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INTRODUCTION 

Aerospace structures are commonly fabricated using mechanically 

fastened joints. 

is important to develop accurate stress analysis methods. This is especially 

important for composite structures since they can be seriously weakened by 

fastener holes and often have rather complex failure modes. 

fastener structural joint, fastener holes may be subjected to the combined 

effects of bearing loads and loads that bypass the hole, as illustrated in 

figure 1. 

stiffness and configuration. 

To better understand the complex behavior of such joints, it 

Within a multi- 

The ratio of bearing load to bypass load depends on the joint 

The combined effects of bearing and bypass loads can be simulated by 

testing and analyzing single-fastener specimens (figure 1). However, very 

little research has been published on the stress analysis of single-fastener 

specimens subjected to combined bearing and bypass loading. In 1981, Ramkumar 

[l] and Soni [ 2 ]  used a two-dimensional, finite element stress analysis to 

determine the stress state around the fastener in a single-fastener laminate 

subjected to bearing-bypass loads. The fastener load was modeled by imposing 

zero radial displacements on the load-carrying half of the fastener hole. In 

the same year, Garbo [ 3 ]  used his BJSFM analysis to obtain the stresses in a 

single-fastener laminate subjected to bearing-bypass loads. The fastener load 

was simulated by specifying a radial stress boundary condition varying as a 

cosine over half the hole. 

In almost all practical applications, some clearance exists between 

the hole and the fastener. The presence of  a clearance leads to a contact 
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region at the bolt-hole interface that varies nonlinearlv with tts loa& and 

influences the stress state around the hole. Although this nonlinearity 

complicates the asAysis, it is important to make an accurate stress analysis 

to better understand the complex failure modes. Furthermore, for some 

combinations of compressive bearing-bypass loads the hole tends to close in on 

the fastener leading to "dual contact". The effects of clearance have been 

presented by these authors in references 4 - 6 .  

The objective of the present paper is to present a simple, dirict 

s+  esp. aralysis method for a laminate with a clearance-fit fastener s u r j e c t c d  

to combined bearing and bypass loads in tension or compression, including 

dual contact, and then to study the effects of bearing-bypass loads on bolt- 

hole contact and local stresses. The present approach uses a linear-elastic 

finite element analysis with an inverse formulation like that in Refs. 4 - 8 .  

Conditions along the bolt-hole interface are specified by constraint 

equations that limit nodal displacements to a circular arc corresponding to 

the bolt diameter. These equations describe the contact conditions more 

realistically than the distributions usually assumed for radial displacement 

[ 1 , 2 , 7 , 8 ]  or stress [ 3 ] .  Furthermore, the present technique does not need an 

iterative-incrementa1 method of solution which usually involves tedious node 

tracking along the contact arc [ 9 - 1 2 1 .  

performed using the MSC/NASTRAN computer code [ 1 3 ] .  The material properties 

used in the analysis represent a quasi-isotropic T300/5208 graphite/epoxy 

laminate. The bolt was assumed to be rigid and the interface to be 

frictionless. 

The finite element analysis was 

Results are presented as curves relating the nominal bearing stress 

and the bolt-hole contact angle for various combinations of bearing and bypass 

loads. Also, the effect of bypass load on the bolt-hole contact angle is 
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presented for constant bearing loads. 

bearing-bypass load proportions in both tension and compression are also 

presented for a typical bearing load level. 

range of bearing-bypass loads, typical load-contact variations, and local 

stresses are presented for dual-contact situations. 

Hole boundary stresses for a range of 

Finally, a solution array for a 
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bearing-bypass ratio, S /S 

Poisson’s ratio 

bolt-hole contact angle, degrees 

b nP B 

9 2  

, e2 

0 stress component, MPa 

U radial stress component, HPa rr 
tangential stress component, HPa e 

ANALYSIS 

The configuration and loading analyzed in the present study is shown 

in figure 2 for a typical tension bearing-bypass case. 

P is reacted partly in bearing Pb and partly as a bypass load P at the 

other end of the model. The nominal bearing stress Sb and net-section 

bypass stress S are defined as shown in figure 2. The bolt was assumed to 

be rigid and the bolt-hole interface to be frictionless. 

clearance c d 
the hole diameter d. 

