR hsg ADE	F	360	377
T ROTOR hsg ADE	F	379	392
T ROTOR hsg #1	F	207	204
T ROTOR hsg #2A	F	223	221
T ROTRR hsg #2B	F	220	219
T ROTOR hsg #3A	F	238	236
T ROTOR hsg #3B	F	230	228
T ROTOR hsg #4A	F	231	235
T ROTOR hsg #4B	F	244	253
T ROTOR hsg #5	F	196	191
T ROTOR hsg #5A	F	215	215
T ROTOR hsg #5B	F	OUT	212
T ROTOR hsg #6A	F	199	198
T ROTOR hsg #6	F	190	188
T ROTOR hsg #6B	F	206	208
T ROTOR hsg #7A	F	191	192
T ROTOR hsg #7B	F	195	195
T DE hsg #32	F	192	194
T DE hsg #33	F	OUT	OUT
T DE hsg #34	F	223	228
T DE hsg #35	F	214	217
T DE hsg #36	F	214	219
T DE hsg #37	F	196	197
T DE hsg #38	F	198	200
T ADE hsg #39	F	199	201
T ADE hsg #40	F	209	211
T ADE hsg #41	F	199	201

TABLE 8. : ENERGY BALANCE (simulation)

Energy In = Energy Out

Heat Input + Air Input = Coolant Rej. - Oil Rej. - Inter-Cooler Rej. - Radiation Rej. - Exhaust Rej. - Work Out

Heat Input = mair * (F/A) * AHc = + 1,502,323.2 BTU/Hr

Air Input = mair * Cp * Tin = + 248,676.5 BTU/Hr

Coolant Rej. = mcool * Cp cool * AT = - 107,548.7 BTU/Hr

Oil Rej. = p * Q * Cp * AT = - 43,557.9 BTU/Hr

Inter-Cooler Rej. = m * Cp * AT = - 67,651.2 BTU/Hr

Radiation Rej. = Oil Rej. = - 43,5557.9 BTU/Hr

Work Out = Bhp * 2545 BTU/Bhp Hr = - 409,490.5 BTU/Hr

Exhaust Rej. = m * Cp * T = - 1,022,749.7 BTU/Hr

Balance = + 56,443.8 BTU/Hr

= 3% error

<u>Assumptions</u>

Fuel Enthalpy Neglected Radiation Rej. = Oil Rej.

removal were obtained from a study performed by ADAPCO. It was decided that the percentage changes in heat rejection would be more approximate rather than the absolute changes reported by ADAPCO for addition of insulation and removal of engine coolant. These percentages were obtained from the heat transfer rates in Table 6.

The simulation was calibrated to the John Deere data (point 57) for a baseline. The output from the simulation appears as the baseline data in Table 9.

The specific heat rejections to coolant and oil were then successively changed by the percentages developed from Table 6. The input and output for an insulated, cooled engine appears in Table 10. Input and output for the insulated, uncooled engine appears in Table 11.

The additional power in the exhaust is plotted in figure 5.8-1. A nearly linear relationship exists between % adiabacity and % power gain. Approximately 7.5 % additional power becomes available for 20.8% adiabacity (insulated, cooled), and 14.9 % additional power becomes available for 41.6% adiabacity (insulated, uncooled). A portion of this additional power can be recovered in the bottoming cycle. The amount of recovery then is dependent on the efficiency of the bottoming cycle used. As mentioned above a value of 50% was assumed. Then the recoverable power is shown in figure 5.8-1 to be 3.75% of the rotary engine brake power for 20.8% adiabacity and 7.45% for 41.6% adiabacity.

This analysis indicated that a significant amount of additional power becomes available in the exhaust gas by adding thermal insulation to the engine and removing the engine coolant.

5.9 Task IX Reporting

Quarterly Technical and Progress Reports were submitted throughout the program. Each task was reported in each progress report. One copy of the Final Report draft shall be submitted for review in lieu of the 4 copies specified.

6.0 CONCLUSIONS

- 1. Application of adiabatic (low heat rejection) engine technology to the rotary (Wankel type) engine is highly dependent upon the materials used for the basic engine components.
- 2. Fundamental work on increasing the permissible operating temperature of the apex seal/rotor housing tribological system is required before the adiabatic technology can be successfully applied to a complete engine.
- 3. Successful low heat rejection major engine components have been designed, analyzed, fabricated and tested in a Mazda gasoline rotary engine and low heat rejection components fabricated for the NASA 1007R stratified charge engine. The 1007R components are available for testing by John Deere's Rotary Engine Division.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 9 BASELINE

INPUT

<u> </u>	
INLET TEMPERATURE - DEGREES F INLET PRESSURE - IN HG ASB INTAKE PRESSURE DROP - IN H20 COMPRESSOR EFFICIENCY INTERCOOLER COOLANT IN TEMP - F INTERCOOLER EFFECTIVITY BASELINE EXHAUST ENTHALPY - BTU/MIN	73.00 29.88 21.50 75.00 77.0 80.00 18095.30
OUTPUT	
BMEP - PSI FMEP - PSI BSFC - LBS/BHP/HR ISFC - LBS/IHP/HR FUEL AIR RATIO FRICTION HORSEPOWER COMPRESSOR MASS FLOW - LBS/HR	197.0000 37.0000 0.5076 0.4272 0.0420 30.3000 19443.0000
COMPRESSOR PRESSURE RATIO TURBINE PRESSURE RATIO COMPRESSOR HORSEPOWER ADDITIONAL POWER FOR TURBOCOMPOUNDING	2.26 1.46 34.30 0.00
COOLANT HEAT REJECTION - BTU/MIN LUBE OIL HEAT REJECTION - BTU/MIN INTERCOOLER HEAT FLOW - BTU/MIN RADIATION HEAT REJECTION - BTU/MIN ENGINE THERMAL EFFICIENCY	1792.000 673.000 1132.000 673.000 0.272
AMBIENT PRESSURE - IN HG COMPRESSOR INLET COMPRESSOR OUTLET ENGINE INLET TURBINE INLET TURBINE OUTLET	29.88 28.30 63.95 59.81 43.77 29.88
AMBIENT TEMPERATURE - F COMPRESSOR INLET COMPRESSOR OUTLET ENGINE INLET TURBINE INLET TURBINE OUTLET	73. 73. 258. 113. 1573.

TABLE 10 INSULATED COOLED ENGINE

INPUT

INLLET TEMPERATURE - DEGREES F	73.000
INLET PRESSURE - IN HG ABS	29.880
INTAKE PRESSURE DROP - IN H20	21.500
COMPRESSION RATIO	7.500
DESIRED FUEL AIR RATIO	0.042
APPARENT VOLUMETRIC EFFICIENCY	125.000
FRICTION REDUCTION PERCENTAGE	15.000
ISFC REDUCTION PERCENTAGE	-22.500
COMPRESSOR EFFICIENCY	75.000
INTERCOOLER COOLANT IN TEMP - F	77.000
INTERCOOLER EFFECIVITY	80.000
COOLANT - SPECIFIC HEAT REJECTION	8.821
LUBE - SPECIFIC HEAT REJECTION	3.573
BASELINE EXHAUST ENTHALPY - BTU/MIN	18095.300

OUTPUT

BMEP - PSI	197.0000
FMEP - PSI	37.0000
BSFC - LBS/BHP/HR	0.5076
ISFC - LBS/IHP/HR	0.4272
FUEL FLOW - CU MM PER STROKE	93.5805
ACTUAL FUEL AIR RATIO	0.0420
FRICTION HORSEPOWER	30.3000
COMPRESSOR MASS FLOW - LBS/HR	197.0000 37.0000 0.5076 0.4272 93.5805 0.0420 30.3000 1944.0000 2.2600
COMPRESSOR PRESSURE RATIO	2.2600
COMPRESSOR PRESSURE RATIO TURBINE PRESSURE RATIO COMPRESSOR HORSEPOWER ADDITIONAL POWER FOR TURBOCOMPOUNDING	1.4600
COMPRESSOR HORSEPOWER	34.3000
ADDITIONAL POWER FOR TURBOCOMPOUNDING	24.0000
COOLANT HEAT REJECTION - BTU/MIN	1120.000
LUBE OIL HEAT REJECTION - BTU/MIN	564.000
INTERCOOLER HEAT FLOW - BTU/MIN	1132.000
COOLANT HEAT REJECTION - BTU/MIN LUBE OIL HEAT REJECTION - BTU/MIN INTERCOOLER HEAT FLOW - BTU/MIN RADIATION HEAT REJECTION - BTU/MIN ENGINE THERMAL EFFICIENCY	564.000
ENGINE THERMAL EFFICIENCY	0.272
AMBIENT PRESSURE - IN HG	29.88
COMPRESSOR INLET	28.30
COMPRESSOR OUTLET	63.95
ENGINE INLET	59.81
TURBINE INLET	43.77
TURBINE OUTLET	29.88
AMBIENT TEMPERATURE - F	73.
COMPRESSOR INLET	73. 258.
COMPRESSOR OUTLET	258.
ENGINE INLET	113.
TURBINE INLET	1573.
TURBINE OUTLET	1410.

TABLE 11 INSULATED UNCOOLED ENGINE

INPUT

INLLET TEMPERATURE - DEGREES F	73.000
INLET PRESSURE - IN HG ABS	29.880
INTAKE PRESSURE DROP - IN H20	21.500
COMPRESSION RATIO	7.500
DESIRED FUEL AIR RATIO	0.042
APPARENT VOLUMETRIC EFFICIENCY	125.000
	15.000
FRICTION REDUCTION PERCENTAGE	-22.500
ISFC REDUCTION PERCENTAGE	75.000
COMPRESSOR EFFICIENCY	77.000
INTERCOOLER COOLANT IN TEMP - F	80.000
INTERCOOLER EFFECIVITY	6.510
COOLANT - SPECIFIC HEAT REJECTION	2.636
LUBE - SPECIFIC HEAT REJECTION	
BASELINE EXHAUST ENTHALPY - BTU/MIN	18095.300

OUTPUT

DWED DCT	197.0000 37.0000 0.5076 0.4272 93.5805 0.0420 30.3000 1944.0000
BMEP - PSI	37.0000
FMEP - PSI	0.5076
BSFC - LBS/BHP/HR	0.4272
ISFC - LBS/IHP/HR	93.5805
FUEL FLOW - CU MM PER STROKE	0.0420
ACTUAL FUEL AIR RATIO	30.3000
FRICTION HORSEPOWER	1944.0000
	2 2600
COMPRESSOR PRESSURE RATIO	1.4600
TURBINE PRESSURE RATIO	34.3000
COMPRESSOR PRESSURE RATIO TURBINE PRESSURE RATIO COMPRESSOR HORSEPOWER ADDITIONAL POWER FOR TURBOCOMPOUNDING	24.0000
COOLANT HEAT REJECTION - BTU/MIN LUBE OIL HEAT REJECTION - BTU/MIN INTERCOOLER HEAT FLOW - BTU/MIN RADIATION HEAT REJECTION - BTU/MIN ENGINE THERMAL EFFICIENCY	349.000
COOLANT HEAT REJECTION - BTU/MIN	534.000
LUBE OIL HEAT REJECTION - BIO/MIN	1132.000
INTERCOOLER HEAT FLOW - BIO/HIM	534.000
RADIATION HEAT REJECTION - BIO/HIN	0.272
ENGINE THERMAL EFFICIENCY	•
THE PRESCRIPE - IN MC	29.88 28.30
AMBIENT PRESSURE - IN HG	28.30
COMPRESSOR INLET	63.95
COMPRESSOR OUTLET	59.81
ENGINE INLET	43.77
TURBINE INLET	29.88
TURBINE OUTLET	
AMBIENT TEMPERATURE - F	73.
COMPRESSOR INLET	73.
COMPRESSOR INTEL COMPRESSOR OUTLET	258.
	113.
ENGINE INLET	1573.
TURBINE INLET	1410.
TURBINE OUTLET	

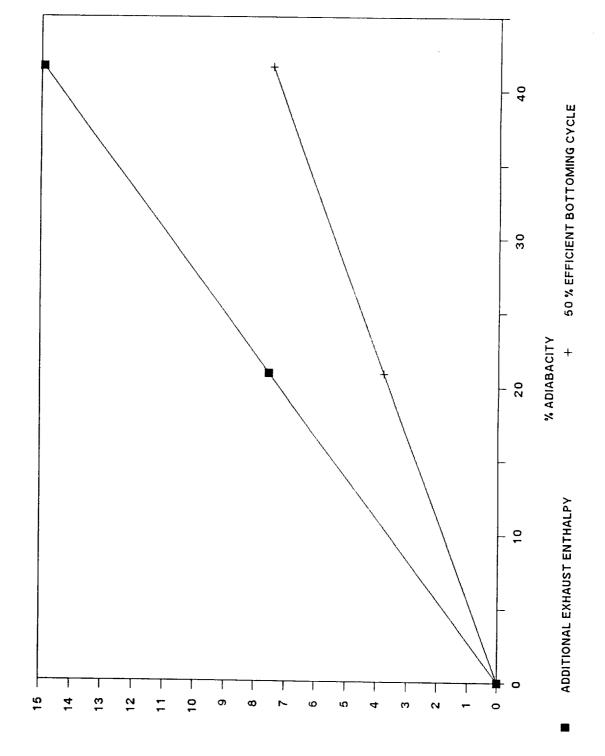


Figure 5.8-1 Power Available in the Exhaust Chart

% ADDITIONAL POWER

- 4. Application of insulating coatings to the engine's rotor, by plasma spraying partially stabilized zirconia (PSZ) followed by surface densification, has proven to be successful. A similar coating with high temperature chrome oxide densification to provide a good wear surface was successful on the Mazda cast iron side housings. However, application of the same material to the aluminum side housings and aluminum rotor housing of the 1007R engine is not possible because the processing temperatures required to obtain good wear surfaces are above the maximum permissible temperature to which the aluminum can be exposed.
- 5. A layered coating consisting of PSZ and Tribaloy 800 has been applied to the aluminum 1007R components to provide a thermal barrier insulating layer with a good tribological surface. Testing by John Deere is required to demonstrate the integrity of this coating.
- Conclusive data on reduction of heat rejection is not available from 6. the Mazda testing but will be generated when the components are tested in the stratified charge combustion engine by John Deere. Examination the data from the Mazda engine testing with the insulated components result in the conclusion that dramatic reductions in heat rejection are achievable with todays coating technology. instance, looking at Figure 5.6.1-8, adding only 0.75 mm of coating to the rotors raised the peak exhaust temperature 90 C. from 730 to 820 C. and Figure 5.6.1-3 shows that the temperature rise in the lube oil in the engine dropped more than 20 percent. Application of 0.5 mm of insulating coating to both sides of the Mazda intermediate housing (the two end housing sides were not coated) reduced the temperature rise in the lube oil by 50 percent (Figure 5.6.0-3). If similar results are observed on the stratified charge combustion engine, reductions of heat transfer to the lube oil of 75 percent or greater are expected.
- Testing of the coated aluminum and coated cast iron rotor housings was 7. not sufficient to demonstrate the thermal performance of the coating as the coatings failed before adequate data could be A conclusion which can be drawn from the rotor housing testing is that successfully coating the aluminum rotor housing with an insulating material with good tribological properties may not be The aluminum rotor housings tested on the Mazda engine possible. failed in the zirconia layer probably from the combination of high compressive loads under the apex seals and high tensile loads caused by the high thermal expansion of the aluminum housing. The coating failure may have been aggravated by either a poor quality PSZ plasma spray or damage to the PSZ caused by the trochoid grinding process. Based on these results, the processing of the rotor housing for the 1007R engine has been closely watched at every step to improve the the resulting coating which will hopefully provide sufficient life to enable heat rejection data to be obtained.
- 8. Testing of the special coated cast iron Mazda rotor housings with minimal cooling (no cooling passages in the high heat flux area) were more successful, in that the coatings did not fail immediately (they were used for three engine builds). The engine ran very well with the cast iron housings and sounded different (less high frequency noise)

at low power levels and experienced failures of the apex seal system which terminated each test as the power was increased. The apex seal system failures included severe bowing of the seals (indicating that the wear surface was running significantly higher temperature than the inner surface of the seal), accelerated apex seal wear and sticking of the seals in the rotors. These failures are due to breakdown of the lubrication system at the very high surface temperatures which were experienced on the inner surface of the insulated cast iron rotor housing. Based upon extrapolation of the rotor housing heat flux thermocouple data, the temperature of the cast iron and coating interface was in excess of 244 C. as compared to 103 C. for the baseline engine at the same load. The baseline engine had a wall temperature of 127 C. at full load. While the absolute values of these data are highly questionably (actual temperatures are known to be higher) the data does show that the minimally cooled, insulated cast iron housing runs significantly hotter than the standard cooled aluminum housing. This high temperature operation breaks down the lubricating oil causing an increase in friction and also forms hard deposits (which cause the apex seals to stick).

- 9. As discussed separately in the ADAPCO report the conclusion of the cycle analysis, thermal analysis and stress analysis are that the design approach to insulating the rotor is sound and has acceptable stress levels. However, it is predicted that the insulated aluminum rotor housing with water cooling and the uncooled, insulated, cast iron rotor housing both have excessively high stress levels and will fail. ADAPCO does point out that their analysis could be greatly improved with additional fundamental property data for the coating systems and by using a more sophisticated cycle analysis and transient thermal analysis.
- 10. Analysis of the cycle simulation data, with various degrees of heat rejection reduction, shows that for a 40 percent reduction of heat rejection to the coolant and lube that an additional 15 percent of the rated engine power is available in the exhaust for compounding recovery.

7.0 RECOMMENDATIONS

This program has concluded that it is possible to reduce the heat rejection of high performance rotary engines by using state-of-the-art thermal barrier coatings provided that the basic engine components are made of compatible materials. In order to improve the engine for aircraft applications (or other applications which are weight sensitive) it is necessary to find an alternative to aluminum and cast iron for the engine housings and rotors. A material with low density and good high temperature strength is required. A study to identify an optimal material to replace aluminum or ductile iron for high temperature piston engines [3] has identified a titanium alloy (Ti6242) as having the desired properties and which also has low thermal conductivity.

It is recommended that a technology demonstrator engine be designed using the Ti6242 alloy with thermal barrier coatings on the side housings, rotors and (to a limited extent) the rotor housing. The design should prove that titanium is a superior material for a high performance aircraft engine and that the resulting engine will be inherently more reliable (as compared to an engine with aluminum housing castings). A techno-economic analysis should then be performed to determine the cost and marketing implications.

It is recommended that efforts be continued (by NASA and others) to develop high temperature lubrication systems which are applicable to the apex seal. This effort should include high temperature liquid lubrication, dry lubrication systems and work on material compatibility.

RECOMMENDATION FOR TESTING AT JOHN DEERE

It is recommended that the components be tested together in one engine build to determine the performance implications in the stratified charge combustion engine. Testing should be done with an eye to obtaining as much data as possible before coating failure occurs. The coated rotor (which should survive any coating failure of the rotor housing or side housings) should then be tested by itself for durability and performance. If the rotor coating is damaged, Adiabatics, Inc. will recoat it for free.

1		

APPENDIX A

ADIABATIC, INC.

STATEMENT OF WORK

APPENDIX A

ADIABATIC, INC.

STATEMENT OF WORK

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	Page
INTRODUCTIO	N	. A-3
Task I	Engine Selection and Baseline Test	. A-3
Task II	Thermal Analysis	. A-5
Task III	Adiabatic Component Design	. A-6
Task IV	High Temperature Apex/Side Seal Tribology	. A-6
Task V	Prototype Engine - Procurement/Assembly - Mazda 13B.	. A-7
Task VI	Engine Testing	. A-7
Task VII	Prototype engine - Procurement - NASA 1007R	. A-8
Task VIII	Exhaust Energy Utilization	. A-8
Reporting R	equirements	. A-8

ADIABATIC WANKEL TYPE ROTARY ENGINE CONTRACT NAS3-24880

STATEMENT OF WORK

INTRODUCTION

The objective of this project is to design, fabricate, procure, assemble and test a prototype low heat rejection rotary engine based on studies performed in the SBIR Phase I contract entitled "Adiabatic Wankel TYPE Rotary Engines" completed in 1985. A program consisting of eight (8) tasks was formulated to accomplish this project as follows:

- I Engine Selection and Baseline Test
- II Thermal Analysis
- III Adiabatic Component Design
- IV High Temperature Apex/Side Seal Tribology
- V Prototype Engine Procurement/Assembly MAZDA 13B
- VI Engine Testing
- VII Prototype Engine Procurement NASA 1007R
- VIII Exhaust Energy Utilization

The following is a narrative description of the work plan for each task.

TASK I Engine Selection and Baseline Test

This first task starts with selection and purchase of a test engine followed by instrumentation of the engine and baseline testing. Per the conclusions of the first quarterly report and review at a meeting with Mr. William Hady at NASA LeRC November 12, 1986 a Mazda 13B engine of the latest configuration was procured. Based on engine availability and suitability for test cell operation the engine was purchased (following approval from Mr. William Hady) from Racing Beat.

Inc. of Anaheim California. The configuration of the engine is listed in the following table:

Model Mazda 13B

Displacement 1.308 L (80 Cu In)

Rated Power 132 KW (177 Horsepower)
Intake Ports 6 Side Ports (2 Volume)

Intake Ports 6 Side Ports (2 Valved)

Exhaust Ports 2 Peripheral

Exhaust Manifold Racing Type Header

Carburetion Dellorto 48 DHLA (Dual sidedraft)

Ignition Distributor Mazda Breakerless (Integral

Electronics)

Ignition Coils Mazda Transistor Ignition Type

Flywheel Lightweight Steel Type

The plan is to use this engine for component screening (mechanical screening as opposed to performance development). The logic behind this approach is that the addition of low heat rejection components to a homogeneous charge engine will raise the temperature of the gases during the compression stroke and increase the tendency of the engine to detonate (early combustion). To counteract this phenomena special fuels with very high octane numbers will have to be used along with power reductions. A test plan for the engine is to be prepared which includes engine and test cell instrumentation, assembly instructions, test cell installation details and the actual listing of tests to be run. An eddy current type dyno matched to the Mazda engine is being used for this project.

Because the selected engine is a mature product the initial testing is limited to refinement of the test facility and baseline performance measurements of the engine with no endurance or durability testing. A partial listing of the parameters which are be measured and the measuring method are as follows:

Engine Speed Speed pickup on dyno. Torque Load Cell on dyno. Fuel Flow Mass Type Flowmeter Air Flow Mass Type Flowmeter Intake Temperature Thermocouple Exhaust Temperature Thermocouple Coolant In Temperature Thermocouple Coolant Out Temperature Thermocouple Oil In Temperature Thermocouple Oil Out Temperature Thermocouple Rotor Housing Temperature Thermocouple Side Housing Temperature Thermocouple Coolant Pressure Bourdon tube gage 011 Pressure Bourdon tube gage Barometric Pressure Mercury Barometer Wet and Dry Bulb Amb Temps. Sling Psychrometer

Following receipt of the inputs from NASA the detailed test plan will be finalized and submitted to NASA for approval.

Following approval of the test plan the Contractor will conduct the test program and prepare and issue an informal test report.

Task II Thermal Analysis

A thermal analysis shall be conducted for NASA's 1007R engine to obtain a thermal history including the temperature distribution in the rotor and rotor housings during rated and peak torque operating conditions.

The analysis shall provide the basis for calculating the distortion, allowable clearances and thermal stresses in these components. The thermal stresses obtained in this analysis shall be combined with the rotating stresses and pressure loading stresses to provide input for the component design to be performed in Task III - Adiabatic Component Design.

After completion of the thermal analysis, the Contractor shall prepare an informal report and present it to the NASA Project

Manager for his approval. Upon approval, the Contractor shall proceed with the design of all the adiabatic components as determined in Task III - Adiabatic Component Design.

The following method will be used to accomplish this task:.

- a. NASA to furnish 1007R drawings and test data to ADAPCO.
- b. NASA to furnish MIT Stratified Charge Combustion Model.
- c. ADAPCO will incorporate 1007R geometry and run the MIT model to generate boundary conditions.
- d. ADAPCO to use John Deere data to verify model.
- e. ADAPCO to generate FE model of 1007R rotor and rotor hsg.
- f. ADAPCO to use boundary conditions from c. and run FE analysis.
- g. ADAPCO to prepare informal report.

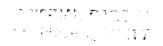
III. Adiabatic Component Design

Following completion of TASK 2, the Contractor will upon approval from NASA's Project Manager have ADAPCO proceed to modify the models for combustion and the FE models for the rotor and rotor housing to include selected low heat rejection components and to run the models and analysis at the low heat rejection conditions. These results will be used in an iterative manner to design the actual modifications to the 1007R parts. Detailed drawings of the modifications will be completed by Contractor personnel and submitted to the Project Engineer for approval. Upon approval, the Contractor may initiate procurement of the adiabatic components outlined in task IV - High Temperature Apex/Side Seal Tribology and task VI - Prototype Engine Procurement - NASA 1007R.

IV High Temperature Apex/Side Seal Tribology

The Contractor shall evaluate and procure candidate apex seals, side seals and high temperature lubricants as follows:

Based on experience from reciprocating adiabatic engine testing four candidate sets each of apex seals and side seals


for high temperature operation along with high temperature oil for two oil changes will be procured for the 1007R engine. The same candidate apex seal and side seal designs will be procured for the Mazda engine along with the same high temperature oil. The apex seals and high temperature oil will be run in the Mazda engine build with the low heat rejection rotor housing and the side seals and high temperature lube will be run in the engine build with the low heat rejection side housings.

V Prototype Engine - Procurement/Assembly - Mazda 13B

The Contractor shall produce, fabricate, modify, and assemble a complete prototype adiabatic rotary engine utilizing those parts and or components obtained in performance of Tasks I, III and IV. This engine is to be used for screening components for later inclusion in the 1007R engine. A series of screening tests are to be planned wherein a concept can be tested individually for mechanical and tribological integrity.

VI Engine Testing

The Contractor shall install the Mazda 13B rotary engine and auxiliary components from Task IV (High Temperature Apex/Side Seal Tribology) to his test facility and make all necessary preparations for testing. Prior to commencing the engine testing a test plan will be prepared and approved by the NASA Project Manager. The engine testing shall consist of separate engine builds and tests for the rotor, rotor housing, and side housings along with a final test of the complete engine. A minimum of four separate engine build and test cycles are required.

