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NOMENCLATURE

= width of separated shear layer

= airfoil chord

= section drag coefficient

= skin-friction coefficient

section lift coefficient

section moment coefficient about quarter-chord point
distance of separated shear layer from airfoil surface
Jaminar length of the bubble

turbulent length of the bubble

linear stability theory amplification factor

streamwise coordinate from the stagnation point
streamwise velocity inside the boundary layer

normal distance from the surface

dissipation coefficient

pressure coefficient

momentum thickness growth factor for free shear layer
step size for shear layer Runge-Kutta integration
inviscid velocity decrease as £; — oo

amplitude of Coles’s wake function in Green’s profiles
boundary-layer shape factor, (6,/62)

boundary-layer shape factor, (é3/62)

Gaster’s pressure gradient parameter

chord Reynolds number, (Usoc/v)

laminar length Reynolds number, (Usf;/v)
momentum thickness Reynolds number, (Uéz/v)
scaling factor to match pressure gradients at laminar separation
velocity at the edge of the boundary layer/inviscid velocity
freestream velocity

distance from sg to first airfoil coordinate after sp

= laminar fraction within one boundary-layer step

= angle of attack relative to the chord line

= boundary-layer displacement thickness

= boundary-layer momentum thickness

= boundary-layer kinetic energy thickness

= kinematic viscosity of air

= dimensionless streamwise coordinate inside the bubble

i

i

11

i

= laminar separation point

= turbulent reattachment point
= transition point

= trailing edge

= turbulent separation
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I. SUMMARY

The present effort to develop a computationally efficient model for laminar separation
bubbles began approximately a year and a half ago. At the present stage, the development.
of laminar separation bubbles in low-turbulence flow over smooth airfoils has been found
primarily dependent on three physical factors: chord Reynolds number, boundary-layer
development upstream of laminar separation, and pressure recovery gradient along the
bubble. These variables can be conveniently grouped into a single dimensionless quantity,
Gaster’s! pressure gradient parameter. A general, semi-empirical bubble model has been
developed and incorporated into the airfoil design and analysis program of Eppler and
Somers.2 The essential feature of this model is the linking of transition to the development
of the separated laminar shear layer which, in turn, depends on local and global flow
characteristics through an iteration on Gaster’s parameter. This has been achieved with
a minimum computational penalty over the existing program.

In its present form the model still requires some amount of refinement. The data base
used to develop the transition criterion is very limited and mainly from one facility. The
agreement of the predicted pressure distribution in the laminar part of the bubble with
available measurements has allowed the calculation of the development of the shear layer
in the direct mode. The Stewartson® profiles upon which the closure relationships between
the integral boundary-layer parameters used in the present model are based, however, may
be poor approximations for the velocity profiles in the laminar part of the bubble. As a
consequence, the model is at present unable to sufficiently resolve the transition length as
a function of angle of attack.

Using Green’s* two-parameter family of reversed profiles, Fitzgerald and Mueller® have
obtained good agreement with LDV measurements inside the bubble. Closure relationships
based on these profiles have therefore been developed and compared with the corresponding
relationships based on the Stewartson profiles. It is hoped that the greater flexibility of

the Green’s profiles, afforded by their dependence on an additional parameter, will enable



the model to follow more closely the behavior of the bubble in differing flow conditions.
Once the transition location and growth of é; in the laminar part of the bubble have been
modelled accurately and with sufficient generality, the problem of predicting the growth
in 62 in the turbulent part can be addressed with confidence that it will lead to accurate

drag predictions.



II. RESEARCH DESCRIPTION

The goal of this research is to accurately predict the characteristics of the laminar
separation bubble and its effects on airfoil performance. Toward this end, a computational
model of the separation bubble has been developed and incorporated into the Eppler and
Somers? airfoil design and analysis program. Thus far, the focus of the research has been
limited to the development of a model which can accurately predict situations in which
the interaction between the bubble and the inviscid velocity distribution is weak, the so-
called short bubble. In this section, a summary of the research performed in the past nine
months is presented. The bubble model in its present form is then described. Lastly, the

performance of this model in predicting bubble characteristics is shown for a few cases.

