JPL Publication 88-39

Characterization of Production GaAs Solar Cells for Space

•

B. E. Anspaugh

December 15, 1988

Space Administration Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

(NASA-Co-1848(3) CEAFACIFFI2/TICN CF FECDULTICN GARS SCIAF CELLS FCF SEACE (Jet FICEULSICT 181.) 37 F CSCI 10A N89-20549

Unclas G3/44 C198854

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 88-39	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
CHARACTERIZATION OF PRODUCTION FOR SPACE	ON GaAs SOLAR CELLS	December 15, 1988 6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
B.E. Anspaugh		
9. Performing Organization Name a	nd Address	10. Work Unit No.
JET PROPULSION LAB California Institu 4800 Oak Grove Dri	ORATORY te of Technology ve	11. Contract or Grant No. NAS7-918
Pasadena, Californ	ia 91109	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Ad	dress	JPL Publication
NATIONAL AERONAUTICS AND Washington, D.C. 20546	SPACE ADMINISTRATION	14. Sponsoring Agency Code
15. Supplementary Notes		
<pre>16. Abstract The electrical performa of irradiation with protons a solar cells suitable for use and 10 MeV, and damage coeffi cells. Electron energies var Cells from recent produ and proton irradiation. Thes solar intensity and operating irradiations. The long term stability Some cells were found to degr standards were made for GaAs/</pre>	nce of GaAs solar cells wa nd electrons with the unde in space. Proton energies cients were derived for li ied between 0.7 and 2.4 Me ction runs were characteri e same cells were also cha temperature, both before of GaAs cells during phot ade with photon exposure a Ge solar cells by flight o	s characterized as a function rlying goal of producing used varied between 50 keV quid phase epitaxy GaAs solar V. zed as a function of electron racterized as a function of and after the electron on exposure was examined. nd some did not. Calibration n a high altitude balloon.
17. Key Words (Selected by Author(s)) 18. Distributio	n Statement
Conversion Techniques Power Sources	Unclassifie	dUnlimited
19. Security Classif. (of this report)	20. Security Classif. (of this p	page) 21. No. of Pages 22. Price
Unclassified	Unclassified	30

JPL Publication 88-39

Characterization of Production GaAs Solar Cells for Space

B. E. Anspaugh

December 15, 1988

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the Air Force Wright Aeronautical Laboratories through an agreement with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

ABSTRACT

The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV.

Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations.

The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

iii

CONTENTS

INTRODUCTION	Ι.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
PROCEDURES .	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
REFERENCES .	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
APPENDIX		•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	26

Figures

Figure 1. I _{sc} vs 1 MeV Electron Fluence for Three Types of GaAs Solar
Cells
Figure 2. Normalized I_{SC} vs 1 MeV Electron Fluence for Three Types of
GaAs Solar Cells
Figure 3. V_{OC} vs 1 MeV Electron Fluence for Three Types of GaAs Solar
Cells
Figure 4. Normalized V_{OC} vs 1 MeV Electron Fluence for Three Types of
GaAs Solar Cells
Figure 5. I_{mp} vs 1 MeV Electron Fluence for Three Types of GaAs Solar
Cells
Figure 6. Normalized Imp vs 1 MeV Electron Fluence for Three Types of
GaAs Solar Cells
Figure 7. V_{mp} vs 1 MeV Electron Fluence for Three Types of GaAs Solar
Cells
Figure 8. Normalized V_{mp} vs 1 MeV Electron Fluence for Three Types of
GaAs Solar Cells

PRECEDING PAGE BLANK NOT FILMED

PAGE V INTENTIONALLY BLANK

rigure 9.	max vs i mev electron fluence for infee types of Gans Solar	
Cells		20
Figure 10.	Normalized P _{max} vs 1 MeV Electron Fluence for Three Types of	
Ga As S	olar Cells	21
Figure 11.	$I_{\rm SC}$ vs Intensity at 28°C for GaAs/Ge Solar Cells	22
Figure 12.	$\rm V_{\rm oc}$ vs Temperature at 135.3 mW/cm^2 for GaAs/Ge Solar Cells	23
Figure 13.	Pmax vs Intensity at 28°C for GaAs/Ge Solar Cells	24
Figure 14.	P_{max} vs Temperature at 135.3 mW/cm ² for GaAs/Ge Solar Cells .	25

