
ORIGINAL PAGE IS
OF POOR QUALITY

N89-19838

S PA c E B o RN E V H S I C M u LT IP RO c E s s o R S Y s T EM
FOR AI APPLICATIONS

H e n r y Lum, Jr.
NASA Ames Research Center

Moffitt Field, CA 94040

Howard E. Shrobe’and J o h n G . Aspinall
Symbolics Cambridge Research Center

11 Cambridge Center
Cambridge, MA 02142

A b s t r a c t Viewpoint. In this viewpoint memory does not consist

A multiprocessor system, under design for
space-station applications, makes use of the
latest generation symbolic processor and
packaging technology. The result will be
a compact, space-qualified system two to
three orders of magnitude more powerful
than present-day symbolic processing sys-
tems.

1 Symbolic Computing
The tasks for which symbolic computing is uniquely
qualified are different from those served well by con-
ventional numerical computing. Conventional pro-
grams tend to be uniform, simple, homogeneous, and
numerically intensive. Symbolic programs, on the
other hand, are diverse and heterogeneous, involv-
ing a variety of mechanisms and conceptual tasks
within a single program. A single symbolic comput-
ing application, for example the management of an
autonomous space vehicle, will have to perform a va-
riety of tasks such as hierarchical classification, signal
interpretation, hypothesis formation, matching, and
logical inference; not to mention conventional numer-
ical tasks. It will have to employ a variety of different
mechanisms such as rule-based programming, frame-
instantiation, constraint propagation, numerical simu-
lation, object-oriented programming, symbolic math-
ematics, and truth maintenance; all within a single
large system.

The popular notion of an AI program as a single,
simple rule interpreter is a gross oversimplificat,ion.
In fact, symbolic computing places much more serious
demands on the system architecture than would be
presented by the need simply to to support a simple
rule interpreter.

of a stream of raw bits organized into bytes or words.
Rather, it consists of much larger conceptual entities
which are thought of as objects. An object might be
something simple like a list, an array, an integer or
it might be something with higher semantic content,
for example, a node in a semantic network or a data
structure representing an entity in the real world.

These objects should have an identity. This means
that you should be able to tell the type of an object,
just by looking a t it. In addition, one should be able
to tell its location in memory. The techniques that are
used to do this are called storage conventions. Ideally,
the hardware should guarantee that the storage coil-
ventions are never violated.

The object-oriented viewpoint depends upon the
ability to make memory seemingly infinite, in the
sense that there will always be room for allocating new
objects. Indeed, the goal is t o free the programmer
from worrying about where objects are allocated and
when they are deallocated. In practice, this means
that the system needs to support garbage collection,
the process of reclaiming unused storage. It is uec-
essary that unused storage be reclaimed at a rapid
enough rate so that free storage is always available.
Garbage collection means that the symmetry of stor-
age is maintained; to the programmer, all storage is
the same and its always available.

The second major feature of the object-oriented
viewpoint is that the programmer codes using Generzc
Operattons. A generic operation is defined as an ab-
stract, conceptual operation which does not reflect the
limitations of the hardware. For examplc, adrli1.ion is
a conceptual operation which is meaningful to apply
to integers, floating-point numbers, vectors, polyno-
mials, etc. Ideally, there should be a single operation,
called PLUS, which does all of these, dispatching 011
the type of the objects being added to determine how

1.1 T h e Objec t -Or i en ted Viewpoin t to perform the Operation.
A viewpoint of a computer that is characteristic of
symbolic computation is called the Object-Orzented

‘Iloward Slirobe is also a Principal Research Scientist

Modern symbolic computing hardware allows this
viewpoint to be supported emciently, I t is
ware’s job to check every operat,ion and decide how
to perform it. based upon the types of the operands.
So in eKect that hardware will tell itself: “That’s a at tlie M I T Artificial Intelligence I A o r a l o r y .