Summary of Research

As described in Ref. 6, the first activity in the development of a short-bubble model
was to insert the model of Horton,” modified according to suggestions by Roberts,? into the
Eppler and Somers program. Not unexpectedly, the performance of this model was found
unsatisfactory. As shown in Fig. 1, the aerodynamic performance of the Eppler 387 airfoil
predicted by the original version of the Eppler and Somers program, where the analysis

method switches from the laminar to the turbulent boundary-layer equations at laminar

separation, does better than the modified version when compared with the experimental
data of McGhee et al.® This is only partly due to an inaccurate transition prediction since,
as shown in Fig. 2, Schmidt’s!® empirical transition criterion does capture the lowest-order
behavior of the bubble. The large region of separation predicted in the mid-c, range (Fig.
1) is not observed experimentally. It is thought to be a result of predicting too large of an
increase in 62 along the bubble.

As discussed in Ref. 6, the excessive increase in 62 is a consequence of the shape
assumed for the recovery pressure distribution in the turbulent part of the bubble. More

specifically, if the boundary-layer assumptions and Horton’s assumption of a constant
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(Cp/Hsz) are valid, then the increment in momentum thickness between transition and
reattachment is directly proportional to the area under the pressure recovery curve between
these two points. In Fig. 3, the inviscid pressure distribution for the Eppler 387 airfoil at
o = 0° is shown together with two possible bubble geometries. For a fixed transition point,
it can be seen how the area under the Stratford pressure distribution, originally proposed
in this context by van Ingen,!! is less than that under the linear distribution assumed by
Horton. That the area is less is also a consequence of the greater steepness of the Stratford
curve as compared to the locus of possible reattachment points used by Horton, shown as
a dotted line. The more favorable correlation of the Stratford recovery with the bursting
behavior of bubbles, as discussed by van Ingen and Boermans,!? provides another reason
for its use against Horton’s. The Stratford curve has been included in the program and
is used to numerically integrate the energy integral equation to obtain the increment in
62. The effect of this modification on the drag polar is shown in Fig. 4. The unrealistic
separation is greatly reduced. The predicted bubble geometry is not very different from

that of Fig. 2 except for a slight shortening of the bubble.

Inviscid vs. Ezperimental Pressure Distribution

At this point, it was thought that part of the cause for the discrepancy in drag predic-
tion could be the inability of the present model to account for viscous/inviscid interaction.
Therefore, before the influence of the separation bubble on the drag could be investigated,
it was necessary to isolate this from the inability of the boundary-layer method to account
for the effects of viscosity on the pressure distribution. This was accomplished by employ-
ing experimental pressure distributions, also from Ref. 9, as input to the boundary-layer
analysis.

The effects of using the experimental pressure distribution (the “inviscid” behavior
in the bubble region approximated by joining a straight line between the separation and
reattachment points) for the conditions of Fig. 4 are shown in Fig. 5. The drag is
underpredicted at the lower angles of attack and the region of turbulent separated flow is

moved to lower ¢¢’s. In Fig. 6, the laminar separation point is followed more closely than
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it was with the inviscid distribution and, therefore, the overall gross behavior of the bubble
is reproduced better. It is particularly interesting that the transition correlation, although
resulting in a decreasing bubble length, does not reproduce the gradual vanishing into
natural transition with increasing angle of attack. Thus, in addition to Schmidt’s transition
correlation, that of O’Meara and Mueller!® and that of Horton,” both also described in
Ref. 6, were tried. Neither of these, however, improved the prediction.

In order to determine the importance of bubble length in predicting the drag, the ex-
perimental bubble lengths were matched at all angles of attack by artificially adjusting the
transition points. In this case, the drag was underpredicted at the higher angles of attack.
These numerical experiments led to two important conclusions. First, as is apparent by
examination of the experimental pressure distributions presented in Figs. 7-9, Horton’s
assumption of a constant pressure in the laminar part of the bubble, while possibly a good
assumption for short leading-edge bubbles in high Reynolds number flows, is inadequate
for the longer mid-chord bubbles. For this reason, van Ingen and Boermans’s!? velocity

distribution in the laminar part of the bubble was included in the model,

v = .978 + .022 exp(—4.454¢ — 2.5¢7) (1)
Us
where
» S — 8g
€= ®e)s (6a)s )

Second, even at low Reynolds numbers, it does not seem necessary to employ potential
flow/boundary layer iteration. Although there are differences between the inviscid and
experimental pressure distributions at a given angle of attack, these are largely due to the
fact that the influence of the boundary layer on the zero-lift angle of attack has not been
taken into account. Since aerodynamic characteristics are usually compared at the same ¢,
rather than at the same a, however, the constant difference in angle of attack between the
inviscid and experimental lifts poses no obstacles to comparing drag predictions obtained
with the inviscid pressure distribution to the experimental drag polar. In the non-linear

ce-range, of course, such a comparison cannot be made without considering the effect of the
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turbulent separated region progressing upstream from the trailing edge. Eppler’s correction
to the aerodynamic properties in the presence of turbulent trailing-edge separation is quite
reliable and has been used extensively in the past. To analyze weakly interacting bubbles,

therefore, use of the inviscid pressure distribution should provide satisfactory results even

at very low Reynolds numbers.