Tables

Table	1.	Average Short-Circuit Current: Pre-Irradiation 6
Table	2.	Average Open-Circuit Voltage: Pre-Irradiation
Table	3.	Average Maximum Power: Pre-Irradiation
Table	4.	Average Fill Factor: Pre-Irradiation
Table	5.	Average Short-Circuit Current: After 1 x 10^{15} e/cm ²
Table	6.	Average Open-Circuit Voltage: After 1 x 10^{15} e/cm ²
Table	7.	Average Maximum Power: After 1 x 10^{15} e/cm ²
Table	8.	Average Fill Factor: After 1 x 10^{15} e/cm ²
Table	9.	Average Short-Circuit Current: After 1 x 10^{16} e/cm ² 10
Table	10.	Average Open-Circuit Voltage: After 1 x 10^{16} e/cm ² 10
Table	11.	Average Maximum Power: After 1 x 10^{16} e/cm ²
Table	12.	Average Fill Factor: After 1 x 10^{16} e/cm ²

vi

CHARACTERIZATION OF PRODUCTION GAAS SOLAR CELLS FOR SPACE

INTRODUCTION

This publication is the final report of a contract between Air Force Wright Aeronautical Laboratories and Jet Propulsion Laboratory. The objective of the contract was to evaluate GaAs solar cells for space as they evolved from the prototype stage into cells manufactured on a production line. The GaAs cells were characterized electrically as a function of electron and proton irradiation. During the course of the contract, several hundred cells were irradiated with protons from the Caltech accelerators using energies between 50 keV and 10 MeV, and with electrons from the JPL Dynamitron accelerator with energies of 0.7, 1.0, and 2.4 MeV. The proton irradiation work on early liquid phase epitaxy cells made by Hughes Research Lab was reported in Refs. 1 and 2.

An additional task was assigned to this project when it was found that some GaAs cells appeared to degrade when exposed to light beams for long periods of time. Accordingly, the scope of the contract was expanded and several experiments were carried out to try to identify whether the problem was real, what was causing the degradation, and, if possible, identify a cure. A second add-on task was completed in the summer of 1988 when two calibration standards made of GaAs/Ge cells were flown on the annual JPL solar cell calibration balloon flight. The calibrations were performed and the cells were shipped to the sponsor in October, 1988. A description of the balloon calibration flight and the results of the 1988 flight are reported in Ref. 3.

1

This report consists of two parts. The first part is a writeup of our most recent measurements of GaAs/Ge solar cells under electron irradiation. The latter cells were irradiated with 1 MeV electrons with a schedule of fluences out to $1 \times 10^{16} \text{ e/cm}^2$. The electrical characteristics of these cells were also measured as a function of temperature and intensity before irradiation, after $1 \times 10^{15} \text{ e/cm}^2$, and after $1 \times 10^{16} \text{ e/cm}^2$. These characteristics were measured at an experimental matrix of temperatures and intensities which included temperatures of -20, 28, 60, 100, and 140 °C, and intensities of 50, 100, 135.3, and 250 mW/cm². The second part is a report on the photon degradation work, given here as a copy of a paper which was presented at the 20th IEEE Photovoltaic Specialists Conference in September, 1988, (Ref. 4 included as the Appendix in this publication).

PROCEDURES

The GaAs/Ge solar cells were received at JPL in May, 1988 and the measurements were made in September and October, 1988. Fifteen cells were irradiated and the electrical characteristics of those 15 cells are plotted in Figures 1 through 10. Included in these plots for comparison are plots of the radiation behavior of two earlier types of GaAs solar cells. A summary of the three cell types in these plots is as follows:

Mfg	<u>Cell Type</u>	Window Depth	Jcn. Depth	Vintage
HRL	LPE GaAs/GaAs	0.2 µm	0.35 µm	1984
ASEC	OMCVD Early Mantech	0.1 µm	0.45 µm	1984
ASEC	OMCVD GaAs/Ge	0.08µm	0.50 µm	1988

All cells are $2 \times 2 \text{ cm}^2$.

