Final Report Booster Propulsion/ Vehicle Impact Study NAS 8-36944

D180-30083

June, 1988

Submitted to the National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812

(NASA-CR-183564) ECOSTER FECTULSION/VEHICLE N89-19366 INFACI SIUDY Final Report, 1 Sep. 1987 - 30 Mar. 1988 (Eceinc Aerospace Cc.) 574 p CSCL 21H Unclas G3/20 0146467

Boeing Aerospace

Seattle, Washington 98124

NUM SAL	Report Documentation F	Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		6. Report Date
BOOSTER PROPULSI	ON/VEHICLE	JUNE 1988
IMPACT STUDY - F	INAL REPORT	2-5120
7. Author(s)	· · ·	8. Performing Organization Report N
V. WELDON, M. DU	INN, L. FINK, WETZEL	
0.0-1		10. Work Unit No.
BOEING AEROSPACE	CORPORATION	11. Contract or Grant No.
P.O. BOX 3999 SEATTLE, WASHING	TON 98124-2499	NAS8-36944
12. Sponsoring Agency Name and	d Address	13. Type of Report and Period Covere FINAL REPORT
GEORGE C. MARSHALL	SPACE FLIGHT CENTER	1 SEP 87 TO 30 MAR 14. Sponsoring Agency Code
MARSHALL SPACE FLIC	GHT CENTER, AL 35812	NASA-MSFC
	ORIGINAL PAGE IS OF POOR QUALITY	
16. Abstract Hydrogen, identified by	ORIGINAL PAGE IS OF POOR QUALITY RP-1, propane, and me propulsion technology stud	thane have been ies as the most
16. Abstract Hydrogen, identified by probable fuel ca vehicles. The effects of boo variations on automated proces sizing and design and single stage stage vehicles partially reusable.	ORIGINAL PAGE IS OF POOR QUALITY RP-1, propane, and me propulsion technology stud andidates for the boost phas objective of this study was oster engines using these for representative future launce dure for integrated launch on optimization was used to be concepts for minimum dry were unmanned and used a fly able orbiter. The single st manned flyback vehicles. Con	thane have been ies as the most e of future launch to determine the uels and coolant ch vehicles. An vehicle, engine optimize two stage weight. The two yback booster and age designs were marisons of these
16. Abstract Hydrogen, identified by probable fuel ca vehicles. The effects of boo variations on automated proce sizing and desig and single stag stage vehicles partially reusable, vehicle designs fuels, as well presented. In utilized for the	ORIGINAL PAGE IS OF POOR QUALITY RP-1, propane, and me propulsion technology stud andidates for the boost phas objective of this study was oster engines using these f representative future laun edure for integrated launch on optimization was used to ge concepts for minimum dry were unmanned and used a fl able orbiter. The single st manned flyback vehicles. Con s, showing the effects of as sensitivity and tree addition, the automated a study is described.	thane have been ies as the most e of future launch to determine the uels and coolant ch vehicles. An vehicle, engine optimize two stage weight. The two yback booster and age designs were mparisons of these using different nding data, are design technique
16. Abstract Hydrogen, identified by probable fuel ca vehicles. The effects of box variations on automated proce sizing and desic and single stac stage vehicles partially reusable, vehicle designs fuels, as well presented. In utilized for the 17. Key Words (Suggested by Auto PROPULSION IMPACT, P STUDIES, SPECIFIC IMPU HYDROCARBON FUEL, H	ORIGINAL PAGE IS OF POOR QUALITY RP-1, propane, and me propulsion technology stud andidates for the boost phas objective of this study was oster engines using these for representative future launch gn optimization was used to be ge concepts for minimum dry were unmanned and used a flight able orbiter. The single statistic manned flyback vehicles. Con- s, showing the effects of as sensitivity and treat addition, the automated addition, the automated	thane have been ies as the most e of future launch to determine the uels and coolant ch vehicles. An vehicle, engine optimize two stage weight. The two yback booster and age designs were mparisons of these using different nding data, are design technique

.

FOREWORD

This report documents the results of the Booster Propulsion/Vehicle Impact Study conducted by the Space Systems Preliminary Design Group of Boeing Aerospace from September 1, 1987 through March 31, 1988: This study was conducted for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration under the technical direction of Fred Braam.

The Boeing Aerospace Program manager was Vincent Weldon and key Boeing technical contributions were made by Dwight Phillips (principal investigator), Lawrence Fink (system modeling), Eric Wetzel (vehicle design), Michael Dunn (propulsion analysis), Jared Smith (configuration layout), and Gary Sanders (configuration layout). A subcontract to Boeing for purposes of subcooled propane infrastructure and variable mixture ratio LOX/LH₂ engine assessments was conducted by William Knuth and John Beverage of the Aerotherm Division of Acurex Corporation.

TABLE OF CONTENTS

		Page
	FOREWORD	ii
1.0	INTRODUCTION	1
1.1	Background	1
1.3	Study Objectives/Scope	2
	· · · · · · · · · · · · · · · · · · ·	
2.0	STUDY ANALYSES	4
2.1	Vehicle Analysis	4
2.1.1	Computer Program	4
2.2	Subcooled Propane Subcontract	14
2.3	Variable Mixture Ratio LOX/LH2 Parametric Engine	
	Data Subcontract	14
2.4	Computer Model Equations and Assumptions	14
2.4.1	Engine Performance and Weights	14
2.4.2	Baseline SSME Engines	17
2.4.3	LOX/LH2 High Mixture Ratio Engines	17
2.4.4	Hydrocarbon Engines	18
2.4.5	Propellant Tanks	22
2.4.6	Flyback System	22
2.4.7	Weight Assumptions	23
2.4.8	Flight Performance	24
3.0	STUDY TASKS	25
3.1	Task 1: PERFORMANCE IMPACTS	25
3.1.1	Two-Stage Vehicles	28
3.1.1.1	Baseline Vehicle (Configuration 2.A)	36
3.1.1.2	H ₂ /H ₂ (Configuration 2.B)	39
3.1.1.3	$RP-1/H_2$ (Pc = 4000 psia) Configuration 2.C)	44
3.1.1.4	$RP-1/H_2$ (Pc = 2500 psia) (Configuration 2.D)	47
3.1.1.5	RP-1/RP-1 (Configuration 2.E)	52
3.1.1.6	RP-1/RP-1 Far-Term Performance (Configuration 2.f)	56
3.1.1.7	Methane/H2 (Configuration 2.G)	60

.

·

TABLE OF CONTENTS (continued)

		Page
3.1.1.8	Methane/Methane (Configuration 2.H)	64
3.1.1.9	NBP Propane/H2 (Configuration 2.1)	69
3.1.1.10	NBP Propane/NBP Propane (Configuration 2.J)	72
3.1.1.11	Subcooled Propane/H2 (Configuration 2.K)	77
3.1.1.12	SC Propane/SC Propane (Configuration 2.L)	80
3.1.1.13	SC Propane/SC Propane Far-Term Performance	
	(Configuration 2.M)	84
3.1.1.14	Sensitivity Studies	88
3.1.1.14.1	Expansion Ratio Change Sensitivities	89
3.1.1.14.1.1	LOX/Hydrogen	89
3.1.1.14.1.2	LOX/RP-1 (Hydrogen-Cooled)	90
3.1.1.14.1.3	LOX/Methane (Hydrogen-Cooled)	90
3.1.1.14.2	Chamber Pressure Sensitivities	92
3.1.1.14.2.1	LOX/Hydrogen	92
3.1.1.14.2.2	LOX/RP-1 (Hydrogen-Cooled)	94
3.1.1.14.2.3	LOX/Methane (Hydrogen-Cooled)	94
3.1.1.15	Two-Stage Crossfeed Evaluation	94
3.1.1.16	Variable Mixture Ratio LOX/LH2 Evaluation	99
3.1.2	Single-Stage-to-Orbit Vehicle Analysis	103
3.1.2.1	Baseline Vehicle (Configuration 1.A)	106
3.1.2.2	H ₂ /H ₂ (Configuration 1.B)	106
3.1.2.3	SSTO Dry Weight Optimization	112
3.1.2.4	RP-1/H ₂ (Configuration 1.C)	114
3.1.2.5	Methane/H2 (Configuration 1.D)	114
3.1.2.6	SC Propane/H ₂ (Configuration 1E)	114
3.1.2.7	LOX/LH2 Using Acurex Engine Data	114
3.1.2.8	Single-Stage LOX/LH ₂ Variable Mixture Rating Impact	114
3.1.2.9	Single-Stage LOX/LH ₂ Variable Expansion Ratio Impact	115
3.1.2.10	SSTO Computer Model Comparison	115
3.1.3	Summary of Related Vehicle Analysis Conducted	
	on IR&D Funding	115

TABLE OF CONTENTS (continued)

		<u>rage</u>
3.2	Subcooled Propane Impact	121
3.2.1	Propane Physical Properties	122
3.2.2	Subcooling Propellants	123
3.2.2.1	Subcooling Propane with LN2	130
3.2.2.1.1	Cost of Chilling the Propane	130
3.2.2.1.2	When to Chill the Propane ••••••••••••••••••••••••••••••••••••	131
3.2.2.1.3	Conditioning Onboard Propellant	131
3.2.3	Storing and Handling Subcooled Propane •••••••••••••••••	134
3.2.3.1	Storage Options	134
3.2.3.2	Transfer of Propane · · · · · · · · · · · · · · · · · · ·	135
3.2.3.2.1	Transfer Alternatives ••••••••••••••••••••••••••••••••••••	135
3.2.3.2.2	Ритр Туре	135
3.2.3.2.3	Prechill of Transfer System and Vehicle Tank	136
3.2.3.2.4	Handling Safety	136
3.2.4	Ground Support Equipment System Definition	137
3.2.4.1	System Requirements ••••••••••••••••••••••••••••••••••••	137
3.2.4.2	System Concepts, Options, and Selections	141
3.2.4.2.1	Baseline System	141
3.2.4.2.2	Vehicle Fill Rate ••••••••••••••••••••••••••••••••••••	145
3.2.4.2.3	Preferred System Description	146
3.2.4.3	System Operations	147
3.2.5	ROM Cost Estimate ••••••	149
3.2.5.1	GSE Procurement and Installation	149
3.3	Variable Mixture RAtio Engine Study	151
3.3.1	Technical Discussion	151
4.0 C	ONCLUSIONS AND RECOMMENDATIONS	168
4.1	Conclusions	168
4.2	Recommendations	171

V

TABLE OF CONTENTS (continued)

APPENDIX A -	Detailed Mass and Performance Data for Optimum	
	Configurations	A-1
APPENDIX B -	Optimized Parameter Sensitivities •••••••••	B-1
REFERENCES		R-1
GLOSSARY		G-1

<u>Page</u>

LIST OF FIGURES

Figure No.	Title	Page
1.1.1	Partially Reusable Heavy Lift Launch Vehicle Concept	1
2.1.1-1	BPVIS Design Synthesis Logic Flow	8
2.1.1-2	Independent and Dependent Study Variables	9
2.1.1-3	Design Converger	10
2.1.1-4	Trend Study Design Synthesis	13
2.4-1	Assumptions for Vehicle	15
2.4-2	Analysis Weight Assumptions	16
2.4.4-1	Specific Impulse Equations for Hydrocarbon Engines	19
2.4.4-2	Hydrocarbon Engine Efficiency	20
2.4.4-3	Hydrocarbon Engine Weight and Throat Area	21
3.1-1	Propellant Density	27
3.1-2	Propellant Viscosity	27
3.1.1-1	Two-Stage Partially Reusable Launch Vehicle-Typical Features	29
3.1.1-2	Staging Velocity Impact on Two-Stage Vehicle Parameters for Baseline Vehicle	30
3.1.1-3	Typical Booster Propulsion Thrust Structure/Plumbing Arrangement	32
3.1.1-4	Typical P/A Module Design	33
3.1.1-5	Two-Stage Vehicle Optimized Results	35
3.1.1-6	Two-Stage Weight Comparisons	35
3.1.1-7	Far Term Technology Impact on System Weights	36
3.1.1.1-1	Three-View Drawing of Configuration 2.A	37
3.1.1.1-2	Summary of Configuration Features for Configuration 2.A	38
3.1.1.2-1	Three-View Drawing of Conguration 2.B	40

Figure No.	Title	Page
3.1.1.2-2	Summary of Configuration Features for Configuration 2.B	41
3.1.1.3-1	Three-View Drawing of Configuration 2.C	45
3.1.1.3-2	Summary of Configuration Features for Configuration 2.C	46
3.1.1.4-1	Three-View Drawing of Configuration ?.D	48
3.1.1.4-2	Summary of Configuration Features for Configuration 2.D	49
3.1.1.5-1	Three-View Drawing of Configuration 2.E	53
3.1.1.5-2	Summary of Configuration Features for Configuration 2.E	54
3.1.1.6-1	Three-View Drawing of Configuration 2.F	57
3.1.1.6-2	Summary of Configuration Features for Configuration 2.F	58
3.1.1.7-1	Three-View Drawing of Configuration 2.G	61
3.1.1.7-2	Summary of Configuration Features for Configuration 2.G	62
3.1.1.8-1	Three-View Drawing of Configuration 2.H	65
3.1.1.8-2	Summary of Configuration Features for Configuration 2.H	66
3.1.1.9-1	Three-View Drawing of Configuration 2.1	70
3.1.1.9-2	Summary of Configuration Features for Configuration 2.1	71
3.1.1.10-1	Three-View Drawing of Configuration 2.J	73
3.1.1.10-2	Summary of Configuration Features for Configuration 2.J	74
3.1.1.11-1	Three-View Drawing of Configuration 2.K	78
3.1.1.11-2	Summary of Configuration Features for Configuration 2.K	79
3.1.1.12-1	Three-View Drawing of Configuration 2.L	81
3.1.1.12-2	Summary of Configuration Features for Configuration 2.L	82
3.1.1.13-1	Three-View Drawing of Configuration 2.M	85
3.1.1.13-2	Summary of Configuration Features for Configuration 2.M	86
3.1.1.14-1	Extended Nozzle Expansion Ratio Impact on Two-Stage Booster Dry Weight	89

.

Figure No.	Title	Page
3.1.1.14-2	Expansion Ratio Change Sensitivities (LOX/LH2 Vehicle)	90
3.1.1.14-3	Expansion Ratio Change Sensitivities (LOX/RP-1/H $_2$ Vehicle)	91
3.1.1.14-4	Expansion Ratio Change Sensitivities (LOX/Methane/H2 Vehicle)	91
3.1.1.14-5	Chamber Pressure Sensitivities (LOX/LH2 Vehicle)	93
3.1.1.14-6	Chamber Pressure Sensitivities (LOX/RP-1/H ₂ Vehicle)	95
3.1.1.14-7	Chamber Pressure Sensitivities (LOX/Methane/H2 Vehicle)	96
3.1.1.15-1	Crossfeed System Weight	97
3.1.1.15-2	Effect of Crossfeed on Vehicle Design	98
3.1.1.16-1	Effect of LOX/LH2 Mixture Ratio Change on Engine Performance	100
3.1.1.16-2	Acurex LOX/LH ₂ Engine Assembly	. 101
3.1.1.16-3	Acurex Booster Engine Data	102
3.1.1.16-4	Acurex Orbiter Engine Data	102
3.1.2-1	Typical Features of a Single-Stage Fully Reusable Launch Vehicle	104
3.1.2.1-1	Three-View Drawing of Configuration 1.A	107
3.1.2.1-2	Summary of Configuration Features for Configuration 1.A	108
3.1.2.2-1	Three-View Drawing of Configuration 1.B	109
3.1.2.2-2	Summary of Configuration Features for Configuration 1.B	110
3.1.2.3-1	Single-Stage Optimized Results	113
3.1.2.3-2	Single-Stage Weight Comparisons	11 3
3.1.2.10-1	Boeing Normalized LOX/LH2 SSTO Study Results Compared to NASA Normalized Study Results	116
3.1.3-1	Vehicle Liftoff Weight Optimized for Maximum Dry Weight Factor	118
3.1.3-2	LOX/LH ₂ SSTO Vehicle Concept with 4M LB Glow for ~ 0.99 Dry Weight Factorix	118

Figure No.	Title	Page
3.1.3-3	LOX/LH ₂ + LOX/CH4/LH ₂ SSTO Vehicle Concept with 3.5M lb Glow for \approx 0.99 Dry Weight Factor	119
3.1.3-4	Modular Adaptable LOX/LH2 Launch Vehicle Concept	120
3.2-1	ROM Cost Estimate Summary	122
3.2.1-1	Propane Properties	124
3.2.1-2	Density of Propane Versus Temperatures	125
3.2.1-3	Propane Heat of Vaporization as a Function of Temperature	125
3.2.1-4	Heat Capacity of Solid/Liquid Propane as a Function of Temperature	126
3.2.1-5	Propane Viscosity Versus Temperature	126
3.2.1-6	Propane Vapor Versus Temperature	127
3.2.2-1	Isothermal Pressure-Composition Diagram for the System Liquid Propane-Nitrogen	128
3.2.2-2	Isothermal Pressure-Composition Diagram for the System Liquid Propane-Helium	129
3.2.2-3	Isothermal Pressure-Composition Diagram for the System Liquid Propane-Hydrogen	129
3.2.2.1-1	Schematic Counterflow Tube-in-Tube Heat Exchanger	130
3.2.2.1.2-1	Pros and Cons of Storing Propane Subcooled	132
3.2.2.1.2-2	Pros and Cons of Storing Propane Warm and Chilling During Loading	132
3.2.4.1-1	Schematic of Vehicle Configuration	138
3.2.4.1-2	Baseline Vehicle Loading Sequence	139
3.2.4.1-3	Launch Abort Turnaround Scenario (Typical)	140
3.2.4.2.1-1	Subcooled Propane Chill and Transfer	141
3.2.4.2.1-2	Propane Chill and Transfer Facility Schematic	143
3.2.5.1-1	Subcooled Propane Supply System Cost Estimate	150

Figure No.	Title	Page
3.3.1-1	O ₂ /H ₂ Vacuum Specific Impulse as a Function of Mixture Ratio and Area Ratio	152
3.3.1-2	Nozzle Exit Diameter as a Function of Mixture Ratio, Area Ratio, With/Without Nozzle Skirt Insert	152
3.3.1-3	LOX/LH2 Specific Impulse Versus Nozzle Exit Diameter, Mixture Ratio and Chamber Pressure	153
3.3.1-4	Engine Weight as a Function of Mixture Ratio and Area Ratio, With/Without Nozzle Skirt Insert	154
3.3.1-5	Engine Weight as a Function of Mixture Ratio and Area Ratio, With/Without Nozzle Skirt Insert	154
3.3.1-6	Variation of Major Subsystem Weights as a Function of Mixture Ratio for 700,000 lb Thrust LOX/LH2 Engines	155
3.3.1-7	Weights of Thrust Chamber Components Versus Mixture Ratio for 700,000 Thrust LOX/LH2 Engines	156
3.3.1-8	Injector Assembly Diagonal Plate (Gas-Gas)	156
3.3.1-9	Weights of Turbo Machinery Components Versus Mixture Ratio for 700,000 Thrust LOX/LH ₂ Engines	157
3.3.1-10	High Pressure Oxidizer Turbopump	157
3.3.1-11	4 Stage LH ₂ TPA With Integrated Boost Pump	158
3.3.1-12	Typical Nozzle Skirt Insert	159
3.3.1-13	Transition Altitude For 20:1 to 64:1 Area Ratio Skirts	160
3.3.1-14	Transition Altitude For 20:1 to 64:1 Area Ratio Skirts	161
3.3.1-15	High Mixture Ratio LOX/LH2 Engine Parameter Study	162
3.3.1-16	Variable Mixture Ratio Engine Characteristics	164
3.3.1-17	Variable Mixture Ratio Engine Characteristics	165
3.3.1-18	LOX/LH ₂ Engine Assembly	166
3.3.1-19	Pressure Pump Discharge and Turbine Inlet Versus Chamber Pressure	167
3.3.1-20	Turbine Inlet Gas Temperature Versus Mixture Ratio and Chamber Pressure	167

xi

٠..

ORIGINAL PAGE IS OF POOR QUALITY

1.0 INTRODUCTION

1.1 BACKGROUND

The current Advanced Launch System (ALS), as well as prior Space Transportation Architecture studies (both jointly conducted by the Air Force and NASA), have identified a similar partially reusable unmanned configuration as potentially the most cost-effective approach for a new unmanned, heavy-lift launch vehicle to commence operations by the year 2000.

This approach uses a side-mounted, unmanned flyback booster staging at a relatively low velocity (typically about Mach 5) in conjunction with a partially reusable "core" element in line with a large and heavy (typically 100 to 150K-lb) payload (fig. 1.1-1).

Figure 1.1-1 Partially Reusable Heavy Lift Launch Vehicle Concept

The reusable portion of this element is a propulsion/avionics (P/A) module that NASA/MSFC has been studying since 1986. The P/A module contains three or four Space Shuttle main engines (SSME) depending on payload weight.

The flyback booster dry weight required for this launch vehicle approach can be quite low for several reasons. One reason is that little or no thermal protection and only a limited amount of flyback capability is required because of the low staging velocity. Other reasons for the low weight could be the use of a new engine using highdensity fuel (stored within relatively small tankage) and a relatively high chamber pressure to allow a low vehicle base area.

Another type of launch vehicle of national interest is a manned, vertically launched, single-stage-to-orbit (SSTO) concept. This approach is a fully reusable (via horizontal landing) vehicle to provide low-cost access to low orbit for manned military sortie capability (for such missions as satellite servicing) and low cost manned/cargo access to the Space Station. Previous studies have indicated potential benefits for such a vehicle using subcooled propane, but facility infrastructure requirements to enable the use of this fuel have not yet been defined.

1.2 STUDY OBJECTIVES/SCOPE

The primary objective of this study was to determine relative vehicle dry weight impacts due to the use of several different propellant combinations/engine types for both the above described classes of boosters. These combinations all use liquid oxygen as the oxidizer and include liquid hydrogen, methane, kerosene (RP-1), or propane as the fuel (or, in some cases, the fuel plus hydrogen as a separate engine coolant). These vehicle dry weight impacts were to be determined in conjunction with variations of certain key engine parameters including mixture ratio, chamber pressure, and nozzle expansion ratio. Also, potential benefits of mixture ratio variation (for LOX/LH2)

during the booster burn, as well as possible benefits from using a two-position nozzle for low and high dual discreet expansion ratios, were to be determined.

To constrain the data development to meet the study objectives, a two-stage, parallel burn vehicle, capable of deploying a 150K-lb payload from the Eastern Test Range (ETR) to a fully operational Space Station (220-nmi, 28.5-deg inclination circular orbit) was assumed. A P/A module, using four SSMEs with weights extrapolated from Boeing's recent three-engine reusable P/A module study for NASA/MSFC, was utilized to perform the second-stage burn for each flyback booster/engine option analyzed.

For the SSTO vehicle, a payload of 10K lb to 100-nmi polar circular orbit was assumed in order to provide acceptable performance capabilities in support of highinclination orbit military sortie missions and also to cover potential requirements for low-inclination orbit manned/cargo access to the Space Station.

Additional objectives of this study were to determine preliminary vehicle impacts and facility infrastructure requirements/costs due to the use of subcooled propane as the booster fuel and to develop parametric variable mixture ratio LOX/LH₂ booster engine data.

2.0 STUDY ANALYSES

2.1 VEHICLE ANALYSIS

In order to compare the effects of different fuels and engines on a specific space launch vehicle concept, an approach was used in which alternative optimized configurations were developed to meet the same mission requirements. These optimized configurations were developed by simultaneous adjustment of the vehicle's engine and airframe variables to the demands of each other as well as to the performance requirements of the mission. Subsequently, the optimized configurations were compared to each other to determine the relative advantages and disadvantages of using different engine fuels on the vehicle concept.

2.1.1 Computer Program

To accomplish vehicle design optimizations economically, it is necessary to avoid the large number of design iterations required to analyze the effects of variable interactions using traditional parametric analyses (involving plots representing the effect of several variables on another). Boeing, therefore, under independent IR&D accomplished from mid 1986 to mid 1987, developed a specialized analysis program called HAVCD (Hypervelocity Aerospace Vehicle Conceptual Design), which combines launch vehicle design subprograms with a modified version of a previously developed optimization technique (ref. 1) to perform the optimization analysis with only a small fraction of the number of design evaluations required by traditional parametric comparison methods.

The HAVCD computer program was used to conduct design optimizations and generate trade data for this study. Having been previously developed under IR&D, this program was already in use to examine alternative in-house vehicle concepts upon initiation of this study. However, some modifications to this program were required to

adapt it to the specific requirements of the study. These modifications were accomplished under contract funding as summarized below.

HAVCD uses six specialized conceptual/preliminary design type subprograms as follows:

a. AIREZ - aerodynamics.

- b. PROP engine geometry, weights, and performance.
- c. TAVB airframe and subsystem weights.
- d. ELES tankage sizing and pressurization system.
- e. NTOP trajectory performance.
- f. FLYBACK flyback system design.

AIREZ relies on a blend of simplified aerodynamic theory and empirical relationships which result in acceptable agreement with wind tunnel test data. The subprogram generates a table of axial and normal aerodynamic force coefficients as a function of Mach number (Mach 0.3 to 20) and angle of attack (-10 to 60 deg) based on airframe geometry determined by TAVB.

The PROP subprogram was modified for this study to use the engine models from:

a. UTC/P&W, "Hydrocarbon Rocket Engine Study," contract NAS8-36355.

b. Rocketdyne, "Hydrocarbon Engine Study," contract NAS8-36357.

c. Aerojet, "Hydrocarbon Engine Study," contract NAS8-36359.

d. Aerojet, "STME Configuration Study," reference 2.

Besides computing engine specific impulse, nozzle and engine geometry and weight, the model also computes the fuel/coolant/oxidizer split for the tanks of the vehicles based on the output of the trajectory subprogram.

TAVB was previously developed under IR&D by the Boeing Military Airplane Company for analysis of a specific type of vehicle. For purposes of this study, the same

basic equations were modified to accommodate both the single-stage and two-stage vehicles described above. Conceptual design equations for the expendable tankage used in the two stage vehicle were provided by the Boeing Aerospace Weights Analysis technical staff.

ELES (Extended Liquid Engine Simulation) was written by Aerojet under Air Force contract (ref. 3). Only the tankage, feedline, and pressurization system sizing and weight models were used in this study since preference was given to the modeling of other items in TAVB.

NTOP (New Trajectory Optimization Program) was the trajectory program used in this analysis. The trajectory is integrated using a point mass model. A perigee altitude of 50 nmi was chosen to be low enough for good trajectory performance yet not be so low as to introduce unaccountable aerodynamic drag errors in the orbit circularization calculations. Propellant requirement for an orbit circularization burn with OMS engines was calculated by a closed form solution following main engine cutoff. Although the resulting trajectories are not optimum they are adequate to determine accurate dry weight differences between the concepts analyzed.

The FLYBACK system calculates the number of turbofan engines, fuel weight, and total flyback system weight in the booster vehicle. This routine used the conditions at staging to estimate these quantities.

Design optimization was required to enable valid comparison of the different propulsion systems. The objective was to determine the best designed vehicle for each propellant/engine type, and then compare these vehicles with each other in order to avoid any misleading results which could occur if a suboptimal design for one propellant was compared with a closer to optimal design for another.

Figure 2.1.1-1 diagrams the process used in the BPVIS study to optimize each vehicle design. The first step was to decide which computer variables would be fixed and which would be optimized. Certain variables like number of crew (2 for singlestage-to-oribt (SSTO), none for two-stage vehicles), number of directional control surfaces (2), number of SSMEs in the recoverable P/A module of the orbiter element of the two stage vehicle (4), were held constant throughout the study.

Figure 2.1.1-2 summarizes the independent and some of the dependent variables used in the optimization process. This process requires that study limits be defined for each of the independent variables. A routine in HAVCD called "Design Selector" uses the range limit of each independent variable and the method of orthogonal Latin squares to define specific designs having independent variable values distributed in the "design space." The main feature of this technique is that a minimal number of designs have to be run on the HAVCD program.

The primary function of the HAVCD program is to converge on a design by cycling through the various subprograms. Figure 2.1.1-3 shows the automated process used within HAVCD to obtain a design.

The program converges on the criteria that altitude equals 50 nmi and that the specified amount of payload can be put into orbit. These criteria are met by varying the duration of Phase number 1 (constant flight path angle) to achieve 50 nmi perigee altitude, and by varying propellant weight to obtain the desired payload weight capability. Another criteria met during the convergence process is that the variables are "consistent." That is, aerodynamics is correct for the geometry used, the geometry is correct for the propellant used, etc. Checks are shown on the diagram in some of the diamond shaped blocks for maximum percent change, of all (several hundred) variables in HAVCD to ensure that consistency is obtained.

After the designs are evaluated using HAVCD "Design Converge," a multivariable regression analysis is used to fit a second order equation to the data. Each dependent

ORIGINAL PAGE IS OF POOR QUALITY

.

Figure 2.1.1-1

BPVIS Design Synthesis Logic Flow

	Application				
Independent Variables	Hydrogen fuel		Hydrocarbon fuel		Dependent Variables
	2-stage	SSTO	2-stage	SSTO	
Body diameter	· 🗸	\checkmark	\checkmark	\checkmark	Total propellant weight
					Total dry weight
Liftoff thrust/weight with one engine out	V	√	v	V	Propellant weight in each vehicle (Two-Stage)
Booster engine mixture ratio	√	✓	✓	√	Dry weight of each vehicle (Two-
Number of booster engines	~	V	 ✓ 	\checkmark	Gross liftoff weight
Booster engine nozzle	\checkmark	\checkmark	\checkmark	\checkmark	Length/diameter ratio of booster
expansion ratio					Booster engine weight
Orbiter propellant at staging	~	-	~	-	Booster engine vacuum specific impulse at liftoff
Booster engine mixture ratio	√	\checkmark	-	-	Total length
Second engine noticle				~	Propellant mass fraction
expansion ratio					Weight at main engine cutoff
Percent of propellant on-board	\checkmark	$\overline{}$	-		Staging velocity
Percent of propellant on-board	-	-	-	V	Ratio of nozzle/atmospheric pressure at expansion ratio change
Percent of propellant op-board	<u> </u>	$\overline{\mathbf{v}}$		· · ·	Engine rated thrust
at expansion ratio change				l l'	Delivered booster thrust at liftoff

Figure 2.1.1-2 Independent and Dependent Study Variables

Note that the list of independent variables is a subset of the list of dependent variables. This arises because a given variable (e.g., body diameter) may be held out as an independent variable for the development of a sensitivity in which all other variables are dependent and allowed to "float" to find their optimum value. In other cases, other variables are chosen to be independent, and the given variable then falls back into the ranks of floating dependent variables.

Figure 2.1.1-3 Design Converger

variable is expressed as a function of the independent variables. To provide the best equation for each dependent variable, the regression analysis will only include terms considered significant to that variable. Up to 28 terms are possible with six independent variables, 45 terms for eight variables. Regression statistics provide an indication of how well the equation represents the actual relation between the dependent and independent variables. Key statistics are the residuals for each case (difference between the HAVCD value and value obtained by the equation), residual divided by standard deviation for each case, and multiple correlation coefficient squared (R squared) which is a single number for each variable.

÷ .

The equations are optimized using the method of steepest descent. The main feature of this optimization technique is that a minimal number of designs have to be run on the HAVCD program, thereby allowing optimized designs to be derived quickly. The time savings is evident when one considers that a traditional carpet plot approach would require 65536 designs to be evaluated for eight variables (4 levels per variable requires 4 to the 8th power number of cases). At about 20 minutes to derive a design on a VAX 8300 computer, the time savings is substantial. Once the equations are obtained, an optimization can be performed in under ten seconds. Any of the dependent variables can be optimized or used as a constraint.

The drawback to this optimization method is that optimizations are performed on equations that have a small error when compared to values obtained with the HAVCD program at the same independent variable values. However, the error is usually less than 5%. The equations are used to obtain very close to optimum values of the independent variables. For the best accuracy, all dependent variable values presented in this report are the result of substituting the independent variables back into the HAVCD program.

Optimizations are initially performed to minimize total dry weight. For the two stage vehicles, a constraint was applied that booster length/diameter equal about 4.5 (a

value chosen to generally provide aerodynamic stability without canard). It was found that the first optimization may yield a fractional number of engines, such as 5.53, or be less than the desired number. For the two stage configuration a minimum of five engines was chosen to ensure that booster engine thrust was not too high. For the SSTO vehicle, a minimum engine thrust limit of 400,000 lb (vacuum) was used. After this first optimization, the number of engines was fixed to be a whole number and the optimization rerun. If the first optimization yielded a value for the number of engines between five and six, both five and six engines would be tried and the one with lowest total dry weight selected. The independent variables from the optimum design are next input into HAVCD and the length/diameter ratio checked against the value used as a constraint during optimization. The HAVCD value will be within .05 of the desired value, but to ensure that all designs are compared on a basis as consistent as possible, enother optimization is performed to drive the HAVCD value to a value of 4.535. If the HAVCD value is higher than 4.535, a new optimization is performed with a slightly lower constraint on length diameter. Similarly, if the HAVCD value is lower than 4.535, a larger value of length/diameter is used as the constraint. After a few of these iterations, HAVCD yield a length/diameter equal to the desired value.

A trend study was used to generate graphs to give visibility of the interactions among the variables. As shown in figure 2.1.1-4, the process requires each variable to be fixed at ten levels between its upper and lower study limit. An optimization was performed at each value to yield a locus of optimum points for minimum total dry weight with a booster length/diameter equal to 4.535. Each design obtained for the graphs was run on the HAVCD program to enhance the accuracy of the dependent variables (rather than using the values determined by the regression equations). The graphs show how the dependent and other independent variables change in response to changes in this variable. It is important to realize that the graphs do not simply represent the result of varying one variable with all others fixed, but are actually a

13

.

locus of optimum designs. This method shows the true sensitivity of the design to the variable being evaluated.

2.2 SUBCOOLED PROPANE SUBCONTRACT

A subcontract effort was accomplished by the Aerotherm Division of Acurex Corporation to determine preliminary facility requirements/costs due to the use of subcooled propane as a booster fuel. This analysis included assessment of alternative concepts and comparisons with requirements due to the use of normal boiling point propane.

2.3 VARIABLE MIXTURE RATIO LOX/LH₂ PARAMETRIC ENGINE DATA SUBCONTRACT

Under subcontract, Acurex also supplied the subject data based on previously accomplished in-house study results.

2.4 COMPUTER MODEL EQUATIONS AND ASSUMPTIONS

Figure 2.4-1 and 2 provide a summary of key system and propulsion assumptions.

2.4.1 Engine Performance and Weights

Booster engine performance and engine weights used in this study were from the following sources:

- a. SSME engine data Liquid Propellant Engine Manual, CPIA/Ms
- Aerojet LOX/LH₂ high mixture ratio data, NAS8-36867, Space Transportation Main Engine study, January 1987
- c. Hydrocarbon Engine data, NAS8-36357, Hydrocarbon Engine Study, September 1986

Tankage and Feedlines -

Primary Material:	Aluminium/Lithium
Ullage Fraction:	2%
Line Material:	Stainless Steel
Feed System:	Includes lines weights, supports and service valves.
	External to propellant tanks.

Double walled tank on hydrogen tank on booster and SSTO otherwise they are monocoque tanks.

Cryogenic tanks are insulated with one inch SOFI.

All hydrogen propellant and coolant feedlines double walled.

Performance -

Trajectories are flown with one sustainer or 2nd stage engine out. Booster and sustainer engines fire in parallel. No crossfeed.

P/A Module -

Weight, excluding propulsion, is 43208 pounds.

Re-orbit P/A module after de-orbit of tanks.

Figure 2.4-1 Assumptions for Vehicle Analysis

Ascent Propellant -

Propellant consumed up to main engine cutoff. Includes fuel and oxidizer weights in both stages. Does not include coolant propellant, residuals, reserves, or propellant vaporized for pressurization.

Total Tank Weight -

Pressurant Weight - Fuel or oxidizer propellant vaporization for tank pressurization.

Pressurant Control Hardware Weight -

Control hardware for autogenous and/or helium pressurization.

Pressurant Weight -

Helium gas weight (RP-1 stages only)

Inert Weight -

Weight of vehicle after orbit circularization. Does not include payload weight. Includes propellant reserves, propellant residuals, flyback fuel, propellant for de-orbit, and in-flight, fluid losses like RCS propellant and propellants vented from the main engines.

Dry Weight -

Does not include any fluids.

Landing Weight -

Includes propellant reserves.

Hydrogen Coolant Weight -

Includes reserves and residuals.

Equipment Weight -

Includes miscellaneous equipment like electrical, hydraulics, avionics, helium for propellant purge, APQs, and crew related equipment.

Figure 2.4-2 Weight Assumptions

2.4.2 Baseline SSME Engines

The SSME information used in this study is as follows:

	Booster	<u>Orbiter</u>	
Expansion Ratio	35:1	77.5:1	
Vacuum I _{sp}	437.7 sec	453.5 sec	
Chamber Pressure	3270 psia	3270 psia	
Engine Weight	6790 lbm	7000 lbm	
Throat Diameter	0.8518 ft	0.8518ft	

2.4.3 LOX/LH₂ High Mixture Ratio Engines

The aerojet LOX/LH₂ high mixture ratio tables were used in this evaluation. The tables limited the evaluation over a chamber pressure range of 2000 to 4000 psia, an expansion ratio range of 30:1 to 150:1 and a mixture ratio range of 6 to 18.

The theoretical specific impulse of the engine used a curvefit equation. This equation is:

 $(3.54 + 3.507B - 1.514B^2 + .1948B^3)$ Isp = FACxe

> where A = ln (expansion ration) B = ln (mixture ratio)

> > (-.251+.0968A-.0068A²) FAC = e

A shift in mixture ratio is assumed to be caused by an oxidizer flowrate only. Fuel flowrate remains constant and engine efficiency does not change. A new chamber pressure and CSTAR is calculated as the mixture ratio changes

 $(10.065 + .00556C - 1.570B + .7794B^2 - .1493B^3)$ CSTAR = e

where C	=	ln (chamber pressure)
chamber pressure	=	CSTAR * WDOT/(ATHROAT* go)
where WDOT	=	total propellant flowrate
ATHROAT	=	engine throat area
go	=	32.174 ft/s ²

2.4.4 Hydrocarbon Engines

Three contractors were involved in the Hydrocarbon engine study under contract NAS8-36357. Two engine cooling methods were used in this study, propellant and hydrogen. The contractors were Aerojet Tech Systems Company, Pratt and Whitney, and Rocketdyne Division of Rockwell International Corporation. The data from the LOX/LH₂ high mixture ratio study was generated by Aerojet. It was decided that Aerojet's data would be used for performance in the hydrocarbon study to keep a link between all of the propellants. Pratt and Whitney had parametric equations that were easy to adapt to computer programs and these were used for performance variations, engine weights, and for throat area determination. Rocketdyne provided sufficient information to model the liquid hydrogen required for engine cooling.

Pratt and Whitney performance equations were corrected to the Aerojet theoretical equations by applying an I_{sp} correction factor ($I_{sp}FACT$). The theoretical I_{sp} would then be corrected by and engine efficiency factor (EFFFACT), also from Aerojet. The EFFFACT would contain the factor for near-term technology up to 1995, and far-term technology (1995 and beyond).

The equations used in this study for the hydrocarbon engines follow:

ORIGINAL PAGE IS OF POOR QUALITY

RP-1 propellant, LH2 cooled where required

Near Term (Pc limit 4550 psia)

 $(-.2449-9.8766x10^{-5}P_c+5.5342x10^{-8}P_c^2)$ H2 coolant flowrate =e ratioed to total propellant flowrate

Far Term (Pc limit 6200 psia)

 $(-.3066 - 1.0936 \times 10^{-5} P_{c} + 2.9226 \times 10^{-8} P_{c}^{-2})$

H2 coolant flowrate =e ratioed to total propellant flowrate.

The theoretical vacuum specific impulse for each engine is found in figure 2.4.4-1.

CONF FACT G Ħ 0.0 0.2348 -.000633 0.0 0.0 -131.19 0.0 0.0 -319.88 -5.3906 -2339.47 2C.2D 1.0207 512.8 0.0 0.0 0.932 -136.16 0.029 -723.57 0.0 0.0 22.2F 1.1111 486.6 0.0 -309.3 -6.4005 0.0 0.238 -.000667 0.0 0.0 -113.89 0.0 -1587.88 0.0 -15.887 1.0309 152.2 117.0 2G 60.49 2.499 -117.67 0.0 -1000.51 783.7 0.0 0.0 2H 1.0719 -399.5 -206.9 0.0 0.0 925.8 -124.7 -802.06 7.2665 0.0 0.0 0.0 0.0 2.869 -100.74 0.0 -2061.75 1.0224 2T 1.1006 -6320.3 -2310.6 1854.4 80.452 7066.1 0.0 0.0 2.1704 -118.11 0.0 -1145.2 2.3 0.0 923.2 -124.3 -799.75 7.2455 0.0 0.0 0.0 0.0 2.8608 -100.45 0.0 -2055.81 28 1.0220 -442.57 0.0 0.0 0.038 -1254.08 0.0 0.0 0.0 2L,2M 1.0991 1068.6 -178.2 -920.79 12.589 I = FACT $(\lambda + B + C/MR + D + MR^2 + E + MR + F + EX + G + EX + H/EX + I + EX + J + MR/EX$

+ K ' MR ' EX + L ' MR/PC)

MR - mixture ratio EX - nozzle expansion ratio PC - chamber pressure - psia

Figure 2.4.4-1 Specific Impulse Equations for Hydrocarbon Engines

This vacuum impulse is corrected for engine efficiency, which is found in figure 2.4.4-2, and is used in the flight performance program. Delivered specific impulse is corrected for atmospheric pressure during engine operation.

CONF	FACT	<u> </u>	B	C
2C	1.000	.9233	7.5x10 ⁻⁷	-5.0x10 ⁻¹¹
2D	1.000	.9233	7.5x10 ⁻⁷	-5.0x10 ⁻¹¹
2E	1.000	.9378	-3.9x10 ⁻⁵	0
2F	1.033	.9378	-3.9x10 ⁻⁵	0
2G	1.000	.9602	7.714x10 ⁻⁷	-4.2856x10 ⁻¹⁰
2H	1.000	.9526	-6.286x10 ⁻⁷	-2.429x10 ⁻⁹
21	1.000	.9329	-7.75x10 ⁻⁷	-8.928x20 ⁻¹¹
2J	1.000	.9208	3.4499x10 ⁻⁶	-5.750x10 ⁻⁹
2K	1.000	.9238	-7.285x10 ⁻⁷	-7.1432x10 ⁻¹¹
2L	1.000	.9274	-6.4286x10 ⁻⁶	-1.4286x10 ⁻⁹
2M	1.032	.9274	-6.4286x10 ⁻⁶	-1.4286x10 ⁻⁹

. .

.

Engine Efficiency = FACT (A + B * PC + C * PC^2)

Figure 2.4.4-2 Hydrocarbon Engine Efficiency

The weight of each engine is found in figure 2.4.4-3. If the engine is to have an extendable nozzle the engine weight is increased by the following equation:

169+.642(.1534(Throat area)-2.019) (EXMAX-EXMIN)

where EXMAX is deployed expansion ratio

EXMIN is initial expansion ratio

Engine throat area is calculated in figure 2.4.4-3.

CONF	<u>A</u>	<u> </u>	C	D	E	F	G
				•			
2C,2D	8400	1.44	-0.152	-155.7	57.5	3.0	.4822
2E,2F	8064	1.38	-0.146	-149.4	55.2	3.0	.4853
2G	8316	1.43	-0.150	-154.1	56.9	3.5	.4969
2H	7980	1.37	-0.144	-147.9	54.6	3.5	.4718
21	8484	1.45	-0.153	-157.2	58.0	3.0	.4869
2J	8148	1.40	-0.147	-151.0	55.8	3.0	.4785
2K	8358	1.43	-0.151	-154.9	57.2	3.0	.4859
2L,2M	8022	1.37	-0.145	-148.7	54.9	3.0	.4894

Engine Weight = A* $(\underline{TH}_{1,000,000})^{.95}$ * (MR) -.012+B+C*EX+D* <u>TH</u> +E* <u>EX*TH</u> 1,000,000 F 1000*P_C 1000*P_C Engine Throat Area = G. TH/PC

TH - engine thrust - lbs MR - mixture ratio EX - expansion ratio P_c - chamber pressure - psia

Figure 2.4.4-3 Hydrocarbon Engine Weight and Throat Area

2.4.5 Propellant Tanks

The propellant tank weight was calculated by the Expanded Liquid Engine Simulation (ELES). Monocoque tank design was used for all configurations except when a liquid hydrogen tank was used on a flyback system. A suspended liquid hydrogen tank was used on the first stage on the SSTO. Aluminum lithium alloy was used as the propellant tank and structure.

Propellant tank pressure was chosen based on required pump inlet pressure and line pressure drop. The pressure was always set above atmospheric and obtained by autogenous except RP-1 tanks which required helium pressurization. Propellant tank pressure was not optimized in this study. total dry weight would be reduced further if the tank pressure was optimized. Time did not permit this optimization. Propellant tank (fuel, oxidizer, and coolant tanks) used a 2% ullage volume. All cryogenic tanks used one inch of insulation to prevent ice build-up.

Feed lines were routed external to the propellant tanks. The propellant lines were stainless steel with all hydrogen lines being double walled. A bellows was placed at the end of each line with a flange every 10 to 12 feet. Line pressure drops we set at 5 psia.

2.4.6 Flyback System

The flyback system was used only on the first stage of the two stage vehicle. It used Pratt and Whitney 4056 turbofan engines with go-around capability with 5% fuel reserve. Flyback mach number was 0.5 at 2500 feet and a lift to drag ratio of 5:1.

2.4.7 Weight Assumptions

Ascent propellant was defined as that propellant required up to main engine cutoff. It does not include coolant propellant, residuals, reserves or propellant vaporized for pressurization.

The total tank weights include propellant tanks, support structure and insulation. It does not include helium tanks or hydrogen coolant tanks.

Autogenous pressurant weight is the fuel or oxidizer propellant vaporized for tank pressurization.

The inert weight is the weight after orbit circularization. It does not include the payload weight. It includes propellant reserves, residuals, flyback fuel, propellant used for de-orbit and in-flight fluid losses such as RCS propellants and propellants vented from the main engines.

Dry weight is the weight that contains no fluids.

Equipment weight includes miscellaneous equipment such as electrical, hydraulic, avionics, helium for propellant purge, APU and crew related equipment.

The thermal protection tile weight for the reentry vehicle is calculated based on the exposed area to reentry (normally the body and wing bottom surface) and a tile weight similar to the space shuttle. The thermal protection system for the booster is calculated based on its staging Mach number, and is booster staging weight x (.01382*Mach-.0776), value.

The orbital maneuvering system (OMS) propellant is calculated on the deltavelocity required of the OMS system and the orbital system weight. The OMS delta velocity is composed of circularization, manuevers, deorbit, etc. A 1% value of the OMS propellant is used for the residual OMS propellant weight and a 4% value is used for reserves. OMS tankage, lines, hardware is estimated at 10% of the OMS propellant weight.

Reaction Control System (RCS) is estimated in a similar manner to OMS propellant except a factor is included to account for propellant expended for additional orbits. Trapped and reserve propellant are set at 29% of the RCS propellant.

2.4.8 Flight Performance

It was assumed that a second stage engine was not operating throughout the flight. To size the booster engine, it was assumed the largest of a booster or second stage engine was not operating at liftoff. The vehicle would lift vertically for about 200 feet then pitch over in a gravity turn.
3.0 STUDY TASKS

This study was organized into three major tasks as detailed in the following sections. The three tasks are (1) comparative design studies of two-stage and one-stage launch vehicles employing various fuel/coolant combinations, (2) an assessment of the ground operations impact of using subcooled propane as the launcher fuel, and (3) an evaluation of a full topping cycle, variable mixture ratio engine.

3.1 TASK 1: PERFORMANCE IMPACTS

The comparative vehicle studies were organized into five subtasks:

Subtask 1A. Development of a representative baseline vehicle for each of two launcher classes:

a. Two-stage, partially reusable, 150,000 lb to low Earth orbit.

(altitude = 220 nmi circular, inclination = 28.5 deg, KSC launch)

b. One-stage, fully reusable, 10,000 lb to low Earth orbit.

(altitude = 100 nmi circular, inclination = 90 deg, VAFB launch)

In both vehicles, the upper stage or sustainer operation mode uses LOX/LH2 propellants.

Subtask 1B. Development of reference vehicles in each of the above classes that use LOX/hydrogen propellants for the booster component of the system, optimizing the mixture ratio to achieve minimum vehicle dry weight. Subsequently, develop comparative LOX/hydrocarbon designs employing the following booster fuel candidates:

a. RP-1.

b. Methane.

c. Propane (near boiling point:NBP).

d. Propane (subcooled:SC).

The physical properties of these fuels are summarized in figures 3.1-1 and 3.1-2. Hydrocarbon engine parametric data used in this study were based on the results of Contracts NAS8-36355 (Pratt & Whitney), NAS8-36357 (Rocketdyne), NAS8-36359 (Aerojet).

Near-term performance levels (i.e., believed achievable by 1991) were used for all designs. Two specific two stage designs (RP-1 and SC propane) were conducted using far-term performance levels (i.e., believed achievable by 1998). The designs were focused on boost propulsion system elements with consideration given to stage pressurization, propellant feed ducts, tankage, and fill and drain systems, and accounting for influences on other vehicle systems as appropriate (e.g., structure).

Subtask 1C. Development of LOX/hydrocarbon vehicle designs using the same hydrocarbon fuels as well as supplementary hydrogen as an engine coolant, with consideration being given to the aforementioned propulsion system elements and to propellant crossfeed from the booster to the second stage. Design impacts were addressed in respect to the comparable fuel choice from subtask 1B.

Subtask 1D. Development of design variations of the reference vehicles based on the use of high mixture ratio and variable mixture ratio of the LOX/hydrogen boost propellants over the range of 6 to 18. Design impacts were addressed in respect to the reference vehicles.

Subtask 1E. Conduct of sensitivity analyses to determine the benefit of a step change in booster engine specific impulse during the boost phase (as might be obtained by a translating nozzle) as applied to the two reference vehicles and the LOX/RP-1 and LOX/methane versions (both hydrogen-cooled) of the two-stage vehicle. A similar sensitivity analysis of the same vehicles was also conducted for variations in boosterengine chamber pressure.

Figure 3.1-2. Propellant Viscosity

Specific vehicle configurations are detailed in the following subsections.

3.1.1 Two-Stage Vehicles

The configuration concept for the parallel burn two-stage system incorporates a winged, flyback booster and a partially reusable "orbiter" stage. The reference payload is 150,000 lb to Space Station, i.e., 220-nmi circular orbit at an inclination of 28.5 deg. The payload bay envelope is 33 ft in diameter by 70 ft long, effectively doubling the volumetric capability of the Space Shuttle or the Titan IV. Figure 3.1.1-1 depicts the basic two-stage configuration. The call-outs are typical for all two stage options considered.

Typical mission operations (fig. 3.1.1-1) are similar to familiar launch systems. The booster is assembled with its payload, moved to a launch site at Cape Kennedy, and fueled at the pad before liftoff. Lifting off vertically, the stack accelerates to around Mach 5, where the booster element is empty. The winged booster separates from the support members holding it to the adjacent orbiter and flies back to a runway near the launch site using onboard automatic flight guidance and control. The orbiter continues to orbit propelled by four Space Shuttle main engines (SSME). At a dynamic pressure of 5 lb/ft² the payload shroud is jettisoned. The P/A module has a low L/D, thermally protected shape and reenters intact. After decelerating using drag, parachutes are deployed from the P/A module to facilitate its recovery. The P/A module, as well as the booster, are later refurbished and then reused on the next flight.

The baseline staging velocity of around 5000 ft/s is based upon minimum weight as well as material considerations. Figure 3.1.1-2 plots weight versus staging velocity. Note that in the speed regime of 4000 to 6000 ft/s the weight minimum is a shallow, broad "bucket" function. Any staging velocity selected in this region would result in an acceptable, low-weight booster design. However, increasing staging velocity increases

QRIGINAL PAGE IS OF POOR QUALITY

4 SSME Propulsion/Avionics Module

Figure 3.1.1-1. Two-stage Partially Reusable Launch Vehicle—Typical Features

the aerothermal loads on the booster, requiring different structural materials and/or more thermal protection (e.g., more dry weight for insulation). Graphite/polymide is a material choice consistent with the time frame for this vehicle because of its lightweight and relatively inexpensive to manufacture.

ORIGINAL PAGE IS OF POOR QUALITY The booster element is a winged, flyback vehicle. The propellants and the number and size of rocket engines are varied for each of the study configurations, hereafter designated 2.A through 2.M. The aft tank, which is always a LOX tank, is cylindrical with hemielliptic domes. (This tank is located far enough forward to allow a structural wing box to pass continuously from side to side of the vehicle.) Forward of the LOX tank is the fuel tank; the tapered, or frustrum shape of the fuel tank follows the external contours of the vehicle, which is tapered to increase aerodynamic efficiency for a given booster length. In cases where an engine coolant is used that is different from the fuel, a third, smaller tank is located forward of the fuel tank in the nose of the booster.

The fuselage is a conventional structure: propellant tanks surrounded by a protective shell, including some thermal protection system (TPS) large-acreage tiles. The forebody houses the nose gear, the flyback avionics, and attach structure for one of the attachment beams to the orbiter. The aft fuselage contains the thrust structure for the multiple rocket engines as well as the propellant plumbing. An example of the structural and plumbing interfaces for a seven engine configuration is shown in figure 3.1.1-3. A slanted closeout bulkhead is positioned perpendicular to the takeoff booster thrust vector. A constant chord body flap for pitch control and trim is attached at the base of the closeout bulkhead. Fuselage fineness ratio, or (1/d), is the same for all configurations; a value of 4.535 was found to be near optimum for maximizing aerodynamic performance while minimizing wetted area (and thus drag).

The wing is a trapezoidal planform with trailing edge ailerons and flaperons. Wing-tip mounted vertical fins with rudders provide directional stability and control. The main landing gear is attached to the wing box near the body join, and is stowed between the front and rear spars of the inboard wing. At the near spar/body join is the structural attachment fittings for the attach beams to the orbiter.

- Thrust structure/feedline integrated design similiar in design philosophy to space shuttle orbiter aft fuselage
- Representative of installations envisioned for all vehicle/engine combinations assessed
- Sufficient space available for shell frames, thrust structure and feedlines
- Additional space available for remaining subsystems

Figure 3.1.1-3. Typical Booster Propulsion Thrust Structure/Plumbing Arrangement

ORIGINAL PAGE IS OF POOR QUALITY

To enhance flyback performance, most importantly range, fold-down turbofan engines are housed in the wing. Because the engine/fold-down mechanism is larger than the wing thickness, a protruding fairing is located on the underside of the wing.

Other subsystems, such as hydraulics, pneumatics, avionics, and electrical, are conceptually the same as present technology systems in use on systems like the Space Shuttle.

The orbiter stage consists of three elements: (1) the recoverable P/A module, (2) the LOX/LH₂ tankage, and (3) the payload bay/shroud. Only the P/A module is recovered after flight. This module, which contains the thrust structure and plumbing for four SSMEs, vehicle control avionics, and a parachute recovery system, is similar to designs being studied for the ALS by Boeing under contract to USAF Space Division. A typical design is shown in figure 3.1.1-4. Four SSMEs are used to ensure one-engine-out vehicle performance.

Figure 3.1.1-4. Typical P/A Module Design

The tankage section of the orbiter is of conventional design: both the LOX tank (forward) and LH₂ tank (aft) are cylindrical, load bearing tanks with hemielliptic ends. The interstage structure also contains the attachment beams to the booster.

The payload is mounted on an aft and adapter attached to the tankage section. The payload shroud is jettisoned when the altitude of the flight profile results in an extremely low dynamic pressure.

Specific vehicle designs will be presented in the following sections. Each discussion will include a configuration description and an optimization sensitivity analysis.