Reattachment Region

In the results presented above, turbulent separation is erroneously predicted at the
higher lift coefficients. In addition to an overprediction of the increase in §, along the
bubble, this may be the result of a lack of generality with the turbulent boundary-layer
method used in the Eppler and Somers program. More specifically, the region downstream
of reattachment is characterized by a relaxing turbulent boundary layer. This is the most
difficult kind of boundary layer to analyze in that it is highly nonequilibrium and history
effects play a dominant role. The analysis method used in the program is based on empirical
equilibrium relationships between the integral parameters and cannot, therefore, account
for any turbulence lag.

As shown in Ref. 4 for a turbulent shear layer forming a free stagnation point behind
a base, some pressure recovery occurs downstream of the stagnation point. The same
behavior is observed in a reattaching laminar separation bubble. In the measurements
of Ref. 9, the intersection of the pressure recovery distribution in the turbulent part of
the bubble with the inviscid pressure distribution occurs downstream of the reattachment
location actually observed with oil flow. Furthermore, as Fig. 7 shows, the pressure
distribution exhibits a characteristic “undershoot,” or additional rise over the inviscid
value, for a distance of 10% of chordlength or more downstream of reattachment. This
may be indicative of the extent of the relaxing region. To explore the effect of such a
relaxing boundary layer, the method of Felsch, Geropp, and Waltz!* was implemented
as it incorporates non-equilibrium contributions in empirical relationships that are very
similar to those of Eppler. This had been previously done by Miley.1® As shown in Fig. 10,

a reasonably good prediction is obtained with this method. Before a complete assessment
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of this method can be made, however, it is first necessary to establish the accuracy of the
momentum-thickness growth prediction within the bubble.

As the bubble model does ﬁot account for any pressure interaction in the reattachment
region, a method more sophisticated than that of Eppler may not be necessary. It will
depend on the impact of the relaxing region on the growth of é,. If the inviscid pressure
distribution is employed_downstream of its intersection with the Stratford recovery, how-
ever, it seems almost certain that boundary-layer parameter values different from those
actually measured at reattachment will be necessary to start the turbulent calculations,
regardless of the boundary-layer method used. An indication for what these values should
be is provided by Eppler’s “bubble analog,” used in the unmodified version of the program
to monitor whether or not a bubble might cause a significant drag increase. It is based
on the pressure increase over which Has, as calculated from the turbulent boundary-layer
method, reaches the value 1.60 from the point of laminar separation, (H3z)s = 1.515095.
Since a value of 1.58 marks the upper limit for possible turbulent separation, according
to Eppler,’® in the present version of the bubble model a similar value is used at the
“reattachment” point, (Hzz)r = 1.57. As (62)r is calculated by the bubble model, the
turbulent closure relationships can be used to obtain the values of the other boundary-layer
parameters at reattachment, (Hi2)r, (¢f)r, and (Cp)r.

Figs. 11 and 12 show the predictions obtained using Eppler’s turbulent boundary-layer
method from the reattachment point as predicted by the bubble model. Each of these is
compared with the correspording predictions assuming transition at laminar separation.
By comparing Fig. 12 to Fig. 4, the effects of the changes to the bubble model discussed
above can be seen clearly. Using Eq. (1) instead of Horton’s constant pressure plateau has
decreased the value of Ur. As a consequence, the increment in momentum thickness in
the turbulent part of the bubble and, therefore, the drag predicted, are smaller. A smaller
value of (62)r and use of (Hz2)r = 1.57 instead of 1.51 have eliminated the premature
turbulent separation. The decrease in bubble length with angle of attack causes the drag

increment due to the bubble to decrease correspondingly. As with the method of Ref. 14,



no conclusions can be reached about Eppler’s method until the accuracy of the momentum
thickness growth prediction along the bubble can be relied on for any bubble geometry. In
any case, during the development of the bubble model Eppler’s turbulent boundary-layer
correlations have been used.

Having obtained a first estimate for the adequacy of using the inviscid pressure distri-
bution and for the accuracy of the momentum-thickness growth prediction within a given
bubble geometry, the prediction of the geometry itself appears to be the most important
aspect of the bubble problem. Predicting bubble size is strongly dependent on predicting

transition.