Of the 15 GaAs/Ge cells which were irradiated, 5 were also subjected to the matrix of temperature/intensity measurements described above. After the

2

appropriate fluences had been administered, these 5 cells were mounted in a special vacuum chamber designed to perform solar cell measurements at various controlled temperatures and intensities. The cells are illuminated through a 7940 fused silica window using a Spectrolab X-25 solar simulator as the illumination source. The cells are each held down onto a temperature controlled block with a pair of spring clamps. One clamp is positioned on the busbar of the cell so that it also serves as the electrical contact for the top of the cell. The other applies pressure on the front surface of the cell, on the opposite side from the first clamp. Its purpose is to apply pressure to force the cell tightly against the temperature controlled block and balance the pressure exerted by the contact clamp. As a consequence, the clamp shades approximately 0.036 cm^2 of the cell area, which is approximately 0.9% of the area of a 2 x 2 cm cell. The data reported here have not been corrected for this shading. Indium foil (5 mils thick) is placed between the cells and the thermal plate in order to achieve good thermal contact. The simulator intensity incident on the cells in the chamber is set by using a balloon flown calibration cell inside the chamber. The temperature of this standard cell is independently controlled and maintained at 28° C throughout the test. The current-voltage (I-V) electrical data is measured by a computer based data acquisition system. The results are plotted as I-V curves and the important parameters are printed in digital form.

Statistical analysis is also provided by the data acquisition program in the form of averages and standard deviations of the cell electrical parameters. The data from the temperature/intensity parametric measurements are presented in tabular form in Tables 1 through 12. Each entry in these tables is a 5 cell average. Some representative plots of solar cell

3

parameters as a function of either temperature or intensity (with fluence as parameter) are presented in Figures 11 through 14. The symbols on each Figure are five cell averages of the solar cell parameter, and the straight lines are linear least squares fits to the data. An inset box in each Figure shows the slopes of the calculated least squares fits.

REFERENCES

- 1. B. E. Anspaugh and R. G. Downing, "Radiation Effects in Silicon and Gallium Arsenide Solar Cells Using Isotropic and Normally Incident Radiation," JPL Publication 84-61, Jet Propulsion Laboratory, Pasadena, CA, Sept. 1984.
- B. E. Anspaugh and R. G. Downing, "Radiation Effects in Silicon and Gallium Arsenide Solar Cells Using Isotropic and Normally Incident Radiation," Conf. Record of the 17th IEEE Photovoltaic Specialists Conf., 23, 1984.
- 3. B. E. Anspaugh and R. S. Weiss, "Results of the 1988 NASA/JPL Balloon Flight Solar Cell Calibration Program," JPL Publication 88-36, Jet Propulsion Laboratory, Pasadena, CA, November 1, 1988.
- 4. Bruce Anspaugh, Ram Kachare and Peter Iles, "Photon Degradation of AlGaAs/GaAs Solar Cells," to be published in Conf. Record of the 20th IEEE Photovoltaic Specialists Conf., 1988 (included as the Appendix in this publication).

Table 1. Average Short-Circuit Current: Pre-Irradiation

Call Terms		Solar Inte	nsity (mW/cm ²	²)
	<u>50</u>	100	135.3	<u>250</u>
-20	42.5	83.4	113.5	207.6
28	43.9	85.9	116.9	214.8
60	44.6	89.5	121.9	220.8
100	46.4	94.4	126.3	227.1
140	47.7	96.0	130.5	233.2

Table 2. Average Open-Circuit Voltage: Pre-Irradiation

ASEC GaAs/Ge Solar C	ells	
AlGaAs Window Depth:	0.08	μ
Junction Depth:	0.50	μ
Buffer Layer:	6-9	μ
2 x 2 cm x 225 µ		
Dual AR Coating		
Sample Size 5	IM-9 1	

Call Temp				,
<u>(°C)</u>	<u>50</u>	100	135.3	250
-20	1112.9	1187.3	1206.7	1202.8
28	1000.8	1058.9	1075.3	1077.0
60	910.3	960.1	976.6	990.4
100	794.8	838.7	853.6	877.4
140	703.1	740.1	754.5	780.5