Six single-stage configurations (designated 1.A through 1.F) and thirteen two-stage configurations (designated 2.A through 2.M) were developed in the study. Each configuration has a different type of engine. Initially, single-stage and two-stage baseline vehicles, designated 1.A and 2.A respectively, using SSMEs were developed for comparison to subsequent optimized designs. Near the conclusion of the study, it was decided to use the optimized hydrogen fuel vehicles (1.B and 2.B) as the reference configurations since it appeared to be more meaningful to compare the other optimized designs with these optimized designs.

Figure 3.1.1-5 is a summary comparison of optimized (for minimum total dry weight) configurations 2.A through 2.M. This figure shows the salient features of the concepts from a configuration viewpoint. Figure 3.1.1-6 compares weight.

The orbiter dry weight, or loaded weight for that matter, does not vary greatly with concept selection; this is expected because this stage is always LOX/LH₂ fueled, powered by SSMEs, and provides most of the delta-velocity to orbit. The booster dry weight varies more significantly, reflecting different fuel and/or coolants and variations in vehicle size and number of engines. The baseline (2.A) SSME-powered vehicle is by far the heaviest in terms of booster dry weight because of the large volumetric storage requirements for LH₂. The lowest dry weight is produced by the methane-fueled, LH₂-cooled concept (2.G).

ORIGINAL PAGE IS OF POOR QUALITY

Configuration	2.A	2.8	2.C	2.D	2.E	2.F	2.G	2.H	. 2.1	2.1	2.K	2.L	2.M
Fuel	н,	H ₂	RP-1	RP-1	RP-1	RP-1	CH4	CHe	NBP C ₂ H ₈	NBP C3Ha	SC CyHg	SC C3H8	5С С1Н
Coolant	Из	HJ	H2	H2	RP-1	RP-1	H3	CH4	Hz	NBP C ₂ H ₂	H ₂	NBP C3H8	C ₃ H ₈
Mixture Ratio	6:1	8.97:1	3.26:1	3.15:1	3.15:1	2.5:1	3.77:1	3.7:1	3.09:1	3.42:1	3.42:1	3.35:1	3,44:1
Number of Booster Engines	7	5	S	6	5	5	5	5	6	5	5	5	5
Booster Engines Vac. Thrust (lb)	494,000	661,400	656,340	690,530	675,400	855,660	596,070	690,740	545,710	740,560	653,940	766,010	734,640
P _C (psia)	3,270	4,000	4,000	2,500	1,300	1,650	4,300	3,300	4,000	2,600	4,000	3,300	3,900
Vacuum Isp - sec	437	416	326	311	294	304	347	338	328	316	330	310	325
Nozzle Expansion Ratio	35.0	50.3	28.8	45.0	15.0	15.0	22.7	28.9	21.6	22.8	25.0	28.2	29.9
N Near-Term F Far-Term	N	N	N	N	N	F	N	N	*	N	N	N	F
Booster Dry Weight (lb)	241,720	195,610	167,630	171,620	190,500	187,330	159,150	167,130	163,480	170,590	165,280	171,980	166,720
Orbiter Dry Weight (lb)	163,420	164,030	164,150	164,410	163,310	162,610	163,450	163,830	163,470	164,870	163,470	163,710	164,780
Total Dry Weight (lb)	405,140	360,630	331.789	336,030	353,810	349,940	322,600	330,960	326,950	335,460	328,750	335,690	331,490
GLOW (Ib)	3,167,600	3,341,800	3,469,800	3,609,300	3,934,400	3,569,300	3,289,100	3,564,200	3,336,700	3,731,900	3,353,700	3,541,100	3,593,600
V _{Slaging} (ft/s)	5,000.0	4,922.3	4,232.2	4,172.7	5,278-2	5,075.1	4,743.8	5,135.6	4,425.3	4,280.9	4,518.5	4,624.8	4,180.6

Figure 3.1.1-5 Two-Stage Vehicle Optimized Results

Figure 3.1.1-6 Two-Stage Weight Comparisons

The far term benefit of greater chamber pressures and higher specific impulse for RP-1 and propane fuel engines is shown in figure 3.1.1-7. As shown, the benefit is small and probably not worth the expenditure of resources in this area.

Figure 3.1.1-7 Far -Term Technology Impact on System Weights

3.1.1.1 Baseline Vehicle (Configuration 2.A)

Configuration Description. Figure 3.1.1.1-1 is a three-view drawing of configuration 2.A. A summary of the configuration features is shown in figure 3.1.1.1-2. Detailed performance and weight numbers are tabulated in the appendix on A-2 through A-5.

<u>Note:</u> This report locates the tabulated results in Appendix A and the computer optimized curves are shown in Appendix B. These tables and figures are separated from the text for clarity.

Optimization Sensitivities. Because this vehicle was configured only to establish a point-design solution to the performance requirement, detailed optimization was reserved for the design of the reference vehicle described in section 3.1.1.2.

.³⁷

	Vehicle	Features	
Weights		Engines	
Dry Weight (lb) =	241,720	Type =	LH2/LO2
Propellant Weight (lb) =	1,035,000	Number =	7
- LO2 (Ib) =	887,450	Thrust (vacuum, each) (lb) 🛥	494,400
- LH2 (lb) =	147,910	MR =	6.00
Inert Weight (lb) =	227,620	P _C (psia) =	3,270
λ' =	0.783	¹ sp =	437
		= 3	35
	4 52	d _{powerhead} (in) =	100
<u></u>	4.33	D _{nozzie} (in) =	60.5
D (ft) =	33.0	• Fins	
$S_{body flap}$ (ft ²) =	264	S _F (ft²) (ea) =	167
			1.39
	2 022	$\lambda =$	0.55
5 _{1ef} (17²) =	3,034	t/c =	11%
AR ≡ λ = 0.11	2.06	S _{rudder} (ft ²) (ea) =	50.0
t/c =	11%	A Shihark Engine	
S _{flaperons} (ft ²) =	766	Flyback Engines	4
	Orb	iter:	
Weights	•	P/A Module (4 SSMEs)	
Dry Weight (lb) =	163,420	Weight (lb) =	122,000
Propellant Weight (lb) =	1,505,000	Circularization OMS	
- LO ₂ (lb) =	1,289,700	Propellant (lb) =	9,470
$-LH_2(LB) =$	214,950	Total OMS	
Inert Weight (lb) =	190,510	Propellant (lb) =	18,600
λ' =	0.888		
GLOW (Ib) =	3,167,600		
V _{staging} (ft/s) =	5,000		
P/L to Space Station (lb) =	150,000		

Figure 3.1.1.1-2. Summary of Configuration Features for Configuration 2.A

3.1.1.2 H₂/H₂ (Configuration 2.B)

Configuration Description. Figure 3.1.1.2-1 is a three-view drawing of configuration 2.B. Note the larger LOX tank as compared to the baseline because of the higher mixture ratio. A summary of configuration features for the optimized vehicle is shown in figure 3.1.1.2-2. Detailed performance and weight numbers are tabulated in the Appendix A-6 through A-9.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows (Appendix B-2 through B-25):

a.	Body diameter (booster):	29 to 33 ft
ь.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	6 to 12
d.	Orbiter propellant at staging:	34 to 44%
e.	Number of engines (booster):	4 to 8
f.	Expansion ratio (booster):	30 to 50

Detailed sensitivity analyses are presented in the appendix. These figures represent a locus of optimized designs. All independent variables were allowed to change (to optimize on minimum total dry weight) as the variable plotted on the abcisa was varied. For example, in appendix B-2 through B-5, as diameter was varied, other independent variables (number of engines, mixture ratio, liftoff acceleration) changed to achieve the minimum total dry weight design. This results in a different sensitivity than if all the other variables were fixed and the one parameter were varied, but is more representative to illustrate the time sensitivity of vehicle design to changes in a design variable. The design presented for a particular configuration, such as shown in figures 3.1.1.2-1 through 3.1.1.2-2 may not correlate to the designs shown in the sensitivity study due to a number of reasons:

Figure 3.1.1.2-1. Three-View Drawing of Configuration 2.8

Weights: Dry Weig Propellar - LO2 (lt - LH2 (lt Inert Wei à' =	ht (lb) = it Weight (lb) = i) = ght (lb) =	197,470 : 1,074,000 966,380 107,690 227,380 0.819	Engines: Type: Number = Thrust (va MR: Pc (psia) = E = c	= cuum, each) (lb	LH ₂ /LO ₂ 5) = 671,110 8.97 4,000 416 50.3
Body: $\frac{\ell}{D}$	2	4.53	D nozzle (il	ld (III)	74.0
D (f Sbo	t) = dyflap (ft2) =	30.5 244	Fins: S_F (f AR $\lambda =$	t ²) (ea) = =	144 1.39 0.55
Wing: S _{ref} A λ =	(ft ²) = =	3,132 2.06 0.11	t/c = Srude	_{der} (ft²) (ea) =	11% 43.3
t/c = Sflag	: perons (ft ²) =	626	Flyback Engi	nes:	2
Drbiter:					
Weights: Dry Weig Propellan	ht (lb) = t Weight (lb) =	164,380 1,601,000	P/A Module (Weight (lb Circulariza	4 SSMEs):) = ition OMS	122,000
- LO2 (16 - LH2 (LI) = 3) =	1,372,000 228,670	Propellant Total OMS	(lb) =	9,470
$\lambda' =$	jnt (Ib) =	192,050 0.893	Propellant	(lb) =	18,600

•

.....

Figure 3.1.1.2-2. Summary of Configuration Features for Configuration 2.8

a. Design shown in the sensitivity study may have the number of engines less than 5 (a constraint applied to the selected design to limit the booster engine thrust).

b. The sensitivity study designs may use a fractional number of engines.

c. The sensitivity study designs were constructed for a booster length/diameter (L/D) ratio constraint that it should equal 4.535. Due to the approximate nature of the optimization technique, the actual L/D, which results from input of the independent variables in the HAVCD Design Converger, will may be different from 4.535 by as much as 2%. For the final designs, the optimization was rerun on the computer with a constraint on L/D higher or lower than the desired value so that the value calculated by the HAVCD Design Converger will equal 4.535.

Consequently, the sensitivity study curves should only be used for sensitivity analysis rather than used to select design variable values.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing within the range of 30 to 31 ft diameter. Other sensitivities tend to be monotonic or bucket, with several exceptions. A minor breakpoint occurs at 29.9 ft, associated with reaching the lower limit on number of engines and breaking free from the upper limit on orbiter propellant at staging. Orbiter propellant at staging is relatively insensitive. Nozzle expansion ratio optimized at the upper limit (50:1) over the range of variation. (Appendix B-2 through B-5).

Engine-out Liftoff Acceleration. Total dry weight minimizes at about 1.19g. A major breakpoint occurs at 1.235g, associated with breaking free from the lower limit on number of booster engines. This results in trend reversals in engine thrust level. Landing weight, throttle setting, and body diameter are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (44%) and nozzle expansion ratio at its upper limit (50:1) over the range of variation (Appendix B-6 through B-9).

Mixture Ratio. Total dry weight minimizes at a mixture ratio of about 8.8, but is relatively insensitive over the range of variation. Two breakpoint conditions exist: one at 9.4 and one at 11.3. The former is associated with breaking free from the upper limit on orbiter propellant at staging. The latter is associated with breaking free from the lower limit on number of booster engines and breaking free from the upper limit on nozzle expansion ratio. Throttle setting is relatively insensitive over the range of variation (Appendix B-10 through B-13).

Orbiter Propellant at Staging. Total dry weight minimizes between 41% and 42%, but is relatively insensitive over the range of variation. Other sensitivities tend to be monotonic or bucket. The nozzle expansion ratio optimized at its lower limit (30:1) over the range of variation (Appendix B-14 through B-17).

Number of Booster Engines. Total dry weight minimizes at four engines, and is moderately sensitive over the range of variation. Propellant mass fraction and initial throttle setting are relatively insensitive, however. Nozzle expansion ratio optimized at its lower limit (30:1) over the range of variation (Appendix B-18 through B-21).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of 50:1, but is relatively insensitive over the range of variation. A breakpoint occurs at an expansion ratio of 48:1, associated with the beginning of an abrupt transition to the lower limit on number of booster engines. Throttle setting is relatively insensitive over the range of variation, between 41% and 42%, but is relatively insensitive over the range of variation. Other sensitivities tend to be monotonic or bucket. The nozzle expansion ratio optimized at its lower limit (30:1) over the range of variation (Appendix B-22).

3.1.1.3 RP-1/H₂ ($P_c = 4000 \text{ psia}$) (Configuration 2.C)

Configuration Description. Figure 3.1.1.3-1 is a three-view drawing of configuration 2.C. A summary of configuration features is shown in figure 3.1.1.3-2. Detailed performance and weight numbers are tabulated in the Appendix A-10 through A-13.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter (booster):	28 to 32 ft
b.	Minimum liftoff acceleration:	1.1 to 1.4g
c.	Mixture ratio (booster):	2.5 to 4.0
d.	Percent propellant at staging:	30 to 40
e.	Number of engines (booster):	3 to 8
f.	Expansion ratio (booster):	15 to 40

1

(Mixture ratio is defined for LOX/hydrocarbon propellant only. LH₂ coolant is apportioned as a percentage of the main propellant mass flow). Detailed sensitivity analyses are presented in the appendix B-26 through B-49 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing within the range of 29 to 30-ft diameter. Minimization of total dry weight coincides with the maximization of gross liftoff weight. Staging velocity optimized at approximately 4232 ft/s for all body diameters (Appendix B-26 through B-29).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g, with only moderate sensitivity over the range of variation. A minor breakpoint occurs at 1.151g, when the maximum limit is reached for orbiter propellant at staging. Staging velocity is optimized at approximately 4232 ft/s for all accelerations (Appendix B-30 through B-33).

Configuration: 2.C	
Booster:	
Weights:Dry Weight (lb) =167,630Propellant Weight (lb) =1,346,280 $-LO_2$ (lb) =1,030,000 $-Methane$ (lb) =299,220 $-LH_2$ (lb) =17,060Inert Weight (lb) =195,350 $\lambda' =$ 0.870	Engines: Type: RP-1/LH ₂ Number = 5 Thrust (vacuum, each) (lb) = 656,340 MR: 3.44 P _C (psia) = 4,000 I _{sp} = 326 E = 326 E = 28.82 dpowerhead (in) = 98
Body: $\frac{\ell}{2}$ = 4.53	$D'_{nozzle}(in) = 53.9$
D (ft) = 29.4 Sbody flap (ft ²) = 235	Fins: $S_F(ft^2)(ea) = 129$ $A_R^R = 1.39$ $\lambda = 0.55$
Wing: $S_{ref}(ft^2) = 2,663$ AR = 2.06 $\lambda = 0.11$	t/c = 11% Srudder (ft ²) (ea) = 38.8
$\frac{t/c}{S_{flaperons}(ft^2)} = \frac{11\%}{533}$	Flyback Engines: 2
Orbiter:	
Weights: Dry Weight (lb) = 164,150 Propellant Weight (lb) = 1,577,100	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS
$\begin{array}{ccc} -LO_2 (lb) = & 1,351,800 \\ -LH_2 (LB) = & 225,300 \\ lnert Weight (lb) = & 195,350 \\ \lambda' = & 0.890 \end{array}$	Propellant (lb) = 9,470 Total OMS Propellant (lb) = 18,600
GLOW (lb) = 3,469,800 V _{staging} (ft/s) = 4,263 P/L to Space Station (lb) = 150,000	

Figure 3.1.1.3-2. Summary of Configuration Features for Configuration 2.C

Mixture Ratio. Total dry weight minimizes at a mixture ratio of 3.2 to 3.3, but is relatively insensitive over the range of variation. A minor breakpoint occurs at approximately 2.7, when the orbiter propellant at staging decreases from its maximum limit. Staging velocity optimizes at approximately 4232 ft/s and the engine-out liftoff acceleration is optimized at its lower limit (1.1g) for all mixture ratios (Appendix B-34 through B-37).

Orbiter Propellant at Staging. Total dry weight minimizes at 38%, but is relatively insensitive over the range of variation. Staging velocity is optimized at approximately 4232 ft/s and the engine-out liftoff acceleration is optimized at its lower limit (1.1g) over the range of variation (Appendix B-38 through B-41).

Number of Booster Engines. Total dry weight minimizes at four engines, but is relatively insensitive over the range of three to five engines. A major breakpoint occurs at seven engines, where the engine-out liftoff acceleration increases from its lower limit (1.1g). This results in trend reversals for gross liftoff weight, body diameter, LH₂ coolant weight, throttle setting, orbiter propellant at staging, and nominal liftoff acceleration. Staging velocity optimized at approximately 4232 ft/s over the range of variation (Appendix B-42 through B-45).

Expansion Ratio. Total dry weight minimizes near an expansion ratio of 25:1 but is relatively insensitive over the range from 20:1 to 30:1. Other sensitivities are minor: Propellant mixture ratio is optimized at approximately 3.25, staging velocity is optimized at approximately 4232 ft/s, and engine-out liftoff acceleration is optimized at its lower limit (1.1g) over the range of variation (Appendix B-46 through B-49).

3.1.1.4 RP-1/H₂ ($P_c = 2500 \text{ psia}$) (Configuration 2.D)

Configuration Description. Figure 3.1.1.4-1 is a three-view drawing of configuration 2.D. A summary of configuration features is shown in figure 3.1.1.4-2. Detailed performance and weight numbers are tabulated in the appendix A-14 through A-17.

poster:	
Weights:	Engines:
Dry Weight (lb) = 171,620	Type: RP-1/LH ₂
Propellant Weight (lb) = 1,455,000	Number = 5
$-LO_2(lb) = 1,104,200$	Thrust (vacuum, each) (Ib) = 690,530
- RP-1 (Ib) = 338,020	MR: 3.27
$-LH_2(Ib) = 12,520$	$P_{C}(p_{S1a}) = 2,500$
lnert Weight (lb) = 200,130	$l_{sp} = 511$
Δ' = 0.8/4	14.03
	$D_{\text{powerhead}}(in) = 123.0$
Body: $\frac{c}{D}$ = 4.53	
D (ft) = 29.3	Fins: SF (ft ²) (ea) = 131
$S_{body flap}$ (ft ²) = 234	AR = 1.39
	$\lambda = 0.55$
Wing: $S_{ref}(ft2) = 2.725$	t/c = 11%
$\Delta p = 2.06$	S _{rudder} (ft²) (ea) = 39.4
$\lambda = 0.11$	
t/c = 11%	
S _{flaperons} (ft ²) = 545	Flyback Engines: 2
rbiter:	
Weights	P/A Module (4 SSMEs):
Dry Weight (lb) = 164.410	Weight (lb) = 122,000
Propellant Weight (lb) = $1,603,000$	Circularization OMS
- LO ₂ (lb) = 1,373,900	Propellant (lb) = 9,470
$-LH_2(LB) = 228,980$	Total OMS
Inert Weight (lb) = 192,080	Propellant (lb) = 18,600
λ' = 0.893	
LOW (lb) = 3,609,300	

Figure 3.1.1.4-2. Summary of Configuration Features for Configuration 2.C

Optimization Sensitivities. The optimization constraints on the selected independent variables are identical to those given in section 3.1.1.3. Detailed sensitivity analyses are presented in the appendix B-50 through B-73 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing within the range of 29 to 30-ft diameter, much as the previous vehicle configuration. Many sensitivities have dramatic discontinuities and trend reversals associated with the following breakpoints (Appendix B-50 through B-53):

a. 28.9 ft: maximum limit, orbiter propellant at staging.

b. 29.3 ft: minimum limit, engine-out liftoff acceleration.

c. 29.9 ft: minimum limit, expansion ratio.

d. 30.7-31.0 ft: minimum limit, number of booster engines.

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g, with only moderate sensitivity over the range of variation. A minor breakpoint occurs at approximately 1.23g, when the maximum limit is reached for percent of orbiter propellant at staging. Nozzle expansion ratio is optimized at its lower limit (15:1) for the range of variation (Appendix B-54 through B-57).

Mixture Ratio. Total dry weight minimizes at a mixture ratio of 3.2, but is relatively insensitive over the range of variation. A minor breakpoint occurs for the range 3.7 to 3.8, when nozzle expansion ratio increases from its lower limit. Engine-out liftoff acceleration optimized at its lower limit (1.1g) for the range of variation (Appendix B-58 through B-61).

Orbiter Propellant at Staging. Total dry weight minimizes at 39 to 40%, but is relatively insensitive over the range of variation. Other sensitivities are either monotonic or bucket in form. Engine-out liftoff acceleration optimized at its lower

limit (1.1g) and nozzle expansion ratio optimized at its lower limit (15:1) over the range of variation (Appendix B-62 through B-65).

Number of Booster Engines. Total dry weight minimizes at three engines, but is relatively insensitive over the range of three to six engines. Major breakpoints occur near 5.9 to 6.3 and 7.0, where engine-out liftoff acceleration increases from its lower limit and nozzle expansion ratio increases from its lower limit, respectively (Appendix B-68 through B-69).

Expansion Ratio. Total dry weight minimizes near an expansion ratio of 17:1, but is relatively insensitive over the range from 15:1 to 35:1. Other sensitivities are minor. Engine-out liftoff acceleration is optimized at its lower limit (1.1g) over the range of variation (Appendix B-70 through B-73).

3.1.1.5 RP-1/RP-1 (Configuration 2.E)

Configuration Description. Figure 3.1.1.5-1 is a three-view drawing of configuration 2.E. A summary of configuration features is shown in figure 3.1.1.5-2. Detailed performance and weight numbers are tabulated in the appendix A-18 through A-21.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter:	26 to 30 ft
ь.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	2.5 to 4.0
d.	Orbiter propellant at staging:	27 to 35
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 40

Detailed sensitivity analyses are presented in the appendix B-74 through B-97 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing within the range of 26.5 to 27.0-ft diameter. The major breakpoints occur at 26.9, 27.35, and 27.75 ft. The first is difficult to explain. The second is associated with reaching the higher limit on number of booster engines. The third is associated with reaching the minimum limit on engine-out liftoff acceleration. Nozzle expansion ratio is optimized at its lower limit (15:1) over the range of variation (Appendix B-74 through B-77).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.15g with only moderate sensitivity over the range of variation. A major break in most of the sensitivity curves occurs between 1.125 and 1.165g, associated with a rapid decrease in the number of engines (from six to three) and limiting at four engines. Propellant mixture ratio and vehicle body diameter are relatively insensitive, and nozzle expansion

Figure 3.1.1.5-1. Three-View Drawing of Configuration 2.E

Configuration: 2.E	
Booster:	
Weights: $Dry Weight (lb) =$ 191,000Propellant Weight (lb) =1,865,000- LO2 (lb) =1,415,000- RP-1 (lb) =449,000Inert Weight (lb) =199,000 $\lambda' =$ 0.888	Engines: Type: RP-1/RP-1 Number = 6 Thrust (vacuum, each) (lb) = 620,000 MR: 3.15 Pc (psia) = 1,300 $l_{sp} = 294$ $\epsilon = 15.00$ degree for the set of the set
Body: $\frac{\ell}{2}$ = 4.53	$D_{nozzle}(in) = 69.4$
D (ft) = 27.2 Sbody flap (ft ²) = 218	Fins: $S_F(ft^2)(ea) = 141$ $A_R = 1.39$ $\lambda = 0.55$
Wing: $S_{ref}(ft^2) =$ 3,023 $AR =$ 2.06 $\lambda =$ 0.11	t/c = 11% Srudder (ft2) (ea) = 42.23
t/c = 11% Sflaperons (ft ²) = 605	Flyback Engines: 2
Orbiter:	
Weights: Dry Weight (lb) = 163,000 Propellant Weight (lb) = 1,493,000	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS
$\begin{array}{ccc} -LO_2(lb) = & 1,280,000 \\ -LH_2(LB) = & 213,000 \\ lnert Weight(lb) = & 190,000 \\ \lambda' = & 0.887 \end{array}$	Propellant (lb) = 9,470 Total OMS Propellant (lb) = 18,600
GLOW (Ib) = 3,934,000 V _{staging} (ft/s) = 5,278 P/L to Space Station (Ib) = 150,000	

Figure 3.1.1.5-2. Summary of Configuration Features for Configuration 2.E

ratio optimized at its lower limit (15:1) over the range of variation (Appendix B-78 through B-81).

Mixture Ratio. Total dry weight minimizes at a mixture ratio of 3.0, but is only moderately sensitive over the range of variation. Two breakpoints are evident: a minor one at 2.83 and a major one at 3.16. The minor one is associated with breaking free of the lower limit on number of booster engines. The major one is difficult to explain. Nozzle expansion ratio optimized at its lower limit (15:1) over the range of variation (Appendix B-82 through B-85).

Orbiter Propellant at Staging. Total dry weight minimizes at 31.5% propellant onboard, with only moderate sensitivity over the range of variation. A major break in most of the sensitivity curves occurs between 30% and 32%, associated with breaking free of the lower limit on engine-out liftoff acceleration and with reaching the lower limit on number of booster engines, respectively. Nozzle expansion ratio optimizes at its lower limit (15:1) over the range of variation (Appendix B-86 through B-89).

Number of Booster Engines. Total dry weight minimizes at four or five engines, but is relatively insensitive over the range of variation. Propellant mass fraction, body diameter, propellant mixture ratio, throttle setting, orbiter propellant at staging, and engine-out liftoff acceleration are relatively insensitive to number of engines. Nozzle expansion ratio optimizes at its lower limit (15:1) over the range of variation (Appendix B-90 through B-93).

Expansion Ratio. Total dry weight minimizes near an expansion ratio of 20:1, but is relatively insensitive over the range from 15:1 to 25:1. Major breakpoints occur at 17.2:1 and 20.5:1, associated with reaching the lower limit on engine-out liftoff acceleration and with reaching the lower limit on number of booster engines, respectively. Throttle setting and engine-out liftoff acceleration are relatively insensitive to nozzle expansion ratio (Appendix B-94 through B-97).

3.1.1.6 RP-1/RP-1 Far-Term Performance (Configuration 2.F)

Configuration Description. Figure 3.1.1.6-1 is a three-view drawing of configuration 2.F. A summary of configuration features is shown in figure 3.1.1.6-2. Detailed performance and weight numbers are tabulated in the appendix A-22 through A-25.

Optimization Sensitivities. The optimization constraints on the selected independent variables are identical to those given in section 3.1.1.5. Detailed sensitivity analyses are presented in the appendix B-98 through B-121 and are discussed below.

Body Diameter. Total dry weight, in this case, is a "semibucket" function, minimizing at 26-ft diameter. The sensitivity curves are quite broken up in accordance with the following breakpoints (Appendix B-98 through B-101):

a. 26.4-ft: minimum limit, propellant mixture ratio.

b. 26.9-ft: minimum limit, number of booster engines.

- c. 27.8-ft: minimum limit, orbiter propellant at staging, engine-out liftoff acceleration, and expansion ratio.
- d. 28.2-ft: minimum limit, engine-out liftoff acceleration and maximum limit, expansion ratio.
- e. 29.1-ft: minimum limit, orbiter propellant at staging.

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.165g, but is relatively insensitive over the range 1.12 to 1.25g. Significant breakpoints are as follows:

a. 1.12g: minimum limit, number of booster engines.

b. 1.17g: maximum limit, percent propellant at staging.

- c. 1.19g: minimum limit, expansion ratio.
- d. 1.21g maximum limit, percent propellant at staging.

Figure 3.1.1.6-1. Three-View Drawing of Configuration 2.F

Configu	ration: 2.F			
Booster: Weigh Dry Prop - L - R Iner λ' =	ts: Weight (lb) = bellant Weight (lb) = O2 (lb) = P-1 (lb) = t Weight (lb) =	187,000 = 1,577,000 1,126,000 450,000 105,000 0.873	Engines: Type: Number = Thrust (vacuum, each) (lb MR: Pc (psia) = Isp = E =	RP-1/RP-1 6) = 620,000 2.50 1,650 304 15.00
Body:		4.53	dpowerhead (in) = D nozzle (in) =	120 69.39
Wing:	D (ft) = Sbody flap (ft ²) = Sref (ft ²) =	26.0 208 2,964.60	Fins: $S_F(ft^2)(ea) =$ $A_R =$ $\lambda =$ t/c = $S_F(ft^2)(ea) =$	138.87 1.39 0.55 11%
	$\begin{array}{l} AR = \\ \lambda = \\ t/c = \\ Sflaperons (ft^2) = \end{array}$	2.06 0.11 11% 592.92	Flyback Engines:	2
Drbiter:		·		
Weigh Dry	ts: Weight (lb) =	163,000	P/A Module (4 SSMEs): Weight (lb) ≈	122,000
- L	O ₂ (lb) = LH ₂ (lb) =	1,220,000 203,000	Propellant (lb) = Total OMS	9,470
lner λ' =	t Weight (lb) =	189,000 0.883	Propellant (lb) =	18,500
SLOW (II / _{staging} P/L to Sp	b) = (ft/s) = ace Station (lb) =	3,569,000 5,075 150,000		

Figure 3.1.1.6-2. Summary of Configuration Features for Configuration 2.F

Propellant mixture ratio optimized at its lower limit (2.5) over the range of variation (Appendix B-102 through B-105).

Mixture Ratio. Total dry weight minimizes near a mixture ratio of 2.8, with moderate sensitivity over the range of variation. Minor breakpoints include:

- a. MR = 3.0: maximum limit, orbiter propellant at staging.
- b. MR = 3.15: minimum limit, body diameter.
- c. MR = 3.50: maximum limit, orbiter propellant at staging and minimum limit, body diameter.

Body diameter, throttle setting, orbiter propellant at staging, propellant mass fraction, engine-out liftoff acceleration, and nominal liftoff acceleration are relatively insensitive over the range of variation. Number of booster engines optimizes at its lower limit (four) and nozzle expansion ratio at its lower limit (15:1) over the range of variation (Appendix B-106 through B-109).

Orbiter Propellant at Staging. Total dry weight minimizes at approximately 31.5%, but is relatively insensitive over the range 29 to 35%. One breakpoint appears at 32.4%, associated with reaching the lower limit on number of engines (four). Propellant mixture ratio optimized at its higher limit (4.0) and nozzle expansion ratio at its lower limit (15:1) over the range of variation (Appendix B-110 through B-113).

Number of Booster Engines. Total dry weight minimizes for five or six engines, but is relatively insensitive over the range four to seven engines. A breakpoint appears at 5.4 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program), associated with breaking free from the upper limit on orbiter propellant at staging and from the upper limit on engine-out liftoff acceleration. Propellant mixture ratio optimizes at its upper limit (4.0) and nozzle expansion ratio

optimizes at its lower limit (15:1) over the range of variation (Appendix B-114 through B-117).

Expansion Ratio. Total dry weight minimizes over the range of 23:1 to 32:1, but is only moderately sensitive over the range of variation. Significant breakpoints are as follows:

- a. 20.5: maximum limit, number of booster engines and minimum limit, engine-out liftoff acceleration.
- b. 23.5: minimum limit, number of booster engines and maximum limit, orbiter propellant at staging.
- c. 32.0: minimum limit, number of booster engines.
- d. 34.5: minimum limit, engine-out liftoff acceleration.

Propellant mixture ratio optimized at its upper limit (4.0) over the range of variation (Appendix B-118 through B-121).

3.1.1.7 Methane/H₂ (Configuration 2.G)

Configuration Description. Figure 3.1.1.7-1 is a three-view drawing of configuration 2.G. A summary of configuration features is shown in figure 3.1.1.7-2. Detailed performance and weight numbers are tabulated in the appendix A-26 through A-29.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter:	28 to 32 ft
ь.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	3.0 to 4.5
d.	Orbiter propellant at staging:	35 to 50%
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 40

Figure 3.1.1.7-1. Three-View Drawing of Configuration 2.G

.

Configuration: 2.G	
Booster:	
Weights:Dry Weight (lb) =159,150Propellant Weight (lb) = $-LO_2$ (lb) =983,000-Methane (lb) =238,000-LH2 (lb) =22,900Inert Weight (lb) = $\lambda' =$ 0.863	Engines: Type: Methane/LH ₂ Number = 5 Thrust (vacuum, each) (lb) = 596,000 MR: 4.13 P _C (psia) = 4,300 l_{sp} = 347 \mathcal{E} = 22.75 doowerhead (in) = 92.7
Boay: $\frac{\ell}{2}$ = 4.53	$D_{nozzie}(in) = 44.6$
D D (ft) = 30.3 Sbody flap (ft ²) = 243	Fins: $S_F (ft^2) (ea) = 125$ AR = 1.39 $\lambda = 0.55$
Wing: $S_{ref}(ft^2) =$ 2,245 $AR =$ 2.36 $\lambda =$ 0.11	t/c = 11% S _{rudder} (ft ²) (ea) = 37.6
t/c = 11% Sflaperons (ft ²) = 449	Flyback Engines: 2
Orbiter:	ł
Weights: Dry Weight (lb) = 163,000 Propellant Weight (lb) = 1,507,000	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS
$-LO_2(lb) = 1,292,000$ $-LH_2(lb) = 215,000$	Propeilant (lb) = 9,470
linert Weight (lb) = 191,000 $\lambda' = 0.888$	Propellant (lb) = 18,600
GLOW (lb) = 3,289,000 V _{staging} (ft/s) = 4,734 P/L to Space Station (lb) = 150,000	

Figure 3.1.1.7-2. Summary of Configuration Features for Configuration 2.G

Detailed sensitivity analyses are presented in appendix B-122 through B-145 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing within the range of 30- to 31-ft diameter but is only moderately sensitive over the range of variation. Two breakpoints appear to exist: at 29.3 and 30.2 ft. The former is difficult to explain. The latter is associated with reaching the lower limit on number of booster engines and the lower limit on engine-out liftoff acceleration (Appendix B-122 through B-125).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g, the lower limit, but is only moderately sensitive over the range of variation. A single breakpoint appears to exist at 1.19g, corresponding to optimizations breaking free from the lower limit on number of booster engines (Appendix B-126 through B-129).

Mixture Ratio. Total dry weight minimizes at 3.65 but is relatively insensitive over the range of variation, as are propellant mass fraction, throttle setting, orbiter propellant at staging, and nominal liftoff acceleration. The number of booster engines optimized at its lower limit (four) and engine-out liftoff acceleration optimized at its lower limit (1.1g) over the range of variation (Appendix B-130 through B-133).

Orbiter Propellant at Staging. Total dry weight minimizes at approximately 36.5%, but is only moderately sensitive over the range of variation. A single breakpoint occurs at 40%, corresponding to breaking free of the lower-limit on engine-out liftoff acceleration. The number of booster engines optimizes at its lower limit (four) over the range of variation (Appendix B-134 through B-137).

Number of Booster Engines. Total dry weight minimizes at four engines, but is relatively insensitive over the range of interest. A breakpoint occurs at 6.2 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program), associated with breaking free from the lower limit on engine-out

liftoff acceleration. Propellant mass fraction, body diameter, propellant mixture ratio, and throttle setting are relatively insensitive over the range of variation (Appendix B-138 through B-141).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of 23:1, but is relatively insensitive over the range of variation, as are propellant mass fraction, throttle setting, nominal liftoff acceleration, and body diameter. The number of engines optimized at its lowest limit (four) and engine-out liftoff acceleration optimized at its lowest limit (1.1g) over the range of variation (Appendix B-142 through B-145).

3.1.1.8 Methane/Methane (Configuration 2.H)

Configuration Description. Figure 3.1.1.8-1 is a three-view drawing of configuration 2.H. A summary of configuration features is shown in figure 3.1.1.8-2. Detailed performance and weight numbers are tabulated in appendix A-30 through A-33.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter:	25 to 29 ft
b.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	3.0 to 4.5
d.	Orbiter propellant at staging:	27 to 37%
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 40

Detailed sensitivity analyses are presented in the appendix B-146 through B-169 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing in the range of 26 to 27 ft and moderately sensitive over the range of variation. Three breakpoints occur: at 26.8, 27.7, and 28.6 ft in diameter. The first corresponds to

Configuration: 2.H	· · · · · · · · · · · · · · · · · · ·
Booster:	
Weights: $Dry Weight (lb) =$ 167,1Propellant Weight (lb) =1,469,0 $-LO_2 (lb) =$ 1,156,0 $-Methane (lb) =$ 313,0Inert Weight (lb) =199,0 $\lambda' =$ 0.8	Engines: Type: Methane/Methane Number = 5 Thrust (vacuum, each) (lb) = 691,000 MR: 3.70 PC (psia) = 3,300 $l_{sp} = 338$ $\epsilon = 15.00$ dowerhead (in) = 109
Body: $\frac{\ell}{D} = 4.1$	$D_{\text{nozzie}}(in) = 69.4$
D (ft) = 26 Sbody flap (ft ²) = 2	Fins: $S_F(ft^2)(ea) = 129$ $A_R^R = 1.51$ $\lambda = 0.55$
Wing: $S_{ref}(ft^2) =$ 2,60 $AR =$ 2.0 $\lambda =$ 0.1	52 52 52 52 52 57 57 57 57 57 57 57 57 57 57
t/c = 11 Sflaperons (ft ²) = 55	% 32 Flyback Engines: 2
Orbiter:	
Weights: Dry Weight (lb) = 164,00 Propellant Weight (lb) = 1,546,10	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS
$-LO_2 (lb) = 1,325,00$ $-LH_2 (lb) = 221,00$	00 Propellant (lb) ≈ 9,470 00 Total OMS
lnert Weight (lb) = 191,00 λ' = 0.89	00 Propellant (lb) ≈ 18,600
GLOW (Ib) = 3,564,0 V _{staging} (ft/s) = 5,1 P/L to Space Station (Ib) = 150,0	00 36 00

Figure 3.1.1.8-2. Summary of Configuration Features for Configuration 2.H

reaching the lower limit on number of booster engines and the lower limit on engine-out liftoff acceleration. The second corresponds to reaching the lower limit on propellant mixture ratio. The third is difficult to explain. Throttle setting is relatively insensitive over the range of variation (Appendix B-146 through B-149).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g and is moderately sensitive over the range of variation. Two breakpoints occur: at 1.125g (associated with breaking free from the lower limit on number of booster engines) and at 1.255g (associated with reaching a plateau value for the orbiter propellant at staging) (Appendix B-150 through B-153).

Mixture Ratio. Total dry weight minimizes at a ratio of 3.6, but is relatively insensitive over the range of variation. No significant breakpoints occur. Propellant mass fraction, body diameter, throttle setting, orbiter propellant at staging, and nominal liftoff acceleration are relatively insensitive over the range of variation. The number of booster engines optimized at its lower limit (four) and engine-out liftoff acceleration optimized at its lower limit (1.1g) over the range of variation (Appendix B-154 through B-157).

Orbiter Propellant at Staging. Total dry weight minimizes at 37%, and is only moderately sensitive over the range of variation. Two breakpoints occur: at 34.5% and 36%. The first is associated with reaching the lower limit on number of booster engines. The second is associated with breaking free of the lower limit on engine-out liftoff acceleration (Appendix B-158 through B-161).

Number of Booster Engines. Total dry weight minimizes at four engines, but is only moderately sensitive over the range of variation. A breakpoint occurs at 4.9 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program) associated with breaking free of the lower limit on engine-out liftoff acceleration. Propellant mass fraction, body diameter, propellant mixture ratio,

throttle setting, and staging velocity are relatively insensitive over the range of variation (Appendix B-162 through B-165).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of 23:1 but is relatively insensitive over the range of variation. A minor breakpoint occurs at 22:1, associated with reaching the lower limit of engine-out liftoff acceleration. Propellant mass fraction, throttle setting, engine out and nominal liftoff acceleration, and body diameter are also relatively insensitive over the range of variation. The number of booster engines optimized at its lower limit (four) over the range of variation (Appendix B-166 through B-169).

3.1.1.9 NBP Propane/H₂ (Configuration 2.1)

Configuration Description. Figure 3.1.1.9-1 is a three-view drawing of configuration 2.I. A summary of configuration features is shown in figure 3.1.1.9-2. Detailed performance and weight numbers are tabulated in the appendix A-34 through A-37.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

а.	Body diameter:	28 to 32 ft
ь.	Engine-out liftoff acceleration:	1.1 to 1.4g
c.	Mixture ratio (booster):	2.0 to 4.0
d.	Orbiter propellant at staging:	30 to 40%
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 50

Detailed sensitivity analyses are presented in the appendix B-170 through B-193 and are discussed below.

Body Diameter. Total dry weight is a "ragged bucket" function, minimizing at approximately 29.3 ft, with moderate sensitivity over the range of variation. Two breakpoints occur: at 30.2 and 30.7-ft diameter. The first is associated with reaching the lower limit on engine-out liftoff acceleration. The second is associated with reaching the lower limit on number of booster engines. Propellant mass fraction is relatively insensitive over the range of variation (Appendix B-170 through B-173).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.15g with moderate sensitivity over the range of variation. Minor breakpoints occur at 1.23g (associated with reaching the lower limit on nozzle expansion ratio) and 1.27g (associated with reaching the upper limit on orbiter propellant at staging). A major breakpoint occurs over the span 1.335 to 1.365g, associated with a rapid transition to

Figure 3.1.1.9-1. Three-View Drawing of Configuration 2.1

Weigh			Engines:	
Drv	Weight (lb) =	163.000		Pronane/I Ha
Pro	oellant Weight (lb)	= 1.283.000	Number =	6
- L	$O_2(lb) =$	991,000	Thrust (vacuum, each) (I	b) = 546,000
- 1	VPB Propane (lb) =	273,000	MR:	3.40
- L	.H ₂ Coolant (lb) =	18,300	Pc (psia) =	4,000
Iner	t Weight (lb) =	194,000	l _{sp} =	328
λ' =	:	0.898	= 3	21.38
			dpowerhead (in) =	93
Body:	$\frac{\ell}{D} =$	4.53	$D_{nozzle}(in) =$	42.7
				<u> </u>
	D(ft) = (t+2)	29.6	Fins: S _F (ft ²) (ea) =	128
	Sbody flap $(TT^2) =$	237	AR =	1.39
			$\lambda =$	0.55
Wing:	S _{ref} (ft ²) =	2,636	$\frac{1}{1} \int \frac{1}{1} \int \frac{1}$	11%
-	AR =	2.06	Srudder (TT2) (ea) =	38.5
	$\lambda =$	0.11		
	t/c = (t, z)	11%		
	\Im Sflaperons (Tt ²) =	527	riyback Engines:	Z
rbiter:			r	
Weigh	ts:		P/A Module (4 SSMEs):	
Dry	Weight (lb) =	163,000	Weight (lb) =	122,000
Prop	pellant Weight (lb) =	1,568,000	Circularization OMS	
- L	$U_2(ID) =$	7,294,00	Propellant (lb) =	9,470
- L 100-	Π2 (LB) = + Meight (16) -	101 000	Total OMS	10 000
$\lambda' =$		0.897	Propellant (Ib) =	18,600
			۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	
	• •			
LOW (I	b) =	3,337,000		

Figure 3.1.1.9-2. Summary of Configuration Features for Configuration 2.1

•

the lower limit on number of booster engines. Propellant mixture ratio is relatively insensitive over the range of variation (Appendix B-174 through B-177).

Mixture Ratio. Total dry weight minimizes between 3.0 and 3.5 with moderate sensitivity over the range of variation. Minor breakpoints occur at 2.25 (associated with breaking free from the upper limit on orbiter propellant at staging) and 2.45 (associated with breaking free from the lower limit on nozzle expansion ratio). A major breakpoint occurs at 2.7 but is difficult to explain. Propellant mass fraction is relatively insensitive over the range of verification (Appendix B-178 through B-181).

Orbiter Propellant at Staging. Total dry weight minimizes at 40%, with moderate sensitivity over the range of variation. A minor breakpoint occurs at approximately 32.3%, associated with breaking free from the lower limit on engine-out liftoff acceleration. Propellant mixture ratio and throttle setting are relatively insensitive over the range of variation (Appendix B-182 through B-185).

Number of Booster Engines. Total dry weight minimizes at four engines, but is relatively insensitive over the range of variation. No breakpoints occur. Propellant mass fraction, body diameter, mixture ratio, throttle setting, orbiter propellant at staging, and engine-out liftoff acceleration are relatively insensitive over the range of variation (Appendix B-186 through B-189).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of 19:1 but is relatively insensitive over the range of variation. No constraint-related breakpoints occur. Gross liftoff weight, propellant mass fraction, mixture ratio, and throttle setting are relatively insensitive over the range of variation (Appendix B-190 through B-193).

3.1.1.10 NBP Propane/NBP Propane (Configuration 2.J)

Configuration Description. Figure 3.1.1.10-1 is a three-view drawing of configuration 2.J. A summary of configuration features is shown in figure 3.1.1.10-2. Detailed performance and weight numbers are tabulated in the appendix A-38 through A-41.

[،] 72

Figure 3.1.1.10-1. Three-View Drawing of Configuration 2.J

Configuration: 2.J	
Booster:	
Weights: Dry Weight (lb) =170,590Propellant Weight (lb) =1,528,000 $- LO_2$ (lb) =1,154,400 $- Propane$ (lb) =373,240Inert Weight (lb) =202,910 $\lambda' =$ 0.878	Engines: Type: Propane/Propane Number = 5 Thrust (vacuum, each) (lb) = 740,560 MR: 3.09 Pc (psia) = 2,600 lsp = 316 E = 22.81 dnowerbead (in) = 127
Body: $\frac{\ell}{D}$ = 4.53	$D_{\text{nozzle}}(in) = 62.9$
D (ft) = 26.3 Sbody flap $(ft^2) = 210$	Fins: $S_F(ft^2)(ea) = 132$ $A_R^R = 1.39$ $\lambda = 0.55$
Wing: $S_{ref}(ft^2) = 2,750$ $A_{\lambda}^{R} = 2.06$ $\lambda = 0.11$	t/c = 11% Srudder (ft ²) (ea) = 39.6
t/c = 11% Sflaperons (ft ²) = 550	Flyback Engines: 2
Orbiter:	
Weights: Dry Weight (lb) = 164,870 Propellant Weight (lb) = 1.649.000	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS
$-LO_2$ (lb) = 1,413,400 $-LH_2$ (lb) = 235,560	Propeilant (lb) = 9,470 Total OMS
Inert Weight (lb) = 192,830 λ' = 0.895	Propellant (lb) = 18,600
GLOW (lb) = 3,731,900 V _{staging} (ft/s) = 4,281 P/L to Space Station (lb) = 150,000	

Figure 3.1.1.10-2. Summary of Configuration Features for Configuration 2.J

Optimization Sensitivities. The optimization constraints on the selected

independent variables are as follows:

8.	Body diameter:	25 to 29 ft
b.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	2.0 to 4.0
đ.	Orbiter propellant at staging:	28 to 38%
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 50

Detailed sensitivity analyses are presented in the appendix B-194 through B-217 and are discussed below.

Body Diameter. Total dry weight does not minimize according to a well-behaved relationship, displaying two acute minima at 25.9 ft and at 27.2 ft, which are difficult to explain. Breakpoints seems to occur over the bands 25.9 to 26.3 ft and 28.7 to 29.0 ft. The first is associated with reaching the upper limit on number of booster engines and also with reaching the lower limit on engine-out liftoff acceleration. The second is associated with an abrupt transition from the higher limit to the lower limit on number of booster engines. Nozzle expansion ratio optimized at its lower limit (15:1) over the range of variation (Appendix B-194 through B-197).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g and is only moderately sensitive over the range of variation. A breakpoint occurs at 1.28g, associated with breaking free from the lower limit on number of booster engines. Propellant mass fraction, mixture ratio, and throttle setting are relatively insensitive over the range of variation. Orbiter propellant at staging optimized at its upper limit (38%) over the range of variation (Appendix B-198 through B-201).

Mixture Ratio. Total dry weight minimizes at a ratio of 4.0, with moderate sensitivity over the range of variation. Two distinct breakpoints occur: at 3.4 and 3.8.

The first is associated with breaking free from the lower limit on nozzle expansion ratio. The second is associated with breaking free from the upper limit on number of booster engines. Propellant mass fraction and throttle setting are relatively insensitive over the range of variation. Orbiter propellant at staging optimized at its upper limit (38%) and engine-out liftoff acceleration optimized at its lower limit (1.1g) over the range of variation (Appendix B-202 through B-205).

Orbiter Propellant at Staging. Total dry weight minimizes at 33.55%, but is relatively insensitive over the range of variation. No breakpoints are evident. Propellant mass fraction, throttle setting, and nominal liftoff acceleration are relatively insensitive. The number of booster engines optimized at its upper limit (eight), engine-out liftoff acceleration at its lower limit (1.1g), and nozzle expansion ratio at its lowest limit (15:1) over the range of variation (Appendix B-206 through B-209).

Number of Booster Engines. Total dry weight minimizes at four engines, with moderate sensitivity over the range of variation. A breakpoint occurs at 6.6 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program) associated with reaching the lower limit of nozzle expansion ratio. Propellant mass fraction, body diameter, and throttle setting are relatively insensitive. Orbiter propellant at staging optimizes at its lower limit (38%) and engineout liftoff acceleration at its lower limit (1.1g) over the range of variation (Appendix B-210 through B-213).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of 23:1, with moderate sensitivity over the range of variation. A major breakpoint occurs between 20:1 and 23:1, associated with an abrupt transition between the upper and lower limits on the number of engines. Propellant mass fraction and throttle setting are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (38%) and engine-

out liftoff acceleration at its lower limit (1.1g) over the range of variation (Appendix B-214 through B-217).

3.1.1.11 Subcooled Propane/H₂ (Configuration 2.K)

Configuration Description. Figure 3.1.1.11-1 is a three-view drawing of configuration 2.K. A summary of configuration features is shown in figure 3.1.1.11-2. Detailed performance and weight numbers are tabulated in the appendix A-42 through A-45.

Optimization Sensitivities. The optimization constraints on the selected independent variables are identical to those given in section 3.1.1.10. Detailed sensitivity analyses are presented in the Appendix B-218 through B-241 and are discussed below.

Body Diameter. Total dry weight minimizes along a monotonic function at 29 ft, but is relatively insensitive over the range of variation. There are no significant breakpoints. Vehicle initial weight, propellant mass fraction, weight of hydrogen coolant, mixture ratio, throttle setting, and staging velocity are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (38%) over the range of variation (Appendix B-218 through B-221).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.15g, but is relatively insensitive over the range of variation. A breakpoint occurs at approximately 1.165g, associated with breaking free from the upper limit on body diameter. Propellant mass fraction and throttle setting are relatively insensitive. Body diameter optimized at its upper limit (29.5 ft) and orbiter propellant at its upper limit (38%) over the range of variation (Appendix B-222 through B-225).

Orbiter Propellant at Staging. Total dry weight minimizes at 38%, but is only moderately sensitive over the range of variation. No constraint-related breakpoints occur. Vehicle initial weight, propellant mass fraction, mixture ratio, and throttle

Dry V	~ .		- i Engine	25:	
	Veiaht (lb) =	165,280	Typ	e:	SC Propane/LH ₂
Prop	ellant Weight (lb) =	: 1,300,000	Nui	mber =	. 5
- LC	$y_2(lb) =$	1,006,000	Thr	ust (vacuum, eac	(lb) = 654,000
- SC	Propane (lb) =	277,000	MR	:	3.63
- L۲ - L۲	12 Coolant (ID) =	17,600	PC ((psia) =	4,000
linert	weight (ib) =	0 865	l isp		24.88
		0.005	doo	in =	99
	2		Dn	ozzle(in) =	50.3
Body:	_	4.53			
	D (ft) =	29.1	Fins:	S _F (ft ²) (ea) =	128
	Sbody flap (ft2) =	233		AR =	1.39
				λ =	0.55
Wina:	Sref (ft2) =	2,639		t/c = c	-) 225
···· y ·	AR =	2.06		Srudder (TT2) (ei	a) = 38.3
	$\lambda =$	0.11			
	t/c =	11%	Flybac	k Fagines	2
	Sflaperons (TT2) =	528			
)rbiter:					
Weight	5:		P/A M	odule (4 SSMEs):	
Dry V	Veight (lb) =	163,000	We	ight (lb) =	122,000
Prop	ellant Weight (lb) =	= 1,510,000	Cire	cularization OMS	
- LC	$D_2(lb) =$	1,294,000	Pro	pellant (lb) =	9,470
- LF	12(10) = 0.000000000000000000000000000000000	191 000	Tot	al OMS	40 600
$\lambda' =$	magne (b) =	0.888	Pro	pellant (ID) =	10,000
			L		
L					

Figure 3.1.1.11-2. Summary of Configuration Features for Configuration 2.K

setting are relatively insensitive. Body diameter optimized at its upper limit (29.0 ft) over the range of variation (Appendix B-230 through B-239).

Number of Booster Engines. Total dry weight minimizes at four or five booster engines, but is relatively insensitive over the range of variation. A minor breakpoint occurs at 5.4 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program), associated with breaking free from the upper limit on orbiter propellant at staging. Propellant mass fraction, body diameter, and throttle setting are relatively insensitive(Appendix B-234 through B-237).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of approximately 21:1, but is relatively insensitive over the range of variation. No breakpoints occur. Propellant mass fraction, mixture ratio, throttle setting, and nominal liftoff acceleration are relatively insensitive. Orbiter propellant at staging op*imized at its upper limit (35%) and body diameter at its upper limit (29.0 ft) over the range of variation (Appendix B-238 through B-241).

3.1.1.12 SC Propane/SC Propane (Configuration 2.L)

Configuration Description. Figure 3.1.1.12-1 is a three-view drawing of configuration 2.L. A summary of configuration features is shown in figure 3.1.1.12-2. Detailed performance and weight numbers are tabulated in the appendix A-46 through A-49.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter:	23 to 27 ft
b.	Engine-out liftoff acceleration	1.1 to 1.3g
c.	Mixture ratio (booster):	2.0 to 4.0
d.	Orbiter propellant at staging:	29 to 39%
e.	Number of booster engines:	4 to 8

(Configur	ation: 2.L			
E	Booster:				
	Weight Dry ^V Prop - Lt - S Inert λ' =	ts: Weight (lb) = pellant Weight (lb) = O ₂ (lb) = C Propane (lb) = t Weight (lb) =	171,980 1,455,000 1.120,000 334,000 203,000 0.873	Engines: Type: Propan Number = Thrust (vacuum, each) (lb) MR: Pc (psia) = I _{sp} = E = decugebrad (in) =	ie/Propane 5 = 766,000 3.35 3,300 318 28.20 116
	Body:	$\frac{\ell}{D} =$	4.53	D nozzle (in) =	63.7
		D (ft) = Sbody flap (ft ²) =	25.3 202	Fins: $S_F(ft^2)(ea) =$ $A_R^R =$ $\lambda =$	132 1.39 0.55
	Wing:	$S_{ref}(ft^2) =$ AR = $\lambda =$	2,738 2.06 0.11	t/c = S _{rudder} (ft ²) (ea) =	11% 39.5
		t/c = Sflaperons (ft ²) =	11% 548	Flyback Engines:	2
0	Orbiter:				
	Weight Dry V Prop	s: Weight (lb) = ellant Weight (lb) =	164,000 1,533.000	P/A Module (4 SSMEs): Weight (lb) = Circularization OMS	122,000
	- L($O_2 (lb) = H_2 (lb) =$	1,314,000 219,000	Propeilant (lb) = Total OMS	9,470
	lnert λ' =	t Weight (lb) =	191,000 0.889	Propellant (lb) =	18,600
	GLOW (I V _{staging} P/L to Sp	b) = (ft/s) = ace Station (lb) =	3,541,000 4,624 150,000		

Figure 3.1.1.12-2. Summary of Configuration Features for Configuration 2.L

f. Expansion ratio:

15 to 50

Detailed sensitivity analyses are presented in the appendix B-242 through B-265 and are discussed below.

Body Diameter. Total dry weight is a classic "bucket" function, minimizing in the range of 25.2 to 25.7 ft diameter, being only moderately sensitive over the range of variation. No significant breakpoints occur. Throttle setting is relatively insensitive. The number of booster engines optimized at its lower limit (four) over the range of variation (Appendix B-242 through B-245).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.1g, with only moderate sensitivity over the range of variation. A breakpoint appears to exist at approximately 1.25g, associated with reaching the upper limit on orbiter propellant at staging. Propellant mixture ratio is relatively insensitive. The number of booster engines optimized at its lower limit (four) over the range of variation (Appendix B-246 through B-249).

Mixture Ratio. Total dry weight minimizes in the range of 3.0 to 3.5, with moderate sensitivity over the range of variation. A breakpoint occurs at approximately 2.2 but is difficult to explain. Propellant mass fraction and throttle setting are relatively insensitive. The number of booster engines optimized at its lower limit (four) over the range of variation (Appendix B-250 through B-253).

