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Abstract 

A zonally symmetric, linear radiative-dynamical model is compared with observations 

of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is 

included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas 

opacities are accounted for but aerosols are omitted. Horizontal temperature gradients 

are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but 

are weak even in these cases, because the latitudinal gradient of radiative heating is weak. 

Seasonal effects on Uranus are extremely weak because the radiative time constant is 

longer than the orbital period. The one free parameter in the model is the frictional time 

constant. Comparison with observed temperature perturbations over zonal currents in the 

troposphere shows that the frictional time constant is on the same order as the radiative 

time constant for all these objects. Vertical motions predicted by the model are extremely 

weak. They are much smaller than one scale height per orbital period, except in the 

immediate neighborhood of tropospheric zonal currents. 

1. Introduction 

The Voyager spacecraft have provided a significant body of information on the meteo- 

rology of Jupiter, Saturn, and Uranus. In particular, the infrared spectroscopy experiment 

has yielded information on atmospheric thermal structure while the imaging experiment 

has obtained winds by means of cloud top tracking. In the work reported here, a simplified 

radiative-dynamical model is developed and used as a diagnostic tool to investigate the 

behavior of the thermal structure in the upper tropospheres and stratospheres of the outer 

planets and to examine the relationship of that structure to the observed wind fields. 

A number of models of the radiative equilibrium temperature structure for the outer 

planets have been developed. Much of the earlier work consisted of calculations of radiative- 

convective equilibrium temperature profiles for spatially and annually averaged conditions 

(Wallace e t  al., 1974; Wallace, 1980; Appleby and Hogan, 1984). More recently, radiative- 

convective temperature structure has been obtained as a function of season and latitude for 

Saturn, Uranus, and Neptune (Wallace, 1983; Wallace, 1984, Bezard e t  al., 1984; Bezard 

and Gautier, 1985 and 1989). Friedson and Ingersoll (1987) have applied a radiative- 
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I C  convective- dynamical model to Uranus in which meridional redistribution of heat was 

introduced with a parameterized baroclinic wave formulation, while certain aspects of the 

zonally symmetric circulation of Uranus have been modeled by Friedson (1987) and by 

Hou and Goody (1988). 

Gierasch e l  al. (1986) employed a set of linearized balance equations to  investigate 

certain aspects of the relationship between the observed temperature and wind fields on 

Jupiter. A similar model was used by Flasar e t  al. (1987) in an application to Uranus. 

In the latter study, the observed temperature as a function of latitude was imposed at  the 

lower boundary, and the calculated zonal wind field was compared with the observed zonal 

winds. Radiative forcing was not included in the model. In the present work we have 

extended the model to include realistic radiative forcing and have applied it to the atmo- 

spheres of Jupiter, Saturn, and Uranus. We have addressed two aspects of the temperature 

fields and circulation. The first is the remarkably small pole-to-equator temperature gra- 

dients found in the upper tropospheres and lower stratospheres of all three planets despite 

the strong latitude dependence of the insolation at any given time. The second concerns 

the relationship between the observed temperatures and winds; the two sets of observations 

are used to infer information on frictional damping times. 

In the following section, the dynamical model is presented, and the methods used to 

calculate the radiative forcing are discussed. In Section 3 we consider circulations with 

radiative forcing only, and examine the cases when the radiative time constant is both 

comparable to and significantly longer than the orbital period of the planet. In Section 

4 we simulate mechanical forcing from deeper layers by imposing the observed wind as a 

function of latitude as a lower boundary condition. Finally in Section 5 we summarize our 

results and conclusions. 

2. Formulation. 

A .  Notation and coordinates. 

Since the linear model we employ is well known (Leovy, 1964; Holton, 1975) we shall 

be very brief. The notation will be standard. Temperature will be written T(f? ,p , t ) ,  where 
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d , p  and t are latitude, pressure and time. A reference temperature profile To(p), to be 

defined in Section D below, will be based on horizontally averaged heating. We shall refer 

to a scale height based on To, 

9 
where R is the gas constant and g is the acceleration of gravity. We assume the ideal gas 

equation, so that p = pRT. For vertical coordinates we shall employ p and also, where 

convenient, z ,  where 
dP dz = --. 
P 

Thus z is a “Log p” coordinate. Where convenient we shall employ, in addition to the 

latitude 8, the meridional coordinate 

y = sind. (3) 

The mean planetary radius will be denoted by a. The Coriolis parameter will be denoted 

by f = 2flsin8, where R is the planetary rotation rate. Flow velocities in the eastward, 

northward and upward directions will be denoted by u, v ,  and w = N D z / D t .  