Table	3.	Average	Maximum	Power:	Pre-Irradiation
-------	----	---------	---------	--------	-----------------

ASEC GaAs/Ge Solar C	ells	
AlGaAs Window Depth:	0.08	μ
Junction Depth:	0.50	μ
Buffer Layer:	6–9	μ
2 x 2 cm x 225 µ		
Dual AR Coating		
Sample Size 5	IM-9 1	

		Solar Inte	nsity (mW/cm ²)
<u>(°C)</u>	50	100	135.3	250
-20	32.08	66.06	96.57	174.14
28	30 .4 0	62.03	85.62	156.93
60	28.31	59.61	82.58	151.16
100	25.92	56.30	76.88	140.96
140	23.13	49.83	66.68	126.25

r.

Table 4. Average Fill Factor: Pre-Irradiation

ASEC GaAs/Ge Solar C	ælls
AlGaAs Window Depth:	0.08 µ
Junction Depth:	0.50 µ
Buffer Layer:	6-9 µ
2 x 2 cm x 225 µ	
Dual AR Coating	
Sample Size 5	TM-91

Call Temp				,
(°C)	<u>50</u>	<u>100</u>	<u>135.3</u>	250
-20	0.681	0.670	0.656	0.662
28	0.693	0.683	0.682	0.679
60	0.698	0.694	0.694	0.692
100	0.703	0.711	0.713	0.707
140	0.691	0.701	0.677	0.694

Table 5. Average Short-Circuit Current: After 1 x 10^{15} e/cm²

ASEC GaAs/Ge Solar Cells AlGaAs Window Depth: 0.08 µ Junction Depth: 0.50 µ Buffer Layer: 6-9 µ 2 x 2 cm x 225 µ Dual AR Coating Sample Size 5 TM-91

		Solar Inte	nsity (mW/cm ²	²)
<u>(°C)</u>	<u>50</u>	100	<u>135.3</u>	250
-20	34.9	69.1	94.2	174.4
28	36.4	72.2	98.7	179.7
60	37.4	75.3	102.4	185.2
100	38.8	77.3	106.1	189.3
140	40.6	80.4	109.2	198.3

Table 6. Average Open-Circuit Voltage: After 1 x 10^{15} e/cm²

ASEC GaAs/Ge Solar C	ells	
AlGaAs Window Depth:	0.08	μ
Junction Depth:	0.50	μ
Buffer Layer:	6-9	μ
2 x 2 cm x 225 µ		
Dual AR Coating		
Sample Size 5	TM-91	

Cell Temp				
<u>(°C)</u>	<u>50</u>	<u>100</u>	<u>135.3</u>	<u>250</u>
-20	1064.6	1131.5	1149.5	1150.5
28	938.5	990.6	1007.6	1017.3
60	840.9	888.7	908.1	929.1
100	723.8	765.5	783.2	810.0
140	631.3	668.5	684.5	712.3

Table 7. Average Maximum Power: After 1 x 10^{15} e/cm²

ASEC GaAs/Ge Solar C	ells	
AlGaAs Window Depth:	0.08	μ
Junction Depth:	0.50	μ
Buffer Layer:	6–9	μ
2 x 2 cm x 225 µ		
Dual AR Coating		
Sample Size 5	IM -91	

Solar Intensity (mW/cm²)

Cell Temp. (°C)	50	<u>100</u>	<u>135.3</u>	250
-20	25.62	54.07	74.70	136.32
28	23 .4 0	49.54	68.78	124.68
60	21.58	46.17	64.34	117.90
100	19.31	41.20	58.06	105.83
140	17.08	36.65	51.21	95.76

I

ł

)

Table 8. Average Fill Factor: After $1 \times 10^{15} \text{ e/cm}^2$

ASEC GaAs/Ge Solar Cells				
AlGaAs Window Depth:	0.08	μ		
Junction Depth:	0.50	μ		
Buffer Layer:	69	μ		
2 x 2 cm x 225 µ				
Dual AR Coating				
Sample Size 5	TM-91			

Solar Intensity (mW/cm²)