Transition

The starting point in the development of a general and accurate transition crite-
rion was to compare Eppler’s empirical criterion for attached boundary layers to the e¢”
method.!7'18 The development of the amplification factor, n, can be expressed as a function
of variables similar to the ones used by Eppler to describe the boundary-layer development,
namely s, and H;;. The success of both methods suggests that Eppler’s transition curve
should lie quite close to the linear stability curve corresponding to a value of n = 10, say,
when the two methods are plotted together in terms of these variables. In addition, as the
e™ method is easily extendable to separated boundary layers, such as the family of reversed
Falkner-Skan, or Stewartson,® profiles, it was hoped to extrapolate Eppler’s criterion to
separated flow by following the corresponding n-contour. Conversely, as the best value of
n for use in separation bubbles is still being debated in the literature,’® it was thought
that such an extrapolation might help resolve this issue.

Rather than developing the function n(Rs,, Hy2), it was chosen to use that given by
Drela.?° Fig. 13 shows contours of constant n, for 0 < n < 63, as well as Eppler’s transition
criterion, for 2.24 < Hy; < 4, on the same Rs, vs. Hy2 plot. Hy; is plotted as a reversed
axis for ease of comparison with corresponding values of Hs2. The disagreement between
the n = 9 curve and that of the Eppler criterion is surprising. The only region where the

two criteria are close is near zero pressure gradient. The absence of a clear correlation
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prompted a search for experimental values of Rs, and H;2 measured at transition inside
separation bubbles. Only a few points have been found, mostly from the measurements of
Brendel and Mueller.?!

As shown in Fig. 13, a first attempt of obtaining a transition criterion for separated
boundary layers is provided by extending Eppler’s transition criterion from H;; = 4 to a
much lower value of Rs, at Hy; = 20. Since the data from Mueller’s group comes from a
wind tunnel, Eppler’s criterion was extrapolated directly as it is believed to better reflect
the transition locus for free flight. The high values of n apparently necessary to reach
the extrapolation to separated flows of Eppler’s criterion vsimply reflect the limitations of
the e™ method. It is generally accepted that linear stability theory correctly models the
transition process for approximately 70% of the distance between neutral stability (n = 0)
and fully turbulent flow. The actual “transition region,” however, is usually defined as the
region between the first appearance of turbulent spots and fully turbulent flow.?4 Thus,
a value close to n = 10 can be regarded as marking the boundary between the linear
amplification region and transition onset in accordance with this definition. While the
value of n at the end of the transition region is still probably close to 15 or 20, and not
63, this value is reached through a non-linear transition process which is not modelled by
linear stability theory. In fact, in practice an intermittency function is usually employed
from the point marking the end of the linear amplification region in order to mimick the
non-linear transition process before the fully turbulent calculations begin.

Eppler’s curve and its extrapolation, on the other hand, are closer to the end of the
whole transition region and the beginning of the full turbulent calculations. As explained
in Ref. 25, for the transition of attached boundary layers the turbulent calculations are
commenced using the laminar boundary-layer parameter values at the transition point.
The distance it takes for the parameters to reach the turbulent values accounts to some
extent for a “transition region.” As the change in parameter values is very quick, however,
this distance is much shorter than the one over which an intermittency function is usually

used. As the Reynolds number decreases, transition occurs in increasingly adverse pressure



gradients and over a longer region of the airfoil surface. Thus, the discrepancy between
Eppler’s transition criterion and the €® curve in Fig. 13 increases until laminar separation
precedes transition. The criterion for separated boundary layers shown here is therefore
considered a physically plausible extension of Eppler’s criterion. Although the transition
criterion shown does not follow the behavior of the constant n contours, it has thus far
given the best correlation with experimental bubble lengths when used in conjunction with

the bubble model that will now be described.

Laminar Separation Bubble Model

Encouraging as the insight gained from a study of the transition problem may be, in
order to utilize a criterion such as the one shown in Fig. 13, it is necessary to calculate the
development of the separated laminar boundary layer. The fastest known way to do this
is by means of a global displacement-thickness iteration algorithm coupled with inverse
boundary-layer formulations for the laminar and turbulent parts of the bubble. While
such an algorithm is certainly much faster than a finite-difference approach, an even faster
means is highly desirable for use in a design code such as the one of Eppler and Somers.
Thus, an approximation to an interaction method has been attempted and is currently

under development.

