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1. Introduction 
I 

I ’ e-four techniques for uniform sampling of  band-pass signals are examined. 
The in-phase and-quadrature components o f  the band-pass signal are computed in terms 
of the samples o f  the original band-pass signal. The relative implementation merits of 
these techniques are discussed with reference to the 

In digital signal processing the input signal is reconstructed 
by first sampling it at a rate determined by the bandwidth of 
the signal and then using an interpolation formula. It is well 
known that for low-pass signals (i.e., supported in the fre- 
quency domain in the interval [ - W , W ]  ), the Nyquist sampling 
rate is sufficient for the reconstruction of the signal. In typical 
deep-space applications, one often encounters band-pass sig- 
nals, i.e., signals whose support in the frequency domain lies in 
I = I ,  U I, where I ,  = [ f ,  - W, f ,  t W ]  , 1, = -I, (i.e., the signal 
vanishes outside the interval Z), and f ,  is the carrier frequency 
of the band-pass process. Such signals may be treated as low- 
pass and sampled at the Nyquist rate, however, this method is 
inefficient since f ,  may be large compared to W .  In this article 
four methods for more efficient sampling of band-pass signals 
are surveyed and their relative implementation merits are 
assessed. 

II. Sampling Techniques 
In the following it is assumed that the input signal is a 

real band-pass process centered at an intermediate frequency 
(IF), and it is desired to  recover its in-phase and quadrature 
components. 

Four sampling techniques are considered, namely: 

(1) I and Q baseband sampling with analog quadrature 
mixers (Fig. 1). The input signal is mixed with the ref- 
erence in-phase and quadrature component and low- 
pass filtered to  reject the double frequency images 
produced by the mixing operation. Each channel (in- 
phase and quadrature) is independently sampled at the 
rate of 2W samples/sec. Note that the effective sam- 
pling rate is 4 W  samples/sec. 

( 2 )  I and Q sampling with analog Hilbert transform (Fig. 2). 
The input signal is Hilbert transformed, and both the 
input and its Hilbert transform are then sampled at the 
rate of 2W samples/sec. Here the effective sampling 
rate is also 4 W  samples/sec. 

( 3 )  Band-pass sampling with digital quadrature mixers 
(Fig. 3). The input signal is sampled at the rate of 4 W  
samples/sec, and the input samples are then mixed with 
the samples of reference in-phase and quadrature com- 
ponents and then low-pass filtered to eliminate the 
double frequency images resulting from the mixing 
operation. This is performed by using a finite impulse 
response (FIR) low-pass filter. Since the output of the 
low-pass filter is bandlimited to  2 W ,  the output is deci- 
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mated (undersampled) by a factor of 2, thereby reduc- 
ing the subsequent processing rate by 1/2. For band- 
pass sampling of the input signal it is assumed that the 
input signal is centered at an odd multiple of the band- 
width frequency. In practice, this is not a restrictive 
assumption since the I F  frequency is normally chosen 
by the hardware design engineer. 

(4)  Band-pass sampling with digital Hilbert transform 
(Fig. 4). The input signal is sampled at the rate of 4W 
samples/sec, the input samples are then Hilbert trans- 
formed using a digital Hilbert transformer. The Hilbert 
transformed sequence and the input sequence are then 
mixed with the reference in-phase and quadrature com- 
ponents. For band-pass sampling of the input signal it 
is assumed that the input signal is centered at an odd 
multiple of the bandwidth frequency. 

Note that cases (1) and (2) are applications of the Shannon- 
Whittaker theorem, while cases (3) and (4) are obtained from 
the band-pass sampling theorems discussed below. 

111. Comparison of Sampling Methods 
In this section the advantages and disadvantages of each of 

the sampling techniques described in the previous section are 
considered. 

(1) I and Q baseband sampling with analog quadrature 
mixers. 

Advantages: 

(a) Since the sampling rate of each channel is 2W 
samples/sec, this technique requires the slowest 
possible A/D convertor and processing rate for 
the recovery of I and Q samples. 

(b) The  analog anti-aliasing filter design for this sam- 
pling technique is an ideal low-pass filter with a 
two-sided bandwidth of 2W. Generally, low-pass 
analog filters are easier to build than their analog 
band-pass counterparts. 

(c) Due t o  cost considerations, in some applications it 
is desirable to demodulate the signal directly from 
R F  frequency to  baseband with no intermediate 
stages. In such cases, this sampling method is the 
only known technique for recovering the in-phase 
and quadrature components. 