Cell Temp				,
<u>(°C)</u>	<u>50</u>	<u>100</u>	<u>135.3</u>	250
-20	0.690	0.694	0.692	0.681
28	0.685	0.694	0.693	0.683
60	0.687	0.691	0.692	0.686
100	0.687	0.697	0.699	0.691
140	0.667	0.682	0.685	0.678

Table 9. Average Short-Circuit Current: After 1 x 10^{16} e/cm²

ASEC GaAs/Ge Solar Cells					
0.08 µ	L				
0.50 µ	ι				
6-9 µ	L				
IM-91					
	ells 0.08 µ 0.50 µ 6-9 µ IM-91				

		Solar Inte	nsity (mW/cm2	²)
Cell Temp. (<u>°C</u>)	<u>50</u>	<u>100</u>	135.3	250
-20	23.1	46.0	62.6	115.5
28	24.4	48.5	66.3	121.2
60	25.2	50.3	69.1	124.9
100	26.5	53.4	72.4	131.6
140	27.9	56.1	76.4	139.0

i

Table 10. Average Open-Circuit Voltage: After 1 x 10^{16} e/cm²

ASEC GaAs/Ge Solar Cells				
AlGaAs Window Depth:	0.08	μ		
Junction Depth:	0.50	μ		
Buffer Layer:	6-9	μ		
2 x 2 cm x 225 µ				
Dual AR Coating				
Sample Size 5	IM-91			

Solar Intensity (mW/cm^2)

<u>(°C)</u>	<u>50</u>	100	135.3	250
-20	986.0	1049.1	1070.0	1094.4
28	852.3	904.4	923.3	945.9
60	749.4	797.5	817.4	844.1
100	631.7	673.2	689.7	716.5
140	527.2	568.6	586.3	617.4

Cell Temp.

Table 11. Average Maximum Power: After 1 x 10^{16} e/cm²

ASEC GaAs/Ge Solar Cells AlGaAs Window Depth: 0.08 µ Junction Depth: 0.50 µ Buffer Layer: 6-9 µ 2 x 2 cm x 225 µ Dual AR Coating Sample Size 5 TM-91

Solar Intensity (mW/cm²)

<u>(°C)</u>	<u>50</u>	<u>100</u>	<u>135.3</u>	250
-20	15.94	34.61	48.47	89.34
28	14.35	31.09	43.73	81.32
60	12.84	27.79	39.31	72.67
100	11.01	24.24	33.68	62.52
140	9.14	20.46	29.03	55.94

١

Cell Temp.

Table 12. Average Fill Factor: After $1 \times 10^{16} \text{ e/cm}^2$

ASEC GaAs/Ge Solar Cells				
AlGaAs Window Depth:	0.08	μ		
Junction Depth:	0.50	μ		
Buffer Layer:	6-9	μ		
2 x 2 cm x 225 µ				
Dual AR Coating				
Sample Size 5	IM-91			

Coll Temp				
<u>(°C)</u>	50	100	<u>135.3</u>	250
-20	0.702	0.719	0.724	0.709
28	0.691	0.709	0.715	0.710
60	0.680	0.693	0.696	0.690
100	0.659	0.674	0.675	0.663
140	0.621	0.641	0.648	0.652

I_{sc} vs 1 MeV Electron Fluence for Three Types of GaAs Solar Cells Figure 1.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY 10 **6** 10 . **‡**:‡ 0.45µ 0.35µ 7 ł 11 * 11 - $\overline{\mathbf{x}}$ $\overline{\mathbf{x}}$ $\overline{\mathbf{x}}$ 1014 0.1μ, 0.08μ, 0.2*µ*, GaAs: Xw = 0 GaAs: Xw = 0 GaAs/Ge: Xw = 0 11 11 *** 11 t Ħ 111 ASEC OMCVD ASEC OMCVD 1013 **HRL LPE** ŧŧ 1 : ŧ -----:: ÷ - -O 4 0.5 0.9 0.8 0.7 0.0 1.0

Normalized V_{OC} vs 1 MeV Electron Fluence for Three Types of GaAs Solar Figure 4.

Figure 5.

V_{mp} vs 1 MeV Electron Fluence for Three Types of GaAs Solar Cells Figure 7.