153

fixed-point number and therefore I should do integer
add,” or, “That’s a floating point number, I should be
performing floating point add.” Or, “It’s an extended
number that I can’t directly support at all, but I can
support it by this sequence of other instructions.”

In addition to higher level code, this approach
leads to better debugging capability and supports the
concept of incrementality. Since dispatching on the
operand type is a runtime function, a new data-type
may be added by simply defining the generic opera-
tion upon the new type. Existing software can now
use the new data-type without recompilation. Any
attempt to do an invalid operation on any particular
piece of data is detected by the hardware, allowing
the programmer to enter a debugging session in the
context of the error.

2 Ivory
Symbolics is now implementing a new generation of
symbolic processing architectures built upon the Ivory
processor. Ivory-based architectures represent the
state of the art in satisfying the requirements of sym-
bolic processing, as described in the previous section.
In particular, Ivory supplies the following.

Runtime type checking - Parallel tag processor,
late-branch ROM and comprehensive trap logic
support generic arithmetic and pointer manipu-
lation.
Virtual Memory Support - On chip translation
buffer, microcoded cache-miss backup and the
support of CDR-coded lists (more compact phys-
ical memory representation).
Specialized Lisp operations - Pipelined memory
interface and high level microcoded primitives
support efficient implementation of operations
such as CAR and CDR.
Garbage Collection ~ On chip hardware to fa-
cilitate efficient GC algorithms such as the
Ephemeral GC [Moon, 19841.
Fast call and return - Specialized datapaths, par-
allel operations, and fast cycle time support the
complex calling strategies required by Lisp.
Fast “vector” instructions for garbage collection,
data-base searching and graphics applications.
A fast coprocessor interface, primarily used to
provide high floating point performance.
A programmable interleaved memory interface to
allow a wide range of memory system speeds and
architectures to be used - ranging from small
high speed caches to four-way interleaved stan-
dard hlOS memories.

Data Architecture

object reference or is part of the representation of an
object. A machine word contains 40 bits, which are
assigned as in Figure 1.

2 6
Bits Bits

32
Bits I CDR I Data I Addressor

Code Type Immediate Data

Figure 1: Ivor) Memory Word

The data t y p e f ie ld indicates what kind of informa-
tion is stored in a word. The cdr-code f ie ld is used for
various purposes. For header data types, the cdr-code
field is used as an extension of the data-type field.
For stored representations of lists, the contents of this
field indicate how the data that constitute the list are
stored. This results in a compact representation of
lists. The address o r immediafe d a t a f ie ld is inter-
preted according to the data type of the word. This
field contains either the address of the stored repre-
sentation of an object, or the actual representation of
an object.

Ivory supports the rich variety of objects found in
symbolic processing environments as described in the
previous section. General Lisp data structures such as
symbols, lists, arrays, strings, and characters are all
directly manipulated by the instruction set For nu-
meric data types, Ivory includes very efficient support
(immediate object representation) for 32-bit integers
and 32-bit IEEE single-precision floating point num-
bers. It also supports infinite precision integers, G4-
bit IEEE double-precision numbers, rational numbers,
and complex numbers.

2.2 Virtual Memory
Ivory implements a 4 gigaword virtual addrcsss space.
The 32-bit virtual word address is divided into a 24-
bit virtual page number and an &bit page offset. The
virtual page number i s mapped via the P a g e Hash
Tab le (PIIT) to get a 24-bit physical page niiinber.

\Vhile the 25G-word page size may seein sillall by
traditional processor standards, it is appropriate for
symbolic processors. Symbolic processors tend to have
many small functions, small data objects, and little
locality of reference. These factors teiid to liniit the
advantages of a larger page size, and the smaller page
size allows better allocation of physical nieiiiory

2.3 Garbage Collection
The Ivory mrinory architecture supports two meth-
ods for garbage collection (CC). Both strategies are
incremental i n nature arid identical to the Syinbolics
3G00 impler~irntation [Rloon, 1981; hloon. lOS51. ‘The