B. Equations of motion. 

The linearized equations of motion are 

1 d* 
fu + -- = 0, 

a a d  
a@ 
dz 
_ -  - RT, 

The coefficients in these equations are evaluated from the mean thermal structure. For 

example, po = p/RTo(p) ,  and the Brunt frequency is given by 
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, Forcing and dissipation are formulated in terms of equilibrium values and damping time 

constants in both the zonal momentum equation and the heat equation. T ~ ( @ , p , t )  is 

analogous to the seasonally varying (but diurnallv averaged) instantaneous radiative equi- 

librium temperature. It will be precisely defined in Section D. The momentum forcing 

term U E  will not be used in our experiments, but is displayed for symmetry. The time 

constants t E  and t F  can be functions of height. 

Equation (7)  permits a streamfunction to be defined. Let 

1 all, povcose = -- 
H 82' 

1 all, pciwcos8 = --- 
a de ' 

We shall express solutions as Fourier series in time; for example, 

where P is the orbital period. Time differentiation combined with damping leads to the 

following factors in equations (4) and (8): 

Combining equations (4) - (8) yields an equa.tion for each Fourier component of 4: 

The thermal forcing is expressed in terms of a thermal wind shear based on the instanta- 

neous radiative equilibrium temperature: 

4 



The left side of (14) involves an elliptic operator written with dimensionless coefficients. 

The coefficient of the first term is the square of the ratio of a deformation radius, N I i / Z f l ,  

to the planetary radius. For the cases of interest this ratio is much less than unity. Equation 

(10) shows that to order of magnitude u 5 $ / p o H .  Inspection of (14) thus shows that 

thermal forcing will produce v =z u E T / f l t R  (provided that the ratio of the D's is of order 

unity). Near the equator, however, y - 0, Coriolis forces become weak, and the amplitude 

of $ is larger. This is the low latitude Hadley regime, whose dimensions and amplitude 

have been discussed by, for example, Schneider and Lindzen (1977). Further discussion of 

the behavior of solutions will be presented in the context of specific cases. 

C. Boundary conditions. 

At the top of the atmosphere and at  the poles there must be no mass flux into the 

system, and therefore we require 

The boundary condition at the base of the system involves fundamental questions about 

the degree to which the middle atmosphere circulation can be uncoupled from that of the 

lower atmosphere. For the moment, we shall simply specify three possibilities. If, in some 

manner, the vertical velocity is specified at  the base, then (11) gives 

= -upow. ad'(Pbase7 Y, t )  

aY 

For example, if w = 0 is specified, (16) and (17) lead to y!~ = 0 at the base. 

If data  exist determining the latitudinal distribution of temperature at the base, then 

one would rearrange (8) to give 

R 
N2 H 

In this case, when (17) is integrated to give 47 it is possible that a net mass flux through the 

lower boundary will be discovered. Since the boundary is defined to be at a fixed pressure, 

the net mass flux would represent an error either in the data or in TE, and a correction 

would need to be made. 
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A final possibility is that either observational data or modelling of the lower atmo- 

sphere give the zonal velocity at  the boundary. Then (4 )  and (10) give 

In this case the vertical velocity at the base will emerge from the solution. 

D. Radiative forcing. 

The heat equation (8) with radiation in a general form is 

where Q I R ( ~ ,  y, t )  denotes infrared energy deposition per unit volume and time (usually 

negative, representing cooling) and Qs denotes solar heating. Let the annual mean be 

denoted by an overbar, for example, Qs(p,y).  Notice that Qs is at  most a very weak 

function of temperature (through the dependence of absorption coefficients on the temper- 

ature) but that QT is a strong one, since i t  is proportional to the Planck function. The  

annual average radiative equilibrium temperature T E ( ~ ,  y) is the solution of 

Recall that  To(p) is the area weighted horizontal average of T ~ ( y , p ) .  Now assume that the 

infrared term can be expanded in terms of the local temperature, and define the radiative 

time constant by writing 

~ Q I R  
Q I R  = GIR + 7 (T - T E )  

- 
= Q I R  - t E  (T - ? E ) .  (22) 

This requires the neglect of exchange terms in the formulation of the radiative heating. 