The gross applied load 

bP 

nP 
The diametrical 

between the hole and the bolt was expressed as a percentage of 

The material represented in the analysis was a quasi- 

isotropic T300/5208 graphite/epoxy laminate with the following properties: 

E - 59.46 GPa and G - 20.4 GPa. Isoparametric, quadrilateral and triangular 

elements were used to model the laminate (4,131. Nodes were placed at every 

0.9375 degrees 

Loads P and 

bearing-bypass 

P 
bP - 

along the 

P were 

ratio B 
bP 

hole boundary to model the contact angles accurately. 

applied to the ends of the model. 

was obtained by an appropriate choice of P and 

The desired 

For a snug-fit joint (cd - 0), the contact angle el along the bolt- 

hole interface does not vary with Sb and a simple linear stress analysis can 
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be used. However, for a clearance-fit joint (c > 0), the contact angle 

increases nonlinearly with Sb as shown in figure 3. This nonlinear load- 

contact variation at the bolt-hole interface greatly complicates the stress 

analysis. Bypass loads also influence the nonlinear load-contact variation 

further complicating the analysis for combined bearing-bypass loading. 

d 

Inverse Formulation 

The nonlinear load-contact variation shown in figure 3 could be 

accounted for in an iterative incremental scheme in which the nominal bearing 

stress is incremented in small steps and the corresponding contact angle 

d l  is determined iteratively at each load step. 

require special purpose finite element programming and would also involve 

tedious node tracking along the contact arc [9-121. Alternatively, an inverse 

technique [ 4 ]  can be used in which a contact angle 

corresponding bearing stress 

described later. The inverse technique is simple to use because the boundary 

conditions for an assumed contact angle 

outset. For an assumed contact angle, the contact problem is linear, and the 

analysis procedure can be repeated for a range of contact angles to determine 

a nonlinear load-contact curve like that in figure 3 .  Therefore, although the 

contact problem is nonlinear, the inverse technique requires only linear 

finite element analyses; linear NASTRAN [13] procedures were used to solve 

this nonlinear problem. As previously mentioned, the conditions along the 

bolt-hole interface were specified by displacement contraint equations. The 

formulation of these constraint equations and the solution procedures are 

described in the following two sections. 

Sb 
Such a procedure would 

fll is assumed and the 

Sb is computed by a simple procedure which is 

B1 are fixed and known at the 
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Displacement Constraint Equations 

Figure 4 shows the analysis model for a typical case of contact at the 

bolt-hole interface. The bolt radius r is smaller than the hole radius P 

by the amount of radial clearance c .  To simplify the analysis, the bolt is 

assumed to be fixed in space and the origin of the reference coordinate system 

is located at the center of the undeformed hole. 

contact occurs only at point A. 

P and P , points along the hole boundary which lie within an assumed 

contact arc 

b 

Before load is applied, 

After the model is loaded on the two ends by 

bP 
AB contact the frictionless surface of the fixed rigid bolt. 

on the hole boundary within the assumed Consider a point P(x,y) 

contwt arc AB (see figure 4 ) .  Let u and v be the x- and y- 

displacements necessary to move point P from its original position to a 

point on the surface of the bolt. The deformed position of P may be 

described by the following equation: 

By expressing x and y in polar coordinates, neglecting the higher order u 

and v terms, and noting that rb - R - c, Eq. (1) may be rewritten as 

follows : 

where 

A u + B v - C  

A - R c o s B  - C  

B - R sin B 
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C R c (COS B - 1) (5) 

Equation ( 2 )  is a constraint equation for the u- and v-displacements of any 

point P(x,y) on the contact arc AB.  The quantities A ,  B ,  and C can be 

computed at the outset since they are functions of the initial geometry. In 

the finite element analysis, the displacements of each node within the contact 

region can be specified by applying Eq. ( 2 )  as a multi-point constraint [13]. 

Note that the hole boundary beyond the contact arc is stress free. This fact 

will be used later in the analysis. 

A s  mentioned earlier, for some compression bearing-bypass loads, the 

hole tends to close on the bolt leading to dual contact at the bolt-hole 

interface. For example, point D on the hole boundary in figure 4 could move 

in the positive x-direction and make contact with the bolt surface. This 

would correspond to the onset of dual contact. Further loading would lead to 

dual contact as shown in figure 5. The contact angles B1 and B 2  for dual 

contact would also, in general, vary nonlinearly with load. However, the 

inverse technique can also be used for dual contact. Multi-point constraints, 

as described by Eq. ( 2 ) ,  can be used to specify nodal displacements within the 

t w o  contact regions. The corresponding combination of bearing and bypass 

loads can then be determined by the solution procedure described later. 