Initial Bubble Model

Van Ingen and Boermans’s velocity distribution in the laminar part of the bubble,
Eq. (1), matches the measured pressure distribution quite well, in some cases. This
distribution, unlike Horton’s constant-pressure plateau, allows a slight pressure recovery
after laminar separation, quickly approaching a limiting value. Using detailed pressure
distributions in the bubble region available from recent wind-tunnel tests of the NASA
NLF(1)-1015 airfoil in the NASA-Langley Low-Turbulence Pressure Tunnel, the accuracy
of Eq. (1) was checked for several different conditions. It was found that, as the pressure
gradient along the bubble decreases, the pressure distribution tends to fall below van

Ingen’s curve while, as the pressure gradient steepens, it becomes flatter, closer to Torton’s
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approximation and above van Ingen’s curve. It is therefore postulated that Eq. (1) can be

improved by relaxing the amount of pressure recovery between separation and transition,

UE = (1 - DU) + DU exp(—4.454¢ — 2.5¢?) (3)
S

The steeper the pressure gradient along the bubble, the smaller the value DU.

The behavior of the velocity distribution as described above is consistent with an
inviscid velocity calculated over an ever thickening displacement surface in a steepening
adverse gradient. A first approximation to the development of the laminar shear layer that
would reflect this behavior was therefore attempted. The growth in é; is obtained from a

generalization of Schmidt’s!® self-similar free shear layer solution,

LI A (4)

(62)s

where Cs, is also a function of the pressure gradient along the bubble. Assuming that

skin friction is negligible, the variation in H;; is obtained from the momentum integral
equation,

__,_ U a 5
Hiz 2 ds ' ds (5)

U [dé; dU
b2

A check for transition is made at each downstream increment from separation by calculating

Rs, and by comparing it to the transition criterion shown in Fig. 13,
log,o|(Rs,)T) > 2.7321 + .05774H 5 — .007217(H,5)? 4 < Hys <20 (6)

Since the exact functional dependence of DU and Cj, on the dimensionless pressure gradi-
ent between laminar separation and turbulent reattachment is not known, many candidate
functions were tested. Although in some cases excellent agreement between the calculated

and the measured drag polars was obtained for one airfoil, the bubble model so configured

lacks generality.

Pressure Distribution in the Laminar Part of the Bubble

By comparing measured bubble geometries to the ones predicted with the above model,

it was realized that the boundary-layer development upstream of separation may have an
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even stronger influence than was taken into account. Thus, as Gaster’s! pressure gradient

parameter includes the value of momentum thickness at separation,

(62)% AU
v As

P= (7)

it was thought that this might be a better independent parameter than simply the average

pressure gradient along the bubble,

A(U/Us) _ (Us = Ur)/Uco (8)
A(s/c) (ss —sr)/c

In dimensionless variables P becomes

(9)

52)5]2 A(U/Us)
¢ A(s/c)

P=R [(
and embodies all three factors on which the bubble depends. Having specified this inde-
pendent parameter, it is necessary to determine whether a unique relationship links DU
and P. To this end, these variables have been extracted directly from the experimental
pressure distributions of the NLF(1)-1015 and the E387 airfoils. As Fig. 14 shows, the
collapse of the points around a unique relationship is acceptable. The width of the scatter

is of the same order of magnitude as that caused by reading error. The solid line is a

quadratic least-squares fit that has been included in the model,
DU = 0.0609691 + 0.304819P + 0.507176P2 (10)

Van Ingen and Boermans’s!? original value of DU = 0.022 falls in the middle of the
variation in DU shown in Fig. 14. In the near future it is planned to utilize available
experimental data, such as that of Refs. 26, 27, and 28, to confirm and refine this functional
dependence.

When the velocity distribution defined by Eqs. (3) and (10) is used in conjunction with
the approximate development of the separated laminar shear layer described above, large
discontinuities in the boundary-layer paran.eters appear at the point of laminar separation.

Upon examination of the bubble velocity distribution near the point of laminar separation,
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unlike in the experimental distribution, it was noticed that a discontinuity in the velocity
gradient was present. In order to match the gradients at laminar separation, a further
unknown is therefore introduced in the original velocity distribution of van Ingen and
Boermans’s, Eq. (1). Specifically, the product {(Rs,)s(62)s] in Eq. (2) serves simply as
a scaling factor between the physical variable s and the universal dimensionless variable
¢. Thus, the scaling factor is now solved for as that which yields a velocity distribution
in the laminar part of the bubble whose gradient is continuous with the gradient of the
inviscid velocity distribution at separation. By forward-differencing the velocity gradient at
separation, the boundary-layer edge velocity a small distance DL downstream of separation
is simply