This type of approximation is discussed by Goody and Yung (1988). Next, we write the 

time variations of the solar heating in terms of TE - T E ,  which constitutes the definition 

of TE:  

Qs = &s f ( T E  - T E )  . 
t E  
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Thus T ~ ( y , p )  is a true radiative equilibrium solution, but T ~ ( p , p , t )  contains a time 

varying part which is directly proportional to the solar heating perturbations. Note that 

TE is not the instantaneous radiative equilibrium temperature. Under this formulation 

the only linearization is in the infrared terms. As the final step in the formulation of the 

approximation, the coefficients in the foregoing equations, which are functions of TE(P, y), 

are instead evaluated only as functions of To(p).  Inserting (22) and (23) into (20), using 

(21),  then gives the heat equation (8).  

E. Solar heating by gaseous absorption. 

We follow the formulation of Bezard e t  al. (1984) for the strong methane bands at  

3.3, 2.3 and 1.7 pm. For the weak methane bands at wavelengths less than 1.7 p m  we 

follow Wallace e t  aE. (1974). We find 

In this expression po is the cosine if the solar zenith angle, the subscript i labels the 

particular band, and Fai is the specific flux of the sun (per inverse centimeter) at  the i t h  

band. N; is the column abundance of the gas (for i = 1 ,  2, 3 always methane) down to  

the level p ,  expressed in cm-amagats. & is the Curtis-Godson (abundance weighted) mean 

pressure along the beam path from space to the level p .  Band parameters are given in 

Table I. The second line of (24) gives the heating due to the weak bands. We averaged 

the band parameters of Wallace e t  al. (1974) over two spectral intervals, &Jb from 13514 

cm-' to  9804 cm-' and Au, from 9434 cm-' to 6667 cm-'. The Fa's  are the average 

specific solar fluxes over the intervals. The absorption parameters, averages of those from 

Wallace et  d., are c, = 1.36 x loe4 and cb = 4.8 x (cm-amagat)-'. 

F. Infrared heating. 

We evaluate cooling due to emission from the 7.7, 12.2 and 13.7 p m  bands of methane, 

ethane and acetylene, using band parameters from Cess and Chen (1975). Here also we 
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consider only the radiation path from the level of interest directly to space. In contrast, 

infrared heating due to hydrogen opacity requires an exchange formulation. We normally 

used 64 levels between 1 bar and space, assuming that the Planck function a t  each frequency 

is piecewise linear. The spectrum between 50 cm-' and 2000 cm-' was evaluated at  

20 cm-' resolution. The collision induced absorption coefficients for H2-H2 and H2-He 

collisions were taken from Bachet e t  al. (1983), Cohen e t  al. (1982) and Dore et al. 

(1983). Our expression for the infrared heating is 

where Q H  is the hydrogen contribution, Bi denotes the Planck function at band i, the 

band locations and parameters are given in Table 1, and a diffusivity factor of 2/3 has 

been used to relate the column band transmission to the flux transmissivity (Goody and 

Yung, 1989). 

3. Radiatively Forced Circulation 

A .  Radiative calculations. 

We shall first consider the circulation resulting from radiative forcing only. The lower 

and upper boundaries of the model are placed at the 1 bar and lo-' bar levels, respectively. 

The zonal wind u is set equal to zero on the lower boundary while the meridional stream 

function JI is constrained to vanish at the upper boundary. The annual means and the first 

three harmonics are retained in the Fourier series representations of the seasonal variations 

of the independent variables. A 64 by 64 grid of points, equally spaced in log p and sine 

latitude, is used to represent the spatial dependences in the meridional plane. 

In calculating T ~ ( y , p , t )  and the radiative time constant t R ,  we have included only 

the absorption of solar energy by gaseous methane, while the infrared emission includes 

contributions from collision- induced hydrogen, methane, ethane, and acetylene opacities. 

Latitude independent vertical profiles of the hydrocarbons are used. For Jupiter and 

Saturn, methane mole fractions are essentially constant over the relevant height range 

with values of 1.4 x respectively. For Uranus, the CH4, CzH2, and and 4.0 x 
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CzHG profiles in  the stratosphere are taken from a photochemical model (Romani, 1988; 

Pollack, et al., 1987) with the methane CH4/Hz mixing ratio at the tropopause fixed at  

the saturation value. In the troposphere, the CH4 is assumed to be saturated at  all levels. 

In the case of Neptune, the stratospheric hydrocarbon proflies are taken from a model of 

Romani and Atreya (1988) in which the CH4/HZ mixing ratio has a value of 0.02 at the 10 

mbar level and is determiend by the photochemistry above this level. Below the 10 mbar 

level, the mixing ratio is maintained at 0.02 until the saturation level is reached, and at 

deeper levels the saturation curve is followed. To simulate the efficient redistribution of 

heat at  levels deeper than those treated in this model, the annual mean TE was assumed 

to be independent of latitude at the lower boundary. To account for the infrared flux from 

deeper levels, the temperature was extrapolated adiabatically for pressures greater than 1 

bar. 