Solution Procedure for Single Contact 

The correct bearing stress Sb for an assumed contact angle B1, was 

established using a simple procedure and the NASTRAN computer code. Point A 

(figure 4), which was assumed to be in contact with the rigid bolt, was fixed. 

Displacements of all nodes within the assumed-contact arc were restricted to 

those allowed by the multi-point constraints given by Eq. ( 2 ) .  Thus all the 
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boundary conditions, including those along the bolt-hole interface, are 

defined. However, since the contact angle O1 and the nominal bearing stress 

Sb are nonlinearly related, the correct Sb corresponding to the assumed 

is still unknown. 

For a specified el, the problem is linear and thus, the stresses in 
the plate are linearly related to Sb and S A linear equation relating 

U Sb, and S can be written as 
nP 

rr ' nP 

where F1, F2, and F are constants for a given r and 8. The first two 

terms in this equation represent the 

bearing and bypass loads, respectively. urr 
due to imposing the rnulti-point constraints and is a function of clearance, as 

indicated by Eqs. ( 2 - 5 ) .  

3 

orr components due to the applied 

The third term represents the 

For a given bearing-bypass ratio /3 , we can write S as nP 

Substituting Eq. ( 7 )  into Eq. (6) gives 

The hole boundary region beyond the contact angle is stress free. Thus, 
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This stress boundary condition was imposed at the end of the contact arc as 

* 
If Sb is the correct bearing stress for an assumed contact angle 0 1, then 

from Eqs. (8) and (ll), we have the following relation: 

This equation can be rewritten as follows: 

For a given B ,  the values of F3(R,B1) and F4(R,B1) were determined 

by the following procedure. For an assumed el, the stress Sb was selected 

arbitrarily, and was calculated at the end of the contact arc using a 

finite element analysis. These S,, and orr values were then used in Eq. 

(8) to get one equation for F,(R,B,) and F,,(R,B1). A second Sb was 

selected (arbitrarily) and again the corresponding o at the end of the 

contact was calculated. The second set of Sb and o values was used in 

Eq. (8) to get a second equation for F3(R,B1) and F4(R,B1). The two 

equations were solved simultaneously to determine F3(R,B1) and F4(R,d1), 

which were then used in Eq. (13) to find 

a series of assumed d l  values to determine the corresponding Sb values. 

These pairs of d l  and Sb values can then be plotted to establish 

orr 

rr 

rr 

* 
Sb. This procedure was repeated for 

* 
* 

'b 
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versus d 1  curves for single contact in the clearance-fit joint. The above 

procedure was introduced and evaluated in reference 4 .  

applied for both tension and compression bearing-bypass loads which lead to 

single contact. 

is described in the next section. 

It can be successfully 

A slightly different procedure is used for dual contact and 

Solution Procedure for Dual Contact 

As described earlier, compression bearing-bypass loads may cause dual 

contact at the bolt. The dual contact angles 1 9 ~  and d 2  (see figure 5 )  

in-rease nonlinearly with load. However, for specified d1 and d 2 ,  the 

stresses in the plate are linearly related to and the bolt-hole ’b ’ ’np’ 
I 

contact stresses associated with the imposed multi-point constraints. A 

linear equation relating 0 Sb, and S can be written for the end of 
rr ’ nP 

, each contact arc. For point B (see figure 5), 

The constants K1 through K6 are similar to those in Eq. (6). Again, the 

first two terms in both Eqs. ( 1 4 )  and (15) represent the 0 components 

due to the bearing and bypass loads, respectively. 
rr 

The third term represents 

the err associated with the imposed multi-point constraints. Equations (14)  

and (15) cannot be simplified further using Eq. ( 7 ) ,  as was done earlier for 

the single-contact case (see Eqs. (6) and (8)), because the bearing-bypass 

ratio /l that would lead to contact angles d 1  and d 2  is not known 

a priori. The constants K1 through K3 and K4 through K6 can be 

I 

I 
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determined by calculating arr(R,Ol) and urr(R,r-02) for three different 