dU
Upr =Ug +DL(——> (11)
ds / ¢

For this value of the velocity, Eq. (3) becomes

L 2
QUD_L = (1— DU) + DU exp _asasZE g5 (P—> (12)
S

SF SF

Eliminating Upy, between these two equations leads to an explicit expression for the scaling

factor,

4.545DL

Sp—_1
2 log [1 + —-—U_?EL;U(%)S}

1 4.545DL 10DL? (13)
2\ | log [1+ %ﬁ(%‘s—’)s] log [1+ 2pr (%) s

This factor is of the same order of magnitude as [(Rs,)s(62)s]-

Present Bubble Model

Eppler’s boundary-layer analysis method employs two coupled governing ordinary dif-
ferential equations, the momentum and energy integral equations, together with appropri-
ate closure relations.?® As discussed by Drela,2® contrary to simpler, one-equation methods

such as that of Thwaites, in two-equation methods the shape factor is not uniquely related
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to the pressure gradient parameter. This allows methods such as Eppler’s and Drela’s to
accurately analyze the non-similar boundary-layer developments characteristic of aerody-
namic flows, provided that the assumed family of velocity profiles approximates the actual
flow reasonably well. Since the discontinuities in boundary-layer parameters at laminar
separation did not disappear after matching velocity gradients, it was decided to implement
the same Runge-Kutta method used by Eppler to analyze attached boundary layers, to-
gether with the closure relationships based on the Stewartson profiles developed by Drela,
to analyze the laminar part of the bubble. Instead of implementing this boundary-layer
method in the inverse mode as it is usually done, however, the generality provided by the
two-parameter family of velocity distributions suggests that it might be used in the direct
mode.

In the present version of the bubble model, the development of the separated laminar
shear layer is calculated exactly, within the approximation of the pressure distribution
and of the assumed Stewartson® profiles. Since 6, and 63 are obtained directly from the

governing equations,

dé 6o dU

P R T o n 14
dés 83 dU

PR (15)

the transition criterion is expressed in terms of Rs, as a function of Hj,, instead of Hy,,
logo[(Rs, )] > —30.936 + 44.797 Hap ~ 14.784(Ha2)? (16)

This criterion is similar to Eq. (6) and is very preliminary. Once transition is detected,
a Stratford pressure distribution joins (sr,Ur) to (sg,Ur), on the inviscid pressure dis-
tribution. The increment in §; in the turbulent part of the bubble is found by using
the Stratford curve in the integrated form of the energy integral equation as previously
discussed.

To account for the pressure gradient the bubble is actually trying to overcome, the

model is closed by introducing a simple local iteration algorithm. The pressure gradient
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at laminar separation is used to obtain an initial guess at P, from which an initial velocity
distribution, shear layer development, and transition and reattachment points are obtained.
The resulting pressure gradient along the bubble, —A—g—(’%l, is used to obtain a second
estimate at P and the bubble calculations repeated. The third and subsequent iterates
are obtained by means of a relaxed Newton’s method operating on the difference between
subsequent pressure gradients. The procedure converges very quickly to a pressure gradient.
along the bubble exactly equal to the one used to calculate the development of the laminar
part. In drag/polar analyses, it has been found helpful and efficient to utilize the converged
value of pressure gradient at one angle of attack as the initial guess for the subsequent

angle of attack.

Preliminary Results

The laminar separation bubble model described above promises to be very general
and very accurate. In fact, it is formulated in terms of the governing equations and of very
general and flexible functions whose dependence on local and global flow characteristics
has been determined. The transition criterion, which controls the size of the bubble, is
inextricably linked to the development of the separated laminar boundary layer and to
conditions at separation such that, as (Rs,)s increases, the difference [(Hs2)r — (H32)s|
approaches zero. The development of the separated laminar boundary layer, in turn,
is driven by a velocity distribution function which is completely determined by Gaster’s
pressure gradient parameter and by the velocity gradient at laminar separation. This
version of the bubble model, however, is limited in that its accuracy depends on the
accuracy with which the family of reversed profiles used in deriving the closure relationships‘
Hi2(Hsz2), cf(Hsz2, Rs,), and Cp(Hzz, Rs,) reproduces the actual flow. As discussed by
Fitzgerald and Mueller,’> LDV measurements inside the bubble show velocity profiles that
are quite different from the Stewartson profiles, whose use in the present model could
therefore explain the difficulties encountered. This problem is currently being addressed.