The temporally and spatially averaged radiative equilibrium temperature profiles ob- 

tained for Jupiter, Saturn, and Uranus are shown in Fig. 1. These profiles were used 

to approximate the reference profile T o ( p )  defined in the previous section. Also shown 

for comparison are radio occultation ingress profiles from the Voyager 1 encounters with 

Jupiter (Lindal e t  aZ.,1981) and Saturn (Lindal e t  a1.,1985) and the Voyager 2 encounter 

with Uranus (Lindal e t  a1.,1987). The purpose of the comparisons is to verify that the 

radiative equilibrium temperatures have the correct gross behavior. For purposes of this 

study, no attempt has been made to bring the calculations into exact agreement with ob- 

servations. Our result for Saturn is more nearly in agreement with the occultation profile 

in the stratosphere than is the case for Jupiter and Uranus, where the calculated pro- 

files are systematically too cold. Similar results have been obtained for Saturn by Bezard 

and Gautier (1985), and the relatively warm temperatures can be attributed to the large 

methane mole fraction used (approximately 4 times the equivalent solar value), which is 

consistent with the value obtained by Courtin e t  aL(1984) from an analysis of Voyager 

IRIS data. Although we do not include the results of dynamical modelling €or Neptune 

in this paper, the mean radiative equilibrium profile €or that planet was calculated and 

is displayed in Fig. 1. The warm upper stratosphere obtained for Neptune is the result 

of the relatively large stratospheric methane abundance used. For Jupiter and Saturn 
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the underestimation of stratospheric temperatures by models that include solar absorption 

by gaseous methane only has been noted by various authors (Appleby and Hogan, 1984; 

Bezard and Gautier, 1989). By adding appropriately chosen additional heating, usually 

attributed to atmospheric aerosols, it is possible to force agreement between the models 

and the measurements. In the present work, we are interested primarily in latitudinal 

gradients in TE and have elected to consider only heating due to gaseous absorption. If 

there is additional heating that is independent of latitude, there will be little effect on the 

circulation; however, if an absorbing aerosol exists that varies strongly with iatitude, then 

the flow may be significantly altered. Since the possible latitude dependence of absorbers 

does not appear to be well constrained at the present time, such effects have not been 

included here. 

The globally and annually averaged radiative time constants used in the model are 

shown as functions of pressure in Fig. 2. In all cases, the time constants were obtained 

by perturbing the temperature profile by a fixed amount at all levels and calculating 

the resultant change in Q l R  at each level. When the radiative time constant is smaller 

than the orbital time, specifically, when the parameter 2 ? r t ~ / t , , ? b  is of order unity or 

smaller, we anticipate a stronger seasonal response than for the case when this parameter 

is significantly larger than unity. Jupiter and Saturn both fall in the first category while 

Uranus is an example of the second; both cases will be considered below. 

B. Circulation with t~ > torb.  

We shall illustrate this case by discussing Uranus. As Fig. 2 shows, 2?rt, ,b/tR exceeds 

10 through most of the height interval of concern. In Fig. 3a, the meridional cross section 

of the annual mean radiative equilibrium temperature for Uranus is displayed. The most 

striking feature of this temperature field is the very weak dependence on latitude at  all lev- 

els. In the upper troposphere and stratosphere, the polar regions are only slightly warmer 

than the equator. The behavior results from a combination of two factors characteristic 

of this model. A t  the deeper levels, the assumption that the annual mean TE is constant 

along the lower boundary forces TE to be nearly latitude independent at levels immedi- 

ately above the boundary. In the stratosphere, the weak latitude dependence is a direct 
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consequence of the fact that most of the solar heating in this region results from absorption 

in the weak CH4 bands. Because these bands are essentially optically thin, the heating 

is nearly independent of the solar zenith angle for pressure levels less than -100 mbar. 

Therefore, the annual mean solar heating is dependent on the integrated solar irradiance 

at the top of the atmosphere and not the locally normal component of the solar flux. It 

can be shown that the solar irradiance integrated over an orbital period is independent of 

latitude. This is true even for an elliptical orbit since the Kepler's law requirement that  

equal areas be swept out in equal times by the radius vector between the sun and planet 

just compensates for the inverse square dependence of the solar irradiance. This result 

would also hold if a latitude-independent absorbing aerosol were present, provided it is 

optically thin. 