Orbiter Propellant at Staging. Total dry weight minimizes at approximately 36.5%, but is relatively insensitive over the range of variation. A minor breakpoint occurs at 30%, associated with breaking free from the lower limit on engine-out liftoff acceleration. Propellant mass fraction, mixture ratio, and throttle setting are relatively insensitive. The number of booster engines optimized at its lower limit (four) over the range of variation (Appendix B-254 through B-257).

Number of Booster Engines. Total dry weight minimizes at four engines, but is relatively insensitive over the range of variation. Aside from a minor discontinuity in engine-out liftoff acceleration over the range of seven to eight engines, no breakpoints occur. Propellant mass fraction, body diameter, propellant mixture ratio, throttle setting, orbiter propellant at staging, engine-out liftoff acceleration, and nozzle expansion ratio are relatively insensitive (Appendix B-258 through B-261).

Expansion Ratio. Total dry weight minimizes near an expansion ratio of 26:1, but is relatively insensitive over the range of variation. No significant breakpoints occur. Propellant mass fraction, mixture ratio, and throttle setting are relatively insensitive. The number of booster engines optimizes at its lower limit (four) over the range of variation (Appendix B-262 through B-265).

3.1.1.13 SC Propane/SC Propane Far-Term Performance (Configuration 2.M)

Configuration Description. Figure 3.1.1.13-1 is a three-view drawing of configuration 2.M. A summary of configuration features is shown in figure 3.1.1.13-2. Detailed performance and weight numbers are tabulated in the appendix A-50 through A-53.

Optimization Sensitivities. The optimization constraints on the selected independent variables are as follows:

a.	Body diameter:	23 to 27 ft
b.	Engine-out liftoff acceleration:	1.1 to 1.3g
c.	Mixture ratio (booster):	2.0 to 4.0
d.	Orbiter propellant at staging:	30 to 40%
e.	Number of booster engines:	4 to 8
f.	Expansion ratio:	15 to 50

Detailed sensitivity analyses are presented in the appendix B-266 through B-289 and are discussed below.

Figure 3.1.1.13-1. Three-View Drawing of Configuration 2.M

] [
Weights:Dry Weight (lb) =167,000Propellant Weight (lb) =1,407,000 $-LO_2$ (lb) =1,090,000 $-SC$ Propane (lb) =317,000Inert Weight (lb) =195,000 λ' =0.873	Engines: Type: SC Propane/Propar Number = Thrust (vacuum, each) (lb) = 735,00 MR: 5.0 Pc (psia) = 3,90 l _{sp} = 32 E = 29.8	
Body: $\frac{\ell}{D} =$ 4.53	$D_{nozzle}(in) = 59$	
D (ft) = 24.8 Sbody flap (ft ²) = 198	Fins: S _F (ft ²) (ea) = 130 AR = 1.38 $\lambda = 0.55$	
Wing: $S_{ref}(ft^2) = 2,653$ $A_{ref}^{R} = 2.06$ 0.11	t/c = 11% Srudder (ft ²) (ea) = 38.9	
t/c = 11% Sflaperons (ft ²) = 531	Flyback Engines: 2	
rbiter:		
Weights: Dry Weight (lb) = 165,000 Propellant Weight (lb) = 1,640,000	P/A Module (4 SSMEs): Weight (lb) = 122,000 Circularization OMS	
$-LO_2 (lb) = 1,405,000$ $-LH_2 (lb) = 234,000$	Propellant (lb) = 9,470 Total OMS	
Inert Weight (lb) = 193,000 λ' = 0.895	Propeilant (lb) = 18,600	
iLOW (lb) = 3,594,000	J 	

Ì) -

Figure 3.1.1.13-2. Summary of Configuration Features for Configuration 2.M

C - X

Body Diameter. Total weight is a monotonic function minimizing at approximately 24.75-ft diameter, with moderate sensitivity over the range of variation. A breakpoint occurs at 25.2 ft, associated with reaching the lower limit on engine-out liftoff acceleration. Propellant mass fraction and throttle setting are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (40%) over the range of variation (Appendix B-266 through B-269).

Engine-out Liftoff Acceleration. Total dry weight minimizes at 1.15g, but is relatively insensitive over the range of variation. No breakpoints are apparent. Propellant mass fraction, engine rated vacuum thrust, throttle setting, and booster engine weight are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (40%) over the range of variation (Appendix B-270 through B-273).

Mixture Ratio. Total dry weight minimizes in the range of 3.0 to 3.5, with moderate sensitivity over the range of variation. No constraint-related breakpoints occur. Propellant mass fraction is relatively insensitive. Orbiter propellant at staging optimized at its upper limit (40%) over the range of variation (Appendix B-274 through B-277).

Orbiter Propellant at Staging. Total dry weight minimizes in the range of 37 to 38%, but is relatively insensitive over the range of variation. No breakpoints are apparent. Gross liftoff weight, propellant mass fraction, throttle setting, and nominal liftoff acceleration are relatively insensitive over the range of variation (Appendix B-278 through B-281.

Number of Booster Engines. Total dry weight minimizes at four engines, with moderate sensitivity over the range of variation. No significant breakpoints occur. Propellant mass fraction, body diameter, mixture ratio, throttle setting, engine-out liftoff acceleration, and nozzle expansion ratio are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (40%) over the range of variation (Appendix B-282 through B-288).

Expansion Ratio. Total dry weight minimizes at an expansion ratio of approximately 26:1, but is relatively insensitive over the range of variation. No significant breakpoints occur. Propellant mass fraction, number of booster engines, throttle setting, engine-out liftoff acceleration, nominal liftoff acceleration, and body diameter are relatively insensitive. Orbiter propellant at staging optimized at its upper limit (40%) over the range of variation (Appendix B-286 through B-289).

3.1.1.14 Sensitivity Studies

Apart from the system-level impact of variations in propellant thermochemistry discussed in previous sections, it is of interest to determine the potential performance benefits resulting from advances in generic propulsion technology. Two such sensitivities will be addressed in this section:

- a. The application of a step increase in booster engine expansion ratio during the launch ascent (as might be obtained by a translating nozzle extension).
- b. Recourse to high chamber pressure in the booster engines.

For illustrative purposes, the following three vehicles were employed as reference concepts to which the sensitivities were applied:

a.	LOX/hydrogen.	section 3.1.1.2
ь.	LOX/RP-1 (hydrogen-cooled).	section 3.1.1.3
c.	LOX/methane (hydrogen-cooled).	section 3.1.1.7

(RP-1 and methane were chosen to represent the more attractive hydrocarbon fuel candidates from the standpoint of design experience or maximum performance).

3.1.1.14.1 Expansion Ratio Change Sensitivities.

Included in this study was an evaluation of changing the booster engine nozzle to a higher expansion ratio at some point in the boost phase. Four configurations were evaluated, LOX/LH₂, LOX/RP-1 (H₂ cooled), LOX/methane (H₂ cooled), and LOX (RP-1 cooled). The liftoff nozzle positions were set at 30, 15, and 15:1 expansion ratios respectively. Later in the trajectory expansion ratios of 40, 60, 80, or 100:1 at altitudes from 10,000 to 70,000 ft were examined. It was found that dry weights increased with an expansion ratio change no matter where the altitude change takes place, as summarized on figure 3.1.1.14-1. Total dry weight was minimized with the booster engines at constant expansion ratio during boost, set at a low ratio

Figure 3.1.1.14-1 Extended Nozzle Expansion Ratio Impact on Two-Stage Booster Dry Weight

3.1.1.14.1.1 LOX/Hydrogen.

These sensitivities are presented in figure 3.1.1.14-2. The basic (starting) expansion ratio for this system was 30:1. Because this starting value was so high, sensitivity to changes was minimal.

3.1.1.14.1.2 LOX/RP-1 (Hydrogen-Cooled)

These sensitivities are presented in figure 3.1.1.14-3. The starting expansion ratio for this system was 15:1. Sensitivity to increase was adverse.

3.1.1.14.1.3 LOX/Methane (Hydrogen-Cooled)

These sensitivities are presented in figure 3.1.1.14-4. The starting expansion ratio for this system was 15:1. The results are nearly indistinguishable from the RP-1 (H₂) case.

Figure 3.1.1.14-3 Expansion Ratio Change Sensitivities (LOX/RP-1/H₂ Vehicle)

Figure 3.1.1.14-4 Expansion Ratio Change Sensitivities (LOX/Methane/H₂ Vehicle)

3.1.1.14.2 Chamber Pressure Sensitivities.

For the three illustrative vehicles, booster engine rated chamber pressure ranged from 1000 to 4000 lb/in². The dependent variables chosen were:

a. Total dry weight.

b. Gross liftoff weight.

c. Vehicle dry weight (booster).

d. Ascent propellant weight.

e. Propellant mass fraction.

f. Individual main engine weight.

g. Engine rated vacuum thrust (booster).

h. Engine throttle setting (booster).

The general conclusion is that most benefits are realized by $P_c = 2500$ to 3000 lb/in² and improvements are marginal out to $P_c = 4000$ lb/in². This conclusion, however, must be tempered by the recognition that the major figures of merit (i.e., dry weight) are curves with inflections that result in low sensitivity between 2500 to 3000 lb/in²; indications of increasing sensitivity beyond 3500 lb/in² may imply benefits from chamber pressures much higher than examined in this study. Detailed results are presented in the following paragraphs.

3.1.1.14.2.1 LOX/Hydrogen.

These sensitivities are presented in figure 3.1.1.14-5. The reference concept for this study (sec. 3.1.1.2) was optimized for a booster engine chamber pressure of 4000 lb/in^2 . Significant reductions in all dependent variables were obtained, with the exception of propellant mass fraction and first stage throttle setting, which were essentially unaffected.

Figure 3.1.1.14-5 Chamber Pressure Sensitivities (LOX/H₂ Vehicle)

3.1.1.14.2.2 LOX/RP-1 (Hydrogen-Cooled)

These sensitivities are presented in figure 3.1.1.14-6. The reference concept for this study (sec. 3.1.1.3) was also optimized at 4000 lb/in², with a complete alternate design (sec. 3.1.1.4) optimized at 2500 lb/in². Results are similar to the LOX/hydrogen case.

3.1.1.14.2.3 LOX/Methane (Hydrogen-Cooled)

These sensitivities are presented in figure 3.1.1.14-7. The reference concept for this study (sec. 3.1.1.7) was optimized at 4300 lb/in². Results are similar to the preceding cases.

3.1.1.15 Two-Stage Crossfeed Evaluation

The optimized LOX/LH₂ configuration was used for evaluating crossfeeding propellant from the first-stage propellant tanks to the second stage engines during the boost phase. The propellant, normally carried by the second-stage during the boost phase, would be carried in the first stage or booster. This concept would potentially reduce the inert mass of the second stage and provide a higher mass fraction for the first stage, thus providing a more efficient launch vehicle.

The HAVCD computer program can place all or part of the propellant required for the boost phase in the tanks of the first stage. The line sizes on the first stage were calculated to accommodate the propellant flow rates for both the first- and secondstage engines. Additional hardware is required for the propellant system if crossfeeding propellant across the stage interface is required. The hardware components shown in figure 3.1.1.15-1 are added when any crossfeed occurs.

Figure 3.1.1.15-2 summarizes the effect of crossfeed on launch vehicle design by comparing the weight of configuration 2.B with crossfeed to configuration 2.B without crossfeed.

Figure 3.1.1.14-6 Chamber Pressure Sensitivities (LOX/RP-1/H₂ Vehicle)

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.1.1.14-7 Chamber Pressure Sensitivities (LOX/Methane/H₂ Vehicle)
Stage	Component	Quantity	Weight (each)	Description
	Disconnect	2	150 lb	
	LH ₂ prevalve	1	586 lb	Isolates disconnect
Boostor	LOX prevalve	1	548 lb	Same as LH ₂ prevalve.
BOOSter	Line and shroud	2	150 lb	
	1st stage total	-	1907 lb	(Includes 10% weight addition for mounting hardware)
	Disconnect	2	150 lb	
	LH2 prevalve	2	586 lb	One isolates disconnect; the second is redundant for existing tank prevalve.
	LOX prevalve	2	548 lb	Same as LH ₂ prevalve.
Orbiter	LH ₂ check valve	1	293 lb	Prevents flow from second-stage tank to first-stage tank during flow switching.
	LOX check valve	1	274 lb	Same as LH ₂ check valve.
	2nd stage total	-	3449 lb	(Includes 10% weight addition for mounting hardware)
Total			5356 lb	

Figure 3.1.1.15-1 Cross

Crossfeed System Weight

Figure 3.1.1.15-2 Effect of Crossfeed on Vehicle Design

The crossfeed system weight requires a minimum of 5356 lb of dry weight that needs to be added to the system. The crossfeed option was conducted on the LOX/LH2 optimized configuration. This crossfeed system was not optimized because of time limitation. The results show that using a crossfeed system will not provide any reduction in system dry weight. Very little change occurred in the total propellant weight required and the gross liftoff weight. Notice that in this evaluation 41% more propellant is carried in the first stage. The orbiter liftoff weight is reduced by about 25%. For the low staging velocity, partially reusable stage concept reducing system weight by using crossfeed is not effective. Further, system reliability would be reduced, due to the increase in system complexity. Other study results, however, indicate the potential for system weight decrease for a two-stage, fully reusable vehicle having a higher staging velocity.

3.1.1.16 Variable Mixture Ratio LOX/LH₂ Evaluation

Changing the LOX/LH₂ variable mixture ratio range during the boost phase from a high (8-18:1) range to a lower range (6-12:1) was investigated to improve propellant bulk density and system efficiency. It was assumed that mixture ratio would be changed by changing the oxidizer flow rate while maintaining a constant hydrogen flow rate. Consequently, chamber pressure and engine thrust are reduced by the mixture ratio reduction. It was found that specific impulse improvement during the flight had little effect on minimizing the booster dry weight. Rather, the bulk density improvement had a more significant effect. For example, increasing mixture ratio from 6:1 (for maximum specific impulse) to about 9:1 produced a lower dry vehicle weight.

A single booster mixture ratio was also evaluated. The LOX/LH₂ configuration was optimized to a single mixture ratio of 8.97. The dry weight increased by only 1.5% when a single mixture ratio is used compared to the use of a more complex variable mixture ratio of 6.86 and 12.0. It was therefore concluded that variable mixture ratio LOX/LH₂ main engines do not provide a significant payoff for the booster element of a two-stage partially reusable launch vehicle compared to a new LOX/LH₂ engine operating at a mixture ratio of 9:1.

Figure 3.1.1.16-1 summarizes the sensitivity of engine performance to a change in mixture ratio from 12 to 6, a mixture ratio that has been suggested in other studies. When this set of mixture ratios was used in a version of configuration 2.B optimized to use these mixture ratios, the result showed a 1.3% increase in total dry weight compared to that of configuration 2.B, which had a fixed mixture ratio of about 9:1. A representative design of such an engine was conceptually defined by Acurex Corporation under subcontract. The engine was tailored for the booster element of a two-stage heavy lift system to have a vacuum thrust of 671,110 lb and a chamber pressure of 3000 psia. It is a full-flow cycle design having a skirt area ratio of 20.

Parameter	Initial	Final	· %Charge
Mixture ratio	12.00	6.00	-50
Flow rate LH2	158.3	158.3	0.0
Flow rate LOX	1,900.0	949.8	-50
Chamber pressure	4,000	2,594	-35.2
Thrust	750,000	486,300	-35.2
C*	6,182	7,625	+23.3
ISP (vac)	364.4	438.9	+20.4
Expansion ratio	30:1	30:1	0
Throat area	98.86	98.86	0

Figure 3.1.1.16-1. Effect of LOX/LH2 Mixture Ratio Change on Engine Performance

In addition, the feasibility of common engine capability. using an upper stage engine having the same dimensions/components as this booster engine was assessed. This engine operates at a mixture ratio of 6 and has a chamber pressure about 2000 psia. The nozzle skirt has an area ratio of 64 and a nozzle skirt insert provides an area ratio of 20.

The booster and upper stage engines operate in the parallel burn mode at lift-off. A drawing of the booster/upper stage engine is shown in figure 3.1.1.16-2. Data tables for the booster and upper stage engine are given in figures 3.1.1.16-3 and 3.1.1.16-4. The engine has a single integrated high pressure-low pressure fuel turbopump and dual integrated high pressure-low pressure oxygen turbopumps. The main fuel turbopump uses a three-stage pump for 3000 psia chamber pressure and a two-stage pump for 2000 psia chamber pressure. The turbine inlet temperatures for all turbines is modest, for example, 428°F for main oxygen turbopump and 809°F for the main fuel pumps in the booster engine and at lower temperature in the lower chamber pressure upper stage engine.

Figure 3.1.1.16-2

Acurex LOX/LH2 Engine Assembly

Thrust (VAC), lbs	671,110
Mixture ratio. 0/f	9:1
Chamber pressure, psia	3000
Area ratio	20:1
Area throat, sq. in.	120.4
Diameter throat, in.	12.38
Diameter exit. in.	55.4
Weight flow rate, oxidizer, lb/sec	1467
Weight flow rate, fuel, lb/sec	163
Total weight flow, lb/sec	1630
Specific impulse (VAC), sec	412
Engine dry weight	5915
Engine thrust-to-weight ratio	113
Mixture ratio, oxidizer TPA-PB	190
Oridizer turbine temperature. °F	428
Mixture ratio, fuel. TPA-PB	0.65
Fuel turbine temperature. °F	809
Engine length, in.	81.10

Figure 3.1.1.16-3. Acurex Booster Engine Data

Area ratio	20	64
Thrust (VAC), lbs	501,522	516,889
Mixture ratio, o/f	6	6
Chamber pressure. Dsia	2250	2250
Area throat. sq. in.	120.4	120.4
Diameter throat, in.	12.38	12.38
Diameter exit. in.	55.4	99.0
Weight flow rate, oxidizer, lb/sec	978	978
Weight flow rate, fuel, 1b/sec	163	163
Total weight flow, lb/sec	1141	1141
Specific impulse (VAC), sec	440	453
Thmust (VAC) lbs	501,522	516,889
Engine dry weight with NSL lbs	6037	
Engine dry weight without NSI. lbs		5575
VAC thmist-to-weight ratio	83	92.7
Minture ratio oridizer TPA-PB	248	248
Mixture ratio, oxidizer fill 12	215	215
Oxidizer turbine temperature, 1	0.45	0.45
Mixture ratio, Iuel, IPA-PD	426	426
Fuel turbine temperature, F	440	160
Engine length, in.	160	100

Figure 3.1.1.16-4. Acurex Booster Engine Data

3.1.2 Single-Stage-to-Orbit Vehicle Analysis

The selected configuration design for a rocket powered, manned single-stage-toorbit system is a fully reusable vertical takeoff, horizontal landing concept. A reference mission of 10,000 lb. payload delivery to a 100-nmi circular polar orbit from WTR launch was also selected and the payload bay was sized to accommodate a 15-ft diameter by 30-ft long payload. A crew size of two was also assumed.

A typical mission for the single-stage-to-orbit vehicle is depicted on figure 3.1.2-1. The vehicle is first towed horizontally to a facility where the payload is lowered into the payload bay. The vehicle is then towed to the launch pad, erected to a vertical position, and checked out for launch. Propellant loading occurs shortly before launch followed by crew member boarding. After liftoff and insertion into the proper orbit, the payload is deployed. Upon completion of the orbital mission the vehicle is deorbited and glides (unpowered) to a runway landing near the launch site for refurbishment prior to a later flight.

The single-stage-to-orbit vehicle has a forward, tapered fuel tank and an aft LOX tank (see fig. 3.1.2-1). The area forward of the fuel tank houses the crew compartment, a deployable canard (for low-speed stability and control), and the nose landing gear. The payload bay is located above the LOX tank and near the vehicle center of gravity. The aft fuselage of the vehicle contains the thrust structure and engine feedlines.

A dry weight factor of 0.75 (25% reduction in across-the-board component weight technology availability compared to the corresponding component weight technology availability level for the two-stage, partially reusable concept discussed previously) was selected for the SSTO vehicle optimizations. This percentage was conservatively selected to insure the capability of all options considered to reach orbit using reasonable, perhaps by year 2000, component weights. The dry weight factor includes engine weight reductions.

Figure 3.1.2-1. Typical Features of a Single-Stage Fully Reusable Launch Vehicle

The vehicle sensitivity analysis comprises a spectrum of vehicle design conditions optimized to produce minimum total dry weight for selected values of any of the following independent variables:

a. Body diameter.

b. Engine-out liftoff acceleration.

c. Propellant mixture ratio (booster engine).

d. Number of booster engines.

e. Engine expansion ratio (booster engine).

The dependent variables chosen were:

- a. Total dry weight.
- b. Gross liftoff weight.
- c. Vehicle dry weight.
- d. Ascent propellant weight.

e. Propellant mixture ratio (booster engine).

f. Throttle setting.

- g. Propellant mass fraction.
- h. Landing weight.
- i. Number of booster engines.
- j. Engine vacuum thrust.
- k. Engine-out liftoff acceleration.
- 1. Nominal liftoff acceleration.
- m. Booster engine weight.
- n. Body diameter.

Note that the list of independent variables is a subset of the list of dependent variables. This area arises because a given variable (e.g., body diameter) may be held as

an independent variable for the development of a sensitivity in which all other variables are dependent and allowed to "float" to find their optimum value. In addition, other variables are chosen to be independent, and the given variable then becomes a floating dependent variable.

3.1.2.1 Baseline Vehicle (Configuration 1.A)

Configuration Description. Figure 3.1.2.1-1 presents a three-view drawing of configuration 1.A. A summary of configuration features is shown in figure 3.1.2.1-2. Detailed performance and weight numbers are tabulated in Appendix A-54 through A-55.

Optimization Sensitivities. Because the vehicle was configured only to establish a point-design solution, using SSMEs for the performance requirement, a detailed optimization sensitivity analysis was reserved for the design of the reference vehicle described in section 3.1.2.2.

3.1.2.2 H₂/H₂ (Configuration 1.B)

Configuration Description. Figure 3.1.2.2-1 presents a three-view drawing of configuration 1.B. A summary of configuration features is shown in figure 3.1.2.2-2. Detailed performance and weight numbers are tabulated in the Appendix A-56 through A-57.

Optimization Sensitivities. The optimization constraints on the selected independent variables were as follows:

a.	Body diameter:	24 to 32 ft
b.	Engine-out liftoff acceleration:	1.2 to 1.5g
c.	Mixture ratio (booster):	6 to 10
d.	Initial expansion ratio (booster):	30 to 70
e.	Propellant remaining:	40 to 80%
f.	Number of booster engines:	4 to 8
g.	Second expansion ratio (booster):	70 to 150

Figure 3.1.2.1-1. Three-View Drawing of Configuration 1.A

107

4

-,

Vehicle Features			
Weights GLOW (lb) = R4 to Space Station (lb) =	1,408,600	• Body <u>- </u> = D	6.93
Dry Weight (lb) = Propellant Weight (lb) =	138,650 1,235,000	D (ft) = S _{body flap} (ft ²) =	25.0 200
- LO ₂ (lb) = - LH ₂ (lb) = Inert Weight (lb) = λ' =	1,058,400 176,390 162,270 0.883	• Wing S _{ref} (ft ²) = AR =	2,367 1.91 0.12
 Engines Type = 	LOX/LH2	x = t/c = S _{flaperons} (ft ²) =	11% 473
Number = Thrust (vacuum, each) (lb) = MR = P _C (psia) = I _{sp} = d _{powerhead} (in) = D _{nozzle exit} , (1 st Position) (in) =	5 504,120 6.00 3,270 448 90 75.6	• Fins $S_{f}(ft^{2})(ea) =$ AR^{a} $\lambda =$ t/c = $S_{rudder}(ft^{2})(ea) =$	114 1.39 0.55 11% 34.3
ε (1 st Position) = D _{nozzle exit} , (2 nd Position) (in) = ε (2 nd Position) =	55 125.0 150	• Cannards S _H (ft ²) = AR =	103 4.00
Crew Accomdations Crew = ECS = S	2 hirt Sleeve	λ = t/c = S _{elevons} (ft²) (ea) =	1.00 15% 30.9

LBS VALUE TOTAL DRY WEIGHT 141020.00 1460000.00 GROSS LIFT OFF WEIGHT 83074.00 BODY WEIGHT 7278.70 GROWTH WEIGHT 165410.00 INERT WEIGHT 12339.00 EQUIPMENT WEIGHT 846.34 TANK MOUNT WEIGHT 61537.00 STRUCTURAL WALL WEIGHT 2913.20 APU PROPELLANT WEIGHT 144810.00 LANDING WEIGHT 4407.70 LANDING GEAR WEIGHT 1966.50 CANARD WEIGHT 24193.00 WING WEIGHT 9702.30 WEIGHT OF REENTRY INSULATION TILES 10000.00 PAYLOAD WEIGHT 6704.40 PAYLOAD BAY WEIGHT

Figure 3.1.2.1-2. Summary of Configuration Features for Configuration 1.A

Figure 3.1.2.2-1. Three-View Drawing of Configuration 1.B

Vehicle Features			
 Weights GLOW (lb) = P/L to Space Station (lb) = Dry Weight (lb) = Propellant Weight (lb) = -LO₂ (lb) = -LH₂ (lb) = Inert Weight (lb) = Y Y 	1,277,100 10,000 112,470 1,133,000 1,001,000 131,710 133,070	 Body <i>l</i> D D (ft) = Sbody flap (ft²) = Wing Sref (ft²) = R = 	6.93 24.0 192 1,924 1.91
 Engines Type = Number = Thrust (vacuum, each) (lb) = MR = (vaid) 	LOX/LH ₂ 5 415,290 7.60	$\lambda = t/c =$ $S_{flaperons} (ft^2) =$ • Fins $S_F (ft^2) (ea) =$	0.12 11% 385 101 ⁻ 1.39
P _C (psia) = I _{sp} = d _{powerhead} (in) = D _{nozzle exit} , (1st Position) (in) ε (1st Position) = D _{nozzle exit} , (2 nd Position) (in) ε (2 nd Position) =	4,000 425 86 = 52.6 30 = 96.2 100	$\lambda = t/c =$ $S_{rudder} (ft^2) (ea) =$ • Cannards $S_{H} (ft^2) =$ $\Delta P =$	0.55 11% 30.3 84 4,00
 Crew Accomdations Crew # ECS # 	2 Shirt Sleeve	$\lambda =$ t/c = S _{elevons} (ft ²) (ea) =	1.00 15% 25.1

Figure 3.1.2.2-2 Summary of Configuration Features for Configuration 1.B

Detailed sensitivity analyses for a fixed mixture ratio engine are discussed below based on the curves shown in the Appendix B-290 through B-317.

Body Diameter. Total dry weight is a classic "bucket" function minimizing at 25 ft, with appreciable sensitivity over the range of variation. No breakpoints are evident and most curves show appreciable sensitivity. Propellant mass fraction is relatively insensitive. Throttle setting optimized at approximately 91.45%, second nozzle expansion ratio at its lower limit (70:1), engine-out liftoff acceleration at its lower limit (1.2g), and nominal liftoff acceleration at approximately 1.477g over the range of variation (Appendix B-290 through B-293).

Engine-out Liftoff Acceleration. Total dry weight minimizes in the range 1.26 to 1.30g, with appreciable sensitivity over the range of variation. No breakpoints are apparent. Propellant remaining and propellant mass fraction are relatively insensitive. Throttle setting optimized at approximately 91.43% and second expansion ratio at its lower limit (70:1) over the range of variation (Appendix B-294 through B-297).

Mixture Ratio. Total dry weight minimizes in the range 6.9 to 7.4, with appreciable sensitivity over the range of variation. Two very minor breakpoints occur at approximately 7.8 and 8.7, where the former is associated with breaking free from the lower limit on body diameter and the latter is associated with reaching the lower limit on initial expansion ratio. Throttle setting optimized at approximately 91.4%, engine-out liftoff acceleration at its lower limit (1.2g), nominal liftoff acceleration at approximately 1.477g, and second expansion ratio at its lower limit (70:1) over the range of variation (Appendix B-298 through B-301).

Initial Expansion Ratio. Total dry weight minimizes near an expansion ratio of 43:1, but is relatively insensitive over the range of variation. No breakpoints are evident. Propellant mass fraction is relatively insensitive. Throttle setting optimized at approximately 91.4%, engine-out liftoff acceleration at its lower limit (1.2g), nominal liftoff acceleration at approximately 1.477g, body diameter at its lower limit (24 ft), and second expansion ratio at its lower limit (70:1) over the range of variation (Appendix B-302 through B-305).

Propellant Remaining. Total dry weight minimizes at the upper limit of 80%, with moderate sensitivity over the range of interest. A breakpoint occurs at approximately 75.5%, associated with breaking free from the lower limit on engine-out acceleration and with breaking free from the lower limit on engine-out acceleration and with breaking free from the lower limit on body diameter. Propellant mass fraction is relatively insensitive. Throttle setting optimized at approximately 91.4%, nominal

liftoff acceleration at approximately 1.477g, and second expansion ratio at its lower limit (70:1) over the range of variation (Appendix B-306 through B-309).

Number of Booster Engines. Total dry weight minimizes at five engines, with appreciable sensitivity over the range of variation. Two major breakpoints occur, at 4.9 and 5.8 engines (fractional engines are artifacts of the continuous-function algorithm used in the optimization program). The former is associated with breaking free from the lower limit on initial expansion ratio. The second is associated with abruptly breaking free from the lower limit on engine-out liftoff acceleration. Propellant mass fraction is relatively insensitive. Throttle setting optimized at approximately 91.4%, nominal liftoff acceleration at approximately 1.477g, and second expansion ratio at its lower limit (70:1) over the range of variation (Appendix B-310 through B-313).

Second Expansion Ratio. Total dry weight minimizes at an expansion ratio of 140:1, with moderate sensitivity over the range of variation. No breakpoints occur. Initial propellant mixture ratio, propellant remaining, and propellant mass fraction are relatively insensitive. Throttle setting optimized at approximately 91.44%, engine-out liftoff acceleration at its lower limit (1.2g), nominal liftoff acceleration of approximately 1.4765g, and body diameter at its lower limit (24 ft) over the range of variation (Appendix B-314 through B-317).

3.1.2.3 SSTO Dry Weight Optimization

The optimized SSTO configurations for total dry weight are shown in figure 3.1.2.3-1. Figure 3.1.2.3-2 compares the hydrocarbon configurations to an optimized, for minimum dry weight, LOX/LH₂ configuration. The hydrocarbon configurations show up to a 5% reduction in dry weight over the optimized LOX/LH₂ configuration. The improved propellant bulk density of the hydrocarbons improve both the dry weight and GLOW for methane and subcooled propane. All vehicles used LH₂ engine cooling.

ORIGINAL PAGE IS OF POOR QUALITY

Configuration	1.4	1.3	1.C	1.0 .	1.E	Acurez
Fuel	LH2	LH2	RP-1	Methane	SC Propane	. LH2
Coolant	UH ₂	LH2	LH2	· LH2	LH2	·UH2
Mixture Ratio	6.0	7.5	3.03	4.19	3.59	9,6
Number of Main Engines	5	5	2(1)	2(1)	2(1)	3
Main Engines Vac. Thrust (lb)	504,120	321,440	338,240	280,622	279,670	775,570
Vacuum isp + sec	448	425	312	329	317	424/453
Booster Pc (psia)	3,270	4,000	4,000	4,300	4,000	3,000/2,250
Expansion Ratio	55/150	30/100	15(2)	15(2)	15(2)	20/64
Propellant Remaining @ Main Engine Cutoff	NA	N/A	30%	37%	42%	NA
Main Engine Total Thrust Range Ratio	.25	.25	.82	.96	Not Done	Not Done
SSME Engine Total Thrust Range Ratio	NA	N/A	.41	_39	Not Done	NA
Inert Weight Factor	.75	.75	.75	.75	.75	.75
Dry Weight	141,020	104,690	102,080	100,040	99,216	103,460
Propeilant	1,283,000	1,052,300	1,130,300	1,039,200	1,029,400	1,092,400
Glow	1,460,000	1,119,750	1,253,600	1,168,200	1,157,400	1,226,700

(1) Plus 3 SSME Engines. (2) Initial Expansion Ratio 55 changed to 150 on SSME Engines.

Figure 3.1.2.3-2 Single-Stage Weight Comparisons

3.1.2.4 RP-1/H₂ (Configuration 1.C)

Detailed performance and weight numbers are tabulated in the Appendix A-58 through A-59. The improvement in total dry weight using LOX/RP-1 booster propellant is about $2\frac{1}{2}$ percent less than for the all LOX/LH₂ propellant vehicle.

3.1.2.5 Methane/H₂ (Configuration 1.D)

Detailed performance and weight numbers are tabulated in the Appendix A-60 through A-61. The improvement in total dry weight using LOX/methane booster propellant is about 4.4 percent less than for the all LOX/LH₂ propellant vehicle.

3.1.2.6 SC Propane/H₂ (Configuration 1.E)

Detailed performance and weight numbers are tabulated in the Appendix A-62 through A-63. The improvement in total dry weight using LOX/SC propane booster propellant is about 5.2 percent less than for the all LOX/LH2 propellant vehicle. The improved bulk density of the SC propane shows some benefit in total dry weight over the other propellant combinations.

3.1.2.7 LOX/LH2 Using Acurex Engine Data

Detailed performance and weight numbers are tabulated in the Appendix A-64 through A-65. The detailed Acurex engine data is presented and discussed in section 3.3. The improvement in total dry weight using the Acurex engine configuration is about 1 percent less in dry weight than the Aerojet powered (configuration 2.B) vehicle.

3.1.2.8 Single-stage LOX/LH₂ Variable Mixture Ratio Impact

Allowing the mixture ratio to change during the ascent of the LOX/LH₂ SSTO vehicle was found to generate a minimum dry weight system. Liftoff mixture ratio optimized at 8.4:1 and second mixture ratio optimized at about 7.5:1. The optimum mixture ratio change occurred at 52% of the propellant remaining in the vehicle.

However, the optimized variable mixture ratio system is less than 2% lighter in dry weight that a fixed mixture ratio system optimized at 7.6, assuming the gas generator engine performance levels used for this part of the study.

3.1.2.9 Single-stage LOX/LH2 Variable Expansion Ratio Impact

The all LOX/LH₂ SSTO vehicle optimized at a liftoff expansion ratio of 30:1 and the second expansion ratio in 100:1 (propellant remaining in the SSTO vehicle at expansion ratio changed at 72% of the total vehicle quantity).

The LH₂ plus hydrocarbon fueled SSTO used an expansion ratio on the LOX/LH₂ engines of 55:1 at liftoff, changing to 100:1 later in the trajectory. All the hydrocarbon engines optimized at the lowest expansion ratio (15:1) to minimize system dry weight.

3.1.2.10 SSTO Computer Model Comparison

The Boeing SSTO model results for LOX/LH₂ was compared to Reference 4 study (fig. 3.1.2.10-1). Different payloads, orbit inclination, and other assumptions between the two models required that both results be normalized for direct comparison. A fair agreement exists between the two models with Boeing's model being the more conservative of the two in dry weight determination. This comparison enhanced confidence in the effectiveness of the Boeing developed model for SSTO vehicle optimization analysis and prediction of realistic vehicle characteristics.

3.1.3 Summary of Related Vehicle Analysis Conducted on IR&D Funding

The contract SSTO analysis scope required that the vehicle option optimizations be conducted on the basis of dry weight minimization. The results obtained, as discussed above, thus pertain to highly efficient SSTO vehicle concepts having a polar LEO payload to GLOW ratio of almost 1%. This would be a remarkable achievement for an SSTO vehicle. For example, the current partially expendable, multi-stage (these factors

decrease vehicle weight) Space Shuttle has a polar LEO payload to GLOW ratio of only about 1/2% (partly because it uses mostly early 1970's component weight technology levels). To obtain such high effectiveness the above discussed SSTO vehicle require about a 25% across-the-board reduction relative to ALS vintage weights for a partially reusable two-stage vehicle (including engine weights).

Figure 3.1.2.10-1 Boeing Normalized LOX/LH₂ SSTO Study Results Compared to NASA Normalized Study Results

Since the cost of achieving such considerable weight reductions may not be affordable, and/or may require very lengthy development schedule, Boeing performed on IR&D funding, beyond the above discussed contract scope, an alternative type of SSTO vehicle optimization, namely minimizing the impact on required SSTO vehicle dry weight factor (rather than minimizing dry weight itself). To date, this continuing study has resulted in the following key findings:

- a. By increasing allowable weight and propellant weight sufficiently, in conjunction with using several identical two-position nozzle LOX/LH2 engines having a single moderately high mixture ratio, (about 7.5:1), an across-the-board component dry weight factor of about 1.0 can be obtained for payload delivery to Polar LEO. This dry weight factor is equivalent to currently projected ALS vintage component weight technology level for a two stage partially reusable launch vehicle (mid 1990's availability).
- b. For a payload of 10k lb to 100 x 100 nmi polar LEO a vehicle GLOW of about 4 million lb is required to allow a dry weight factor of 1 if LOX/LH2 propellant is used (slightly lower GLOW allowable for a LOX/methane/LH2 cooled vehicle).
- c. The resulting manned, all-rocket, vertical lift-off SSTO vehicle is relatively simple and small (even at a GLOW OF 4 million lb) compared in a manned, horizontal takeoff, airbreather/rocket SSTO vehicle sized for the same payload delivery capability. Further, development risk would be greatly reduced since the required component weight technology levels could be readily achieved by the mid 1990's using reasonable extension of today's levels.

Figure 3.1.3-1 presents a preliminary plot of dry weight factor versus GLOW for LOX/LH_2 and $LOX/CH_4/LH_2$ SSTO vehicle concepts sized for delivery of a 10K lb payload to 100 x 100 nmi polar LEO. Like the SSTO vehicle studies conducted under contract funding, these concepts also have engine-out mission completion capability (one engine-out at any point in the launch trajectory, including at lift-off). These curves indicate about how much the dry weight of the two different types of SSTO vehicles (Figures 3.1.3-2 and 3.1.3-3) could be reduced to allow lower GLOW levels.

Vehicle Liftoff Weight Optimized for Maximum Dry Weight Figure 3.1.3-1 Factor

LOX/LH₂ SSTO Vehicle Concept with 4M LB Glow for \approx 0.99 Dry Weight Factor

Figure 3.1.3-3

 $LOX/LH_2 + LOX/CH4/LH_2$ SSTO Vehicle Concept with 3.5M lb Glow for \approx 0.99 Dry Weight Factor

Another key IR&D finding was that the development of a new high thrust engine such as required for the 4 million lb GLOW SSTO vehicle discussed above (6 engines, of 1 million lb lift-off thrust each required for engine-out capability) might benefit not only a new SSTO manned access to the Space Station vehicle, but also enable modular adaptability to a wide range of launch vehicle requirements (Figure 3.1.3.-4). In this example, multiple redundant pumps are used on each engine for "pump-out" rather than complete engine-out capability. Thus, the required number of vehicle engines is reduced. Multiple use of the main modular component depicted (tankage/engine) permits manufacturing economies, such that even a partially reusable manned access for the Space Station vehicle might be cost effective. This partially reusable, manned vehicle would be much smaller and lighter than an SSTO vehicle having the same payload capability and weights technology levels. Thus it would have a significantly lower development cost. Like all the vehicle adaptations shown on Figure 3.1.3-4, only the center ("core") engine need gimbal. Otherwise the engines could be virtually identical, except for possible reduced cooling provision of those engines on the strap-on tankage (having a shorter burn-time than the core engine). Such studies are on-going to driveout the required characteristics of the "best-compromise" type of new engine needed to adapt to a broad range of potential mission requirements.

Modular Adaptable LOX/LH2 Launch Vehicle Concept

3.2 SUBCOOLED PROPANE IMPACT

The use of subcooled (SC) propane fuel propellant has been shown to be potentially advantageous for a single-stage-to-orbit (SSTO) vehicle. Near-boiling-point (NBP) propane is assumed to be available as a stock material from which to obtain SC propane. Liquid oxygen (LOX), to be used as the oxidizer, would be held at 90K in the vehicle. It is therefore reasonable to consider subcooling the propane to about 90K to 91K as well.

This study task examined ways to achieve the subcooled propane state, various methods of maintaining propellant condition on board, and means to transfer, store, and otherwise manage the propane supply at the launch site. The results of this study task include an identification and sizing of the propane-related Government-supplied equipment (GSE) as well as a rough order of magnitude (ROM) cost estimate.

This study task found that an LN2-refrigerated counterflow heat exchanger will provide a relatively economical, rapid, safe chilldown process to achieve the subcooled propane. Propane viscosity at 91K is close to that of kerosene (or RP-1), so either pump or differential pressure transfer systems can be used. The pump transfer system is recommended because it does not require the generation of large quantities of pressurant gases.

Onboard propellant conditioning, i.e., temperature control and prevention of thermal stratification, is proposed to be accomplished by a ground-based recirculating chiller, using the same LN₂ system as was initially used for refrigeration of the propane.

Subcooling to the proposed temperature of 91K increases propane density by about 33% over NBP propane. It also reduces vapor pressure to a negligible value. Higher density means a smaller propellant tank and low vapor pressure improves the ability to pump propane because cavitation tendency is reduced. The low vapor pressure does require special provisions to maintain tank ullage pressure for tankage not designed to withstand vacuum-induced loads. The system was sized to accommodate a 48-hr vehicle turnaround time. This scenario permitted a nominal fuel tank loading time of 4 hr (i.e., 100,000 lb/hr).

Rough order of magnitude (ROM) cost for a facility system to provide a propane fuel propellant load of 400,000 lb, prechilled, and to maintain onboard propellant condition is approximately \$5.0 to \$5.5 million (see fig. 3.2-1).

ITEM	ROM COST
Cryogenic tankage	\$640,000
Pressure and purge gas supply	380,000
Propellant chilling system	200,000
Vacuum-jacketed piping	540,000
Buildings and other civil works	270,000
Launch pad plumbing, umbilical, etc.	150,000
Architect fees and construction/installation	
labor	2,720,000
Miscellaneous unpriced items and contingency	360,000

ROM Total \$5,260,000

Figure 3.2-1 ROM Cost Estimate Summary

3.2.1 Propane Physical Properties

Commercial propane is a commonly used hydrocarbon for industrial feed stocks as well as for a variety of household uses. A useful feature of propane is that it is liquid at room temperature under moderate pressures (i.e., 40 to 50 psig), and vaporizes by ambient heat to provide a convenient supply of gaseous fuel.

In spite of propane's widespread private and industrial use, relatively little work has been reported with respect to subcooled propane. One reason is that the temperature

range over which propane exists as a liquid is very wide, and it is typically stored at ambient temperatures. A large amount of heat has to be removed to bring propane to its freezing point of $-306.7^{\circ}F$ (85K). A second reason is that propane vapor pressure falls below atmospheric pressure at $-43.73^{\circ}F$ (231K). At lower temperatures, a tank ullage pressurant is necessary to avoid an ullage vacuum, which could cause in-leakage of contaminants or cause the collapse of the vehicle tank. Figure 3.2.1-1 lists useful characteristics of propane. (See also fig. 3.2.1-2 through 3.2.1-6.) These properties were used in the work reported in the sections to follow.

3.2.2 Subcooling Propellants

Typical processes for subcooling liquid propellants include:

- a. Helium bubbling.
- b. Hydrogen bubbling.
- c. Vacuum-induced boiling.
- d. Nitrogen heat exchanger.
- e. Turbo expansion.
- f. Joule-Thompson effect.
- g. Combination.

A specific amount of prior work relates to subcooling and slushing of fuels such as methane and hydrogen. Two approaches predominate. One is self-cooling by vacuuminduced boiling, another is by the bubbling of a cold gas such as helium through the liquid. Of these, the vacuum-induced method is preferred. The gas bubbling method tends to induce gas absorption into the liquid being chilled. Also, as the liquid approaches freezing temperatures, ice shells tend to form around the bubble columns, restricting free contact between the cold gas and the liquid. Solubility of the chill gases in the liquid is a drawback because the amount of foreign gas in solution may vary with

Density of liquid at 86 ⁰ F, lb/ft ³	30.37
Specific volume of saturated vapor at 5 ⁰ F,	
lb/ft ³	2.44
Specific heat of liquid at 86°F, Btu/lb°F	0.65
Specific heat ratio (c_p/c_v) of vapor at 86°F and	
one atmospheric pressure	1.14
Vapor pressure at triple point, mm Hg	0.0000546
Thermal conductivity, (Btu-ft)/(ft ² .hr. ^o F)	
Saturated liquid at NBT	0.076
Saturated liquid at 5 ⁰ F	0.065
Saturated liquid at 86 ⁰ F	0.056
Vapor at saturation pressure at NBT	0.00625
Vapor at saturation pressure at 5 ⁰ F	0.0082
Vapor at one atmosphere pressure at 86 ⁰ F	0.0107
Viscosity, Centipoises:	
Saturated liquid at NBT	0.210
Saturated liquid at 5 ⁰ F	0.161
Saturated liquid at 86 ⁰ F	0.101
Vapor at saturation pressure at NBT	0.0062
Vapor at saturation pressure at 5 ⁰ F	0.00712
Vapor at one atmosphere pressure at 86 ⁰ F	0.0082
Color Clear and	Water White

Flammability limits (Vol. % in air) 2.3 to 7.3 Toxicity, Underwriters' Laboratories classification Group 5b

Figure 3.2.1-1 Propane Properties

Figure 3.2.1-2. Density of Propane Versus Temperature

Figure 3.2.1-3. Propane Heat of Vaporization as a Function of Temperature

۰.

Figure 3.2.1-6 Propane Vapor Versus Temperature

time, pressure, temperature, etc., resulting in a propellant with unknown characteristics. Another drawback is that special equipment is needed to produce the cold gas in the first place. Figures 3.2.2-1, 3.2.2-2, and 3.2.2-3 show solubility characteristics of helium, hydrogen, and nitrogen in subcooled propane.

In prior work, the vacuum-induced boiling was found to produce more uniform chilldown of the liquid and avoided the gas absorption problem altogether. Unfortunately, neither approach is suitable for propane. Vacuum-induced boiling is an ineffective way to subcool propane because of the rapid reduction of propane vapor pressure as its temperature is lowered (fig. 3.2.2-1). At the desired 90 to 91K temperature, propane vapor pressure is only about 0.00005 in Hg. A large unconventional vacuum pumping system would be needed to sustain propane boiling at a

rate that could induce phase change of enough propane to achieve rapid temperature reduction. Gas bubbling would require the use of helium, hydrogen, or nitrogen to achieve the desired temperature. Helium is expensive; hydrogen could be used, but is also relatively expensive. Nitrogen may be quite soluble in very cold propane, so it would tend to degrade performance. A further drawback of the gas bubbling method using GHe or GH₂ is that expensive refrigeration is required to chill/liquefy these gases for use in the first place.

Subcooling can be achieved by use of a chilling fluid such as LN₂. When large amounts of heat need to be removed relatively rapidly, the use of LN₂ is well-suited. LN₂ is produced in large quantities by large air liquefaction plants. Central plant production reduces LN₂ refrigeration costs substantially below the cost of onsite refrigeration systems sized for equivalent refrigeration when only intermittent refrigeration is needed, as in this case.

Figure 3.2.2-1 Isothermal Pressure-Composition Diagram for the System Liquid Propane-Nitrogen

3.2.2.1 Subcooling Propane with LN2

One practical way to subcool propane is with a simple LN_2/GN_2 to propane heat exchanger shown schematically in figure 3.2.2.1-1. Operating in a counterflow mode the LN_2 in the heat exchanger vaporizes at 77K (-321°F) and effectively chills the incoming propane. A heat balance shows that approximately 0.5 to 0.6 lb LN_2 per pound of propane is required to chill the propane to 91K. The nitrogen could be recovered for reuse. However, the cost of a recovery system and reliquefaction facility is not warranted in view of the low initial cost of LN_2 . Note that GHe is so costly, that helium recovery systems are often justifiable on a cost basis.

3.2.2.1.1 Cost of Chilling the Propane

At Kennedy Space Center, LN₂ is delivered on-site at about \$80.00 per ton, i.e., \$.04/lb. The approximate cost of LN₂ for initially chilling 400,000 lb. of propane would be:

400,000 lb C₃H₈×0.6
$$\frac{\text{lb LN}_2}{\text{lb C}_3\text{h}_8} \times \frac{\$0.04}{\text{lb LN}_2} = \$9600.00$$

The simplicity, reliability, and safety of this approach, combined with modest cost, make it a prime candidate.

3.2.2.1.2 When to Chill the Propane

A further consideration is when to chill the propane. One option is to chill the propane upon its arrival on the site and store the cold propane in an appropriate dewar until time for use. This approach avoids the need for large high pressure tanks used to store ambient temperature propane. The alternative is to chill the propane while it is being loaded onto the vehicle. This second approach avoids the need for extended storage of the propane at cyrogenic temperatures. Figures 3.2.2.1.2-1 and 3.2.2.1.2-2 list the pros and cons of the two options.

Overall, it is concluded that chilling the propane on arrival at the site, and storing it cold in a conventional cryogenic storage dewar provides the most practical system. It requires the least equipment, and represents the least likelihood of interference with launch operations.

3.2.2.1.3 Conditioning Onboard Propellant

The purpose of conditioning onboard propellants is to maintain the planned propellant temperature and avoid temperature stratification. This is to assure that the planned density of propellant has been loaded, and to obtain the desired engine operating conditions. It is also to assure that the right total mass of propellants has been loaded so that minimum propellant residual can be achieved at burnout.

Conventional propellant conditioning is achieved by recirculating a flow of propellant from the vehicle to a GSE chiller and back to the vehicle. For this study other alternatives were considered as well. The propane temperature proposed (91K) is close to the LOX temperature, i.e., 90K. LOX boil-off vapor could be one means of keeping the propane cold. A tankage system having a "common bulkhead" with an inert

PRO	CON
 Keeps chilldown out 	• Requires cryogenic
	storage of launch
	countdown dewars 2
· .	at 80,000 gal
 Chilldown equipment sizing 	• Requires LN ₂ (or
other) does not set	loading rate refrigeration
	during pre-loading holding
·	period
 Provides dewar capacity 	• Requires GHe or GH ₂ dewar
to off-load vehicle in	 ullage pressurization
the event of launch abort	system
 Avoids the need for large 	
high pressure (100 psig)	
storage tanks for the	
ambient temperature propane	
Figure 3.2.2. , 2 -1. Pros and cons of St	coring Propane Subcooled
PRO	CON
 Propane storage dewar(s) 	 Does not provide cold
not required	propane storage to
	off-load vehicle in event
	of an abort
 Propane refrigeration not 	 Larger, higher chill-rate
required during storage	chilling system required
	• Delays in chilling will
	impact countdown

Figure 3.2.2.1.2-2. Pros and Cons of Storing Propane Warm and Chilling During Loading
heat transfer medium sandwiched to assure positive separation of propellants, may also be considered. The basic problem of using the LOX to keep the propane cold is that the $1K \Delta T$ available is not enough to produce significant heat transfer between the two propellants. Also the need for relatively close proximity of the two propellants raises questions concerning safety assurance.

A second generic approach is to provide onboard nitrogen-cooled heat exchangers. This system could be used to keep both the LOX and the propane cold by plumbing inert LN₂ on board and allowing it to flash off in tank-mounted heat exchangers. One advantage of this approach is that it does not require propellant recirculation. Also, refrigerant leaks are benign, and relatively small flows are adequate since the heat of vaporization of the LN₂ is available to chill the propellants. The limitation of this option is that it does not prevent propellant stratification and may even increase it, unless some type of in-tank stirring devices are installed.

Other investigators considering subcooled propane conditioning have suggested the solution of bubbling cold helium through aspirator-like devices in the bottom of the tank. This would require availability of significant quantities of cold helium which would be expensive. Nitrogen might be substituted, however, its solubility in cold propane could be high enough to impact performance and so would be unacceptable. (Note that GN₂ is not suitable as a tank ullage pressurant for subcooled propane for the same reason.)

It is concluded that the conventional approach of recirculating a flow stream of propellant (approximately 100 to 150 gpm) from the vehicle to a GSE chiller using LN_2 , is a practical effective means to provide thermal conditioning of the onboard propellant.

Insulation is a consideration for the vehicle propane tank. Insulation represents a weight penalty for the vehicle. However, it can prevent buildup of frost and ice. It also reduces the rate of recirculation required to maintain the propane at 91K. A tank with insulation similar to the Space Shuttle external tank has a heat leak of approximately

77.2 Btu/ft2/hr compared to a frosted Atlas LOX tank at 200 Btu/ft2/hr. The insulated tank requires the recirculation of approximately 100 gpm. If the tank were left uninsulated the required recirculation rate would be about 450 gpm which approaches the flow rate contemplated for routine loading or off-loading operations.

3.2.3 Storing and Handling Subcooled Propane

3.2.3.1 Storage Options

Subcooled propane is in the temperature range of NBP LOX and LN₂. Storage considerations are therefore largely the same, i.e., vacuum jacketed cryogenic storage tanks with valves, fittings and the like designed for cryogenic service. One notable difference of propane is that, unlike LOX and LN₂, its vapor pressure is extremely low (.00005 in Hg). A tank ullage pressure system would be required for safety unless the inner tank is designed to withstand full vacuum. As previously mentioned, GN₂ is not a suitable ullage pressurant. GHe or GH₂ are both suitable pressurant gases. Since it is likely that LH₂ will be on-site if not actually on the vehicle, GH₂ is a logical pressurant to use. In flight GH₂ any be able to be delivered at elevated temperature by the engine to minimize pressurant mass in the vehicle propane tank at shutdown.

A second difference is that while LOX and LN₂ storage temperatures can be maintained by the simple expedient of venting the storage tanks to atmosphere, the propane will require refrigeration while in storage. An approximation of the refrigeration required can be obtained by noting that well-designed cryogenic storage tanks when full lose approximately 0.5% per day of their liquid to venting. A 80,000 gallon LN₂ dewar would then vent away about 400 gallon: to absorb the in-leak of heat. Using an LN₂ chiller to refrigerate a propane tank would be expected to require about the same amount of LN₂, since the heat in-leak to a propane tank at 91K would be virtually identical to the LN₂ tank.

Assuming LN₂ to be available at 04/1b, LN₂ would cost on the order of 95 to 100 per day to maintain the propane at the desired 91K. This is a very nominal cost compared to other alternatives.

3.2.3.2 Transfer of Propane

3.2.3.2.1 Transfer Alternatives

Transfer methods considered were differential pressure transfer and pumped transfer. The recirculation mode of conditioning the onboard propellants requires a pumped transfer system. Further, the pressure transfer approach uses relatively large quantities of hydrogen or helium gas, and would tend to need larger line sizes than the pumped transfer system. The pumped transfer system design can more easily accommodate extensions in the design length of facility lines, and permits the use of a lower design working pressures for the storage tank. For these reasons the pumped transfer system is preferred.

3.2.3.2.2 Pump Type

Propane viscosity varies significantly with temperature (see fig. 3.2.1-4). At 91K it has a viscosity approximately that of kerosene, which is not high enough to be a major factor in selecting pumping equipment. However, conventional centrifugal pumps for handling distillates, diesel fuels, kerosenes and the like are not directly suitable because many of the normal materials are not suited to the cold temperatures. Instead, conventional centrifugal cryogenic pumps such as for LOX and LN₂ will be more suited to this service. Such pumps are stock items for cryogenic equipment suppliers.

3.2.3.2.3 Prechill of Transfer System and Vehicle Tank

It will be desirable to prechill the pumps, values, fill lines and vehicle tank with $cold GN_2/LN_2$ prior to introducing the propane. The nitrogen can be safely vented and will serve to inert the system. The residual GN_2 would then be purged by GH_2 , after which the subcooled propane flow would be initiated. By this sequence the fill system thermal transients are reduced, cryogenic flow phenomena such as surging, geysering, and water hammer caused by vapor cavity collapse will be avoided, and the GH_2 will serve as the ullage gas pressure in the vehicle tank while filling.

3.2.3.2.4 Handling Safety

Routine practice for safe handling of other cryogens will apply to subcooled propane as well. There is one area of difference worth noting. A leak or small spill of LOX, LN₂, or LH₂ flashes to vapor quickly, producing a vapor cloud which disperses relatively soon. (Although care must be exercised with respect to local pooling or streaming of cold GOX.) A leak or spill of subcooled propane, however will not vaporize until significant warming has occurred. Leaks may, therefore, be less visible and pooling of quantities of subcooled propane may occur.