The most convenient way to illustrate how the transition criterion, Eq. (16), is used
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is by plotting it together with the shear layer development on the same plot that Eppler
uses to describe the boundary-layer development. Since H3p and Rs, are calculated at
each point along the boundary layer, by connecting subsequent (H3z, Rs, )-pairs on a plot
whose axes measure the variation of these two variables, the boundary-layer development
from the stagnation point to the trailing edge can be described in a very concise way. In
addition, since all the separation and transition criteria are expressed in terms of these two
variables, such a plot is especially useful. Fig. 15 showsthe boundary-layer development for
the E387 airfoil at a = —2.3° and K = 300,000. The transition criteria and the bondary-
layer separation conditions are indicated on the plot. While the actual development of the
shear layer between separation and transition is plotted, a straight line joins transition
to reattachment. The upper surface has a mid-chord bubble which causes a moderate
increase in Ks,, while the lower surface has a short leading-edge bubble. The intersection
of the curve defining the development of the laminar part of the bubble with the transition
criterion occurs outside of the range of the plot.

Fig. 16 shows the pressure distribution corresponding to the boundary-layer devel-
opment of Fig. 15. The close agreement with the experimental pressure distribution at
o = —2° shows how the shift in zero-lift angle should not be regarded as strong vis-
cous/inviscid interaction. The bubbles sizes, shapes, and locations are matched quite well.
Fig. 17 shows the complete viscous analysis summary for the same angle of attack. To
provide a better feel for the physical behavior of the bubble, the same graph of Fig. 15
is shown together with distributions of boundary-layer properties plotted as functions of
arc length. The main shortcoming of the present model can be seen in the distribution
of momentum thickness; its growth in the laminar part of the bubble is smaller than the
resolution of the plotter, such that a horizontal line is shown. This prediction is believed
erroneous. As all the boundary-layer variables are coupled, although the governing mo-
mentum and energy integral equations are believed correct, the wrong closure relations
would cause the free shear layer development to be in error. As a result. the transition

location may be wrong. In fact, the present model does not predict the gradual vanishing
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of the bubble into natural transition as the pressure gradient increases as is observed in
the experiments.

As an assessment of the generality of the present model, the NLF(1)-1015 airfoil
was analyzed at B = 500,000. This airfoil is particularly difficult to analyze by any
method due to the strong trailing-edge viscous/inviscid interaction induced by the large
aft-loading. Such interaction causes a marked decrease in the aft-loading such that it is
impossible, unlike for the E387, to find an angle of attack at which the experimental and
inviscid pressure distributions correspond. Another consequence of this is that the lower
surface bubble has a greater difficulty reattaching to the inviscid pressure distribution than
in the actual flow. By adjusting the transition criterion, it is possible to make the lower
surface reattach; however, although the transition prediction is not yet reliable for the
reasons discussed above, it was desired to use exactly the same bubble model as for the
E387. Therefore, rather than altering the transition criterion, the experimental pressure
distribution was used to calculate the boundary-layer development. Fig. 18 shows this
experimental pressure distribution, at a = 2°, together with the inviscid at o« = 1°. The
effect of the strong trailing-edge interaction is clearly visible. If the mismatch in the
location of laminar separation is taken into account, the shape of the pressure distribution
in the laminar part of the bubble is predicted quite well. Fig. 19 shows the boundary-layer

development for this case.
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III. RESEARCH PLANNED

Coupling the various parts of the bubble model and “anchoring” the pressure distri-
bution in the laminar part to local flow characteristics has made the model quite general.
The weakness of such a formulation, however, is that if one part of the mnodel is not right
everything else is affected. Thus, before further calibration of the model can proceed, a
better family than the Stewartson profiles must be utilized to develop alternate closure re-
lations to the ones presently used in calculating the development of the separated laminar
shear layer.

Fitzgerald and Mueller® have obtained good agreement between their measurements
and the two-parameter profile family originally developed by Green* for the turbulent
reversed profiles in a reattaching shear layer downstream of a base. As shown in Fig. 20,
the two parameters are linked to the geometrical characteristics of the profiles. (h/b) is
the ratio of the distance of the shear layer from the centerline of the wake to the width of
the shear layer and G is the amplitude of Coles’s wake function. Since there is slip along
the centerline of such a recirculating base flow, these profiles cannot be used to develop a
correlation for cs. In view of the characteristically small values of ¢y in the laminar part of
the bubble, however, it still seems worthwhile to investigate the correlations for the shape
factors and Cp and compare them to those obtained with the Stewartson profiles.