The meridional cross section of the difference 6T = T - TE between the actual at- 

mospheric temperature and the annual mean is shown in Fig. 3h. Although there is a 

tendency toward cancellation of the equator-to-pole gradients in the annual mean TE,  the 

differences are very small at all latitudes and pressure levels. The smallness of the T E  

gradients, which provide the sole forcing for the circulation in this case, results in a very 

wea.k meridional circulation. As a consequence, departures of the temperature field from 

the annual mean radiative equilibrium values are almost negligible. 

The stream function for the annual mean meridional circulation is shown in Fig. 4a 

and the vertical velocity calculated from the stream function is given in Fig. 4b. Note 

that the principal circulation is confined to a low-latitude cell with rising motion mainly 

between 10 and 30 degrees latitude in both hemispheres and with subsidence primarily 

at  the equator. The anticipated scale of the meridional circulation is discussed further 

below. The accompanying zonal mean winds reach only a few meters per second, much 

smaller than the maximum wind speeds of -100 m s-l obtained from cloud tracking in 

the Voyager images. Clearly, some additional forcing must be present, possibly mechanical 

forcing from below. 

Because of the 94 degree obliquity of Uranus, the seasonally varying component of 

the radiative forcing is large, as shown in Fig. 5 .  The meridional cross section for TE is 
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displayed for northern hemisphere solstice and equinox in Figs. 5a and 5b respectively. 

The large hemispheric gradient occurring at  solstice is substantially attenuated in this 

representation because of the truncation of the Fourier series after three harmonics. At 

equinox, T E  is nearly symmetric about the equator with low latitudes slightly warmer than 

higher latitudes at all pressure levels. 

The meridional circulation for solstice conditions is shown in Fig. 6. A single weak cell 

is found with rising motion in the summer (northern) hemisphere and subsidence in the 

winter hemisphere. The most intense part of the circulation is again found equatorward 

of 30 degrees latitude. Even though the annual amplitude of TE is large, the response of 

the atmospheric temperature field is small as a direct consequence of the radiative time 

constant exceeding the orbital period of the planet. The balance in the thermodynamic 

energy equation (8) is primarily between the time-derivative of the temperature and the 

diabatic heating, so the resulting temperature is essentially that which would be obtained 

from a time-marching radiative equilibrium calculation. 

C. Circulation with t~ - t o r b .  

The radiative time constants for both Jupiter and Saturn are comparable to their 

orbital periods as shown in Fig. 2. Because Saturn has an obliquity of -27 degrees and 

hence a significant seasonal radiative forcing, we have chosen tu consider results for that 

planet in detail here. 

The annual mean radiative equilibrium temperature is shown in Fig. 7. Again we find 

little horizontal contrast, with the equator slightly warmer than the poles. The resulting 

annual mean meridional circulation is shown in Figs. 8 a and b in terms of the stream 

function and the vertical velocity respectively. A double cell configuration is obtained 

consisting of rising motion at  low latitudes with maximum subsidence occuring at  quite 

high latitudes. The departure of the temperature field from radiative equilibrium, as shown 

in Fig. 8 c, does not exceed approximately 0.1 K.  

Results for northern hemisphere solstice are given in Fig. 9. The radiative forcing 

TE (Fig. 9 a) shows a strong hemispheric asymmetry with maximum temperatures at  the 

summer pole and minimum values near the winter pole. The temperature response of the 
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atmosphere (Fig. 9 b) shows a more nearly symmetric behavior with weaker gradients. This 

is a consequence of the phase lag of nearly one season which occurs even when the radiative 

time constant is of the same order of magnitude as the orbital period. The meridional 

motion is displayed in Figs. 9 c and 9 d. A diffuse interhemispheric circulation with 

rising motion in the summer hemisphere and downward motion in the winter hemisphere 

is obtained. The accompanying zonal mean wind field is shown in Fig. 9 e. The resulting 

broad jets have maximum velocities substantially weaker than those observed. 

Results obtained for the northern spring equinox are displayed in Fig. 10. The forcing 

(Fig. 10 a) is essentially symmetric, but the response of the atmospheric temperature field 

(Fig. 10 b) is highly asymmetric. This is a consequence of the nearly 90 degree phase lag 

so the response more nearly reflects the forcing near solstice. The meridional flow (Figs. 