VII Prototype Engine - Procurement - NASA 1007R

The Contractor is to provide thermal barrier coatings for the following parts of the NASA 1007R engine:

Note: The parts to be coated are NASA owned parts which are presently at John Deere.

 ${\tt ROTOR}$ - The $1007{\tt R}$ rotor will be machined and coated the same as the Mazda rotor.

SIDE HOUSINGS - The present 1007R side housings are aluminum and present the same problem as the aluminum rotor housings. Depending upon the results from the Mazda testing and the thermal analysis program, either zirconia coated aluminum housings with the three cycle coating or plasma sprayed chrome-oxide or the K-Ramic coated cast iron housings will be supplied.

ROTOR HOUSING - The selection of rotor housing material and coating will be dependent upon the results of the Mazda testing and the thermal analysis.

The testing of the 1007R components will be accomplished by John Deere and is not included in this project.

VIII Exhaust Energy Utilization

The Contractor shall conduct a study on methods of recovering waste energy from the exhaust of the adiabatic rotary engine using exhaust gas data from the 1007R engine and the results of the thermodynamic modeling of that engine with low heat rejection components. The results of this study will be presented to the NASA Project Manager for his approval.

Reporting Requirements

Reporting shall be in accordance with the Reports of Work attachment except as modified below:

1. A Quarterly Technical and Progress Report shall be substituted in lieu of the Monthly Report.

- 2. Each task shall be reported in the Quarterly Progress Report.
- 3. The Quarterly Progress Report shall include the number of labor hours expended for each category of labor for the quarter as well as cumulative totals.
- 4. One (1) copy of the Final Report draft shall be submitted for review in lieu of the four (4) copies specified.

APPENDIX B
ENGINE TEST PLAN

ENGINE TEST PLAN

The engine test plan encompasses five engine configuration tests: the standard engine, the standard engine with coated rotors, the standard engine with coated intermediate housing, the standard engine with coated rotor housings, and the standard engine with a combination of all above mentioned coated components. The purpose of the engine tests is to screen components for later inclusion on the 1007R engine. The data from the testing will be analyzed to determine the change in heat rejection.

The first test configuration, the standard engine, is being run to develop baseline information. Because the selected engine is a mature product the initial testing is limited to refinement of the test facility and performance measurements of the engine with no endurance or durability testing.

The test consists of engine preparation, instrumentation, and machining of the engine rotor housings and intermediate housing to enable installation of thermocouples. The assembled engine will be placed on the test stand and connected to an Eaton eddy current type dynamometer Model AD-8081.

The following parameters will be measured and recorded:

Engine Speed	Speed pickup on dyno.
Torque	Load cell on dyno.
Fuel Flow	Mass type flow meter.
Intake Temperature	Thermocouple
Exhaust Temperature	••
Coolant In Temperature	**
Coolant Out Temperature	••
Oil In Temperature	•
Oil Out Temperature	**
Rotor Housing Temperature	••
Side Housing Temperature	••

1

Intake Pressure

Exhaust Pressure

Blow by

Coolant Pressure

Oil Pressure

Barometric Pressure

Wet & Dry Bulb Amb. Temps.

Mercury Manometer

Mercury Manometer

Bourdon Tube Gauge

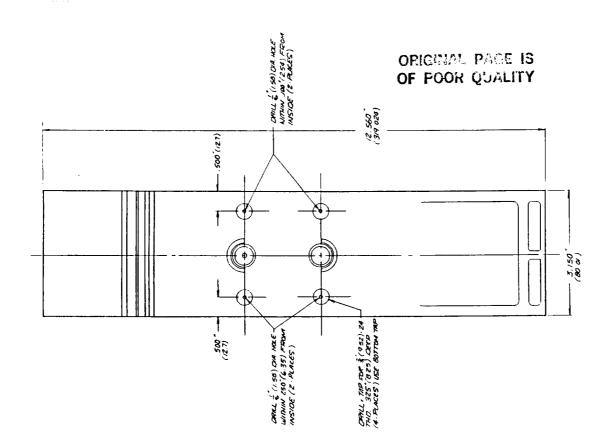
Bourdon Tube Gauge

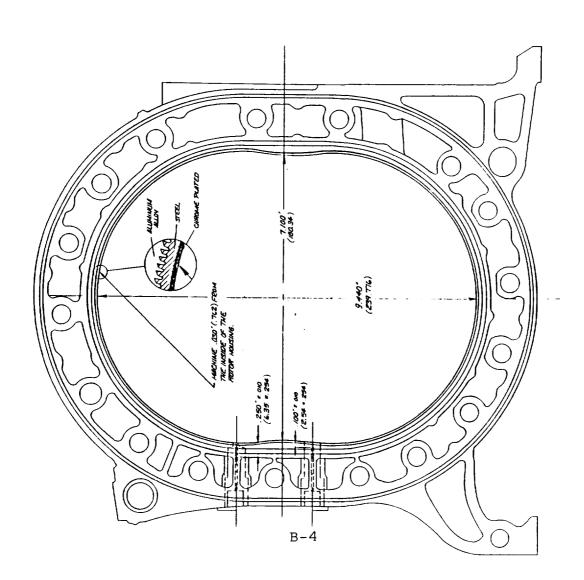
Bourdon Tube Gauge

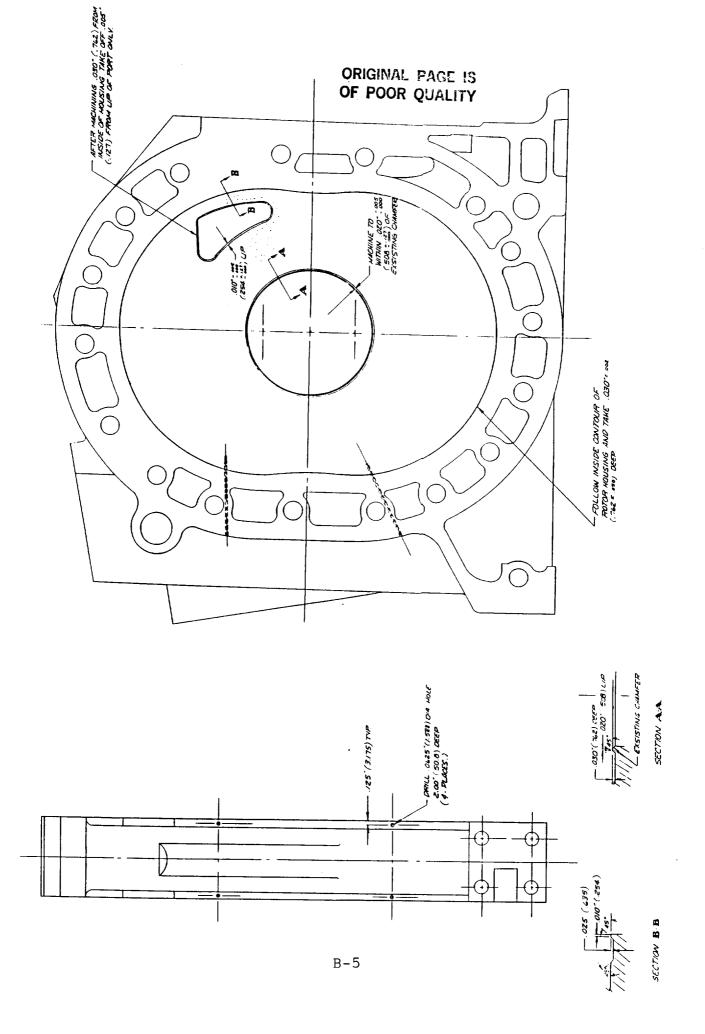
Sling Psychrometer

(For locations of rotor housing and intermediate housing thermocouples see Figures 1 & 2.)

Periodic visual inspection through the exhaust ports and pre and post test measurements of the wear surfaces will be performed.

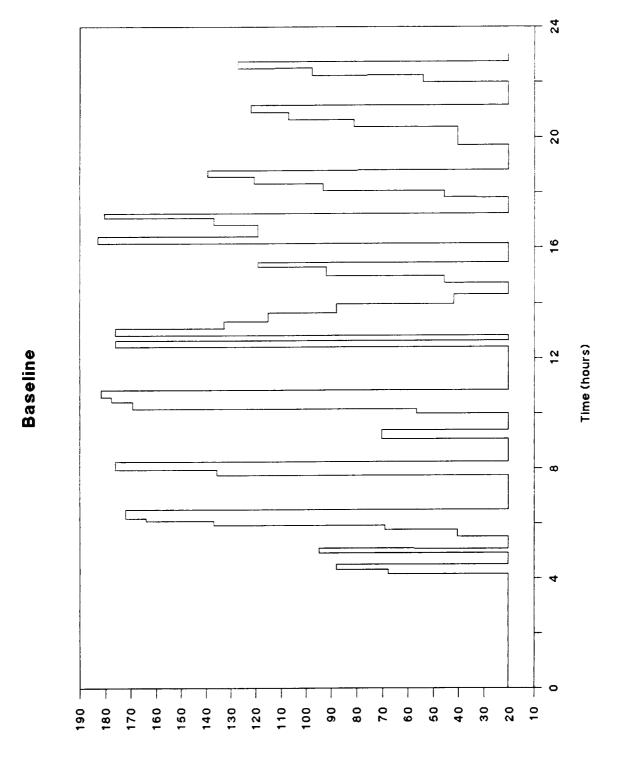

The second engine configuration to be tested is the baseline engine with the addition of two insulated rotors. The two rotors will be coated with plasma sprayed zirconia and then densified with a chrome oxide coating. This test will include an endurance test at various loads to ensure proper component screening. The same parameters will be measured as outlined in the first test configuration.


The third engine configuration tested is the baseline engine with a coated intermediate housing and coated side seal. This test will also be performed under endurance conditions and the test will measure the same parameters as above.


The fourth engine configuration tested is the baseline engine with coated rotor housings and coated apex seals. Testing will be done in the same manner as above.

The last engine configuration tested is with a combination of all coated components. This test will be performed if all components endure the previous tests. The same parameters will be measured.

Once the test program is performed. Adiabatics. Inc. will prepare and issue an informal test report.


APPENDIX C
BASELINE DATA

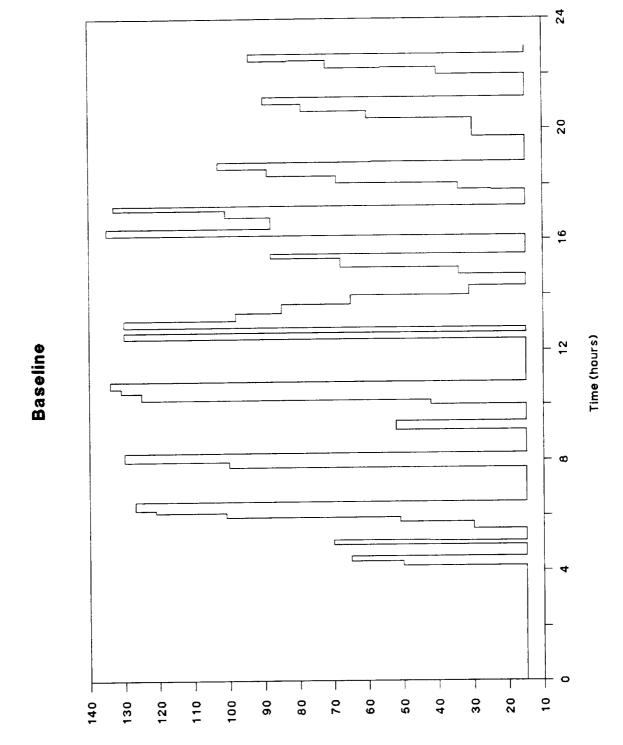
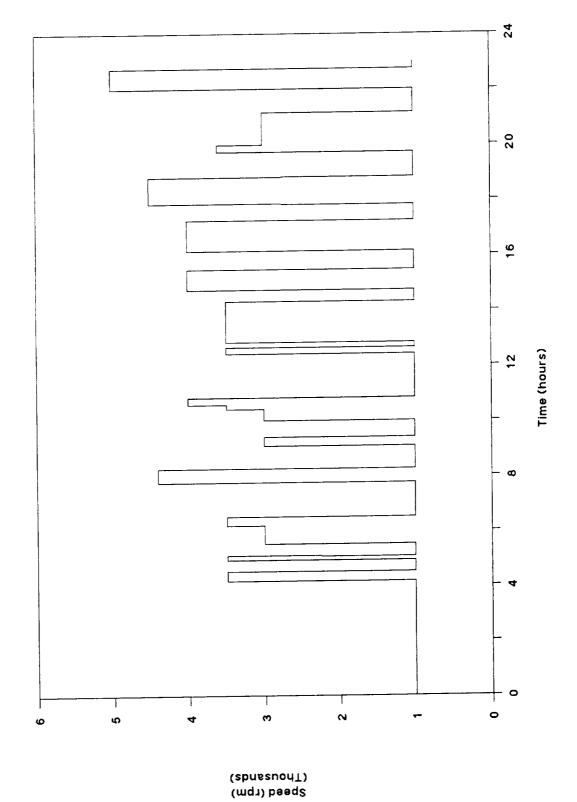

BASELINE DATA

TABLE OF CONTENTS

										Ti	<u>it</u>]	<u>le</u>														Ī	Page
Baseline	Chart		•				•		•	•			•	•						•	•		•	•	•	•	C-3
Baseline	Chart	•					•			•		•	•		•							•		•			C-4
Baseline	Chart		•		•	•	•		•			•		•	•		•	•		•	•		•	•		•	C-5
Baseline	Data.								•	•	•	•	•	•	•	•	•		•		•		•	•	•	•	C-6
Baseline	Data.		_	_	_			_			_																C-6


Torque (N*m)

Torque (lbs*ft)

Torque Torque BHP

Point Date RPM

l	179	120	2	2	E 2		178	2	9	2	182		ē	=	8	<u>=</u>	₫	9	6 6	2 6	1 2		3	8	183
	83	3	6	3 8	2 23		ā	6	6	2	8	6	3 !	2	8	2	2	ě	3 5	3 5	3 2	; ;	\$:	*	œ
	1254	67	2	3 9	3		1321	9	90	1528	0091	9	2	1477	1575	1556	230	5	2 6	7 02	35,		171	22	591
					66		716	6	2	2 2	871	240	:	803	83	847	998						3		
					8		7	. 53	; \$: ::	5	;	; :	3	69	82	9	4	7	3 5	3 2	: :	Я :	3	8
					: 53		'n	' =	: ≏	7	Ξ	•	•	=	7	28	91	a	• =	2	1 =	: :	≘ :	2	23
	7	2	99	3	29		9	89	9	89	89	3	3 5	3	Z	89	89	9	3	3	3	:	8 :	2	32
	29.64	29.64	29.65	20 65	29.71		29.66	29.66	29.66	29.66	29.66	77 00	3 :	3.50	89.6	89.6	29.68	7,	9	2	29.70	,	/01.7	, o .	79.67
	9	2.0	- 9	2	100.3						100.2						100.2				100.3		7.00		
					99						67 10						01 99	-		-	99		8 5		
	\$	\$	*	5	49		8	46	4	3	462	3		•	\$	₹	\$	77	3	3	455	•		Ç	55
	53	21	13	2	12		≅	2	=	=	=	~	2 9	2	2	2	8	2	7	K	₹	ř	9 6	7	88
	103	8	8	2	8		2	103	47	8	8	124	:	\$71	28	82	85	153	165	122	165	2		8	33
	•	0	0	•	•	-	•	•	0	•	•	•	• <	>	•	•	•	۰	•	•	•	٠. ﴿	• <	> -	•
	•	•	۰	•	•		•	•	•	۰	•	•	•	•	•	0	•	•	0	•	•	•	•	•	0
	7	-	7.1	~	14.8		3.7	7.2	1.01	12.0	23.0	-	5	?	16.6	20.3	33.8	M	10.	17.7	23.1	-	: :		.x
	17	'n	7		m			~	~		<u>~</u>	_													
	0.32	1.09	1.76	2.09	3.683		0.92	1.79	2.51	2.98	5.723	181	,	9	=	5.05	8.411	1.070	2.588	40	5.748	020	77.	,,,,	17.1
	. .	7.9	٠٠. د	7	9.0		5.5	80	٥.	7	0.5	7.3	6		6	÷.	0.5	14.5	0.6	5.5	:	-		7 .	<u>.</u>
	7.3	6.7	7.9	5	2.0		.0		6.	6.	1.7	M.	-	: :	<u>-</u> :		1.7	9.	- ;	9	14.9		7 1.		
		_	_	_	¥			_	_	_	0.555	0.97	0		9.	0.59	0.574	0.95	99.0	0.59	0.573	48.0	777 0		0.0
	718	\$	404	88	Ä	į	670	429	383	379	338	594	717	;	26	360	349	581	330	363	349	3	3	;	-
	7	m		ь.	•		œ	-	-	v	7	*1	-	٠.	,,	'n	2		_	М	۰.				_
	2	ĸ	ģ	8	Z	:	77	ຮຸ	ĸ	6	₩.	25.3	۳	; ;	÷	÷	8	27.	8	5	8	2	4		3.
	9181	476	771	919	ã		328	171	990	361	21804	176	990	3	<u></u>	20657	395	223	* :	527	152	6	: 1	; ;	70
																					22952		20457		
	ω	=	=	==	ž	•	•	==	Ξ	2	61	2	=	: :	_	œ.	23	=	23	=	2	<u></u>	=	?	3
	 	6.5	.5	8.	118.8	,	7.6	-:	4.6	<u>~</u>	122.5	2.0	=		:	2.5	125.4	0.7	9.	6.3	97.1	37.7	•	: :	
																	_								
					0 819						6 845						\$ 864 2		##				468		
	17.1								56.3								<u>=</u>				88.3		68.5	0	;
					53.7				45.0			19.3						21.7					5	7 79	;
	99	9	79.0	90.0	126.0	-	? ?	65.0	9 4.5	97.5	130.0	34.0	68.0	8	2 .	9	53.0	34.0	69.0	83.0	103.0	6.0	72.0	0.76	:
	40.7	<u>:</u>	7.	5.0	6.0	-	7.7	-:	9.	2.2	176.3										-		٠,	L	:
	_																	\$	2	120	139.7	35	43	127	į
	2000	3000	2000	3000	3000	2500	277	8	3300	320	3200	4000	4000	400		2	900	4200	\$ 200	\$200	500	2000	200	2000	
	91/80	86/1	31/80	98/19	08/10	08/13	8	38/II	08/12	08/17	71/80	7 08/12	08/12	51780	77.00	2	S1/B0	08/13	08/13	08/13	08/13	08/16	08/16	08/16	!
	2	=	=	2	_	4	9 1	~	*	m	7	7	80	۰	- 5	3 :	=	12	=	Ξ	2	20	7	22)

		_																							
				2	£	96	\$	8	6	96	8	66	%	8	66	8	901	108	90	102	107	107	*	86	\$
	4	, e	3	5	N	25	Ħ	32	Ä	25	25	33	25	37	3	83	7	45	85	8	42	45	*	2	8
		_ ≌	Œ	214	228	234	239	254	216	731	239	245	280	221	237	244	220	794	774	242	22	261	232	22	594
		≅	ê	_ 5	60	112	115	123	102	Ξ	22	118	127	205	=	118	121	129		117			Ξ	121	129
	5	12	Œ	88	192	161	196	202	189	161	161	200	206	161	197	199	202	208	192	200	203	202			207
	SOC SOCIETY.	2	ġ.	18	6	8	91	9,6	18	8	42	2	16			5				23					4
	Po to t	2 =	Œ	217	233	240	245	292	219	232	243	22	593	122	₹	248	32	272	83	247	23	692	33	55	212
	Front		9		112						111							133				132			13
	u		Œ	192	197	90	202	212			203					207				207					218
			ĵ.	l .	35						8					6				14					103
	-	٠,	<u>(</u>	ì	212						288					291				287					318 1
			<u>g</u>	ļ.	13						142 2							159		142 2					159 3
	8		Œ,	l	198						202					202				208					215 1
	ž	8# 8# 2# 2#	<u>.</u>	1	92 1						34					2 %				97 2					102 2
	di afe	_	<u>.</u>	3	220	69	72	9			272					276				212		_			301
	4	_	ے ۵	l	121 2						133 2					136 2				133 2					149 3
	_		(F)	ļ	195						200 13					205 13									215 14
=		1	_		16						93 20					% 20				6 205					
		1	9																	7					2 102
BASEL INE			Ē	Į.	722						244					222				247					273
=	_	1	9	1	108						118					122				119					~
	House	=	Œ.	1	8						204					214				213					227
			9		2			-			86			42	8	5	<u>\$</u>	108	*	≘	₫.	20	\$	103	18
	Poter		Ē.	1	223				220	235	245	222	297	224	244	253	262	276	228	220	281	274	237	23	276
	ě	2	S	103	109	::2	118	126	9	Ξ	118	122	Ξ	107	=	123	128	136	109	121	127	ř	Ξ	126	136
		=	Œ.	193	198	203	206	215	161	20	207	211	219	197	208	212	217	223	18	210	216	223	202	212	223
	_	2	ê	8	92	S,	44	102	8	*	44	\$	<u>\$</u>	42	41	8	103	106	22	6	102	106	%	20	<u>8</u>
	Pelta	Ten	Ē	53	22	ĸ	25	\$	32	B	\$		÷	32	23	F	=	\$	F	23	ŝ	7	22	25	ŝ
	De ita			2	99	<u>6</u>	2	54	=	7	22	ĸ	5 8	99	8	7	23	23	=	2	z	23	8	2	23
	4 6	E 1	<u>.</u>	82	8	8	16	90	7	22	142	2	8	182	*	8	6	B	16	202	22	Ħ	308	2	2
		ž		l	88						- 68			83						36			97 2		
				82														-					*	88	8
			<u> G</u>											99											
			<u>.</u>											184											
			9		ž	#	æ	98	ä	2	*	8	8	3	Z	.	22	2	*	æ	2	2	8	28	98
	Point		i											7											

APPENDIX D

ADAPCO

STATEMENT OF WORK

STATEMENT OF WORK

The purpose of this program is to determine the structural implications of an "adiabatic" direct injection stratified charge combustion rotary (Wankel) type engine.

To accomplish this program ADAPCO is to perform the following tasks using the NASA (John Deere) 1007R engine as the candidate engine:

- Generate the three dimensional ANSYS finite element model for the rotor and rotor housing using the drawings generated by John Deere.
- 2. Using the MIT DISC model, generate the thermal and pressure boundary conditions for the above engine at rated and torque peak conditions.
- 3. Compare the results of the above analysis with test data supplied by John Deere and iterate the model as necessary such that the predicted pressures and temperatures agree with the measurements.
- 4. Using the above boundary conditions along with inertia loads and assembly loads, run the FE models and determine the deflections, stresses and temperatures of the components.
- 5. Run the MIT DISC model for the adiabatic configuration assuming a .030 inch plasma sprayed zirconia thermal barrier coating densified from chrome oxide on the combustion face of the rotor, the side housings and the rotor housing to determine the pressure and temperature boundary conditions for the insulated engine.
- 6. Modify the FE models to include the thermal barrier coatings.
- 7. Run the FE models with and without coolant in the rotor housing. Reiterate back through task 5 as necessary such that the MIT DISC and ANSYS surface temperatures are in agreement.
- 8. Analyze the results of the above run to determine if the stresses, temperature and deflections are acceptable. If they are not acceptable, modify the models to incorporate design changes to make the values acceptable and recycle until a satisfactory solution is found.

REPORTING

An interim report and a final report which details all of the effort and results shall be prepared and submitted per the schedule. A magnetic tape copy of the completed ANSYS finite element models is required.

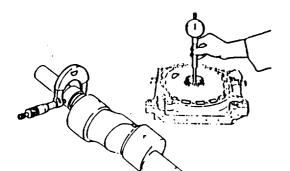
SCHEDULE

Program start date - 1 April 1987
Interim report due - 1 July 1987
Program complete - 1 October 1987
Final report due - 1 November 1987

APPENDIX E PRE & POST MEASUREMENT

PRE & POST MEASUREMENT

TABLE OF CONTENTS


<u>Title</u> <u>Pac</u>	<u>16</u>
Main Bearing	-4
Rotor Housing	-4
Rotor	- 5
Rotor Oil Seal	-6
Apex Seal	-6
Side Seal	-7
Corner Seal	-8
Pre & Post Compression Tests	-9
Front Main Bearing Clearance E-1	11
Rear Main Bearing Clearance E-1	12
Front Rotor Bearing Clearance E-1	13
Rear Rotor Bearing Clearance E-1	14
Front Rotor. Housing Width Difference E-1	15
Rear Rotor Housing Width Difference E-1	17
Front Rotor Clearance	19
Rear Rotor Clearance	20
Front Rotor Oil Seal Lip Width E-2	21
Rear Rotor Oil Seal Lip Width E-2	23
Front Rotor Apex Seal Clearance E-2	25
Front Rotor Apex Seal Height E-:	26
Front Rotor Apex Spring Free Height E-	27
Front Rotor Apex Seal Weight E-	28
Rear Rotor Apex Seal Clearance	29

PRE & POST MEASUREMENT

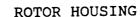
TABLE OF CONTENTS (Cont.)

<u>Title</u>	Page
Rear Rotor Apex Seal Height	E-30
Rear Rotor Apex Spring Free Height	E-31
Rear Rotor Apex Seal Weight	E-32
Front Rotor Side Seal Protrusion	E-33
Front Rotor Side Seal Weight	E-35
Rear Rotor Side Seal Protrusion	E-37
Rear Rotor Side Seal Weight	E-39
Front Rotor Corner Seal Protrusion	E-4
Front Rotor Corner Seal Weight	E-4
Rear Rotor Corner Seal Protrusion	E-46
Rear Rotor Corner Seal Weight	E-49

The five pages that follow are a description of the pre and post test measurement procedures. The procedures are described in the 1987 Mazda shop manual. All measurements not recorded were checked and were OK.

MAIN BEARING

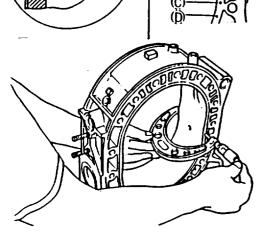
1. Check the main bearing clearance.

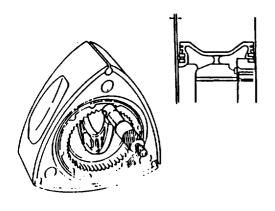

Measure the inner diameter of the main bearing and the outer diameter of the eccentric shaft main journal.