By applying the definitions for the integral thicknesses of the boundary layer and for
the dissipation coefficient, the following relationships are obtained:

h
1+ 28

H12: 2
(1-26)-2:(1-20)

(2-2G+2G?) +4%(1- 3G +2G?)

Hay = 18

: (1-3G)~25(1-20) ue)
263 h

Rs,Cp = "2 [1—%64—23(1—26‘)] (19)

In order to compare these relationships to those obtained from the Stewartson profiles, it

is necessary to know how the two parameters vary inside the bubble. The values used by
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Fitzgerald and Mueller to fit the profiles measured inside one bubble can serve as a starting
point. The three boundary-layer variables are evaluated at values of the parameters corre-
sponding to the same downstream station inside the bubble and then plotted against each
other. The same calculations are then repeated for values G and (h/b) similar to those
used in Ref. 5 in order to determine the sensitivity of the correlations to these parame-
ters. The result is shown in Figs. 21 and 22 where these new two-parameter correlations
are compared to those developed by Drela from the Stewartson profiles. The solid lines
utilize the fitted variations of G' and (h/b). As both H,2 and H3; increase monotonically
between separation and transition, moving to greater values of the abscissa on these plots
corresponds to moving downstream inside the bubble. Thus, both are very similar to the
Stewartson correlations near separation but can be quite different further downstream.
The new correlations are very encouraging. While Hy2(H32) seems quite sensitive to
changes in the parameters, Cp(H3z2, Rs,) is not, thereby making the determination of its
exact dependence on G and (h/b) less crucial. It appears from the measurements that the
back-flow, proportional to G, may be constant within each bubble although different for
different bubbles. As shown in Fig. 21, the values of shape factors actually measured,
although different in absolute value, follow the same slope, thus confirming a constant
value of back-flow velocity. These considerations justify eliminating (h/b) between Egs.
17 and 18 and expressing the closure relationships in terms of Hjzs, calculated from the
governing equations and G, whose behavior within each bubble appears easier to correlate

to local flow conditions,

_ 3(1—G) - Hy,
e = 08020 (20)
w26 [ 3 (4-5G)(1—G)~(2-3G)Hs
ReCp = ——=|1- 3G~ 4(1 - G) - 2Hs; (21)

Thus, the unknown parts of the boundary-layer method for the laminar part of the bubble
have been reduced to G and cy. Physically grounded assumptions can be made about
variational trends for both variables, however. For instance, it is reasonable to expect

that, as the pressure gradient along the bubble increases, the strength of the recirculating
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flow, and therefore G, increases also. With increasing back-flow, ¢y becomes more negative.
Although a precise knowledge of the function ¢s(Hsz, G, Rs, ) is lacking, an approximation
will suffice to test whether P, or a suitable alternative, can close the boundary-layer method
by serving as independent parameter for both DU and G.

The introduction of an additional parameter defining the velocity profiles leads to
a much more complex transition criterion than presently employed. Any one of the n-
contours in Fig. 13 shows the variation of the stability characteristics of the Stewartson
profiles with changes in the single parameter H;;. Here H;, is a unique function of
the pressure gradient parameter appearing in the Falkner-Skan equation and defining the
Falkner-Skan profiles. If an additional parameter defining a family of velocity profiles
is added, as is the case with Green’s profiles, then a linear stability analysis will yield a
family of n-contours for each value of n. Each member of this constant-n family of contours
corresponds to a different value of the second parameter defining the velocity profiles. In
physical terms, this means that the velocity profiles will become more unstable as the free
shear layer detaches itself from the airfoil surface and as the amount of back-flow increases.
Therefore, for a value of n = 9, for instance, each contour should follow the behavior Eq.
(16) as (h/b), or Hsz, increases and a separate transition criterion will be necessary for
each different value of G. This issue is currently being addressed.

Another important factor affecting the behavior of separation bubbles is the level of the
freestream turbulence intensity. Although small in flight, this can have a strong influence
on wind-tunnel tests. Therefore, properly accounting for it becomes indispensible for the
development of a useful bubble model. In addition, many aerodynamic vehicles do not have
smooth surfaces or may suffer from insect contamination. The present version of the Eppler
and Somers code lumps both effects into a parameter which controls the position of the
transition locus on the boundary-layer development plot. The present configuration of the
bubble model makes the extension of this treatment of roughness/freestream turbulence
straightforward. After the development of the bubble model has been completed and its

generality and accuracy in low-turbulence flow over smooth surfaces have been assessed,
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its range of application will be extended to take into account roughness and freestream

turbulence.
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