10 c and 10 d )  consists of a two-cell structure with rising motion at  low latitudes and 

downward motion poleward of 30 degrees latitude in each hemisphere. The mean zonal 

flow, Fig. 10 e, consists of prograde and retrograde jets in the northern and southern 

hemispheres respectively. In both hemispheres, a local minimum in wind speed occurs 

at  mid latitudes. The high-latitude maxima result from the increase in the latitudinal 

temperature gradients at high latitudes while those at low latitudes are a consequence of 

the decrease in the magnitude of the Coriolis parameter with decreasing latitude. 

D. Radiatively forced meridional circulation. 

Here we shall comment on the geometry and strength of the radiatively forced circu- 

lations. Inspection of (14) reveals that the two terms in the elliptic operator on the left 

hand side are of the same order when 

Y4 - 
where we have assumed that the vertical scale of the streamfunction II, is on the order of 

a scale height. This relation gives the linear Hadley cell width discussed by Schneider and 

Lindzen (1977), for example. For values of y smaller than these, the first term on the left 

hand side of (14) dominates, and it is easy to show that the vertical velocity is then given 
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to order of magnitude by 

which states that adiabatic compression balances radiative heating. In this relation, ATE 

is the horizontal variation of TE within the Hadley regime. It is this factor that  makes the 

vertical velocities extremely small. The combination N 2 H 2 / R  is on the order of TE (unless 

the atmosphere is close to adiabatic, which is not the case within the upper tropospheres 

and stratospheres). Thus if ATE were on the order of the full temperature, the vertical 

velocity would be about one scale height per radiative relaxation time. But in fact ATE is 

an extremely small fraction of TE itself, and therefore even within the low latitude Hadley 

cell, w is much smaller tham H / t R .  

The Hadley cells are apparent in the foregoing Figures. Their precise dimensions of 

course depend on the detailed shape of the forcing functions. Poleward of the Hadley cells, 

the meridional circulation is weaker still. The second term on the left hand side of (14) 

dominates over the first, and in this case i t  can be shown that 

Assuming that D F / D R  is not far from unity, this estimate of w is smaller than that within 

the Hadley cell by 

the same small factor which makes the Hadley cells narrow. 

4. Mechanically Forced Circulation. 

Up to this point we have ta.ken u = 0 as a lower boundary condition. We shall now 

consider numerical experiments in which mechanical forcing at  deeper levels is simulated 

by imposing a non-vanishing u(0)  at the lower boundary based on values inferred from 

Voyager images. The object here is to investigate the decay of the jets with height, the 

behavior of the temperature field, and the meridional circulation in the presence of such 

forcing. Since the jet structure is observationally defined in greatest detail for Jupiter, we 

shall use that planet as an example here. The radiative forcing is included in the same 

manner as in the previous cases considered. 
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As a basis for comparison, the annual mean meridional circulation for Jupiter, ob- 

tained with radiative forcing only, is shown in Fig. 11. The structure consists of two 

principal cells, one in each hemisphere, with rising motion near the equator and subsi- 

dence at  higher latitudes. 

The mean zonal wind as a function of latitude obtained by Limaye (1986) was imposed 

at the 1-bar lower boundary with the results shown in Fig. 12. Strictly speaking, the 

observed wind field pertains to the cloud tops which are believed to lie in the 0.5 to 0.7 

bar range. The meridional stream function, displayed in Fig. 12 a ,  clearly shows the 

jet-scale circulation cells induced by the mechanical forcing. Rising motion occurs on the 

equatorward edge of prograde jets. The decay of the zonal winds with height is shown in 

Fig. 12 b where it can be seen that all but the strongest jets have damped out by the 

time the 0.005 bar level is reached. Above this level the multi-cell meridional circulation 

gives way to essentially the two-cell structure associated with the pure radiative forcing 

(compare with Fig. l la) .  The critical levels (where u = 0) occur because the solution is a 

linear superposition of the mechanically forced and radiatively forced circulations. 

The effect of the mechanically forced circulation on the atmospheric temperature 

structure can be seen in Fig. 12 c. The latitudinal gradients reach their maximum values 

in the upper troposphere and lower stratosphere where rapid decay of the jets occurs. 

In Fig. 13 we compare the model temperature as a function of latitude at  the 0.15 bar 

level with temperatures for that level retrieved from measurements made with the IRIS 

instrument on Voyager 2 (Hanel e t  a/. ,  1979). The temperatures are taken from Gierasch 

e t  al. (1986). The major features of the measured temperatures are reproduced by the 

model. 