(arbitrary) combinations of Sb and S The calculated stresses and the 

corresponding values of Sb and S are then substituted into Eqs. (14) and 

(15) to yield three equations in 

K5, and K6. 

through K6. Now the correct values of S and S corresponding to the 

assumed el and O 2  values can be determined by imposing the boundary 

conditions at the ends of the contact arcs as u (R,B1) = 0 and urr(R,n-02) 

= 0. Substituting these boundary conditions into Eqs. (14) and (15) we have 

nP - 
nP 

K4 * 

K1 

K1, K2, and K3 and three equations in 

These six equations are solved simultaneously to determine 

b "P 

rr 

The only unknowns in the above equations are Sb and S which can be 

determined by the simultaneous solution of Eqs. (16) and (17). The above 

procedure can be repeated for different sets of assumed contact angles 

and e2 to determine the corresponding S,, and S values. These results 

can be presented as a Sb versus S plot as discussed in the following 
"P 

section. 

nP 

nP 

RESULTS AND DISCUSSION 

All of the results in this paper were obtained for the finite size 

of 1.2 percent. First, results 'd plate shown in figure 2 with a clearance 
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are presented for single contact with both tension and compression bearing- 

bypass loads. Next, the effect of bypass loading on bolt-hole contact is 

shown for a constant bearing loading. 

stresses are also presented. Results are then presented for dual contact. 

Contact angles are presented on a Sb versus S plot and local stresses 

are presented for a dual-contact case. 

The corresponding hole boundary 

nP 

Single Contact 

The effect of bearing-bypass ratio B on the bearing stress-contact 

angie curves is shown in figure 6 for single contact. Note that p - Q 

corresponds to a tension bearing case with no bypass load and p - -a 
represents the corresponding compression bearing case. The bearing-bypass 

ratio 

contact angle behavior. 

of 400 MPa [ 6 ] ,  a typical bearing strength for graphite/epoxy, the contact 

angle (figure 6 )  for p = 1 is about 30 percent larger than that for p = Q . 
I;- compression bearing-bypass at 

is about 25 percent smaller than that for p = -Q  . 

/3 was found to have a considerable effect on the bearing stress- 

For tension bearing-bypass at a bearing stress level 

Sb - 400 MPa, the contact angle for p - -1 

The variation of contact angle with bypass stress is shown in figure 7 

’ for three Sb levels. Increasing the tensile bypass loading increased 

while increasing the compressive bypass loading had the opposite effect. The 

small jog in the curve at S = 0 is caused by the small difference between 

tension-reacted bearing and compression reacted bearing. 

MPa case, dual contact initiated for a compressive bypass stress of about 

450 MPa. The secondary contact angle 

compressive S exceeded this value. Additionally, the decreasing trend for 

e l  

nP 
For the Sb - 400 

increased rather abruptly as the 

nP 
reversed when dual contact developed. 
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For Sb - 400 MPa, the tangential (as8) and radial (a ) stresses rr 
around the hole boundary are shown in figure 8 for three different values of 

S for tension bearing-bypass loading. The peak value of the a stress 

is not very sensitive to S . The arr peak usually occurs at 0 degrees for  

small values of S However, the distribution of u changes with nP * rr 
increased S values, showing the increased contact angle as in figure 7 .  

For S - 400 MPa, the urr peak occurs at around 55  degrees. The increase 

in the peak age 

S stress. The location of the peak oBB is usually a few degrees beyond 

the contact region. The location of the a peak is important because 

damage in composite joints often starts at this location [ 5 ] .  

nP rr 

nP 

nP 

nP 
stresses rises nearly proportionally with the increase in 

nP 

d e  

The uB8 and u hole boundary stresses for compressive S 
rr nP 

stresses are shown in figure 9. For S = 0 (/I - -a), ag8 is mostly 
tensile. For S - -133 MPa, a88 becomes compressive in the net-section 

(around 90 ) of the joint. For S = -400 MPa, the compression peak of u 

is larger and more of the hole boundary is in compression. Unlike the tension 

bearing-bypass cases, the peak value of the a stress in compression 

bearing-bypass increases nearly proportionally with the bypass load and always 

occurs at t9 = 0 . For example the peak arr stress for S - 400 MPa is 

40 percent higher than the S - 0 case. 