Disadvantages: 

(a) It is very difficult to  achieve phase and amplitude 
balance in both in-phase and quadrature reference 
signals with analog quadrature mixers. Sinsky and 
Wang [ I ]  have studied this effect when the input 

signal is simply a sinusoid at frequency fo, and 
they show that the effect of unmatched phase or 
gain is to  create an image at -fo, where the power 
of this image is A 2 / 4  for amplitude mismatch, and 
@ / 4  for the phase mismatch. Here A and 4 denote 
the fraction of amplitude imbalance and the phase 
difference in radians between the two channels, 
respectively. For example, to provide an image 
rejection ratio (IRR) of -50 dB due to  the phase 
imbalance, the phase imbalance must be kept un- 
der 0.36 deg. In [2] a method is proposed for 
compensating for these imbalances. In applications 
where the signal-to-noise ratio is high, the con- 
sideration of IRR is not significant since the image 
power (at -fo) is dominated by the channel noise. 

(b) The appearance of spurious signals is another prob- 
lem with analog implementation of quadrature 
mixers. Normally, high-speed analog mixers are 
high-speed choppers and produce odd and even 
harmonics of the carrier frequency. If these har- 
monics are not properly filtered, they could fold 
back into the baseband, and severely degrade the 
performance of the receiver. 

(c) This technique requires two A/D convertors. 

(2 )  I and Q sampling with analog Hilbert transform. Some- 
times referred to  as hybrids or 90-deg phase shifters, 
analog Hilbert transformers are hardly used in practice 
because of the difficulties inherent in their fabrication. 
The relative merits and disadvantages of this technique 
are similar to  those of the previous case, except that 
here additional phase and amplitude imbalance is intro- 
duced by the analog Hilbert transformer if it exhibits 
non-ideal characteristics. 

( 3 )  Band-pass sampling with digital quadrature mixers. 

Advan rages : 

(a) Since quadrature mixing is done in the digital 
domain, the phase or amplitude imbalance prob- 
lems discussed earlier for the baseband satnpling 
with analog quadrature mixers do not appear here. 

(b) Low-pass filtering operation is done in the digital 
domain using FIR filters. These filters are linear 
phase filters, i.e., they introduce a constant group 
delay in the output I and Q samples. This is partic- 
ularly important in applications where ranging or 
Doppler information must be extracted from the 
received signal. Digital filters are inherently more 
robust and flexible than their analog counterparts. 
The bandwidth of the filter can be easily modi- 
fied by changing the coefficients of the discrete 
filter. Furthermore, a special class of filters [3] 
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(4) 

called half-band filters (HBF) reduces the compu- 
tational complexity and the processing rate of 
this sampling technique by a factor of two. 

l@(r - n T )  @(f - mT) dt = c a,,,,, 

for some non-zero constant c ,  and the sequence 
{ @(t - n T ) ,  n E Z(=integers)) is complete in n(f,,W). 
The condition f, = (2k + l)W is also necessary for 

reference in-phase and quadrature components orthogonality and completeness of the sequence 
reduce to an alternating sequence. { f ( t  - nT) ,  n E Z}. 

(c) Only one A/D convertor is required. 

(d) If the sampling period is exactly 1/(4 f,), then the 

Disadvantages: 
(b) If = (1/2)W, fc = kW, a = (1/(4fc))(21 + l) ,  ( I  inte- 

ger), then {@ ( t  - nT,), n E Z} U {@(t  - nT, - a) ,  n E Z} 
is complete and orthogonal in n(&,W). 

Faster A/D conversion (e& aperture conversion 
time) is required since the sampling rate is at least 
at 4W, as opposed to 2W for the baseband sarnpl- 
ing case. This translates into stricter design require- 
ments for the A/D design parameters, such as the 
sample and hold, and aperture time. 

Theorem 1 provides two methods for sampling. Part (a) 
gives the expansion 

Requires a band-pass anti-aliasing filter prior to 

band-pass filters are more difficult to fabricate 
than their low-pass counterparts. 