Standard Clearance: 0.04 - 0.08mm

(.0016 - .0031 in)

Clearance Limit: 0.10mm


(.0039 in.)

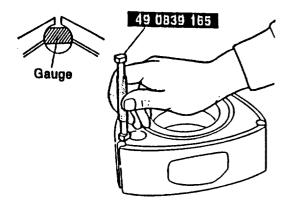

- Check the width difference of the rotor housing. Measure the rotor housing width at the points A,B,C, and D as shown in the figure.
- Check the difference between the value of point A and the minimum value among the points B, C, and D.

Difference Limit: 0.06mm

(.0024 in.)

CANCEUTA PAGE 18 OF POOR QUALITY

ROTOR


Check the clearance between the side housing and rotor.

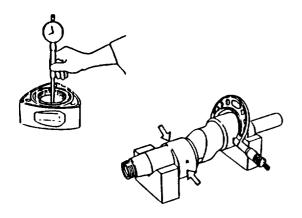
1. Measure the rotor housing width and the maximum rotor width at three points.

Standard Clearance: 0.12 - 0.21mm

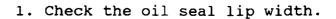
(.0047 - .0083 in.)

Clearance Limit: .004 in.

- 2. Check the corner seal bores for wear
 - 1) If neither end of the gauge goes into the bore, use the original corner seal.
 - 2) If only one end of the gauge goes into the bore, replace the corner seal.
 - 3) If both ends of the gauge go into the bore, replace the rotor.
- 3. Check the rotor bearing clearance.


 Measure the inner diameter of the rotor
 bearing and the outer diameter of the
 eccentric shaft rotor journal. Standard

Clearance: 0.04 - 0.08mm


(.0016 - .0031 in.)

Clearance Limit: 0.10mm

(.0039 in.)

ROTOR OIL SEAL

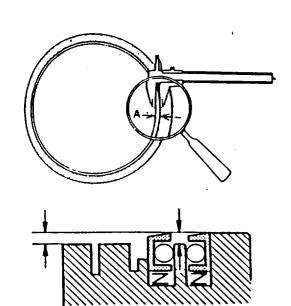
Lipwidth: .0.05mm (.020 in max.)

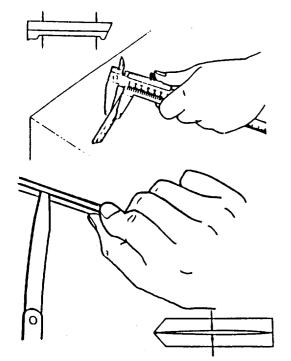
2. Check oil seal protrusion.

Protrusion: 0.05mm (.020 in min.)

1. Measure the height of the apex seal at two points.

Standard Height: 8.0mm


(.315 in.)


Height Limit: 6.5mm

(.256 in.)

2.Check the apex seals for warpage.

Warpage Limit: 0.06mm (0.0024 in.)

APEX SEAL cont.

3. Check the clearance of the apex seal and the groove.

Standard Clearance: 0.062 - 0.102mm

(.0024 - .004 in.)

Clearance Limit: 0.15mm

(.0059 in.)

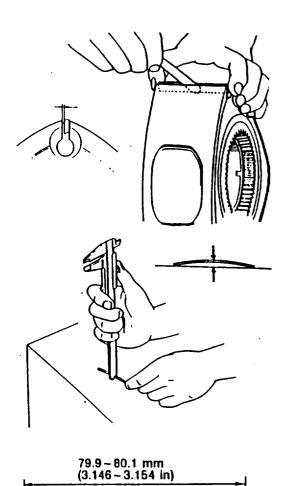
4. Check the apex seal spring for wear and free height.

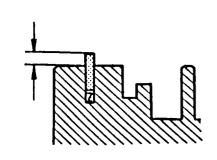
Free Height Limit:

Long Spring

4.6mm

(.181 in.)


5. Measure the apex seal length.


SIDE SEAL

1. Check side seal protrusion.

Protrusion: 0.5mm

(.020 in.) min.

Standard Clearance: 0.028 - 0.078mm (.0011 - .0031 in.)

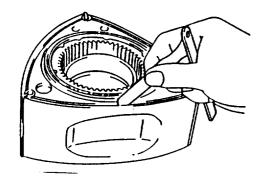
Clearance Limit: 0.10mm (.0039 in.)

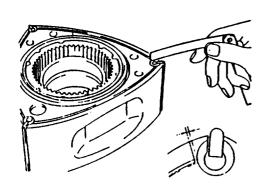
3. Check the clearance between the side seal and the corner seal.

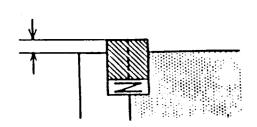
Standard Clearance: 0.05 - 0.15mm

(0.0020 - 0.0059 in.)

Clearance Limit: 0.4mm


(.016 in.)


CORNER SEAL


Check the corner seal protrusion.

Protrusion: 0.5mm

(.020 in) min.

** Pre & Post Compression Tests **

			Rotor flank	40	Compr °re	ession	Post	
Build	Numbe			((Kg/Cmsa)	(mgm)	(Kg/Cmsq)	(rpm)
Baseline test	A) 1	front		1	7.8	164		126
		rotor		2 3	7.7 7.4		7.7 7.5	
		rear		1.	7.2	243		243
		rotor		2 3	6.9 7.0		5.3 5.3	
Coated	B) 1	front		1	7.2	154	a.ខ	230
intermediate housing test		rotor		2 3	7,2 7,2		9.3 9.0	
		rear		L	6.8	243		227
		rotor		.2 3	7.0 7.0		6.7 6.5	
Undensified	C) 1	front		1	6.1	225	Not	NА
coated rotor test		rotor		2 3	7.3 7.2		Available	
		rear		1	8.7	216	NA	NA
		rotor		2 3	7.0 6.5		H H	
Undensified	C) 2	front		1	8.0	215	NA	NA
coated rotor test		rotor		2 3	7.8 8.5		H H	
		rear		1	7.1	213	NA	NA
		rotor		2 3	7.8 7.6		H H	
Undensified coated	C) 3	front rotor		1	7.4 7.2	235	NA "	NA
rotor test		rucur	:	2 3	7.6		n	
- ··· · · ·		rear rotor		1 2	8.0	228	NA "	NA
		i u cur		4 3	7.8 7.7			

** Pre & Post Compression Tests **

		Rotor flank	Compr	ession	Post	
Build	Number	No.	(Kg/Cmsq)	(rpm)		(rpm)
Densified coated rotor test	C) 4 fro rot			203	NA "	NA
	rea rot		7.3	201	NA "	NA
Coated aluminum rotor housing	D) 1 fro rot		9.2 9.6 9.4	216	NA "	NA
test	rea rot		8.5 7.2 8.7	209	NA "	NA
Coated cast iron rotor housing	D) 2 fro rot		8.5 8.9 8.6	215	NA '' ''	NA
test	rea rot		9.7 9.0 9.5	215	NA '' ''	NA
Coated cast iron rotor housing	D) 3 fro rot		4.7 4.0 5.3	217	0.0 0.0 0.0	220
test	rea rot		4.2 4.0 4.1	323	0.0 0.0 0.0	219
Coated cast iron rotor housing	D) 4 from		8.1 7.9 7.9	221	0.0 0.0 0.0	212
test	rea roto		7.1 6.7 7.1	221	0.0 0.0 0.0	205

** Front Main Bearing Clearance **

Build Number	Standard Clearanc ClearanceLimit (inch) (inch)	Pre	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 0.0039 to 0.0031	0.0020	0.0508	0.0020	0.0508
B) 1		0.0020	0.0508	0.0020	0.0508
C) 1		0.0020	0.0508	0.0020	0.0508
C) 2		0.0020	0.0508	0.0020	0.0508
c) 3		0.0020	0.0508	0.0028	0.0711
(C) 4		o.0029	0.0737	0.0030	0.0762
D) 1		0.0030	0.0762	0,0030	0.0762
D) 2		0.0030	0.0762	0.0030	0.0762
D) 3		0.0030	0.0762	0.0030	0.0762
D) 4		0.0030	0.0762	0.0030	0.0762

OF POOR QUALITY

** Rear Main Bearing Clearance **

	Standard Clearanc ClearanceLimit (inch) (inch)			Post (inch)	Post (mm)
A) 1	0.0016 0.0039 to 0.0031	0.0020	0.0508	0.0020	0.0508
B) 1		0.0020	0.0508	0.0020	0.0508
C) 1		0.0020	0.0508	0.0020	0.0508
C) 2		0.0020	0.0508	0.0020	0.0508
0) 3		0.0020	0.0508	0.0028	0.0711
c) 4		0.0028	0.0711	0.0028	0.0711
D) 1		0.0029	0.0737	0.0029	0.0737
D) Z		0.0029	0.0737	0.0030	0.0762
D) 3		0.0030	0.0762	0.0030	0.0762
D) 4		0.0030	0.0762	0.0030	0.0762

** Front Rotor Bearing Clearance **

Buil Numb	 Clearance		-	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 to 0.0031	0.0039	0.0020	0.0508	0.0020	0.0508
B) 1			0.0020	0.0508	0.0020	0.0508
C) 1			0.0020	0.0508	0.0020	0.0508
C) 2			0.0020	0.0508	0.0020	0.0508
C) 3			0.0020	0.0508	0.0022	0.0559
C) 4			0.0020	0.0508	0.0024	0.0610
D) 1			0.0020	0.0508	0.0020	0.0508
D) Z			0.0020	0.0508	0.0020	0.0508
D) 3			0.0021	0.0533	0.0023	0.0584
D) 4			0.0023	0.0584	0.0025	0.0635

OF POOR CHILLY

** Rear Rotor Bearing Clearance **

Build Number	Standard Clear ClearanceLimit (inch) (inch	f're	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 0.0 to 0.0031	039 0.0020	0.0508	0.0020	0.0508
B) 1		0.0020	0.0508	0.0020	0.0508
C) 1		0.0020	0.0508	0.0020	0.0508
C) 2		0.0020	0.0508	0.0020	0.0508
C) 3		0.0020	0.0508	0.0023	0.0584
C) 4		0.0020	0.0508	0.0028	0.0711
D) 1		0.0020	0.0508	0.0021	0.0533
D) 2		0.0024	0.0610	0.0024	0.0610
E (d		0.0024	0.0610	0.0028	0.0711
D) 4		0.0028	0.0711	0.0030	0.0762

** Front Rotor Housing Width Difference **

Build Number	Difference Limit (inch)			Difference (inch)		Difference (mm)
A) 1	0.0024	A) B) C) D)	3.1490 3.1500 3.1490 3.1500	0.0010	79.9846 80.0100 79.9846 80.0100	0.0254
8) 1		A) B) C) D)	3.1489 3.1490 3.1490 3.1493	0.0004	79.9821 79.9846 79.9846 79.9922	0.0102
C) i		A) B) C) D)	3.1484 3.1493 3.1489 3.1490	0.0009	79.9694 79.9922 79.9821 79.9846	0.0229
G) 2		A) B) C) D)	3.1484 3.1493 3.1489 3.1490	0.0009	79.9694 79.9922 79.9821 79.9846	0.0229
C) I		A) B) C) D)	NA " "	NA	NA " "	NA
C) 4		A) B) C) D)	3.1491 3.1496 3.1493 3.1494	0.0005	79.9871 79.9998 79.9922 79.9948	0.0127
D) 1		A) B) C) D)	NA " "	NA	NA " "	NA
D) 2		A) B) C) D)	3.1505 3.1506 3.1506 3.1506	0.0001	80.0227 80.0252 80.0252 80.0252	0.0025
D) 3		A) B) C) D)	3.1506 3.1505 3.1506 3.1503		80.0252 80.0227 80.0252 80.0176	0.076
D) 4		A) B) C) D)	3.1513 3.1503 3.1502 3.1511		80.0430 80.0176 80.0151 80.0379	0.0279

** Front Rotor Housing Width Difference **

W	Difference					
Buxid Number	Limit (inch)		Post (inch)		re Post (mm)	Difference (mm)
A) L	0.0024	A)	3.1489	0.0004	79.9821	0.0102
		E)			79.9846	
		0)			79.9846	
		D)	3.1493		79.9922	
B) i		A)	3.1484	0.0009	79.9694	0.0229
		B)	3.1493		79.9922	
		C)			79.9821	
		D)	3.1490		79.9846	
C) i		Α)	3.1484	0.0009	79.9694	0.0229
		B)	3.1493		79.9922	
		C)			79.9821	
		D)	3.1490		79.9846	
C) I		Α)	NA	NA	NA	NA
		B)	11		D	
		C)	11		11	
		D)	11		d	
C) I		A)	3.1491	0.0005	79.9871	0.0127
		B)	3.1493		79.9922	
		\mathbb{C}	3.1494		79.9948	
		D)	3.1496		79.9998	
C) 4		A)	3.1484	0.0004	79.9694	0.0152
		B)	3.1490		79.9846	
		C)	3.1490		79.9846	
		D)	3.1490		79.9846	
D) 1		A)	3.1473	0.0010	79.9414	0.0254
		B)	3.1463		79.9160	
		C)	3.1463		79.9160	
		D)	3.1468		79.9287	
D) 2		A)	3.1506	0.0003	80.0252	0.0076
		B)	3.1505		80.0227	
		C)	3.1506		80.0252	
		D)	3.1503		80.0176	
D) 3		A)	3.1506	0.0003	80.0252	0.0076
		B)	3.1505		80.0227	
		E)	3.1506		80.0252	
		D)	3.1503		80.0176	
D) 4		A)	3.1505	0.0003	80.0227	0.0076
		В)	3.1508		80.0303	
		C)	3.1507		80.0278	
		D)	3.1507	E-16	80.0278	

** Rear Rotor Housing Width Difference **

	Difference Limit (inch)			lifference (inch)		Difference (mm)
A) 1	0.0024	B)	3.1490 3.1500 3.1500 3.1500	0.0010	77.9846 80.0100 80.0100 80.0100	0.0254
B) i		B) C)	3.1491 3.1491 3.1494 3.1491	0.0003	79.9871 79.9871 79.9948 79.9871	0.0076
C) 1		B)	3.1484 3.1485 3.1488 3.1489	0.0005	79.9594 79.9719 79.9795 79.9821	0.0127
C) 2			3.1484 3.1485 3.1488 3.1489	0.0005	79.9694 79.9719 79.9795 79.9821	0.0127
c) 3		A) B) C) D)	NA " "	АИ	NA " "	NA
C) 4		A) B) C) D)	3.1490 3.1502 3.1493 3.1492	0.0013	79.9846 80.0151 79.9922 79.9897	0.0330
D) i		A) B) C) D)	NA " "	NA	NA " "	NA
D) 2		A) B) C) D)	3.1505 3.1505 3.1504 3.1507	0.0003	80.0227 80.0227 80.0202 80.0278	
D) 3		A) B) C) D)	3.1505 3.1505 3.1504 3.1507	0.0003	80.0227 80.0227 80.0202 80.0278	
D) 4		A) B) C) D)	3.1504 3.1504 3.1507 3.1506		80.0202 80.0202 80.0279 80.0252	i I

** Rear Rotor Housing Width Difference **

Bui! Numbe	1.ci	ference imit inch)			Difference (inch)		Difference (mm)
Α) .	1 ()	.0024	C) B)	3.1491 3.1491 3.1494 3.1494		79.9871 79.9871 79.9948 79.9948	0.0178
В) :	į.		B)	3.1484 3.1485 3.1488 3.1489		79.9694 79.9719 79.9795 79.9821	0.0127
C) :	;; .		B) C)	3.1484 3.1485 3.1488 3.1489		79.9694 79.9719 79.9795 79.9821	0.0127
3) :	2		E)	NA "	NA	NA 	NA
C) :	3		B)	3.1490 3.1496 3.1495 3.1495		79.9846 79.9998 79.9973 79.9973	0.0152
E) -	4			3.1490 3.1498 3.1497 3.1496		79.9846 80.0049 80.0024 79.9998	0.0203
D)	1			3.1487 3.1509 3.1495 3.1502		79.9770 80.0329 79.9973 80.0151	0.0559
D)	2		A) B) C) D)	3.1505 3.1505 3.1504 3.1507	0.0003	80.0227 80.0227 80.0202 80.0278	0.0076
(מ	3		A) B) C) D)	3.1505 3.1506 3.1504 3.1505	0.0002	80.0227 80.0252 80.0202 80.0227	0.0051
D)	4		A) B) C) D)	3.1505 3.1504 3.1505 3.1506	0.0002 E-18	80.0227 80.0202 80.0227 80.0252	

** Front Rotor CLearance **

	Standard C Clearance (inch)	Limit				
A) 1	0.0047 to 0.0083	0.0040	NA	NA	0.0061	0.1549
B) 1			0.0061	0.1549	0.0069	0.1753
C) 1			0.0060	0.1524	0.0060	0.1524
0) 2			0.0060	0.1524	0.0060	0.1524
C) 3			0.0072	0.1829	0.0073	0.1854
C) 4			0.0070	0.1778	0.0071	0.1803
D) 1			ം.ാദാ	0.2032	0.0081	0.2057
D) 2			0.0081	0.2057	0.0081	0.2057
D) B			0.0081	0.2057	0.0082	0.2083
D) 4			0.0082	0.2083	0.0082	0.2083

** Rear Rotor CLearance **

	Standard C Clearance (inch)	Limit				
A) 1	0.0047 to 0.0083	0.0040	NA	NA	0.0071	0.1803
B) 1	0.0000		0.0067	0.1702	0.0069	0.1753
C) 1			0.0070	0.1778	0.0070	0.1778
6) 2			0.0070	0.1778	0.0070	0.1778
C) 3			0.0071	0.1803	0.0071	0.1803
C) 4			0.0065	0.1651	0.0065	0.1651
D) 1			0.0045	0.1651	0.0066	0.1676
D) 2			0.0080	0.2032	0.0082	0.2083
D) 3			0.0082	0.2083	0.0083	0.2108
D) 4			0.0083	0.2108	0.0083	0.2108

** Front Rotor Oil Seal Lip Width **

Build Number	Standard (inch)			Pre (inch)	Pr∈ (mm)	Post (inch)	Post (mm)
A) 1	max 0.0200	gear side	inner outer	NA NA	NA NA	NA NA	NA NA
		plain side	inner outer	NA NA	NA NA	NA NA	NA NA
B) 1		gear side	inner outer	0.0110	0.2794 0.2540	0.0200 0.0140	0.5080 0.3554
		plain side	inner outer	0.0160 0.0100	0.4064 0.2540	0.0400 0.0400	1.0160 1.0160
C) 1		gear side	inner outer	0.080 0.080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 2		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.00 8 0 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 3		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0130 0.0120	0.3302 0.3048
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0100 0.0100	0.2540 0.2540
C) 4		gear side	inner outer	0.0110 0.0100	0.2794 0.2540	0.0130 0.0130	0.3302 0.3302
		plain side	inner outer	0.0100 0.0110	0.2540 0.2794	0.0120 0.0130	0.3048 0.3302
D) 1		gear side	inner outer	0.0150 0.0160	0.3810 0.4064	0.0180 0.0150	0.4572 0.3810
		plain side	inner outer	0.0130 0.0120	0.3302 0.3048	0.0140 0.0120	0.3556 0.3048
D) 2		gear side	inner outer	0.0120 0.0120	0.3048 0.3048	0.0130 0.0150	0.3302 0.3810
		plain side	inner outer	0.0120 0.0200	0.3048 0.5080	0.0130 0.0140	0.3302 0.3556

** Front Rotor Oil Seal Lip Width **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
D) 3	max 0.0200	gear side	inner outer	0.0130 0.0150	0.3302 0.3810	0.0190 0.0180	0.4826 0.4572
		plain side	inner outer	0.0130 0.0140	0.3302 0.3556	0.0160 0.0180	0.4064 0.4572
D) 4		gear side	inner outer	0.0200 0.0170	0.5080 0.4318	0.0200 0.0170	0.5080 0.4318
		plain side	inner outer	0.0150 0.0180	0.3810 0.4572	0.0150 0.0180	0.3810 0.4572

** Rear Rotor Oil Seal Lip Width **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	max 0.0200	gear side	inner outer	NA NA	NA NA	NA NA	NA NA
		plain side	inner outer	NA NA	NA NA	NA NA	NA NA
B) 1		gear side	inner outer	0.0110	0.2794 0.2540	0.0210 0.0130	0.5334 0.3302
		plain side	inner outer	0.0160 0.0120	0.4054 0.3048	0.0480 0.0390	1.2192 0.9906
C) 1		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 2		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 3		gear side	inner outer	0.0080 0.0080	0.2032 0.2832	0.0130 0.0130	0.3302 0.3302
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0120 0.0140	0.3048 0.3556
C) 4		gear side	inner outer	0.0110 0.0110	0.2794 0.2794	0.0160 0.0160	0.4064 0.4064
		plain side	inner outer	0.0100 0.0100	0.2540 0.2540	0.0130 0.0130	0.3302 0.3302
D) 1		gear side	inner outer	0.0130 0.0120	0.3302 0.3048	0.0160 0.0160	0.4064 0.4064
		plain side	inner outer	0.0150 0.0100	0.3810 0.2540	0.0130 0.0130	0.3302 0.3302
D) 2		gear side	inner outer	0.0160 0.0100	0.4064 0.2540	0.0160 0.0110	0.4064 0.2794
		plain side	inner outer	0.0150 0.0160	0.3810 0.4064	0.0100 0.0160	0.2540 0.4064

** Rear Rotor Oil Seal Lip Width **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)	
D) 3	max 0.0200	gear side	inner outer	0.0090 0.0110	0.2286 0.2794	0.0090 0.0120	0.2286 0.3048	
		plain side	inner outer	0.0100 0.0160	0.2540 0.4064	0.0130 0.0180	0.3302 0.4572	
D) 4		gear side	inner outer	0.0090 0.0120	0.2286 0.3048	0.0100 0.0120	0.2540 0.3048	
		plain side	inner outer	0.0120 0.0180	0.3048 0.4572	0.0120 0.0180	0.3048 0.4572	

** Front Rotor Apex Seal Clearance **

Build Number	Standard Clearance (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	0.0024	Α)	0.0030	0.0742	A)	0.0030	0.0762
	to	B)	0.0030	0.0762	B)	0.0030	0.0762
	0.0040	C)	0.0030	0.0762	C)	0.0030	0.0762
B) 1		A)	0.0030	0.0762	Α)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
C) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	(3)	0.0030	0.0762
<pre>C) 2</pre>		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	\mathbb{C}	0.0030	0.0762
C) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
C) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 2		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762

** Front Rotor Apex Seal Height **

Buila Number	Standard Height (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) i	min 0.315	A) B) C)	0.3330 0.3320 0.3330	8.4582 8.4328 8.4582	A) B) C)	0.3310 0.3320 0.3320	8.4074 8.4328 8.4328
B) 1		A) B) C)	0.3310 0.3320 0.3320	3.4074 3.4328 8.4328	A) B) C)	0.3300 0.3310 0.3310	8.332 3.4074 8.4074
C) I		A) B) C)	0.3310 0.3320 0.3320	8.4074 8.4328 8.4328	A) B) C)	0.3310 0.3320 0.3320	8.4074 8.4328 8.4328
C) 2		A) B) C)	0.315 0.315 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
C) 3		A) B) C)	0.315 0.315 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
C) 4		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 1		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 2		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 3		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 4		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315	A) B) C)		> 0.315 > 0.315 > 0.315

ORIGINAL PARTE TO OF POOR QUALITY

** Front Rotor Apex Spring Free Height **

Build	Standard		Pre	Pre		Post	Post
Number	(anch)		(inch)	(mm)		(inch)	(mm)
A) (min	A)	0.2150	5.4610	A)	0.2190	5.5626
	0.1810	B)	0.2150	5.4610	B)	0.2160	5.4864
		0)	0.2180	5.5372	0)	0.2180	5.5372
B) 1		A)	0.2190	5.5424	Α)	0.2150	5.4610
		B)	0.2160	5.4864	B)	0.2130	5.4102
		C)	0.2180	5.5372	0)	0.2100	5.3340
C) l		Α)	0.2150	5.4610	Α)	0.2150	5.4610
		B)	0.2130	5.4102	В)		5.4102
		0)	0.2100	5.3340	\circ	0.2100	5.3340
C) a		A)	0.181	> 0.181	A)	> 0.181	> 0.181
		E)	0.181	0.181	B)	> 0.181	0.181
		(3)	0.181	> 0.181	C)	> 0.181	> 0.181
C) E		4)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.131	B)	> 0.181	> 0.181
		€)	> 0.181	> 0.181	(3)	> 0.181	> 0.181
C) 4		Α)	0.181	> 0.181	Α)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	\Box)	> 0.181	> 0.181
D) 1		Α)	> 0.181	> 0.181	Α)	> 0.181	> 0.181
		B)	0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181
D) 2		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181
D) 3		Α)	> 0.181	> 0.181	Α)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	0.181	> 0.181	C)	> 0.181	> 0.181
D) 4		A)	0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181

** Front Rotor Apex Seal Weight **

Build		Pre	Post	Difference
Number		(g)	(g)	(q)
A) :	A)	13.20	13.18	0.02
	B)	13.24	13.22	0.02
	C)	13.29	13.27	0.02
B)	A)	13.18	13.16	0.02
	B)	13.27	13.24	0.03
	C)	13.22	13.18	0.04
C) 1	A)	13.16	13.16	0.00
	B)	13.24	13.24	0.00
	C)	13.18	13.18	0.00
0) 1	A)	13.16	13.10	0.06
	B)	13.24	13.19	0.05
	C)	13.18	12.99	0.19
C) T	A) B) C)	NA "	13.30 13.25 13.27	NA "
C) 4	A)	13.30	13.20	0.09
	B)	13.25	13.18	0.07
	C)	13.27	13.13	0.13
D) 1	A)	14.29	13.78	0.51
	B)	14.21	13.63	0.58
	C)	14.20	13.66	0.53
ם נס	A)	13.92	13.16	0.76
	B)	13.95	13.24	0.71
	C)	13.95	13.18	0.77
D) 3	A)	14.92	15.02	-0.09
	B)	15.01	15.03	-0.02
	C)	15.06	15.05	0.00
D) 4	A)	15.12	12.86	2.26
	B)	15.16	12.79	2.36
	C)	15.22	13.10	2.12