A major spill of subcooled propane will also represent a new situation which should be evaluated further. Flowing like kerosene, the subcooled propane could inundate large areas of a facility floor, or containment barrier before evaporating into combustible/explosive vapors that are heavier than air and thus would tend to settle in low places causing a further safety hazard. Once ignited, a large pool of subcooled propane would begin to vaporize at an increasing rate to feed a fire of increasing size and intensity. Probably no other cryogen poses this unique safety issue to the degree presented by subcooled propane.

3.2.4 Ground Support Equipment System Definition

This section uses the foregoing considerations to define and size a system for the requirements listed in section 3.2.4.1.

3.2.4.1 System Requirements

The following requirements were used as a basis for system definition:

Item	Description								
Launch site:	Cape Kennedy								
Liquid propane:	Available on-site at 233K								
Quantity loaded:	400,000 lb								
Propane tank size:	12 ft diameter								
Tank ends:	Hemispherical								
Propane tank elevation:	150 ft above pad								
Launch hold durations:	Up to 12 hr								
LOX tank:	Located aft at 90°K								
General launch scenario:	TBD, assume 48 hr turnaround from an								
	aborted launch								
Vehicle dimensional assumptions:	See figure 3.2.4.1-1								

On the basis of the above and figure 3.2.4.1-2, Baseline Vehicle Loading Sequence and figure 3.2.4.1-3, Launch Abort Turnaround, scenarios were assumed for purpose of aiding the selection of fill rates for transfer system sizing. Vehicle loading or offloading rates resulting in a 2 to 4 hr period to complete propellant transfer appears reasonable, implying net flow rates of 300-600 gpm. Such time periods are also long enough for approaching thermal equilibrium in the tankage structure and vehicle plumbing. These rates also are close to that required for recirculation to condition the onboard propellant. As a result the same systems would be used. Vacuum-jacketed 4 in

Operation	Time	% Load	Loading	Quantity	
	(min)		rate (gpm)	(gal)	
LN ₂ /GH ₂ Prechill					
of lines and					
vehicle tankage	15	NA	-0-		
Cover gas purge and					
recharge, GH ₂	10	-0-	NA	-0-	
Slow fill, C ₃ H ₈	10	1.5	100	1,000	
Fast fill, C ₃ H ₈	105	97.0	600	63,000	
Slow fill, C ₃ H ₈	10	1.5	100	1,000	
Total	150		l	65,000	
Recycle	as		100-300	NA	
	requir	ed			

Figure 3.2.4.1-2

Baseline Vehicle Loading Sequence

Item	Description
General launch abort scenario:	48 Hour Turnaround
Abort launch	Start
Secure facility	4 hrs
Offload propellant	4 hrs
Corrective actions	24 hrs
Countdown to propellant load	8 hrs
Load propellant(s)	4 hrs
Complete countdowwn	4 hrs
Launch	End
Turnaround tim	e 48 hrs

Figure 3.2.4.1-3 Launch Abort Turnaround Scenario (Typical)

lines would be the minimum size considered for a 1500 ft run to the vehicle. A 6 in line size appears more suitable, and is recommended for the baseline design, because it allows greater variation in final choices of line length and loading rates.

The abort scenario also requires the local availability of an 80,000 to 100,000 gallon capacity dewar to receive the cold propane from the vehicle following the abort decision. This requirement supports the concept of chilling the propane upon arrival at the site and storing it in the pre-load GSE tankage. This same tankage would then also serve as the off-load receiver in the case of a launch abort.

3.2.4.2 System Concepts, Options, and Selections

3.2.4.2.1 Baseline System

Because of its simplicity, safety and low cost, the use of LN₂ to chill and condition the propane has been selected as the baseline approach. Figure 3.2.4.2.1-1 pictorial presents a sketch of the subcooled propane chill and transfer facility.

Figure 3.2.4.2.1-1 Subcooled Propane Chill and Transfer

The facility has two 80,000 gallon cryogenic tanks for propane, a 20,000 gallon cryogenic tank for LN₂, and a propane chilldown/transfer building. Vacuum-jacketed transfer lines interconnect to the storage tankage for loading and offloading of the vehicle. All pumping and chilling equipment except for the vehicle off-load pump is located within the building. Bottle banks for high pressure helium gas and high pressure hydrogen gas are provided. GN₂ is assumed to be available from a pipeline, but a small local high pressure bottle supply is also provided as a safety measure. The vehicle off-load pump, which also serves as the recirculating boost pump, is located at the launch pad.

Dual propane tankage is provided to permit the receipt and chilling of fresh propane to proceed uninterrupted in the event of a launch abort which could require the offloading and temporary storing/conditioning of approximately 70,000 gallons of chilled propane. Storage is also provided for 20,000 gallons (two tanker loads) of LN₂, to provide a degree of flexibility in receiving and use of LN₂. The LN₂ storage permits the off-loading of a tanker in the event of a delay in propane chilling. The LN₂ storage also permits uninterrupted chilling of propane in the event of delays in LN₂ deliveries and provides the LN₂ needed for onboard conditioning of the loaded propellant. However, during all normal operations, LN₂ tankers would be scheduled in accordance with operational needs, because of the low cost and flexibility of delivery quantities.

As mentioned previously an alternative to storing the propane cold, would be to store the incoming propane at ambient temperature in conventional high pressure, ambient temperature propane storage tanks. Initial cost of the tank(s) would be less, and propellant conditioning during storage would not be required. One drawback is that there would not be a tank for cold propane in the event that vehicle off-loading became necessary. A major factor is that a facility operation to chill the propane becomes part of the launch countdown thus increasing complexity and potential for launch delays.

OF POOR QUALITY

٠.

A third alternative is to not chill the propane for the next launch until the current launch is away. This timing would also provide storage capacity for cold propane in the event of launch abort using only a single dewar instead of two. However, this approach lacks redundancy, and could also cause launch delays in the event of minor facility operational problems. The propane chill and transfer facility is shown schematically in figure 3.2.4.2.1-2. A redundant chilling capability is provided to allow chilling of fresh propane and conditioning of onboard propane to proceed simultaneously if needed. It also allows either system to be used, for either purpose, in the event the other system is out of service (for maintenance or repair). Also, both systems could operate in parallel during the fast fill phase of loading.

Figure 3.2.4.2.1-2 Propane Chill and Transfer Facility Schematic

Other options for propane chillers do not appear to be viable candidates, especially in view of the desirability of system redundancy. A typical current price for a cryogenic plant capable of 100 ton per day production of LN₂ is on the order of \$20M installed. This would be a typical sized alternative system in terms of chiller capacity. Overall, it is believed the use of LN₂ cooled heat exchangers represent the best approach for subcooling propane.

The propane chill and transfer facility is plumbed to provide propellant loading and recirculation flow to the vehicle tankage. Within the same facility are the appropriate headers, manifolds, valving controls and indicators to provide helium and nitrogen gas purges, and hydrogen gas as the tank top pressurant for all fuel tanks.

3.2.4.2.2 Vehicle Fill Rate

The time required to perform the propellant loading operation is considered in this section. Among the considerations are: time period in the countdown available for filling the tanks, allowable hold period after tanks are filled, sizing of propellant transfer lines, pumps, valves, etc., fill system and tankage fluid dynamics and thermodynamics (cryogenic geysering, water hammer, etc.) and loss of propellant due to boiloff.

One guide in addressing all these considerations is the solution already reached for the fill rates and transfer methods used for current systems, such as the Space Shuttle. LOX is pump-transferred while LH₂ is pressure-transferred to the Shuttle ET. Full flow rates are on the order of 8000 gpm for LH₂ and 1500 gpm for LOX. This rate results in about 30-45 min fill time for the ET at maximum fill rate. Adding time for purging, line and tank chilldown and accurate final level setting would typically add another hour, so an hour and a half to two hours is estimated as being a typical time period devoted to the propellant loading operation for the space shuttle.

For a propane-fueled instead of LH₂-fueled vehicle, where loss of fuel to tank venting is not at issue, and where temperature stratification will be prevented by fuel recirculation, other considerations may dominate. Assuming distance from the storage facility to the launch platform is on the order of 1500 ft, line loss and vehicle tank elevation static head result in a pumphead requirement of approximately 550 to 600 ft for 4 in piping, compared to about 200 ft for 6 in pipe assuming flow rates of approximately 750 to 800 gpm (i.e., fill flow plus recirculation flow).

A line size of 6 in represents a reasonable compromise between pumping power demand (friction loss) and low propellant transfer system cost. Note that during propane tank fill, approximately 150 to 200 gpm will be recirculated for maintaining the temperature of the onboard propellant. Net tank fill rate of 600 gpm is, therefore, appropriate for the baseline.

The low vapor pressure of the propane will preclude geysering of the propellant entering the tank. The fill and recirculation lines will be vacuum-jacketed to minimize heat transfer. Heat gain from friction loss in the transfer line is less than 1 Btu/lb, for 4 in pipe, and less than 0.1 Btu/lb for 6 in pipe, so is not a significant consideration; at 800 gpm, the propane will be in transit through the line for less than 4 min so that heat input from the transfer line will be negligible. Current fill piping at Kennedy Space Center for Space Shuttle tankage is 6 in vacuum-jacketed line, about 1800 ft long.

3.2.4.2.3 Preferred System Description

The preferred system is the LN2-chilled process, using tanker trucks as the primary LN2 supply. An on-site LN2 storage tank serves as a backup, and also provides the refrigeration supply for the cold propane tanks during periods of extended hold times. It is recommended that the propane be stored cold to minimize the possibility that the chilling cycle interferes with other launch countdown tasks, and to minimize on-site tankage.

Transfer of the propane would be by conventional cryogenic transfer pumps. Centrifugal pumps of adequate capacity, (800 gpm) are available from several suppliers, including parts and service. Cryogenic pumps are recommended for the subcooled propane to ensure they are made of materials suited to cryogenic temperatures, and because they can be obtained with containment housings which collect any leakage for safe routing to a facility vent stack.

Conditioning of the onboard propellant is proposed to be accomplished by recirculation to the refrigeration facility via the loading/off-loading interconnect lines. This method provides ample chilling capacity and the flow through the tank assures that stratification in the tank is prevented. For this study is is assumed that the propane tank would have insulation equivalent to that used on the external tank of the Space Shuttle.

3.2.4.3 System Operations

This section outlines a typical sequence of operations to support further definition of system characteristics. It is assumed that an ample supply of propane is available onsite, provided as an available flow stream to the propane subcooling facility. For the operations scenario it is also assumed that the LN₂ storage tank is filled, and all gas bottle tanks are fully charged.

Operations

Step No. Step description

- 1.0 Prechill cold propane receiver
 - 1.1 Dry GN₂ purge at ambient pressure
 - 1.2 Stop purge, fog nozzle spray LN₂ into tank top vent at ambient pressure. Chill to $-100^{\circ}F$
 - 1.3 Stop LN2 spray, purge GN2 with GH2 at ambient pressure. Set GH2 pressure regulator at atmospheric pressures plus 1 to 2 psig for propane cover gas pressure
- 2.0 Propane chill process
 - 2.1 Initiate LN2 flow to heat exchanger, until facility is chilled
 - 2.2 Initiate propane flow to heat exchanger #1
 - 2.3 Open propane fill line to cold propane tank
 - 2.4 Open propane recycle line from cold propane tank to heat exchanger #2 and recycle
 - 2.5 Operate in fill/recycle modes at design rate to fill tank in 4 hr, i.e., approximately 100,000 lb/hr
 - 2.6 Condition propane in full tank via recycle loop until temperature of 91K is achieved.

- 2.7 Switch to holding mode using secondary refrigeration loop at the storage tank for extended hold
- 3.0 Fill vehicle tank
 - 3.1 Prechill vehicle tank and fill lines with cold GN2
 - 3.2 Purge GN₂ with cold GH₂, pressurize GH₂ to atmospheric plus 1 to 2 psig and set GH₂ pressure regulator
 - 3.3 Draw cold propane from storage tank and transfer to vehicle tank
 - 3.4 Initiate recycle flow from vehicle tank to recycle propane to chill heat exchanger
 - 3.5 Continue propane fill and recycle flows until tank full level is reached
 - 3.6 Adjust flow rates to maintain recycle flow to achieve/maintain propane temperature
 - 3.7 Set GH₂ pressure regulator to final ullage pressure setting
 - 3.8 Stabilize facility operation until launch countdown calls for facility shutoff
- 4.0 Vehicle launch abort offload propane
 - 4.1 Vehicle assumed to be in prelaunch mode, with recirculation system operating to maintain propellant temperature. Cold propane ground storage tank level assumed low enough to accommodate fuel offload
 - 4.2 Vehicle launch abort command results in changes to valve position selector switches. Valve to cold storage tank is opened, valve to vehicle tank closed, recycle interconnect valve opened, both chiller systems operate, GH2 tank top pressure regulator switched to "High Rate" setting
 - 4.3 Propane off-loading proceeds under pumped flow conditions until GH2 is sensed at a propane pump inlet
 - 4.4 All pumps are shutdown and the pressure, purge, and vent (PP&V) system is activated to purge propellant residuals from all lines and valves

4.5 System values are repositioned for prefill readiness and the system placed on hold until fill command is received.

3.2.5 ROM Cost Estimate

This section summarizes cost estimates for the subcooled propane GSE installation.

3.2.5.1 GSE Procurement and Installation

Equipment cost estimates are based upon supplier advance quotes for the majority (approximately 80%) of the material costs. Supplier advance quotes are typically 15-20% high as an uncertainty allowance. However, they have been used as stated, but only a small (15%) contingency applied to the overall material cost estimate so as to provide an offsetting effect.

Costs are stated in FY87 dollars since the exact timing of the construction of such a facility is not yet known. Architect fees are assumed to apply to construction materials and site preparation, not to facility construction labor. Figure 3.2.5.1-1 shows the preliminary cost estimate for the facility. Material and Labor

i i

Total No. unite Unit Cost Estimate Basis Q = Quote E = Engineering Estimate Description Item No.

t \$780,000	000 11 0		· \$ 15,000	·a \$ 15,000	, 1150.000			st \$ 50,000		ya a to, ooo	- \$120,008	\$2,481,000	\$248,000	\$172,000	\$2,500.000	\$5,601,000
:	-	4	l ey	1 =7	-		-	-	•		i					
\$780,00 0		non'er t	\$ 15,000	\$ 12°00	8150,000			\$ 20,000		t 40,000	\$120,000					
R Based on Q by CVI	• •	H.	M	•		• •	4	•	ſ	•	M		84	•	•	
Vacuum jacketed propene piping 1000 ft, 10 elbove, 20 ft eactione, 250 paig, 6 in.w 8 in.,	\$260.00/ft	LM, chiller for etorage tank hold time recirc. 300 gpd eise	Mitrogan presence, purge vant	system GM./GH. preseure, purge vent	ayliten"	rows, propers service and umbilical, remote diaconnect and sving-avay arm	Chillar facility biog. Moveo fr concrete control, office and anergony syrvival system 840.00/ff	Instrumentation and control panels and wiring to remote	stations, including launch tower	Electric powar aupply 100 kw alactric sarvice	Grading and paving 80,000 ft ² 8 \$1.50/ft ³	stal	Architact fee 0 100	Miscellaneous unpriced equipment 0 15%	Facility construction/ intallation prime contract, direct labor 25 manyaars # 100K/MT	1 Total
н	:	19.	16.	11.	:	:		30.		31.	11 .	Subto	ы.	34.	23.	Grand
3 \$170,000	1 \$140,000	1 set \$150,000		I 245 \$ 44,000	1 set \$ 66,000	4 8 60,000	3 \$ 60'000	2 \$ 14,000	4 8 32,000	3 \$ 19,000	2 \$ 24,000		2 4 4,000	1 set \$ 33,000		
\$235,000	\$140,000	\$150,000		\$ \$\$,000	\$ 66,000	\$ 13,000	\$ 40,000	\$ 8,000	000'8 \$	000'4 \$	000' 9 8		3 ,000	\$ 32,000		
Q (LOX Equip.Inc)	Q (HVB)	a	US Éteel	Q US Steel	Q US Steel	Q ACD	Q MEX Producte	Q ANC	a	, a	CVI Q	CVI	Q Foxbero Co	a	CVI	
Propane tank, 80,000 gal vacuum insulated or equivalent	LM ₂ , 20,000 gal vacuum insulated or ² amivalant	GN. bottle bank, 100,000	joto peig working pressure	GN bottle bank, 50,000 2000 paig working pressure	GH, bottle bank, 50,000 2000 pala vorking pressure	Centrifugel cryogenia pump electric-driven, 800 gpm,	ous ri meuv, as uny Maat axchanger, 19x10 ⁶ BTU/hr LM//Propane, tube-in-tube coditesflow	Liquid filter 10 micron abs 2000 gpm propane service	Valve, 6-in cryogenic remote	actuation, on-ott Valva. 6-in cryoganic remote	actuation, modulating	valve, s-in crogento manual shutoff	Controller-recorder, temp eronortional/reset adjustment	10.5% Versions technical IM. E ⁴ -100	200 f. d albows, 350 pild, 1*23-1/2* bayonat connections plue 3 valves	
÷										d		i	i.	:	i	

Subcooled Propane Supply System Cost Estimate Figure 3.2.5.1-1

ORIGINAL PAGE IS OF POOR QUALITY

3.3 VARIABLE MIXTURE RATIO ENGINE STUDY

A subcontract was awarded to the Aerotherm division of Acurex Corporation to provide LOX/LH2 engine specific impulse (vac), engine weight and nozzle exit diameters using the variable mixture ratio, full-flow cycle engine with a nominal thrust of 700K lbs at a mixture ratio of 10. Parameters are mixture ratio (5, 6, 8 on the low end and 10, 12, 14 on the high end), nozzle area ratio (20:1, 64:1, and 100:1). Use two chamber pressures, one with a 2-stage hydrogen pump and one with a 3-stage hydrogen pump. The subcontract also included the definition of an engine with a high mixture ratio of 9, tailored for the booster element of a 2 stage heavy lift launch vehicle, which could also be adapted for a mixture ratio of 6, for a second stage of this launch vehicle concept.

3.3.1 Technical Discussion

Figure 3.3.1-1 shows a plot of vacuum specific impulse as a function of mixture ratio and nozzle exit-to-throat area ratio. The curve is for chamber pressures in the 2000-3000 psia range. The specific impulse peaks at mixture ratio 6 for all area ratios. The specific impulse stays high over the mixture ratio range from 4 to 8 and decreases approximately linearly at mixture ratios greater than 8.

The specific impulse is sharply affected by changes in nozzle exit-to-throat area ratio. For example, the difference in specific impulse between the 64:1 and 20:1 area ratio is greater than the specific impulse difference between mixture ratio of 6 and mixture ratios of 4 or 8.

In figure 3.3.1-2 nozzle exit diameters are shown as a function of mixture ratio for 3000 and 2000 psia chamber pressure engines for area ratios of 20 and 64. The higher chamber pressure allows smaller nozzle exit diameters. It will be noted that a 700K thrust engine requires a 100 inch diameter for area ratio of 64 at a chamber pressure of 3000 psia. Changing mixture ratio from 10 to 14 has a neglible effect on the nozzle exit diameter at constant area ratio.

Figure 3.3.1-1 O₂/H₂ Vacuum Specific Impulse as a Function of Mixture Ratio and Area Ratio

THRUST (VAC) = 700,000 LB

Figure 3.3.1-2

Nozzle Exit Diameter as a Function of Mixture Ratio, Area Ratio, With/Without Nozzle Skirt Insert

The effect of chamber pressure on vacuum specific impulse for various nozzle exit diameters and mixture ratios is shown in Figure 3.3.1-3. This curve shows that the higher chamber pressure (3000 vs 2000) provides a clear margin increase in specific impulse at all mixture ratios for given nozzle exit diameters. The difference in specific impulse is 4-5 second for nozzle exit diameters of 100 inches. At very large nozzle exit diameters (large area ratios) the difference is specific impulse is reduced to about 2.

Figure 3.3.1-3 LOX/LH₂ Specific Impulse Versus Nozzle Exit Diameter, Mixture Ratio and Chamber Pressure

Engine weights for chamber pressures of 3000 psia and 2000 psia are given as a function of mixture ratio and area ratio in Figures 3.3.1-4 and 3.3.1-5 respectively. The effect of mixture ratio in the range 10-14 has neglible effect on engine weight at both chamber pressures.

Figure 3.3.1-5

Engine Weight as a Function of Mixture Ratio and Area Ratio, With/Without Nozzle Skirt Insert The variation of major subsystem weights as a function of mixture ratio for 3000 psia and 2000 psia chamber pressures is shown in Figure 3.3.1-6. It will be noted that the thrust chamber subsystem weights decrease with mixture ratio while the turbomachinery subsystem weights increase with mixture ratio.

Figure 3.3.1-6 Variation of Major Subsystem Weights as a Function of Mixture Ratio for 700,000 lb Thrust LOX/LH₂ Engines

In figure 3.3.1-7 the weights of the various components of the thrust chamber subsystem are shown as a function of mixture ratio. Weights of thrust chamber components are relatively insensitive to variation in mixture ratio in the range 10-14. At the lower chamber pressure of 2000 psia the nozzle skirt is larger than the skirt for 3000 psia chamber and therefore somewhat heavier. The lower weight of the 2000 psia hot gas manifolds reflects the low gas temperature which they constrain.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.3.1-7 Weights of Thrust Chamber Components Versus Mixture Ratio for 700,000 Thrust LOX/LH2 Engines

Figure 3.3.1-8 shows a drawing of a gas-gas injector. This injector has dual oxidizer-rich inlets which direct gases to a common plenum for feeding the oxidizer injection segments.

Figure 3.3.1-8

Injector Assembly Diagonal Plate (Gas-Gas)

As shown in Figure 3.3.1-9, the reduction of hydrogen turbopump-preburner weight largely offsets the increase in weight of the oxygen turbopump-preburners as the mixture ratio increases from 10 to 14. A high mixture ratio (10-14) dual oxygen boost pump and main turbopump units were used. Figure 3.3.1-10 shows a drawing of an oxygen turbopump with integrated preburner. Figure 3.3.1-11 shows a drawing of a fuel turbopump-preburner assembly with integrated boost turbopump.

Figure 3.3.1-9 Weights of Turbo Machinery Components Versus Mixture Ratio for 700,000 Thrust LOX/LH2 Engines

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.3.1-11 4 Stage LH₂ TPA With Integrated Boost Pump

A possibly feasible nozzle skirt is shown in Figure 3.3.1-12. The example shown is for an SSME size chamber. The advantage of the NSI is the optimum area ratio at liftoff gives excellent sea level thrust.

.....

Figure 3.3.1-12 Typical Nozzle Skirt Insert

The relationship between the nozzle thrust coefficient and altitude for 3000 and 2000 psia chamber pressure is shown in Figures 13 and 14. The flight trajectory program will determine the optimum altitudes for nozzle skirt ejection. However, the altitudes shown in Figures 3.3.1-13 and 3.3.1-14 should be close to optimum.

Figure 3.3.1-14 Transition Altitude For 20:1 to 64:1 Area Ratio Skirts

ORIGINAL PAGE IS OF POOR QUALITY

The lengths of the engines for 3000 and 2000 psia chamber pressures and nozzle exit area ratio of 20, 64, and 100 are shown in Figure 3.3.1-15. The high chamber pressure provides a significant reduction of engine length. The engine length is not a significant function of mixture ratio, only chamber pressure and area ratio for the constant thrust of 700,000 lbs (vac).

The variable mixture ratio engine characteristics for 3000 psia and 2000 psia chamber pressure engines with skirt area ratios of 64 are given in Figures 3.3.1-16 and 3.3.1-17. Three engines A, B, and C having initial mixture ratios of 10, 12, and 14 respectively are shown. Each engine transitions to low mixture ratio, i.e., 5, 6, 7, or 8 for higher specific impulse and reduced thrust. For the data shown, the fuel flow rate of each engine is maintained constant at the lower mixture ratios.

An engine with a high mixture ratio of 9, tailored for the booster element of a 2stage heavy lift system was also defined. This engine has a vacuum thrust of 671,110 lbs, a chamber pressure of 3000 psia and is a full-flow cycle design having a skirt area ratio of 20. Further, this engine can be adapted to operate at a mixture ratio of 6 and have a chamber pressure about 2000 psia to serve as the engine of the second stage of the launch vehicle. It's nozzle skirt has an area ratio of 64 and includes a skirt insert having an area ratio of 20.

The booster and upper stage engines operate in the parallel burn mode at lift-off. A drawing of the booster/upper stage engine is shown in Figure 3.3.1-18. Data tables for the booster and upper stage engine are given in Figures 3.1.1.16-3 and 3.1.1.16-4 (previously shown). The engine has a single integrated high pressure-low pressure fuel turbopump and dual integrated high pressure-low pressure oxygen turbopumps. The main fuel turbopump uses a 3-stage pump for 3000 psia chamber pressure and a 2-stage pump for 2000 psia chamber pressure. Figure 3.3.1-19 shows the variation of pump discharge pressure an turbine inlet pressure with chamber pressure. Figure 3.3.1-20 shows the corresponding oxidizer and fuel main turbine inlet temperature for 3000 and 2000 psia versus high mixture ratio. The turbine inlet temperatures for all turbines are modest, for example, 428°F for main oxygen turbopump and 809°F for the main fuel pumps in the booster engine and at lower temperature in the lower chamber pressure upper stage engine.

Variable Mixture Ratio Engine Characteristics

Figure 3.3.1-17 Variable Mixture Ratio Engine Characteristics

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.3.1-18

LOX/LH₂ Engine Assembly

Figure 3.3.1-19 Pressure Pump Discharge and Turbine Inlet Versus Chamber Pressure

Figure 3.3.1-20 Turbine Inlet Gas Temperature Versus Mixture Ratio and Chamber Pressure

4.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions discussed below are based on results obtained directly from the study effort, as accomplished in accordance with meeting the study objectives, combined with additional insights gained from discussions of the study results with engine contractor and NASA personnel. Our recommendations are based on not only these conclusions but also on results from related (but outside the contract statement of work) IR&D studies.

4.1 CONCLUSIONS

The following main conclusions were drawn from the study effort:

- a. Optimum staging velocity for an unmanned two-stage, parallel-burn, partially reusable heavy lift vehicle of the type selected for this study, for minimum dry weight, is about 5000 feet per second. The high propellant mass fraction of the second stage drives the staging velocity regardless of engine type or propellant used by the booster. Therefore, the partially reusable second stages of all vehicle options examined are all nearly identical.
- b. The use of hydrocarbon fuel minimizes two-stage and SSTO vehicle dry weight. For example, the lowest dry weight for the booster element (and total vehicle) of the partially reusable, two-stage, unmanned heavy lift vehicle concept was obtained through use of a new LOX/CH4, high chamber pressure booster engine using LH2 regenerative engine cooling.
- c. The extra tank, plumbing and other related provisions for the LH₂ coolant of this booster, in conjunction with the fairly large CH₄ tank (required by the relatively low density of the CH₄, e.g., compared to RP-1) and the small wing consistent with the light weight booster, indicate that a canard lifting surface may be required to allow adequate aerodynamic trim (during the subsonic portion of the flight following deceleration from about Mach 5). Thus, the LOX/CH₄/LH₂ cooled
booster could be further complicated and its weight impacted to the point where it would no longer the lightest option (e.g., compared to the relatively compact LOX/CH4/CH4 cooled booster which also uses a lower chamber pressure engine).

- d. The lowest dry weight booster (LOX/CH4/LH2 cooled) discussed above is only about 15% lighter than a booster using a low chamber pressure (1300 PSIA) LOX/RP 1/RP-1 cooled engine. The relatively large powerhead of this engine can still be configured to provide an acceptable booster aerodynamic configuration, even avoiding the use of a canard. The engine and vehicle simplicity and resulting lower development costs should be traded-off against potential operational impact due to using RP-1 as a coolant. These include both in-flight purge (with GN2, upon shutdown), ground solvent flush requirements for the engine downstream of the propellant shut-off valves, and the need for a high level of fuel purity to prevent cuprous sulfite build-up within the engine due to sulfur impurities in the fuel.
- e. The complexities of using either propellant crossfeed, or an engine with two position nozzle on the booster are both counter-productive as applied to dry weight minimization of the two-stage launch vehicle. The booster provides only about a quarter of the delta velocity required to reach orbit and needs to be as simple, reliable and affordable as reasonable for low cost operations (including turn-around, check-out, etc.).

Its high mass fraction, compared to the partially recoverable second stage, also contributes to the ineffectiveness of these options.

- f. The use of subcooled propane did not minimize dry weight for the two-stage system. In addition, ground infrastructure and safety potential impacts caused us to further conclude that subcooled propane is an inappropriate fuel for this application.
- g. Another complexity that was found to be inappropriate for the two stage system was the use of a new variable mixture ratio LOX/LH₂ engine on the booster (or

second stage) element. For the system concept considered (flyback booster with staging at around Mach 5), we concluded that using a single mixture ratio of about 9.0:1 produces approximately the same vehicle dry weight minimization and avoids potential inter-granular weakening effects within the engine through initial LOXrich, followed by fuel-rich combustion.

- h. The use of a high mixture ratio (9.0:1) booster engine is quite effective in reducing the dry weight of the two-stage system. Further, by operating in a slightly lower, but still high mixture ratio mode (7.5:1), the same engine could be used effectively for an SSTO vehicle provided that a two-position nozzle would also be utilized. The resulting all LOX/LH2 two-stage vehicle is quite simple and is potentially the best overall approach, although being about 20% heavier (dry weight) than the best hydrocarbon fueled concept.
- i. Increasing chamber pressure has a diminishing effect on minimizing dry weight. In order to reduce new engine development cost the chamber pressure can be lowered (providing that the resulting cluster of engines will still fit within the booster aft section) without seriously impacting two-stage vehicle dry weight.
- j. The desired vacuum thrust range for a new engine for the booster element of the two-stage, partially reusable, unmanned vehicle is 600,000 to 700,000 lb. depending on propellants and engine types utilized.
- k. The use of subcooled propane fuel produced only a slightly lower SSTO vehicle dry weight than could be obtained using normal boiling point propane. The difference does not appear to justify the subcooled propane facilities complexities. Probably more important, safety concerns using propane (liquid pooling and heavy vapors in the event of a spill, etc.) in conjunction with the availability of nearly as effective weight reduction strategies using other fuels caused us to conclude that the use of subcooled propane fuel is not the preferred approach even for an SSTO vehicle.

- L Designing an SSTO vehicle on the basis of minimum dry weight does not appear to be the best overall strategy. The focus becomes improving on technology (which is expensive and therefore counter-productive to reducing inert weight in order to reduce cost). We realized this paradox upon determining that significant reductions in across-the-board component weight technology levels, relative to the Advanced Launch System (ALS) type weights used for the two-stage vehicle portion of the study, were required to allow any of the SSTO vehicle options to reach polar orbit. Subsequently, on IR&D, we allowed GLOW to increase in order to minimize required reductions of component weight technology levels, at the expense of increasing vehicle dry weight.
- m. This parallel IR&D effort, outside of the contract statement of work (dry weight minimization), resulted in the finding that a LOX/LH2 SSTO vehicle could use nearly as low an overall component technology level as possible for a hydrocarbon fueled (early burn phase) plus LH2 fueled SSTO vehicle. The LOX/LH2 vehicle would merely have a slightly higher dry weight, but would be much simpler in overall design, using only one type of engine and only two main propellant tanks. Each engine would operate at a single mixture ratio of about 7.5:1 throughout the burn and would be equipped with a dual position nozzle capable of being actuated during the vehicle's continuous burn from lift-off to MECO. Engine-out capability is also feasible within the ALS type overall weight component technology level availability.

4.2 RECOMMENDATIONS

The following recommendations are based on some of the comments of 4.1 above as well as other data developed in-house or otherwise obtained outside of the contract effort:

- a. Whatever LOX/hydrocarbon booster engine turns out to be most suitable, we recommend that the advantages and disadvantages of its use on a two-stage, unmanned partially reusable booster be defined in greater detail relative to using a single type of LOX/LH2 engine on the same vehicle concept. This is because using two different types of engines on the vehicle (plus, if required, incorporating the complexities of LH2 engine cooling on the hydrocarbon fueled booster) may not turn out to be the most cost effective solution. Based on the study results, this effort sould consider a constant high mixture ratio (e.g., 9.0:1) LOX/LH2 engine on the booster, with a higher expansion ratio nozzle plus reduced LOX flow (to provide a 6.0:1 mixture ratio) version of the same engine on the partially reusable second stage.
- b. Since it is not clear at this time whether or not the partially reusable, two-stage vehicle approach selected for this study will actually turn out to be the preferred concept for an advanced launch system, we recommend that a similar study be performed for a fully expendable, modularly adaptable (for different levels of launch capability) type of vehicle such as discussed section in 3.1.3 of this report.
- c. Finally, we recommend expanding the SSTO portion of this study to consider use of the alternative optimization criteria developed under IR&D and summarized in section 3.1.3 of this report. This is because the revised strategy shows promise for defining a more near-term SSTO vehicle for military sortie missions and low cost manned access to the Space Station (e.g., by year 2000) than previously thought feasible.

APPENDIX A

DETAILED MASS AND PERFORMANCE DATA FOR OPTIMUM CONFIGURATIONS

.

	VALUE	PERCENT OF *REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2540000.00	0.00
FTPCT STACF		
PROPELLANT WT FOR ASCENT * LBS	1035400.00	0.00
FUEL WEIGHT IN BOOSTER * LBS	147910.00	0.00
OXTDIZER WEIGHT IN BOOSTER * LBS	887450.00	0.00
FIIFI. RESERVES * LBS	636.01	0.00
OXIDIZER RESERVES * LBS	3816.10	0.00
FUEL RESIDUAL WEIGHT * LBS	78.34	0.00
OXIDIZER RESIDUAL WEIGHT * LBS	544.38	0.00
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	444.68	0.00
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2886.60	0.00
TOTAL TANK WEIGHT * LBS	13199.00	0.00
FUEL TANK LINE WEIGHT * LBS	2065.10	0.00
OXIDIZER TANK LINE WEIGHT * LBS	201.23	0.00
FUEL TANK INSULATION WEIGHT * LBS	3447.90	0.00
OXIDIZER TANK INSULATION WEIGHT * LBS	1833.60	0.00
GAS LINE WEIGHT * LBS	105.38	0.00
ENGINE BAY LINE WEIGHT * LBS	202.80	0.00
PRESSURANT CUNTRUL HARDWARE WEIGHT * LBS	4700 00	0.00
WEIGHT OF EACH BOUSIEK ENGINE * LBS	0730.00	0.00
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1504600.00	0.00
FUEL WEIGHT IN ORBITER * LBS	214950.00	0.00
OXIDIZER WEIGHT IN ORBITER * LBS	1289700.00	0.00
FUEL RESERVES * LBS	924.28	0.00
OXIDIZER RESERVES * LBS	5545.70	0.00
FUEL RESIDUAL WEIGHT * LBS	109.79	0.00
OXIDIZER RESIDUAL WEIGHT * LBS	/49.23	0.00
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	6U2.39	0.00
TOTAL UXIDIZER AUTOGENOUS PRESSURANI WEIGHI * LBS	15330.00	0.00
TUTAL TANK WEIGHT * LDS	1397 10	0.00
AVIDITED TANK LINE VEIGH ~ LDD	107 16	0.00
FUEL TANK INSULATION VEIGHT * LBS	4200.50	0.00
OXTOTZER TANK INSULATION WEIGHT * LBS	1968.70	0.00
GAS LINE WEIGHT * LBS	99.02	0.00
ENGINE BAY LINE WEIGHT * LBS	293.62	0.00
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.50	0.00
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9453.50	0.00
TOTAL OMS PROPELLANT WEIGHT * LBS	18582.00	0.00
OMS HARDWARE WEIGHT * LBS	1010.10	0.00
TOTAL RCS WEIGHT * LBS	1369.00	0.00
RCS PROPELLANT WEIGHT * LBS	1805.60	0.00
WEICHT OF EACH ONS ENGINE * LRS	304,00	0.00
THE END STREET STREET BALL SALE FRANCE		

Two-Stage SSME-Powered Baseline Propulsion Weights

•		PERCENT OF	
	VALUE	*REFERENCE	
TOTAL DRY WEIGHT * LBS	405140.00	0.00	
GROSS LIFT OFF WEIGHT * LBS	3167600.00	0.00	
FIRST STAGE	a/1700 00	0.00	
BOOSTER DRY WEIGHT * LBS	241/20.00	0.00	
BODY WEIGHT * LBS	111950.00	0.00	
GROWTH WEIGHT * LBS	13548.00	0.00	
INERT WEIGHT * LBS	277620.00	0.00	
EQUIPMENT WEIGHT * LBS	11083.00	0.00	
TANK MOUNT WEIGHT * LBS	1231.30	0.00	
STRUCTURAL WALL WEIGHT * LBS	23938.00	0.00	
APU PROPELLANT WEIGHT * LBS	3151.00	0.00	
LANDING WEIGHT * LBS	248330.00	0.00	
FLYBACK SYSTEM INERT WEIGHT * LBS	29339.00	0.00	
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	15995.00	0.00	
FLYBACK SYSTEM WEIGHT * LBS	45372.00	0.00	
LANDING GEAR WEIGHT * LBS	6953.10	0.00	
CANARD WEIGHT * LBS .	0.00	N/A	
WING WEIGHT * LBS	42331.00	0.00	
WEIGHT OF FIRST STAGE TPS * LBS	• 0.00	N/A	
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	2985.10	0.00	
SECOND STAGE			
LIFT OFF WEIGHT OF ORBITER * LBS	1854600.00	0.00	
ORBITER DRY WEIGHT * LBS	163420.00	0.00	
BODY WEIGHT * LBS	111640.00	0.00	
GROWTH WEIGHT * LBS	9475.20	0.00	
INERT WEIGHT * LBS	190510.00	0.00	
EQUIPMENT WEIGHT * LBS	7011.20	0.00	
TANK MOUNT WEIGHT * LBS	0.00	N/A	
STRUCTURAL WALL WEIGHT * LBS	9038.60	0.00	
APU PROPELLANT WEIGHT * LBS	445.24	0.00	
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00	
WEIGHT OF- PROPULSION/AVIONICS MODULE	121780.00	0.00	
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00	
PAYLOAD WEIGHT * LBS	150000.00	0.00	
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00	
*TO THE SSME POWERED BASELINE			

Two-Stage SSME-Powered Baseline System Weights

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.53	0.00
NOMINAL LIFT OFF ACCELERATION	1.40	0.00
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	5000.00	0.00
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	437.68	0.00
QUANTITY OF ENGINES	7.00	0.00
PROPELLANT MASS FRACTION	0.79	0.00
BOOSTER LAUNCH MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	452200.00	0.00
ENGINE RATED VACUUM THRUST * LBS	494400.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	35.15	0.00
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	3.00	0.00
THROTTLE SETTING OF 1ST STAGE ENGINES	0.89	0.00
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.00
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.68	0.00
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	32/0.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	1675400 00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	10/5400.00	0.00
AUDAN NACHIM ANDREA EUD SINCLE UNS ENCINE AUDAN NACHIM ANDREA EUD SINCLE UNS ENCINE	210.00	0.00
TOTAL VACUUM INKUSI FOR SINGLE ONS ENGINE	0000.00	0.00

Two-Stage SSME-Powered Baseline Performance

		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	80.00	0.00
PAYLOAD DIAMETER * FT	33.00	0.00
- FIRST STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	149.65	0.00
LENGTH/DIAMETER RATIO OF VEHICLE	4.53	0.00
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	5.04	0.00
ENGINE SECTION LENGTH * FT	• 11.60	0.00
NOZZLE EXPANSION RATIO	35.00	0.00
FUEL LINE DIAMETER * IN	18.38	0.00
OXIDIZER LINE DIAMETER * IN	19.24	0.00
FUEL TANK HEAD HEIGHT * IN	139.99	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	509.81	0.00
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	0.00	0.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00 .
THICKNESS OF FUEL TANK WALL * IN	0.06	0.00
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SQ FT	3832.10	0.00
WING SPAN * FT	88.85	0.00
SINGLE FIN EXPOSED AREA * SQ FT	166.63	0.00
EXPOSED FIN SPAN * FT	15.21	0.00
CANARD WING SPAN * FT	0.00	N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	251.50	0.00
LENGTH/DIAMETER RATIO OF VEHICLE	7.62	0.00
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	/.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	//.50	0.00
FUEL LINE DIAMETER * IN	13.9/	0.00
OXIDIZER LINE DIAMETER * IN	14.0/	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	140	0.00
FUEL TANK HEAD HEIGHT * IN	720 31	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	1/1 07	0.00
OXIDIZER TANK HEAD HEIGHT * IN OWIDDIZER TANK HEAD HEIGHT * IN	41.07	0.00
CILINUKICAL LENGIN OF OXIDIZER IANK ~ IN CRACE REFUTED AND FUEL TANK HEADS + IN	5 00	0.00
DIACE DEIWEEN VALUIZER AND FUEL IANN DEADS ~ IN	0.05	0.00
THICKNESS OF FUEL TANK WALL * IN THICKNESS OF OVIDIZED TANK WALL * IN	0.05	0.00
LUTOWARDO AL ANTATARA INA MARR - TIA	1 00	0.00
LAIN SOLT TUTCHIESS ~ IN URT 1910 DAME CULL TUTCHIESS ~ IN	1.00	0.00
TO THE SSME POWERED BASELINE	1.00	

Two-Stage SSME-Powered Baseline Dimensions

	VALUE	+PEFEPENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2674700.00	5.30
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1074100.00	3.74
FUEL WEIGHT IN BOOSTER * LBS	107690.00	-27.19
OXIDIZER WEIGHT IN BOOSTER * LBS	966380.00	8.89
FUEL RESERVES * LBS	463.05	-27.19
OXIDIZER RESERVES * LBS	4155.40	8.89
FUEL RESIDUAL WEIGHT * LBS	59.06	-24.62
OXIDIZER RESIDUAL WEIGHT * LBS	584.82	7.43
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	324.03	-27.13
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2282.20	-20.94
TOTAL TANK WEIGHT * LBS	11121.00	-15./4
FUEL TANK LINE WEIGHT * LBS	1559.40	-24.49
OXIDIZER TANK LINE WEIGHT * LBS	210.33	17 02
FUEL TANK INSULATION WEIGHT * LDS	2033.30	-1/.03
CAS ITTE UETCHT + IPS	10-00-70	-9.97
GAS LINE WEIGHT * LDS	450 09	-11 02
DECCUDANT CONTROL HADDUADE VETCHT + IRS	955 20	-10.06
VETCHT OF FACH BOOSTER ENGINE * LBS	8019.90	18.11
VETCHT OF THRUST STRUCTURE * LBS	7966.60	-18.13
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE	1400700 00	6 20
PROPELLANT WT FOR ASCENT * LBS	1600/00.00	6.39
FUEL WEIGHT IN UKBITEK * LBS	1272000 00	6.30
UNIDIZER WEIGHT IN URDITER * LDS	13/2000.00	6.38
FUEL RESERVES ~ LDS AVIAT7ED DECEDUEC + IBC	5899 60	6.38
FILT PECTDIAL VETCHT + IBS	116 15	5 79
AVIDITER RESIDERE WEIGHT * EBS	790 39	5 49
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	639.97	6.24
TOTAL OXIDIZER AUTOGENOUS PRESSURANT VEIGHT * LBS	2937.40	0.15
TOTAL TANK WEIGHT * LBS	16162.00	5.43
FUEL TANK LINE WEIGHT * LBS	1403.60	1.19
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4351.50	3.59
OXIDIZER TANK INSULATION WEIGHT * LBS	2016.00	2.40
GAS LINE WEIGHT * LBS	103,17	4.19
ENGINE BAY LINE WEIGHT * LBS	293.80	0.06
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.77	0.04
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9499.80	0.49
TOTAL OMS PROPELLANT WEIGHT * LBS	18676.00	0.51
OMS HARDWARE WEIGHT * LBS	1013.90	0.38
TOTAL RCS WEIGHT * LBS	1377.80	0.64
RCS PROPELLANT WEIGHT * LBS	1825.80	1.12
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*TO THE SSME BASELINE		

Two-Stage Optimized LOX/LH2 with Fixed Mixture Ratio Propulsion Weights

· · ·		PERCENT OF		
	VALUE	*REFERENCE		
TOTAL DRY WEIGHT * LBS	361850.00	-10.69		
GROSS LIFT OFF WEIGHT * LBS	3253700.00	2.72		
FIRST STAGE				
BOOSTER DRY WEIGHT * LBS	197470.00	-18.31		
BODY WEIGHT * LBS	89134.00	-20.38		
GROWTH WEIGHT * LBS	10979.00	-18.96		
INERT WEIGHT * LBS	227380.00	-18.10		
EQUIPMENT WEIGHT * LBS	10298.00	-7.08		
TANK MOUNT WEIGHT * LBS	988.61	-19.71		
STRUCTURAL WALL WEIGHT * LBS	19206.00	-19.77		
APU PROPELLANT WEIGHT * LBS	2709.80	-14.00		
LANDING WEIGHT * LBS	202970.00	-18.27		
FLYBACK SYSTEM INERT WEIGHT * LBS	19656.00	-33.00		
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	11550.00	-27.79		
FLYBACK SYSTEM WEIGHT * LBS	31233.00	-31.16		
LANDING GEAR WEIGHT * LBS	5683.10	-18.27		
CANARD WEIGHT * LBS	0.00	N/A		
WING WEIGHT * LBS	34422.00	-18.68		
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A		
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	2963.80	-0.71		
SECOND STAGE				
LIFT OFF WEIGHT OF ORBITER * LBS	1952200.00	5.26		
ORBITER DRY WEIGHT * LBS	164380.00	0.59		
BODY WEIGHT * LBS	112440.00	0.72		
GROWTH WEIGHT * LBS	9542.80	0.71		
INERT WEIGHT * LBS	192050.00	0.81		
EQUIPMENT WEIGHT * LBS	7086.40	1.07		
TANK MOUNT WEIGHT * LBS	0.00	N/A		
STRUCTURAL WALL WEIGHT * LBS	8967.40	-0.79		
APU PROPELLANT WEIGHT * LBS	445.24	0.00		
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00		
WEIGHT OF PROPULSION/AVIONICS MODULE	122010.00	0.19		
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00		
PAYLOAD WEIGHT * LBS	150000.00	0.00		
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00		
*TO THE SSME BASELINE				

Two-Stage Optimized LOX/LH2 with Fixed Mixture Ratio System Weights

· .	VALUE	PERCENT. OF
MINIMUM LIFTORE ACCELERATION + C/S	VALUE 1 15	-24 45
MININUM LIFTOFF ACCELERATION ~ G 5	1 32	-5 43
NOMINAL LIFT OFF ACCELERATION	3.00	0.00
MAXIMUM LUNGITUDINAL ACCELERATION " G 5	0.00	N/A
NUMBER OF CREW TNEDT DETCHT EACTOR	1 00	0 00
TNERI WEIGHI FROIDE	4523 60	_9 53
SINGING VELOCITI ~ FFS	4223100	-/.33
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	416.13	-4.92
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.83	4.66
BOOSTER LAUNCH MIXTURE RATIO	8.97	49.57
DELIVERED THRUST AT IGNITION * LBS	607760.00	34.40
ENGINE RATED VACUUM THRUST * LBS	671110.00	35.74
NOMINAL FUEL TANK PRESSURE * PSIA	35.13	-0.05
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	4000.00	22.32
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	• 0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES.	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.89	-0.51
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.59
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.64	-0.11
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
TTO THE COME BACELINE		

Two-Stage Optimized LOX/LH₂ with Fixed Mixture Ratio Performance

	VALUE	PERCENT OF *REFERENCE
PAYLOAD BAY LENGTH * FT PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE		
BODY DIAMETER * FT	30.47	-7.66
VEHICLE LENGTH * FT	138.19	-7.66
LENGTH/DIAMETER RATIO OF VEHICLE	4.53	0.00
NOSE LENGTH	53.33	-7,66
MAIN ENGINE THROAT DIAMETER * FT	0.87	2.51
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	6.17	22.52
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	50.00	42.86
FUEL LINE DIAMETER * IN	15.58	-15.23
OXIDIZER LINE DIAMETER * IN	19.85	3.1/
FUEL TANK HEAD HEIGHT * IN	129.1/	-/./3
CYLINDRICAL LENGTH OF FUEL TANK * IN	432.93	-14,49
OXIDIZER TANK HEAD HEIGHT * IN	130.23	-/,00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	29.24	1.00
SPACE BETWEEN UXIDIZER AND FUEL TANK BEADS * IN	0.05	-7 79
THICKNESS OF FUEL TANK WALL * IN	0.05	184.83
THICKNESS OF OXIDIZER TANK WALL " IN	1.00	0.00
OYTDIZER TANK SOFT THICKNESS * IN	1.00	0.00
VINC REFERENCE AREA * SO FT	3132.20	-18.26
VING SPAN * FT	80.33	-9.59
SINGLE FIN EXPOSED AREA * SO FT	144.23	-13,44
EXPOSED FIN SPAN * FT	14.15	-6,96
CANARD WING SPAN * FT	0.00	N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	265.59	5.60
LENGTH/DIAMETER RATIO OF VEHICLE	8.05	5.60
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	//.50	0.00
FUEL LINE DIAMETER * IN	13.98	0.04
OXIDIZER LINE DIAMETER * IN DROBELLANT TANK HEAD ELLIPSE DATIO	14.07	0.00
PROPELLANT TANK HEAD ELLIPSE RAILO	141 07	0.00
CULLIANG DEAD DEIGHI A IN CULTNODICAL LENCTU OF FUEL TANK + IN	775.82	6.38
OYTDIZER TANK READ HEICHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	56.21	35.06
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.11
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
*TO THE SSME BASELINE		

Two-Stage Optimized LOX/LH₂ with Fixed Mixture Ratio Dimensions

A-9

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2923300.00	15.09
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1329200.00	28.38
FUEL WEIGHT IN BOOSTER * LBS	299220.00	102.30
OXIDIZER WEIGHT IN BOOSTER * LBS	1030000.00	16.06
FUEL RESERVES * LBS	1286.60	102.29
OXTDIZER RESERVES * LBS	4428.90	16.06
FILTI RESTDIAL VETCHT * LBS	201.83	157.62
OVIDITZER RESIDUAL VEIGHT * LBS	617.35	13.40
TOTAL FUEL AUTOCENOUS PRESSURANT VETCHT * LBS	0.00	-100.00
TOTAL OVERTUGENOUS INCOMMENT WIGHT & LBS	2053.20	-28.87
TOTAL VALUELCUT + LEC	0153 70	-30.65
IUIAL IANK WEIGHI ~ LDG	720 12	-61 78
FUEL TANK LINE WEIGHT ~ LDS	109.10	-01.70
UXIDIZER TANK LINE WEIGHI * LDS	204.70	10.00
FUEL TANK INSULATION WEIGHT * LBS	49.03	-70.20
OXIDIZER TANK INSULATION WEIGHT * LBS	1042.50	-10.42
GAS LINE WEIGHT * LBS	67.49	-33.90
ENGINE BAY LINE WEIGHT * LBS	300.42	-27.50
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	9/4-33	-8.26
WEIGHT OF EACH BOOSTER ENGINE * LBS	5868.40	-13.5/
WEIGHT OF THRUST STRUCTURE * LBS	7904.50	-18.//
WEIGHT OF HYDROGEN COOLANT * LBS	17062.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	465.30	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	220.19	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	1438.30	N/A
PRESSURANT WEIGHT * LBS	318.1/	N/A
PRESSURE TANK WEIGHT * LBS	2312.50	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1577100.00	4.82
FUEL WEIGHT IN ORBITER * LBS	225300.00	4.82
OXIDIZER WEIGHT IN ORBITER * LBS	1351800.00	4.82
FUEL RESERVES * LBS	968.81	4.82
OXIDIZER RESERVES * LBS	5812.80	4.82
FUEL RESIDUAL WEIGHT * LBS	114.59	4.37
OXIDIZER RESIDUAL WEIGHT * LBS	780.28	4.14
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	630.77	4.71
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2936.40	0.12
TOTAL TANK WEIGHT * LBS	15958.00	4.10
FUEL TANK LINE WEIGHT * LBS	1399.60	0.90
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4314.50	2.71
OXIDIZER TANK INSULATION WEIGHT * LBS	2004.40	1.81
GAS LINE WEIGHT * LBS	102.15	3.16
ENGINE BAY LINE WEIGHT * LBS	293.75	0.04
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.70	0.03
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9488.30	0.37
TOTAL OMS PROPELLANT WEIGHT * LBS	18653.00	0.38
OMS HARDWARE WEIGHT * LBS	1013.10	0.30
TOTAL RCS WEIGHT * LRS	1375.80	0.50
DCS DROPELLANT VETCHT * LRS	1820 80	0.84
NET CUT OF FACH OMS ENCINE + IRS	300 00	0.04
*DIGHT OF BROM ONS BROTHE " DDG	507.00	0.00
"TO THE SOUP LOWENDE DECENTING		