An estimate of the meridional circulation strength in the case when zonal velocities 

are imposed at  the lower boundary can be made from the fundamental equations (4), (10) 

and (11). For the vertical velocity, we obtain 

where L is the horizontal scale of the imposed jets. Since t~ is on the same order as t~ 

(see below) and the Rossby number is not extremely small, i t  is clear that  this circulation 
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will be larger than (28). 

In the model calculation considered here, as in those of the previous section, we 

assumed that the unknown frictional damping t~ is equal to the radiative time constant 

f R  at all atmospheric levels. In the present case where .(e) is imposed at the lower 

boundary, i t  can easily be shown that the amplitude of the resulting latitudinal temperature 

structure is directly proportional to the ratio t ~ / t ~  in a first approximation. Therefore, by 

requiring that the observed wind and temperature fields be consistent with one another, 

i t  is possible to estimate the magnitude of t ~ .  For Jupiter, the temperatures displayed in 

Fig. 13 demonstrate that the ratio must be about unity for agreement of the model with 

observation. Notice that there is disagreement near the equator; this is because the model 

breaks down where Coriolis forces vanish. In fact, this particular model always predicts 

u = 0 exactly on the equator, and if given a boundary condition that is inconsistent, 

it produces an artificially large meridional streamfunction. In the case of Uranus, the 

analysis of IRIS data  by Flasar et  al. (1987), using the same model as the present paper 

but without solar heating, also gave the result t F / f R  - 1.  For Saturn the situation is 

complicated by the extremely strong equatorial jet. The zonal wind profile was obtained 

from Voyager images by Ingersoll e t  al. (1984), and the temperatures retrieved from IRIS 

da ta  by Conrath and Pirraglia (1983). The results of a numerical experiment with u 

imposed at  the base are displayed in Fig. 13, for the seasonal time of the Voyager flyby . 
The large value of u at  the equator produces a large spurious meridional circulation which 

contaminates low- and mid-latitudes. However, from the behavior over the jets near 50" N 

we conclude that a ratio of about unity is also correct in this case. Note that the seasonal 

temperature asymmetry is reproduced correctly by the model. 

For all three planets, the ratio t ~ / t ~  giving the best fit is found to be of order unity 

even though t R  varies by almost two orders of magnitude from Jupiter and Saturn to 

Uranus. This can be regarded as a strong conclusion since the amplitude of the la.titudina1 

temperature structure is essentially proportional to f R / t F .  

5 .  Summary and Conclusions. 

A simple, linearized radiative-dynamical model with Rayleigh friction and Newtonian 
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cooling has been applied to the atmospheres of Jupiter, Saturn, and Uranus. While no 

attempt has been made to simulate detailed dynamical processes on the outer planets, 

the model has been used as a diagnostic tool to investigate certain aspects of atmospheric 

thermal structure and circulation. Our principal results are as follows. 

The annual mean radiative equilibrium temperatures for each planet are found to  be 

only weakly dependent on latitude at all pressure levels. This occurs at  the deeper levels 

because the annual mean radiative equilibrium temperature TE has been constrained to 

be constant on the lower boundary. In the upper troposphere and stratosphere the small 

la.titudina1 gradients in TE are a direct consequence of the dominance of solar heating in 

the model by the weak bands of CH4 which are optically thin over most of the upper 

atmosphere. To a first approximation, this results in an instantaneous heating which is 

independent of solar zenith angle and an annual mean solar heating independent of latitude. 

When the radiative time constant is long relative to the orbital period, as is the 

case for Uranus, the atmospheric temperatures remain close to  the annual mean radiative 

equilibrium values even though the seasonal amplitude of the radiative forcing is large. 

The resulting residual circulation is weak and does not contribute significantly to the 

meridional heat transport. In the case of Saturn where the radiative time constant is 

comparable to the orbital period and there is a significant seasonal radiative forcing, some 

seasonal response in the temperature field occurs. However, the resulting circulation is 

also weak. We conclude that the atmospheric temperatures in both cases lie close to 

the time-marching radiative equilibrium values, and the relatively weak pole-to-equator 

gradients are a consequence of the small latitudinal gradients in the annual mean radiative 

equilibrium temperature field. 