ORIGINAL OF POOR CUALLY

** Rear Rotor Apex Seal Clearance **

Build Number	Standard Clearance (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	0.0024	A)	0.0030	0.0762	A)	0.0030	0.0742
	to	B)	0.0030	0.0762	B)	0.0030	0.0762
	0.0040	\mathbb{C}	0.0030	0.0762	C)	0.0030	0.0762
B) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
C) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
- ·		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
C) Z		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0742
		\mathbb{C})	0.0030	0.0762	€)	0.0030	0.0762
C) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0742
C) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 2		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
D) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		(C)	0.0030	0.0762	C)	0.0030	0.0762
D) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762

** Rear Rotor Apex Seal Height **

Build Number	Standard Height (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) i	min 0.315	A) B) C)		8.4836 8.4836 8.4582	A) B) C)		8.4328 8.4328 8.4582
Ē) 1		A) B) C)	0.3320 0.3320 0.3330	8.4328 9.4328 8.4582	A) B) C)	0.3300 0.3310 0.3300	8.3820 8.4074 8.3820
C) t		A) B) C)	0.3300 0.3310 0.3300	8.3820 8.4074 8.3820	A) B) C)	0.3300 0.3310 0.3300	8.3820 8.4074 8.3820
C) 12		A) B) C)	> 0.315 > 0.315 > 0.315	/ 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
C) 3		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
C) 4		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) i		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 2		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 3		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315
D) 4		A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315	A) B) C)	> 0.315 > 0.315 > 0.315	> 0.315 > 0.315 > 0.315

ORIGINAL PAGE 18 OF POOR GRADAY

** Rear Rotor Apex Spring Free Height **

	Standard (inch)		Pre (inch)			Post (inch)	
A) 1	min	Α)	0.2160	5.4864	A)	0.2180	5.5372
	0.1810	B)	0.2150	5.4610	B)	0.2190	5.5626
		C)	0.2140	5.4354	€)	0.2150	5.4610
B) i		Α)	0.2180	5.5372	A)	0.0210	0.5334
		\mathbf{E}	0.2190	5.5626	<u>(;</u> ;)	0.2140	5.4356
		6)	0.2150	5.4610	0)	0.2120	5.3848
C) 1		Α)	0.0210	0.5334	Α)	0.0210	0.5334
		B)	0.2140	5.4356	B)	0.2140	5.4356
		\mathbb{C}	0.2120	5.3848	\mathbb{C})	0.2120	5.3848
(C) (L		A)	0.181	> 0.181	A)	> 0.131	0.181
		B)	0.181	0.181	B)	> 0.181	0.181
		C)	× 0.181	> 0.181	0)	> 0.181	> 0.181
C) 3		Α)	> 0.181	> 0.181	Α)	> 0.181	> 0.181
		B)	> 0.181	0.181	B)	> 0.181	> 0.181
		(C)	> 0.181	> 0.181	C)	> 0.181	> 0.181
C) 4		A)	> 0.181	> 0.181	A)	0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	0.181	> 0.181	C)	> 0.181	> 0.181
D) 1		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	0)	> 0.181	> 0.181
D) Z		Α)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		(C)	> 0.181	> 0.181	C)	> 0.181	> 0.181
D) 3		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	0.181	> 0.181	C)	> 0.181	> 0.181
D) 4		Α)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181

** Rear Rotor Apex Seal Weight **

Build Number		Pre (g)	Post (g)	Difference (g)
ë) i	A)	13.22	13.19	0.03
	B) ○)	13.23 13.12	13.21 13.10	0.02 0.02
	,		At 1sul B all 1sul	1907 - 19 - Suit Alexander
B) 1	A)	13.10	13.04	0.06
	8)	13.21	13.16	0.05
	C)	13.19	13.13	0.06
C) 1	A)	13.04	13.04	0.00
	B)	13.16	13.16	0.00
	C)	13.13	13.13	0.00
C) = 2	Α)	13.04	12.38	0.68
	B)	13.16	13.13	0.03
	C)	13.13	13.11	0.02
C) J	Α)	NA	13.26	NA
	B)	11	13.19	11
	C)	н	13.24	11
C) 4	A)	13.26	13.24	0.02
	B)	13.24	13.22	0.02
	C)	13.19	13.19	-0.01
D) 1	Α)	NA	13.20	NA
	В)	11	13.18	11
	\mathbb{C})	!1	13.13	11
D) 2	A)	15.17	15.12	0.05
	B)	15.22	15.10	0.13
	C)	15.11	15.02	0.09
D) 3	A)	14.99	14.93	0.07
	B)	15.01	15.01	0.01
	(C)	15.01	15.01	0.00
D) 4	A)	15.09	12.81	2.29
	B)	15.17	13.14	2.04
	C)	15.22	13.15	2.07

** Front Rotor Side Seal Protrusion **

Build Number	Height Limit (inch)		Pre (inch)	Fre (mm)		Post (inch)	Post (mm)
A) 1	min 0.0200 ge si			1.2700 1.4732 1.2446 1.4986 1.3970	A B C Jear A side B C) 0.0420) 0.0490) 0.0500) 0.0530	1.1430 1.0668 1.2446 1.2700 1.3462 1.2446
B) i		A) B) C) ar A) de B)	0.0450 0.0450 0.0490 0.0500 0.0530	1.1430 1.1430 1.2446 1.2700 1.3462 1.2446	A B C gear A side B) 0.0420) 0.0450) 0.0450) 0.0500	1.2700 1.0668 1.1430 1.1430 1.2700 1.1430
C) 1		A) B) C) ear A) de B) C)	0.0500 0.0420 0.0450 0.0450 0.0500	1.2700 1.0668 1.1430 1.1430 1.2700 1.1430	A B C gear A side B C) 0.0500) 0.0420) 0.0450) 0.0450) 0.0500	1.2700 1.0668 1.1430 1.1430 1.2700 1.1430
C) 2		A) B) C) ear A) Lde B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A B C gear A side B) > 0.020) > 0.020) > 0.020) > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
c) 3		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	E Qear A side E		> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
C) 4	_	A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	gear A side B	(A) > 0.020 (B) > 0.020 (C) > 0.020 (A) > 0.020 (B) > 0.020 (C) > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
D) 1		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	G gear A side B	A) > 0.020 B) > 0.020 C) > 0.020 A) > 0.020 B) > 0.020 C) > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020

** Front Rotor Side Seal Protrusion **

Build Number	Height Limit (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) Q	min	Α)	> 0.020	0.020	A)	> 0.020	> 0.020
	0.0200	B) C)	0.020	0.020	B)	> 0.020	> 0.020
	rn.	ear A)	0.020 > 0.020	> 0.020 > 0.020	C)	> 0.020	> 0.020
		ide 5)	> 0.020	> 0.020	gear A) side B)	> 0.020 > 0.020	> 0.020
		(0)	> 0.020	0.020	(C)	> 0.020	> 0.020
D) S		A)	> 0.020	> 0.020	Λ.\	is an anaman	S as as man
,		B)	> 0.020	> 0.020	A) B)	> 0.020 > 0.020	> 0.020
		Ö)	> 0.020	0.020	(C)	> 0.020	> 0.020
	CI	ear A)	> 0.020	0.020	oear A)	> 0.020	> 0.020
		ide B)	0.020	> 0.020	side B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	0)	0.020	0.020
D) 4		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	0.020	> 0.020	в)	0.020	> 0.020
		C)	> 0.020	> 0.020	Ĉ)	> 0.020	> 0.020
	cj e	ear A)	> 0.020	> 0.020	gear A)	0.020	> 0.020
	s.	ide B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C)	> 0.020	> 0.020

** Front Rotor Side Seal Weight **

, ,				-	Difference
Build Number				Post (g)	Pre - Post (g)
A) 1		A)	3.91	3.97	
		B)	3.75	3.94	0.01
		(C)	3.99	3.98	0.01
			3.99		0.01 0.03
	side			3.98	0.01
		\ ,	1 • 2 2		un ■ 1421 de
\mathbb{B}) 1		A)	3.97	3.91	0.06
		B)	3.95	3.97	-0.02
		(C)	J.99	3.88	0.11
	gear	A)	3.98	4.00	-0.02
	side	B) (C)	3.78	4.00	-0.03 -0.02
		U /	<i>□•</i> 7 □	₩ = C/C/	Not • Not who
$C \rightarrow 1$		A)	J.91	3.91	0.00
		B)	3.97	3.97	0.00
		\mathbb{C}	₃ . 88	3.88	0.00
				4.00	0.00
	side	B)		4.00	
		C)	4.00	4.00	0.00
C) 2		A)	3.91	3.91	0.00
		B)	3.97	3.97	0.00
		\mathbb{C})	3 . 88	3.88	0.00
				4.00	0.00
	side			4.00	0.00
		C)	4.00	4.00	0.00
C) 3		A)	3.91	3.94	-0.03
		B)	3.97	3.97	0.00
		\mathbb{C})	3.88	3.98	-0.10
	gear	A)	4.00	3.99	0.01
	side	B)	4.00	3.99	0.01
		C)	4.00	4.00	0.00
C) 4		A)	3.94	4.01	-0.06
		B)	3.97	4.02	-0.05
		\mathbb{C})	3.98	3.98	0.00
	gear	A)	3.99	3.97	0.01
	side	B)	3.99	3.97	0.01
		C)	4.00	4.01	-0.01
D) 1		A)	NA	3.97	NA
		B)	n	3.95	41
		\mathbb{C}	14	3.96	П
	gear	A)	4.9	3.97	#1
	side	B)	11	3.97	11
		C)	11	4.01	11

** Front Rotor Side Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Pre - Post (g)
D) I		Α)	3.97	3.97	0.00
		B)	3.95	3.95	0.00
		\mathbb{C}^{γ}	3.96	3.96	0.00
	gear	A)	3.90	3,90	0.00
	side	B)	3.92	3,72	0.00
		\mathbb{C}	3.91	3.91	0.00
D) S		Α)	3.90	3.90	0.00
		B)	3.92	3.92	0.00
		(C)	3.91	3.91	0.00
	gear	A)	3.97	3.97	0.00
	side	B)	3.95	3.95	0.00
		C)	3.96	3.95	0.00
(J.) 4		Α)	3.90	3.90	0.00
		B)	3.92	3.92	0.00
		\mathbb{C}	3,91	3.91	0.00
	qear	A)	3.97	3.97	0.00
	side	B)	3.95	3.95	0,00
	81 77	Ĉ)	3.95	3.95	0.00

** Rear Rotor Side Seal Protrusion **

8uild Number	Height Limit (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	min 0.0200	A) B) C) Jear A)	0.0500 0.0460 0.0530 0.0550	1.2700 1.1684 1.3462 1.3970	A) B) C) gear A)	0.0450 0.0450 0.0500 0.0430	1.1430 1.1430 1.2700 1.0922
		side B)	0.0510 0.0460	1.2954 1.1684	side 8)	0.0460 0.0450	1.1684
B) 1		A) B) C) gear A) side B)	0.0450 0.0450 0.0500 0.0430 0.0460	1.1430 1.1430 1.2700 1.0922 1.1684	A) B) C) gear A) sige B)	0.0380 0.0320 0.0280 0.0470 0.0340	0.9652 0.8128 0.7112 1.1938 0.8636
C) 1		C) A)	0.0450 0.0380	0.9652	a)	0.0360	0.7112 0.7652
		B) C) gear A) side B) C)	0.0320 0.0280 0.0470 0.0340 0.0280	0.8128 0.7112 1.1938 0.8636 0.7112	B) C) gear A) side B) C)	0.0320 0.0280 0.0470 0.0340 0.0280	0.8128 0.7112 1.1938 0.8636 0.7112
C) 2		A) B) C) Jear A) Side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) Gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
C) 3		A) B) C) Jear A) Side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
C) 4		A) B) C) Jear A) Side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
D) 1		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020

** Rear Rotor Side Seal Protrusion **

Build Number	Height Limit (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) 2	min 0.0200 gear side	A) B) C) A) B)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
0) 3	qear side	A) B) C) B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
D) 4	gear side	A) B) C) A) B)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020

** Rear Rotor Side Seal Weight **

Build Number		man while space steer was	Pre (g)	Post (g)	Difference Pre - Post (g)
A) 1	gear side	A) B) C) A) B) C)	3.98 3.99 3.99 4.03 4.02 4.02	3.99 3.99 3.98 4.02 4.02	-0.01 0.00 0.01 0.01 0.00 0.01
B) 1	gear side	A) B) C) A) B) C)	3.99 3.99 3.98 4.02 4.02 4.01	3.91 3.94 3.94 4.00 3.97 4.00	0.08 0.05 0.04 0.02 0.05 0.01
C) 1	gear side	A) B) C) A) B) C)	3.91 3.94 3.94 4.00 3.97 4.00	3.91 3.94 3.94 4.00 3.97 4.00	0.00 0.00 0.00 0.00 0.00
C) 2	gear side	A) B) C) A) B) C)	3.91 3.94 3.94 4.00 3.97 4.00	3.91 3.94 3.94 4.00 3.97 4.00	0.00 0.00 0.00 0.00 0.00
C) 3	gear side	A) B) C) A) B) C)	3.98 3.99 3.99 4.03 4.02 4.02	3.98 3.98 3.98 4.03 3.98 4.01	0.00 0.01 0.01 0.00 0.04 0.01
C) 4	gear side	A) B) C) A) B) C)	3.98 3.98 3.98 4.03 3.98 4.01	3.98 3.97 3.99 4.02 3.98 3.99	0.00 0.01 -0.01 0.01 0.00 0.02
D) 1	gear side	A) B) C) A) B) C)	NA " " "	3.97 3.97 4.01 4.01 4.02 3.97	NA " " "

** Rear Rotor Side Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Fre - Post (g)
D) 2		A) B) C) A) B) C)	3.97 3.97 4.01 3.68 3.90 3.80	3.97 3.97 4.01 3.68 3.90 3.80	0.00 0.00 0.00 0.00 0.00
Σ) З	gear side	A) B) C) A) B) C)	3.97 4.01 3.68 3.97 3.89 3.80	3.97 4.01 3.68 3.97 3.89 3.79	0.00 0.00 0.00 0.00 0.00
D) 4	gear side	A) B) C) A) B)	3.97 4.01 3.68 3.97 3.89 3.79	3.97 4.01 3.68 3.97 3.89 3.79	0.00 0.00 0.00 0.00 0.00

** Front Rotor Corner Seal Protrusion **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)			Post (inch)	Post (mm)
A) i	min		——— А)	0.0370	0.9398	anna ranna tuere repair establica	 А)	0.0340	0.8636
	0.0200		B)	0.0340	0.8636		B)	0.0290	0.7366
			\mathbb{C}	0.0340	0,8636		\mathbb{C}	0.0330	0.8382
		gear	A)	0.0350	0.8890	gear		0.0400	1.0160
		side	B)	0.0260	0.6604	side		0.0320	0.8128
			C)	0.0370	0.9398		C)	0.0300	0.7620
B) 1			Δ)	0.0450	1.1430		Α)	0.0300	0.7620
			B)	0.0490	1.2446		B)	0.0270	0.6858
			\mathbb{C}	0.0440	1.1176		\mathbb{C}	0.0300	0.7620
		gear	A	0.0400	1.0160	gear	Θ)	0.0370	0.93 9 8
		side	B)	0.0320	0.8128	5100	\mathbb{B}^{-1}	0.0450	1.1430
			(C)	0.0300	0.7620		(C)	0.0350	0.8890
C) 1			A)	0.0300	0.7620		A)	0.0300	0.7620
			B)	0.0270	0.4858		B)	0.0270	0.4858
			(C)	0.0300	0.7420		(C)	0.0300	0.7620
		gear	A)	0.0370	0.9398	gear		0.0370	0.9398 1.1430
		side	C) B)	0.0450 0.03 5 0	1.1430 0.8890	side	B)	0.0450 0.0350	0.8890
C) 2			Α)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			\mathbb{C}	> 0.020	> 0.020		\mathbb{C}	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side		> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
C> 3			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		\mathbb{C})	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear		> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side		> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
C) 4			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
 ,			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		\mathbb{C}	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side	B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
D) 1			A)	> 0.020	> 0.020		A)	0.0040	0.1524
			B)	> 0.020	> 0.020		B)	0.0080	0.2032
			\mathbb{C})	> 0.020	> 0.020		C)	0.0070	0.1778
		gear	A)	> 0.020	> 0.020	gear		> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side		> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020

ORIGINAL PROTEIN OF POOR QUALITY

** Front Rotor Corner Seal Protrusion **

Build Number	Standard (inch)		Pre (inch)	Pre (mm)		Fost (inch)	Post (mm)
D) 12.	min	A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
	0.0200	B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		(C)	> 0.020	> 0.020	C	> 0.020	> 0.020
	gear	A)	> 0.020	> 0.020	qear A)	> 0.020	> 0.020
	side	8)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		\mathbb{C})	> 0.020	> 0.020	C)	> 0.020	> 0.020
D) 3		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	0.020	\mathbb{C}	> 0.020	> 0,020
	g e ar	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	side	\mathbb{B})	> 0.020	> 0.020	side 8)	> 0.020	> 0.020
		(C)	> 0.020	> 0.020	(3)	0.020	0.020
) 4		Α)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	> 0.020	C)	> 0.020	> 0.020
	gear	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	side	E)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		\mathbb{C})	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020

** Front Rotor Corner Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Pre – Post (g)
A) 1	gear side	A) B) C) A) B) C)	NA " " "	NA "" ""	NA " " "
E) 1	gear side	A) B) C) A) B) C)	2.68 2.68 2.67 2.68 2.67 2.70	2.67 2.64 2.67 2.67 2.67 2.69	0.01 0.04 0.00 0.01 0.00 0.01
C) 1	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.64 2.67 2.67 2.67 2.69	0.00 0.00 0.00 0.00 0.00
C) 2	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.64 2.67 2.67 2.67 2.69	0.00 0.00 0.00 0.00 0.00
C) 3	gear side	A) B) C) A)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.68 2.69 2.69 2.68 2.67	0.00 -0.04 -0.01 -0.02 -0.01 0.02
C) 4	gear side	A) B) C) A) B) C)	2.67 2.68 2.68 2.69 2.68 2.67	2.64 2.66 2.68 2.67 2.67	0.03 0.02 0.00 0.02 0.01 0.00
D) 1	gear side	A) B) C) A) B) C)	NA " " "	2.64 2.67 2.69 2.69 2.66 2.67	H

** Front Rotor Corner Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Fre - Post (g)
D) 2		A)	2.64	2.65	0.00
		B)	2.67	2.67	0.00
		\mathbb{C})	2.69	2.70	0.00
	gear	A)	2.69	2.48	0.00
	side	B)	2.66	2.66	0.00
		\Box)	2.67	2.67	0.00
D) I		A)	2.48	2.68	0.00
		B)	2.66	2.66	0.00
		\mathbb{C}	2.67	2.67	0.00
	gear	A)	2.65	2.65	0.00
	side	B)	2.67	2.67	0.00
		\mathbb{C}	2.70	2.69	0.00
D) 4		A)	2.68	2.68	0.00
		B)	2.66	2.66	0.00
		C)	2.67	2.67	0.00
	gear	A)	2.65	2.65	0.00
	side	B)	2.67	2.67	0.00
		C)	2.69	2.69	0.00

Suild Number	Standard (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	• • • • • • • • • • • • • • • • • • • •	A) B) C) gear A) side B) C)	0.0370 0.0400 0.0350	1.0160 0.9398 1.0160 0.8890 1.0160 0.7620	A) B) C) gear A) side B) C)	0.0400 0.0320 0.0410 0.0460 0.0380	1.0160 0.8128 1.0414 1.1684 0.9652 1.1430
B) i		A) B) C) Jear A) Side B)	0.0570 0.0520 0.0550 0.0460 0.0380 0.0450	1.4478 1.3208 1.3970 1.1684 0.9652 1.1430	A) B) C) gear A) side B) C)	0.0500 0.0510 0.0520 0.0550 0.0510 0.0500	1.2700 1.2954 1.3208 1.3970 1.2954 1.2700
C) 1		A) B) C) Jear A) Side B) C)	0.0500 0.0510 0.0520 0.0550 0.0510 0.0500	1.2700 1.2954 1.3208 1.3970 1.2954 1.2700	A) B) C) gear A) side B) C)	0.0500 0.0510 0.0520 0.0550 0.0510 0.0500	1.2700 1.2954 1.3208 1.3970 1.2954 1.2700
C) 2		A) B) C) lear A) cide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
C) 3		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
C) 4		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020
D) 1		A) B) C) ear A) ide B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A) B) C) gear A) side B) C)	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020 > 0.020

** Rear Rotor Corner Seal Frotrusion **

Build Number	Standard (inch)		Pre (inch)	Pr∈ (mm)		Post (inch)	Fost (mm)
D) 2	(h.2.f)	A)	> 0.020	> 0.020	A)		
	0.0200	B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020
	gea	r A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	sid	e B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		(0)	> 0.020	> 0.020	C)	> 0.020	> 0.020
D) J		Α)	> 0.020	> 0.020	Α)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	> 0.020	C)	> 0.020	> 0.020
	qea	ir A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	sic	e B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C)	> 0.020	> 0.020
D) 4		Α)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	> 0.020	C)	> 0.020	> 0.020
	qea	r A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	Sic		> 0.020	> 0.020	side B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C)	> 0.020	> 0.020

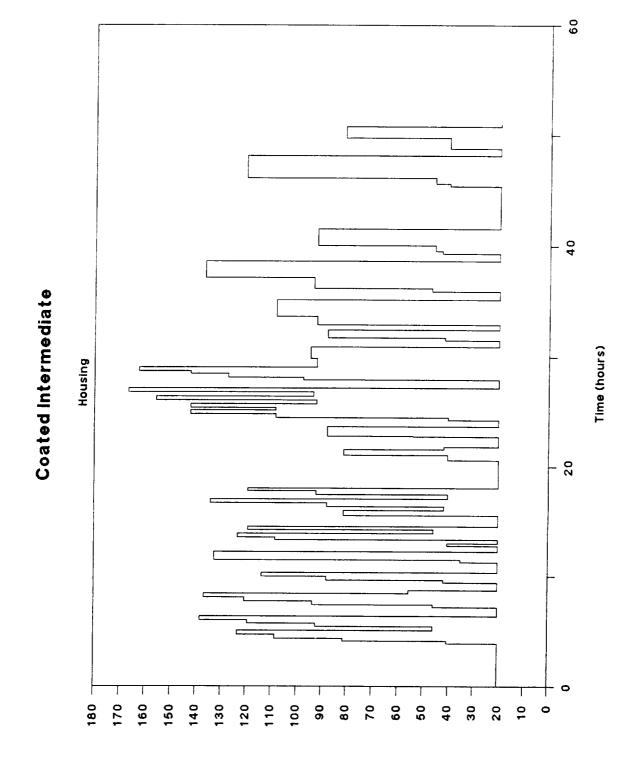
** Rear Rotor Corner Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Pre – Post (g)
A) 1		A) B) C)	NA "	NA "	NA "
	gear side	A) B) C)	11	# D D	11 11 11
B) 1	gear	A) B) C) A)	2.67 2.68 2.68 2.67	2.67 2.67 2.67 2.69	0.00 0.01 0.01 -0.02
	side	B) C)	2.70 2.68	2.69 2.67	0.01 0.01
C) 1	gear side	A) B) C) A) B)	2.67 2.67 2.67 2.69 2.69 2.67	2.67 2.67 2.67 2.69 2.69 2.67	0.00 0.00 0.00 0.00 0.00
C) 2	gear side	A) B) C) A) C)	2.67 2.67 2.67 2.69 2.69 2.67	2.67 2.67 2.67 2.69 2.69 2.67	0.00 0.00 0.00 0.00 0.00
C) 3	gear side	A) B) C) A) B) C)	2.67 2.67 2.67 2.69 2.69 2.67	2.67 2.66 2.67 2.69 2.69 2.67	0.00 0.01 0.00 0.00 0.00
C) 4	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.69 2.69 2.67	2.67 2.66 2.68 2.67 2.68 2.68	0.00 0.00 0.00 0.02 0.00 0.00
D) 1	gear side	A) B) C) A) B)	NA " " "	2.64 2.66 2.68 2.60 2.67 2.67	NA " " "

** Rear Rotor Corner Seal Weight **

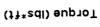
Build Number			Pre (g)	Post (g)	Difference Fre - Post (g)
D) 2	gear side	A) B) A) B)	2.64 2.66 2.68 2.60 2.67 2.67	2.64 2.66 2.68 2.67 2.67 2.67	0.00 0.00 0.00 -0.07 0.00 0.00
D) 3		A) B) C) A) B) C)	2.64 2.66 2.68 2.67 2.67 2.67	2.64 2.66 2.68 2.67 2.67 2.66	0.00 0.00 0.00 0.00 0.00
D) 4	gear side	A) B) C) A) B) C)	2.64 2.66 2.68 2.67 2.67 2.66	2.64 2.66 2.68 2.67 2.67 2.66	0.00 0.00 0.00 0.00 0.00

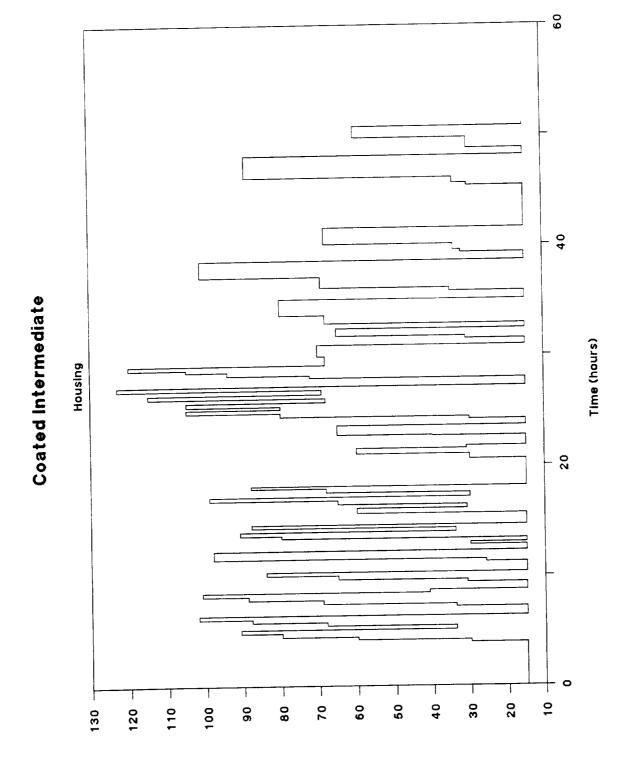
OPICITE FRANKIS OF POOR QUITETY


1		

APPENDIX F COATED INTERMEDIATE HOUSING DATA

COATED INTERMEDIATE HOUSING DATA


TABLE OF CONTENTS


Page	<u>F</u>															<u>Le</u>	<u>it</u>	Ti					
F-3	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•			Chart.	Intermediate	Coated
F-4	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	Chart.	Intermediate	Coated
F-5	•	•	•	•		•	•	•	•					•	•		•	•			Chart.	Intermediate	Coated
F-6			•		•	•	•	•						•		•		ta	Dat	g	Housin	Intermediate	Coated
F-7	•		•		•	•	•	•	•					•	•	•	•	ta	Dat	g	Housin	Intermediate	Coated
F-8	•		•			•	•	•	•				•	•		•	•	ta	Dat	g	Housin	Intermediate	Coated
F-9	_															_		ta	Dai	a	Housin	Intermediate	Coated