Two-Stage Optimized LOX/RP-1, LH₂-Cooled

Propulsion Weights

TOTAL DRY WEIGHT * LBS 331780.00 -18. GROSS LIFT OFF WEIGHT * LBS 3469800.00 9. FIRST STAGE BOOSTER DRY WEIGHT * LBS 167630.00 -30. BODY WEIGHT * LBS 167630.00 -29. GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 9648.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9788.80 -11. STRUCTURAL WALL WEIGHT * LBS 0.00 -00. STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 19267.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIXTST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ VING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1.	.11 .54 .65 .11 .79
TOTAL DRT WEIGHT * LBS 331780.00 -18. GROSS LIFT OFF WEIGHT * LBS 3469800.00 9. FIRST STAGE BOOSTER DRY WEIGHT * LBS 167630.00 -30. BODY WEIGHT * LBS 79356.00 -29. GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 0.00 -100. STRUCTURAL WALL WEIGHT * LBS 0.00 -100. STRUCTURAL WALL WEIGHT * LBS 19367.00 -33. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -30. FLYBACK SYSTEM WEIGHT * LBS 19367.00 -30. LANDING GEAR WEIGHT * LBS 19367.00 -31. VANG WEIGHT * LBS 0.00 N/ WIG WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUP	.54
FIRST STAGE FIRST STAGE BOOSTER DRY WEIGHT * LBS INERT WEIGHT * LBS INERT WEIGHT * LBS POUIPMENT WEIGHT * LBS COUIPMENT WEIGHT * LBS POUIPMENT WEIGHT * LBS ON ON -100 STRUCTURAL WALL WEIGHT * LBS POUIPMENT WEIGHT * LBS STRUCTURAL WALL WEIGHT * LBS POUIPMENT WEIGHT * LBS SECOND STAGE	. 65 . 11 . 79
FIRST STAGE BOOSTER DRY WEIGHT * LBS 167630.00 -30. BODY WEIGHT * LBS 79356.00 -29. GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9089.20 -62. STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. 0. GROWTH WEIGHT * LBS 9526.20 0. 0. <td>.65 .11 .79</td>	.65 .11 .79
BOOSTER DRY WEIGHT * LBS 167630.00 -30. BODY WEIGHT * LBS 79356.00 -29. GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 2284.00 -37. LANDING GEAR WEIGHT * LBS 28240.00 -31. CANARD WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1 SECOND STAGE 112240.00 0. GROWTH WEIGHT * LBS 12240.00 0. GROWTH WEIGHT * LBS 191670.00 0. GROWTH WEIGHT * LBS 191670.00 0. <	.65 .11 .79
BODY WEIGHT * LBS 79356.00 -29. GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 9089.20 -62. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -31. CANARD WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. GROWTH WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 191670.00 0.	.11
GROWTH WEIGHT * LBS 9648.00 -28. INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 9089.20 -62. LANDING WEIGHT * LBS 2298.30 -27. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. GROWTH WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 191670.00 0.	.79
INERT WEIGHT * LBS 195350.00 -29. EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 0.00 -100. STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 28940.00 -31. WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. 0. BODY WEIGHT * LBS 112240.00 0. 0. GROWTH WEIGHT * LBS 9526.20 0. 0. INERT WEIGHT * LBS 191670.00 0. 0. EQUIPMENT WEIGHT * LBS 7068.00 0. 0.	10
EQUIPMENT WEIGHT * LBS 9788.80 -11. TANK MOUNT WEIGHT * LBS 0.00 -100. STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 2298.30 -27. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. 0. BODY WEIGHT * LBS 112240.00 0. 0. GROWTH WEIGHT * LBS 112240.00 0. 0. INERT WEIGHT * LBS 191670.00 0. 0. INERT WEIGHT * L	<u>د</u> ه.
TANK MOUNT WEIGHT * LBS 0.00 -100. STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 2298.30 -27. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 0.00 N/ VING WEIGHT * LBS 28940.00 -31. WING WEIGHT * LBS 0.00 N/ WING WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 191670.00 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 191670.00 0.	.68
STRUCTURAL WALL WEIGHT * LBS 9089.20 -62. APU PROPELLANT WEIGHT * LBS 2298.30 -27. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 4831.70 -30. CANARD WEIGHT * LBS 28940.00 -31. WING WEIGHT * LBS 0.00 N/ WING WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 1928300.00 3. ORBITER DRY WEIGHT * LBS 164150.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 191670.00 0. INERT WEIGHT * LBS 191670.00 0. INERT WEIGHT * LBS 191670.00 0.	.00
APU PROPELLANT WEIGHT * LBS 2298.30 -27. LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 4831.70 -30. CANARD WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE LIFT OFF WEIGHT OF ORBITER * LBS 1928300.00 3. ORBITER DRY WEIGHT * LBS 164150.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 191670.00 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 191670.00 0.	.03
LANDING WEIGHT * LBS 172560.00 -30. FLYBACK SYSTEM INERT WEIGHT * LBS 19367.00 -33. FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES * 8895.30 -44. FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 4831.70 -30. CANARD WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE 112240.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 9526.20 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	.06
FLYBACK SYSTEM INERT WEIGHT * LBS19367.00-33.FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *8895.30-44.FLYBACK SYSTEM WEIGHT * LBS28284.00-37.LANDING GEAR WEIGHT * LBS4831.70-30.CANARD WEIGHT * LBS0.00N/WING WEIGHT * LBS0.00N/WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.003.ORBITER DRY WEIGHT * LBS164150.000.BODY WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS9526.200.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	.51
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *8895.30-44.FLYBACK SYSTEM WEIGHT * LBS28284.00-37.LANDING GEAR WEIGHT * LBS4831.70-30.CANARD WEIGHT * LBS0.00N/WING WEIGHT * LBS28940.00-31.WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.00BODY WEIGHT * LBS164150.000.GROWTH WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS191670.000.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	.99
FLYBACK SYSTEM WEIGHT * LBS 28284.00 -37. LANDING GEAR WEIGHT * LBS 4831.70 -30. CANARD WEIGHT * LBS 0.00 N/ WING WEIGHT * LBS 0.00 N/ WEIGHT OF FIRST STAGE TPS * LBS 0.00 N/ WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS 3038.50 1. SECOND STAGE LIFT OFF WEIGHT OF ORBITER * LBS 1928300.00 3. ORBITER DRY WEIGHT * LBS 164150.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 9526.20 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	. 39
LANDING GEAR WEIGHT * LBS4831.70-30.00CANARD WEIGHT * LBS0.00N/WING WEIGHT * LBS28940.00-31.00WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.00SECOND STAGE1028300.003.00LIFT OFF WEIGHT OF ORBITER * LBS164150.000.00ORBITER DRY WEIGHT * LBS112240.000.00BODY WEIGHT * LBS9526.200.00INERT WEIGHT * LBS191670.000.00EQUIPMENT WEIGHT * LBS7068.000.00	.66
CANARD WEIGHT * LBS0.00N/WING WEIGHT * LBS28940.00-31.WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.00ORBITER DRY WEIGHT * LBS164150.000.BODY WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS9526.200.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	.51
WING WEIGHT * LBS28940.00-31.WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.00ORBITER DRY WEIGHT * LBS164150.000.BODY WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS9526.200.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	/A
WEIGHT OF FIRST STAGE TPS * LBS0.00N/WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.00ORBITER DRY WEIGHT * LBS164150.000.BODY WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS9526.200.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	.63
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS3038.501.SECOND STAGELIFT OFF WEIGHT OF ORBITER * LBS1928300.003.ORBITER DRY WEIGHT * LBS164150.000.BODY WEIGHT * LBS112240.000.GROWTH WEIGHT * LBS9526.200.INERT WEIGHT * LBS191670.000.EQUIPMENT WEIGHT * LBS7068.000.	/A
SECOND STAGE LIFT OFF WEIGHT OF ORBITER * LBS 1928300.00 3 ORBITER DRY WEIGHT * LBS 164150.00 0 BODY WEIGHT * LBS 112240.00 0 GROWTH WEIGHT * LBS 9526.20 0 INERT WEIGHT * LBS 191670.00 0 EQUIPMENT WEIGHT * LBS 7068.00 0	.79
LIFT OFF WEIGHT OF ORBITER * LBS 1928300.00 3 ORBITER DRY WEIGHT * LBS 164150.00 0 BODY WEIGHT * LBS 112240.00 0 GROWTH WEIGHT * LBS 9526.20 0 INERT WEIGHT * LBS 191670.00 0 EQUIPMENT WEIGHT * LBS 7068.00 0	
ORBITER DRY WEIGHT * LBS 164150.00 0. BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 9526.20 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	.97
BODY WEIGHT * LBS 112240.00 0. GROWTH WEIGHT * LBS 9526.20 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	.45
GROWTH WEIGHT * LBS 9526.20 0. INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	.54
INERT WEIGHT * LBS 191670.00 0. EQUIPMENT WEIGHT * LBS 7068.00 0.	.54
EQUIPMENT WEIGHT * LBS 7068.00 0.	.61
	.81
TANK MOUNT WEIGHT * LES 0.00 N/	/ A
STRUCTURAL WALL WEIGHT * LBS 8984.30 -0.	.60
APU PROPELLANT WEIGHT * LBS 445.24 0.	.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT 43208.00 0.	.00
WEIGHT OF PROPULSION/AVIONICS MODULE 121950.00 0.	.14
WEIGHT OF REENTRY INSULATION TILES * LBS 3198.80 0.	.00
PAYLOAD WEIGHT * LBS 150000.00 0.	.00
PAYLOAD BAY WEIGHT * LBS 25000.00 0.	
*TO THE SSME POWERED BASELINE	.00

Two-Stage Optimized LOX/RP-1, LH2-Cooled

System Weights

C-3

A - 11

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.10	-28.02
NOMINAL LIFT OFF ACCELERATION	1.26	-9.77
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4232.20	-15.36
FIDCT		
AUEDACE WAIN ENCINE OPECIFIC INDULSE	225 50	25 61
AVERAGE MAIN ENGINE SPECIFIC INFOLSE	5 00	-29.57
DODELLANT WASS EDACTION	0.86	-20.37
PROPELLANI MASS FRACTION	3 26	7.JJ /5 71
BUUSIER LAUNCH MIXIURE RAILU	622820 00	-40.71
DELIVERED THRUST AT IGNITION ~ LDS	622830.00	37.75
ENGINE RATED VACUUM INRUSI * LDS	17 25	50.04
NOMINAL FUEL TANK PRESSURE * PSIA	17.25	-30.94
NOMINAL UXIDIZER TANK PRESSURE * PSIA	20.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	4000.00	~ 22.32
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	23.00	283.33
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DRUP ACROSS UXIDIZER LINE * PSI	5.00	0.00
PERCENT OF IOTAL PROPELLANI USED FOR HZ COULING	0.01	N/A
NUMBER OF FIRST VEHICLE FLIBACK IURBURAN ENGINES	2.00	-33.33
THROTTLE SETTING OF ISI STAGE ENGINES	0.89	-0.20
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.45
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.65	-0.08
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, LH₂-Cooled

Performance

•		DEDGENT OF
	**	PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	80.00	0.00
PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE	20 / 1	10 00
BODY DIAMETER * FT	29.41	-10.00
VEHICLE LENGTH * FT	133.3/	-10.00
LENGTH/DIAMETER RATIO OF VEHICLE	4.03	
NOSE LENGTH	51.4/	-10.88
MAIN ENGINE THROAT DIAMETER * FT	0.84	-1.80
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	4.49	-10.89
ENGINE SECTION LENGTH * FT	8.09	-30.27
NOZZLE EXPANSION RATIO	28.82	-17.65
FUEL LINE DIAMETER * IN	14.36	-21.89
OXIDIZER LINE DIAMETER * IN	20.56	6.86
FUEL TANK HEAD HEIGHT * IN	126.03	-9.97
CYLINDRICAL LENGTH OF FUEL TANK * IN	110.11	-78.40
OXIDIZER TANK HEAD HEIGHT * IN	125.68	-10.91
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	64.57	1.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.27	353.37
THICKNESS OF OXIDIZER TANK WALL * IN	0.15	226.30
FUEL TANK SOFI THICKNESS * IN	0.00	-100.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SO FT	2662.80	-30.51
WING SPAN * FT	74.06	-16.64
STNGLE FIN EXPOSED AREA * SO FT	129.21	-22.46
EXPOSED FIN SPAN * FT	13.40	-11.94
CANARD WING SPAN * FT	0.00	N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	264.34	5.11
LENGTH/DIAMETER RATIO OF VEHICLE	8.01	5.11
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.98	0.04
OXIDIZER LINE DIAMETER * IN	14.67	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	764.42	4.81
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	52.63	26.46
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.08
THICKNESS OF OXIDIZER TANK WALL * TN	0.05	0.00
FILET TANK SOFT THTCKNESS * TN	1.00	0.00
AVIDTZED TANK COFT THICKNESS * IN	1.00	0.00
THE COME DOUERED RACELINE	1.00	
9 NF THE ASER FURERED DESELTE		

Two-Stage Optimized LOX/RP-1, LH2-Cooled

Dimensions

PERCENT OF PERCENT OF VALUE *REFERENCE TOTAL ASCENT PROPELLANT WEIGHT * LBS 3057500.00 20.37

 TOTAL ASCENT PROPELLANT WEIGHT * LBS
 305/500.00
 20.37

 FIRST STAGE

 PROPELLANT WT FOR ASCENT * LBS
 1442200.00
 39.29

 FUEL WEIGHT IN BOOSTER * LBS
 1442200.00
 24.42

 SUDIZER WEIGHT IN BOOSTER * LBS
 1104200.00
 24.42

 FUEL RESERVES * LBS
 1453.50
 128.53

 OXIDIZER RESERVES * LBS
 1474.90
 24.42

 FUEL RESIDUAL WEIGHT * LBS
 223.11
 184.79

 OXIDIZER RESIDUAL WEIGHT * LBS
 655.16
 20.35

 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS
 0.00
 -100.00

 TOTAL TANK VEIGHT * LBS
 0.00
 -100.00

 TOTAL TANK VEIGHT * LBS
 0.00
 -100.00

 TOTAL TANK UNEGHT * LBS
 0.00
 -100.00

 TOTAL TANK UNEGHT * LBS
 11189.00
 -15.23

 FUEL TANK LINE WEIGHT * LBS
 258.51
 28.46

 FUEL TANK INSULATION WEIGHT * LBS
 49.92
 -98.55

 OXIDIZER TANK INSULATION WEIGHT * LBS
 1686.80
 -8.01

 GAS LINE WEIGHT * LBS
 1076.10
 1.33

 WEIGHT OF HAUST STRUCTURE * LBS
 1076.10
 1.33

 WEIGHT OF HYDROGEN C

 PRESSURE TANK VEIGHT * LBS
 2589.50
 N/A

 SECOND STAGE

 PROPELLANT WT FOR ASCENT * LBS
 1602900.00
 6.53

 FUEL WEIGHT IN ORBITER * LBS
 228980.00
 6.53

 OXIDIZER WEIGHT IN ORBITER * LBS
 1373900.00
 6.53

 FUEL RESERVES * LBS
 984.63
 6.53

 OXIDIZER RESERVES * LBS
 984.63
 6.53

 OXIDIZER RESERVES * LBS
 5907.80
 6.53

 OXIDIZER RESIDUAL WEIGHT * LBS
 116.30
 5.93

 OXIDIZER RESIDUAL WEIGHT * LBS
 116.30
 5.55

 FUEL TANK LINE WEIGHT * LBS
 1404.00
 1.22

 OXIDIZER TANK LINE WEIGHT * LBS
 107.16
 0.00

 FUEL TANK INSULATION WEIGHT * LBS
 103.27
 4.29

 ENGINE BAY LINE WEIGHT * LBS
 103.27
 4.29

 ENGINE BAY LINE WEIGHT * LBS
 103.27
 4.29

 ENGINE BAY LINE WEIGHT * LBS
 6022.

Two-Stage Optimized LOX/RP-1, LH2-Cooled, 2500-psia (Near-Term) Propulsion Weights

*TO THE SSME POWERED BASELINE

• •	VALUE	PERCENT OF *REFERENCE
TOTAL DRY WEIGHT * LBS	336030.00	-17.06
GROSS LIFT OFF WEIGHT * LBS	3609300.00	13.94
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	171620.00	-29.00
BODY WEIGHT * LBS	80993.00	-27.65
GROWTH WEIGHT * LBS	9845.80	-27.33
INERT WEIGHT * LBS	200130.00	-27.91
EQUIPMENT WEIGHT * LBS	9785.20	-11.71
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	9355.30	-60.92
APU PROPELLANT WEIGHT * LBS	2293.30	-27.22
LANDING WEIGHT * LBS	176570.00	-28.90
FLYBACK SYSTEM INERT WEIGHT * LBS	19365.00	-34.00
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	8877.10	-44.50
FLYBACK SYSTEM WEIGHT * LBS	28263.00	-37.71
LANDING GEAR WEIGHT * LBS	4943.80	-28.90
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	29721.00	-29.79
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3134.60	5.01
		2.02
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	1954500.00	5.39
ORBITER DRY WEIGHT * LBS	164410.00	0.61
BODY WEIGHT * LBS	112450.00	0.73
GROWTH WEIGHT * LBS	9544.40	0.73
INERT WEIGHT * LBS	192080.00	0.82
EQUIPMENT WEIGHT * LBS	7088.10	1.10
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	8965.90	-0.80
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AUTONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	122010.00	0.19
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, LH₂-Cooled, 2500-psia (Near-Term) System Weights

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.10	-28,02
NOMINAL LIFT OFF ACCELERATION	1.26	-9.45
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4172.70	-16.55
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	310.87	-28,97
OUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.87	10.52
BOOSTER LAUNCH MIXTURE RATIO	3,15	-47.49
DELIVERED THRUST AT IGNITION * LBS	661170.00	46.21
ENGINE RATED VACUUM THRUST * LBS	690530.00	39.67
NOMTNAL FUEL TANK PRESSURE * PSIA	16.72	-52.43
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXTMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	2500.00	-23.55
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	23.00	283.33
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.01	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.90	0.52
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.60
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.64	-0.11
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, LH2-Cooled, 2500-psia (Near-Term) Performance

PAYLOAD BAY LENGTH * FT 80.00 0.00 PAYLOAD DIAMETER * FT 33.00 0.00 FIRST STAGE 90.11.120 0.00 PODY DIAMETER * FT 132.90 -11.20 VEHICLE LENGTH * FT 132.90 -11.20 VEHICLE LENGTH * FT 132.90 -11.20 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAIN ENGINE THROAT DIAMETER * IN 15.36 -16.59 ROZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 21.43 11.39 VELL LINE DIAMETER * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH NOLL TANK WALL * IN 0.28 385.42 THICKNESS OF OVIDIZER TANK VALL * IN 0.18 279.51 THICKNESS OF OXIDIZER TANK VALL * IN 1.00 0.00 VING REFRENCE AREA * SQ FT 131.19 -21.27 CANARD VING SPAN * FT<				PERCENT OF
PAYLOAD DAY LENGTH * FT 80.00 0.00 PAYLOAD DIAMETER * FT 33.00 0.00 FIRST STAGE BODY DIAMETER * FT 132.90 -11.19 LENGTH/DIAMETER RATIO OF VEHICLE 4.53 0.00 NOSE LENGTH 51.28 -11.20 MAIN ENGLINE TRENAT DIAMETER * FT 1.09 27.41 MAXINUM MAIN ENGLINE NOZZLE EXIT DIAMETER * FT 1.09 -7.14 MAXINUM MAIN ENGLINE NOZZLE EXIT DIAMETER * FT 7.83 -32.92 MOZZLE EXPANSION RATIO 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 125.29 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -75.43 OXIDIZER TANK MAIL * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETVEEN OXIDIZER TANK VALL * IN 0.28 385.42 THICKNESS OF FUEL TANK VALL * IN 0.28 385.42 THICKNESS STIN 0.00 -100.00 OXIDIZER TANK VALL * IN 0.28 385.42			VALUE	*REFERENCE
PAYLOAD DIAMETER * FT 33.00 0.00 FIRST STAGE BODY DIAMETER * FT 29.31 -11.20 VEHICLE LENGTH * FT 132.90 -11.19 LENGTH * FT 1.23.90 -11.20 NOSE LENGTH 4.53 0.00 NOSE LENGTH * FT 1.09 27.41 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 21.43 11.39 FUEL TANK HEAD HEIGHT * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.20 CYLINDRICAL LENGTH OF OXIDIZER TANK WALL * IN 0.18 279.51 GYLINDRICAL LENGTH OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -000 VING REFRENCE AREA * SQ FT 274.70 -28.90 VING SPAN * FT 76.92 -11.27 CANARD VING SPAN * FT 13.50 -11.27 CANARD VING SPAN * FT 0.00 N/A DOY DIAMET		PAYLOAD BAY LENGTH * FT	80.00	0.00
FIRST STAGE 29.31 -11.20 VEHICLE LENGTH * FT 132.90 -11.19 LENGTH/DIAMETER RATIO OF VEHICLE 4.33 0.00 NOSE LENGTH 51.28 -11.20 MAIN ENGLME THROAT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENGLME NOZZLE EXIT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENGLME NOZZLE EXIT DIAMETER * FT 7.88 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL TANK HEAD HEIGHT * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 0.28 385.42 THICKNESS OF PUEL TANK VALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK VALL * IN 0.38 -79.51 FUEL TANK SOFT THICKNESS * IN 0.00 -0.00 VING REFRENCE AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 -55.56		PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE DODY DIAMETER * FT 29.31 -11.20 VEHICLE LENGTH * FT 132.90 -11.19 LENGTH 132.90 -11.20 MAIN ENGINE RATIO OF VEHICLE 4.53 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 1.00 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 QXIDIZER LINE DIAMETER * IN 125.59 -10.29 CTLINDRICAL LENGTH * IN 125.28 -75.43 QXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CTLINDRICAL LENGTH OF FUEL TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFT THICKNESS * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SUNCLE FIN EXPOSED AREA * SQ FT 13.50 -11.27 EXPOSED FIN SPAN * FT 0.00 N/A				
BODY DIAMETER * FT 29.31 -11.20 VEHICLE LENGTH * FT 132.90 -11.19 LENGTH 51.28 -11.20 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAXIN ENGINE THROAT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXFANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 21.43 11.39 OXIDIZER TANK HEAD HEIGHT * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CTLINDRICAL LENGTH OF OUTDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -10.00 VING REFRENCE AREA * SQ FT 131.19 -21.27 EVENEN SOFI WING SPAN * FT 0.00 N/A CANARD VING SPAN * FT 0.00 N/A CANARD VING SPAN * FT		FIRST STAGE		
VEHICLE LENGTH * FT 132.90 -11.19 LENGTH/DIAMETER RATIO OF VEHICLE 4.53 0.00 NOSE LENGTH 51.28 -11.20 MAIN ENCINE THROAT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENCINE NOZZLE EXIT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.06 -57.14 FUEL LINE DIAMETER * IN 125.36 -16.43 OXIDIZER LINE DIAMETER * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK WALL * IN 83.71 1.00 SPACE BETVEEN OXIDIZER TANK VALL * IN 0.28 385.42 THICKNESS OF FUEL TANK VALL * IN 0.28 385.42 FUEL TANK SOFT THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFT THICKNESS * IN 0.00 -10.00 OXIDIZER TANK SOFT THICKNESS * IN 0.00 -24.90 VING SPAN * FT 224.70 -28.90 VING SPAN * FT 131.19 -21.27 CANAR		BODY DIAMETER * FT	29.31	-11.20
LENGTH/DIAMETER RATIO OF VEHICLE 4.53 0.00 NOSE LENGTH 51.28 -11.20 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAXINUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 21.43 11.39 OXIDIZER LINE DIAMETER * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETVEEN OXIDIZER AND FUEL TANK WALL * IN 5.00 0.00 THICKNESS OF PUEL TANK WALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK VALL * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 12.00 0.00 VING REFERENCE AREA * SQ FT 13.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SINGLE FIN EXPOSED AREA * SQ FT 13.19 -21.27 EXPOSED AREA * SQ FT 13.50 -11.27		VEHICLE LENGTH * FT	132.90	-11.19
NOSE LENGTH 51.28 -11.20 MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAXINUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 125.59 -10.29 FUEL TANK HEAD HEIGHT * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF FUEL TANK * IN 83.71 1.00 SPACE BETVEEN OXIDIZER TANK VALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING SPAN * FT 274.70 -28.90 VING SPAN * FT 13.19 -21.27 CANARD WING SPAN * FT 33.00 0.00 SECOND STAGE 805 5.65 NOSE LENGTH MAIN ENGINE NOZILE EXIT DIAMETER * FT 0.80 MAIN ENGINE TROAT DIAMETER * IN 13.19 -21.27 CANARD WING SPAN * FT <td></td> <td>LENGTH/DIAMETER RATIO OF VEHICLE</td> <td>4.53</td> <td>0.00</td>		LENGTH/DIAMETER RATIO OF VEHICLE	4.53	0.00
MAIN ENGINE THROAT DIAMETER * FT 1.09 27.41 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 21.43 11.39 VULL TANK HEAD HEIGHT * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 8.371 1.00 SPACE BETVEEN OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFT THICKNESS * IN 0.00 -000 VING REFERENCE AREA * SQ FT 131.19 -21.27 EXPOSED FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE 50.5 565 DOY DIAMETER * FT 265.71 5.65 LENGTH ALTON OF VEHICLE 8.05 5.65 NOSE LENGTH SECOND STAGE 50.00 MAXIMUM MAIN ENGINE NOZILE EXIT DIAMETER * FT 7.50 0.00 VEHICLE LENGTH		NOSE LENGTH	51.28	-11.20
MAXINUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 4.20 -16.59 ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 21.43 11.39 FUEL TANK HEAD HEIGHT * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFT THICKNESS * IN 0.00 -10.00 OXIDIZER TANK SOFT THICKNESS * IN 0.00 -10.00 OXIDIZER TANK SOFT THICKNESS * IN 0.00 -10.00 OXING SPAN * FT 2724.70 -28.90 WING SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE 33.00 0.00 VEHICLE LENGTH * FT 2.50 0.505 LENGTH/DIAMETER * FT 0.80 5.65 NOSZ LERGTH SECOND STAGE 33.00 0.00 BODY DIAMETER * FT		MAIN ENGINE THROAT DIAMETER * FT	1.09	27.41
ENGINE SECTION LENGTH * FT 7.78 -32.92 NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 125.29 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -71.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 8.71 1.00 SPACE BETWEEN OXIDIZER TANK WALL * IN 0.28 385.42 THICKNESS OF FUEL TANK WALL * IN 0.18 279.51 FUEL TANK SOFT THICKNESS * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE 50.55 5.65 BODY DIAMETER * FT 265.71 5.65 LENGTH / DIAMETER * IN 13.60 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE 50.75 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT		MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	4.20	-16.59
NOZZLE EXPANSION RATIO 15.00 -57.14 FUEL LINE DIAMETER * IN 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 125.59 -10.29 CTLINDRICAL LENGTH OF FUEL TANK * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SFACE BETVEEN OXIDIZER AND FUEL TANK HEADS * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 0.00 VING SFAN * FT 1.00 0.00 VING SFAN * FT 131.19 -21.27 CANARD WING SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE 80.00 N/A VEHICLE LENGTH * FT 265.71 5.65 NOSE LENGTH FT 33.00 0.00 VEHICLE LENGTH * FT 265.71 5.65 NOSE LENGTH FT 33.00 0.00 VEHICLE LENGTH * FT 1.60 0.00 N/A DENGINE SECTION LENGTH * FT 1.60 </td <td></td> <td>ENGINE SECTION LENGTH * FT</td> <td>7.78</td> <td>-32.92</td>		ENGINE SECTION LENGTH * FT	7.78	-32.92
FUEL LINE DIAMETER * IN 15.36 -16.43 OXIDIZER LINE DIAMETER * IN 21.43 11.39 FUEL TANK HEAD HEIGHT * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER TANK VALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 2724.70 -28.90 VING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A VEHICLE LENGTH * FT 265.71 5.65 LENGTH SCOND STAGE 50.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE NOZZLE EXIT DIAMETER * FT 0.60 0.00 MAIN EN		NOZZLE EXPANSION RATIO	15.00	-57.14
OXIDIZER LINE DIAMETER * IN 21.43 11.39 FUEL TANK HEAD HEIGHT * IN 125.59 -10.29 CVLINDRICAL LENGTH OF FUEL TANK * IN 125.23 -11.23 CVLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER TANK WALL * IN 0.28 385.42 THICKNESS OF FUEL TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING REFERENCE AREA * SQ FT 121.27 -22.27 EXPOSED FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 25.71 5.65 LENGTH * FT 25.71 5.65 NOSE LENGTH FIN OF VEHICLE 8.05 5.65 NOSE LENGTH FIN OF VEHICLE 8.05 5.65 NOSE LENGTH T.50 0.00 N/A MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 NAIMUM MAIN ENGINE NOZZLE		FUEL LINE DIAMETER * IN	15.36	-16.43
FUEL TANK HEAD HEIGHT * IN 125.59 -10.29 CYLINDRICAL LENGTH OF FUEL TANK * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETVEEN OXIDIZER AND FUEL TANK HEADS * IN 0.28 385.42 THICKNESS OF FUEL TANK VALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING SPAN * FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN SPAN * FT 13.1.9 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 0.00 N/A CECOND STAGE BODY DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE TARK MALL * IN 13.98 0.05 NOZILE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN </td <td></td> <td>OXIDIZER LINE DIAMETER * IN</td> <td>21.43</td> <td>11.39</td>		OXIDIZER LINE DIAMETER * IN	21.43	11.39
CYLINDRICAL LENGTH OF FUEL TANK * IN 125.28 -75.43 OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETVEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK VALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXID GEFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH / DIAMETER * FT 0.00 N/A NATH ENGINE NOZILE EXIT DIAMETER * FT 7.50 MAXIMUM MAIN ENGINE NOZILE EXIT DIAMETER * FT 0.85 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 OXIDIZER TANK HEAD HEIGHT * IN 14.67 </td <td></td> <td>FUEL TANK HEAD HEIGHT * IN</td> <td>125.59</td> <td>-10.29</td>		FUEL TANK HEAD HEIGHT * IN	125.59	-10.29
OXIDIZER TANK HEAD HEIGHT * IN 125.23 -11.23 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF PUEL TANK WALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -28.90 WING REFERENCE AREA * SQ FT 2724.70 -28.90 VING SPAN * FT 13.19 -21.27 CANARD WING SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH / DIAMETER RATIO OF VEHICLE 8.05 5.65 NOSE LENGTH 57.75 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 14.67 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 14.67 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 14.67<		CYLINDRICAL LENGTH OF FUEL TANK * IN	125.28	-75.43
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 83.71 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF PUEL TANK WALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 -0.00 WING SFAN * FT 2724.70 -28.90 VING SFAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 NOSE LENGTH S7.75 0.00 MAIN MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAINIM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 14.67 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 140 0.00 0.00 OXIDIZER TANK HEAD HELGET * IN 141.07 0.00 140 0.00 <		OXIDIZER TANK HEAD HEIGHT * IN	125.23	-11.23
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 NOSE LENGTH SECOND STAGE 8.05 5.65 NOSE LENGTH FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 VELL LINE DIAMETER * IN 141.07 0.00 OXIDIZER TANK HEAD HELIGHT * IN 141.07 0.00 OXIDIZER TANK HEAD HELIGHT * IN		CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	83.71	1.00
THICKNESS OF FUEL TANK WALL * IN 0.28 385.42 THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 0.00 N/A CANARD WING SPAN * FT SECOND STAGE BODY DIAMETER * FT 0.00 N/A COND SECOND STAGE BODY DIAMETER * FT 0.65 0.00 MAIN MAIN ENGINE NOZZLE EXIT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 1.60 0.00 VIDIZER LINE DIAMETER * IN 13.98 0.05		SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF OXIDIZER TANK WALL * IN 0.18 279.51 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH # FT 265.71 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 11.60 0.00 MAXIMUM MAIN ENGTHE NOZZLE EXIT DIAMETER * FT 7.50 0.00 PUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD HELGHT * IN 141.07 0.00 CYLLDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 OXIDIZER TANK HEAD HEIGHT * IN 141.0		THICKNESS OF FUEL TANK WALL * IN	0.28	385.42
FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 NUZZLE LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 GYDELLANT TANK HEAD ELLIPSE RATIO 14.07 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER AND FUEL TANK * IN 50.0 0.00		THICKNESS OF OXIDIZER TANK WALL * IN	0.18	279.51
OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH / DIAMETER RATIO OF VEHICLE 8.05 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 13.98 0.05 OXIDIZER TANK HEAD HELIPSE RATIO 1.40 0.00 FUEL TANK HEAD HELGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER AND FUEL TANK * IN 5.00 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.05 -0.11		FUEL TANK SOFI THICKNESS * IN	0.00	-100.00
WING REFERENCE AREA * SQ FT 2724.70 -28.90 WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 BODY DIAMETER * FT 265.71 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00<		OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING SPAN * FT 74.92 -15.68 SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 BODY DIAMETER * FT 265.71 5.65 NOSE LENGTH * FT 265.71 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROFELLANT TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER TANK WALL * IN 5.00 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK HEADS * IN 5.00 0.00		WING REFERENCE AREA * SQ FT	2724.70	-28.90
SINGLE FIN EXPOSED AREA * SQ FT 131.19 -21.27 EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 265.71 5.65 LENGTH/DIAMETER RATIO OF VEHICLE 8.05 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 1.60 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 1.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 -0.11 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 FUEL TANK SOFI THICKNESS * IN 1.00		WING SPAN * FT	74.92	-15.68
EXPOSED FIN SPAN * FT 13.50 -11.27 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 25.71 5.65 LENGTH / DIAMETER RATIO OF VEHICLE 8.05 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER TANK WALL * IN 50.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 -0.11 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 FUEL TANK SOFI THICKNESS * IN 1.00 0.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00		SINGLE FIN EXPOSED AREA * SQ FT	131.19	-21.27
CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 33.00 0.00 VEHICLE LENGTH * FT 265.71 5.65 LENGTH/DIAMETER RATIO OF VEHICLE 8.05 5.65 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.98 0.05 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 776.90 6.53 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 56.54 35.86 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 50.00 0.00 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 -0.11 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 UEL TANK SOFI THICKNESS * IN 1.00 </td <td></td> <td>EXPOSED FIN SPAN * FT</td> <td>13.50</td> <td>-11.27</td>		EXPOSED FIN SPAN * FT	13.50	-11.27
SECOND STAGEBODY DIAMETER * FT33.000.00VEHICLE LENGTH * FT265.715.65LENGTH/DIAMETER RATIO OF VEHICLE8.055.65NOSE LENGTH57.750.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK VALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK VALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		CANARD WING SPAN * FT	0.00	N/A
BODY DIAMETER * FT33.000.00VEHICLE LENGTH * FT265.715.65LENGTH/DIAMETER RATIO OF VEHICLE8.055.65NOSE LENGTH57.750.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00FUEL TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00GUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		CROND CRACE		
BODY DIAMETER * F1205.00VEHICLE LENGTH * FT265.71LENGTH/DIAMETER RATIO OF VEHICLE8.05NOSE LENGTH57.75MAIN ENGINE THROAT DIAMETER * FT0.85O.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FTENGINE SECTION LENGTH * FT11.60NOZZLE EXPANSION RATIO77.50FUEL LINE DIAMETER * IN13.98OXIDIZER LINE DIAMETER * IN14.67OXIDIZER LINE DIAMETER * IN14.67OXIDIZER LINE DIAMETER * IN141.07OVOC1.40CYLINDRICAL LENGTH OF FUEL TANK * IN141.07OXIDIZER TANK HEAD HEIGHT * IN141.07OXIDIZER TANK KALL * IN50.00OXIDIZER TANK WALL * IN0.05OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00		DODY DIAMETER + ET	33.00	0.00
VEHICLE LENGTH * FI205.715.05LENGTH/DIAMETER RATIO OF VEHICLE8.055.65NOSE LENGTH57.750.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00FUEL TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN0.05-0.11THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN1.000.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		BODY DIAMETER * FI	265 71	5 65
LENGTH/DIAMETER RATIO OF VEHICLE0.00NOSE LENGTH57.75MAIN ENGINE THROAT DIAMETER * FT0.85MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.50O.000.00ENGINE SECTION LENGTH * FT11.60NOZZLE EXPANSION RATIO77.50FUEL LINE DIAMETER * IN13.98OXIDIZER LINE DIAMETER * IN144.67ONOC1.40FUEL TANK HEAD ELLIPSE RATIO1.40FUEL TANK HEAD HEIGHT * IN141.07OXIDIZER TANK HEAD HEIGHT * IN0.05OXIDIZER TANK HEAD HEIGHT * IN0.05OXIDIZER TANK KALL * IN0.05OXIDIZER TANK WALL * IN0.05OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00		VEHILLE LENGIR * FI	203.71	5 65
NOSE LENGTH0.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN0.05-0.11THICKNESS OF FUEL TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		LENGTH/DIAMETER RATIO OF VEHICLE	57 75	0.00
MAIN ENGINE THROAT DIAMETER * F10.050.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN0.05-0.11THICKNESS OF FUEL TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		NOSE LENGTH	0.95	0.00
MAXIMUM MAIN ENGINE NOZZE EXTEDIANETER * T111.600.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		MAIN ENGINE INKVAL DIAMETER ~ FI MANTMUM MAIN ENGINE NO771 E EVIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT11.00NOZZLE EXPANSION RATIO77.50FUEL LINE DIAMETER * IN13.98OXIDIZER LINE DIAMETER * IN14.67PROPELLANT TANK HEAD ELLIPSE RATIO1.40FUEL TANK HEAD HEIGHT * IN141.07CYLINDRICAL LENGTH OF FUEL TANK * IN776.90OXIDIZER TANK HEAD HEIGHT * IN141.07OXIDIZER TANK HEAD HEIGHT * IN141.07OXIDIZER TANK HEAD HEIGHT * IN141.07OXIDIZER TANK HEAD HEIGHT * IN56.54OXIDIZER TANK HEAD HEIGHT * IN500OXIDIZER TANK WALL * IN5.00THICKNESS OF FUEL TANK WALL * IN0.05OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00OXIDIZER TANK SOFI THICKNESS * IN1.00		MAXIMUM MAIN ENGINE NULLE EXIL DIAMETER " II ENGINE SECTION LENGTH + ÉT	11 60	0.00
NOZZLE EXPANSION RATIO13.980.05FUEL LINE DIAMETER * IN13.980.05OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		ENGINE SECTION LENGTH ~ FI	77.50	· 0.00
POEL LINE DIAMETER * IN10.00OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		NUCLE EXTRICTION RAILO	13.98	0.05
OXIDIZER LINE DIAMETER * IN1.400.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		FUEL LINE DIAMETER ~ IN	14.67	0.00
FROPELLANT TANK HEAD ELLIPSE KATTO141.070.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		DEADELLANT TANK HEAD ELLIDSE DATIO	1.40	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN776.906.53OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		FUEL TANK HEAD HETCHT + TN	141.07	0.00
OXIDIZER TANK HEAD HEIGHT * IN141.070.00OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		CULTINDUTCAL LENCTU OF FUEL TANK + TN	776.90	6.53
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN56.5435.86SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		OVIDINERICAL LENGIE OF FUEL TANK " IN	141.07	0.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.05-0.11THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00		CVITNEDTCAL LENCTU OF OVIDIZED TANK * IN	56.54	35.86
SPACE BEIWEEN OXIDIZER AND FOEL TANK HEADS & IN0.05-0.11THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00THE SOME POURDED PASELINE1.000.00		CHARTER OF ONTOTZER TANK " IN"	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00THE SOME POURDED PASELINE1.000.00		TUTOWNESS OF FUEL TANK WALL + TN	0.05	-0.11
FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00THE SOME POURDED PASELINE		THICKNESS OF FUEL THIC WALL " IN THICKNESS OF OVIDITER TANK WALL * TN	0.05	0.00
OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00		FILT TANK SOFT THTCKNESS * TN	1.00	0.00
ATTO WITE COME DOUTDED DYCEI INE		ANT SOFT THICKNESS " IN	1.00	0.00
TALU LAR SSAR FUMEREU DAGBLINE	,	TO THE SSME POWERED BASELINE	2.00	

Two-Stage Optimized LOX/RP-1, LH2-Cooled, (Near-Term) 2500-psia (Near-Term) Dimensions

· · · · ·		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	335/800.00	32.20
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1864500.00	80.08
FUEL WEIGHT IN BOOSTER * LBS	449100.00	203.63
OXIDIZER WEIGHT IN BOOSTER * LBS	1415400.00	59.49
FUEL RESERVES * LBS	1931.10	203.63
OXIDIZER RESERVES * LBS	6086.00	59.48
FUEL RESIDUAL WEICHT * LBS	282.61	260.73
OXIDIZER RESIDUAL WEIGHT * LBS	811.47	49.06
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	0.00	-100.00
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1976.40	-31.53
TOTAL TANK WEIGHT * LBS	23518.00	78.18
FUEL TANK LINE WEIGHT * LBS	1182.70	-42.73
OXIDIZER TANK LINE WEIGHT * LBS	326.06	62.03
FUEL TANK INSULATION VETCHT * LBS	48.67	-98.59
AVIDITED TANK INSULATION WEIGHT * LBS	1828.80	-0.26
CAC I THE DETCHT + IRS	93 19	_11 57
GAS LINE WEIGHI ~ LDS	512 19	1 25
ENGINE DAI LINE WEIGHT ~ LDG	1227 70	25 02
PRESSURANT CUNTRUL HARDWARE WEIGHT ~ LDS	5002.90	12 07
WEIGHT OF EACH BOUSIER ENGINE * LDS	J902.80	-13.07
WEIGHT OF THRUST STRUCTURE * LBS	9025.20	-/.20
WEIGHT OF HYDROGEN COULANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	385.27	N/A
PRESSURE TANK WEIGHT * LBS	2800.30	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1493400.00	-0.74
FUEL WEIGHT IN ORBITER * LBS	213340.00	-0.75
OXIDIZER WEIGHT IN ORBITER * LBS	1280000.00	-0.75
FUEL RESERVES * LBS	917.35	-0.75
OXIDIZER RESERVES * LBS	5504.10	-0.75
FUEL RESIDUAL WEIGHT * LBS	109.04	-0.68
OXIDIZER RESIDUAL WEIGHT * LBS	744.33	-0.65
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	597.97	-0.73
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2932.50	-0.02
TOTAL TANK WEIGHT * LBS	15232.00	-0.64
FILT TANK LINE VETCHT * LBS	1385.10	-0.14
OVIDITER TANK LINE VEICHT * LBS	107.16	0.00
CHET TANK THEN STON UTCHT + IRS	4182 80	-0.42
AVED TANK INSULATION WEIGHT ~ LDS .	1963 10	-0.42
UNIDIZER TANK INSULATION WEIGHT ~ LDS	1903.10	-0.28
GAS LINE WEIGHI * LBS	90.34	-0.49
ENGINE BAY LINE WEIGHT * LBS	293.00	-0.01
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.4/	0.00
WEIGHT OF EACT ORBITER ENGINE * LBS	/000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9448.00	-0.06
TOTAL OMS PROPELLANT WEIGHT * LBS	18571.00	-0.06
OMS HARDWARE WEIGHT * LBS	1009.80	-0.03
TOTAL RCS WEIGHT * LBS	1368.20	-0.06
RCS PROPELLANT WEIGHT * LBS	1803.30	-0.13
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Near-Term) Propulsion Weights

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	353810.00	-12.67
GROSS LIFT OFF WEIGHT * LBS	3934400.00	24.21
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	190500.00	-21.19
BODY WEIGHT * LBS	87885.00	-21.50
GROWTH WEIGHT * LBS	10820.00	-20.14
INERT WEIGHT * LBS	226770.00	-18.32
EQUIPMENT WEIGHT * LBS	10174.00	-8.20
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	7968.20	-66.71
APU PROPELLANT WEIGHT * LBS	2742.40	-12.97
LANDING WEIGHT * LBS	195930.00	-21.10
FLYBACK SYSTEM INERT WEIGHT * LBS	19852.00	-32.34
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	13357.00	-16.49
FLYBACK SYSTEM WEIGHT * LBS	33241.00	-26.74
LANDING GEAR WEIGHT * LBS	5485.90	-21.10
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	33983.00	-19.72
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3346.70	12.11
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	1843100.00	-0.62
ORBITER DRY WEIGHT * LBS	163310.00	-0.07
BODY WEIGHT * LBS	111550.00	-0.08
GROWTH WEIGHT * LBS	9467.30	-0.08
INERT WEIGHT * LBS	190320.00	-0.10
EQUIPMENT WEIGHT * LBS	7002.40	-0.13
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	9047.40	0.10
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	121750.00	-0.02
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

•

-

•

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Near-Term) System Weights

.

A - 19

. :

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.12	-26.60
NOMINAL LIFT OFF ACCELERATION	1.26	-9.41
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	5278.20	5.56
•		
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	294.12	-32.80
QUANTITY OF ENGINES	6.00	-14.29
PROPELLANT MASS FRACTION	0.89	13.06
BOOSTER LAUNCH MIXTURE RATIO	3.15	-47.48
DELIVERED THRUST AT IGNITION * LBS	619830.00	37.07
ENGINE RATED VACUUM THRUST * LBS	675400.00	36.61
NOMINAL FUEL TANK PRESSURE * PSIA	13.40	-61.89
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	1300.00	-60.24
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	23.00	283.33
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.91	1.82
SECOND STAGE	•	
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	-0.07
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACINIM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.68	0.01
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
THE CONE DOUEDED BASELINE		

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Near-Term) Performance

A - 20

PAYLOAD BAY LENGTH * FT	VALUE 80.00	PERCENT OF *REFERENCE 0.00
PAYLOAD DIAMETER * FT	33.00	0.00
FTPST STACE		
RODY DIAMETER * FT	27.20	-17.58
VENTCIE IENCTE + FT	123.34	-17.58
LENGTH / TI	4.53	0.00
NOSE I ENCTH	47.60	-17.58
NOSE LENGTH MATH ENCTHE TUDAAT DIAMETED + ET	1.49	75.28
MAIN ENGINE INCOME DIAMETER ~ FI MAYTMUM MATN ENGINE NO771E EVIT DIAMETER * FT	5.78	14.75
TRAINER SECTION LENGTH + FT	9.70	-16.34
NOTTE EVENNETON DATTO	15.00	-57.14
NUZZLE EXTRUSION RAILO	17.37	-5.51
AVIDIZED LINE DIAMETED + IN	23.69	23.10
CAIDIZER LINE DIAMETER ~ IN	116.56	-16.74
CVITNDDICAL LENCTH OF FUEL TANK + TN	• 103 12	-62 12
OVIDITED TANK HEAD HEICHT + IN	116 20	_17 63
OXIDIZER TANK HEAD HEIGHT ~ IN CVITNERICAL LENCTH OF OVIETER TANK + IN	218 39	1 00
CILINDRICAL LENGIN OF CAIDIZER TANK ~ IN	5 00	0.00
THICKNEES OF THEI TANK WALL + IN	0.36	514.67
THICKNESS OF FUEL TANK WALL ~ IN	0.50	480 54
THICKNESS OF UNIDIZER TANK WALL A IN	0.27	
AND THE TANK SOFT THICKNESS ~ IN	1 00	0.00
UXIDIZER TANK SUFI THICKNESS ~ IN	3023 50	_21 10
WING REFERENCE AREA * SQ FI	78 92	_11 17
WING JEAN * FI CINCLE EIN ENDOCED ADEA + CO ET	140 75	_15 53
SINGLE FIN EAFOSED AREA ~ SQ FI	13 98	-8.09
CANARD UTNC SPAN * FT	0.00	N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	259.90	3.34
LENGTH/DIAMETER RATIO OF VEHICLE	7.88	3.34
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.97	-0.01
OXIDIZER LINE DIAMETER * IN	14.67	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	723.85	-0.75
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	39.90	-4.12
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	0.01
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Near-Term) Dimensions

.

•

. .

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	3000000.00	18.11
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1576600.00	52.27
FUEL WEIGHT IN BOOSTER * LBS	450440.00	204.54
OXIDIZER WEIGHT IN BOOSTER * LBS	1126100.00	26.89
FUEL RESERVES * LBS	1936.90	204.54
OXIDIZER RESERVES * LBS	4842.30	26.89
FUEL RESIDUAL WEIGHT * LBS	283.34	261.67
OXIDIZER RESIDUAL WEIGHT * LBS	666.02	22.34
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	0.00	-100.00
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1573.40	-45.49
TOTAL TANK WEIGHT * LBS	22945.00	73.84
FUEL TANK LINE WEIGHT * LBS	1324.30	-35.87
OXIDIZER TANK LINE WEIGHT * LBS	311.63	54.86
FUEL TANK INSULATION WEIGHT * LBS	46.42	-98.65
OXIDIZER TANK INSULATION WEIGHT * LBS	1591.20	-13.22
GAS LINE WEIGHT * LBS	91.19	-13.47
ENGINE BAY LINE WEIGHT * LBS	552.62	9.24
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	1394.60	31.32
WEIGHT OF EACH BOOSTER ENGINE * LBS	7320.30	7.81
WEIGHT OF THRUST STRUCTURE * LBS	8653.40	-11.07
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	492.34	N/A
PRESSURE TANK WEIGHT * LBS	35/8.50	N/A
. SECOND STACE		
DECORD STAGE	1423400 00	5 40
PROPERLANT WI FOR ASCENT ~ LDS	203350 00	-5.40
AVIDIZED VETCUT IN OPDITED + LDS	1220100 00	-5 40
UNIDIZER WEIGHT IN URDITER ~ LDS	976 30	-5.40
NULL REGERVES ~ LDS	5246 40	-5.40
UNIDIZER RESERVES ~ LBS	106 40	
AALVER DECEMBRI AEIGHI ~ FRC	714 26	-4.67
TOTAL FUEL AUTOCENOUS DESSUBANT VETCHT * IBS	570 54	-5.29
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	2020 30	_0 13
TOTAL TANK WETCHT + IBS	14625.00	-4.60
THE TANK THE UTCHT * IBS	1373.10	-1.01
AVIDIZED TANK LINE VEIGHT * LDS	107.16	0.00
THE TANK TASH ATTON VETCHT + IBS	4072 90	-3.04
OVIDITED TANK INSULATION WEIGHT * LDS	1928.60	-2.04
CAR I THE UTCHT + IRS	95 51	-3 54
ENCINE BAY I THE DETCUT + IBS	293.46	-0.05
DECCUEANT CONTROL HARDVARE VETCHT * LRS	615.28	-0.04
VETCUT OF FACH OPBITTER FUCTINE * IBS	7000:00	0.00
UFICHT OF THRUS TOTICTURE * IRC	6022 50	0.00
ANG DEADERIANT PEAKED FOR CTR	9414.40	-0.41
TOTAL ONG DOODRILANT UTTCHT + IRS	18503.00	-0.43
ANG HADDADE UFTCHT + IRC	1007 00	_0.31
TOTAL RCS UFTCHT. * LBS	1361.70	-0.53
DCS DRODELLANT UFTCHT * LRS	1788.70	_0.94
UFTCHT OF FACH OMS FNGINE * LRS	309.00	0.00
*TO THE SSME POWERED BASELINE	207.00	0.00

.

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Far-Term) Propulsion Weights

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	349940.00	-13.62
GROSS LIFT OFF WEIGHT * LBS	3569300.00	12.68
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	187330.00	-22.50
BODY VETCHT * LBS	84796.00	-24.26
CROWTH WEIGHT * LBS	10516.00	-22.38
INERT WEIGHT * LBS	220710.00	-20.50
FOULPMENT WEIGHT * LBS	9886.70	-10.79
TANK MOINT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	7548.00	-68.47
APU PROPELLANT WEIGHT * LBS	2579.90	-18.12
LANDING WEIGHT * LBS	192090.00	-22.65
FLYBACK SYSTEM INERT WEIGHT * LBS	19714.00	-32.81
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	12082.00	-24,46
FLYBACK SYSTEM WEIGHT * LBS	31824.00	-29.86
LANDING GEAR WEIGHT * LBS	5378.30	-22.65
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	33586.00	-20.66
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3353.80	12.35
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	1772000.00	-4.45
ORBITER DRY WEIGHT * LBS	162610.00	-0.50
BODY WEIGHT * LBS	110970.00	-0.60
GROWTH WEIGHT * LBS	9418.40	-0.60
INERT WEIGHT * LBS	189210.00	-0.68
EQUIPMENT WEIGHT * LBS	6947.60	-0.91
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	9104.20	0.73
APU PROPELLANT WEIGHT * LBS	445.24	. 0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	121580.00	-0.16
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	. 0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Far-Term) System Weights

A - 23

.

		PERCENT OF
VINIMUM LITTORE ACCELERATION + C/S	1 27	-17 02
MINIMUM LIFTOFF ACCELERATION ~ G 5	1 47.	5.52
NOTINAL LIFT OF ACCELERATION	3 00	0.00
MAXIMUM LUNGITUDINAL ACCELEARITON ~ G 5	0.00	N/A
NUMDER OF CAEW	1 00	0 00
INERI WEIGHI FACIOR	5075 10	1 50
STAGING VELOCITI * FFS	2072.10	1.20
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	303.51	-30.65
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.88	11.24
BOOSTER LAUNCH MIXTURE RATIO	2.50	-58,33
DELIVERED THRUST AT IGNITION * LBS	800190.00	76.95
ENGINE RATED VACUUM THRUST * LBS	855660.00	73.07
NOMINAL FUEL TANK PRESSURE * PSIA	14.85	-57.74
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	1650.00	-49.54
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	23.00	283.33
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.91	2.55
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.88	-0.55
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.71	0.09
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
TO THE SOME POWERED BASELINE		

Two-Stage Optimized LOX/RP-1, RP-1 Cooled (Far-Term) Performance

PAYLOAD BAY LENGTH * FT	VALUE 80.00	PERCENT OF *REFERENCE 0.00
PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE	26.00	21 21
BUDI DIAMEIEK * FI	117 01	-21.21
VEHICLE LENGTH * FT	11/.91	-21.21
LENGIH/DIAMETER RATIO OF VEHICLE	4.33	11 21
NUSE LENGIN TUDOAT DIANDTRD + FT	43.30	-21.21
MAIN ENGINE INKVAL DIAMELER * FI	1.47 5 70	14 65
MAAIMUM MAIN ENGINE NUZZEE EAII DIAMEIER ~ FI ENGINE SECTION LENGTH + ET	2.70	14.00
ENGINE SECTION LENGTH ~ FI NOZZI E EVEANCTON DATTO	15 00	-14.24 -57 14
NUGGLE EXPANSION RAILU	19.00	- 3 54
AVINTZED I THE DIAMETER - IN	13.03	20 73
FUEL TANK WEAD HETCHT * IN	111 42	-20.41
CVIINDETCAL LENGTH OF FUEL TANK + IN	212 10	-58.40
OYDITZER TANK HEAD HETCHT + IN	111.07	-21.27
CYLINDRICAL LENGTH OF OYIDIZER TANK * IN	177.54	1.00
SPACE BETWEEN OVIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FIFEL TANK WALL * TN	0.37	536.40
THICKNESS OF OXIDIZER TANK WALL * IN	0.31	549.28
FUEL TANK SOFT THICKNESS * IN	0.00	-100.00
OXIDIZER TANK SOFT THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SO FT	2964.60	-22.64
UTNG SPAN * FT	78.15	-12.05
SINGLE FIN EXPOSED AREA * SO FT	138.87	-16.66
EXPOSED FIN SPAN * FT	13.89	-8.71
CANARD WING SPAN * FT	0.00	N/A
CECOND CEACE		
BODY DIAMETER * FT	33,00	0.00
VEHICLE LENCTH * FT	256.19	1.86
LENGTH/DIAMETER RATIO OF VEHICLE	7.76	1.87
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.97	-0.04
OXIDIZER LINE DIAMETER * IN	14.67	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	689.98	-5.39
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	29.28	-29.64
SPACE BETWEEN JXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	0.09
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
*TO THE SSME POWERED BASELINE		

.