A/D conversion. As pointed out earlier, analog x ( t>  = (:) x(nT)  @ ( r  - n T >  ( 2 )  

and the x ( n T )  terms are the sampled values. For obvious rea- 
Band-pass sampling with digitalHilbert transform, This 
technique is similar to  the previous one with the addi- 
tional disadvantage that the hardware realization of the 
ideal digital Hilbert transformer requires greater preci- 
sion (more bits) than that of  a digital low-pass filter. 
The implementation of an ideal digital Hilbert trans- 
form is discussed in [4] .  

sons this is called uniform sampling. Quadrature sampling is 
the technical term for expansion of x ( t )  in terms of the 
sequence given in (b). Here one has 

IV. Technical Background 
A. Analog Signals 

Let O(f, ,W) denote the space of all square-integrable com- 
plex-valued functions supported in I = Il U 12, and let n(f,,W) 
denote its Fourier transform, i.e., all functions representable 
in the form 

x(t) = j X ( h )  exp(2njht) d h  (1) 

where X E O(fc,W). Here f, represents the carrier frequency. 
In [SI and [6] the following theorem is proved, which can 
serve as the basis for the reconstruction of the signal from its 
samples: 

Theorem 1. Let 

(a) If T = 1 / 4 W  and & = (2k + l)W for some positive inte- 
ger k ,  then 

As noted earlier, if the R F  signal is mixed down by an 
RF  down convertor, then the IF frequency can be adjusted t o  
satisfy the requirements f, = (2k + 1)W or f ,  = kW in Theo- 
rem 1 .  Jn general, one does not expect any relation between f, 
and W ,  and Theorem 1 is not directly applicable. To remedy 
this situation, let 

kW < f, < ( k  + 1)W 

Either k or k + 1 is even, say k = 21. If I is odd, regard the 
band-pass signal X ( h )  as supported in I ’  = I ;  U I ;  with 
Zi = [&’ - 2W, &’ + 2 W ]  and $ = kW, 1; = -I;. Then apply 
Theorem 1, sample at points (1/(8W)) and apply part (a) to 
reconstruct the function. If I is even, then use the same 
interval 1’, sample x( t )  at the points n/4W and p + (n/4W) 
where /3 = (2m + 1)/4kW, m is any fixed integer, and use the 
expansion of part (b). 

It is sometimes convenient to  expressx(t) in the form 

x ( t )  = a( t )cos2nfc t - (3( t ) s in2nfc t  (4) 
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where (Y and 0 are Fourier transforms of band-limited func- 
tions. Here (Y and 0 are called the quadrature and in-phase com- 
ponents of the signal. To obtain the expansion of Eq. (4), 
first note that 

and substitute the expansion given in part (a) to  obtain 

= ( ( t  - nT) 

The fact that (Y and 0 are Fourier transforms of band-limited 
functions is a straightforward application of the Paley-Weiner 
theorem. 

Since in practice one can only compute finitely many terms, 
the problem of rate of convergence of the interpolating series 
is a significant one. The following proposition and the remark 
following it provide the answer to  this problem: 

Proposition 1. If the function X ( h )  is twice continuously 
differentiable, then the series in Eqs. ( 2 )  and ( 3 )  converge 
absolutely and uniformly in 1. Furthermore, in case (a) 

where C, denotes the sum from -N to N in Eq. ( I ) ,  c' is a 
constant depending only on W ,  and IIX"II is the Lz norm of 
the second derivative of X .  A similar estimate holds in case (b). 

Proof. Integrating Eq. (1) by parts twice and using Cauchy- 
Schwartz one obtains, for some constant c" depending only 
on W ,  

Substituting the above estimate for r = nT in Eq. ( 2 )  and using 
the upper bound (2/n) for @, the desired results are obtained 
after some simple manipulations. 

Remark. The proof of Proposition 1 also shows that the 
estimate above can be replaced by 

where X ( k + l )  denotes the (kt1)th derivative of X. Therefore, 
it may appear that the right-hand side can be made arbitrarily 
small by taking k to be sufficiently large. That this is not the 
case follows easily from the fact that IIX ( k + l )  1 )  has very rapid 
growth with k. More precisely, since x is analytic, for everyM 
there is TI > 0 such that 

Therefore 

so that IIX(k)ll grows at least as fast as M k .  In the actual nu- 
merical calculation of the second derivative of X one may use 
the approximation 

( X ( X  t 2 6 )  - 2X(h + 6 )  t X ( h ) )  

for X "(A) or approximately evaluate 

/ I t  l4 Ix(t)12 d t  = IIX" 1 1 2  

One may also use a combination of the Fourier and Hilbert 
transforms to reconstruct the signal in the time domain from 
its sampled values. Recall that the Hilbert transform of X is 

The following theorem describes how combination of the ana- 
log Fourier and Hilbert transforms can be used for the recon- 
struction from sampled values: 

Theorem 2. Assume that the band-pass signal x ( t )  and its 
transform X ( h )  are real. The signal can then be reconstructed 
from the sampled values x(n /2W)  and the Hilbert transform 
x^(n/2W) by the formula 
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I where B. Digital Signals 

The reconstruction formulae for the digital case are similar 
to those for the analog signal. To see this recall that by recon- 
struction in the digital domain we mean an interpolation for- 
mula for x ( t )  in terms of the sampled values x ( n / 2 W )  and the 
discrete Hilbert transform (DHT) of x ( n / 2 W ) .  By DHT we 
mean 

I 
(Notice that since X(-X)  = X ( h )  and X is real, x^ is purely 
imaginary and z1 is real.) 