F-3

Torque (N*m)

11 COATED INTERMEDIATE HOUSING 11

Tarque Tarque BHP BHEP BMEP

Point Date RPM

82 179 81 178 82 180 82 180 82 179 83 182 81 178 81 178 81 178 81 178 81 178 82 179 83 181 83 181	92 179 180 180 181 180 180 180 180 180 180 180	83 181 82 180 83 181 82 180 84 183 84 183
1273 1461 1451 1451 1429 1226 1236 1314 1314 1313 1302 1302 1119 1302 1119 1302 1119 1302 1119 1302 1119 1302 1119 1302 1119 1302 1303 1303 1303 1303 1303 1303 1303	1315 1432 1432 1425 1164 1314 1328 1316 1316 1316 1316 1317 1347	1410 1520 1520 1273 1460 1478 1462
549 778 778 777 772 772 772 772 772 772 772	713 778 807 774 629 712 757 757 758 758 758 758 758 758 758 758	766 805 827 818 701 793 755 755 751
112 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	######################################
2222882772777788888	253 16 25 24 24 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
29.77 29.77 29.55 29.55 29.55 29.54 29.73 29.73 29.73 29.73 29.73 29.73 29.73 29.73 29.73		29.77
	29.83 29.83 29.83 29.72 29.83 29.72 29.83 20.83	
2,0001 2,0001 2,0001 2,0001 2,0001 3,	7.001 100.7 100.7 4.99 4.99 4.99 9.3 99.3 99.8 99.8 99.8 99.8	100.5 100.5 100.1 100.1 100.1 4.99
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4
444 444 444 444 444 444 444 444 444 44	11251111111111111111111111111111111111	255 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
######################################	224000034400000	18 20 20 17 11 18 18 18
90 90 90 90 90 90 90 90 90 90 90 90 90 9	103 99 97 97 103 103 103 103 103 103 103 7	124 138 138 117 117 124 124 124 124
000000000000000000	00000000000000000	00000000
	••••••	000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.2 111.9 111.9 2.1 2.1 2.1 2.1 3.7 3.7 3.7 3.7 3.7	4 0 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
2, 124 2, 141 2, 141 2, 143 2, 143 2, 143 2, 143 2, 144 2,	223 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	25.23.23.23.23.23.23.23.23.23.23.23.23.23.
	9 1.617 9 2.538 9 2.538 0 2.961 1 0.523 1 0.523 1 0.693 9 0.995 9 0.976 9 0.976	7 1.170 2.538 7 4.653 7 7.757 7 7.757 8 7.757 8 7.757 8 7.757 8 7.757 8 7.757 8 7.757
2.7. + 0.4. 0.4. 0.4. 0.4. 0.4. 0.4. 0.4. 0	4 4 4 8 8 9 4 8 8 8 9 9 9 9 9 9 9 9 9 9	以 4 m 単 N 0 c vi @ レ ai ai レ ai zi zi zi zi zi
22.12.2 15.2.2 15.2.2 16.17.2	25.25 25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	44.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
1.033 0.544 0.654 0.653 0.653 0.609 0.738 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759	0.980 0.642 0.653 0.620 0.980 0.980 0.575 1.012 1.012 1.012 1.012 0.542 0.552 0.552	0.577 0.635 0.586 0.586 0.879 0.566 0.635 0.586
449 449 385 370 370 370 370 370 370 370 370 449 449 449 449 449 449 449 449 579 579 579 579 579 579 579 579 579 57	596 391 391 377 377 596 391 596 596 596 597 391 391 316 318 318	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25.3 30.4 32.9 32.9 32.9 33.9 33.9 35.3 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	20.2 27.8 40.5 40.5 40.5 20.2 20.2 20.2 20.2 20.2 20.2 20.2 2	22 28 28 28 28 28 28 28 28 28 28 28 28 2
8033 11476 13771 14919 12623 12623 12623 12623 16066 5738 5738 5738 9181 9181 5738	9181 12623 16066 18361 9181 71214 7181 9181 12623 9181 13771 13771 12623 72623	11476 14919 17214 20657 10328 17214 14919 17214 15771
	_	
ज्य का का का का का का		311 B 4 11 11 1
23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	29 29 29 29 29 29 29 29 29 29 29 29 29 2	32.0 64.1 32.0 32.0 82.3 64.1
195 520 520 520 520 520 520 682 195 195 195 195 330 330 330 330	201 422 546 637 201 422 422 422 422 422 422 422 422 422 520 520 520 520 520	221 572 572 572 573 573 574 573
17.1 52.0	20.7 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	25.9 51.8 57.0 25.9 57.0 57.0 57.0
25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6	4 2 2 2 4 4 2 2 2 4 4 2 2 2 2 2 2 2 2 2	# # # # # # # # # # # # # # # # # # #
30.0 80.0 91.0 91.0 91.0 90.0 90.0 27.0	31.0 65.0 84.0 98.0 31.0 31.0 65.0 30.0 30.0 105.0 79.0	34.0 68.0 88.0 102.0 34.0 88.0 68.0 68.0
40.7 811.4 1108.5 1123.4 1123.4 1123.4 1123.4 140.7 40.7 40.7 40.7 40.7 40.7 40.7	42.0 88.1 113.9 132.9 42.0 88.1 40.7 40.7 40.7 162.4 162.4 162.4 106.5	46.1 92.2 119.3 158.3 46.1 119.3 92.2 92.2
1000 1000 1000 1000 1000 1000 1000 100	13200 13200 13200 13200 13200 13200 13200	000000000000000000000000000000000000000
99/23 99/25 99/25 99/25 10/01 10/00 10/20	09/28 09/28 09/30 10/02 10/02 10/02 10/02 10/02 10/07 10/07 10/07	09/25 09/25 09/25 09/25 10/01 10/02 10/02 10/02
22 27 27 27 27 27 27 27 27 27 27 27 27 2	28 24 44 44 44 44 44 44 44 44 44 44 44 44	65 12 43 33 83 85 85 85 85 85 85 85 85 85 85 85 85 85

ORIGINAL PAGE IS OF POOR QUALITY

Air	Ē	8	딿	98	æ	8	≥ 8	2 2	2	8	æ	2 5	= =	? =	72	7	%	7	5	8	2	8	æ	8	3	æ :	3 5	: 8	3 =	2	2	S 5	2 2	13	68	35	45	#	8 8	2 2	2 %
Air	ĵ	23	8	8	88	= :	3 5	3 6	8	8	\$3	= =	3 2	: 23	22	Ħ	7	%	7	F	2	F	88	82	82	23	2 12	3 5	: 13	*	2	= £	8 8	28	S	H	Ħ	53	2 23	3 %	5 65
-	E Œ	213	231	240	544	35	2 2	2 5	260	218	218	33	31	218	220	220	238	238	220	239	249	227	219	241	227	219	77 27	? ;	ន	222	22	5 25	22 2	227	243	22	192	222	62.5	P (*	i ii
1	3 9	ē	Ξ	116	e :	= :	2 2	12	127	20.	20	2 5	::2	: E	50	20	=	Ξ	2	2	121	123	5	116	123	3 :	2 :	1 2	8	123	2	2 5	2 2								3 2
e i	(F)	181	193	141	6	2 5	5 5	2 2	ž	88	8	8 5	7 7	6	161	161	14	182	26	5	8	203	130	196	202	2 5	741	2 0	=	202	2 2	8 8	3 8								202
表 E	20	28	8	2	2	Z 6	2 8	:	8	8	8	6 6	2	: 6	8	88	2	2	8	=	2	£	8	7	7	8 8	3 3	: :	23	7	S	2 5	2 22								
Rotor	<u>.</u>	212	822	238	242	240	3 5	32	22	216	212	55 E	32	21.	219	218	23	23	217	23	244	724	217	239	2	217	, p	240	219	249	58	£ 7	247	223	238	246	228	222	5	3 5	3 8
Front	9	8	109	=	Ξ	9 :	: :	=	126	102	102	<u> </u>	: =	3	5	101	Ξ	Ξ	. 201	112	811	123	101	===	124	<u> </u>	<u> </u>	3 5	. <u>.</u>	121	2	2 2	=								3 5
-	Ē	161	861	203	202	202	3 5	202	212	192	192	2 2	6	12	195	161	202	202	194	201	202	210	193	203	503	<u>*</u>	2 2	200	25	208	218	2 2	206	107	203	207	213	961	7 7	2 6	200
	<u> </u>	=	45	ß	8	* 8	2	: 2	8	8	8	2 3	: 2	8	16	8	*	7	2	3	8	6	&	ኔ	8	۶ :	= 4	2 %	=	8	<u> </u>	÷ 6	. 6	42	2	41	<u>.</u>	5	s a	2 8	2 80
9	E G	122	278	288	784	232	3 2	Š	328	2	228	ξ ξ	283	257	292	263	23	291	229	282	ខ្ល	319	22	230	324	ž :	i i	267	22	33	Ξ:	3 5	202	263	283	297	31	599	B 5	9 5	334
9	9	121	137	7	≇ !	€ 5	3 2	2	191	125	126	2 2	=	22	128	128	₹	Ξ	126	Ξ	149	159	123	Ξ	162	2	971	2 2	2	12	E :	<u> </u>	25	128	139	147	155	2	5		2 2
using	E Œ	5	166	203	204	36	9 6	207	212	193	193	<u> </u>	66	2	136	136	302	202	196	201	204	802	961	202	500	96:	2 2	200	2	208	23	£ \$	200	661	203	202	209	198	3 5	3 6	8 8
를 다. 문	9	\$	2	ዩ	96	£ :	2 5	2 6	8	8	8	3 3	: 2	2	41	7	7	*	41	\$	%	8	16	*	8	= 8	2 3	2	2	8	3 5	2 2	6	23	£	96	82	26	6 8	2 8	8
ed is	<u>.</u>	2	242	292	268	9 5 E	3 7	27.	293	741	242	242	797	741	247	247	270	5 98	243	268	282	234	242	273	232	*	5 5	12	243	283	2 2	9 8	88	241	292	275	288	220	292	20 60	278
Inter	ê	112	81	28	5 :	3 5	22	: <u>2</u> 2	¥	?	= :	2 2	123	=	119	119	2	Ξ	117	2	139	<u>‡</u>	821	3	2	B :	1	2	Ξ	139	2	2 2	2	911	129	135	142	2	₹ 8	2 2	3 3
=	E	13,6	198	33	2 2	2 5	2	208	214	56	23	E 8	6	193	136	196	3	202	961	202	30 8	210	197	204	511	2 2	20.2	8	65	210	2 2	3 2	708	200	202	209	33	66	212	3 =	3 3
	9	5	45	ፎ	2 3	7 6	. 2	82	<u>=</u>	8	6	B #	2	8	2	2.5	2	*	5	\$	4	\$	2	%	\$ 3	26	: 5	: 6	S	66	<u> </u>	2 5	6	23	%	8	≅	33	<u>s</u>	2 8	: \$:
2	Ē	218	227	741	246	7 6	18	249	266	220	2 2	2 2	238	220	224	224	744	541	121	238	23	791	222	243	794		3 %	£	23	256	278	252	72	224	243	227	269	335	797	3 2	13
¥	3 <u>6</u>	5	8	=======================================	= :	2 5	: =	121	130	<u>\$</u>	2 :	2 =	Ξ	5	107	20	82	?:	105	Ħ	122	127	90	=	153	2 2	2 =	=	106	124	2 3	22	122	107	117	55	133	2 5	B 5	2	2
Sing.		5	188	506	503	3 5	202	503	218	161	6	502	202	19	197	197	708	\$ \$	197	3	7	217	13	202	518	14	207	802	B6.	212	22	9 6	203	200	308	216	221	199	216	212	12
7. Hou		16	2	41	# 3	\$ 8	7	8	103	8	8 8	2 2	7	8	42	22	7	8	45	8	\$	50	45	%	22	2 6	: 6	. 82	2	80	20 8	2 2	8	2	문	102	105	2	2 8	102	8
r Roto		21.7	228	23	74	7 7	1 17	249	265	22	5 5		23.7	220	223	223	717	₹	223	239	22	282	222	242	75.	3 8	32	246	224	227	200	5 5	32	225	245	258	593	13	7	265	255
. Re 2.	9	103	B01	=======================================	= :	3 2	1 2	12	129	3	₫ :	≛	Ξ	<u>=</u>	20	2 :	≘	91	903	===	12	128	90	=	23	8 3	=	=	6	23	2 5	2 2	122	107	8	126	132	8 5	2 5	2	2
2	: Œ											20 2							195	201	88	213	195	203	213	5 5	20	202	196	210	22 52) B	208	138	202	212	21,7	四:	707	212	210
ءا. ۔	9											5 E							41	\$	8	≘	₹	£.	፭ ፡	≓ \$: 2	%	=	6	E :	. g	8	42	8	2	2	24	<u> </u>	8	\$
0 i i	Ē	i										2 6							9	77	\$2	28	=	≅ :	S :	= =	2	2	=	121	7 2	5 75	23	91	7	82	32	7 5	7, 6	33	22
Delta Oil Ten	9	1	=	2 :	= :	2 =	: =	Ξ	2	_	~ •	`=	=	1	-	` :	= :	=	•	12	Ξ	2	^	2 :	<u>`</u> `		`=	=	7	Ξ:	= =	2 22	2	•	=	91	=	٠ <u>-</u>	2 !!	2	=
3 5	Ē	823	232	53	2 6	3 5	12	7	245	82		9 2	23	223	822	8 8	3 :	8	523	23	242	346	2	2	ŧ :	5 5	82	239	82	25	÷ 5	₹	240	122	23	242	2	3:	₹ ₹	244	239
7 a	3	109	Ξ	=======================================	2 :	3 3	: ::	2	===	<u>\$</u>	<u> </u>	<u> </u>	Ξ	90	6	= :	3 :	=	109	Ξ	=	=	5	= :	= 3	E E	: =	==	<u>6</u>	= :	3 3	: ≅	116	Ξ	≛	=	6 :	2 :	= =	82	115
3 5	9	215	5	216	†	218	216	216	216	512	216	\$ \$	216	717	216	238	3 :	213	213	216	218	318	212	23	1	2 5	218	219	212	25	3 6	3	217	215	213	7.5	313	219	217	215	214
116	9	102	<u> </u>	20	≣ 9	20	20	102	102	102	2 5	<u> </u>	102	<u>=</u>	20	2 5	≧ :	102	<u>=</u>	20	102	2	102	2 :	= §	20	2	3	102	2 5	3 2	50	103	102	≅	<u> </u>	201	2 3	5 2	102	101
Cool	E	183	33	8	€ 5	3 2	18	186	187	E	28 5	<u> </u>	183	182	E	Ē	2 5	8	183	ž	ě	昱	3	2	ž	3 2	₫	283	= :	2 9	6 2	186	186	184	Ě	£ :	£ ;	3 5	i a	8	187
C 20												3 2					-	-	8	3	ä	8	3 :	.	5 8	i a	ž	2	3 :	2 5	.	2	2	a	5	۳ :	2 :	\$ 6	8 2	8	98
oint		23	28	77	77	: 0	\$	85	ŝ	3 3	*	₹ ₹	25	93	\$	2 :	3 5	20	33	8	es :	\$? !	\$ 5	₽ 9	22	R	3	1 3	3 2	3 2	2	11	53	2	= :	7	2 3	: 8	22	9

COATED INTERNEDALTED HOUSING

Delta Delta
031 031 1 : Re
04t Feep Teap 62 82 83
(F) (C) (F) (C) (F) (C

11 COATED INTERMEDIATE HOUSING 11

Torque Torque BHP (NIm) (1bf8ft) (kW)

Point Date RPM

<u>.</u>	9	2	=	_	-	0	_	<u> </u>	7	<u>,.</u> ,		,		רן	2		6	2	m	m	_	~		m	_	_	_
	82 180											5		84 183												84 184	
1446	1423	1451	1402	1399	1422	1324	1419	1508	1510	1509	1508	9075	1492	1540	1501	1443	1472	1380	1460	1504	1500	1201		1473	1503	1490	1464
987 89	50 773	50 772										740		77 838												64 810	
8	2	2	2	2	=	_	1	2	=	8	1	•	· •	23	₹	21	91	*7	=	z	13	23		2	<u>-</u>	<u>~</u>	=
42	3	8	2	32	ន	23	23	23	53	۶.	53	\$	2	2	22	=	=	53	23	8	\$	23		3	*	ž	*
29.54	29.62	29.68	29.68	29.69	29.90	29.70	29.70	29.93	29.93	29.93	29.93	79 78	29.78	29.78	29.78	29.62	29.62	29.81	18.62	29.81	29.81	29.81		29.62	24.62	29.62	29.62
99.8	0.0	100.2	100.2	00.3	0.10	99.3	00.3	01.1	01.1	9	01.1	9	9.00	9.001	9.00	0.0	99.0	00.7	00.7	89.7	7.00	7.00		0.0	8 9	00.0	0.0
62	3	3	3	75	3	3	3	29	79	2	79			29						-	-			_		- *9	-
437	#	‡	₹	Ξ	₹	₹	Ŧ	124	437	+ 27	427	\$5	427	123	=	∓	457	∓	Ŧ	4 27	124	457		₹	₹	∓	1 34
23	2	2	2	9	2	=	e	œ	8	9	œ	7	23	22	23	22	23	≂	7	2	8	2		23	N	23	=
101	91	2	9	91	110	124	124	124	124	124	124	5	152	152	129	103	101	£	145	138	B2 1	138		139	128	152	145
•	0	•	0	•	0	•	•	•	0	•	•	9	۰	0	•	•	0	•	•	0	•	0		0	0	0	•
0	0	0	0	0	٥	•	0	•	•	•	•	0	0	0	0	0	0	0	0	0	•	•		•	0	•	•
17.5	7.4	7.3	7.1	7.4	7.1	2.4	6.5	11.2	10.5	10.3	0.01	1.7	6	17.2	20.5	4.7	28.6	2.5	7.4	18.2	18.2	18.2		8.8	17.3	22.7	32.1
335	1.841	.B.	787	84 1	797	.597	.617	787	613	563	88	621	79	4.280	5	22	113	622		529	529	223		190	305	5.649	988
	5.5					_								4.7										• •	_	3.0	-
	28.8													15.9												10.2 3	
	0.586																		•								
						_		_	_	_	_			3 0.597										_	_	0.90	_
ĸ	357	Ħ	2	25	23	23	S	ភ	Ř	33	Ħ	25	65	363	37	36	ğ	25	36.	25	33	35.		38.	35	369	37
50.6	30.4	30.4	32.9	32.9	30.4	22.8	7.05	35.4	35.4	35.4	35.4	25.3	38.0	45.5	53.1	35.4	65.B	25.3	33.4	20.6	50.6	20.9	!	43.0	53.	60.7	70.8
22952	13771	13771	14919	14919	13771	10328	13771	16066	16066	16066	16066	11476	17214	20657	24049	16066	29837	11476	16066	22952	22952	22952		19509	24099	27542	32132
8	12	13	2	<u>=</u>	12	с -	21	±	=	=	=	9	2	81	21	Ξ	28	2	=	2	20	2	!	=	≂	*	58
108.4	64.1	64.1	99	99.0	64.1	32.0	P4	83.9	83.9	82.9	83.9	32.0	65.0	83.9	95.2	65.0	115.9	33.0	65.0	95.2	1.96	96.1	!	6.79	98.9	0.66	113.1
141	445	445	£	55	442	221	445	2 28	278	212	278	221	##	578	929	\$	79	22	448	929	563	299	1	89	=	789	28
87.6	SI.8	51.8	H.,	2	S: 8	22.9	51.8	8.79	8.79	67.0	67.8	29.1	39.1	78.3	8.5	26.	5.4	9.0	23.1	8.5	37.4	17.4	•		٠: چ	0.00	4.2
	38.6													56.9												74.5 10	
	68.0 3								-													102.0 6					
_																						_				105.0	
155.9	92.2	42.2	94.9	94.9	92.2	£6.1	12.2	120.7	120.7	119.3	120.7	46.1	93.6	120.7	137.0	93.6	166.8	47.5	93.6	137.0	138.3	138.3		۸٠/٠	127.5	142.4	162.7
10/01	0004 /0/01 89	10/01	10/07	10/01	10/13	10/13	10/13	10/51	10/21	10/3	10/51	33 09/25 4500	09/25	35 09/25 4500	09/25	10/01	10/01	10/16	10/16	10/16	10/18	10/18		/0/01	10/01	99 10/01 2000	10/01

		<u>.</u>	9 2	ŝ
		1	<u>\$</u>	Ē
			<u>\$</u>	ô
		using	₽	Œ
# 9		웊	æ	ê
ET STO		med 14	4	Œ
11 COATED INTERNEDAITED HOUSING 11		Intermediate Housing_	4	9
EDAI			9#	Œ
MER			9	ê
			2	Ē
8			22	<u> G</u>
-		100	=	Ē
		Hous	±	9
		Rotor		Œ
		Rear	=	Ģ
			=	Œ
			2	ê
	Delta Delta	===	It Temp Temp 12 82 83 85 84 84 85 85 86 86 87 87 88 88 89 89 810	Ē
	lta D	o -	-	.
	2	5	<u>تة</u> س	=
		:=	=	

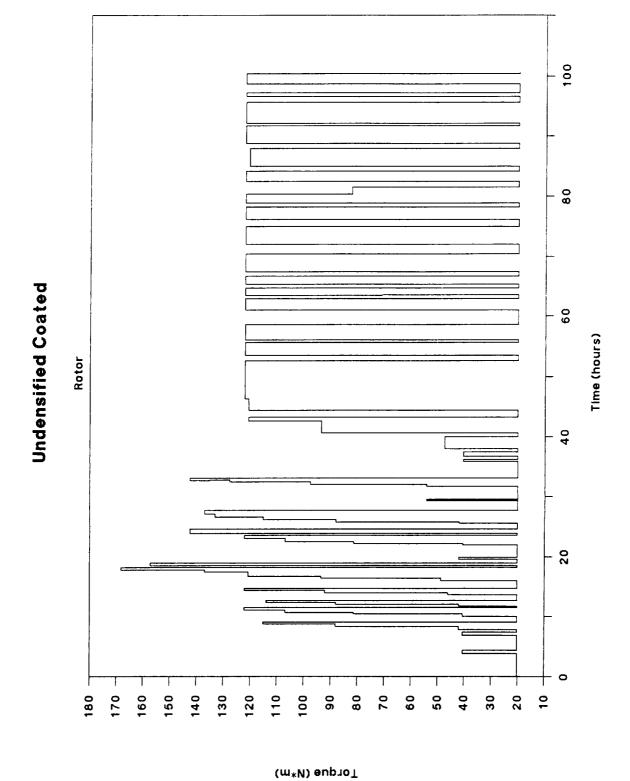
Front Rotor Housing : Air Air 011 011 012 012 013 013 Temp Temp (C) (F) (C) (F) (C) (F) (F)

記載品 3 E E 3 = 6 3 2 0 £ 60

Point Cool C Out O (C) (

	8	8	83	85	2	8	7	民	æ	8	8	2	3	2	Z	%	ጜ	8	8	2	æ	8	8	æ	ě	3	æ	æ	98
	8	27	78	罖	23	5	23	38	23	ន	∺	82	۳	3	23	25	ĸ	Ħ	×	82	23	ន	5	53	ç	9	53	۶,	ន
	241	249	249	220	ž	724	228	ន្ត	292	264	263	263	12.	3	222	263	274	226	307	33	92	280	281	282	ž	3	279	230	305
	Ξ	121	121	121	121	123	90	123	129	129	128	128	Ξ	:	221	128	ž	124	151	112	127	28	138	651	2	9	2	Ξ	152
1	222	8	8	5	8	203	192	≅	207	202	202	203	Š	2	23	9 02	210	\$	228	136	208	212	213	214	Š	9	212	213	222
1	901	2	23	\$	Ľ	ፚ	25	\$	41	8	8	2	5	:	ž	41	\$	8	8	5	41	8	<u>=</u>	<u>=</u>	5	=	ន្ទ	50	901
	290	245	245	247	247	22	225	249	263	261	280	280	ţ	077	248	228	3 98	224	307	232	227	279	280	781	Š	9	223	388	Š
١	3	==	==	==	113	122	107	2	128	127	121	127	9	2	29	128	Ξ	123	153	Ξ	22	5	B21	138	3	77	28	142	2
l	232	207	206	207	8	210	197	508	215	214	213	212	Ş	3	510	214	219	212	239	202	214	223	224	225	į	C17	223	228	236
	Ξ	47	41	41	뜻	\$	72	8	102	≘	3	2	5	2	\$	≘	₫	8	::2	*	=	90	10	107	9	2	200	601	==
l	361	303	302	303	303	318	274	312	ä	325	322	321	776	107	294	316	326	319	367	286	327	348	¥	342	,	227	Š	363	372
	183	15	8	2	2	159	ž	32	9 9	163	161	161	2	2	\$	85	163	129	186	Ξ	191	176	2	172		3	13	Ħ	189
	228	202	202	202	202	8 8	196	20	210	203	202	206		-					23							117	216	221	222
	109	8	8	%	96	뜻	ᅎ	%	44	8	43	47												503		-	102	505	801
	33,	274	274	275	275	280	222	278	296	297	242	292	776	9	274	291	88	242	363	528	283	315	316	317	Ę	7.7	Ē	326	356
١	171	=	Ħ	55	55	138	122	137	147	7	Ξ	Ξ	2	-	=	Ξ	\$	Ξ	Ē	126	Ξ	157	158	158	:	:	5	191	89
l				308									5	707	5 5 7	214	217	214	244	202	211	219	219	220	;	;	22	229	241
	112	43	47	47	43	85	42	8	66	\$	æ	86												9	5	Ē	2	60	116
	302	220	220	251	253	255	231	222	270	270	268	268	2,0	077	25	267	278	263	325	238	264	284	231	292	ć	7	73	303	320
١				122															163						-	7	Ξ	2	160
İ				503															248									237	
l	115	82	8	86	\$	<u>=</u>	5	6	103	103	102	102	3		20	901	10	103	120	8	5	9	109	==	Š	3	Ξ	≟	==
	302	251	ĸ	25	22	226	Ħ	22	270	598	299	398		•		•	• •		322							•		ĕ	
	52	122	122	12	123	134	Ξ	123	132	132	23	13							191									5	
				208										-					345									23	
						-			-	-	-	≘							=									=======================================	
Ì				74															2									£	
	12	=	=	==	=	==	_	=	=	=	=	?	2	=	=	=	=	==	7	=	~	==	7	20	-	=	==	æ	≈
												243												233	-	-		82	
	125	31	116	===	116	Ξ	Ξ	=======================================	119	==	=	Ξ	Ξ	7	2	£	121	116	128	=======================================	=	122	123	123	-	-	12	128	133
	218	217	217	215	217	219	215	215	218	216	215	214		7	215	215	216	214	217	216	217	217	218	217	;	;	218	219	219
													5																
	195	18	18	<u>8</u>	8	187	183	28	186	186	18	*	ě	í	186	186	88	186	192	1 81	28	189	187	88	ě	8	187	187	187
													ĕ																
i	3	3	9	2	Ζ	7	*	8	5	8	6	8	2	3	*	ĸ	25	7	7	29	2	표	2	8	•	5	ş	9	79