Two-Stage Optimized LOX/RP-1 Cooled (Far-Term) Dimensions

A - 25

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2751300.00	8.32
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1221100.00	17.94
FUEL WEIGHT IN BOOSTER * LBS	238170.00	61.02
OXIDIZER WEIGHT IN BOOSTER * LBS	982920.00	10.76
FUEL RESERVES * LBS	1024.10	61.02
OXIDIZER RESERVES * LBS	4226.60	10.76
FUEL RESIDUAL WEIGHT * LBS	151.81	93.78
OXIDIZER RESIDUAL WEIGHT * LBS	593.34	8.99
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	667.88	50.19
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2249.00	-22.09
TOTAL TANK WEIGHT * LBS	5043.30	-61.79
FUEL TANK LINE WEIGHT * LBS	768.48	-62.79
OXIDIZER TANK LINE WEIGHT * LBS	204.79	1.77
FUEL TANK INSULATION WEIGHT * LBS	54.84	-98.41
OXIDIZER TANK INSULATION WEIGHT * LBS	1653.90	-9.80
GAS LINE WEIGHT * LBS	66.38	-37.01
ENGINE BAY LINE WEIGHT * LBS	330.77	-34.61
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	865.64	-18.49
WEIGHT OF EACH BOOSTER ENGINE * LBS	5237.90	-22.86
WEIGHT OF THRUST STRUCTURE * LBS	7618.40	-21.71
WEIGHT OF HYDROGEN COOLANT * LBS	22929.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	526.71	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	268.15	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	1751.60	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1507400.00	0.19
FUEL WEIGHT IN ORBITER * LBS	215340.00	0.18
OXIDIZER WEIGHT IN ORBITER * LBS	1292000.00	0.18
FUEL RESERVES * LBS	925.94	0.18
OXIDIZER RESERVES * LBS	5555.70	0.18
FUEL RESIDUAL WEIGHT * LBS	109.97	0.16
OXIDIZER RESIDUAL WEIGHT * LBS	750.34	0.15
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	603.46	0.18
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2933.20	0.01
TOTAL TANK WEIGHT * LBS	15354.00	0.16
FUEL TANK LINE WEIGHT * LBS	1387.60	0.04
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4204.80	0.10
OXIDIZER TANK INSULATION WEIGHT * LBS	1970.00	0.07
GAS LINE WEIGHT * LBS	99.14	0.12
ENGINE BAY LINE WEIGHT * LBS	293.62	0.00
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.51	0.00
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9455.00	0.02
TOTAL OMS PROPELLANT WEIGHT * LBS	18585.00	0.02
OMS HARDWARE WEIGHT * LBS	1010.40	0.03
TOTAL RCS WEIGHT * LBS	1369.60	0.04
RCS PROPELLANT WEIGHT * LBS	1806.20	0.03
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/Methane LH2-Cooled (Near-Term) Propulsion Weights

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DOV VETCUT + IBC	322600 00	-20 37
CDACC LIET ARE URICUT + LBC	3289100 00	3 84
GRUSS LIFT OFF WEIGHT * LBS	5289100.00	2.04
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	159150.00	-34.16
BODY WEIGHT * LBS	76629.00	-31.55
GROWTH WEIGHT * LBS	9276.40	-31.53
INERT WEIGHT * LBS	187780.00	-32.36
EQUIPMENT WEIGHT * LBS	9707.00	-12.42
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	8785.60	-63.30
APU PROPELLANT WEIGHT * LBS	2153.40	-31.66
LANDING WEIGHT * LBS	164910.00	-33.59
FLYBACK SYSTEM INERT WEIGHT * LBS	19494.00	-33.56
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	10059.00	-37.11
FLYBACK SYSTEM WEIGHT * LBS	29577.00	-34.81
LANDING GEAR WEIGHT * LBS	4617.40	-33.59
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	27288.00	-35.54
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	2913.80	-2.39
SECOND STACE		
ITET OFF WEICHT OF OPRITTER * LRS	1857400.00	0.15
ORBITTER DRY VETCHT * LBS	163450.00	0.02
BODY UFTCHT * IBS	111660.00	0.02
CROUTH UFICHT * IBS	9477.20	0.02
TNEDT VETCHT * IBS	190550.00	0.02
FOUTPMENT WEIGHT * LBS	7013.40	0.03
TANK MOINT UFTCHT * LBS	0.00	N/A
STRUCTURAL VALL VETCHT * LBS	9036.50	-0.02
ADU DDODEU ANT VETCHT * IBS	445.24	0.00
PROPERTIANT WEIGHT WEIGHT WEIGHT	43208.00	0.00
VETCHT OF PROPULSION/AVIONICS MODULE MODULE	121780.00	0.00
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

•

•

Two-Stage Optimized LOX/Methane LH2-Cooled (Near-Term) System Weights

A - 27

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.10	-28.02
NOMINAL LIFT OFF ACCELERATION	1.25	-10.22
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4743.80	-5.12
		•
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	347.01	-20.72
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.85	8.16
BOOSTER LAUNCH MIXTURE RATIO	3.77	-37.23
DELIVERED THRUST AT IGNITION * LBS	573120.00	26.74
ENGINE RATED VACUUM THRUST * LBS	596070.00	20.56
NOMINAL FUEL TANK PRESSURE * PSIA	26.81	-23.73
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	4300.00	31.50
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.02	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THEOTTLE SETTING OF 1ST STAGE ENGINES	0.88	-1.28
	0.00	
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.02
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.68	0.00
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PST	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PST	5.00	0.00
THRUST OF SECOND VEHTCLE AT LIFTOFF	1675400.00	0.00
AND ENCINE SPECTETC IMPILLSE	316 00	0.00
TOTAL VACUUM THRUST FOR STACLE ONS FACTAR	6000 00	0.00
TOTAL VACUUM THRUGT FOR STIGLE ONS ENGINE		0.00

Two-Stage Optimized LOX/Methane LH2-Cooled (Near-Term) Performance

FIRST STAGE BODY DIAMETER * FT 30.34 -8.05 VEHICLE LENGTH * FT 137.61 -8.05 LENGTH/DIAMETER RATIO OF VEHICLE 4.54 0.01 NOSE LENGTH 53.10 -8.05 MAIN ENGINE THROAT DIAMETER * FT 0.78 -8.38 MAXIHUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.01 -39.61 NOZZLE EXPANSION RATIO 22.68 -35.21 FUEL LINE DIAMETER * IN 14.19 -22.82 OXIDIZER LANGTH OF FUEL TANK * IN 145.66 -71.42 OXIDIZER TANK HEAD BEIGHT * IN 129.68 -8.07 CYLINDRICAL LENGTH OF OKIDIZER TANK * IN 34.83 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 9.46 FUEL TANK SOFI THEICKNESS * IN 1.00 0.00 VING SPAN * FT 72.40 -18.51 SINGLE FIN EXPOSED AREA * SO FT 125.44 -24.72 EXOND STAGE SECOND STAGE 0.00 N/A NOSZ LENGTH TOSO 0.00 N/A	PAYLOAD BAY LENGTH * FT PAYLOAD DIAMETER * FT	VALUE 80.00 33.00	PERCENT OF *REFERENCE 0.00 0.00
BODY DIAMETER * FT 30.34 -8.05 VEHICLE LENGTH * FT 137.61 -8.05 LENGTH/DIAMETER RATIO OF VEHICLE 4.54 0.01 NOSE LENGTH 53.10 -8.05 MAIN ENGINE THROAT DIAMETER * FT 0.78 -8.38 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 3.72 -26.25 ENGINE SECTION LENGTH * FT 7.01 -39.61 NOZZLE EXPANSION RATIO 22.68 -35.21 FUEL TANK HEAD HEIGHT * IN 130.04 -7.11 CYLINDRICAL LENGTH OF FUEL TANK * IN 130.04 -7.14 OXIDIZER TANK HEAD HEIGHT * IN 130.04 -7.14 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 34.83 1.00 SPACE BETVEEN OXIDIZER AND FUEL TANK + IN 34.83 1.00 SPACE BETVEEN OXIDIZER TANK WALL * IN 0.05 9.46 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 VING RFFERENCE AREA * SQ FT 125.44 -24.72 EXPOSED FIN SPAN * FT 13.20 -13.23 CANARD VING SPAN * FT 25.44 -00 NOSE LENGTH * FT 0.00 N/A SECOND STAG	FTPST STACE		
LENGTH 53.10 -8.05 MOSE LENGTH 53.10 -8.05 MAXIMUM MAIN ENGINE THROAT DIAMETER * FT 0.78 -8.08 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 0.72 -26.25 ENGINE SECTION LENGTH * FT 7.01 -39.61 NOZZLE EXPANSION RATIO 22.68 -35.21 PUEL LINE DIAMETER * IN 14.19 -22.82 OXIDIZER LINE DIAMETER * IN 130.04 -7.11 CYLINDRICAL LENGTH OF FUEL TANK * IN 145.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 129.68 -8.07 CYLINDRICAL LENGTH OF FUEL TANK + IN 5.00 0.00 THICKNESS OF FUEL TANK VALL * IN 0.05 5.43 THICKNESS OF OXIDIZER TANK VALL * IN 0.05 5.83 THICKNESS OF OXIDIZER TANK VALL * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING SPAN * FT 254.90 -33.59 VING SPAN * FT 13.20 -13.23 CANARD VING SPAN * FT 0.00 N/A SECOND STAGE 50.00 N/A MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	BODY DIAMETER * FT VEHICLE LENGTH * FT	30.34 137.61	-8.05 -8.05
HAXIMUM MAIN ENGINE NOZLE EXIT DIAMETER * FT 3.72 -26.25 ENGINE SECTION LENGTH * FT 7.01 -39.61 NOZZLE EXPANSION RATIO 22.68 -35.21 PUEL LINE DIAMETER * IN 14.19 -22.82 OXIDIZER LINE DIAMETER * IN 130.04 -7.11 CYLINDRICAL LENGTH OF FUEL TANK * IN 145.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 145.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 10.04 -7.11 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 34.83 1.00 SPACE BETWEEN OXIDIZER TANK VALL * IN 0.09 55.83 THICKNESS OF FUEL TANK WALL * IN 0.00 -20.00 VING SFAN * FT 0.00 -00.00 VING SFAN * FT 2.44.90 -33.59 SINGLE FIN EXPOSED AREA * SQ FT 125.44 -24.72 EXPOSED FIN SPAN * FT 0.00 -10.00 CANARD WING SPAN * FT 0.00 -33.60 0.00 VEHICLE LENGTH * FT 260.64 3.63 LENGTH / DIAMETER * FT 0.00 N/A SECOND STAGE 0.00 0.00 NOSE LENGTH <td< td=""><td>NOSE LENGTH MAIN ENCINE THROAT DIAMETER * FT</td><td>53.10</td><td>-8.05</td></td<>	NOSE LENGTH MAIN ENCINE THROAT DIAMETER * FT	53.10	-8.05
NOZZLE EXPANSION RATIO 22.68 -35.21 FUEL LINE DIAMETER * IN 14.19 -22.82 OXIDIZER LINE DIAMETER * IN 19.39 0.76 FUEL TANK HEAD HEIGHT * IN 130.04 -7.11 CTLINDRICAL LENGTH OF FUEL TANK * IN 145.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 129.68 -80.07 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 34.83 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 0.09 55.83 THICKNESS OF OXIDIZER TANK WALL * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING SPAN * FT 2544.90 -33.59 VING SPAN * FT 13.20 -13.23 CANARD WING SPAN * FT 13.20 -13.23 CANARD WING SPAN * FT 260.64 3.63 DOY DIAMETER * FT 260.64 3.63 USCHT DIAMETER * TN 13.97 0.00 VEHICLE LENGTH * FT 260.64 3.63 DOSE LENGTH FT	MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT ENGINE SECTION LENGTH * FT	3.72 7.01	-26.25 -39.61
OXIDIZER LINE DIAMETER * IN 19.39 0.76 FUEL TANK HEAD HEIGHT * IN 130.04 -7.11 CYLINDRICAL LENGTH OF FUEL TANK * IN 145.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 129.68 -8.07 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 34.83 1.00 SPACE BETWEEN OXIDIZER TANK VALL * IN 0.09 55.83 THICKNESS OF FUEL TANK VALL * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 VING REFERENCE AREA * SQ FT 2544.90 -33.59 VING SPAN * FT 72.40 -18.51 SINGLE FIN EXPOSED AREA * SQ FT 125.44 -24.72 EXPOSED FIN SPAN * FT 0.000 N/A SECOND STAGE 50.000 N/A MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE NAZILE EXIT DIAMETER * FT 7.50 0.00 NOZILE EXPANSION RATIO 77.50 0.00	NOZZLE EXPANSION RATIO FUEL LINE DIAMETER * IN	22.68 14.19	-35.21 -22.82
CYLINDRICAL LENGTH OF FUEL TANK * IN 142.68 -71.42 OXIDIZER TANK HEAD HEIGHT * IN 129.68 -8.07 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 34.83 1.00 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK VALL * IN 0.09 55.83 THICKNESS OF OXIDIZER TANK WALL * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 -0.00 VING SPAN * FT 1.00 -0.00 SINGLE FIN EXPOSED AREA * SQ FT 2544.90 -33.59 VING SPAN * FT 72.40 -18.51 SINGLE FIN EXPOSED AREA * SQ FT 123.00 0.00 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 260.64 3.63 LENGTH / DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 11.60 0.00 FORELLANT TANK HEAD ELLIPSE RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97<	OXIDIZER LINE DIAMETER * IN FUEL TANK HEAD HEIGHT * IN	19.39 130.04	0.76 -7.11 71.42
SPACE BETVEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.09 55.83 THICKNESS OF OXIDIZER TANK WALL * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2544.90 -33.59 VING SPAN * FT 1.25.44 -24.72 EXPOSED FIN SPAN * FT 13.20 -13.23 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 260.64 3.63 LENGTH * FT 260.64 3.63 LENGTH DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 PUEL TANK HEAD HEIGHT * IN 14.67 0.00 VIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00	OXIDIZER TANK HEAD HEIGHT * IN CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	145.68	-8.07
THICKNESS OF OXIDIZER TANK VALL * IN 0.05 9.46 FUEL TANK SOFI THICKNESS * IN 0.00 -100.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 VING SFERENCE AREA * SQ FT 2544.90 -33.59 VING SPAN * FT 72.40 -18.51 SINGLE FIN EXPOSED AREA * SQ FT 125.44 -24.72 EXPOSED FIN SPAN * FT 13.20 -13.23 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 14.67 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 OXIDIZER TANK HEAD ELLIPSE RATIO 14.67 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 <td< td=""><td>SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN THICKNESS OF FUEL TANK WALL * IN</td><td>5.00 0.09</td><td>0.00 55.83</td></td<>	SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN THICKNESS OF FUEL TANK WALL * IN	5.00 0.09	0.00 55.83
0XIDIZER TANK SOFI THICKNESS * IN 1.00 0.00 WING REFERENCE AREA * SQ FT 2544.90 -33.59 VING SPAN * FT 72.40 -18.51 SINGLE FIN EXPOSED AREA * SQ FT 125.44 -24.72 EXPOSED FIN SPAN * FT 13.20 -13.23 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 0.85 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 NOZZLE EXPANSION RATIO 14.67 0.00 VIDIZER LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.00 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.00 0.00 </td <td>THICKNESS OF OXIDIZER TANK WALL * IN FUEL TANK SOFI THICKNESS * IN</td> <td>0.05</td> <td>9.46 -100.00</td>	THICKNESS OF OXIDIZER TANK WALL * IN FUEL TANK SOFI THICKNESS * IN	0.05	9.46 -100.00
WING SFAN * FT 125.44 -24.72 SINGLE FIN EXPOSED AREA * SQ FT 13.20 -13.23 CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 260.64 3.63 LENGTH / DIAMETER * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAIN ENGINE THROAT DIAMETER * FT 11.60 0.00 NOSE LENGTH 77.50 0.00 MAIN ENGINE THROAT DIAMETER * FT 11.60 0.00 NOZEL EXPANSION RATIO 77.50 0.00 NUZLE EXPANSION RATIO 77.50 0.00 OXIDIZER LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.00 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.00 0.00 SPACE BETWEEN O	OXIDIZER TANK SOFI THICKNESS * IN WING REFERENCE AREA * SQ FT WING SPAN + FT	2544.90 72.40	-33.59
CANARD WING SPAN * FT 0.00 N/A SECOND STAGE BODY DIAMETER * FT 33.00 0.00 VEHICLE LENGTH * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 141.07 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 5.00 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 0.00 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 THICKNESS * IN 1.00 0.00 0XIDIZER TANK SOFI THICKNESS * IN TANK SOFI THICKNESS * IN 1.00 </td <td>SINGLE FIN EXPOSED AREA * SQ FT EXPOSED FIN SPAN * FT</td> <td>125.44 13.20</td> <td>-24.72 -13.23</td>	SINGLE FIN EXPOSED AREA * SQ FT EXPOSED FIN SPAN * FT	125.44 13.20	-24.72 -13.23
SECOND STAGE BODY DIAMETER * FT 33.00 0.00 VEHICLE LENGTH * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97 0.00 VULL LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 FUEL TANK HEAD HEIGHT * IN 14.07 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 0.00 THICKNESS * IN 1.00 0.00 OXIDIZER TANK SOFI	CANARD WING SPAN * FT	0.00	N/A
BODY DIAMETER * FT33.000.00VEHICLE LENGTH * FT260.643.63LENGTH/DIAMETER RATIO OF VEHICLE7.903.64NOSE LENGTH57.750.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN11.600.00OXIDIZER LINE DIAMETER * IN13.970.00FUEL TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	SECOND STAGE		
VEHICLE LENGTH * FT 260.64 3.63 LENGTH/DIAMETER RATIO OF VEHICLE 7.90 3.64 NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 42.03 0.99 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 0.00 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 THICKNESS * IN 1.00 0.00 0.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00	BODY DIAMETER * FT	33.00	0.00
LENGTH/DIAMETER RATIO OF VEHICLE7.903.64NOSE LENGTH57.750.00MAIN ENGINE THROAT DIAMETER * FT0.850.00MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.970.00OXIDIZER LINE DIAMETER * IN14.670.00FUEL TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	VEHICLE LENGTH * FT	260.64	3.63
NOSE LENGTH 57.75 0.00 MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 42.03 0.99 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 0.00 THICKNESS OF OXIDIZER TANK WALL * IN 0.05 0.00 FUEL TANK SOFI THICKNESS * IN 1.00 0.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00	LENGTH/DIAMETER RATIO OF VEHICLE	7.90	3.64
MAIN ENGINE THROAT DIAMETER * FT 0.85 0.00 MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT 7.50 0.00 ENGINE SECTION LENGTH * FT 11.60 0.00 NOZZLE EXPANSION RATIO 77.50 0.00 FUEL LINE DIAMETER * IN 13.97 0.00 OXIDIZER LINE DIAMETER * IN 14.67 0.00 PROPELLANT TANK HEAD ELLIPSE RATIO 1.40 0.00 FUEL TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF FUEL TANK * IN 730.63 0.18 OXIDIZER TANK HEAD HEIGHT * IN 141.07 0.00 CYLINDRICAL LENGTH OF OXIDIZER TANK * IN 42.03 0.99 SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN 5.00 0.00 THICKNESS OF FUEL TANK WALL * IN 0.05 0.00 FUEL TANK SOFI THICKNESS * IN 1.00 0.00 OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00	NOSE LENGTH	57.75	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT7.500.00ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.970.00OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
ENGINE SECTION LENGTH * FT11.600.00NOZZLE EXPANSION RATIO77.500.00FUEL LINE DIAMETER * IN13.970.00OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00*TO THE SCHE DOUERED BASELINE1.000.00	MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	/.50	0.00
NOZZLE EXPANSION RATIO77.300.00FUEL LINE DIAMETER * IN13.970.00OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN5.000.00CYLINDRICAL LENGTH OF OXIDIZER TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00*TO THE SCHE DOUEPED BASELINE1.000.00	ENGINE SECTION LENGTH * FT	11.00	0.00
OXIDIZER LINE DIAMETER * IN13.970.00OXIDIZER LINE DIAMETER * IN14.670.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN142.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00*TO THE SSME POUPERD BASELINE1.000.00	NUZZLE EXPANSION RAILU	13 97	0.00
OKIDIZER LINE DIAMETER * IN1.400.00PROPELLANT TANK HEAD ELLIPSE RATIO1.400.00FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	AVIDIZED LINE DIAMETED + IN	14.67	0.00
FUEL TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	PROPELLANT TANK HEAD ELLIPSE RATTO	1,40	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN730.630.18OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00	FUEL TANK HEAD HETGHT * IN	141.07	0.00
OXIDIZER TANK HEAD HEIGHT * IN141.070.00CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00*TO THE SSME POURPED BASELINE1.000.00	CYLINDRICAL LENGTH OF FUEL TANK * IN	730.63	0.18
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN42.030.99SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00*TO THE SSME POUPPED BASELINE1.000.00	OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN5.000.00THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00*TO THE SSME POURPED BASELINE1.000.00	CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	42.03	0.99
THICKNESS OF FUEL TANK WALL * IN0.050.00THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00THE SSME POURPED BASELINE1.000.00	SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF OXIDIZER TANK WALL * IN0.050.00FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00*TO THE SSME POURPED BASELINE1.000.00	THICKNESS OF FUEL TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN1.000.00OXIDIZER TANK SOFI THICKNESS * IN1.000.00TO THE SSME POURPED BASELINE	THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
OXIDIZER TANK SOFI THICKNESS * IN 1.00 0.00	FUEL TANK SOFI THICKNESS * IN	1.00	0.00
ALL LOD AND FLUEDBLU DEADLIES	OXIDIZER TANK SOFI THICKNESS * IN *TO THE SSME POWERED BASELINE	1.00	0.00

Two-Stage Optimized LOX/Methane LH2-Cooled (Near-Term) Dimensions

.

VALUE *REFERENCE TOTAL ASCENT PROPELLANT WEIGHT * LBS 3014800.00 18.69 PROPELLANT WT FOR ASCENT * LBS 1469900.00 41.7 PUEL WEIGHT IN BOOSTER * LBS 1156400.00 111.28 OXIDIZER VEIGHT IN BOOSTER * LBS 135400.00 30.31 FUEL RESERVES * LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 130.60 143.54 OXIDIZER RESIDUAL VEIGHT * LBS 681.40 25.17 TOTAL LANK VEIGHT * LBS 1622.20 -43.80 TOTAL TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK INSULATION VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF TANK INSULATION VEIGHT * LBS 1040.00 -2.07 VEIGHT OF HUENGSTNER KUEGHT * LBS 0.00 N/A HOROPELLANK INSULATION VEIGHT * LBS 0.00 N/A VEIGHT OF HUENG			PERCENT OF
TOTAL ASCENT PROPELLANT WEIGHT * LBS 3014800.00 18.69 FIRST STAGE PROPELLANT WT FOR ASCENT * LBS 1468900.00 41.87 PUEL WEIGHT IN BOOSTER * LBS 312500.00 111.28 OXIDIZER VEIGHT IN BOOSTER * LBS 1343.70 111.27 OXIDIZER NEIGHT * LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 190.80 143.54 OXIDIZER RESERVES * LBS 190.80 143.54 OXIDIZER RESERVES * LBS 190.80 143.54 OXIDIZER RESERVES * LBS 101.10 -50.99 OXIDIZER AUTOCEMOUS PRESSURANT VEIGHT * LBS 102.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 167.90 -11.22 GAS LINE VEIGHT * LBS 167.90 -11.22 GAS LINE VEIGHT * LBS 1647.90 -12.29 OXIDIZER TANK INSULATION VEIGHT * LBS 1640.00 -2.07 VEIGHT OF THENGER COLANT * LBS 0.00 N/A MYDROGEN COOLANT * LBS 0.00 N/A MYDROGEN COOLANT * LBS 0.00 N/A MYDROGEN COOLANT * LBS 0.00		VALUE	*REFERENCE
FIRST STAGE 1468900.00 41.87 FUEL WEIGHT IN BOOSTER * LBS 312500.00 111.28 OXIDIZZEN WEIGHT IN BOOSTER * LBS 1156400.00 30.31 FUEL RESERVES * LBS 1343.70 111.27 OXIDIZZEN WEIGHT * LBS 190.80 143.54 OXIDIZZEN AUTOGENOUS PRESSURANT VEIGHT * LBS 681.40 25.17 TOTAL FUEL AUTOGENOUS PRESSURANT VEIGHT * LBS 1622.20 -43.80 TOTAL TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZZEN TANK LINE VEIGHT * LBS 1627.90 -11.22 OXIDIZZEN TANK LINE VEIGHT * LBS 1627.90 -11.22 OXIDIZZEN TANK INSULATION VEIGHT * LBS 1627.90 -11.22 OXIDIZZEN TANK INSULATION VEIGHT * LBS 1627.90 -11.22 OXIDIZEN TANK INSULATION VEIGHT * LBS 1040.00 -2.07 VEIGHT OF EACH BOOSTER ENGINE * LBS 5090.00 -2.12 VEIGHT OF HUBY STEM VEIGHT * LBS 1040.00 -2.21 VEIGHT OF HUBY STEM VEIGHT * LBS 0.00 N/A HYBESSURANT VEIGHT * LBS 0.00 N/A PROPELLANT VT FOR ASCENT * LBS 1040.00 2.74 VEIGHT OF HUBROGEN COOLANT TA	TOTAL ASCENT PROPELLANT WEIGHT * LBS	3014800.00	18.69
PIRST STACE PIRST STACE PROPELLANT VT FOR ASCENT * LBS 1468900.00 41.87 PUEL VEIGHT IN BOOSTER * LBS 312500.00 111.28 ONDIZZER VEIGHT * LBS 136400.00 30.31 FUEL RESERVES * LBS 4972.60 31.27 OXIDIZER RESERVES * LBS 4972.60 31.23 ONDIZER RESERVES * LBS 190.60 143.54 OXIDIZER RESERVES * LBS 190.60 143.54 OXIDIZER RESERVES * LBS 190.60 143.54 ONDIZER RESERVES * LBS 190.60 143.54 OXIDIZER RESERVES * LBS 1012.10 -50.99 OTAL TANK VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK INSULATION VEIGHT * LBS 1040.00 -2.07 VEIGT OF EACH BOSTER ENGINE * LBS 1040.00 -2.07 VEIGHT OF FARDYS STRUCTURE * LBS 1040.00 -2.07 VEIGHT OF FARDOSTER ENGINE * LBS 0.00 N/A HYBGER OF THRUST STRUCTURE * LBS 0.00 N/A PRESSURAT VEIGHT * LBS 0.00 <td></td> <td></td> <td></td>			
PROPELLARIN VI FOR ASCENT * LBS 14069401.00 11.28 OXIDIZER VEIGHT IN BOOSTER * LBS 312500.00 111.28 OXIDIZER VEIGHT IN BOOSTER * LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 1343.70 111.27 OXIDIZER RESENUAL VEIGHT * LBS 681.40 25.17 TOTAL OXIDIZER ANTOCENOUS PRESSURANT VEIGHT * LBS 1622.20 -43.80 TOTAL OXIDIZER ANTOCENOUS PRESSURANT VEIGHT * LBS 1627.90 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 1640.00 -2.07 VEIGHT OF TRUST STAUCTURE * LBS 1040.00 -2.07 VEIGHT OF HUDROGEN COOLANT TALES 0.00 N/A HYDROGEN COOLANT TEDS STSTEM VEIGHT * LBS 0.00 N/A NSULATION VEIGHT N HUDROFEN COLLANT TANK * LBS 0.00 N/A NEGRIT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A NEGGIT OF HYDROGEN COOLANT TANK	FIRST STAGE	1/68000 00	61 07
FUEL WEIGHT IN BOUSTER * LBS 115640.00 30.31 FUEL RESERVES * LBS 1343.70 11.27 OXIDIZER RESERVES * LBS 1343.70 11.27 OXIDIZER RESERVES * LBS 4972.60 30.31 FUEL RESERVES * LBS 190.80 143.54 OXIDIZER RESERVES * LBS 190.80 143.54 OXIDIZER RESERVAL VEIGHT * LBS 681.40 25.17 TOTAL TARK UNCES PRESSURANT VEIGHT * LBS 162.20 -43.80 OXIDIZER RESIDUAL VEIGHT * LBS 1012.10 -50.99 PUEL TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK UNSULATION VEIGHT * LBS 1627.90 -11.22 OXIDIZER TANK INSULATION VEIGHT * LBS 1040.00 -2.07 VEIGHT OF THRUST STRUCTURE * LBS 1040.00 -2.07 VEIGHT OF THOROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A PRESSURAT VEIGHT * LBS <td>PROPELLANT WI FOR ASCENT * LDD</td> <td>312500.00</td> <td>41.07</td>	PROPELLANT WI FOR ASCENT * LDD	312500.00	41.07
DAIDTELK # DIGHT # LBS 1343.70 111.27 OXIDIZER RESERVES * LBS 1472.60 30.31 FUEL RESERVES * LBS 190.80 143.54 OXIDIZER RESERVES * LBS 160.40 83.61 OXIDIZER RESERVES * LBS 160.46 83.61 OXIDIZER AUTOGENOUS PRESSURANT VEIGHT * LBS 1622.20 -43.80 TOTAL AND VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 102.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 102.10 -50.99 OXIDIZER TANK INSULATION VEIGHT * LBS 102.10 -10.29 OXIDIZER TANK INSULATION VEIGHT * LBS 1040.00 -20.7 GAS LINE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF THRUST STRUCTURE * LBS 1040.00 -2.19 VEIGHT OF THRUST STRUCTURE * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A VEIGHT OF THRUST STRUCTURE * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS	ANTOTARD RETCHE IN BOOSTER - TBS	1156400 00	30 31
PUEL RESERVES * LBS 4972.60 30.31 FUEL RESERVES * LBS 4972.60 30.31 FUEL RESIDUAL WEIGHT * LBS 190.80 143.54 OXIDIZER RESIDUAL WEIGHT * LBS 681.40 25.17 TOTAL TARK VEIGHT * LBS 681.40 25.17 TOTAL TARK WEIGHT * LBS 1622.20 -43.80 TOTAL TARK WEIGHT * LBS 1012.10 -50.99 OXIDIZER TARK LINE WEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK INSULATION WEIGHT * LBS 1627.90 -11.22 OXIDIZER TANK INSULATION WEIGHT * LBS 1627.90 -11.22 OXIDIZER TANK INSULATION WEIGHT * LBS 1640.00 -2.07 WEIGHT OF PIGHT CONTON LARDWARE VEICHT * LBS 1040.00 -2.13 VEIGHT OF PIGNOGEN COOLANT TALS 0.00 N/A HYBROGEN COOLANT FRED SYSTEM WEIGHT * LBS 0.00 N/A HYBROGEN COOLANT TANK * LBS 0.00 N/A INSULATION WEIGHT * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A INSULATION WEIGHT * LBS 0.00 N/A	PHEN DECEDUES + LES	1343.70	111.27
ORIDIAL WIGGT WIGGT * LBS 190.80 143.54 OXIDIZER RESIDUAL WEIGHT * LBS 681.40 25.17 OTAL FUEL AUTOCENOUS PRESSURANT VEIGHT * LBS 816.46 83.61 TOTAL TARK VEIGHT * LBS 1832.00 38.89 TUEL TARK LINE VEIGHT * LBS 1832.00 38.99 FUEL TARK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 241.13 19.83 FUEL TARK LINSULATION VEIGHT * LBS 102.10 -50.99 OXIDIZER TANK INSULATION VEIGHT * LBS 102.10 -10.22 GAS LINE VEIGHT * LBS 241.13 19.83 FUEL TARK INSULATION VEIGHT * LBS 1040.00 -2.07 VEIGHT OF FACH BOOSTER ENGINE * LBS 5908.00 -12.99 VEIGHT OF HERUST STRUCTURE * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A INSULATION VEIGHT TON HIDROGEN COOLANT TANK * LBS 0.00 N/A INSULATION VEIGHT IN ORBITER * LBS 0.00 N/A PRESSURANT VEIGHT IN ORBITER * LBS 0.00 N/A PRESSURANT VEIGHT IN ORBITER * LBS 0.00 N/A PRESSURANT VEIGHT IN ORBITER * LBS 0.	OVIDITER RESERVES * LBS	4972.60	30.31
OXIDIZER RESIDUAL VEIGHT * LBS 681.40 25.17 TOTAL FUEL AUTOGENOUS PRESSURANT VEIGHT * LBS 816.46 83.61 TOTAL OXIDIZER AUTOGENOUS PRESSURANT VEIGHT * LBS 1622.20 -43.80 TOTAL ANK, VEIGHT * LBS 18332.00 38.89 FUEL TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK INSULATION VEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION VEIGHT * LBS 1667.90 -11.22 GAS LINE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF EACH BARDVARE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF THRUST STRUCTURE * LBS 0.00 N/A PYEIGHT OF THOUST STRUCTURE * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A	FUEL RESTDUAL WEIGHT * LBS	190.80	143.54
TOTAL FUEL AUTOGENOUS PRESSURANT VEIGHT * LBS 816.4.6 83.61 TOTAL AXIDIZER AUTOGENOUS PRESSURANT VEIGHT * LBS 1622.20 -43.80 TOTAL TANK VEIGHT * LBS 1022.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION VEIGHT * LBS 50.90 -96.52 OXIDIZER TANK INSULATION VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDVARE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF FACH BOOSTER ENCINE * LBS 0.00 N/A HYDROGEN COOLANT * ELS 0.00 N/A HYDROGEN COOLANT FED SYSTEM VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 1245900.00 2.74 <t< td=""><td>OXTDIZER RESIDUAL WEIGHT * LBS</td><td>. 681.40</td><td>25.17</td></t<>	OXTDIZER RESIDUAL WEIGHT * LBS	. 681.40	25.17
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1622.20 -43.80 TOTAL TANK WEIGHT * LBS 18332.00 38.89 TOTAL TANK WEIGHT * LBS 102.10 -50.99 OXIDIZER TANK LINE WEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION WEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION WEIGHT * LBS 667.90 -11.22 GAS LINE WEIGHT * LBS 85.37 -18.99 ENGINE BAY LINE WEIGHT * LBS 1040.00 -2.07 WEIGHT OF TARUST STRUCTURE * LBS 1040.00 -2.07 WEIGHT OF TRUST STRUCTURE * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 194.63	TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	816.46	83.61
TOTAL TANK WEIGHT * LBS 18322.00 33.89 FUEL TANK LINE WEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE WEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION WEIGHT * LBS 50.90 -98.52 OXIDIZER TANK INSULATION WEIGHT * LBS 1627.90 -11.22 GAS LINE WEIGHT * LBS 85.37 -18.99 ENGINE BAY LINE VEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDVARE VEIGHT * LBS 1040.00 -2.07 WEIGHT OF EACH BOOSTER ENGINE * LBS 50908.00 -12.99 WEIGHT OF HURDGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HURDGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 2.74 FUEL RESIDUAL WEIGHT * LBS 122.50 0.74 FUEL RESIDUAL WEIGHT * LB	TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1622.20	-43.80
FUEL TANK LINE VEIGHT * LBS 1012.10 -50.99 OXIDIZER TANK LINE VEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION VEIGHT * LBS 50.90 -98.52 OXIDIZER TANK INSULATION VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 85.37 -18.99 ENCINE BAY LINE VEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDWARE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF THRUST STRUCTURE * LBS 5908.00 -12.99 VEIGHT OF HERDGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT FEED STSTEM VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A PRESSURAT VEIGHT * LBS 1225100.00 2.74 FUEL RESERVES * LBS 1225100.00 2.74 FUEL RESIDUAL VEIGHT * LBS	TOTAL TANK WEIGHT * LBS	18332.00	38.89
OXIDIZER TANK LINE VEIGHT * LBS 241.13 19.83 FUEL TANK INSULATION VEIGHT * LBS 50.90 -98.52 OXIDIZER TANK INSULATION VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 85.37 -18.99 ENGINE BAY LINE VEIGHT * LBS 406.15 -19.32 PRESSURANT CONTROL HARDWARE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF EACH BOOSTER ENGINE * LBS 5908.00 -12.99 VEIGHT OF HURGEN COLANT * LBS 0.00 N/A HYDROGEN COLANT FED STSTEM VEIGHT * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A VEIGHT OF HURDGEN COLANT TANK * LBS 0.00 N/A INSULATION VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PUELLANT WT FOR ASCENT * LBS 1225900.00 2.74 FUEL LANK VEIGHT * LBS 1325100.00 2.74 FUEL LANK VEIGHT * LBS	FUEL TANK LINE WEIGHT * LBS	1012.10	-50.99
FUEL TANK INSULATION WEIGHT * LBS 50.00 -98.52 OXIDIZER TANK INSULATION WEIGHT * LBS 1627.90 -11.22 GAS LINE WEIGHT * LBS 85.37 -18.99 ENGINE BAY LINE WEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 5908.00 -2.07 WEIGHT OF EACH BOOSTER ENGINE * LBS 5908.00 -2.07 WEIGHT OF THUST STRUCTURE * LBS 5000 N/A HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURANT WEIGHT NORBITER * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS 0.00 N/A PRESSURANT WEIGHT IN ORBITER * LBS 1545900.00 2.74 FUEL WEIGHT IN ORBITER * LBS 1545900.00 2.74 FUEL RESERVES * LBS 1225100.00 2.74 FUEL RESERVES * LBS 122.53 2.50 OXIDIZER RESERVES * LBS 122.53 2.50 OXIDIZER RESERVES * LBS 124.53 2.66 <	OXIDIZER TANK LINE WEIGHT * LBS	241.13	19.83
OXIDIZER TANK INSULATION VEIGHT * LBS 1627.90 -11.22 GAS LINE VEIGHT * LBS 85.37 -18.99 ENGINE BAY LINE VEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDVARE VEIGHT * LBS 1040.00 -2.07 WEIGHT OF THRUST STRUCTURE * LBS 5908.00 -12.99 WEIGHT OF HONGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURAT VEIGHT * LBS 0.00 N/A PRESSURAT VEIGHT * LBS 0.00 N/A PRESSURAT VUEIGHT * LBS 0.00 N/A PRESSURAT VUEIGHT * LBS 0.00 N/A PRESSURAT VUEIGHT * LBS 1220840.00 2.74 FUEL RESTOUAL VEIGHT * LBS 1220840.00 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 OXIDIZER RESIDUAL VEIGHT * LBS 1250 2.50 OXIDIZER RESIDUAL VEIGHT * LBS 1253 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 15688.00	FUEL TANK INSULATION WEIGHT * LBS	50.90	-98.52 -
GAS LINE VEIGHT * LBS 83.37 -18.399 ENGINE BAY LINE VEIGHT * LBS 408.15 -19.32 PRESSURANT CONTROL HARDWARE VEIGHT * LBS 1040.00 -2.07 VEIGHT OF EACH BOOSTER ENGINE * LBS 5908.00 -12.99 WEIGHT OF HURDS STRUCTURE * LBS 5908.00 -22.13 WEIGHT OF HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT FEED SYSTEM VEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURE TANK VEIGHT * LBS 0.00 N/A PRESSURAT IN ORBITER * LBS 0.00 N/A FUEL RESERVES * LBS 949.63 2.74 FUEL RESERVES * LBS 5697.80 2.74 OXIDIZER VEIGHT IN ORBITER * LBS 112.53 2.50 OXIDIZER VEIGHT * LBS 112.53 2.50 OXIDIZER VEIGHT * LBS 1394.00 0.66 TOTAL OXIDIZER AUTOGENOUS PRESSURANT VEIGHT * LBS 15688.00 2.34 FU	OXIDIZER TANK INSULATION WEIGHT * LBS	1627.90	-11.22
ENGINE BAY LINE VEIGHT * LBS 404.13 -19.32 PRESSURANT CONTROL HARDWARE VEIGHT * LBS 1040.00 -2.07 WEIGHT OF EACH BOOSTER ENGINE * LBS 5908.00 -12.99 WEIGHT OF HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT FED SYSTEM WEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.56 OXIDIZER RESIDUAL WEIGHT * LBS 1568.00 2.34 FUEL RESERVES * LBS 1568.00 2.34 FUEL RESERVES * LBS	GAS LINE WEIGHT * LBS	85.37	-18,99
PRESSURANT CONTROL HARDWARE VEIGHT * LBS 1400.00 -2.07 WEIGHT OF EACH BOOSTER ENCINE * LBS 5908.00 -12.19 WEIGHT OF THRUST STRUCTURE * LBS 0.00 N/A HYDROGEN COOLANT FEED SYSTEM VEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A VEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURAT WEIGHT * LBS 0.00 N/A PRESSURAT WEIGHT * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS 0.00 N/A SECOND STAGE SECOND STAGE 20840.00 2.74 FUEL RESERVES * LBS 1325100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 112.53 2.50 OXIDIZER RESERVES * LBS 168.55 2.68	ENGINE BAY LINE WEIGHT * LBS	408.15	-19.32
WEIGHT OF EACH HOUSTER ENGINE * LBS 5908.00 -12.99 WEIGHT OF THRUST STRUCTURE * LBS 7577.80 -22.13 WEIGHT OF HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS 0.00 N/A SECOND STAGE SECOND STAGE 20840.00 2.74 PUEL WEIGHT IN ORBITER * LBS 1325100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 112.53 2.50 OXIDIZER RESERVES * LBS 112.53 2.50 OXIDIZER RESERVES * LBS 12.53 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1334.20 0.51 <	PRESSURANT CONTROL HARDWARE WEIGHT * LBS	1040.00	-2.07
WEIGHT OF HIRNOS SNUCLURE * LBS 7377.30 -22.13 WEIGHT OF HYDROGEN COOLANT * LBS 0.00 N/A HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A WEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PRESSURE TANK VEIGHT * LBS 0.00 N/A PRESSURE TANK VEIGHT * LBS 0.00 N/A SECOND STAGE 940.63 2.74 FUEL RESERVES * LBS 122.500.00 2.74 OXIDIZER WEIGHT NORBITER * LBS 125100.00 2.74 OXIDIZER WEIGHT * NORBITER * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.61 TOTAL TANK WEIGHT * LBS 107.16 0.00 FUEL TANK LINE VEIGHT * LBS 1094.20 0.51 OXIDIZER TA	WEIGHT OF EACH BOOSTER ENGINE * LBS	7577 90	-12.99
WEIGHT OF HIRKOER COOLART FEED SYSTEM WEIGHT * LBS 0.00 N/A HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS 0.00 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT WEIGHT * LBS 0.00 N/A SECOND STAGE SECOND STAGE 220840.00 2.74 FUEL RESTUAL WEIGHT * LBS 1325100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 5697.80 2.74 OXIDIZER RESERVES * LBS 112.53 2.50 OXIDIZER RESERVES * LBS 122.53 2.50 OXIDIZER RESERVES * LBS 16689 2.36 TOTAL FUEL ANTOGENOUS PRESSURANT WEIGHT * LBS 1934.90 0.06 TOTAL ANG WEIGHT * L	WEIGHT OF THRUST SIRUCIURE * LDS	0.0	-22.15 N/A
INSULATION VEIGHT ON HYDROGEN COOLANT TANK * LBS 0.00 N/A WEIGHT OF HYDROGEN COOLANT TANK * LBS 0.00 N/A PRESSURANT VEIGHT * LBS 0.00 N/A PROPELLANT WEIGHT * LBS 0.00 N/A SECOND STAGE SECOND STAGE 220840.00 2.74 FUEL WEIGHT IN ORBITER * LBS 1225100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESEDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESEDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 15688.00 2.34 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 15688.00 2.34 TOTAL TANK VEIGHT * LBS 1394.20 0.51 0.01 OXIDIZER TANK LINE VEIGHT * LBS 1989.00 1.03 0.33 GAS LINE VEIGHT * LBS 100.81 1.81 1.81 ENGINE BAY LINE VEIGHT * LBS	WEIGHT UP HIDROGEN COULANT ~ EDS	0.00	N/A
ANDMAIN ALDRA VERSAL AND ALDRA VERSALWEIGHT OF HYDROGEN COOLANT TANK * LBS0.00N/APRESSURANT WEIGHT * LBS0.00N/APRESSURE TANK WEIGHT * LBS0.00N/APRESSURE TANK WEIGHT * LBS0.00N/ASECOND STAGESECOND STAGEPROPELLANT WT FOR ASCENT * LBS1325100.002.74FUEL WEIGHT IN ORBITER * LBS1325100.002.74OXIDIZER WEIGHT IN ORBITER * LBS1325100.002.74OXIDIZER RESERVES * LBS949.632.74FUEL RESIDUAL WEIGHT * LBS112.532.50OXIDIZER RESERVES * LBS5697.802.74FUEL RESIDUAL WEIGHT * LBS112.532.50OXIDIZER RESENUEA WEIGHT * LBS112.532.68TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS1394.200.61TOTAL TANK WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS107.160.00OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS100.000.00WEIGHT OF THRUST STRUCTURE * LBS100.200.21TOTAL ONS PROPELLANT WEIGHT * LBS1373.000.21TOTAL ONS PROPELLANT WEIGHT * LBS1373.000.22ONS PROPELLANT WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS	INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS 0.00 N/A SECOND STAGE PROPELLANT WT FOR ASCENT * LBS 1545900.00 2.74 FUEL WEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER VEIGHT IN ORBITER * LBS 1325100.00 2.74 OXIDIZER VEIGHT IN ORBITER * LBS 1325100.00 2.74 OXIDIZER RESERVES * LBS 949.63 2.74 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 766.89 2.36 TOTAL SUDGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 OTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 </td <td>WEIGHT OF HYDROGEN COOLANT TANK * LBS</td> <td>0.00</td> <td>N/A</td>	WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURE TANK VEIGHT * LBS 0.00 N/A SECOND STAGE PROPELLANT WT FOR ASCENT * LBS 1545900.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESENDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 766.89 2.36 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION VEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS	PRESSURANT WEIGHT * LBS	0.00	N/A
SECOND STAGE PROPELLANT WT FOR ASCENT * LBS 1545900.00 2.74 FUEL WEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 949.63 2.74 OXIDIZER RESIDUAL WEIGHT * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 618.55 2.68 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL TANK VEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 6022.50 0.00 OXIDIZER TANK INSULATION WEIGHT * LBS 100.02 0.021 FUEL TANK INSULATION WEIGH	PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE PROPELLANT WT FOR ASCENT * LBS 1545900.00 2.74 FUEL WEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESOULAL WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.66 TOTAL TANK VEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK LINE WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 6022.50 0.00 OWEIGHT OF THRUST STRUCTURE * LBS 1001.20 0.21 OMS PROPELLANT WEIGHT * LBS <td< td=""><td></td><td></td><td></td></td<>			
PROPELLANT WT FOR ASCENT * LBS 1545900.00 2.74 FUEL WEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 949.63 2.74 FUEL RESIDUAL WEIGHT * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 5697.80 2.74 OXIDIZER RESIDUAL WEIGHT * LBS 5697.80 2.74 FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 112.53 2.50 OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL TANK WEIGHT * LBS 15688.00 2.34 FUEL TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 7000.00 0.00 WEIGHT OF FACH ORBITER ENGINE * LBS 7000.00 0.00 WEIGHT OF EACH ORBITER ENGINE * LBS 101.90 0.2	SECOND STAGE		
FUEL VEIGHT IN ORBITER * LBS 220840.00 2.74 OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 766.89 2.36 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL TANK WEIGHT * LBS 15688.00 2.34 FUEL TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 107.16 0.00 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 615.61 0.02 WEIGHT OF EACH ORBITER ENGINE * LBS 7000.00 0.00 WEIGHT OF EACH ORBITER ENGINE * LBS 6022.50 0.00 OMS PROPELLANT REQUIRED FOR CIR. 9473.50 0.21 TOTAL ONS PROPELLANT WEIGHT * LBS 13622.00 0.22 </td <td>PROPELLANT WT FOR ASCENT * LBS</td> <td>1545900.00</td> <td>2.74</td>	PROPELLANT WT FOR ASCENT * LBS	1545900.00	2.74
OXIDIZER WEIGHT IN ORBITER * LBS 1325100.00 2.74 FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 112.53 2.68 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 0.06 2.34 FUEL TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 293.70 0.03 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 615.61 0.02 WEIGHT OF EACH ORBITER ENGINE * LBS 6022.50 0.00 OMS PROPELLANT REQUIRED FOR CIR. 9473.50 0.21 TOTAL CNS PROPELLANT WEIGHT * LBS 1373.00 0.29 MEGHT OF EACH OMS ENGINE * LBS 1373.00 0.29 MEGHT OF EACH OMS ENGINE * LBS <	FUEL WEIGHT IN ORBITER * LBS	220840.00	2.74
FUEL RESERVES * LBS 949.63 2.74 OXIDIZER RESERVES * LBS 5697.80 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 766.89 2.36 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 1989.00 1.03 GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 293.70 0.03 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 615.61 0.02 WEIGHT OF EACH ORBITER ENGINE * LBS 7000.00 0.00 WEIGHT OF THRUST STRUCTURE * LBS 6022.50 0.00 OMS PROPELLANT REQUIRED FOR CIR. 9473.50 0.21 TOTAL ONS PROPELLANT WEIGHT * LBS 1011.90 0.18 TOTAL RCS WEIGHT * LBS 1011.90 0.18 TOTAL RCS WEIGHT * LBS 137	OXIDIZER WEIGHT IN ORBITER * LBS	1325100.00	2.74
OXIDIZER RESERVES * LBS 112.53 2.74 FUEL RESIDUAL WEIGHT * LBS 112.53 2.50 OXIDIZER RESIDUAL WEIGHT * LBS 766.89 2.36 TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 618.55 2.68 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1394.20 0.06 TOTAL TANK WEIGHT * LBS 1394.20 0.51 OXIDIZER TANK LINE WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 107.16 0.00 FUEL TANK INSULATION WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 293.70 0.03 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 615.61 0.02 WEIGHT OF EACH ORBITER ENGINE * LBS 7000.00 0.00 WEIGHT OF THRUST STRUCTURE * LBS 6022.50 0.00 OMS PROPELLANT WEIGHT * LBS 18622.00 0.21 TOTAL OMS PROPELLANT WEIGHT * LBS 1011.90 0.18 TOTAL CS WEIGHT * LBS 1373.00 0.29 RCS PROPELLANT WEIGHT * LBS 1373.00 0.29 RCS PROPELLANT WEIGHT * LBS 1814.30	FUEL RESERVES * LBS	949.03 5607 80	2.74
TOEL RESIDUAL WEIGHT * LBS112.332.36OXIDIZER RESIDUAL WEIGHT * LBS766.892.36TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS618.552.68TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS2934.900.06TOTAL TANK WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	UXIDIZER RESERVES * LDS	112 53	2.74
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS100.00TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS618.55TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS2934.90O.06TOTAL TANK WEIGHT * LBS15688.00FUEL TANK LINE WEIGHT * LBS1394.20OXIDIZER TANK LINE WEIGHT * LBS107.16OXIDIZER TANK INSULATION WEIGHT * LBS107.16OXIDIZER TANK INSULATION WEIGHT * LBS1989.00GAS LINE WEIGHT * LBS1989.00GAS LINE WEIGHT * LBS100.81ENGINE BAY LINE WEIGHT * LBS100.81INE WEIGHT OF EACH ORBITER ENGINE * LBS7000.00WEIGHT OF THRUST STRUCTURE * LBS1001.90OMS PROPELLANT REQUIRED FOR CIR.9473.50OMS HARDWARE WEIGHT * LBS1011.90OMS HARDWARE WEIGHT * LBS1373.00OMS HARDWARE WEIGHT * LBS1373.00OK HARDWARE WEIGHT * LBS1373.00OK HARDWARE WEIGHT * LBS1373.00ONS HARDWARE WEIGHT * LBS1373.00ONS HARDWARE WEIGHT * LBS1373.00OK HARDWARE WEIGHT * LBS1373.00OK HARDWARE WEIGHT * LBS1373.00OK HARDWARE WEIGHT * LBS1373.00OK S PROPELLANT WEIGHE	RUEL RESIDUAL WEIGHT * LDS	766.89	2.36
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS2934.900.06TOTAL TANK WEIGHT * LBS15688.002.34FUEL TANK LINE WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS107.160.00FUEL TANK LINE WEIGHT * LBS107.160.00FUEL TANK LINE WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS107.160.00GAS LINE WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS1989.001.03WEIGHT OF EACH ORBITER ENGINE * LBS100.811.810.03WEIGHT OF THRUST STRUCTURE * LBS100.000.00WEIGHT OF THRUST STRUCTURE * LBS19473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS1973.000.22<th colspan="2</td> <td>TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS</td> <td>618.55</td> <td>2.68</td>	TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	618.55	2.68
TOTAL TANK WEIGHT * LBS15688.002.34FUEL TANK LINE WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS4265.401.55OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1309.000.00*TO THE SSME POWERED BASELINE309.000.00	TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2934.90	0.06
FUEL TANK LINE WEIGHT * LBS1394.200.51OXIDIZER TANK LINE WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS4265.401.55OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	TOTAL TANK WEIGHT * LBS	15688.00	2.34
OXIDIZER TANK LINE WEIGHT * LBS107.160.00FUEL TANK INSULATION WEIGHT * LBS4265.401.55OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	FUEL TANK LINE WEIGHT * LBS	1394.20	0.51
FUEL TANK INSULATION WEIGHT * LBS4265.401.55OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
OXIDIZER TANK INSULATION WEIGHT * LBS1989.001.03GAS LINE WEIGHT * LBS100.811.81ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	FUEL TANK INSULATION WEIGHT * LBS	4265.40	1.55
GAS LINE WEIGHT * LBS 100.81 1.81 ENGINE BAY LINE WEIGHT * LBS 293.70 0.03 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 615.61 0.02 WEIGHT OF EACH ORBITER ENGINE * LBS 7000.00 0.00 WEIGHT OF THRUST STRUCTURE * LBS 6022.50 0.00 OMS PROPELLANT REQUIRED FOR CIR. 9473.50 0.21 TOTAL OMS PROPELLANT WEIGHT * LBS 18622.00 0.22 OMS HARDWARE WEIGHT * LBS 1011.90 0.18 TOTAL RCS WEIGHT * LBS 1373.00 0.29 RCS PROPELLANT WEIGHT * LBS 1814.30 0.48 WEIGHT OF EACH OMS ENGINE * LBS 309.00 0.00	OXIDIZER TANK INSULATION WEIGHT * LBS	1989.00	1.03
ENGINE BAY LINE WEIGHT * LBS293.700.03PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	GAS LINE WEIGHT * LBS	100.81	1.81
PRESSURANT CONTROL HARDWARE WEIGHT * LBS615.610.02WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	ENGINE BAY LINE WEIGHT * LBS	293.70	0.03
WEIGHT OF EACH ORBITER ENGINE * LBS7000.000.00WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.61	0.02
WEIGHT OF THRUST STRUCTURE * LBS6022.500.00OMS PROPELLANT REQUIRED FOR CIR.9473.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00	WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
OMS PROPELLANT REQUIRED FOR CIR.94/3.500.21TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00*TO THE SSME POWERED BASELINE309.000.00	WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
TOTAL OMS PROPELLANT WEIGHT * LBS18622.000.22OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00*TO THE SSME POWERED BASELINE309.000.00	OMS PROPELLANT REQUIRED FOR CIR.	9473.50	0.21
OMS HARDWARE WEIGHT * LBS1011.900.18TOTAL RCS WEIGHT * LBS1373.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00*TO THE SSME POWERED BASELINE309.000.00	TOTAL OMS PROPELLANT WEIGHT * LBS	18622.00	0.22
TOTAL RCS WEIGHT * LBS13/3.000.29RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00*TO THE SSME POWERED BASELINE309.000.00	OMS HARDWARE WEIGHT * LBS	1011.90	0.18
RCS PROPELLANT WEIGHT * LBS1814.300.48WEIGHT OF EACH OMS ENGINE * LBS309.000.00*TO THE SSME POWERED BASELINE	TUTAL RCS WEIGHT * LBS	101/3.00	0.29
*TO THE SSME POWERED BASELINE	KCS KKUKELLANT WEIGHI * LBS	1014.30	0.40
	*TO THE SSME POVERED BASELINE	309.00	0.00

Two-Stage Optimized LOX/Methane, Methane-Cooled (Near-Term) Propulsion Weights

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	330960.00	-18.31
GROSS LIFT OFF WEIGHT * LBS	3564200.00	12.52
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	167130.00	-30.86
BODY WEIGHT * LBS	78184.00	-30.16
GROWTH WEIGHT * LBS	9599.20	-29.15
INERT WEIGHT * LBS	198740.00	-28.41
EQUIPMENT WEIGHT * LBS	9690.00	-12.57
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	6957.70	-70.93
APU PROPELLANT WEIGHT * LBS	2359.60	-25.12
LANDING WEIGHT * LBS	172570.00	-30.51
FLYBACK SYSTEM INERT WEIGHT * LBS	19661.00	-32.99
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	11598.00	-27.49
FLYBACK SYSTEM WEIGHT * LBS	31287.00	-31.04
LANDING GEAR WEIGHT * LBS	4831.80	-30.51
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	29642.00	-29.98
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3103.60	3.97
SECOND STACE		
LITT OFF WEICHT OF ORBITER * LBS	1896500.00	2.26
OPRITER DRY VETCHT * LBS	163830.00	0.25
BODY VETCHT * LBS	111980.00	0.30
CROUTH WEIGHT * LBS	9504.30	0.31
TNEET WEIGHT * IBS	191170.00	0.35
FOULDMENT WEIGHT * LBS	7043.50	0.46
TANK MOINT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	9007.20	-0.35
ADII DROPFILANT VETCHT * LBS	445.24	0.00
DRADUI CTAN / AUTANTAS MADULE DECAUEDY SYSTEM UPTCUT	43208 00	0.00

PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT 43208.00 0.00 WEIGHT OF PROPULSION/AVIONICS MODULE 121880.00 0.08 WEIGHT OF REENTRY INSULATION TILES * LBS 3198.80 0.00 150000.00 0.00 PAYLOAD WEIGHT * LBS 25000.00 0.00 PAYLOAD BAY WEIGHT * LBS ***TO THE SSME POWERED BASELINE**

> Two-Stage Optimized LOX/Methane, Methane-Cooled (Near-Term) System Weights

		PERCENT OF
MINITUN I TEROPE ACCELEDATION + C/S	1 10	-78 07
NONTNAL LIFTOFF ACCELERATION ~ G S	1.26	-20.02
MANTHUM LONGTTUDINAL ACCELERATION * G'S	3.00	0.00
MINRED OF CREU	0.00	N/A
TNEDT VETCHT FACTOR	1.00	0.00
STACING VELOCITY * FPS	5135.60	2.71
SINGING VELOCIII ··································	•===	
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	338.54	-22.65
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.88	11.70
BOOSTER LAUNCH MIXTURE RATIO	3.70	-38.33
DELIVERED THRUST AT IGNITION * LBS	648780.00	43.47
ENGINE RATED VACUUM THRUST * LBS	690740.00	39.71
NOMINAL FUEL TANK PRESSURE * PSIA	25.20	-28.33
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3300.00	0.92
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.89	0.30
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.26
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.66	-0.05
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/Methane, Methane-Cooled (Near-Term) Performance