nP 

"P 
0 

88 nP 

rr 

0 

"P 

nP 

Dual Contact 

The Sb and S values calculated for assumed values of B1 and 
nP 

8* 

solution corresponding to assumed contact angles B1 and e2 .  The dashed 

curve represents the onset of dual contact. The region to the right of the 

dashed curve represents the dual-contact region. 

are plotted in figure 10. Each solid circular symbol represents a 

The double-dashed line 
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represents the B = -3 case. Note that this line runs almost parallel to the 

linear portion of the dual-contact threshold line (dashed line), indicating 

that the p - - 3  case would never involve dual contact. Thus, dual contact 

would occur only when - 3  < p I O .  The dashed-dot line represents the 

p - - 0 . 5  case. It intersects the dual-contact curve (dashed) at S - - 3 7 5  
nP 

MPa. Thus dual contact for this case would begin at S - -375 MPa 

(Sb = 187.5 MPa). 

clearance of 1.2 percent of hole diameter. 

nP 
I 

I 
Note that all the results in figure 10 were obtained for a 

A smaller clearance would cause 

dual contact to develop at a lower load level and vice versa. 

The effect of dual contact on the Sb versus dl curve is shown in 

figure 11. The Sb versus B1 curve before dual contact was generated using 

the procedure for single-contact analysis described earlier. The remainder of 

the curve was constructed from figure 10 by selecting Sb, B1, and e 2  values 

on the /3 - - 0 . 5  line. Some interpolation was used. The Sb versus 

relationship changes after the onset of dual contact. The Sb versus 

curve is also nonlinear and B 2  increases more rapidly than B1 with 

increasing load. 

g2 

An important consequence of dual contact is that it allows load 

transfer across the bolt and, therefore, reduces the stress concentration 

around the fastener hole. Figure 12 illustrates this effect by comparing 

hole boundary stresses for a case with dual contact to stresses for an open 

hole case at the same load level. 

percent higher than that for the dual-contact case. 

contact is advantageous since it reduces stresses around the hole and 

increases the joint strength. Smaller bolt-hole clearances promote dual 

contact and, therefore, should produce higher joint strengths in compression. 

The peak age for the open hole case is 13 

This suggests that dual 
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CONCLUDING REMARKS 

A simple method has been developed for the stress analysis of a 

laminate with a clearance-fit fastener subjected to combined bearing and 

bypass loading in tension or compression, including dual-contact situations. 

This method uses a linear elastic finite element analysis with an inverse 

formulation. 

with most general purpose finite element programs. 

study the effects of bearing-bypass load proportioning on the bolt-hole 

contact angles and local stresses. The initial clearance between the smooth, 

rigid bolt and the hole was 1 . 2  percent of the hole diameter in all analyses. 

Material properties for the plate represented a quasi-isotropic, 

graphite/epoxy laminate. 

terms of 8, the ratio of bearing stress Sb to bypass stress S 

The present method is simple to apply and can be implemented 

The method was applied to 

The bearing-bypass proportions were expressed in 

nP 
The bearing-bypass ratio /3 was found to have a considerable effect 

on the nonlinear contact behavior. 

Sb - 400 MPa, the contact angle was 30 percent larger for 
/3 = a. Compressive bypass loading had the opposite effect, the contact angle 

was 25 percent smaller for /3 = -1 than that for /3 - - w  at Sb - 400 MPa. 
For single-contact situations under tension bearing-bypass, the peak 

tangential stresses around the hole boundary increased proportionately with 

the S stress. The peak radial stress was not very sensitive to S 

However, under compressive bearing-bypass loading, both the peak tangential 

and peak radial stresses were considerably influenced by S . For /3 

greater than - 3 ,  the hole tended to close on the fastener leading to dual 

Under tension bearing-bypass with 

fl - 1 than that for 

nP nP' 

"P 

1 5  



contact. Dual contact allows load transfer across the fastener and, 

therefore, reduces the stress concentration around the hole. Dual contact, 

therefore, has a beneficial effect on the joint strength. 

These results illustrate the general importance of accounting for 

bolt-hole clearance and contact to accurately compute local bolt-hole stresses 

for combined bearing and bypass loading. 
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