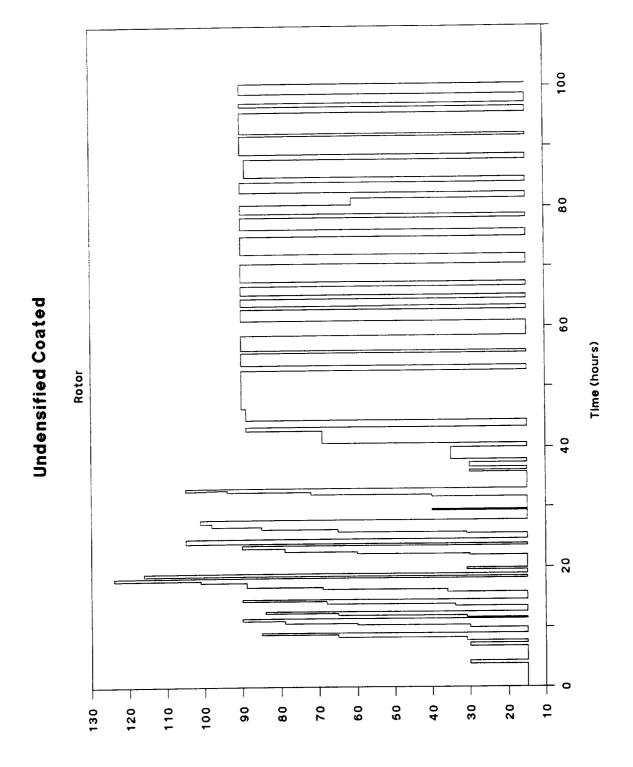
1		

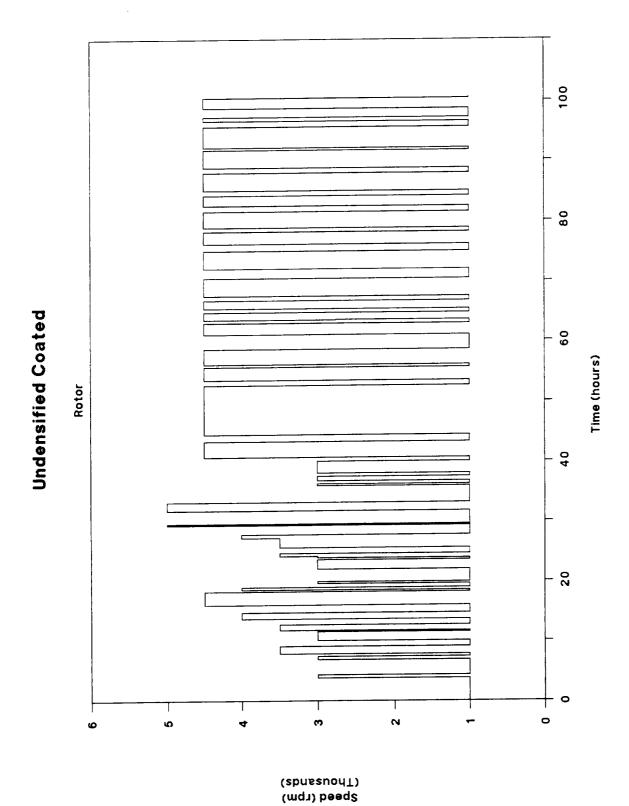

APPENDIX G - I UNDENSIFIED COATED ROTOR DATA

UNDENSIFIED COATED ROTOR DATA

TABLE OF CONTENTS

	<u>Title</u>															<u>Page</u>					
Undensified	Coated	Chart.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-3
Undensified	Coated	Chart.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-4
Undensified	Coated	Chart.		•	•	•	•					•	•	•	•	•	•	•	•	•	G-I-5
Undensified	Coated	Rotor	Data	•		•		•				•	•		•	•		•	•	•	G-I-6
Undensified	Coated	Rotor	Data		•					•	•	•	•	•	•	•	•	•	•	•	G-I-7
Undensified	Coated	Rotor	Data	. •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-8
Undensified	Coated	Rotor	Data	٠.		•	•	•	•	•		•	•	•	•	•	•	•	•	•	G-I-9
Undensified	Coated	Rotor	Data	٠.	•	•	•	•		•		•	•	•	•	•	•	•	•	•	G-I-10
Undensified	Coated	Rotor	Data	١.		•	•	•					•	•		•	•	•	•	•	G-I-11




G-I-3

Torque (lbs*ft)

Air	E E	8 C 2 C 2 C 2 C C C C C C C C C C C C C	22225	9 12 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	102 101	26 101 107 112	ですたい	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Air	<u>.</u> 9	2222222	232422	888 333	8 22 22 23	2 R C #	2223	8 2 8 2 2 8 2 3
1	<u> </u>	250 248 254 254 254 254 254 254	255 246 255 255 261 261	232 252 264 269 269 283	236 258 271 280 298	245 263 275 286	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	251 250 250 250 260 260
	2 9	22222	107 119 124 127 130	122 22 23 24 24 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	113 126 133 138	118 128 135	107	22
Sing	E E	195 197 201 203 207	200 200 200 200 210	197 203 209 210 210	199 207 213 216 224	200 208 211 211	191 192 192 193	202 204 206 206 208 208
_	£ 9	282822	8 2 2 3 8 2	25 88 99 103	93 101 102 107	93 94 102	8 2 2 2	95 94 97 97 97
r Agti		88388 35	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	250 251 264 272 272 288	257 257 257 257 257 257 257 257 257 257	241 262 276 276 288	ន្ទន្ទន	247 247 248 258 258 257 257 258
ш,	⊋ 9	23 22 22 25 25 25 25 25 25 25 25 25 25 25	124	= E E E E E E E E E E	125 125 135 135 135 135 135 135 135 135 135 13	118 128 155 142	8 8 8	124 119 124 125 125 125 125 125 125 125 125 125 125
	≘ €	201 203 204 208 208 210 210	202 203 211 212 213 213 213 213 213 213 213 21	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 22 23 23 23 23 23 23 23 23 23 23 23 2	206 216 221 228	25 25 25 25 25	210 209 209 210 213 213 213
	2 9	25 25 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	97 97 99 102 103	99 102 104 108	\$ 100 EST	97 102 105 109	2222	99 98 99 101 101 101
:	⊈ Û.	244 274 273 284 274 274 274 274 274 274 274 274 274 27	285 282 301 307 308	259 293 309 316 316 325	266 303 321 329 338	326 311 326 334 334	ន្តិន្តិនិ	291 289 291 291 304 304 306 306
_];	£ 9	121 134 153 145 145 151	25 25 25 25 25 25 25 25 25 25 25 25 25 25 25	126 145 154 158 158 163	151 151 150 170 170 170 170 170 170 170 170 170 17	138 155 163 168	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################
บบราเ	œ €	202 208 210 215 215 221 221	252 223 221 221 221 222 223	208 217 223 224 234 231	212 228 231 241	222 222 233 233 233 233 233 233 233 233	200 200 200 200	211 210 213 213 213
T se se	2 0	98 99 101 102 103	25 101 103 104 108	98 103 106 107 111	104	100 100 112	93 93 93	99 99 101 101 101 101
The Ti	E Œ	255 27 260 27 27 280 27 283	249 270 271 285 295 300	249 271 290 304 321	258 285 300 319 319	267 293 312 330	247 249 249 250	278 278 278 277 295 297 293
Inter	<u>-</u> 9	124 127 127 134 134 134 134	121 132 134 145 145 145 145 145 145 145 145 145 14	121 151 151 151 151	126 141 149 159 171	131 145 156 166	2 2 2 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4	135 137 137 146 146 147
CUAIR	2 €	200 202 204 208 208 2111 215	202 208 208 208 214 215	206 213 217 218 218 222	222 222 235 235 235 235 235 235 235 235	213 221 224 230	200 200 200 200	210 210 214 214 214
	2 Û	93 94 98 98 99	94 98 98 101 102 103	97 101 103 103 104	98 103 104 107 111	101 105 107 110	2222	99 99 101 101 101
DENS.	tt (f	234 234 249 251 251 266	226 244 247 257 258 272	231 252 266 275 275 275 291	238 263 276 290 312	244 271 286 302	ងគណៈ	253 253 253 258 258 258 258 258
5	2 €	106 112 114 122 123 136	108 119 125 131 131	# 132 22 E	138 138 143 158	133	106 107 107	2323352
- Bur	# E	204 204 210 210 2115 2215	201 204 215 215 215 215	22 22 23 23 23 23 23 23 23 23 23 23 23 2	207 228 234 247	250 250 250 250 250	197 198 198 198	220 222 222 232 232 232 232 232 232 232
žing.	z 9	92 99 99 102 103	94 99 102 106 107	95 101 105 108 108 113	94 104 112 113	99 107 116 116	92 92 92	000000000000000000000000000000000000000
Rotor	₽ Œ	221 234 238 248 252 253 255 255	25 24 2 25 25 25 25 25 25 25 25 25 25 25 25 25	231 286 275 275 289	257 262 276 276 287 309	24 271 286 302	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	252 252 257 267 268 267 267
Rear	5 9	124 129 124 124 124 124 124 124 124 124 124 124	108 119 124 131 131	128882	123 24 153 154 155 155 155 155 155 155 155 155 155	E 23 ± 82	107	2222255
Į:	₩ E	196 201 207 211 211 211 211	205 207 207 211 211 217	200 200 200 200 200 200 200 200 200 200	22222	220 222 234 235 234	195 196 196 196	210 208 210 209 216 216 216
	20	93 94 95 95 95	22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	93 102 104 104	96 102 108 108	97 104 107 112	9 2 2 4 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6	99 98 99 102 102 102
Di I	<u>.</u>	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 22 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	22825	2282	2222	ននន្តន្តន្តន
Delta Oil	<u>.</u>	7 0 11 12 11 11 11	, , = = = = =	82111	2.75	====	~ ~ ~ ~	
011	e E	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	242 244 244 244 244 244 244 244 244 244	250 242 244 244 244 244 244	233 240 247 247 254	238 243 243 249	227 228 228 228	**********
011	ğ Ç	122 112 113 114 115 115 115 115 115 115 115 115 115	109 112 113 113 117	110 117 118 118 120	112 116 118 119	112 113 121 121	801 104 104	* * * * * * * * * * * * * * * * * * *
011	≖ €	214 215 219 216 216 217	216 214 219 219 219	215 217 217 218 218 218	216 215 217 216 217	217 217 213 215	214 215 216 216	22.4
01.1	= 0	101 102 104 102 103	104 104	102 103 103 103	102 102 103 103	103 103 102	102	102
	a G	187 185 185 185 185	185 185 186 186 187	185 186 187 187 187	186 188 188 188	187 186 184 187	182 183 183	8 8 9 8 8 8 8 8
Cool	3 9		888888	3 3 3 3 3	32 66 66	% & & & &	2 4 2 2	88288288
Point		103 121 122 104 105 124	126 127 108 128 129 125	110 1112 130 130	113 114 115 116 117	5555	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	142 142 145 145 145 145 145 145 145 145 145 145

11 UNDENSIFIED COATED ROTOR 11

S = (*)

180 180 181 181 181 182 182 183 183 184 183

[8] E (1) E 6 (2) 1230 1415 1415 1415 1443 1449 1504 1477 1477 1530 1530 1510 1515 1558 1558 1558 1570 1571 1570 1570 1570 1570 1570 # **9** 0 £ ∰ € \$25.00 \$2 Huand In Temp T 3 3 3 3 3 3 3 2 2 2 2 Baro H pres (in-hg) 29.59 29.69 29.59 29.52 29.52 29.24 29.24 29.24 29.24 29.24 8 8 8 8 8 8 8 8 100.5 100.5 100.5 100.7 100.7 Baro pres (kPa) 98.7 98.7 98.7 98.7 99.7 99.7 99.7 99.7 100.3 100.3 99.7 98.9 8888 88888888 (bzsd) Oi 1 222222 222223 5 5 5 5 5 5 5 64 65 65 65 65 3222 3 3 3 3 Oil pres (kPa) Cool pres (psig) Cool pres (kPa) 55 25 38 25 25 pres pres ((kPa) (in/H20) (Blomby Blomby 00000 00000 0000 Exhaust (1n/H20) 5.4 12.4 22.8 27.5 Exhaust 0.771 2.240 3.932 4.728 4.728 5.848 0.473 1.593 1.593 2.563 3.310 0.896 2.339 4.205 5.226 8.013 2.090 2.065 2.065 2.065 3.733 3.733 3.780 3.708 0.025 0.896 0.075 1.717 0.473 2.090 2.563 1.344 3.086 5.674 6.843 0.672 0.572 0.547 0.498 Intake 8 pres 5.7 5.7 5.7 5.7 5.3 5.3 5.3 4.88.44 7.84.44 0.44.40 -----Intake pres (KPa) 48.5 27.8 28.5 17.6 19.3 14.2 48.8 29.5 18.0 14.9 14.9 47.1 28.5 18.5 13.9 6.8 4.0 28.1 13.9 13.2 48.1 28.5 29.5 13.9 23.7 4.4 45.4 45.7 bhp-hr) 0.886 0.664 0.664 0.617 0.617 NA 0.435 0.554 0.559 0.559 0.559 0.599 0.584 0.585 0.585 BSFC (1b/ 0.980 0.642 0.542 0.584 0.565 0.591 0.545 0.557 0.976 0.976 0.985 0.976 0.599 0.502 0.598 0.549 0.547 (gr/hr) (1bs/hr) (g/kWh) 25 5 ES 265 BSFC 20.2 27.8 27.8 32.9 35.7 Fe. 27.8 35.4 50.6 50.6 65.8 50.4 50.5 55.7 9181 12623 12623 14919 16640 13771 6886 10328 10328 12623 14919 NA 11476 14919 17214 19509 19509 22952 12623 16066 19509 22952 29837 13771 18361 22952 25247 Fue! Flow (psi) Rate (I) Fuel Flow 30011100 2222222 32.0 64.1 84.8 95.2 95.2 33.9 65.0 83.9 95.2 37.7 67.9 88.6 99.0 32.7 (kPa) axep axep 195 390 390 390 513 513 585 221 442 585 585 585 585 754 234 448 578 806 806 250 458 611 682 22222 446 446 452 451 577 577 578 576 ğ 17.1 34.3 34.3 45.1 45.1 60.0 20.7 41.1 41.1 56.0 70.0 25.9 51.8 68.5 76.9 76.9 30.8 59.1 76.3 86.5 28.00 20.00 20.00 20.00 욻 12.8 23.5 23.5 23.7 24.7 24.7 24.7 23.0 26.9 74.5 74.5 15.4 32.3 32.3 42.0 48.5 19.3 38.6 51.1 57.4 57.4 28.4 51.1 56.7 74.5 3 17.4 훒 (1bfift) Torque 30.0 46.0 73.0 73.0 90.0 31.0 65.0 65.0 84.5 97.5 36.0 69.0 89.0 101.0 34.0 68.0 90.0 90.0 101.0 40.0 72.0 94.0 05.0 8 2 2 E Torque 46.1 92.2 122.0 137.0 137.0 48.8 93.6 120.7 137.0 (H. 3000 3000 3000 3000 3000 3000 1500 1500 1500 1500 1500 000 4500 4500 4500 4500 5000 5000 5000 5000 2 12/02 12/02 12/02 12/03 12/09 12/03 12/01 12/08 12/01 12/01 12/01 12/01 12/08 12/08 12/01 12/09 12/09 12/08 12/03 12/03 12/03 12/03 12/03 12/17 Point Date 2222 125 128 128 129 129 129 129 2222 8 112311 2255 2525

I UNDENSIFIED COATED ROTOR 11

S = (F

를 를 Œ

∄ **∄** 9

75 gg (7)

Humand In Temp 1

Baro pres (kPa)

Oil pres psiq)

Cool Oil pres pres (psiq) (kPa)

Cool Pres (kPa)

y Blowby pres (in/H20)

Intake Exhaust Exhaust Blowby pres pres pres pres (in/hg) (kPa) (in/H2D) (kPa) (

Intake

BSFC

pres (kPa)

(d/kilh)

8SFC (1b/ bhp-hr)

Fuei Flow (lbs/hr)

Fuel Flow (gr/hr)

Fuel Flow Rate (1)

æ

Torque

Torque

Æ

oint Date

(bs1)

BHEP (kPa)

a ê

量量

(1bfift)

E

29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75
29.75 13.10 3,484 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 3,1285 4,1286 4,1 0.554
0.554
0.554
0.554
0.554
0.555
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558
0.558 18935 18935 18935 18935 18935 18935 19509 119.3 110.0 110.0 110.1

SE UNDENSIFIED COATED ROTOR SE

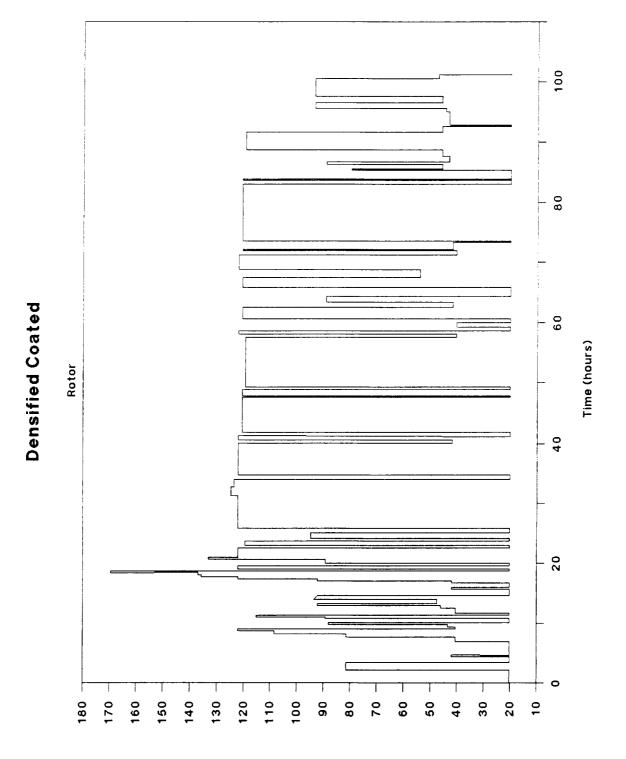
S = (£

E E Exh C (C) ت <u>و</u> (۶ Huesd In Temp 7 Baro Humid pres 1 (in-hg) (I) Baro pres (kPa) 101.0 101.0 101.0 100.4 100.4 100.4 100.4 100.9 100.9 100.9 100.9 100.9 100.9 0il pres (psig) Oil pres (kPa) Cool pres (psig) Cool pres (kPa) Fuel Fuel 85FC 85FC Intake Intake Exhaust Exhaust Blowby Blowby Flow Flow (1b/ pres pres pres pres pres pres (qr/hr) (1bs/hr) (q/kWh) bhp-hr) (kPa) (in/hq) (kPa) (in/H2O) (kPa) (in/H2O) 3.757 3.773 3.773 3.773 11.777 4.005 4.006 4.006 4.006 3.528 3.523 3.523 3.633 3.633 3.643 22.4 22.7.4 23.7.4 24.7.5 25.7.7 27.7 27.7 (psi) Rate (1) Fiel Floar 884.4 885.0 88 3.E.P (kPa) æ (hp) 7.55.7. 7.55.7. 7.55.7. 7.55.8. 7.5 훒 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.3 N3a) (1bf8ft) (kW) 뭂 Torque Torque 121.4 84.1 121.4 121.9 121 Ž Point Date 11/29 11/29 11/29 11/29 11/29 11/20

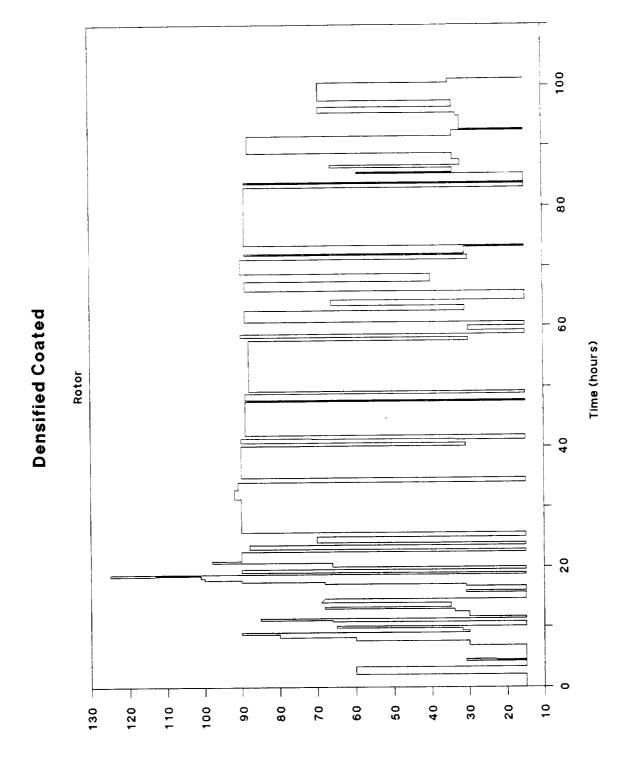
¥ € € P. P. C. **₩** € 3 5 Housing #12 #12 (C) (F) Rator 1 811 81 (F) ((rat € = 0 3 5 2 9 2 E £ 9 reediate Housing 47 #8 #8 # (F) (C) (F) (UNDENSIFIED COATED ROTOR 11 7 (5) 2 6 20 ₹ <u>E</u> 200 투표 6 ¥ ₹ (C) ator 13 (F) ទីដា ភូ 12 (F) _|₂ 9 Delta Dil Teop 3 \$ 6 3 \$ 9 3 = 6 E 55 2 **5** C

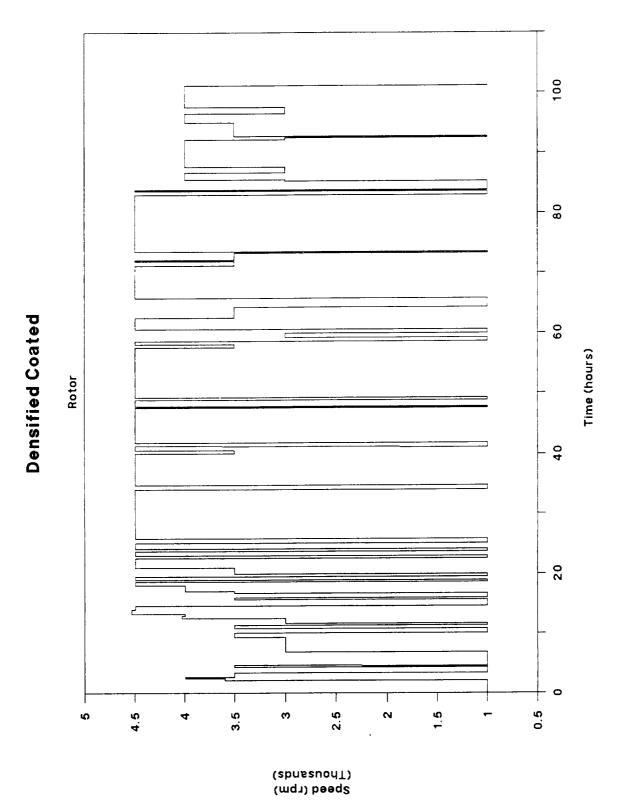
APPENDIX G - II

DENSIFIED COATED


ROTOR DATA

DENSIFIED COATED ROTOR DATA


TABLE OF CONTENTS


<u>Title</u> P												<u>Page</u>										
Densified	Coated	Chart.		•			•				•					•				•		G-II-3
Densified	Coated	Chart.	•			•	•		•		•	•			•	•	•			•	•	G-II-4
Densified	Coated	Chart.			•				•		•			•		•	•		•		•	G-II-5
Densified	Coated	Rotor	Dat	:a			•				•			•			•	•				G-II-6
Densified	Coated	Rotor	Dat	ca		•	•	•	•	•			•		•	•	•		•	•		G-II-7
Densified	Coated	Rotor	Dat	ta		•	•	•		•	•	•			•	•	•		•	•		G-II-8
Densified	Coated	Rotor	Dat	:a	•	•	•	•	•	•	•	•			•		•	•		•		G-II-9
Densified	Coated	Rotor	Dat	:a		•	•	•	•	•		•	•					•	•			G-II-10
Densified	Coated	Rotor	Dat	a	•	•	•	•	•	•		•	•	•		•		•			•	G-II-13
Densified	Coated	Rotor	Dat	a	•	•	•		•	•				•	•	•	•		•	•	•	G-II-1
Densified	Coated	Rotor	Dat	- a												_	_	_	_	_	_	G-TT-11

Torque (N*m)

Torque (lbs*ft)

** PENSIFIED COMIED NOTOR **

(NIm) (1bfift) (kH)

Point Date RPM Torque Torque BHP

Cao!