In line with the requirements of the object-oriented
viewpoint, every word in memory contains either an

two methods differ iiihow they decide to actuaily re-
claim storage. In hoth cases the garbage collectioii

154

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR Q V A L I N

process condemns or identifies storage it would like
to reclaim. This storage is considered to occupy old
space while other storage is termed new space. If the
processor attempts to read an object reference to old
space, a trap will be taken and the Dansporter will be
invoked. This is a software routine which copies the
storage containing the object representation into new
space. I t also updates the pointer to the old object
in memory to point to the copy of the object in new
space. In order to signal the trap which invokes the
transporter the memory interface looks a t the data
type of a word to determine if it is a pointer, and if
the address field points to old space.

The Dynamic GC is used to reclaim objects that
have lifetimes on the order of tens of minutes to hours
and days. I t performs a single linear scan of all of new
space, reading every memory word. During this scan
the memory interface will cause the transporter to be
invoked if the word is a pointer to old space. At the
end of the scan, all of new space must point only to
new space and the storage used by old space can be
reclaimed. This scan is done incrementally so as not
to hurt interactive performance.

The Ephemeral GC (EGC) is used for reclaiming
objects that have lifetimes of the order of seconds to
minutes. This scheme is based on the observation that
most of the objects created in the system have a rel-
atively short lifetime. The EGC attempts to reclaim
the most recently allocated objects by breaking up
storage into levels, corresponding to how recently an
object was created. Ephemeral GC requires the mem-
ory system to maintain a database of pages which con-
tain pointers to a more recent level. When the EGC
condemns the most recent level it uses the database to
scan only those pages which potentially contain point-
ers to the condemned level. To support this, the mem-
ory interface must notice when it is writing a pointer
to a more recent level into a page. In Ivory, this infor-
mation is maintained in the PHT for pages which are
in physical memory, and in a companion structure for
pages which reside in secondary storage.

2.4 Stack Execution
Ivory uses a stack-based model of execution. The
stack is divided into frames, one for each active func-
tion. The stack is used for passing arguments, al-
location of local variables, and intermediate results
of computations. A stack frame is indexed by three
pointer registers; the frame pointer (FP), the local
pointer (LP), and the stack pointer (SP).

The frame information consists of two words; the
offsets of the LP and SP registers from the FP, and
the continuation of this frame. The continuation is
either the return address of this function, or the nest
function to call. The F P is used to access the frame in-
formation and the arguments to the function. The SP
is used to access intermediate results of cornpulat~ions.
The LP must be distinct from the FP because argii-
ments are pushed by the caller, and may be pushed in

I Local
Variables

Arguments

Frame
Information

Figure 2: Ivory Stack Frame

several different ways

2.5 Instruction Set
Ivory performs different operations depending 011 the
data-type of the word that is fetched as an instruc-
tion. Most object references push themselves onto the
top of the stack. This capability is used to supply ful l
word constant operands. A special data-type is used
to push the contents of the word whose address is spec-
ified in the address field of the instruction word. Other
data-types are allocated to perform specialized types
of function calls. There are data-types for calling coni-
piled functions and generic functions using the address
field to point to the function. A further type is used
to call the contents of a memory word as a fuuction.
This is used to implement dynamically linked fiinc-
tions. Finally there is a set of 16 data-types which
are further decoded into two “packed” iiistriictions.
The 32-bit immediate data, along with 4 hits from
the data-type field are combined to form two 18-bit.
instructions.

The Ivory instruction set incorporates ful l run-tiinc
error and exception checking. Esceptions are cases
which are not an error, but cannot he handled by
the processor hardware without, software intcrvent ion.
The checking performed by the instruct io11 srt i i i -
dudes full checking of data-types, sub
uninitialized variables, undefined functi
tection of integer and floating-point overflow. 1:scc.p
tions are handled by causing a trap t.hrough ii vector
in memory.