A - 32
		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	80.00	0.00
PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE		
BODY DIAMETER * FT	26.60	-19.38
VEHICLE LENGTH * FT	120.65	-19.38
LENGTH/DIAMETER RATIO OF VEHICLE	4.53	0.00
NOSE LENGTH	46.56	-19.38
MAIN ENGINE THROAT DIAMETER * FT	0.93	9.70
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	5.02	-0.29
ENGINE SECTION LENGTH * FT	8.80	-24.18
NOZZLE EXPANSION RATIO	28.92	-17.38
FUEL LINE DIAMETER * IN	16.15	-12.15
OXIDIZER LINE DIAMETER * IN	20.80	8.10
FUEL TANK HEAD HEIGHT * IN	114.01	-18.56
CYLINDRICAL LENGTH OF FUEL TANK * IN	248.78	-51.20
OXIDIZER TANK HEAD HEIGHT * IN	113.66	-19.43
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	167.02	1.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.25	330.32
THICKNESS OF OXIDIZER TANK WALL * IN	0.23	388.81
FUEL TANK SOFI THICKNESS * IN	0.00	-100.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SQ FT	2662.80	-30.51
WING SPAN * FT	74.06	-16.64
SINGLE FIN EXPOSED AREA * SQ FT	129.21	-22.46
EXPOSED FIN SPAN * FT	13.40	-11.94
CANARD WING SPAN * FT	0.00	N/A
BODY DIAMETED + ET	33,00	0.00
BUDI DIAMEIER ~ FI WENTOLE LENCTH + ET	262.68	4.45
VERICLE LENGIR ~ FI I ENGTRY DIANETED DATIO OF VERICIE	7.96	4.45
NOSE I ENCTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIM MAIN ENGINE NOZZLE EXTT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.97	0.02
OXTDIZER LINE DIAMETER * IN	14.67	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD BEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	749.30	2.74
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	47.88	15.06
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.05
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized LOX/Methane, Methane-Cooled (Near-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2792900.00	9.96
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1264700.00	22.15
FUEL WEIGHT IN BOOSTER * LBS	273320.00	84.79
OXIDIZER WEIGHT IN BOOSTER * LBS	991370.00	11.71
FUEL RESERVES * LBS	1175.30	84.79
OXIDIZER RESERVES * LBS	4262.90	11.71
FUEL RESIDUAL WEIGHT * LBS	178.86	128.30
OXIDIZER RESIDUAL WEIGHT * LBS	597.54	9.77
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	2377.10	434.56
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2088.60	-27.64
TOTAL TANK WEIGHT * LBS	5024.20	-61.93
FUEL TANK LINE WEIGHT * LBS	847.53	-58.96
OXIDIZER TANK LINE WEIGHT * LBS	235.32	16.94
FUEL TANK INSULATION WEIGHT * LBS	51.61	-98.50
OXIDIZER TANK INSULATION WEIGHT * LBS	1625.40	-11.35
GAS LINE WEIGHT * LBS	68.84	-34.67
ENGINE BAY LINE WEIGHT * LBS	369.20	-27.02
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	975.96	-8.10
WEIGHT OF EACH BOOSTER ENGINE * LBS	4912.30	-27.65
WEIGHT OF THRUST STRUCTURE * LBS	8510.80	-12.54
WEIGHT OF HYDROGEN COOLANT * LBS	18343.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	495.96	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	231.08	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	1509.40	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1509900.00	0.35
FUEL WEIGHT IN ORBITER * LBS	215710.00	0.35
OXIDIZER WEIGHT IN ORBITER * LBS	1294200.00	0.35
FUEL RESERVES * LBS	927.54	0.35
OXIDIZER RESERVES * LBS	5565.20	0.35
FUEL RESIDUAL WEIGHT * LBS	110.15	0.33
OXIDIZER RESIDUAL WEIGHT * LBS	751.47	0.30
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	604.47	0.35
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2933.30	0.01
TOTAL TANK WEIGHT * LBS	15376.00	0.30
FUEL TANK LINE WEIGHT * LBS	1388.00	0.06
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4208.80	0.20
OXIDIZER TANK INSULATION WEIGHT * LBS	1971.30	0.13
GAS LINE WEIGHT * LBS	99.25	0.23
ENGINE BAY LINE WEIGHT * LBS	293.63	0.00
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.52	0.00
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9456.00	0.03
TOTAL OMS PROPELLANT WEIGHT * LBS	18587.00	0.03
OMS HARDWARE WEIGHT * LBS	1010.40	0.03
TOTAL RCS VETGHT * LBS	1369.60	0.04
RCS PROPELLANT VETGHT * LBS		
	1806.70	0.06
WEIGHT OF EACH OMS ENGINE * LBS	1806.70 309.00	0.06 0.00

Two-Stage Optimized LOX/Propane, LH2-Cooled (Near-Term) Propulsion Weights

		-
· ·		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	326950.00	-19.30
GROSS LIFT OFF WEIGHT * LBS	3336700.00	5.34
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	163480.00	-32.37
BODY WEIGHT * LBS	75681.00	-32.40
GROWTH WEIGHT * LBS	9348.90	-30.99
INERT WEIGHT * LBS	193790.00	-30.20
EQUIPMENT WEIGHT * LBS	9844.10	-11.18
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	8836.70	-63.09
APU PROPELLANT WEIGHT * LBS	2281.20	-27.60
LANDING WEIGHT * LBS	170810.00	-31.22
FLYBACK SYSTEM INERT WEIGHT * LBS	19408.00	-33.85
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	9269.90	-42.05
FLYBACK SYSTEM WEIGHT * LBS	28700.00	-36.75
LANDING GEAR WEIGHT * LBS	4782.70	-31.21
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	28564.00	-32.52
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3019.40	1.15
SECOND STAGE		
ITET OFF WETCHT OF OPRITTER * LBS	1860000.00	0.29
OPETTED DEV UETCHT + IRS	163470.00	0.03
BODY VETCHT + IBS	111680.00	0.04
CROUTH VEICHT * IBS	9479.00	0.04
INFRT WEIGHT * LBS	190590.00	0.04
FOUTPMENT WEIGHT * LBS	7015.40	0.06
TANK MOINT VETGHT * LBS	0.00	N/A
STRUCTURAL VALL VETCHT * LBS	9034.50	-0.05
ADII DRODELLANT VETCHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	121790.00	0.01
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized NBP LOX/Propane, LH2-Cooled (Near-Term) System Weights

	VALUE	PERCENT OF *REFERENCE
MINIMULIFTOFF ACCELERATION * G'S	1.18	-22.78
NOMINAL LIFT OFF ACCELERATION	1.32	-5.44
MAYTMIM LONGTTUDINAL ACCELERATION * G'S	3.00	0.00
NIMPED OF CREV	0.00	N/A
NUMBER OF CREW TNEET UFTCHT FACTOR	1 00	0.00
CTACTNC VELOCITY + EPS	4425 30	-11.49
SIAGING APPOCITI - LL2		-11047
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	328.03	-25.05
QUANTITY OF ENGINES	6.00	-14.29
PROPELLANT MASS FRACTION	0.86	8.60
BOOSTER LAUNCH MIXTURE RATIO	3.40	-43.33
DELIVERED THRUST AT IGNITION * LBS	524670.00	16.03
ENGINE RATED VACUUM THRUST * LBS	545710.00	10.38
NOMINAL FUEL TANK PRESSURE * PSIA	36.89	. 4.93
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	4000.00	22.32
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.01	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.89	-0.07
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.03
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.67	-0.01
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	. 5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PST	5.00	0.00
THBUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized NBP LOX/Propane LH2-Cooled (Near-Term) Performance

PAYLOAD BAY LENGTH * FT PAYLOAD DIAMETER * FT	VAL.UE 80.00 33.00	PERCENT OF *REFERENCE 0.00 0.00
BODY DIAMETED + FT	29 58	-10.35
BUDI DIAMEIER * FI	134 17	-10.34
VERICLE LENGIE ~ FI I ENCTU/DIAMETED DATIO OF VEHICIF	4.53	0.00
NOSE I FNCTH	51.77	-10.35
MAIN ENGINE THROAT DIAMETER * FT	0.77	-10.02
MAYTMIM MATN ENGINE NOZZLE EXTT DIAMETER * FT	3.56	-29.38
ENGINE SECTION LENGTH * FT	6.74	-41,89
NOZZLE EXPANSION RATIO	21.56	-38,40
FUEL LINE DIAMETER * IN	15.07	-18.03
OXIDIZER LINE DIAMETER * IN	20.58	6.97
FUEL TANK HEAD HEIGHT * IN	126.79	-9.43
CYLINDRICAL LENGTH OF FUEL TANK * IN	135.51	-73.42
OXIDIZER TANK HEAD HEIGHT * IN	126.43	-10.38
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	52.27	1.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.06	-4.97
THICKNESS OF OXIDIZER TANK WALL * IN	0.15	213.86
FUEL TANK SOFI THICKNESS * IN	0.00	-100.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SQ FT	2635.50	-31.23
WING SPAN * FT	120.24	-1/.0/
SINGLE FIN EXPOSED AREA * SQ FT	120.34	-22.90
EXPOSED FIN SPAN * FT	12.22	-12.24 N/A
CANARD WING SPAN * FI	0.00	M/ A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	260.78	3.69
LENGTH/DIAMETER RATIO OF VEHICLE	7.90	3.69
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	//.50	0.00
FUEL LINE DIAMETER * IN	13.9/	0.00
OXIDIZER LINE DIAMETER * IN	14.0/	0.00
PROPELLANT TANK HEAD ELLIPSE RAILO	140	0.00
FUEL TANK HEAD HEIGHT * IN GVI TNEEDTGAL LENGTH OF FUEL TANK + IN	731 88	0.00
OTDIZED TANK HEAD HEICHT + IN	141.07	0.00
CVITNDETCAL LENGTH OF OVIDIZER TANK * IN	42.42	1.94
CLINDRICHE BENGIN OF GRIDIERN TANK WIN	5.00	0.00
THICKNESS OF FUEL TANK VALL * TN	0.05	-0.01
THICKNESS OF OXIDIZER TANK VALL * IN	0.05	0.00
FUEL TANK SOFT THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFT THICKNESS * IN	1.00	0.00
TO THE SSME POVERED BASELINE		

Two-Stage Optimized NBP LOX/Propane, LH2-Cooled (Near-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	3176600.00	25.06
FIRST STAGE	•	
PROPELLANT WT FOR ASCENT * LBS	1527700.00	47.55
FUEL WEIGHT IN BOOSTER * LBS	373240.00	152.34
OXIDIZER WEIGHT IN BOOSTER * LBS	1154400.00	30.08
FUEL RESERVES * LBS	1604.90	152.34
OXIDIZER RESERVES * LBS	4964.10	30.08
FUEL RESIDUAL WEIGHT * LBS	232.10	196.26
OXIDIZER RESIDUAL WEIGHT * LBS	680.45	25.00
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	3060.60	588.27
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1616.20	-44.01
TOTAL TANK WEIGHT * LBS	16965.00	28.53
FUEL TANK LINE WEIGHT * LBS	1139.10	-44.84
OXIDIZER TANK LINE WEIGHT * LBS	269.32	33.84
FUEL TANK INSULATION WEIGHT * LBS	48.91	-98.58
OXIDIZER TANK INSULATION WEIGHT * LBS	1619.00	-11.70
GAS LINE WEIGHT * LBS	87.27	-17.19
ENGINE BAY LINE WEIGHT * LBS	465.33	-8.01
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	1165.40	9.74
WEIGHT OF EACH BOOSTER ENGINE * LBS	6440.60	-5.15
WEIGHT OF THRUST STRUCTURE * LBS	7893.40	-18.88
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1648900.00	9.59
FUEL WEIGHT IN ORBITER * LBS	235560.00	9.59
OXIDIZER WEIGHT IN ORBITER * LBS	1413400.00	9.59
FUEL RESERVES * LBS	1012.90	9.59
OXIDIZER RESERVES * LBS	6077.50	9.59
FUEL RESIDUAL WEIGHT * LBS	119.35	8./1
OXIDIZER RESIDUAL WEIGHT * LBS	810.97	8.24
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	658.82	9.37
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2939.60	0.23
TOTAL TANK WEIGHT * LBS	16580.00	8.15
FUEL TANK LINE WEIGHT * LBS	1412.00	1.80
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4427.30	5.40
OXIDIZER TANK INSULATION WEIGHT * LBS	2039.80	3.61
GAS LINE WEIGHT * LBS	105.26	6.30
ENGINE BAY LINE WEIGHT * LBS	293.89	0.09
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.90	0.06
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9522.80	0.73
TOTAL OMS PROPELLANT WEIGHT * LBS	18722.00	0.75
OMS HARDWARE WEIGHT * LBS	1015.80	0.56
TOTAL RCS WEIGHT * LBS	1382.20	0.96
RCS PROPELLANT WEIGHT * LBS	1835.90	1.68
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*TO THE SSME BASELINE		
	na Cooled (No	Torm 1

Two-Stage Optimized NBP LOX/Propane, Propane-Cooled (Near-Term) Propulsion Weights

	•	
		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	335460.00	-17.20
GROSS LIFT OFF WEIGHT * LBS	3731900.00	17.81
FTRST STAGE		
BOOSTER DRY WEIGHT * LBS	170590.00	-29.43
BODY WEIGHT * LBS	77198.00	-31.04
GROWTH WEIGHT * LBS	9654.80	-28.74
INERT WEIGHT * LBS	202910.00	-26.91
FOULTPMENT WEIGHT * LBS	9761.20	-11.93
TANK MOINT VETGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	7493.00	-68.70
APU PROPELLANT WEIGHT * LBS	2425.90	-23.01
LANDING WEIGHT * LBS	178240.00	-28.22
FLYBACK SYSTEM INERT WEIGHT * LBS	19408.00	-33.85
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	9271.20	-42.04
FLYBACK SYSTEM WEIGHT * LBS	28701.00	-36.74
LANDING GEAR WEIGHT * LBS	4990.60	-28.22
CANARD WEIGHT * LBS	0.00	N/A
WING WEIGHT * LBS	30813.00	-27.21
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3219.00	7.84
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	2001300.00	7.91
ORBITTER DRY WEIGHT * LBS	164870.00	0.89
BODY WEIGHT * LBS	112840.00	1.07
GROWTH WEIGHT * LBS	9577.00	1.07
INERT WEIGHT * LBS	192830.00	1.22
EQUIPMENT WEIGHT * LBS	7124.20	1.61
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	8934.00	-1.16
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	122120.00	0.28
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME BASELINE		

Two-Stage Optimized NBP LOX/Propane, Propane-Cooled (Near-Term) System Weights

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.10	-28.02
NOMINAL LIFT OFF ACCELERATION	1.27	-9.19
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4280,90	-14.38
• •		
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	316.00	-27.80
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.88	11.94
BOOSTER LAUNCH MIXTURE RATIO	3.09	-48.45
DELIVERED THRUST AT IGNITION * LBS	694890.00	53.67
ENGINE RATED VACUUM THRUST * LBS	740560.00	49.79
NOMINAL FUEL TANK PRESSURE * PSIA	34.88	-0.78
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	2600.00	-20.49
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.90	1.09
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.90	0.86
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.62	-0.17
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
TO THE SSME BASELINE		

Two-Stage Optimized NBP LOX/Propane, Propane-Cooled (Near-Term) Performance

	VALUE	PERCENT OF *REFERENCE
PAYLOAD BAY LENGTH * FT PAYLOAD DIAMETER * FT	80.00 33.00	0.00
FIRST STAGE		
BODY DIAMETER * FT	26.31	-20.28
VEHICLE LENCTH + FT	119.30	-20.28
LENGTH ATTA OF VEHICLE	4.53	0.00
NOSE LENCTU .	46.04	-20.28
NUSE LENGINE TUDAAT DIAMETED + ET	1 10	28.87
MAIN ENGINE INCOME DIAMETER ~ FI MANTNIN MAIN ENCINE NO771 E EVIT DIAMETER + ET	5 24	4 03
MAALMUM MAIN ENGINE NUZZEE EAII DIAMEIER ~ FI ENGINE SECTION LENCTH + ET	9.07	-21.85
ENGINE SECTION LENGTH ~ FI	72 81	_34 84
NUCALE EAFAINSION RAILO	17 35	-5 60
FUEL LINE DIAMETER ~ IN	21 81	13.37
UNIDIZER LINE DIAMEIER ~ IN	112 74	_19 47
CVITNDDICAL LENCTH OF FUEL TANK + TN	234 03	-54 09
OVIDIGED TANK HEAD HEICHT + IN	112 39	-20.34
OXIDIZER LANK READ REIGHT * IN	175 70	1 00
CILINDRICAL LENGIN OF UNIDIZER TANK ~ IN	5.00	0.00
SPACE BEIWEEN UKIDIZER AND FUEL IANN NEADS ~ IN	0.21	254 12
THICKNESS OF FUEL TANK WALL A IN	0.21	234.12
THICKNESS OF UXIDIZER TANK WALL ~ IN	0.20	
FUEL TANK SUFI THICKNESS * IN	1 00	0.00
UXIDIZER TANK SUFI ITICKNESS * IN	2750 40	- 28 23
WING REFERENCE AREA * SQ FI	2750.40	-15 29
WING SPAN * FT	122 01	20.79
SINGLE FIN EXPOSED AREA * SQ FI	13 54	10 99
EXPOSED FIN SPAN * FT	13.34	-10.99 N/A
CANARD WING SPAN * FI	0.00	N/ A
SECOND STAGE		0.00
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	268.15	6.62
LENGTH/DIAMETER RATIO OF VEHICLE	8.13	6.62
NOSE LENGTH	2/./2	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.83	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	11 60	0.00
ENGINE SECTION LENGTH * FI	77 50	0.00
NOZZLE EXPANSION RATIO	12 00	0.00
FUEL LINE DIAMETER * IN	14 47	0.07
OXIDIZER LINE DIAMETER * IN	14.07	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	140	0.00
FUEL TANK HEAD HEIGHT * IN	700 70	9.58
CYLINDRICAL LENGTH OF FUEL TANK * IN	141 07	9.00
OXIDIZER TANK HEAD HEIGHI * IN	41.07	52 67
CYLINDRICAL LENGTH CY OXIDIZER TANK ~ IN	5 00	0.00
SPACE BETWEEN UXIDIZEK AND FUEL TANK READS * IN	0.00	_0 17
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.17
TUTCKINESS OF OXIDIAER THINK WALL * IN	1 00	0.00
FUEL TANK SUFT THICKNESS * IN	1 00	0.00
TO THE SSME BASELINE	1.00	0.00

Two-Stage Optimized NBP LOX/Propane, Propane-Cooled (Near-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2809400.00	10.61
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1282300.00	23.85
FUEL WEIGHT IN BOOSTER * LBS	276750.00	87.11
OXIDIZER WEIGHT IN BOOSTER * LBS	1005500.00	13.30
FUEL RESERVES * LBS	1190.00	87.10
OXIDIZER RESERVES * LBS	4323.70	13.30
FUEL RESIDUAL WEIGHT * LBS	186.85	138.50
OXIDIZER RESIDUAL WEIGHT * LBS	604.76	11.09
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	903.16	103.10
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1984.60	-31,25
TOTAL TANK WEIGHT * LBS	8899.90	-32.5/
FUEL TANK LINE WEIGHT * LBS	///./4	-62,34
OXIDIZER TANK LINE WEIGHT * LBS	233.22	15.90
FUEL TANK INSULATION WEIGHT * LBS	48.34	-98,60
OXIDIZER TANK INSULATION WEIGHT * LBS	1612.40	-12,06
GAS LINE WEIGHT * LBS	- 267.25	-30,18
ENGINE BAY LINE WEIGHT * LBS	303.00	-28.24
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	933.34	-11.91
WEIGHT OF EACH BOUSTER ENGINE * LBS	7950.30	-14.0/
WEIGHT OF THRUST STRUCTURE * LBS	1750/ 00	-19°24
WEIGHI UF HIDRUGEN CUULANI ~ LDS	474.65	N/A
TNSHLATTON UFTCHT ON HYDROGEN COOLANT TANK * LBS	224.74	N/A
UFICHT OF HYDROGEN COOLANT TANK * LBS	1468.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1509600.00	0.33
FUEL WEIGHT IN ORBITER * LBS	215660.00	0.33
OXIDIZER WEIGHT IN ORBITER * LBS	1293900.00	0.33
FUEL RESERVES * LBS	927.33	0.33
OXIDIZER RESERVES * LBS	5564.00	0.33
FUEL RESIDUAL WEIGHT * LBS	110.12	0.30
OXIDIZER RESIDUAL WEIGHT * LBS	751.30	0.28
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	604.34	0.32
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2933.30	0.01
TOTAL TANK WEIGHT * LBS	153/3.00	0.28
FUEL TANK LINE WEIGHT * LBS	1387.90	0.06
OXIDIZER TANK LINE WEIGHT * LBS	107.10	0.00
FUEL TANK INSULATION WEIGHT * LBS	4208.30	0.19
OXIDIZER TANK INSULATION WEIGHT * LBS	19/1.10	0.12
GAS LINE WEIGHT * LBS	77.24	0.22
ENGINE BAY LINE WEIGHT * LDO	273.03	0.00
VELSSURANI CUNIRUL MARDWARE WEIGHI ~ LDS	7000 00	0.00
WEIGHI UF EACH URDITER ENGINE ~ LBS	6022 50	0.00
WEIGHI UF INKUSI SIKUCIUKE ~ LDS	9455 60	0.00
TOTAL ONG PROPELLANT UFTCHT * LRG	18587 00	0.02
INTE ONS FROTEBLANT WEIGHT ~ DDS	1010.40	0.03
TOTAL RCS VETCHT * LBS	1369.60	0.04
RCS PROPELLANT WEIGHT * LBS	1806.70	0.06
VETCHT OF EACH OWS ENGINE * LBS	309.00	0.00
ATO THE COME POURPED RACELINE		

Two-Stage Optimized Subcooled Propane, LH₂-Cooled (Near-Term) Propulsion Weights

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	328750.00	-18.86
GROSS LIFT OFF WEIGHT * LBS	3353700.00	5.88
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	165280.00	-31.62
BODY WEIGHT * LBS	77980.00	-30.34
GROWTH WEIGHT * LBS	9514.60	-29.77
INERT WEIGHT * LBS	194240.00	-30.03
EOUIPMENT WEIGHT * LBS	9725.10	-12.25
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	8547.00	-64.30
APU PROPELLANT WEIGHT * LBS	2253.80	-28.47
LANDING WEIGHT * LBS	171030.00	-31.13
FLYBACK SYSTEM INERT WEIGHT * LBS	19442.00	-33.73
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	9580.30	-40.10
FLYBACK SYSTEM WEIGHT * LBS	29045.00	-35.98
LANDING GEAR WEIGHT * LBS	4788.90	-31.13
CANARD VETCHT * LBS	0.00	N/A
UTNC UFICHT * LBS	28732.00	-32.13
VETCHT OF FIRST STACE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3015.30	1.01
SECOND STAGE	1050(00.00	0 17
LIFT OFF WEIGHT OF ORBITER * LBS	163/70.00	0.27
ORBITER DRY WEIGHT * LBS	1634/0.00	0.03
BODY WEIGHT * LBS	111680.00	0.04
GROWTH WEIGHT * LBS	94/8./0	0.04
INERT WEIGHT * LBS	190590.00	0.04
EQUIPMENT WEIGHT * LBS	/015.10	0.06
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	9034.80	-0.04
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	121790.00	0.01
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00

.

· · · · · · · · · · · ·

***TO THE SSME POWERED BASELINE**

Two-Stage Optimized Subcooled Propane, LH2-Cooled (Near-Term) System Weights

.

·		
		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.14	-25.38
NOMINAL LIFT OFF ACCELERATION	1.31	-6.44
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4518.50	-9.63
FIRST STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	330.02	-24.60
QUANTITY OF ENGINES	5.00	-28.57
PROPELLANT MASS FRACTION	0.86	8.84
BOOSTER LAINCH MITTURE RATIO	3.42	-43.05
DELITIEDED TUDIET AT ICNITION + IBS	624760 00	38.16
DELIVERED THRUST AT IGNITION " LDS	653940 00	32 27
ENGINE RALED VACUUM INCUSI ~ LDS	20 17	12.27
NOMINAL FUEL IANK PRESSURE * PSIA	20.17	-42.03
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	4000.00	22.32
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.01	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.89	-0.16
·		
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453.52	0.00
QUANTITY OF ENGINES	4.00	0.00
PROPELLANT MASS FRACTION	0.89	0.03
OVERALL PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
ENGINE RATED VACUUM THRUST * LBS	512300.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	32.67	-0.01
NOMINAL OXIDIZER TANK PRESSURE * PSTA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSTA	3270.00	0.00
FILET INTACE FRACTION	0.02	0.00
FUEL NET DOCTTIVE SUCTION DESSIDE	6 00	0.00
AVAGEN NET DOCTATIVE SUCTION PRESSURE	a 20	0.00
DERCEMPT PROD ACROSS FUEL LINE + DET	5.00	0.00
PRESSURE DRUP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DRUP ACROSS UXIDIZER LINE * PSI	3.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	10/0400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*TO THE SSME POWERED BASELINE		

•

Two-Stage Optimized Subcooled Propane, LH2-Cooled (Near-Term) Performance

A - 44

PAYLOAD BAY LENGTH * FT PAYLOAD DIAMETER * FT	VALUE 80.00 33.00	PERCENT OF *REFERENCE 0.00 0.00
FTRST STACE		
BODY DIAMETER * FT VEHICLE LENGTH * FT LENGTH (DIAMETER BATTO OF VEHICLE	29.08 131.87 4.53	-11.89 -11.88 0.00
NOSE LENGTH	50.88	-11.89
MAIN ENGINE THROAT DIAMETER * FT MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT ENCINE SECTION LENGTH * FT	0.84 4.19 7.68	-1.60 -16.84 -33.81
NOZZLE EXPANSION RATIO	25.00 14.26	-28,58 -22,43
OXIDIZER LINE DIAMETER * IN FUEL TANK HEAD HEIGHT * IN	20.50 124.61	6.56 -10.99
CYLINDRICAL LENGTH OF FUEL TANK * IN OXIDIZER TANK HEAD HEIGHT * IN	114.04 124.25	-77.63 -11.92
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	66.20 5.00	1.00 0.00
THICKNESS OF FUEL TANK WALL * IN THICKNESS OF OXIDIZER TANK WALL * IN	0.24 0.16	315.76 241.00
FUEL TANK SOFI THICKNESS * IN OXIDIZER TANK SOFI THICKNESS * IN	0.00 1.00	-100.00 0.00
WING REFERENCE AREA * SQ FT WING SPAN * FT	2639.20 73.73	-31.13 -17.01
SINGLE FIN EXPOSED AREA * SQ FT EXPOSED FIN SPAN * FT CANARD WING SPAN * FT	128.45 13.36 0.00	-22.91 -12.20 N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	260.76	3.68
LENGTH/DIAMETER RATIO OF VEHICLE	7.90	3.68
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	/.50	0.00
ENGINE SECTION LENGTH * FT	77 50	0.00
NUZZLE EXPANSION RAILU	13 97	0.00
AVIDITED LINE DIAMETER * IN	14.67	0.00
DRODELLANT TANK HEAD ELLIPSE RATTO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	731.71	0.33
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	42.37	1.81
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.01
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN *TO THE SSME POWERED BASELINE	1.00	0.00

Two-Stage Optimized Subcooled Propane, LH2-Cooled (Near-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	2987900.00	17.63
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1454500.00	40.48
FUEL WEIGHT IN BOOSTER * LBS	334170.00	125.93
OXIDIZER WEIGHT IN BOOSTER * LBS	1120400.00	26.25
FUEL RESERVES * LBS	1436.90	125.92
OXIDIZER RESERVES * LBS	4817.60	26.24
FUEL RESIDUAL WEIGHT * LBS	218.20	178.52
OXIDIZER RESIDUAL WEIGHT * LBS	663.11	21.81
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	946.00	112.74
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1565.00	-45.78
TOTAL TANK WEIGHT * LBS	19789.00	49.93
FUEL TANK LINE WEIGHT * LBS	1022.30	-50.50
OXIDIZER TANK LINE WEIGHT * LBS	283.78	41.02
FUEL TANK INSULATION WEIGHT * LBS	42.26	-98.77
OXIDIZER TANK INSULATION WEIGHT * LBS	1569.00	-14.43
GAS LINE WEIGHT * LBS	84.02	-20.27
ENGINE BAY LINE WEIGHT * LBS	456.16	-9.82
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	1141.40	7.48
WEIGHT OF EACH BOOSTER ENGINE * LBS	6540.20	-3.68
WEIGHT OF THRUST STRUCTURE * LBS	7866.60	-19.16
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
SECOND STAGE		
PROPELLANT WT FOR ASCENT * LBS	1533400.00	1.91
FUEL WEIGHT IN ORBITER * LBS	219050.00	1.91
OXIDIZER WEIGHT IN ORBITER * LBS	1314300.00	1.91
FUEL RESERVES * LBS	941.92	1.91
OXIDIZER RESERVES * LBS	-5651.50	1.91
FUEL RESIDUAL WEIGHT * LBS	111.70	1.74
OXIDIZER RESIDUAL WEIGHT * LBS	761.57	1.65
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	613.64	1.87
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2934.40	0.05
TOTAL TANK WEIGHT * LBS	15579.00	1.62
FUEL TANK LINE WEIGHT * LBS	1392.00	0.35
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT ** LBS	4245.70	1.08
OXIDIZER TANK INSULATION WEIGHT * LBS	1982.80	0.72
GAS LINE WEIGHT * LBS	100.26	1.25
ENGINE BAY LINE WEIGHT * LBS	293.67	0.02
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	615.58	0.01
WEIGHT OF EACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
OMS PROPELLANT REQUIRED FOR CIR.	9467.50	0.15
TOTAL OMS PROPELLANT WEIGHT * LBS	18610.00	0.15
OMS HARDWARE WEIGHT * LBS	1011.30	0.12
TOTAL RCS WEIGHT * LBS	1371.60	0.19
RCS PROPELLANT WEIGHT * LBS	1811.60	0.33
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
TO THE SSHE FOURRED BASELINE		

- .

- -

Two-Stage Optimized Subcooled Propane, Propane-Cooled (Near-Term) Propulsion Weights

ł

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	335690.00	-17.14
GROSS LIFT OFF WEIGHT * LBS	3541100.00	11.79
FIRST STAGE		
BOOSTER DRY WEIGHT * LBS	171980.00	-28.85
BODY WEIGHT * LBS	78133.00	-30.21
GROWTH WEIGHT * LBS	9717.40	-28.27
INERT WEIGHT * LBS	2027 6 0.00	-26.96
EQUIPMENT WEIGHT * LBS	9664.00	-12.80
TANK MOUNT WEIGHT * LBS	0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	6603.50	-72.41
APU PROPELLANT WEIGHT * LBS	2433.20	-22.78
LANDING WEIGHT * LBS	177450.00	-28.54
FLYBACK SYSTEM INERT WEIGHT * LBS	19493.00	-33.56
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	10051.00	-37.16
FLYBACK SYSTEM WEIGHT * LBS	29568.00	-34.83
LANDING GEAR WEIGHT * LBS	4968.40	-28.54
CANARD WEIGHT * LBS	. 0.00	N/A
WING WEIGHT * LBS	30935.00	-26.92
WEIGHT OF FIRST STAGE TPS * LBS	0.00	· N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3215.30	7.71
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	1883800.00	1.57
ORBITER DRY WEIGHT * LBS	163710.00	0.18
BODY WEIGHT * LBS	111880.00	0.21
GROWTH WEIGHT * LBS	9495.40	0.21
INERT WEIGHT * LBS	190970.00	0.24
EQUIPMENT WEIGHT * LBS	7033.70	0.32
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	9016.60	-0.24
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	121840.00	0.05
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
TO THE SSME POURRED BASELINE		

Two-Stage Optimized Subcooled Propane, Propane-Cooled (Near-Term) System Weights

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	• 1.19	-22.35
NOMINAL LIFT OFF ACCELERATION	1.37	-1.85
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4624.80	-7.50
FIRST STAGE	. 217 76	27 60
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	5 00	-27.40
QUANTITY OF ENGINES	. 5.00	-20.57
PROPELLANT MASS FRACTION	0.88	11.30
BOOSTER LAUNCH MIXTURE RATIO		-44.12
DELIVERED THRUST AT IGNITION * LBS	/190/0.00	59.02
ENGINE RATED VACUUM THRUST * LBS	766010.00	54.94
NOMINAL FUEL TANK PRESSURE * PSIA	17.57	-50.03
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3300.00	0.92
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.90	1.46
SECOND STAGE		
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	453, 52	0.00
OUANTITY OF ENGINES	4.00	0.00
DODELLANT WASS EDACTION	0.89	0.18
OVEDALL DRODELLANT MITTIDE DATTO	6 00	0.10
DELTUEDED TUDICT AT ICNITION + LES	512300 00	0.00
ENGINE DATED VACUUM TUDUCT + IBC	512300.00	0.00
NOMTNAI PHEI TANV DECCHEE + DOTA	32 67	_0.03
NOMINAL FUEL TANK FRESSORE " ISTA	28 19	0.00
NOMINAL UNIDIZER TANK PRESSURE ~ PSTA	3270 00	0.00
HALLOUF CHAMBER PRESSURE USED ON VEHICLE ~ ISIN	3270.00	0.00
FUEL ULLAGE FRACIION	6.00	0.00
FUEL NET POSITIVE SUCTION PRESSURE	9.00	0.00
DERGUER DESTITUE SUCTION PRESSURE	5.00	0.00
LKF990KF DKOL WCKO29 LAFF TIME + L21	5.00	0.00
TRESSURE DRUP ACRUSS UXIDIZER LINE * PSI	1675/00.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	10/0400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized Subcooled Propane, Propane-Cooled (Near-Term) Performance

		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	80.00	0.00
PAYLOAD DIAMETER * FT	33.00	0.00
FIRST STAGE		
BODY DIAMETER * FT	25.30	-23.33
VEHICLE LENGTH * FT	114.74	-23.33
LENGTH/DIAMETER RATIO OF VEHICLE	4.54	0.01
NOSE LENGTH	44.28	-23.33
MAIN ENGINE THROAT DIAMETER * FT	1.00	17.67
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	5.31	5.47
ENGINE SECTION LENGTH * FT	9.25	-20.30
NOZZLE EXPANSION RATIO	28.12	-19.66
FUEL LINE DIAMETER * IN	16.22	-11.74
OXIDIZER LINE DIAMETER * IN	22.31	15.96
FUEL TANK HEAD HEIGHT * IN	108.43	-22.54
CYLINDRICAL LENGTH OF FUEL TANK * IN	181.65	-64.37
OXIDIZER TANK HEAD HEIGHT * IN	108.07	-23.39
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	19/.//	1.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	474 20
THICKNESS OF FUEL TANK WALL * IN	0.34	4/4.20
THICKNESS OF OXIDIZER TANK WALL * IN	0.20	490.52
FUEL TANK SOFI THICKNESS * IN	1 00	0.00
UXIDIZER TANK SOFI THICKNESS * IN	2738 20	-28 55
WING REFERENCE AREA * SQ FI	2738.20	-15.47
WING SPAN * FI CINCLE FIN EXPOSED ADEA + SO ET	131 62	-21.01
SINGLE FIN EARUSED AREA ~ SU FI	13.52	-11.12
CANARD WING SPAN * FT	0.00	N/A
SECOND STAGE	33.00	0.00
BUDI DIAMEIEK * FI URUTOLE LENCTU + ET	262.02	4.18
VERICLE LENGIR * FI	7.94	4.18
NOSE LENGTH	57.75	0.00
MATN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMIM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.97	0.01
OXIDIZER LINE DIAMETER * IN	14.67	. 0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	743.22	1.91
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	45.98	10.48
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0,03
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
*TO THE SSME POWERED BASELINE		

.

.

Two-Stage Optimized Subcooled Propane, Propane-Cooled (Near-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	3046000.00	19.92
FIRST STAGE		
PROPELLANT WT FOR ASCENT * LBS	1406500.00	35.84
FUEL WEIGHT IN BOOSTER * LBS	316920.00	114.27
OXIDIZER WEIGHT IN BOOSTER * LBS	1089600.00	22.78
FILEL RESERVES * LBS	1362.80	114.27
OVIDITER RESERVES * LBS	4685.20	22.77
FUEL DESTDUAL VETCHT + IRS	208.83	166.56
AVIDIZED BECIDUAL WEIGHT - 185	647.48	18.94
UXIDIZER REGIDUAL WEIGHI ~ LDG	803 45	100 92
TUTAL FUEL AUTOGENOUS PRESSURANT WEIGHT ~ LDS	1522 20	47 27
TOTAL OXIDIZER AUTOGENOUS PRESSURANI WEIGHI * LBS	10105 00	-4/.2/
TOTAL TANK WEIGHT * LBS	19193.00	4J.4J 52 66
FUEL TANK LINE WEIGHT * LBS	957.02	-33.00
OXIDIZER TANK LINE WEIGHT * LBS	263.63	32.01
FUEL TANK INSULATION WEIGHT * LBS	40.68	-98.82
OXIDIZER TANK INSULATION WEIGHT * LBS	1533.90	-16.34
GAS LINE WEIGHT * LBS	81.78	-22.40
ENGINE BAY LINE WEIGHT * LBS	423.36	-16.31
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	1069.80	0.73
WEIGHT OF EACH BOOSTER ENGINE * LBS	6251.90	-7.92
VEIGHT OF THRUST STRUCTURE * LBS	7565.30	-22.25
WEIGHT OF HYDROGEN COOLANT * LBS	0.00	N/A
HYDROGEN COOLANT FEED SYSTEM WEIGHT * LBS	0.00	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	0.00	N/A
WEIGHT OF HYDROGEN COOLANT TANK * LBS	0.00	N/A
DESSUBANT WETCHT * LBS	0.00	N/A
DDECCHDE TANK UETCHT + IBS	0.00	N/A
PRESSURE TAIN WEIGHT ~ LDS	0.00	
SECOND STACE		
DECORD SINCE	1639500.00	8,97
PROPELLANT WI FOR ASCENT ~ LDS	234220 00	8 96
FUEL WEIGHT IN URBITER * LDS	1405300 00	8 96
UXIDIZER WEIGHT IN URBITER * LDS	1007 10	9.06
FUEL RESERVES * LBS	6042 80	9.96
OXIDIZER RESERVES * LBS	110 73	0.70
FUEL RESIDUAL WEIGHT * LBS	110./3	0.14
OXIDIZER RESIDUAL WEIGHT * LBS	800.90	/./1
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	655.14	8.76
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	2939.20	0.21
TOTAL TANK WEIGHT * LBS	16499.00	7.63
FUEL TANK LINE WEIGHT * LBS	1410.40	1.68
OXIDIZER TANK LINE WEIGHT * LBS	107.16	0.00
FUEL TANK INSULATION WEIGHT * LBS	4412.50	5.05
OXIDIZER TANK INSULATION WEIGHT * LBS	2035.20	3.38
GAS LINE WEIGHT * LBS	104.85	5.89
ENGINE BAY LINE WEIGHT * LBS	293.87	0.09
PRESSURANT CONTROL HARDVARE VEIGHT * LBS	615.87	0.06
UFICHT OF FACH ORBITER ENGINE * LBS	7000.00	0.00
WEIGHT OF THRUST STRUCTURE * LBS	6022.50	0.00
ANG BOODELLANT DECULTED FOR CTP	9518.40	0.69
ALL THE DEVELOR TO THE	18713 00	0.70
IVIAL VAS FRUFELLANI WEIGEL ^ LDS	1015 /0	0.70
UND HARDWARE WEIGHT * LDD	1201 20	0.02
TOTAL RCS WEIGHT * LBS	1000 00	0.90
RCS PROPELLANT WEIGHT * LBS	1833.90	1.5/
WEIGHT OF EACH OMS ENGINE * LBS	303.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized Subcooled LOX-Propane, Propane-Cooled (Far-Term) Propulsion Weights A - 50

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	331490.00	-18.18
CROSS LIFT OFF WEIGHT * LBS	3593600.00	13.45
FIRST STAGE		•
BOOSTER DRY WEIGHT * LBS	166720.00	-31.03
BODY WEIGHT * LBS	76050.00	-32.07
GROWTH WEIGHT * LBS	9450.40	-30.25
INERT WEIGHT * LBS	195380.00	-29.62
EQUIPMENT WEIGHT * LBS	9538.70	-13.93
TANK MOUNT WEIGHT * LBS	.0.00	-100.00
STRUCTURAL WALL WEIGHT * LBS	6446.80	-73.07
APH PROPELLANT WEIGHT * LBS	2353.80	-25.30
LANDING WEIGHT * LBS	171960.00	-30.75
FLYBACK SYSTEM INERT WEIGHT * LBS	19333.00	-34.10
FIRST VEHICLE FLYBACK FUEL WT INCLUDING RESERVES *	8582.40	-46.34
FLYBACK SYSTEM WEIGHT * LBS	27936.00	-38.43
LANDING GEAR WEIGHT * LBS	4814.70	-30.75
CANARD WEIGHT * LBS	0.00	N/A
VING WEIGHT * LBS	30002.00	-29.13
WEIGHT OF FIRST STAGE TPS * LBS	0.00	N/A
WEIGHT OF VEHICLE SUPPORT STRUCTURE * LBS	3186.70	6.75
SECOND STAGE		
LIFT OFF WEIGHT OF ORBITER * LBS	1991700.00	7.39
ORBITER DRY WEIGHT * LBS	164780.00	0.83
BODY WEIGHT * LBS	112760.00	1.00
GROWTH WEIGHT * LBS	9570.30	1.00
INERT WEIGHT * LBS	192670.00	1.13
EQUIPMENT WEIGHT * LBS	7116.80	1.51
TANK MOUNT WEIGHT * LBS	0.00	N/A
STRUCTURAL WALL WEIGHT * LBS	8940.40	-1.09
APU PROPELLANT WEIGHT * LBS	445.24	0.00
PROPULSION/AVIONICS MODULE RECOVERY SYSTEM WEIGHT	43208.00	0.00
WEIGHT OF PROPULSION/AVIONICS MODULE	122100.00	0.26
WEIGHT OF REENTRY INSULATION TILES * LBS	3198.80	0.00
PAYLOAD WEIGHT * LBS	150000.00	0.00
PAYLOAD BAY WEIGHT * LBS	25000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized Subcooled LOX-Propane, Propane-Cooled (Far-Term) System Weights

		PERCENT OF
	VALUE	*REFERENCE
MINIMUM LIFTOFF ACCELERATION * G'S	1.14	-25.28
NOMINAL LIFT OFF ACCELERATION	1.32	-5.74
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	0.00	N/A
INERT WEIGHT FACTOR	1.00	0.00
STAGING VELOCITY * FPS	4180.60	-16.39
FIRDI DIAGA	374 55	_ 15 . 85
AVERAGE MAIN ENGINE SPECIFIC IMPULSE	5 00	-28.57
QUANILLI UF ENGINES	0.88	11 35
PROPERTANT MADD FRACTION	3 44	-42.70
DUUSIER LAUNCH MIALURE RAILU DET TREDED TEDRICT AT ICNITTION + IBS	694400 00	53.56
ENCINE DATED VACUUM TUDIST + IRS	734680.00	48.60
NONTHAL FUEL TANK DRESSURE * PSTA	17.49	-50.24
NOMINAL FUEL TANK PRESSURE * ISTA	28,19	0.00
MANTHIN CHAMBER PRESSURE USED ON VEHICLE * PSTA	3900.00	19.27
FUEL ULACE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OYYCEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.00	N/A
NUMBER OF FIRST VEHICLE FLYBACK TURBOFAN ENGINES	2.00	-33.33
THROTTLE SETTING OF 1ST STAGE ENGINES	0.90	1.08
SECOND STACE		
AUEDACE MAIN ENCINE SPECIFIC INDUI SE	453.52	0.00
AVERAGE MAIN ENGINE SPECIFIC INFOLSE	4 00	0.00
DENDELLANT MASS FRACTION	0.90	0.80
OVERALI PROPELLANT MIXTURE RATIO	6.00	0.00
DELIVERED THRUST AT IGNITION * LBS	512300.00	0.00
FNGINE RATED VACIIIM THRUST * LBS	512300.00	0.00
NOMTNAL FUEL TANK PRESSURE * PSIA	32.63	-0.15
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
MAXIMUM CHAMBER PRESSURE USED ON VEHICLE * PSIA	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
THRUST OF SECOND VEHICLE AT LIFTOFF	1675400.00	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*TO THE SSME POWERED BASELINE		

Two-Stage Optimized Subcooled LOX/Propane, Propane-Cooled (Far-Term) Performance

		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	80.00	0.00
PAYLOAD DIAMETER * FT	33.00	0.00
-		
FIRST STAGE		
BODY DIAMETER * FT	24.80	-24.85
VEHICLE LENGTH * FT	112.47	-24.84
LENGTH/DIAMETER RATIO OF VEHICLE	4.54	0.01
NOSE LENGTH	43.40	-24.85
MAIN ENGINE THROAT DIAMETER * FT	0.90	6.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	. 4.92	-2.30
ENGINE SECTION LENGTH * FT	8.74	-24.63
NOZZLE EXPANSION RATIO	29.73	-15.06
FUEL LINE DIAMETER * IN	15.59	-15.20
OXIDIZER LINE DIAMETER * IN	21.69	12.71
FUEL TANK HEAD HEIGHT * IN	106.28	24.08
CYLINDRICAL LENGTH OF FUEL TANK * IN	179.29	-64-83
OXIDIZER TANK HEAD HEIGHT * IN	105.92	-24.92
CYLINDRICAL LENGTH OF OYIDIZER TANK * IN	204 81	1 00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5 00	0.00
THICKNESS OF FILL TANK VALL * IN	0 33	462 68
THICKNESS OF OVIDITER TANK WALL + IN	0.33	402.00
FILEL TANK SOFT THICKNESS * IN	0.28	-100.00
AVIDITED TANK SOFT THICKNESS + IN	1 00	-100.00
UTNC DEEEDENCE ADEA + CO ET	2652.20	20.76
UTMC CDAN + FT	70000.20	-30.70
STNCLE EIN EYDOSED ADEA + SO ET	179 00	-10.79
FYDOGED FIN CDAN + FT	120.90	-22.04
CANADD UTNC CDAN + FT	12.20	-12.04
CANARD WING SPAN ~ PI	0.00	N/A
SECOND STAGE		
BODY DIAMETER * FT	33.00	0.00
VEHICLE LENGTH * FT	267.65	6.42
LENGTH/DIAMETER RATIO OF VEHICLE	8.11	6.42
NOSE LENGTH	57.75	0.00
MAIN ENGINE THROAT DIAMETER * FT	0.85	0.00
MAXIMUM MAIN ENGINE NOZZLE EXIT DIAMETER * FT	7.50	0.00
ENGINE SECTION LENGTH * FT	11.60	0.00
NOZZLE EXPANSION RATIO	77.50	0.00
FUEL LINE DIAMETER * IN	13.98	0.06
OXIDIZER LINE DIAMETER * IN	14.67	0.00
PROPELLANT TANK HEAD ELLIPSE RATIO	1.40	0.00
FUEL TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	794.64	8.96
OXIDIZER TANK HEAD HEIGHT * IN	141.07	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	62.10	49.23
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	-0.15
THICKNESS OF OXIDIZER TANK WALL * IN	0.05	0.00
FUEL TANK SOFI THICKNESS * TN	1.00	0.00
OXIDIZER TANK SOFT THICKNESS * IN	1.00	0.00
TO THE SSME POWERED BASELINE	2.00	0.00

Two-Stage Optimized Optimized Subcooled LOX-Propane, Propane-Cooled (Far-Term) Dimensions

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	141020.00	34.70
GROSS LIFT OFF WEIGHT	1460000.00	21.92
BODY WEIGHT * LBS	83074.00	34.82
GROWTH WEIGHT * LBS	7278.70	29.24
INERT WEIGHT * LBS	165410.00	33.40
EQUIPMENT WEIGHT * LBS	12339.00	10.90
TANK MOUNT WEIGHT * LBS	846.34	67.17
STRUCTURAL WALL WEIGHT * LBS	61537.00	40.65
APU PROPELLANT WEIGHT * LBS	2913.20	28.45
LANDING WEIGHT * LBS	144810.00	34.73
LANDING GEAR WEIGHT * LBS	4407.70	31.68
CANARD WEIGHT * LBS	1966.50	34.73
WING WEIGHT * LBS	24193.00	32.84
WEIGHT OF REENTRY INSULATION TILES * LBS	9702.30	26.45
PAYLOAD WEIGHT * LBS	10000.00	0.00
PAYLOAD BAY WEIGHT * LBS	6704.40	0.00
OPTIMIZED LOX/LH2		

SINGLE STAGE SSME POINT DESIGN PROPULSION WEIGHTS

I

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	1283000.00	20.78
FUEL WEIGHT IN VEHICLE * LBS	183290.00	48.38
WEIGHT OF HYDROGEN USED AS FUEL	0.00	N/A
OXIDIZER WEIGHT IN VEHICLE * LBS	1099700.00	17.14
FUEL RESERVES * LBS	788.13	48.38
OXIDIZER RESERVES * LBS	4728.80	17.14
FUEL RESIDUAL WEIGHT * LBS	95.03	42.49
OXIDIZER RESIDUAL WEIGHT * LBS	652.82	14.51
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	534.46	48.90
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1978.70	49.56
TOTAL TANK WEIGHT * LBS	14529.00	27.16
FUEL TANK LINE WEIGHT * LBS	1590.60	34.75
OXIDIZER TANK LINE WEIGHT * LBS	136.04	26.47
FUEL TANK INSULATION WEIGHT * LBS	3708.90	30.56
OXIDIZER TANK INSULATION WEIGHT * LBS	1668.20	19.72
GAS LINE WEIGHT * LBS	113.78	16.53
ENGINE BAY LINE WEIGHT PER ENGINE * LBS	362.00	46.20
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	759.47	35.37
WEIGHT OF SSME	7393.00	53.82
WEIGHT OF THRUST STRUCTURE * LBS	6197.30	31.32
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
OMS PROPELLANT REQUIRED FOR CIR.	1574.10	30.84
TOTAL OMS PROPELLANT WEIGHT * LBS	5796.00	32.66
OMS HARDWARE WEIGHT * LBS	1053.20	19.65
TOTAL RCS WEIGHT * LBS	2261.80	21.54
RCS PROPELLANT WEIGHT * LBS	2916.80	33.02
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*OPTIMIZED LOX/LH2		

SINGLE STAGE SSME POINT DESIGN SYSTEM WEIGHTS

•		PERCENT OF
	VALUE	*REFERENCE
LIFT OFF ACCEL., ONE ENGINE OUT	1.50	25.00
NOMINAL LIFT OFF ACCELERATION	1.48	0.00
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	2.00	0.00
INERT WEIGHT FACTOR	0.75	0.00
PRIMARY ENGINE VACUUM ISP	447.60	5.22
NUMBER OF PRIMARY ENGINES	5.00	0.00
PROPELLANT MASS FRACTION	0.89	-1.08
PRIMARY ENGINE MIXTURE RATIO	6.00	-21.05
PRIMARY ENGINE LIFT OFF THRUST	438000.00	21.92
PRIMARY ENGINE VACUUM THRUST 1ST NOZZLE	504120.00	32.16
NOMINAL FUEL TANK PRESSURE * PSIA	34.13	0.35
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
ENGINE RATED CHAMBER PRESSURE * PSI	3270.00	-18.25
ENGINE RATED CHAMBER PRESSURE * PSI	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
LIFTOFF THROTTLE SETTING OF PRIMARY ENGINE	0.91	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6 000.00	0.00
*OPTIMIZED LOX/LH2		

SINGLE STAGE SSME POINT DESIGN PERFORMANCE

		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	30.00	0.00
PAYLOAD BAY DIAMETER * FT	15.00	0.00
BODY DIAMETER * FT	29.00	20.83
VEHICLE LENGTH * FT	154.75	4.07
LENGTH/DIAMETER RATIO OF VEHICLE	5.34	-13,88
NOSE LENGTH	36.25	20.83
PRIMARY ENGINE THROAT DIAMETER	0.85	27.50
MAX. PRIMARY ENGINE NOZZLE EXIT DIA.	10.42	56.33
PRIMARY ENGINE LENGTH	11.60	0.00
PRIMARY ENGINE FIRST EXPANSION RATIO	55.00	83.33
PRIMARY ENGINE SECOND EXPANSION RATIO	150.00	50.32
FUEL LINE DIAMETER * IN	15.56	23.71
OXIDIZER LINE DIAMETER * IN	16.25	10.64
FUEL TANK HEAD HEIGHT * IN	122.90	21.06
CYLINDRICAL LENGTH OF FUEL TANK * IN	819.10	1.26
OXIDIZER TANK HEAD HEIGHT * IN	123.92	20.91
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	88.61	-50.75
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.05	21.50
THICKNESS OF OXIDIZER TANK WALL * IN	0.04	-31.55
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SQ FT	2413.50	34.73
WING SPAN * FT	67.85	16.08
TOTAL FIN EXPOSED AREA * SQ FT	115.51	18.99
EXPOSED FIN SPAN * FT	12.67	9.09
CANARD WING SPAN * FT	18.91	16.08
*OPTIMIZED LOX/LH2		
ATHAL A ARLAN CONTRACTOR		

SINGLE STAGE SSME POINT DESIGN DIMENSIONS

.