Exh Exh Cool
Temp In
(C) (F) (C)

178 179 179 180	179 179 180 180 180 179 179 179	15.0 15.0 18.1 18.2 18.2	20 20 20 20 20 20 20 20 20 20 20 20 20 2
81 1 82 1 82 1 82 1 81 1			
1270 1460 1426 1426 1435 1215 1215	1208 1559 1559 1559 1445 1447 1447 1472 1472 1472 1473 1417	1250	1554 1556 1556 1556 1557 1558 1558 1558 1558 1558 1558 1558
688 793 774 657 653	652 331 732 786 786 786 771 771 771 538	28829	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
12 2 4 4 8 8 8	公正式中华城北部的北部 6	######	N
440-10	7 = # 0 11 = 6 + 12 = 11	7137 227	9 * 9 2 2 2 2 2 4 2 5 5 7 5 2 2 2 2 2 2 5 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
RRRRRRR	811 311 58 88 78 11 11 11 11 11 11 11 11 11 11 11 11 11	*****	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29.83 29.83 29.83 29.83	29.32 29.33 29.37 29.37 29.92 29.92 29.83 29.83 29.83 29.83 29.83		23.55.55.55.55.55.55.55.55.55.55.55.55.55
100.7 100.7 100.7 100.7 100.7	101.0 100.7 100.9 100.9 101.0 101.0 100.7 100.9 100.9	5.00.3 5.00.3 6.00.3 6.00.3	00000000000000000000000000000000000000
\$ 65 65 55 55 55 55 55 55 55 55 55 55 55	6 446444444444444444444444444444444444		# 2252525255555555555555555555555555555
# 42 42 42 42 42 42 42 42 42 42 42 42 42	2	######################################	#######################################
****	2 2128 2888 27238	2382	*****************
97 97 97 90 107	114 124 124 124 127 117 117 117 117	9 2 2 2 2	155 155 155 155 155 155 155 155 155 155
0000000	0.0000000000000000000000000000000000000	0.0	
0000000		10000	
- 4 N 4 0 0 0		0.04 / 0.3 / 2	
0.249 0.547 0.547 0.1095	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
4 14 20 10 20 20			nnannannannannannun. Sancomus aumsammus kum Kancomos abbababababa
22.5.8 22.0.8 20.1			กายกายกระเรา กระกับกล่อยก่อยก่อยก็ต่อ
0.886 0.566 0.564 0.554 0.554	2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
00000000000000000000000000000000000000			333333333333333333 8886638686855
י בט נט רא ישיי דיין נע	יינטנט פא פא פא פיני די	- 1 - 2 × 2 × 1 × 1 × 6 ×	rin rije pile de e de e de kilo de
25 25 25 25 25 25 25 25 25 25 25 25 25 2	20 21 15 15 15 15 15 15 15 15 15 15 15 15 15	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
6885 13197 10328 111476 6886 6686	9181 11475 15055 12050 14345 12623 12623 12623 12623	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.000
4 5 6 6 6 9 9	• POII # I I I I I I I I I I I I I I I I I	0 # 11 # 2	n to a to
28.28 28.3 28.3 28.3 5.5 5.5 5.5 5.5	: મુળ્યુલ્વલના જન્મ 		⊌) li] i 5 (i or co-on-rei usto on lis osto ca ca or -
1 195 3 390 7 520 1 195 4 198			
24.27.27.27.27.27.27.27.27.27.27.27.27.27.			
3.85.25 3.45.25 13.00 10.00 10		Both to the	
30.0 40.0 80.0 30.0	11 3 9 9 13 4 13 13 13 13 13 13 13 13 13 13 13 13 13	3.58 5.58 5.50 5.50 5.50 5.50 5.50 5.50 5	\$ 8 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
40.7 122.0 181.4 108.5 40.7	42.7 31.4 41.8 89.2 115.3 68.1 42.5 61.4		8 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
200000			
ted Rot 2/29 2/29 2/29 2/29 2/29 3/1		-	
1-Coated Rotor 5 2/29 30 8 2/29 30 6 2/29 30 7 2/29 30 9 2/29 30 15 3/1 30			

ORIGINAL PAGE IS OF POOR QUALITY

	a .	1			
	Tesp (F)	88 88 89 95 70 70 70 70 70 70 70 70 70 70 70 70 70	83 77 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	3.8887	88 88 88 88 88 88 88 88 88 88 88 88 88
4	() Tem	23 30 30 21 22 21 21	22222222222	22 12 22 22 22	7 2 2 3 3 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
-	E E	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	231 249 276 233 255 255 255 255 255 255 255 255 255	254 278 255 240	285 285 317 222 223 224 224 223 224 224 234 234 234
		108 127 118 118 125 108	121 122 123 124 125 125 125 125 125 125 125 125 125 125	137	13.5 4.4 5.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1
	#12 (F)	191 202 196 201 190 224 223	193 197 208 193 201 200 204 201 193 193	204 209 203 210 196	211 212 213 214 215 217 217 217 217 217 217 217 217 217 217
Š	(C)	94 94 91 94 107	89 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	9 9 9 5	100 100 100 100 100 100 100 100 100 100
20tor		22222222	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	815 13 13 13 13 13 13 13 13 13 13 13 13 13 13	38.33.53.53.53.53.53.53.53.53.53.53.53.53.
1	∄ 9	106 126 116 117 106 106	109 117 118 119 112 122 123 124 126 119	38535	
	£ €	194 207 200 205 193 194 194	196 201 205 208 208 208 196 196	114 125 137 139	22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	2 €	90 97 93 96 90 90	91 94 96 98 98 98 91 91	93 101 102 102 93	103 103 103 103 103 103 103 103 103 103
	(£)	254 309 281 300 254 257	284 292 314 292 313 313 296 296 296 296 296	303	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_	€ Û	123 154 138 149 123 124	140 140 144 144 144 168 168 168 169	92555	19.12
one sub	₽ (£)	198 210 203 208 198 199	201 208 209 209 209 209 209 201 209	20 E E E E E E E E E E E E E E E E E E E	8 ± 8 ± 8 ± 8 ± 8 ± 8 ± 8 ± 8 ± 8 ± 8 ±
	(F) (G)	92 93 93 93	\$ 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8:38 % នៃ	44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
R ##		253 307 278 259 254 256 256	255 200 200 200 200 200 200 200 200 200	88545	
	(3)	123 153 153 143 123 124	151 161 161 168 168 168 168 168 168 168 16	39 19 19 19 19 19 19 19 19 19 19 19 19 19	165 1165 1165 1165 1165 1165 1165 1165
COATED	9 (₹)	198 208 202 206 199 199	201 204 207 207 207 208 209 209 209	32 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E	8,53,77,00,74,6,6,00,00,00,00,00,00,00,00,00,00,00,00
160 C	2 0	92 93 93 93	40.000	8 5 8 5 8 8 5 8 8 5 8 8 8 8 9 8 8 8 8 8	102 102 103 103 103 103 103 103 103 103 103 103
DENSIFIED ;	₹5 E	228 285 242 242 242 227 227	8688888888	38888	223 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24
=	₹ 6	108 117 117 125 108 108	BBBBBBBBBBBB	0.6.02.2	· 프로알로모리로모함모표 현모표 현원
ii.	± (6)	196 212 202 209 196 197	200 101 199 209 209 209 209 210 139 139	គឺអភិវ ាគឺ	853888388333333333
ž.	z ⊕	91 100 34 98 92 92	93 93 93 93 93 93 93 93 93 93 93 93 93 9	52 62 83 8	1108 1108 1108 1108 1109 1109 1008 1008
Rotor	ã €	222 22 23 23 23 23 23 23 23 23 23 23 23	22.5 22.5 22.5 23.5 23.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24	######################################	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Rear	2	105 124 113 121 105 106	109 1115 121 121 121 123 123 123 133 133 133 133	85883	866688666666666666666666666666666666666
	(F)	193 208 198 204 193 194	197 201 215 195 204 204 212 206 196 195	83888	######################################
	£ 0	89 97 98 90 90 90	92 34 102 91 96 96 97 97 91 91	93 97 93 93	102 102 103 103 104 104 105 105 105 105 105 105 105 105 105 105
9e1t.	g (?)	122722	1 2 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	អ្នកកម្	思想各用用的重合表在思古用品名的 需
Delta Oil	g (2)	12 4 12 4 9 9	4 1 1 1 2 1 1 1 2 4 1 1 1 2 4 1 1 1 1 1	ប្ ន ប្អូន	22442225222522252
	ă C	221 240 233 238 226 227 227	222 243 224 237 237 237 237 238 237 238 237 237 237 237 237 237 237 237 237 237	5 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0:1	≝	105 116 1117 1114 108 108	110 1110 1117 1114 1115 1114 1114 1114 1114	2222	
01.1	<u> </u>	208 218 215 217 214 216	217 209 218 216 216 218 218 218 215 NA	217	2217 2217 2218 2218 2218 2218 2218 2218
011	<u> 9</u>	98 103 102 103 101 102	103 98 103 103 103 103 103 NA	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	103 103 103 103 103 103 103 103 103 103
Cool	E G	182 184 183 183 183 183	1833 184 185 185 185 185 185 185 185	2 2 2 2 2	\$ 18
Coal	ž 0	1-Coated Rotor 5 83 18 8 84 18 6 84 18 7 84 18 9 83 18 15 84 18	\$ 60 10 60 60 60 60 60 60 60 60 60 60 60 60 60	** ** ** ** ** ** ** ** ** ** ** ** **	400000000000000000000000000000000000000
oint	C G	-Coatt	017566858107-	ការរប់ពង	
-	•	→			

ROTOR DENSIFIED COATED

BSFC

BYEP

BMEP

욻

욻

Tarque Tarque

PA

100 E G

Ex. (F) Exh Temp (C) 드 를 요 Huand In Temp 1 (pu-ni) Baro pres Baro pres (kPa) Oil pres psig) Oil pres (kPa) Cool pres psig) Cool pres (kPa) pres (in/H20) intake Exhaust Exhaust Blowby pres (kPa) pres (in/H20) **34733737374**349494947474797979797979797979797979 pres (kPa) pres (in/hg) Intake pres (kPa) 65FC 1 (1b/ bhp-hr) ne en de de la lata de lata de la ata de lata de (d/kiih) (1bs/hr) Fue i Flor 19509 (gr/hr) Fuel Flow Rate (1) Fue I Flow (bs1) (kPa) . G Ê (lbf8ft) Date

11 DENSIFIED COATED ROTOR 11

Air CO 3 5 Houss #12 (C) Rotor #11 # (F) (£ **=** 0 ₽ Œ 20 2 Û **≥** Û Housing <u>ت</u> و **≅** ⊖ mediate | #7 #8 (F) (C) inter (C) **⊉** € **2** € ₹ (° ₽ <u>©</u> E ₹ £ 전 () Rotor 13 (F) j # 0 2 E 2 0 Deita Gil : Temp (F) Delta Oil Temp (C) EEE 3 # 5 3 5 6 3 = 0 2 £ 8 0 K 0 orat

يَ قُوٰ جِز

11 DENSIFIED COATED ROTOR 11

Fue I

(NIm) (1bf8ft) (KW)

Point Date RPH Torque Torque BHP

Exh Coal Coal Temp In In (F) (C) (F)

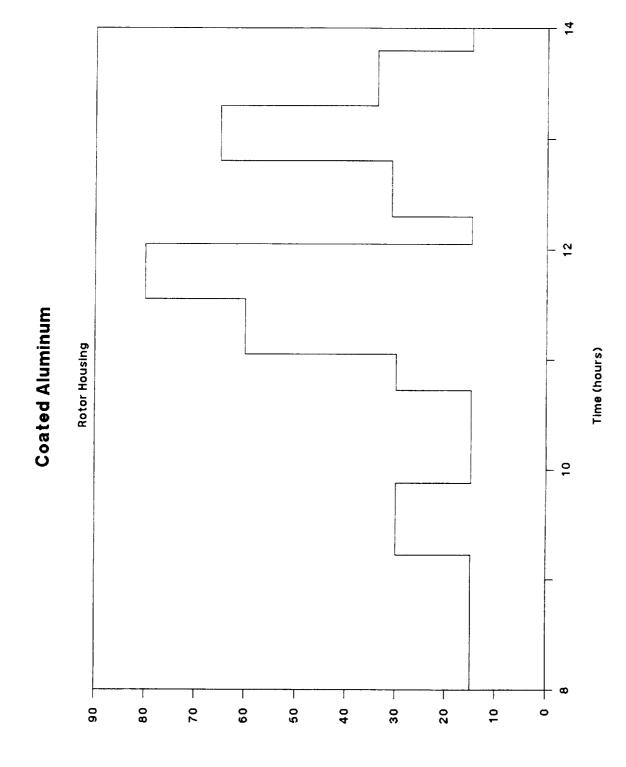
178 178 177	181 182 179 179 180	181 182 182 183	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7
3 3 3 3	25 25 25 25 25 25 25 25 25 25 25 25 25 2	33 23 23 23 33 33 33 33 33		-
1245 1405 1299 1272	1424 1304 1320 1300 1280	1466 1512 1514 1512 1353	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<u> </u>
674 765 704 669	773 707 716 704 693	797 822 824 822 734 748	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
11 12 13 13	42223	55 54 57 27	55 5 7 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	70
- r - 1	4 14 4 - 12 12	4 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		:
2234	18 27 18 18 29 18	****	23 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7
29.74 29.88 29.70 29.70	29.73 29.96 29.88 29.73 30.03 29.73	29.88 29.76 29.76 29.76 29.88 29.88	29, 59, 59, 59, 59, 59, 59, 59, 59, 59, 5	3.5
100.5 100.3 100.3	100.4 100.9 100.4 101.4	100.5 100.5 100.5 100.9	101.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
9 23 23	52 42 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	\$2 62 52 52 52 52 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
414 427 434 434	434 427 451 451	£27 £27 £34 £34	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	/74
ដូងស្ន	17 18 18 17 17	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88888888888888888888888888888888888888	ij
103 107 103 100	122 22 22 22 22 22 22 22 22 22 22 22 22	12 12 18 18 18 18 18 18 18 18 18 18 18 18 18	22 C C C C C C C C C C C C C C C C C C	=
0.000	0.00000	0.0000		3
0.000	0.00000	0.0000		J. C
M. 0 0.2	4 2 0 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.7 7.5 7.6 7.5 1.7		7.01
0.000 0.000 0.050 0.249	0.647 0.075 0.075 0.547 0.373 1.120	1.170 1.817 1.391 1.866 0.423	2. 12. 12. 12. 12. 12. 12. 12. 12. 12. 1	712.7
15.2 9.8 15.0 15.0	9.7 15.8 15.5 15.5 9.8	10.: 6.7 6.8 6.8 15.2		
51.5 33.2 50.8 50.8	32.9 53.5 52.2 52.2 52.5	22.7 22.0 23.0 51.5	ក្បានក្រុកក្រុកក្រុកក្រុកក្រុកក្រុកក្រុកក្រុ	7.7
0.838 0.600 0.939 NA	0.573 0.846 NA 0.732 NA NA	0.525 0.522 0.529 0.782		3
510 365 571	55. 45. 45. 55. 55. 55. 55. 55. 55. 55.	######		į
15.2 20.2 15.2 NA	25.3 17.7 15.2 15.2	2007 2007 2007 2007 2007 2007 2007 2007		10.0
6886 9191 6886 NA	11476 8033 NA 6886 NA NA	13771 16066 16066 16066 16066 9181	189735 18	19781
~ œ ~ ⊊	0	<u> </u>	202222222222222222222222222222222222222	2
29.9 55.7 26.7 28.7	62.4 29.6 40.1 29.3	65.5 82.0 82.8 82.8 32.0		6.5
206 384 184 198	430 204 276 202 199 427	452 565 569 571 221 220	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3
18.1 33.8 16.2 17.4	44.1 20.9 28.3 20.7 20.4 43.8	52.9 66.3 66.9 66.9 25.9	250 40 10 10 10 10 10 10 10 10 10 10 10 10 10	, 0
13.5 25.2 12.1 13.0	32.9 15.6 21.1 15.5 15.2 32.6	39.5 49.4 49.7 19.3	នានីក្រុងក្រុងក្រុងក្រុងក្រុងក្រុងក្រុងក្រុង	;
31.7 59.1 28.3 30.5	66.2 31.4 42.5 31.1 30.6 65.7	69.5 87.0 87.5 87.9 34.0	88 88 88 88 88 88 88 88 88 88 88 88 88	
43.0 80.1 38.4 41.4	89.8 42.6 57.6 42.2 41.5 89.1	94.2 118.0 118.7 119.2 46.1	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:
3000 3000 3000	3500 3500 3500 3500 3500	4000 1 4000 1 4000 1 4000 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3/18 3/15 3/15 3/15	3/15 3/16 3/16 3/15 3/17	37.13		
120 11.7 88 87	92 102 115 91 93	122	411011990401004010040100401004010004000401000401000401000401000401000401000401000401000401000401000400040100040100040100040100040100040100040100040100040100040100040004010004010004010004010004010004010004010004010004010004010004000401000401000401000401000401000401000401000401000401000401000400040100040100040100040100040100040100040100040100040100040100040004010004004	

	Air Teap (F)	27 28 88	96 92 75 92 92	833 91 81 81 82	NA 1115 1112 1112 99 99 99 99 99 99 99 1111 1111 1111 1111 1111 1111 1111 1111
	Ar. Temp (C)	2828	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 27 28 28 29 29	5
	 	227 235 225 225 225 225 225	257 241 241 252 256	268 280 279 281 242	290 294 294 295 292 292 293 293 293 293 293 293 293 293
	2 9	108	125 113 116 116 117	131 138 138 137 137 137 137 137 137 137 137 137 137	2
	Housing #12 #12 (C) (F)	198 199 190	202 192 196 193 193	206 209 208 208 210 198 196	215 216 217 218 218 218 218 218 218 218 218 218 218
	를 들 (3)	88 2 88	45 68 94 54 54 54 54 54 54 54 54 54 54 54 54 54	97 98 99 97 91	101 102 100 100 100 100 100 100 100 100
	Rator #11 (F)	25.23	8388888 8388888	275 275 274 276 278 238	284 286 286 288 288 288 288 288 288 288 288
	£ = 0	108 119 106	124 111 115 110 122	134 134 134 134 134	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	€ €	194 202 190 193	206 198 200 195 205	211 215 214 216 201	218 222 222 223 223 223 223 223 223 223 22
	2 €	0, 1, 88	97 93 91 94 95	99 102 101 102 94	105 106 107 107 107 107 107 107 107 107 107 107
	<u>≈</u> <u>€</u>	259 246 259 258 258 258 258 258 258 258 258 258 258	298 266 276 263 263 296	313 327 327 328 328 275 275	10.00 miles (10.00
	2 Û	126 142 119 126	148 130 128 128 147	156 164 164 136 136	1171 1171 1171 1171 1171 1171 1171 117
	usıng #8 (F)	200 207 198 199	209 205 205 202 201 209	212 214 214 215 207 208	218 222 222 223 224 225 225 225 225 225 225 225 225 225
	다. 문 유 ()	92 92 93	98 97 98 98 98	100 101 101 97 97	105 2 105 2
=	ed13 87 (F)	264 290 260 261	310 276 283 272 272 268 311	318 337 334 337 284 285	244 244 244 244 244 244 244 244 244 244
ROTOR	Inter 17 (C)	129	154 134 135 131 131 132 133	159 168 168 140	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
COATED	29 €	198 203 198 198	208 204 203 201 200 200	212 215 214 214 208 208	213 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24
83	2 €	2222	98 95 93 93	100 102 101 102 97	100 100 100 100 100 100 100 100 100 100
DENSIFIED	25 €	22.55	261 237 243 243 230 230 261	274 288 288 244 244	201 202 202 203 203 203 203 203 203 203 203
36	2 €	801 119 108 107	127 114 117 110 110	134 142 143 118 118	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E # €	197 205 196 195	212 204 204 200 199 212	219 225 225 206 208	888888888888888888888888888888888888888
	Housing #4 #4 (C) (F)	92 93 91 91	100 48 43 43 100	104 107 108 97 97	82 H 1 2 H 1
	80tar #3 (F)	22 22 23	35 S S S S S S S S S S S S S S S S S S S	256 273 277 277 278 240 240	291 291 291 292 293 293 293 293 293 293 293 293 293
	<u>يَّةً</u> تَكُ نَ	301 108 108 108	123 112 115 110 123	130 137 137 116 116	53.4.5.5.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
	(F)	194 200 193 193	207 200 200 200 196 207	212 217 216 218 202 202	
	2 9	6 2 6 8	93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95	100 103 103 94	107 107 107 107 107 107 107 107 107 107
Deita	Tep (F)	22 = = =	12 12 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 33 35 25 25 25 25 25 25 25 25 25 25 25 25 25
	Ten (E)	2000	11 v e v d 01	222200	16 116 116 116 116 116 116 117 117 117 1
	e E	2222	22 22 22 23 23 23 23 23 23 23 23 23 23 2	233 241 241 241 232 233	243 247 246 246 246 246 246 247 247 247 247 247 247 247 247 247 247
	0 E E	105 112 108 108	113	115 2	
	E 4 (£)	209 217 216 215	216 216 212 212 215 215 1216	217 1 216 1 216 1 216 1 216 1 219 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E 4 0	102 20	102 102 102 102 102 103 103 103 103 103 103 103 103 103 103	102 102 102 103 103 2	101 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E GE E	182 184 182 181	184 188 182 187	185 1 184 1 185 1 183 1	183 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		23 28 23 23	84 84 84	884 1 885 1 885 1 1 885 1 1 885 1 1 1 1 1 1	
	roint O >	1	92 115 115 115 115 115 115 115 115 115 11	119 6 123 8 122 8 124 8 118 8 121 8	111 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	ĭ	I			

Coo! In (F) :	081 081 081	180 179 177	182 182 180 180 182
Cool (In (C)	82 82 82	82 82 81	83 83 83 83 83
Exh Temp (F)	1448 1214 1239	1309 1317 1315	1348 1450 1227 1337 1444 1336
Exh Teap (C)	787 657 671	709 714 713	731 788 865 725 734 724
In Teep (F)	282	22 22	84224
Humad In Temp (2) (C)	-0 T-0	7 77 4	
Hua.	9 26 9 32 9 26	3 28 3 26 3 26	22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Baro Humid pres ? {in-hg}(2)	29.89 29.79 29.89	7 29.89 7 29.89 7 29.89	29.79 29.96 29.89 29.89 29.35
Baro pres (kPa)	100.9 100.6 100.9	100.9 100.9 100.9	100.4 101.2 100.9 100.9 101.2
Oil pres (psig)	62 62 62	63 62	62 62 63 64 65 65
Oil pres (kPa)	427 427 427	434 434 427	55555
Cool pres (ps19)	20 16 16	19	787787 7877 7877 7877
Cool pres) (kPa)	134	131	5 8 9 5 9 9 5
Flowby C pres p (in/H20) (0.0	0.00	000000
llowb) pres kPa)	0.0	0.00	0.0000
Exhaust Exhaust E pres pres) (kPa) (1n/H20) (0.2 2.0 ÆA	0.2 1.6 1.7	3.2 3.2 3.4 5.6 6.0
Exhaust pres (kPa)	0.050 0.498 0.000	0.050 0.398 0.423	0.498 0.796 0.846 0.871 0.000
intake pres (in/hg)	10.4 15.0 15.1	15.7 15.6 15.5	2000000
Intake pres (kPa)	35.2 50.8 51.2	53.2 52.9 52.5	35.5 24.5 25.5 25.5 25.5 25.5 25.5 25.5 2
BSFC (1b/ bhp-hr)	0.770 0.793 0.909	0.725 0.730 0.723	0.864 0.578 0.582 0.815 0.578 0.768
BSFC (g/kWh)	469 183 253	######################################	526 351 415 495 351 467
Fuel Flow (1bs/hr)	30.4 15.2 17.7	15.2	22.8 30.4 17.7 20.2 30.4
Fuei Fiom (gr/hr)	13771 6886 8033	6886 6886 6586	10328 13771 8033 9181 13771
forque Torque BHP BHP BNEP BHEP Fuel Flow (Nfe) (lbffft) (kW) (hp) (kPa) (ps;) Rate (Z)	12 6	40 40 40 40	P 2 L B II B
BMEP (psi)	65.0 31.6 32.1	29.6 29.4 29.7	32.6 65.0 32.1 30.7 65.0
BNEP (KPa)	448 218 222	204 203 205	225 448 212 212 448
9HP (hp)	39.4 19.1 19.5	20.9 20.8 21.0	26.4 26.0 24.8 27.6 26.6 24.8 26.4
器器	29.4 14.3 14.5	15.6 15.5	19.7 39.2 19.4 18.5 39.2
Tarque 16ffft)	69.0 33.5 34.1	31.2 31.2 31.5 31.5	34.6 69.0 34.1 32.6 69.0 34.6
Torque (NIB) (93.6 45.4 46.2	42.5 42.3 42.7	46.9 46.2 44.2 93.6 46.9
MPM	3000 3000	3500 3500 3500	0000
Point Date RPM Torque Torque BHP (NEB) (1bf1ft) (EW)	131 3/21 126 3/18 132 3/21	129 3/21 128 3/21 127 3/21	125 3/18 134 3/21 135 3/21 130 3/21 135 3/21 136 3/21