Even though strict error-clic~rking pcdoniicil is by
the instriirtion set, i t is possihle to esttwd l l i c i i i s t r u e
t,ions supplied to handlr new object, t y p w . 13y ritiliziiig
escept.ioii handlers and the N C W Flavors [hloon. 1 Mti]
object-oricnt,ed programming syato i i . i t is possiil)I,- I C >
drfine a nrw ol)jt.ct t y p that I I I ~ I S ~ I I ~ ~ ~ ~ I ~ ~ C S a s i i i i PX-

isting type i i i all progranis. C‘oiivcrrrly i t is Iwssil~le
to t.rt.a t t lie a rcl I it.cc t .ura I l y-dc f i iivd (la t.a- t y pc
of thc object-orirntrd systcni. This ~wriiiits I I I C t l c r -

155

I D E C

ADD PUSHB PUSHA -

PIIDGRAM: POPC ADD PUSHB PUWA

POPC ADD PUSHB PUSH A PVSH B .
ADD POP c

POPC ADD

P W c

Figure 3: Ivory Pipeline Stages

inition of generic functions (as described in the first
section of this paper) which can operate uniformly on
instances and objects with different data-types.

2.6 Microarchitecture
The Ivory microprocessor implements a 4-stage
pipeline as shown in Figure 3. The first stage fetches
the instruction, decodes it, and adjusts the program
counter. The second stage fetches the initial microin-
struction, computes the operand address, and ad-
justs the stack pointer. The third stage fetches the
operands and computes the result. The fourth stage
stores the result, unless a fault has occurred, in which
case it restores the state of the third stage.

Instructions spend only a single cycle in the first two
pipeline stages, but can spend an arbitrary number
of cycles in the execute stage. Simple instructions,
such as PUSH, A D D , and EQ execute in a single cycle.
Conditional branches are resolved in the second (D)
stage. A taken conditional branch executes in two
cycles; a not-taken branch in one.

Figure 4 shows a block diagram of the Ivory CPU.
Instructions are fetched directly from a 32 word (up to
64 instructions) direct-mapped instruction cache. The
cache, which is filled by an autonomous prefetcher,
serves to buffer instructions arriving from memory and
hold small program loops. A bypass path provides the
instruction directly from memory when the first stage
is stalled on a cache miss.

The operand address calculation data path con-
tains the stack frame pointer registers and a 32-bit
adder/suhtractor. It computes the address of the
operand and stack pointer adjustment according to
the macroinstruction. This data path is also usrd in
parallel with the main data path to accelerate function
call/return.

The main data path contains a 128 word topof-
stack cache, a 32-word scratchpad (whlch contains a
tluplicate of the top word on thr stack i n a fixed lo-
cation), the A L U , and tag checking logic. 'l'hr ALU
includes an add(.r, boolean unit, sliift/iriask logic., and
support for onc-hit-per-cyclr iritrgrr riiiiltiply/~livi~lr.

Tag checking is done in parallel with with the ALU op-
eration, so that in the common cases no time penalty
is paid for type checking. Similarly, ECC checking of
data from memory is done in parallel with the ALU us-
ing the on-chip ECC logic. Bypass paths for both the
top-of-stack cache and scratchpad forward the result
of the previous instruction to the ALU as necessary.

The Ivory processor supports a pipelined memory
bus which can have up to four outstanding requests
a t once. An associative queue of outstanding request
addresses is maintained for detecting when instruc-
tions arrive from memory and installing them into the
instruction cache. The memory interface protocol is
implemented by an independent state machine which
arbitrates between on-chip users of the memory sys-
tem and other bus masters.

3 Multiprocessing with Ivory
In addition to the features of Ivory described in the
previous section, there are several design features of
the Ivory processor specifically intended to support
multiprocessor architectures. They are:

Support for Futures.