By imposing the observed zonal wind field as the lower boundary condition in the 

model and requiring the latitudinal gradients in the resulting temperature field to  agree 

approximately with those inferred from Voyager IRIS measurements, we are able to  esti- 

mate the magnitude of the frictional damping time in the model. For all three planets 

the best fit is found when the frictional damping time is comparable to the radiative time 

constant even though the latter varies by almost two orders of magnitude from Jupiter 
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and Saturn to Uranus. Since the mechanism for the frictional damping is not understood, 

the reason for the approximate equality of the two time scales is unclear. Following the 

Voyager encounter of Neptune, it will be possible to infer the frictional damping time in a 

similar way for tha t  planet also. This will be of interest, since the radiative time constants 

of Uranus and Neptune are comparable, but Neptune has a significantly larger internal 

heat flux. 
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Figure captions. 

Figure 1. Temperature profiles based on area-weighted global average heating. Methane, 

ethane and acetylene concentration profiles are from a global mean model by Romani 

(1988, personal communication). Aerosols are n o t  included. 

Figure 2. Radiative time constant profiles based on the temperature profiles of Figure 1, and 

on thermal disturbances uniform in height. Within the troposphere, taken constant 

where To exceeds the effective temperature. 

Figure 3. (a )  Annual average radiative equilibrium temperature for Uranus. Notice the 

extremely small latitudinal gradients, in spite of the fact that the net insolation is 

about 30% greater at  the poles than at the equator. (b)  The difference 62' = T - T E ,  

showing the degree of deviation from radiative equilibrium on an annual average. 

Figure 4. (a) Uranus annual average stream function $. Units gm cm-' s- ' .  There is 

rising motion near the poles and sinking near the equator. Note that the mass flow is 

strongly confined to the Hadley regine at latitudes equatorward of f 2 0  degrees. (b) 

Uranus annual average vertical velocity. Units cm s- ' .  

Figure 5 .  ( a )  Uranus radiative equilibrium temperature TE at north spring equinox. Units 

degrees Kelvin. Note the small horizontal gradients. (b )  At  north summer solstice. 

Figure 6. Uranus streamfunction 4 at north summer solstice. Units gm cm-' s - ' .  This is 

about 10 times stronger than the annual average circulation. 

Figure 7. Annual mean radiative equilibrium temperature TE for Saturn. Units degrees 

Kelvin. Again note the small horizontal gradients. 

Figure 8. (a) Saturn annual ,average streamfunction 4. Units gm cm-' s- ' .  (b )  Annual 

average vertical velocities. Units cm s - ' .  

Figure 9. (a) Saturn radiative equilibrium temperature TE at north summer solstice. (b) 

Temperature T at north summer solstice. (c) Streamfunction $ at north summer 

solstice. Units gm cm-' s- ' .  (d)  Vertical velocity 20 at north summer solstice. Units 

cm s-' .  (e) Zonal velocity u at north summer solstice. Units m s-I.  

Figure 10. (a) Saturn radiative equilibrium temperature TE at north spring equinox. The 

22 



slight asymmetry is due to the elliptical orbit and the resulting small discrepancy be- 

tween t = 0 and orbital longitude = 0. ( h )  Temperature at north spring equinox. This 

was approximately the time of the Voyager flybys (see Fig. 13). (c) Streamfunction tc, 

at the same time. Units gm cm-' s - ' .  (d)  Vertical velocity w ,  units cm s- ' .  (e) Zonal 

wind, units m s- ' .  

Figure 11. Jupiter annual average streamfunction $, with radiative forcing alone. Units 

gm cm-' s- ' .  

Figure 12. (a) Jupiter annual average streamfunction $, with the observed zonal flow im- 

posed as a lower boundary condition. Units gm cm-' s - l .  Notice that this circulation 

is about two orders of maginitude stronger than the radiatively forced one, within the 

bottom two or three scale heights. (b)  Zonal winds, units m s- ' .  (c) Temperatures. 

Figure 13. IRIS data compared with model predictions for Jupiter and Saturn. These are 

temperatures at  the 150 mb levels. Note the good agreement of the Saturn seasonal 

effect and the Jupiter zonal jets effects. Poor agreement near the equator, particularly 

for Saturn, is due to failure of the linear model (see text). 
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Table 1. Band parameters. From Cess and Chen (1975). Units of temperature are 

Kelvin. 

- i Gas Band U S -443- y J r n  d 
(pm)  (cm-') (cm-amagat)-' (cm- ' )  (cm-atm)-' (cm-l) 

1 CH4 1.7 5861 3.0 124 0.075 10.5 

2 CH4 2.3 4220 20 124 0.075 10.5 

3 CH4 3.3 3020 320 124 0.075 10.5 

4 CH4 7.7 1306 185 52 0.075 5.3 

5 C2Hs 12.2 821 34 37 0.102 2.6 

6 C2H2 13.7 729 800 31 0.090 2.4 
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