ORIGINAL PAGE IS OF POOR QUALITY

		Tesp (F)	0.50 %	3	£ 88 ≤	95 95 95	
		Teg (5)	22 22	;	222		
	-	1 E	269		* # #		
		20	132		112 2		
	2		205		193		
	Potor Money	2 G	2 6 8		2 6 6		
	d d	= E	32.52		3 2 2	239 267 231 238 238 240	
	100	= 0	109	:	= = =	222222	
		6 €	210	Ş	198	201 212 196 199 212 201	
		2 9	\$ 25 25	5	2 6 6	94 92 94 94 94 94 94 94 94 94 94 94 94 94 94	
		5 (J	313	6	267	276 316 226 276 317 278	
		2 €	3 8 8	:	2 11 62	136 130 136 137	
	02170	8 (3)	22 23 23 23 23 23 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	į	202	207 213 202 202 206 214 207	
	ntermediate Housing	2 3	822	ğ	2 22 25	97 101 94 97 97	
::	aed i a	(F)	221 289 271	,,,	27.7	286 323 272 285 285 327	
ROTOR	Inter	2 9	358	72	3 2 2	141 162 133 141 164	
COATED		2 (£	252	202	2 S	205 213 201 205 205 204	
		2 9	ទីឧឧ	8	2 2	94 94 96 101 97	
DENSIFIED		₹ (F)	25.55	73.7	236	245 276 234 245 279 268	
=		ž ĉ	22 = 23	=	113	118 136 112 113 137	
	51ng	₹ Œ	200 200 200 200 200	201	200	206 200 200 205 221 207	
	Rotor Housing	¥ 9	20 22 22	3	22 23	97 104 93 96 105	
		₹. F.	22, 22, 22, 22, 22, 22, 22, 22, 22, 22,	233	232	241 270 229 241 271 244	
	Rear	≅ ĉ	132 108 109	112	= ≘	116 132 109 116 113 1133	
		#2 (F)	213 196 197	198	197	202 214 197 201 214 204	
•		£ ()	101 91	42	2 2	94 101 92 94 101	
Del ta	<u></u>	Tesp (F)	222	12	2 2	22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	
Delta	95.1	g (3)	7 4	1	7	e 51 e 8 51 e	
	011	æ	25 23 23 24 25 25	8 22	228 226	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
	07	3 9	116 107 110	109	60 80		
	0.1	<u> </u>	220 212 219	216	215 213	215 219 219 217 219 215	
	07.	s 9	90 50	102	102	104 104 104 104 102	
		ž (£	184 183	183	182 181	185 184 186 186 186	
	C00 .	ğ g	84 84 84			88 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	Point	İ	13 25	129	128	125 135 135 135 138	


APPENDIX H COATED ALUMINUM ROTOR HOUSING DATA

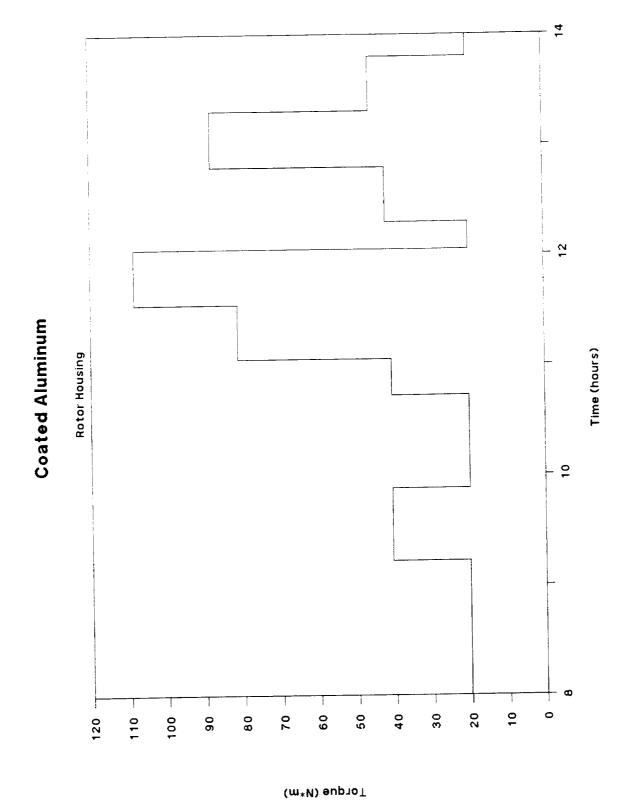
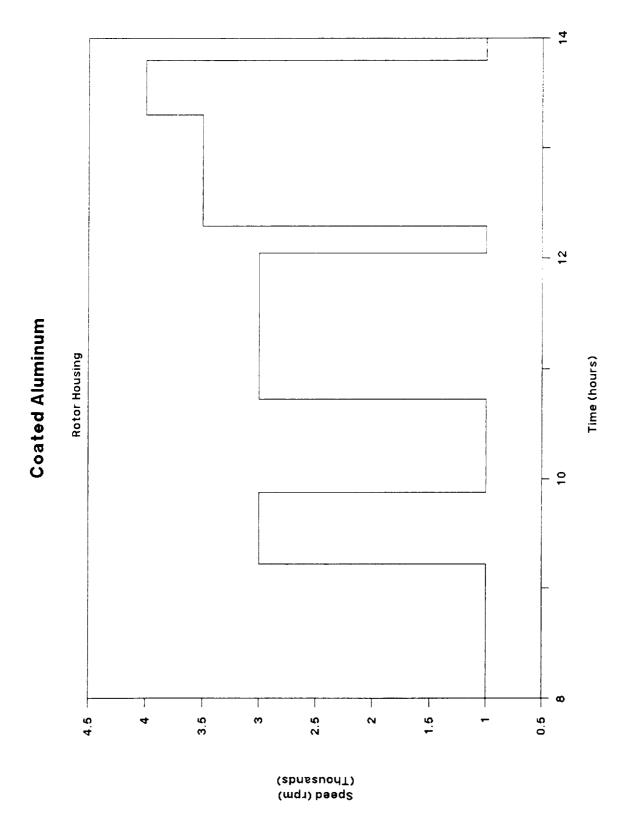

COATED ALUMINUM ROTOR HOUSING DATA

TABLE OF CONTENTS


						Γ	rit	:16	<u> </u>												<u>Page</u>
Coated	Aluminum	Chart	•						•	•	•	•			•	•	•	•		•	H-3
	Aluminum																				
	Aluminum																				
	Aluminum																				
Coated	Aluminum	Rotor	Н	ous	si	ng	Da	ata	a.			•		•	•	•		•	•	•	H-7

Torque (lbs*ft)

H-4

11 COATED ALUNINUN KOTOR HOUSING 11

[00] In (F)	179 179 180 180 180 178 177 179	178 180 180 178	173
	82 82 82 81 81 81	81 82 82 31	32 82
Exh Teso (F)	1167 1168 1172 1150 1151 1313 1313 1314	1219 1222 1356 1356	1336 1310
Exn Temo	631 633 623 621 623 728 712 712 746	659 661 736 740	709 710
In Temp (F)	# # # # # # # # # # # # # # # # # # #	\$ # B #	នន
Temp (C)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 7 18	S S
Hum1d (Z) (p		2222	⊋ ⊋
Baro h pres (in-hg)	29.96 29.96 29.96 29.96 29.96 29.96 29.96	29.96 29.96 29.96 29.95	29.95 29.96
Baro pres (kPa)	101.2 101.2 101.2 101.2 101.2 101.2	101.2 101.2 101.2 101.2	101.2
O11 pres (ps19)	62 62 62 62 62 61 61	64 62 62 62	62 62
O11 pres (kPa)	### ### ### ### #### #### ############	441 427 427 427	424 427
Coai pres (psig)	2 2 2 0 0 0 6 6 6	2425	91 91
Cooi pres (kPa)	73 74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76	103 97 90 90	911 911
Blowev pres (1n/H20)	00000000	0000	0 3
Plaway pres (kPa)	00000000	0000	o o
intake Exhaust Exhaust Blowoy pres pres pres (in/Hg) (kPa) (in/H20) (kPa) (0 - 0 0 0 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1	(1 (4 ab. ab.	2.3
Exhaust pres (kPa) (0.000 0.249 0.149 0.075 0.025 0.100 0.348 0.371	0.547 0.547 1.145	0.597
intake E pres (in/hg)	6.12.13.13.13.13.13.13.13.13.13.13.13.13.13.	13.2 13.2 6.7 5.8	12.3
ntake pres (kPa)	24 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6	######################################	7 7
35FC 115/ 115/ 8hp-hr/	1.181 1.181 1.121 1.172 1.188 0.735 0.735 0.663	1.212 1.208 0.700 0.592	0.997
	718.4 718.4 713.0 713.0 722.5 447.1 444.1 406.3	727.2 734.8 426.0	597.0 608.3
Fiel 85FC Fiow (15s/nr) (g/kWh)	888888888	ដូចនៃ	
Fuel Flow gr/hr)	9181 9181 9181 9181 11476 13771	11478 11476 13771 13771	11475
Fuel Flow Nate (2)	12 10 mm mm mm mm mm mm mm mm mm mm mm mm mm	9 2 2 2	2.0
BNEP (ps1) (28.28.3 28.35.3 28.55.7 27.4.3 25.55.7	29.5 29.6 61.3 62.0	3. T
BNEP (kPa)	195 205 205 196 196 391 391 521	203 204 422 428	216
3HP (hp)	17.1 17.1 18.1 17.0 17.0 34.4 34.7 45.5	20.9 20.9 43.4	8; 2 ;
3HP	12.8 13.5 12.7 12.7 25.7 25.3 34.2	15.6 32.3 32.7	2.5
	30.0 30.0 31.6 30.2 29.8 60.2 60.2 79.5	31.3 31.4 65.0 65.3	53
orque ()	40.7 40.7 42.8 41.0 41.0 40.4 81.6 82.2 107.8	42.4 42.6 88.1 89.2	16.1 15.2
RPH 1	3000 3000 3000 3000 3003 3003 3003 300	3503 3503 3503 3503	1003
Point Date RPM Torque Torque (N88) (1668f1)	6/13 6/13 6/13 6/13 6/13 6/13	6/13 6/13 6/13 6/13	14 6/13
Point	~ UN# N 4 V 80 C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# 12

ORIGINAL PAGE IS OF POOR QUALITY

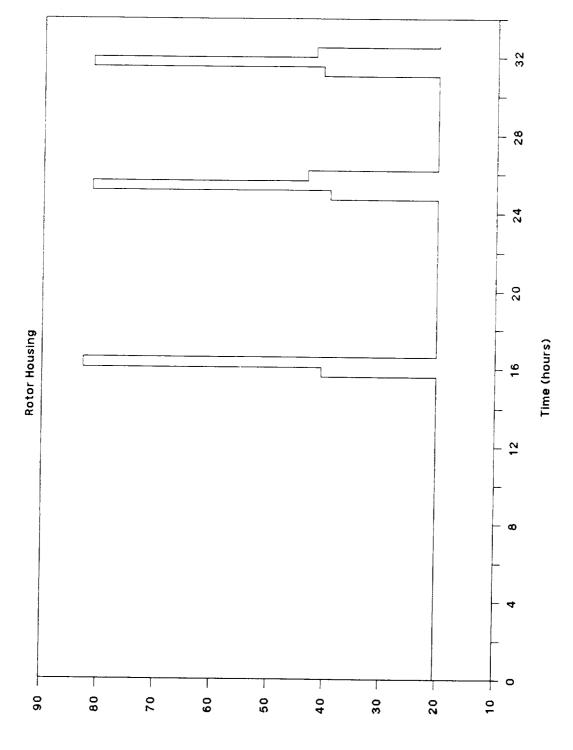
ORIGINAL PAGE IS OF POOR QUALITY

	Alr Temp (F)	93 93 97 98 98 100 100 104 104	111
	Air Temp (C)	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		211 212 212 210 210 220 220 220 220 220	215
	2 9	99 100 99 98 98 98 104 109 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	
	51ng #12 (F)	197 197 197 196 196 201 201 201 206 197 206 195 195	
	F Houstng #12 #12 (C) (F)	92 92 94 94 94 94 97 97 97 97 97 97 97 97 97 97 97 97 97	93 1 92 1
	Satar 111 1 (F) (224 224 222 223 235 244 244 244 245 245 245 245 245 245	229
	Front #11 (C)	107 107 106 106 105 1113 1118 1118 1105 1106	3.65
	0 (F)	196 197 197 196 195 201 206 205 205 206 206 206	198 198
	2 0	91 92 94 94 94 97 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97	33
	6 4 (F)	268 269 270 267 265 293 299 299 299 265 265 265 265 206	:
	2 €	131 132 132 133 145 145 148 148 148 151	3 5
	intermediate Housing #7 #7 #8 #3 (C) (F) (C) (F)	209 210 210 208 207 215 215 215 215 220 205 207 218	HH
146 13	ite ite (j.)	98 99 98 97 102 102 104 104 104	000
HOUSING	#7 (F)	254 254 253 253 253 277 277 277 277 278 287 287	33
ROTOR	Inter #7 (C)	123 123 123 124 134 137 137 137 137 137 137 137 137 137 137	5 5
¥5	2 (€)	200 201 200 200 199 203 203 203 209 209 209 209 209 209 209 209 209 209	585
REUNINUM	2 G	93 93 93 93 93 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	55 X
CORTED	₹ (£	227 228 228 228 228 228 245 245 245 245 245 245 245 245 245 245	ជាដ
= =	2 3	168 109 109 109 1118 1118 1123 1123 1123 1123 1123 1125 1125 1125	22
	(£)	198 198 198 198 197 205 205 205 214 214 215 200	88
	. Houstng #4 #4 (C) (F	92 92 92 92 96 96 96 101 101 101 93 93	# # #
	Aotor #3 (F)	224 222 223 223 224 225 225 226 227 227 228 227 228 228 228 228 228 228	កក
	7. 1. (C)	107 107 108 108 116 116 116 1175 125 125 125 127 123	吕딒
	#2 (F)	194 195 195 195 194 200 200 208 207 195 196 207	193
_	2 G	90 91 91 90 93 93 93 97 91 91	22
1	01.1 Tesp (F)	13 14 14 14 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	6. b.
Z led	Teap (C)	7 88 88 88 12 12 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	= =
		232 231 231 231 238 238 244 244 245 245 230 230 230 237 241	B ≥0 D D
	2 8 2	110 111 100 110 1114 1118 1118 1110 1110	22
	E 4 E	217 218 217 215 215 217 217 218 219 218 218	216
	6 2 S	103 103 103 102 102 103 103 104 103 103	9 20
	Cool (F)	183 184 183 183 184 185 185 184 187 183	53 53
	G 5 G	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	₩ # # # # # # # # # # # # # # # # # # #
	Point	1222 9876 5255 1222	± 9

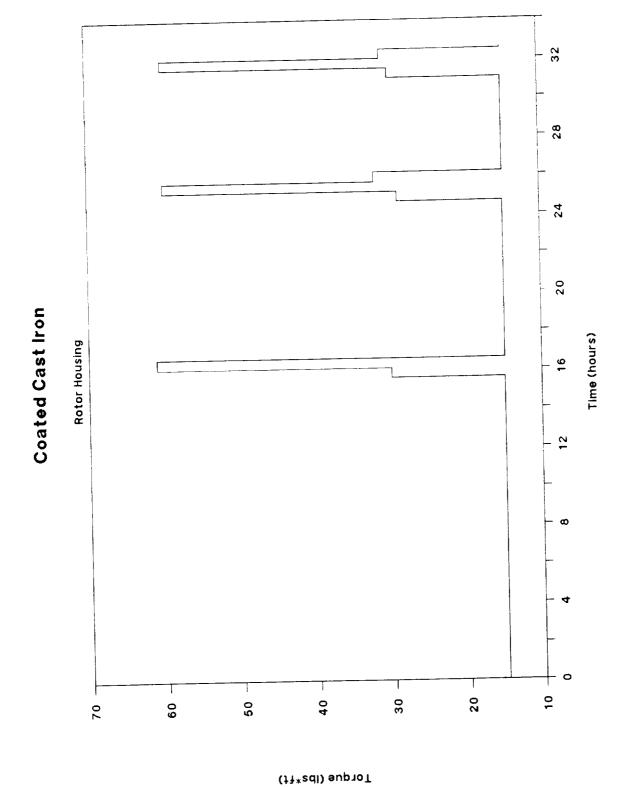
1		i

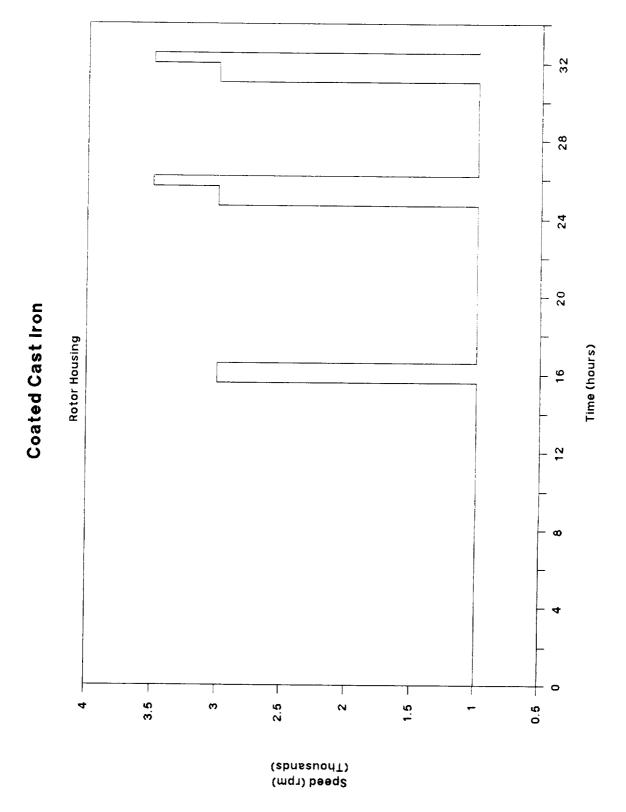
APPENDIX I COATED CAST IRON ROTOR HOUSING DATA

COATED CAST IRON ROTOR HOUSING DATA


TABLE OF CONTENTS

		Tit	tle	<u> </u>														Page
Coated Cast Iron Char	t				•		•		•		•			•	•		•	I-3
Coated Cast Iron Char	t				•				•		•	•	•	•	•	•	•	I-4
Coated Cast Iron Char	t		•					•		 •	•	•	•	•	•	•	•	I-9
Cast Iron Rotor Housi	ng Data		•		•	•		•		 •	•	•	•	•	•	•	•	I-6
Cast Iron Rotor Housi	ng Data			•	•	•			•	 •	•	•	•	•	•	•	•	I-7




Torque (N*m)

Coated Cast Iron

11 CAST INGN ROTOR HOUSING 11

(F)	180 177 178 178 181 181	179 180 178 180 160 177	180 180 181 183 183 183 183 183 183 183 183 183
[60] [7]	81 81 82 83 83	82 82 82 82 82 83	# 51 52 53 52 52 # 51 51 51 52 52 52
(F)	716 746 872 866 1248 1242 1341	722 1244 1237 1402 1403 1250 1276	55 55 55 55 55 55 55 55 55 55 55 55 55
Temp (C)	330 397 467 463 676 672	383 673 669 761 761 762 691	266
(F)	59 77 73 39 51	784455	작약하다마다
_ 1	22 22 4 4 11	₩ œ œ #i #i w æ	∞ • • • • • • • • • • • • • • • • • • •
(%)	X X X X 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	+3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +
Baro t pres (in-hg)	* * * * * * * * *	39.62 39.62 39.62 39.62 39.62 39.63 30.63 30.63 30 30 30 30 30 30 30 30 30 30 30 30 30	9999 999
Baro pres (kPa)		NA 100.7 100.7 100.7 100.7 100.7	22 2773
011 pres (ps1q)	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 12 12	40 40 40 10 10 10 40 40 40 10 10 10
011 pres (kPa)	296 276 303 296 434 434	276 44 44 44 44 45 88	
Caal pres (psig)	8 9 9 0 0 1	R2 17 40 80 80 17 17	6-60 000000
Cool pres (kPa)	20 82 82 84 84 84 84 84 84 84 84 84 84 84 84 84		20 NU 0 U 4 NU 24 NU 00 U 4 NU
Blowav pres (in/H20)	2.00.00.00.00.00.00.00.00.00.00.00.00.00	000000	000110
pres (kPa)	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00	9.0
t Einaust B pres (in/HZD) (000000	ဝို့ ကို ကို ကို ကို ဂုဏ်အကြို့ ကို ကို	us us not start
Eshaust E pres (Afa) (1	0.249 0.000 0.000 0.000 0.025 0.025	0.075 0.448 0.747 0.747 1.120 1.120	
4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
intave Exhaust pres pres (invig) (kPa)	* # # # # # # # # # # # # # # # # # # #		**************************************
	# 12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	# 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ES CO 11 10 10 10 10 10 10 10 10 10 10 10 10
BBFC (157 Ap-677	NA NA NA NA NA NA NA NA NA NA NA NA NA N	76 0.916 0.916 0.916 0.007 0.003 1.031	3 544766
lei Fuei 6550 5550 Intake Om Fida (15: pres YAri (18s.nr. (4:kah) bhp-nr. (KPax	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	基於於今日間	95 89900
Floa Floa Nosanto	AN AN AN AN AN AN AN AN AN AN AN AN AN A	<u> </u>	2666
Fuei Flow (gr/hr) (NA NA NA NA NA NA NA NA NA NA NA NA NA N	6886 6886 6885 6885 6885 6885 6885 6885	D D C C
	A A A A L L O	4446666	** ** ** ** ** **
orque Torque BHP BHP 8MEP 3MEP Fuel Flow (Nie) (lbisft) (kW) (hp) (kPs) (ps1) Rate (Z)	NA NA NA NA 29.0 28.9 57.1	A 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
SMEP (kPa)	NA NA NA NA 199	205 205 205 205 205	55 m 10 10 1 10 10 10 10 10 10 10 10 10 10 1
6 dH9 (hp)	A A A A A A A A A A A A A A A A A A A	A 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
BH6	A A A A A A A A A A A A A A A A A A A	\$ 4 4 4 3 11 12 12 12 12 12 12 12 12 12 12 12 12	D. F. (0) (7 (1) (7) (4) (1) (1) (1) (1)
ille Bi	MA MA MA 30.8 E. 30.7 E.	200333	86 30 33
Torque Tarque (N18) (1bitft)			
<u> </u>	NA NA NA NA NA NA NA NA NA NA NA NA NA N	21 24 24 24 24 24 24 24 24 24 24 24 24 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#: 0 <u>c</u>	1130 1176 1176 1176 11600 3000 3000	3001 3001 3002 3001 3001 3500 3500	9000 1000 1111 1111 1111 1111 1111 1111
Point Date	1 7/22 2 7/22 3 7/25 4 7/25 5 7/26 6 7/26	New Build 10 7/29 11 8/1 12 8/1 14 8/1 15 6/1 16 8/1	Mea Build 21 3/9 22 3/9 23 6/9 24 6/9 25 6/9 25 6/9

ORIGINAL PAGE IS OF FOOR QUALITY

ORIGINAL FASE IS OF POOR QUALITY

Har Temp	22 21 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	101 100 100 100 101 101	80 84 87 87
Alr Temo (C)	222222	38 33 38 38 38 38 38 38 38 38 38 38 38 3	333333
(E)	293 296 317 310 310 448 446	298 445 444 528 524 467 466	85 551 544 486
= 0	145 147 147 158 158 154 231 230 276	148 229 229 275 275 242 241	25 25 25 25 25 25 25 25 25 25 25 25 25 2
51ng #12 (F)	223 233 241 239 309 308 354	236 305 305 325 321 321	83 365 37 37 331
Front Actor Housing #11 #11 #12 #12 (C) (F) (E) (F)	108 112 116 115 154 179	113 152 152 179 179 161	28 28 28 165 165
A3t3 #11 (F)	303 301 326 318 465 465 555	302 257 455 550 549 474 472	473 466 565 563 497
Frant E11 (6)	151 149 163 159 234 239 291	150 125 235 283 246 246	245 241 295 295 253
914	242 250 250 353 363	242 313 313 355 355 329	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<u></u> [≟9	117 118 123 121 121 162 162	117 156 156 136 135 165	164 200 177 176
6. (F.)	258 251 264 257 257 291 325	251 293 273 275 275 275 275 275	305 339 339 312 312
≥ 9	22 22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	122 145 146 147	151 171 172 173 173 173 173 173
JUSING ## (Trendediate Housing #7 #7 #8 #8 (5) (F) (F)	205 208 208 208 208 225 235 235	8886888 8886888	6333333
98 (T)	96 98 98 98 105 107	101 105 105 105 111 111 112 107	107 107 111 113 110
6 ## #6018 #7 (F)	250 2254 2254 291 315	26 80 00 00 00 00 00 00 00 00 00 00 00 00	300 295 318 318 297 298
1504 S0106 HBUSING 18 (17 87 87 87 87 67 (F) (S) (F)	G = 2 G = 4 6	9 9 9 5 5 9 9 9	146 153 153 147 143
150 S	8888888	# # # # # # # # # # # # # # # # # # #	25 25 25 25 25 25 25 25 25 25 25 25 25 2
g (g)	001 101 101 101 801 011	10 10 10 10 10 10 10 10 10 10 10 10 10 1	103 111 111 103 103
	250 271 270 287 409 408 470	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	420 420 430 430 433
i5 w G	151 143 142 209 209 254	200 200 200 200 200 200 200 200 200 200	855555
# G	245 265 345 345 345 345 345	256666666666666666666666666666666666666	313 313 313 313 313 313 313 313 313 313
Burshor (3)	103 112 123 124 125 125 125 125 125 125 125 125 125 125	2 4 4 5 9 5 9	155 157 157 157 157 157 157
Sotor #J (F)	254 267 290 290 435 435 532	275 4 431 522 527 524 468	4 4 7 1 1 4 4 8 4 9 8 4 9 8 4 9 8 9 4 9 8 9 9 9 9
#3 (C)	123 151 142 143 143 225 224 224 278	222 222 223 224 245 245	237 232 282 283 283 249 251
2 €	25 96 88 27 77	226 287 287 331 352 362 362	297 293 319 307 307
2.0	2328225 3328252	108 142 142 164 164 150	145 145 171 170 153
Delta Oul Temp (F)	12 4 13 12 21 21 21 30	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	222222
Delta Dil Temp (C)	7 7 7 12 12 17	* 122722	12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
gill Put (F)	191 220 225 226 226 237 237 236 246	222 236 237 237 246 246 235 235	240 240 240 240 240
(C) (g)	88 104 107 108 114 113	1106	116 116 122 121 114
E 5 6	214 212 214 214 216 215 215	214 216 217 217 213 213	220 220 216 219 219 219
	82 101 100 101 102 102	101 102 103 103 101 101	104 105 107 104 104
Cool Out (F)	181 181 180 182 183 183	182 180 182 182 132 191 181	181 180 182 181 177 130
Cae; Out (C)	833 84 84 84 84	Build 11 82 12 83 13 83 14 83 6 83 6 83	888888
Foint Cabi Out (C)	W + W 9 K	New Build 10 83 11 82 12 83 13 83 14 83 15 83 16 83	533533