Support for Special Variable Binding.
Synchronization primitives

3.1 Futures
Futures are a Lisp language construct which appear
in parallel extensions to Lisp such as MultiLisp [Hal-
stead, 19851 and QLISP [Gabriel & McCarthy, 19841.
A future is a compound structure which represents
a promised value coupled with a process that com-
putes the value. The future is a first class data struc-
ture which can be stored in other data structures,
loaded and stored even though the process computing
its value has not terminated. However, if the value
of the future is ever required for a computation (e.g.
it is one input to an arithmetic operation) then the
processes attempting to iouch the future bloclts until
the future's value is delivered. This facilitates a very
flexible, demand driven style of parallel processing.

Ivory provides a special hardware datatype for fu-
tures which is known about by the microcode and
the tags processor. This datatype acts as an invisi-
ble pointer; if a future has been delivered, the instruc-
tion attempting to use its value is not interrupted, but
simply follow the future pointer to its actual value. If
the value has not been delivered, the hardware causes
a trap; the operating system can then suspend the
requesting process until the value is delivered.

Without the hardware support provided for the fu-
ture datatype, the compiler would have to emit code
to check tlie datatype of eve ry value manipulated by
the prograrn. This is because any value might be a
future. Experiments with the QLISP system a t Stall-
ford Uriivrrsity haw shown that this leads to uuac-

ORIGINAL PAGE IS
OF POOR QUALITY

156

ORIGINAL PAGE IS
OF POOR QUALITY

STATUS

Bus
Control

I

Address mii
Registers t i

PCS

Map Instructio Prefetch --c Cache --
I 1

ADDRESS
U

Figure 4: Ivory Processor Block Diagram

ceptable overhead in their implementation on stock
parallel processing hardware.

3.2 Special Variable Bindings
Lisp allows two types of variable bindings. Lexical
binding of variables is the type familiar in all block
structured languages. Dynamic binding (also known
as special binding), however, changes the globally ac-
cessible value of a location through the dynamic ex-
tent of the binding. This change, however, is visible
only within the process which bound the variable; all
other processes see either the global value or their own
dynamically bound value.

Classically, special variable binding is performed us-
ing shallow binding. This involves overwriting the lo-
cation with its newly bound value while saving the old
value in a special stack. Shallow binding optimizes the
speed of access to the variable. Shallow binding can
be (and is) used in sequential machines that support
multiple processes. When a process relinquishes con-
trol of the processor, its special variable hindings are
undone; the process which gairls control of the pro-
cessor must firsl cstahlish its spccial variable hindings
before heginning its execution. ‘This rnakes processrs
switcliing costly, ever1 for srquential rnachinr:s.

In the parallel processing world the shallow bind-
ing technique doesn’t work at all. This is because
two distinct processors can be concurrently executing
separate processes each of which wants to bind the lo-
cation to a unique value. Since shallow binding works
by overwriting the single location there is no way for
two processes both to bind the same location.

This forces the use of the much slower deep bind-
ing technique for special variables. In a deep binding
scheme, each process maintains an ordered mapping
between locations and bound values. The mapping
must be ordered since a process can repeatedly rebind
the value of a single location and the latest binding
should hold. This data structure must be sequentially
searched for a variable binding; this is typically a very
slow process.

Ivory provides hardware support to optimize deep
binding. A special datatype, called bound locnlron,
is used to indicate that a location has been dynan-
ically bound. Whenever Ivory encounters such a
datatype, it traps to a microcode routine that searches
a hashtahle for the value of the binding. The liaslitahle
uses a key derived from both the identity of the Ijind-
ing process and the address of the location bound.
The binding and unbinding instructions keep this liasll
tahlo u p to date. A probe into this table is very fast;

157

Commercial VHSIC VHSIC
1.6 micron 1.25 micron 0.5 micron

VHSIC
0.25 micron

Figure 5: Relative sizes of a single Ivory processor in four different technologies.

if there is no entry in the hash table, then a classic
deep binding search is initiated.

This technique has two advantages over the tech-
niques possible without datatype checking hardware.
First, for locations which have not been dynamically
bound, there is no cost above that of shallow binding,
since the special techniques are only invoked for loca-
tions whose datatype is bound locafion; these mark-
ers are only placed in a location that is dynamically
bound. The second advantage comes from the hard-
ware assisted hashing used to fetch the binding. In
conventional processors neither of these techniques are
available. The lack of the bound location datatype is
particularly critical since any location may be dynam-
ically bound and hence any load or store must check
for this.