•	•	PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	1062300.00	0.00
FUEL WEIGHT IN VEHICLE * LBS	123530.00	0.00
WEIGHT OF HYDROGEN USED AS FUEL	0.00	N/A
OXIDIZER WEIGHT IN VEHICLE * LBS	938800.00	0.00
FUEL RESERVES * LBS	531.16	0.00
OXIDIZER RESERVES * LBS	4036.80	0.00
FUEL RESIDUAL WEIGHT * LBS	66.69	0.00
OXIDIZER RESIDUAL WEIGHT * LBS	570.11	0.00
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	358.94	0.00
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1323.00	0.00
TOTAL TANK WEIGHT * LBS	11426.00	0.00
FUEL TANK LINE WEIGHT * LBS	1180.40	0.00
OXIDIZER TANK LINE WEIGHT * LBS	107.57	0.00
FUEL TANK INSULATION WEIGHT * LBS	2840.70	0.00
OXIDIZER TANK INSULATION WEIGHT * LBS	1393.40	0.00
GAS LINE WEIGHT * LBS	97.64	0.00
ENGINE BAY LINE WEIGHT PER ENGINE * LBS	247.61	0.00
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	561.05	0.00
WEIGHT OF SSME	4806.20	0.00
WEIGHT OF THRUST STRUCTURE * LBS	4719.10	0.00
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
OMS PROPELLANT REQUIRED FOR CIR.	1203.10	0.00
TOTAL OMS PROPELLANT WEIGHT * LBS	4369.10	0.00
OMS HARDWARE WEIGHT * LBS	880.27	0.00
TOTAL RCS WEIGHT * LBS	1861.00	0.00
RCS PROPELLANT WEIGHT * LBS	2192.80	0.00
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*SELF		-

SINGLE STAGE OPTIMIZED LOX/LH2 (NEAR TERM) PROPULSION WEIGHTS

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	104690.00	0.00
GROSS LIFT OFF WEIGHT	1197500.00	0.00
BODY WEIGHT * LBS	61619.00	0.00
GROWTH WEIGHT * LBS	5631.90	0.00
INERT WEIGHT * LBS	124000.00	0.00
EQUIPMENT WEIGHT * LBS	11126.00	0.00
TANK MOUNT WEIGHT * LBS	506.28	0.00
STRUCTURAL WALL WEIGHT * LBS	43752.00	0.00
APU PROPELLANT WEIGHT * LBS	2268.00	0.00
LANDING WEIGHT * LBS	107480.00	0.00
LANDING GEAR WEIGHT * LBS	3347.20	0.00
CANARD WEIGHT * LBS	1459.60	0.00
WING WEIGHT * LBS	18212.00	0.00
WEIGHT OF REENTRY INSULATION TILES * LBS	7672.60	0.00
PAYLOAD WEIGHT * LBS	10000.00	0.00
PAYLOAD BAY WEIGHT * LBS	6704.40	0.00
*SELF	·	

SINGLE STAGE OPTIMIZED LOX/LH2 (NEAR TERM) SYSTEM WEIGHTS

•		PERCENT OF
	VALUE	*REFERENCE
LIFT OFF ACCEL., ONE ENGINE OUT	1.20	0.00
NOMINAL LIFT OFF ACCELERATION	1.48	0.00
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	2.00	0.00
INERT WEIGHT FACTOR	0.75	0.00
PRIMARY ENGINE VACUUM ISP	425.41	0.00
NUMBER OF PRIMARY ENGINES	5.00	0.00
PROPELLANT MASS FRACTION	0.90	0.00
PRIMARY ENGINE MIXTURE RATIO	7.60	0.00
PRIMARY ENGINE LIFT OFF THRUST	359260.00	0.00
PRIMARY ENGINE VACUUM THRUST 1ST NOZZLE	381440.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	34.01	0.00
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
ENGINE RATED CHAMBER PRESSURE * PSI	4000.00	0.00
ENGINE RATED CHAMBER PRESSURE * PSI	3270.00	0.00
FUEL ULLAGE FRACTION	• 0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
LIFTOFF THROTTLE SETTING OF PRIMARY ENGINE	0.91	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*SELF		

SINGLE STAGE OPTIMIZED LOX/LH2 (NEAR TERM) PERFORMANCE

PERCENT OF

	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	30.00	0.00
PAYLOAD DIAMETER * FT	15.00	0.00
BODY DIAMETER * FT	24.00	0.00
VEHICLE LENGTH * FT	148.70	0.00
LENGTH/DIAMETER RATIO OF VEHICLE	6.20	0.00
NOSE LENGTH	30.00	0.00
PRIMARY ENGINE THROAT DIAMETER	0.67	0.00
MAX. PRIMARY ENGINE NOZZLE EXIT DIA.	6.66	0.00
PRIMARY ENGINE LENGTH	11.60	0.00
PRIMARY ENGINE FIRST EXPANSION RATIO	30.00	0.00
PRIMARY ENGINE SECOND EXPANSION RATIO	99.78	0.00
FUEL LINE DIAMETER * IN	12.58	0.00
OXIDIZER LINE DIAMETER * IN	14.69	0.00
FUEL TANK HEAD HEIGHT * IN	101.52	0.00
CYLINDRICAL LENGTH OF FUEL TANK * IN	808.93	0.00
OXIDIZER TANK HEAD HEIGHT * IN	102.49	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	179.93	0.00
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.04	0.00
THICKNESS OF OXIDIZER TANK WALL * IN	0.06	0.00
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
WING REFERENCE AREA * SQ FT	1791.30	0.00
WING SPAN * FT	58.45	0.00
TOTAL FIN EXPOSED AREA * SQ FT	97.07	0.00
EXPOSED FIN SPAN * FT	11.61	0.00
CANARD WING SPAN * FT	16.29	0.00
*SELF		

SINGLE STAGE OPTIMIZED LOX/LH2 (NEAR TERM) DIMENSIONS

			PERCENT OF
		VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS		102080.00	-2.49
GROSS LIFT OFF WEIGHT		1263600.00	5.52
BODY WEIGHT * LBS		58968.00	-4.30
CROWTH WEIGHT * LBS	٠	5113.50	-9.20
INFRT WEIGHT * LBS		122530.00	-1.19
FOUTPMENT WEIGHT * LBS		10397.00	-6,55
TANK MOINT WEIGHT * LBS		414.25	-18.18
STRUCTURAL WALL WEIGHT * LBS		4300.70	-90.17
APIL PROPELLANT WEIGHT * LBS		1735.00	-23.50
LANDING VEIGHT * LBS		105960.00	-1.41
LANDING GEAR WEIGHT * LBS		3299.50	-1.43
CANARD VETCHT * LBS		1439.00	-1.41
UTNC UFICHT * LBS		17924.00	-1.58
VETCHT OF REENTRY INSULATION TILES * LBS		5002.50	-34.80
PAYLOAD WEIGHT * LBS		10000.00	0.00
PAYLOAD BAY WEIGHT * LBS		6704.40	0.00
*OPTIMIZED LOX/LH2			

SINGLE STAGE OPTIMIZED LOX/RP-1, LH2 COOLED (NEAR TERM) SYSTEM WEIGHTS

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	1130300.00	6.40
FUEL WEIGHT IN VEHICLE * LBS	95640.00	-22.58
WEIGHT OF HYDROGEN USED AS FUEL	105710.00	N/A
OXIDIZER WEIGHT IN VEHICLE * LBS	924020.00	-1.57
FUEL RESERVES * LBS	411.25	-22.58
OXIDIZER RESERVES * LBS	3973.30	-1.57
FUEL RESIDUAL WEIGHT * LBS	176.91	165.26
OXIDIZER RESIDUAL WEIGHT * LBS	480.72	-15.68
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	2196.00	511.80
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1121.00	-15.27
TOTAL TANK WEIGHT * LBS	6166.30	-46.03
FUEL TANK LINE WEIGHT * LBS	617,05	-47.73
OXIDIZER TANK LINE WEIGHT * LBS	148.57	38.11
FUEL TANK INSULATION WEIGHT * LBS	1286.40	-54.72
OXIDIZER TANK INSULATION WEIGHT * LBS	1258.70	-9.67
GAS LINE WEIGHT * LBS	53.88	-44.82
ENGINE BAY LINE WEIGHT PER ENGINE * LBS	243.59	-1.62
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	665.68	18.65
WEIGHT OF HYDROCARBON ENGINE	3058.00	-36.37
VEIGHT OF SSME	7393.00	N/A
WEIGHT OF THRUST STRUCTURE * LBS	5040.50	6.81
WEIGHT OF HYDROGEN COOLANT * LBS	4981.90	N/A
LH2 FUEL+COOLANT FEED SYSTEM WEIGHT * LBS	750.30	N/A
INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS	604.13	N/A
WEIGHT OF LH2 FUEL+COOLANT TANK * LBS	3775.00	N/A
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
OMS PROPELLANT REQUIRED FOR CIR.	1190.50	-1.05
TOTAL OMS PROPELLANT WEIGHT * LBS	4317.90	-1.17
OMS HARDWARE WEIGHT * LBS	797.62	-9.39
TOTAL RCS WEIGHT * LBS	1770.30	-4.87
RCS PROPELLANT WEIGHT * LBS	2206.10	0.61
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*OPTIMIZED LOX/LH2		<u>.</u>
		-

SINGLE STAGE OPTIMIZED LOX/RP-1, LH2 COOLED (NEAR TERM) PROPULSION WEIGHTS

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	100040.00	-4.44
GROSS LIFT OFF WEIGHT	1168200.00	-2.45
BODY WEIGHT * LBS	58244.00	-5.48
GROWTH WEIGHT * LBS	5076.80	-9.86
INERT WEIGHT * LBS	118220.00	-4.66
EQUIPMENT WEIGHT * LBS	10381.00	-6.70
TANK MOUNT WEIGHT * LBS	414.31	-18,17
STRUCTURAL WALL WEIGHT * LBS	3658.10	-91.64
APU PROPELLANT WEIGHT * LBS	1676.30	-26.09
LANDING WEIGHT * LBS	102480.00	-4.65
LANDING GEAR WEIGHT * LBS	3201.40	-4.36
CANARD WEIGHT * LBS	1391.70	-4.65
WING WEIGHT * LBS	17271.00	-5.17
WEIGHT OF REENTRY INSULATION TILES	* LBS 5023.80	-34.52
PAYLOAD WEIGHT * LBS	10000.00	0.00
PAYLOAD BAY WEIGHT * LBS	6704.40	0.00
*OPTIMIZED LOX/LH2		

SINGLE STAGE OPTIMIZED LOX/METHANE, LH2 COOLED (NEAR TERM) SYSTEM WEIGHTS PERCENT OF

VALUE *REFERENCE TOTAL ASCENT PROPELLANT WEIGHT * LBS 1039200.00 -2.17 FUEL WEIGHT IN VEHICLE * LBS WEIGHT OF HYDROGEN USED AS FUEL 53865.00 -56.40 107780.00 N/A OXIDIZER WEIGHT IN VEHICLE * LBS 872340.00 -7.08 -56.39 231.62 FUEL RESERVES * LBS 3751.10 -7.08 OXIDIZER RESERVES * LBS 119.12 78.61 FUEL RESIDUAL WEIGHT * LBS 470.70 -17.44 OXIDIZER RESIDUAL WEIGHT * LBS TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS 381.13 6.18 TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS 1120.30 -15.32 5897.70 -48.38 TOTAL TANK WEIGHT * LBS 578.60 -50.98 FUEL TANK LINE WEIGHT * LBS 143.02 32.96 OXIDIZER TANK LINE WEIGHT * LBS 1367.10 -51.87 FUEL TANK INSULATION WEIGHT * LBS OXIDIZER TANK INSULATION WEIGHT * LBS 1243.30 -10.77 -44.33 54.36 GAS LINE WEIGHT * LBS ENGINE BAY LINE WEIGHT PER ENGINE * LBS 230.63 -6.86 13.08 634.44 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 2526.10 -47.44 WEIGHT OF HYDROCARBON ENGINE N/A 7393.00 WEIGHT OF SSME WEIGHT OF THRUST STRUCTURE * LBS 4840.20 2.57 5301.20 N/A WEIGHT OF HYDROGEN COOLANT * LBS WEIGHT OF HIDRUGEN COULANT * LBS LH2 FUEL+COOLANT FEED SYSTEM WEIGHT * LBS 781.34 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 620.87 N/A 3873.90 N/A WEIGHT OF LH2 FUEL+COOLANT TANK * LBS N/A 0.00 PRESSURANT WEIGHT * LBS 0.00 N/A PRESSURE TANK WEIGHT * LBS OMS PROPELLANT REQUIRED FOR CIR. 1151.80 -4.26 -4.58 TOTAL OMS PROPELLANT WEIGHT * LBS 4169.10 OMS HARDWARE WEIGHT * LBS 779.62 -11.43 1731.20 -6.97 TOTAL RCS WEIGHT * LBS RCS PROPELLANT WEIGHT * LBS 2136.20 -2.58 0.00 309.00 WEIGHT OF EACH OMS ENGINE * LBS

SINGLE STAGE OPTIMIZED LOX/METHANE, LH2 COOLED (NEAR TERM) PROPULSION WEIGHTS

PRECEDING PAGE BLANK NOT FILMED

***OPTIMIZED LOX/LH2**

•		PERCENT OF
	VALUE	*REFERENCE
LIFT OFF ACCEL ONE ENGINE OUT	1.22	1.51
NOMINAL LIFT OFF ACCELERATION	1.48	0.00
MAXIMUM LONGITUDINAL ACCELERATION . G'S	3.00	0.00
NUMBER OF CREV	2.00	0.00
INERT VEIGHT FACTOR	0.75	0.00
PRIMARY ENGINE VACUUM ISP	328.62	-22.75
NUMBER OF PRIMARY ENGINES	2.00	-60.00
NUMBER OF SSME ENGINES	3.00	N/A
PROPELLANT MASS FRACTION	0.89	-0.20
PRIMARY ENGINE MIXTURE RATIO	4.19	-44.87
SSME MIXTURE RATIO	6.00	0.00
PRIMARY ENGINE LIFT OFF THRUST	273470.00	-23.88
SSME LIFT OFF THRUST	504130.00	0.00
PRIMARY ENGINE VACUUM THRUST 1ST NOZZLE	280620.00	-26.43
SSME VACUUM THRUST	504130.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	20.57	-39.50
NOMINAL OXIDIZER TANK PRESSURE • PSIA	28.19	0.00
ENGINE RATED CHAMBER PRESSURE . PSI	4300.00	7.50
ENGINE RATED CHAMBER PRESSURE . PSI	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE . PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE • PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.02	N/A
LIFTOFF THROTTLE SETTING OF PRIMARY ENGINE	0.91	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*OPTIMIZED LOX/LH2		

•

SINGLE STAGE OPTIMIZED LOX/METHANE, LH2 COOLED (NEAR TERM) PERFORMANCE

.

.

		PERCENT OF
	VALUE	*REFERENCE
PAYLOAD BAY LENGTH • FT	30.00	0.00
PAYLOAD BAY DIAMETER • FT	15.00	0.00
BODY DIAMETER * FT	24.00	0.00
VEHICLE LENGTH * FT	139.99	-5.86
LENGTH/DIAMETER RATIO OF VEHICLE	5.83	-5.86
NOSE LENGTH	75.03	150.09
PRIMARY ENGINE THROAT DIAMETER	0.54	-19.73
SSME THROAT DIAMETER	0.85	N/A
MAX. PRIMARY ENGINE NOZZLE EXIT DIA.	2.07	-68.88
SSME NOZZLE EXIT DIA.	10.42	N/A
PRIMARY ENGINE LENGTH	4.59	-60.42
SSME LENGTH	11.60	-36.44
PRIMARY ENGINE FIRST EXPANSION RATIO	15.00	-50.00
PRIMARY ENGINE SECOND EXPANSION RATIO	15.00	-84.97
SSME EXPANSION RATIO	55.00	N/A
FUEL LINE DIAMETER * IN	12.13	-3.58
OXIDIZER LINE DIAMETER * IN	16.61	13.05
FUEL TANK HEAD HEIGHT * IN	101.50	-0.02
CYLINDRICAL LENGTH OF FUEL TANK • IN	178.38	-77.95
OXIDIZER TANK HEAD HEIGHT • IN	102.49	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK • IN	116.29	-35.37
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS • IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.03	-26.99
THICKNESS OF OXIDIZER TANK WALL • IN	0.11	73.00
FUEL TANK SOFI THICKNESS • IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS • IN	1.00	0.00
WING REFERENCE AREA * SQ FT	1708.00	-4.65
VING SPAN * FT	57.08	-2.35
TOTAL FIN EXPOSED AREA • SQ FT	94.61	-2.54
EXPOSED FIN SPAN • FT	11.46	-1.28
CANARD WING SPAN * FT	15.91	-2.35
*OPTIMIZED LOX/LH2		

SINGLE STAGE OPTIMIZED LOX/METHANE, LH2 COOLED (NEAR TERM) DIMENSIONS

A - 61

.

		PERCENT OF
•	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	99216.00	-5.23
CROSS LIFT OFF WEIGHT	1157400.00	-3.35
BODY WEIGHT * LBS	57708.00	-6.35
CROWTH WEIGHT * LBS	5012.60	-11.00
INFRT WEIGHT * LBS	117280.00	-5.42
FOULTPMENT WEIGHT * LBS	10302.00	-7.41
TANK MOINT WEIGHT * LBS	414.31	-18.17
STRUCTURAL WALL WEIGHT * LBS	3689.00	-91.57
APU PROPELLANT WEIGHT * LBS	1678.20	-26.01
LANDING WEIGHT * LBS	101630.00	-5.44
LANDING CEAR WEIGHT * LBS	3177.00	-5.08
CANARD VETCHT * LBS	1380.10	-5.45
UINC VEIGHT * LBS	17111.00	-6.05
UFICHT OF REENTRY INSULATION TILES * LBS	4816.10	-37.23
PAYLOAD WEIGHT * LBS	10000.00	0.00
PAYLOAD BAY WEIGHT * LBS	6704.40	0.00
LADTINIZED LAY/LH2		

SINGLE STAGE OPTIMIZED LOX/SC PROPANE, LH2 COOLED (NEAR TERM) SYSTEM WEIGHTS

	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	1029400.00	-3.10
FUEL WEIGHT IN VEHICLE * LBS	56493.00	-54.27
WEIGHT OF HYDROGEN USED AS FUEL	109480.00	N/A
OXIDIZER WEIGHT IN VEHICLE * LBS	859670.00	-8.43
FUEL RESERVES * LBS	242.92	-54.27
OXIDIZER RESERVES * LBS	3696.60	-8.43
FUEL RESIDUAL WEIGHT * LBS	142.83	114.16
OXIDIZER RESIDUAL WEIGHT * LBS	454.25	-20.32
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	344.04	-4.15
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1119.20	-15.40
TOTAL TANK WEIGHT * LBS	5335.70	-53.30
FUEL TANK LINE WEIGHT * LBS	541.78	-54.10
	1/2 70	22 66

PERCENT OF

FUEL RESIDUAL WEIGHT OXIDIZER RESIDUAL WEI TOTAL FUEL AUTOGENOUS TOTAL OXIDIZER AUTOGE TOTAL TANK WEIGHT * I FUEL TANK LINE WEIGHT 33.66 OXIDIZER TANK LINE WEIGHT * LBS 143.78 FUEL TANK INSULATION WEIGHT * LBS 1237.60 -56.43 1218.60 -12.54 OXIDIZER TANK INSULATION WEIGHT * LBS 49.83 -48.96 GAS LINE WEIGHT * LBS ENGINE BAY LINE WEIGHT PER ENGINE * LBS 225.27 -9.02 PRESSURANT CONTROL HARDWARE WEIGHT * LBS 620.57 10.61 2572.30 -46.48 WEIGHT OF HYDROCARBON ENGINE 7393.00 N/A WEIGHT OF SSME 4835.50 2.47 WEIGHT OF THRUST STRUCTURE * LBS WEIGHT OF HYDROGEN COOLANT * LBS 3800.90 N/A LH2 FUEL+COOLANT FEED SYSTEM WEIGHT * LBS 710.57 N/A INSULATION WEIGHT ON HYDROGEN COOLANT TANK * LBS 622.32 N/A WEIGHT OF LH2 FUEL+COOLANT TANK * LBS 3882.50 N/A 0.00 N/A PRESSURANT WEIGHT * LBS N/A 0.00 PRESSURE TANK WEIGHT * LBS 1143.20 -4.98 OMS PROPELLANT REQUIRED FOR CIR. 4136.50 -5.32 TOTAL OMS PROPELLANT WEIGHT * LBS 777.96 OMS HARDWARE WEIGHT * LBS -11.62 1725.60 -7.28 TOTAL RCS WEIGHT * LBS 2121.90 RCS PROPELLANT WEIGHT * LBS -3.23 WEIGHT OF EACH OMS ENGINE * LBS 309.00 0.00

*OPTIMIZED LOX/LH2

SINGLE STAGE OPTIMIZED LOX/SC PROPANE, LH2 COOLED (NEAR TERM) PROPULSION WEIGHTS

		PERCENT OF
	VALUE	*REFERENCE
LIFT OFF ACCEL., ONE ENGINE OUT	1.23	2.27
NOMINAL LIFT OFF ACCELERATION	1.48	0.00
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	2.00	0.00
INERT WEIGHT FACTOR	0.75	0.00
PRIMARY ENGINE VACUUM ISP	316.58	-25.58
NUMBER OF PRIMARY ENGINES	2.00	-60.00
NUMBER OF SSME ENGINES	3.00	N/A
PROPELLANT MASS FRACTION	0.89	-0.08
PRIMARY ENGINE MIXTURE RATIO	3.59	-52.78
SSME MIXTURE RATIO	6.00	0.00
PRIMARY ENGINE LIFT OFF THRUST	272160.00	-24.24
SSME LIFT OFF THRUST	504130.00	0.00
PRIMARY ENGINE VACUUM THRUST 1ST NOZZLE	279670.00	-26.68
SSME VACUUM THRUST	504130.00	0.00
NOMINAL FUEL TANK PRESSURE * PSIA	10.82	-68.18
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
ENGINE RATED CHAMBER PRESSURE * PSI	4000.00	0.00
ENGINE RATED CHAMBER PRESSURE • PSI	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	25.00	316.67
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE • PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE • PSI	5.00	0.00
PERCENT OF TOTAL PROPELLANT USED FOR H2 COOLING	0.01	N/A
LIFTOFF THROTTLE SETTING OF PRIMARY ENGINE	0.91	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*OPTIMIZED LOX/LH2		

SINGLE STAGE OPTIMIZED LOX/SC PROPANE, LH2 COOLED (NEAR TERM) PERFORMANCE

		PERCENT OF
•	VALUE	*REFERENCE
PAYLOAD BAY LENGTH * FT	30.00	0.00
PAYLOAD BAY DIAMETER • FT	15.00	0.00
BODY DIAMETER • FT	24.00	0.00
VEHICLE LENGTH • FT	134.61	-9.48
LENGTH/DIAMETER RATIO OF VEHICLE	5.61	-9.48
NOSE LENGTH	75.13	150.44
PRIMARY ENGINE THROAT DIAMETER	0.55	-17.76
SSME THROAT DIAMETER	0.85	N/A
MAX. PRIMARY ENGINE NOZZLE EXIT DIA.	2.12	-68.11
SSME NOZZLE EXIT DIA.	10.42	N/A
PRIMARY ENGINE LENGTH	4.65	-59.89
SSME LENGTH	11.60	-36.44
PRIMARY ENGINE FIRST EXPANSION RATIO	15.00	-50.00
PRIMARY ENGINE SECOND EXPANSION RATIO	15.00	-84.97
SSME EXPANSION RATIO	55.00	N/A
FUEL LINE DIAMETER * IN	11.69	-7.08
OXIDIZER LINE DIAMETER * IN	16.65	13.31
FUEL TANK HEAD HEIGHT * IN	101.50	-0.02
CYLINDRICAL LENGTH OF FUEL TANK * IN	122.96	-84.80
OXIDIZER TANK HEAD HEIGHT * IN	102.49	0.00
CYLINDRICAL LENGTH OF OXIDIZER TANK • IN	105.83	-41.18
SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
THICKNESS OF FUEL TANK WALL * IN	0.03	-26.99
THICKNESS OF OXIDIZER TANK WALL * IN	0.10	72.34
FUEL TANK SOFI THICKNESS * IN	1.00	0.00
OXIDIZER TANK SOFI THICKNESS • IN	1.00	0.00
VING REFERENCE AREA * SQ FT	1693.80	-5.44
WING SPAN • FT	56.84	-2.76
TOTAL FIN EXPOSED AREA • SQ FT	94.19	-2.98
EXPOSED FIN SPAN * FT	11.44	-1.50
CANARD WING SPAN * FT	15.84	-2.76
*OPTIMIZED LOX/LH2		

SINGLE STAGE OPTIMIZED LOX/SC PROPANE, LH2 COOLED (NEAR TERM) DIMENSIONS

		PERCENT OF
	VALUE	*REFERENCE
TOTAL DRY WEIGHT * LBS	103460.00	-1.17
GROSS LIFT OFF WEIGHT	1226700.00	2.44
BODY WEIGHT * LBS	63898.00	3.70
GROWTH WEIGHT * LBS	5736.50	1.86
INERT WEIGHT * LBS	123140.00	-0.69
EQUIPMENT WEIGHT * LBS	10747.00	-3.41
TANK MOUNT WEIGHT * LBS	505.53	-0.15
STRUCTURAL WALL WEIGHT * LBS	18089.00	-58.66
APU PROPELLANT WEIGHT * LBS	2033.30	-10.35
LANDING WEIGHT * LBS	106200.00	-1.19
LANDING GEAR WEIGHT * LBS	3311.40	-1.07
CANARD WEIGHT * LBS	1442.20	-1.19
WING WEIGHT * LBS	17973.00	-1.31
WEIGHT OF REENTRY INSULATION TILES * LBS	7272.30	-5.22
PAYLOAD WEIGHT * LBS	10000.00	0.00
PAYLOAD BAY WEIGHT * LBS	6704.40	0.00
OPTIMIZED LOX/LH2		
SINGLE STAGE ACUREX LOX/LH2 ENGINE	POWERED	

SYSTEM WEIGHTS

		PERCENT OF
	VALUE	*REFERENCE
TOTAL ASCENT PROPELLANT WEIGHT * LBS	1092400.00	2.83
FUEL WEIGHT IN VEHICLE * LBS	134290.00	8.71
WEIGHT OF HYDROGEN USED AS FUEL	0.00	N/A
OXIDIZER WEIGHT IN VEHICLE * LBS	958110.00	2.06
FUEL RESERVES * LBS	577.44	8.71
OXIDIZER RESERVES * LBS	4119.90	2.06
FUEL RESIDUAL WEIGHT * LBS	59.85	-10.25
OXIDIZER RESIDUAL WEIGHT * LBS	592.96	4.01
TOTAL FUEL AUTOGENOUS PRESSURANT WEIGHT * LBS	317.36	-11.58
TOTAL OXIDIZER AUTOGENOUS PRESSURANT WEIGHT * LBS	1383.00	4.54
TOTAL TANK WEIGHT * LBS	13322.00	16.59
FUEL TANK LINE WEIGHT * LBS	1266.10	7.26
OXIDIZER TANK LINE WEIGHT * LBS	142.65	32.61
FUEL TANK INSULATION WEIGHT * LBS	2623.70	-7.64
OXIDIZER TANK INSULATION WEIGHT * LBS	1430.20	2.64
GAS LINE WEIGHT * LBS	102.21	4.68
ENGINE BAY LINE WEIGHT PER ENGINE * LBS	323.98	30.84
PRESSURANT CONTROL HARDWARE WEIGHT * LBS	669.79	19.38
WEIGHT OF SSME	7104.20	47.81
WEIGHT OF THRUST STRUCTURE * LBS	4594.40	-2.64
PRESSURANT WEIGHT * LBS	0.00	N/A
PRESSURE TANK WEIGHT * LBS	0.00	N/A
OMS PROPELLANT REQUIRED FOR CIR.	1195.70	-0.62
TOTAL OMS PROPELLANT WEIGHT * LBS	4339.70	-0.67
OMS HARDWARE WEIGHT * LBS	843.82	-4.14
TOTAL RCS WEIGHT * LBS	1812.10	-2.63
RCS PROPELLANT WEIGHT # LBS	2176.30	-0.75
WEIGHT OF EACH OMS ENGINE * LBS	309.00	0.00
*OPTIMIZED LOX/LH2		

SINGLE STAGE ACUREX LOX/LH2 ENGINE POWERED PROPULSION WEIGHTS

A - 64

•		PERCENT OF
	VALUE	*REFERENCE
LIFT OFF ACCEL., ONE ENGINE OUT	1.20	0.00
NOMINAL LIFT OFF ACCELERATION	1.48	0.00
MAXIMUM LONGITUDINAL ACCELERATION * G'S	3.00	0.00
NUMBER OF CREW	2.00	0.00
INERT WEIGHT FACTOR	0.75	0.00
PRIMARY ENGINE VACUUM ISP	412.00	-3.15
NUMBER OF PRIMARY ENGINES	3.00	-40.00
PROPELLANT MASS FRACTION	0,90	0.36
PRIMARY ENGINE MIXTURE RATIO	9.00	18.42
PRIMARY ENGINE LIFT OFF THRUST	736040.00	104.88
PRIMARY ENGINE VACUUM THRUST 1ST NOZZLE	775570.00	103.33
NOMINAL FUEL TANK PRESSURE * PSIA	33.97	-0.11
NOMINAL OXIDIZER TANK PRESSURE * PSIA	28.19	0.00
ENGINE RATED CHAMBER PRESSURE * PSI	3000.00	-25.00
ENGINE RATED CHAMBER PRESSURE * PSI	3270.00	0.00
FUEL ULLAGE FRACTION	0.02	0.00
FUEL NET POSITIVE SUCTION PRESSURE	6.00	0.00
OXYGEN NET POSITIVE SUCTION PRESSURE	8.20	0.00
PRESSURE DROP ACROSS FUEL LINE * PSI	5.00	0.00
PRESSURE DROP ACROSS OXIDIZER LINE * PSI	5.00	0.00
LIFTOFF THROTTLE SETTING OF PRIMARY ENGINE	0.91	0.00
OMS ENGINE SPECIFIC IMPULSE	316.00	0.00
TOTAL VACUUM THRUST FOR SINGLE OMS ENGINE	6000.00	0.00
*OPTIMIZED LOX/LH2		

(

SINGLE	STAGE	ACUREX	LOX/LH2	ENGINE	POWERED
PERFORMANCE					

			PERCENT OF
		VALUE	*REFERENCE
	PAYLOAD BAY LENGTH * FT	30.00	0.00
	PAYLOAD DIAMETER * FT	15.00	0.00
	BODY DIAMETER * FT	24.00	0.00
	VEHICLE LENGTH * FT	142.29	-4.31
	LENGTH/DIAMETER RATIO OF VEHICLE	5.93	-4.31
	NOSE LENGTH	30.00	0.00
	PRIMARY ENGINE THROAT DIAMETER	1.09	63.48
	MAX. PRIMARY ENGINE NOZZLE EXIT DIA.	8.72	30.93
	PRIMARY ENGINE LENGTH	11.60	0.00
	PRIMARY ENGINE FIRST EXPANSION RATIO	20.00	-33.33
	PRIMARY ENGINE SECOND EXPANSION RATIO	64.00	-35.86
	FUEL LINE DIAMETER * IN	13.09	4.06
	OXIDIZER LINE DIAMETER * IN	16.59	12.93
	FUEL TANK HEAD HEIGHT * IN	101.49	-0.03
	CYLINDRICAL LENGTH OF FUEL TANK * IN	716.45	-11.43
	OXIDIZER TANK HEAD HEIGHT * IN	102.49	0.00
	CYLINDRICAL LENGTH OF OXIDIZER TANK * IN	195.52	8.66
	SPACE BETWEEN OXIDIZER AND FUEL TANK HEADS * IN	5.00	0.00
	THICKNESS OF FUEL TANK WALL * IN	0.04	-0.14
	THICKNESS OF OXIDIZER TANK WALL * IN	0.15	145.46
	FUEL TANK SOFI THICKNESS * IN	1.00	0,00
	OXIDIZER TANK SOFI THICKNESS * IN	1.00	0.00
	WING REFERENCE AREA * SQ FT	1770.00	-1.19
	WING SPAN * FT	58.10	-0.60
	TOTAL FIN EXPOSED AREA * SQ FT	96.44	-0.65
	EXPOSED FIN SPAN * FT	11.57	-0.33
	CANARD WING SPAN * FT	16.19	-0.60
×	OPTIMIZED LOX/LH2		

SINGLE STAGE ACUREX LOX/LH2 ENGINE POWERED

DIMENSIONS

APPENDIX B

OPTIMIZED PARAMETER SENSITIVITES

B - 2

B - 4

(b-17) Total Dry Weight Versus Engine-out Lift Off (b-18) Gross Lift Off Weight Versus Engine-out Lift Off Acceleration

(b-19) Vehicle Dry Weight Versus Engine-out Lift Off (E-20) Propellant Consumed Versus Engine-out Lift Off Acceleration

Configuration 2.B Sensitivity Studies (Continued)

(b-23) Number of Booster Engines Versus Engine-out Lift Off Acceleration

 (b-24) Engine Rated Vacuum Thrust Versus Engine-out Lift Off Acceleration

(b-27) Staging Velocity Versus Engine-out Life Off (b-28) Orbiter Propellant at Staging Versus Engine-out Lift Acceleration Off Acceleration

Configuration 2.B Sensitivity Studies (Continued)

(b-29) Body Diameter Versus Engine-out Lift Off (b-30) Nominal Lift Off Acceleration Versus Engine-out Lift Acceleration Off Acceleration

Configuration 2.B Sensitivity Studies (Continued)

Configuration 2.B Sensitivity Studies (Continued)

Configuration 2.B Sensitivity Studies (Continued)

- ----

(b-49) Total Dry Weight Versus Orbiter Propellant at (b-50) Gross Lift Off Weight Versus Orbiter Propellant at Staging

(b-51) Vehicle Dry Weight Versus Orbiter Propellant at (b-52) Propellant Consumed Versus Orbiter Propellant at Staging

Configuration 2.B Sensitivity Studies (Continued)

(b-57) Propellant Mixture Ratio Versus Orbiter Propellant at (b-58) Initial Booster Throttle Setting Versus Orbiter Staging Propellant at Staging

Configuration 2.B Sensitivity Studies (Continued)

(b-63) Nozzle Expansion Ratio Versus Orbiter Propellent at (b-64) Booster Engine Weight Versus Orbiter Propellant at Staging

(b-65) Total Dry Weight Versus Number of Booster Engines

(b-66) Gross Lift Off Weight Versus Number of Booster Engines

(b-67) Vehicle Dry Weight Versus Number of Booster (b-68) Propellant Consumed Versus Number of Booster Engines Engines

(b-69) Propellant Mass Fraction Versus Number of Booster Engines

17

31.60

31.50-

31.40-

31.30-

31.20-

31.10

31.00-

30.90

BODY DIAMETER + FT

(b-72) Engine Rated Vacuum Thrust Versus Number of Booster Engines (b-71) Body Diameter Versus Number of Booster Engines

(b-73) Propeilant Mixture Ratio Versus Number of Booster Engines

(b-74) Initial Booster Throttle Setting Versus Number of Booster Engines

(b-75) Staging Velocity Versus Number of Booster Engines

(b-76) Orbiter Propellant as Staging Versus Number of Booster Engines

Configuration 2.B Sensitivity Studies (Continued)

(b-77) Engine-out Lift Off Acceleration Versus Number of Booster Engines

(b-78) Nominal Lift Off Acceleration Versus Number of Booster Engines

8

Configuration 2.B Sensitivity Studies (Continued)

(b-85) Propellant Mass Fraction Versus Nozzle Expansion (b-86) Weight of Hydrogen Coolant Versus Nozzle Ratio Expansion Ratio

Configuration 2.B Sensitivity Studies (Continued)

Configuration 2.B Sensitivity Studies (Continued)

(b-93) Engine-out Lift Off Acceleration Versus Nozzle (b-94) Nominal Lift Off Acceleration Versus Nozzle Expansion Ratio

Configuration 2.B Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

Configuration 2.C Sensitivity Studies (Continued)

C - 4

Configuration 2.C Sensitivity Studies (Continued)

29 30 BODY DIAMETER

31 * FT

32

1600004 28

29 30 BODY DIAMETER

31 + FT

32

(d-7) Number of Booster Engines Versus Body Diameter

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

- 58 в

(d-37) Propellant Mass Fraction Versus Propellant Mixture Ratio

(d-38) Weight of Hydrogen Coolant Versus Propellant Mixture Ratio

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

(d-57) Propellant Mixture Ratio Versus Orbiter Propellant at (d-58) Initial Booster Throttle Setting Versus Orbiter * Staging Propellant at Staging

Configuration 2.D Sensitivity Studies (Continued)

(d-63) Nozzle Expansion nutio Versus Orbiter Propellant at (d-64) Booster Engine Weight Versus Orbiter Propellant at Staging

(d-65) Total Dry Weight Versus Number of Booster Engines

(d-66) Gross Lift Off Weight Versus Number of Booster Engines

Configuration 2.D Sensitivity Studies (Continued)

(d-69) Propellant Mass Fraction Versus Number of Booster (d-70) Weight of Hydrogen Coolant Versus Number of Engines Booster Engines

(d-73) Propellant Mixture Ratio Versus Number of Booster (d-74) Initial Booster Throttle Setting Versus Number of Engines Booster Engines

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

(d-87) Number of Booster Engines Versus Nozzle Expansion (d-88) Engine Rated Vacuum Thrust Versus Nozzle Ratio

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.D Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

в - 77

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

(e-27) Staging Velocity Versus Engine-out Lift Off (e-28) Orbiter Propellant at Staging Versus Engine-out Lift Acceleration Off Acceleration

Configuration 2.E Sensitivity Studies (Continued)

(e-31) Nozzle Expansion Ratio Versus Engine-out Lift Off Acceleration (e-32) Booster Engine Weight Versus Engine-out Lift Off Acceleration

B - 82

(e-37) Propellant Mass Fraction Versus Propellant Mixture Ratio

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

(e-51) Vehicle Dry Weight Versus Orbiter Propellant at (e-52) Propellant Consumed Versus Orbiter Propellant at Staging

(e-S5) Number of Booster Engines Versus Orbiter Propellant at Staging

nt (e-56) Engine Rated Vacuum Thrust Versus Orbiter Propellant at Staging

Configuration 2.E Sensitivity Studies (Continued)

(e-60) Body Diameter Versus Orbiter Propellant at Staging

Configuration 2.E Sensitivity Studies (Continued)

B - 88

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

(e-69) Propellant Mass Fraction Versus Number of Booster Engines

(e-70) Landing Weight Versus Number of Booster Engines

Configuration 2.E Sensitivity Studies (Continued)

(e-73) Propellant Mixture Ratio Versus Number of Booster Engines

(e-74) Initial Booster Throttle Setting Versus Number of Booster Engines

(e-76) Orbiter Propellant at Staging Versus Number of Booster Engines

Configuration 2.E Sensitivity Studies (Continued)

Configuration 2.E Sensitivity Studies (Continued)

(e-87) Number of Booster Engines Versus Nozzle Expansion (e-88) Engine Rated Vacuum Thrust Versus Nozzle Ratio Expansion Ratio

(e-91) Staging Velocity Versus Nozzle Expansion Ratio

(e-92) Orbiter Propellant at Staging Versus wozzle Expansion Ratio

B - 97

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.F Sensitivity Studies (Continued)

4300E+07

8

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.F Sensitivity Studies (Continued)

(f-83) Vehicle Dry Weight Versus Nozzle Expansion Ratio

(f-85) Propellant Mass Fraction Versus Nozzle Expansion Ratio

(f-86) Weight of Hydrogen Coolant Versus Nozzle Expansion Ratio

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.F Sensitivity Studies (Continued)

(f-93) Engine-out Lift Off Acceleration Versus Nozzle Expansion Ratio

(f-94) Nominal Lift Off Acceleration Versus Nozzle Expansion Ratio

Configuration 2.F Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

(g-19) Vehicle Dry Weight Versus Engine-out Lift Off Acceleration

Configuration 2.G Sensitivity Studies (Continued)

(g-20) Propellant Consumed Versus Engine-out Lift Off Acceleration

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

.3260E+07-

Configuration 2.G Sensitivity Studies (Continued)

(g-65) Total Dry Weight Versus Number of Booster Engines

(g-66) Gross Lift Off Weight Versus Number of Booster Engines

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.G Sensitivity Studies (Continued)

C.5

Configuration 2.G Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Con inued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.H Sensitivity Studies (Continued)

(h-65) Total Dry Weight Versus Number of Booster Engines

(h-66) Gross Lift Off Weight Versus Number of Booster Engines

Configuration 2.H Sensitivity Studies (Continued)

(h-71) Body Diameter Versus Number of Booster Engines (h-72) Engine Rated Vacuum Thrust Versus Number of Booster Engines

(h-73) Propellant Mixture Ratio Versus Number of Booster Engines

(h-74) Initial Booster Throttle Setting Versus Number of Booster Engines

6 ØF

ENGINES

17

8

(h-76) Orbiter Propellant at Staging Versus Number of Booster Engines

Configuration 2.H Sensitivity Studies (Continued)

. 356-

Configuration 2.H Sensitivity Studies (Continued)

(h-81) Total Dry Weight Versus Nozzle Expansion Ratio

(h-82) Gross Lift Off Weight Versus Nozzle Expansion Ratio

5Ò

Configuration 2.H Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

.

Configuration 2.1 Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

(i-51) Vehicle Dry Weight Versus Orbiter Propellant at (i-52) Propellant Consumed Versus Orbiter Propellant at Staging

at Staging

(i-56) Engine Rated Vacuum Thrust Versus Orbiter Propellant at Staging

Configuration 2.1 Sensitivity Studies (Continued)

(i-65) Total Dry Weight Versus Number of Booster Engines

(i-66) Gross Lift Off Weight Versus Number of Booster Engines

Configuration 2.1 Sensitivity Studies (Continued)

(i-69) Propellant Mass Fraction Versus Number of Booster Engines

(i-70) Weight of Hydrogen Coolant Versus Number of Booster Engines

(I-73) Propellant Mixture Ratio Versus Number of Booster Engines

(i-74) Initial Booster Throttle Setting Versus Number of Booster Engines

Configuration 2.1 Sensitivity Studies (Continued)

(i-77) Engine-out Lift Off Acceleration Versus Number of (i-78) Nominal Lift Off Acceleration Versus Number of Booster Engines

(i-79) Nozzle Expansion Ratio Versus Number of Booster Engines

(i-80) Booster Engine Weight Versus Number of Booster Engines

Configuration 2.1 Sensitivity Studies (Continued)

(i-87) Number of Booster Engines Versus Nozzle Expansion (i-88) Engine Rated Vacuum Thrust Versus Nozzle Ratio Expansion Ratio

Configuration 2.1 Sensitivity Studies (Continued)

Configuration 2.1 Sensitivity Studies (Continued)

(j-13) Engine-out Lift Off Acceleration Versus Body (j-14) Nominal Lift Off Acceleration Versus Body Diameter Diameter

(j-17) Total Dry Weight Versus Engine-out Lift Off Acceleration

(j-18) Gross Lift Off Weight Versus Engine-out Lift Off Acceleration

(j-19) Vehicle Dry Weight Versus Engine-out Lift Off (j-20) Propellant Consumed Versus Engine-out Lift Off Acceleration Configuration 2.J Sensitivity Studies (Continued)

(j-23) Number of Booster Engines Versus Engine-out Lift (j-24) Engine Rated Vacuum Thrust Versus Engine-out Lift Off Acceleration

Configuration 2.J Sensitivity Studies (Continued)

(j-27) Staging Velocity Versus Engine-out Lift Off (j-Acceleration

(j-28) Orbiter Propellant at Staging Versus Engine-out Lift Off Acceleration

(j-31) Nozzle Expansion Ratio Versus Engine-out Lift Off Acceleration

ł

(j-32) Booster Engine Weight Versus Engine-out Lift Off Acceleration

(j-36¹ Propeilant Consumed Versus Propeilant Mixture Ratio

(j-39) Number of Booster Engines Versus Propellant (j-40) Engine Rated Vacuum Thrust Versus Propellant Mixture Ratio

Configuration 2.J Sensitivity Studies (Continued)

, Configuration 2.J Sensitivity Studies (Continued)

(j-51) Vehicle Dry Weight Versus Orbiter Propellant at (j-52) Propellant Consumed Versus Orbiter Propellart at Staging

Configuration 2.J Sensitivity Studies (Continued)

(j-53) Propellant Mass Fraction Versus Orbiter Propellant at (j-54) Landing Weight Versus Orbiter Propellant at Staging

(j-55) Number of Booster Engines Versus Orbiter Propellant (j-56) Engine Rated Vacuum Thrust Versus Orbiter at Staging Propellant at Staging

Configuration 2.J Sensitivity Studies (Continued)

Configuration 2.J Sensitivity Studies (Continued)

(j-65) Total Dry Weight Versus Number of Booster Engines

(j-66) Gross Lift Off Weight Versus Number of Booster Engines

(j-67) Vehicle Dry Weight Versus Number of Booster Engines

Configuration 2.J Sensitivity Studies (Continued)

Configuration 2.J Sensitivity Studies (Continued)

S 6 7 QUANTITY OF ENGINES

1%

8

8

Configuration 2.J Sensitivity Studies (Continued)

L.

. 393-

. 391

. 389-

. 387

.385

.383

. 381

. 379

Å.

PROPELLANT ON BOARD TO CHANGE

×

(j-79) Nozzle Expansion Ratio Versus Number of Booster Engines

(j-80) Booster Engine Weight Versus Number of Booster Engines

ENGINES

Configuration 2.J Sensitivity Studies (Continued)

4

(j-85) Propellant Mass Fraction Versus Nozzle Expansion Ratio

(j-86) Weight of Hydrogen Coolant Versus Nozzle Expansion Ratio

Configuration 2.J Sensitivity Studies (Continued)

Configuration 2.J Sensitivity Studies (Continued)

(j-93) Engine-out Lift Off Acceleration Versus Nozzle (j-94) Nominal Lift Off Acceleration Versus Nozzle Expansion Ratio

Configuration 2.J Sensitivity Studies (Continued)

Configuration 2.K Sensitivity Studies (Continued)

Configuration 2.K Sensitivity Studies (Continued)

Configuration 2.K Sensitivity Studies (Continued)

(k-23) Number of Booster Engines Versus Engine-out Lift (k-24) Engine Rated Vacuum Thrust Versus Engine-out Lift Off Acceleration

Configuration 2.K Sensitivity Studies (Continued)

Configuration 2.K Sensitivity Studies (Continued)

(k-37) Propellant Mass Fraction Versus Propellant Mixture (k-38) Weight of Hydrogen Coolant Versus Propellant Ratio Mixture Ratio

(k-39) Number of Booster Engines Versus Propellant (k-40) Engine Rated Vacuum Thrust Versus Propellant Mixture Ratio

Configuration 2.K Sensitivity Studies (Continued)

(k-45) Engine-out Lift Off Acceleration Versus Propellant (k-46) Nominal Lift Off Acceleration Versus Propellant Mixture Ratio

(k-47) Nozzle Expansion Ratio Versus Propellant Mixture (k-48) Booster Engine Weight Versus Propellant Mixture Ratio

Configuration 2.K Sensitivity Studies (Continued)

(k-53) Propellant Mass Fraction Versus Orbiter Propellant at (k-54) Weight of Hydrogen Coolant Versus Orbiter Staging Propellant at Staging

(k-55) Number of Booster Engines Versus Orbiter Propellant (k-56) Engine Rated Vacuum Thrust Versus Orbiter at Staging Propellant at Staging

(k-59) Staging Velocity Versus Orbiter Propellant at Staging

(k-63) Nozzle Expansion Ratio Versus Orbiter Propellant at (k-64) Booster Engine Weight Versus Orbiter Propellant at Staging

(k-66) Gross Lift Off Weight Versus Number of Booster Engines

(k-67) Vehicle Dry Weight Versus Number of-Booster Engines

(k-68) Propellant Consumed Versus Number of Booster Engines

BOOSTER

8

Configuration 2.K Sensitivity Studies (Continued)

ORIGINAL PAGE IS OF POOR QUALITY

(k-81) Total Dry Weight Versus Nozzle Expansion Ratio

(k-82) Gross Lift Off Weight Versus Nozzle Expansion Ratio

C-6

40

(k-83) Vehicle Dry Weight Versus Nozzle Expansion Ratio (k-84) Propellant Consumed Versus Nozzle Expansion Ratio Configuration 2.K Sensitivity Studies (Continued)

(k-85) Propellant Mass Fraction Versus Nozzle Expansion Ratio

(k-86) Weight of Hydrogen Coolant Versus Nozzle Expansion Ratio

Configuration 2.K Sensitivity Studies (Continued)

Configuration 2.K Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies

Configuration 2.L Sensitivity Studies (Continued)

(I-11) Staging Velocity Versus Body Diameter

(J-12) Orbiter Propellant at Staging Versus Body Diameter

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L. Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

(I-47) Nozzle Expansion Ratio Versus Propellant Mixture Ratio (I-48) Booster Engine Weight Versus Propellant Mixture Ratio

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

(1-65) Total Dry Weight Versus Number of Booster Engines

(I-66) Gross Lift Off Weight Versus Number of Booster Engines

(I-67) Vehicle Dry Weight Versus Number of Booster Engines

Configuration 2.L Sensitivity Studies (Continued)

(I-69) Propellant Mass Fraction Versus Number of Booster Engines

(1-70) Landing Weight Versus Number of Booster Engines

(I-72) Engine Rated Vacuum Thrust Versus Number of Booster Engines

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

(I-81) Total Dry Weight Versus Nozzle Expansion Ratio

(I-82) Gross Lift Off Weight Versus Nozzie Expansion Ratio

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.L Sensitivity Studies (Continued)

Configuration 2.M Sensitivity Studies (Continued)

Configuration 2.M Sensitivity Studies (Continued)

(m-11) Staging Velocity Versus Body Diameter

(m-12) Orbiter Propellant at Staging Versus Body Diameter

(m-13) Engine-out Lift Off Acceleration Versus Body (m-14) Nominal Lift Off Acceleration Versus Body Diameter Diameter

(m-15) Nozzle Expansion Ratio Versus Body Diameter

(m-16) Booster Engine Weight Versus Body Diameter

(m-19) Vehicle Dry Weight Versus Engine-out Lift Off (m-20) Propellant Consumed Versus Engine-out Lift Off Acceleration

Configuration 2.M Sensitivity Studies (Continued)

(m-27) Staging Velocity Versus Engine-out Lift Off Acceleration

Configuration 2.M Sensitivity Studies (Continued)

(m-32) Booster Engine Weight Versus Engine-out Lift Off Acceleration

Configuration 2.M Sensitivity Studies (Continued)

Configuration 2.M Sensitivity Studies (Continued)

(m-37) Propellant Mass Fraction Versus Propellant Mixture (m-38) Landing Weight Versus Propellant Mixture Ratio Ratio

Configuration 2.M Sensitivity Studies

Configuration 2.M Sensitivity Studies (Continued)

(m-47) Nozzle Expansion Ratio Versus Propellant Mixture Ratio

(m-48) Booster Engine Weight Versus Propellant Mixture Ratio

Configuration 2.M Sensitivity Studies (Continued)

(m-49) Total Dry Weight Versus Orbiter Propellant at Staging

(m-50) Gross Lift Off Weight Versus Orbiter Propellant at Staging

Configuration 2.M Sensitivity Studies (Continued)

(m-59) Staging Velocity Versus Orbiter Propellant at (m-60) Body Diameter Versus Orbiter Propellant at Staging

Configuration 2.M Sensitivity Studies (Continued)

(m-67) Vehicle Dry Weight Versus Number of Booster (m-68) Propellant Consumed Versus Number of Booster Engines

Configuration 2.M Sensitivity Studies (Continued)

(m-76) Orbiter Propellant at Staging Versus Number of Booster Engines

(m-77) Engine-out Lift Off Acceleration Versus Number of (m-78) Nominal Lift Off Acceleration Versus Number of Booster Engines

Configuration 2.M Sensitivity Studies (Continued)

(m-84) Propellant Consumed Versus Nozzle Expansion Ratio

Configuration 2.M Sensitivity Studies (Continued)

(m-85) Propellant Mass Fraction Versus Nozzle Expansion (m-8 Ratio

(m-86) Weight of Hydrogen Coolant Versus Nozzie Expansion Ratio

(m-87) Number of Booster Engines Versus Nozzle Expansion Ratio (m-88) Engine Rated Vacuum Thrust Versus Nozzle Expansion Ratio

Configuration 2.M Sensitivity Studies (Continued)

Ratio

Initial Booster Throttle Setting Versus Nozzle Expansion Ratio

(m-91) Staging Velocity Versus Nozzle Expansion Ratio

(m-92) Orbiter Propellant at Staging Versus Nozzle Expansion Ra.io

Configuration 2.M Sensitivity Studies (Continued)

(m-93) Engine-out Lift Off Acceleration Versus Nozzle (m Expansion Ratio

(m-94) Nominal Lift Off Acceleration Versus Nozzle Expansion Ratio

Configuration 2.M Sensitivity Studies (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio)

Configurati on 1.8 Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.B Sensitivity Studies (Fixed Mixture Ratio) (Continued)

Configuration 1.8 Sensitivity Studies (Fixed Mixture Ratio) (Continued)

REFERENCES

- G. T. Eckard and M. J. Healy, "Airplane Responsive Engine Selection", Air Force Aero Propulsion Laboratory, Wright Patterson Air Force Base, Ohio, April 1978, AFAPL-TR-78-13
- 2. G. B. Devereux, E. K. Bair, "Space Transportation Main Engine Configuration Study", Aerojet Tech Systems Company, January 1987, NAS8-3867
 - "Extended Liquid Engine Simulation", Air Force Rocket Propulsion Laboratory, AFRPL-TR-85-055.
 - 4. "Space Transportation Main Engines for Single-Stage Vehicles", NASA Langley Research Center, AIAA-87-1949

R - 1

GLOSSARY

ALS	Advanced Launch System
Æ	aspect ratio = $\frac{(\text{span})^2}{2}$
	reference area
D	body diameter
D _{nozzle}	nozzle exit diameter
dpowerhead	engine powerhead diameter
ETR	Eastern Test Range
GLOW	gross liftoff weight
GSE	Government-supplied equipment
I _{sp}	specific impulse (in seconds)
KSC	Kennedy Space Center
1/d	body length-to-body diameter ratio or finesse ratio
L/D	Lift-to-Drag ratio
LOX	liquid oxygen
MR	Mixture Ratio - weight of oxidizer: weight of fuel
MSFC	Marshall Space Flight Center
NASA	National Aeronautics and Space Administration
NBP	near boiling point
OME	orbital maneuvering engine
OMS	Orbital Maneuvering System
P/A	Propulsion/Avionics
Pc	chamber pressure
ROM	rough order of magnitude
Sbody flap	body flap area
SC	subcooled
SF	vertical fin reference area

G - 1

GLOSSARY (Continued)

flaperon area Sflaperons shaft horsepower shp wing reference area Sref SSME Space Shuttle main engine single stage to orbit SSTO thickness-to-chord ratio t/c TPS thermal protection system Vandenberg Air Force Base VAFB staging velocity Vstaging weight of propellant propellant mass fraction = λ' weight of propellant + inert weight taper ratio tip chord λ = root chord

G - 2

FINAL REPORT DISTRIBUTION LIST BOOSTER PROPULSION/VEHICLE IMPACT STUDY NAS8-36944

.

NAME		NO. OF COPIES		
National Aeronautics & Space Administration Washington, D.C. 20546				
Attn:	RP/F.W. Stephenson	1		
George C National A Marshall S				
Attn:	CN22D AT01 CC01/Wofford EM13A/Hunter EP52/F. Braam	5 1 1 5+repro		
Lewis Research Center National Aeronautics & Space Administration 21000 Brookpark Road Cleveland, Ohio 44135				
Åtta:	MS 60-3/ Library MS 500-219/L. Cooper	-		
Ames Research Center National Aeronautics & Space Administration Moffett Field, CA 94035				
Attn:	Library	7		
Goddard Space Flight Center National Aeronautics & Space Administration Greenbelt, Maryland 20771				
Attn:	Library	1		
John F. Kennedy Space Center National Aeronautics & Space Administration Kennedy Space Center, FL 92899				
Attn:	Library	1		

4

.

-

.

.......

.

Lyndon B National / Houston,	. Johnson Space Center Aeronautics & Space Administration TX 77058	
Attn:	Library	1
Langley R National A Langley S Hampton.	lesearch Center Aeronautics & Space Administration Itation VA 23665	
Attn:	Library MS 365/J. Martin	4
Jet Propul National A 4800 Oak Pasadena	Ision Laboratory Veronautics & Space Administration Grove Drive , CA 91109	
Attn:	Library	1
NASA-Scie P.O. Bcx & Baltimore- Baltimore,	entific & Technical Information Facility 3757 Washington International Airport MD 21240	
Attn:	Accessioning Department	1+repro
Defense D Cameron S 5010 Duk Alexandria	locumentation Center Station, Building #5 e Street , VA 22314	
Attn:	TISIA	1+repro
Air Force A Edwards,	Astronautics Laboratory CA 93523	
Attn:	Library AFAL/CR/L. Meyer	1
Arnold Eng Air Force S Tullahoma,	ineering Development Center Systems Command , TN 37388	
Attn:	Library	1
U.S. Army Redstone S Redstone /	Missile Command Scientific Information Center Arsenal, AL 35808	
Attn:	Documents Section	2

2

071 5751

TE EINEL FFIN

Curs.inst (trat

;, *****,

ľ

U.S. Navel Research Laboratory Washington, D.C. 20390 Attn: Library U.S. Naval Missle Center Point Mugu, CA 93041 Attn: Library Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Attn: Library Bell Aerosystems, Inc. Box 1 Buffalo, NY 14240 Library Attn: General Dynamics Space Systems Division P.O. Box 85990 San Diego, CA 92138 Attn: Library C1-7102/R. Ford Grumman Aerospace Corporation Bethpage, Long Island, NY 11714 Attn: Library Lockheed Missiles & Space Company P.O. Box 504 Sunnyvale, CA 94088 Attn: Library Marguardt Corporation 16555 Saticoy Street Box 2013 South Annex Van Nuys, CA 91409 Attn: Library

3

1

1

1

1

1

1

1

٩

٦

Martin Marietta Corporation Denver Aerospace P.O. Box 179 Denver, CO 80201

Attn: Library G5041/Tal Sulmeister McDonnell Douglas Astronautics 5301 Boisa Avenue Huntington Beach, CA 92547

Attn: Library

Rocket Research Corporation Willow Road at 116th Street Redmond, WA 98052

Attn: Library

TRW Systems, Inc. 1 Space Park Redondo Beach, CA 90278

Attn: Library

United Technologies Research Center East Hartford, CT 06108

Attn: Library

United Technologies Pratt & Whitney Government Products Division P.O. Box 109600 West Palm Beach, FL 33410-9600

Attn: Library MS 731-26/W. Visek

Rockwell International Corporation Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91303

Attn: Library FA14/F. Kirby

4

1

1

1

1

4

1

1

11

Aerojet TechSystems Company P.O. Box 13222 Sacremento, CA 95813

Attn: Library Dept. 9831/C. Lacefield 1