I Proof.Let x1 (resp. x2) denote the indicator function of 
the set Il (resp. 12), and set Xi(h) = x j ( h ) X ( h ) .  Let x i  denote 
the Fourier transform of Xi. Now X ,  ( A )  admits of the Fourier 
series expansion 

I 

The coefficient n, is given by 

nn = (tW) / X l ( h )  exp (w) d h  

i.e., 

Substituting Eq. ( 5 )  into Eq. (1) and assuming change of order 
of summation and integration is permissible, one obtains after 
a simple calculation 

where 

I One then decomposes xi = yi + jzi into its real and imaginary 
parts. Since x ( t )  is real, x2 is the complex conjugate of x , .  
Substituting in x = x 1  + x 2 ,  the desired expansion is obtained. 

? ( I )  = ( ~ n j ) ~ s i g n ( w ) ~ ( w ) e x p ( 2 n j w ? ) d w  

where t ( w )  is the discrete Fourier transform of x ( n / 2 W ) .  
Since 

X ( h )  is given as the discrete Fourier transform of x ( n / 2 W ) ,  
and hence the interpolation formula for the Hilbert transform 
is implementable in the digital domain. 

C. Non-Deterministic Signals 

The above considerations are also applicable to the case 
where the signal is not deterministic. To be more precise, 
replace x ( t )  by a possibly complex-valued stationary pro- 
cess x ( f , w ) ,  or simply x ( ? ) ,  where G, lies in some probability 
space a. We assume that E { x ( t ) }  = 0 for all t ,  and the auto- 
correlatim function 

R ( s J )  = R (S - t )  = E { x( t )X(S)*}  

is the Fourier transform of a band-limited function s (h)  sup- 
ported in the interval [-W,W]. We want to reconstruct the 
process, at least for almost all 0. This is possible because the 
sample paths of such processes are, with probability 1, Fourier 
transform functions supported in [-W,W] and therefore entire 
functions. This is the content of a theorem of Belyaev which 
can be stated as follows [7]. 

Theorem 3. If R is an entire function of exponential type 
with the exponent not exceeding W, then with probability 1 
all sample paths of the process x ( r )  are entire functions of 
exponential type with the exponent not exceeding W .  

Therefore, for such a process for almost all a, ~ ( t )  = 
x ( t , w )  can be extended to the complex plane as a function of 
r and is in fact the inverse Fourier transform of a band-limited 
distribution. If it is furthermore assumed that R is the inverse 
Fourier transform of a continuous function supported in 
[ - W , W ]  , then with probability 1,  ~ ( t )  is the inverse Fourier 
transform of a continuous function supported in [ - W , W ]  . 
This implies that the sampling theorem for signals supported in 
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[-W,W] is applicable to the sample paths of the noise process 
and for almost all a, x ( t )  = x ( t , a ) c a n  be reconstructed from 
its sampled values at intervals of length (1/(2W))by the same 
formulae as in the deterministic case. 

V. Conclusion 
It has been found that band-pass sampling using digital 

quadrature mixers is the most robust technique for Deep 
Space Network (DSN) applications. In deep space applications 
the signal-to-noise ratio (SNR) is extremely low, e g ,  the 

Advanced Receiver performance threshold is at 0 dB with a 
carrier-to-noise power of -75 dB with a 15 MHz bandwidth. 
In DSN applications it is necessary to detect telemetry sym- 
bols and track signal phase very accurately for ranging and 
Doppler measurement in order to  determine the deep space 
probe’s position and velocity. Thus, the receiving system can- 
not tolerate any significant loss due to filtering or phase dis- 
tortion. Band-pass sampling with digital quadrature mixers can 
meet these requirements since it does not suffer from the 
phase and amplitude imbalance which is inherent in I and Q 
baseband sampling. 
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Fig. 1. I and Q baseband sampling with analog 
quadrature mixers. 
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Fig. 2. I and Q baseband sampling with analog 
Hilbert transform. 
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Fig. 3. Band-pass sampling with digital quadrature mixers. 
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