3.3 Locking and Synchronization
Parallel processing in the presence of side-effects re-
quires techniques for establishing critical regions, mu-
tual exclusion from data structures and joint synchre
nization of processors to rendezvous points. These are
very difficult to achieve efficiently without hardware
support. Ivory provides a sfore conditional instruction
that can serve as the basis for all of these facilities.
Store conditional takes three arguments; the first is
a location, the second two are the new value and the
test value. If the location currently contains a value
EQ to the test value, then the new value is stored in
the location. The value returned by the instruction
can be tested to see if the store succeeded.

Semaphores, atomic updates and locks can all be
implemented using this single atomic update primi-
tive.

4 Technology for a Spaceborne
Processor Architecture

The ultimate Spaceborne VHSIC multiprocessor will
result from a combination of the powerful computer
architecture ideas of Ivory with evolving VIISIC hard-
ware technologies. At each stage of this evolution, the
overall performance, integration and reliability of the

system will be increased. Three hardware technologies
are particularly important:

Fine-line VIISIC chip technology, moving froin
1.25 micron, to .5 micron and finally to .25 micron
Rad-Hard CMOS.
Super-chip technology which integrates a signifi-
cant portion of the total system onto a single large
die (2 inch square), using redundancy tecliuiques
to achieve adequate yields.
Button-Board System Packaging which allows
very dense packaging of boards into modules
without the use of backplanes and connectors.

4.1 Chips and Superchips
The first commercial Ivory chip is implemented in 1.0
micron CMOS technology and runs with a cycle time
in the vicinity of 150 ns. At this clock rate Ivory’s
performance is roughly 3 times that of the Symbolics
3600. A second version of Ivory is now available with
cycle times in the vicinity of 100 11s.

Radiation doses as high as lo5 rads are espectcd
in the space station environment. Since mechaui-
cal shielding takes up space and weight, the use of
rad-hardened technology is preferable. \’IISIC pro-
vides a CMOS technology with adequate radiatiou re-
sistance for space-station applirations. In additioii.
error-correcting logic on the memory bus of Ivory (nl-
ready provided in the coniniercial versioii of IvoIy)
may be enhanced for increased reliability to single
event upset (SEU).

Figure 5 shows how the die size for an Ivory c111p
will shrink as it is reimplemented i n newer \‘IISIC
technologies. Since Ivory is implemented in a twhuol-
ogy independent design system, it can be rctargctd
to these new technologies i n a matter of (lays tlirougli
a totally mecliaiiical process. These delist, procesws
also allow the cycle time to be rcduccd: cyclr- tiiiwh
below 50 ns slio~ild bc a c l i i ~ ~ v a b l r with t11c . 5 ~ i i i c r o i i
process.

Figure 0 sliows the outliiir of a super-clii~~ c o i i t ; i i i i -
ing Ivory chips iniplrmriited i u .5 atid .25 i i i i r ro~~ t ~ l i -

irology. Even w i t l i srvcral rcdriiidnut col)ich 0 1 [l i t ,

ORIGINAL PAGE IS
OF POOR QUALITY

158

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6: Ivory processors in a superchip

Ivory die, the superchip contains room for an exten-
sive cache memory. The advantage of this approach
is that the cache can be more closely coupled to the
processor, avoiding the delays associated with crossing
chip boundaries.

Using this technology also allows the chip architec-
ture to evolve further, leading to additional perfor-
mance improvements. Such processors should be ca-
pable of performance in the range of 15 to 20 times
that of the Symbolics 3600.

For small to modest scale parallelism, two inter-
connection technologies are appropriate. For system
of 4 to 6 Ivory processors, a shared bus with snoop-
ing caches is capable of providing adequate bandwidth
and a coherent memory image shared by all proces-
sors. However, a single bus system is not attractive
when fault-tolerance considerations are added in.

A cross-bar interconnection scheme can support a
larger number of processor (up to 32) and provide
greater fault tolerance. Figure 7 shows an example
of a crossbar interconnect.

4.2 Button Board Interconnect
Duttoiiboard Packaging is a new technology a t ’ I W V
which provides performance and density iniprove-
ments over those possible with conventional packagrs.
Buttonboard packaging replaces bulky edge coniicc-
tors with “button”-shaped contacts and small I’C-
board strips with low int,erconnect density and f w
layers. Buttons may be placed anywlicre on ;i cir-
cnit board to provide ail interconnect hrt.wrwi boards
This allows a reduction of the path Irnglh of i n l w
board signals, thereby reduring propagat ion delays.

I n the envisaged design, compoiiciil.-carryiiia l)oards
alternate with signal-ront.itig boards i n a stack wliirli

is fastened together to make a monolithic whole. Re-
sults of prototype testing seem to indicate that a
buttonboard-based design will easily meet electrical
and mechanical requirements for the space station.

Figure 8 shows how a crossbar system can be i n -
plemented using button board packaging. One inter-
esting feature of this packaging technique is that ad-
ditional processors (or memory) can be added sini-
ply by dropping in an additional processor card. A
full scale SVMS system should therefore capable of a
peak performance of greater than 500 times that of
the Symbolics 3600.

References
[Baker e t d., 19671 C. Baker, D Clian, J . Cherry, A .

Corry, G. Efland, B. Edwards, M . Matson, 11. M i l l -

sky, E. Nestler, I<. Reti, D. Sarrazin, C. Soninier, D.
Tan and N. Weste The Symbolics Ivory Processor:
A 40 Bit Tagged Architecture Lisp hlicroprocessor.
In Proceedtngs ICCD-87.

[Edwards e l a[., 19871 B. Edwards, G . Eflaiid and N .
Weste The Symbolics I-Machine Architecture: A
Symbolic Processor Architecture for VLSI Itnple-
mentation. In Proceedings ICCD-87.

[Gabriel & McCarthy, 19841 R.P. Gabriel and J . hlc-
Cartliy. Queue-based multiprocessing Lisp. Sympo-
sium on Lisp and Functional Programming, t\nyiist.
1964.

[IIalstead, 19651 IIalstead, R. hlulti1,isp: A L o w
guage for Concurrent Symbolic Computation ,\CAI
TOPLAS, October 1965.

[Moon, 19641 D.A. Moon Garbage Collcctioii i l l R

Large Lisp System. 196-1 ACXI Syinposiillli 011
Lisp a d Functional I’rogramming, August 1964,
pp. 235-246.

Architectnre of t l ~ c S y n -
bolics 3600. Proceedings of the 12111 IEEE l n t w n +
tional Syniposiutn on Cumpu ter Arcliitrctnri~, l!)&j,
pp. 76-63.

niitig with Flavors. Proceedings of OOI’SLA ‘$ti.

[Slirobc ~t ol . , 19871 11.K. SIirol,r. . I , (: . ..\spiiiall i i ~ i ~ l

N.1, . hlayle. Towards ;I \ ‘ i r tn ; i l l ’a r i i l l c l I I I I~wI I~~~~
I*:iigine. ’lo appear ii i I ’ r w c r i / / i i g s :I :\:I !-,s’ct’.

[Moon, 19651 D.A. hloon

[hlooii. I086] I) . i \ . hloon Ol)jcct-OI.i(.lilC~I I ’ L ~ ~ ~ ~ I I I -

pp. 1-6.

159

Figure 7: A crossbar interconnect. Processors are labeled P , memories M.

I I Interface Board ' 'Interface Board

I Interface Board -
Memories

L

- 1

L

-
-1 Interface Board

-
For Switch

- 1 Memories

4

Address And Data Connection

160

ORIGINAL PAGE IS
OF POOR QUALITY