Figure 11. I_{SC} vs Intensity at 28°C for GaAs/Ge Solar Cells

Figure 12. V_{OC} vs Temperature at 135.3 mW/cm² for GaAs/Ge Solar Cells

Figure 13. P_{max} vs Intensity at 28°C for GaAs/Ge Solar Cells

Figure 14. P_{max} vs Temperature at 135.3 mW/cm² for GaAs/Ge Solar Cells

APPENDIX

PHOTON DEGRADATION OF AlGaAs/GaAs SOLAR CELLS

Bruce Anspaugh and Ram Kachare

Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91109

and

Peter Iles Applied Solar Energy Corporation 15251 E. Don Julian Road City of Industry, CA 91746

ABSTRACT

More than fifty-five OMCVD AlGaAs/GaAs solar cells were exposed for over 400 hours to AMO photons at 28°C in three separate, well-controlled runs. Significant degradation of solar cell efficiency was observed in two out of the three runs. Though noticeable losses in the opencircuit voltage, fill factor, and maximum power were observed, no change in the short-circuit current was found.

Control cells, mounted beside the test cells, were treated to the same environment except that they were shielded from the light beam. No change was seen in any of the control cells.

In one of the runs, no change was seen in either the test cells or the control cells. Each cell in this run was protected with a coverglass, and was connected to the I-V electrical circuitry through soldered contacts. The cells in this run also had thicker buffer layers and thinner window layers than the cells in the other two runs.

Specific photodegradation mechanisms for the GaAs solar cells are at this time unknown. The detailed results of these experiments are presented.

INTRODUCTION

Al_xGa_{1-x}As windowed GaAs p-n junction solar cells having AMO efficiencies as high as 21% have been fabricated (1) by using an organometallic chemical vapor deposition (OMCVD) growth technique. This approach is now considered as a viable manufacturing process and GaAs solar cells having AMO efficiencies exceeding 17% are routinely produced. These cells have also shown superior radiation hardness compared to that of silicon solar cells and have good potential for space applications (2-4). A considerable amount of information on electron and proton irradiation degradation of GaAs solar cells has been reported (4-7). However, there have been no published studies on the behavior of GaAs solar cells after photon illumination for a prolonged exposure time. This paper presents preliminary results on photon exposure of GaAs solar cells.

EXPERIMENTAL

The p-n GaAs solar cells were fabricated at Applied Solar Energy Corporation using a OMCVD (8,9) growth technique. The cell structure, shown in Figure 1, consisted of an n-GaAs substrate doped with silicon, a Se-doped n-GaAs buffer layer, a Zndoped p-GaAs emitter layer and a thin (<0.1 µm) p-Al_{0.85}Ga_{0.15}As window layer. Each cell has a double layer antireflection coating of TiO,/Al203. Details of the cell structural parameters are shown in Figure 1. In a preliminary experiment prior to the measurements reported here, 40 cells having starting efficiencies between 13% and 17% were exposed to a tungsten light source in an opencircuit condition. During the photon exposure, the cell temperature was held at ~ 28°C. Light current-voltage (I-V) characteristics were measured before and after several hours of photon exposure indicated that 25 cells showed some photon-induced degradation in cell efficiencies. Some GaAs solar cells were exposed for over 200 hours to AMO photons using an X-25 solar simulator. A majority of the cells showed some degradation in cell performance in this light source also.

In these preliminary experiments where photon degradation was observed for the first time, we questioned our light I-V measurement setup including the cell measurement test fixture, and the computer controlled power supply, each of which could possibly be the source of cell degradation. These were dealt with by designing and building a special cell fixture which applied very low and repeatable pressures to the cell contacts. The fixture incorporated a protection diode across the test cell to protect against the application of accidental large reverse bias voltage spikes. The computer program was modified to minimize the possibility of application of voltage spikes across the cell at any time during I-V measurements.

After taking into account all plausible sources of the measurement related cell degradation, careful light I-V measurements were made on a few cells that were exposed to AMO photons over 300 hours. These cells also showed some photon degradation.

.Two controlled photon exposure runs were made to further study the GaAs solar cell degradation. In the first run, 32 GaAs solar cells were mounted on a water-cooled aluminum target plate. Of these, 16 solar cells were exposed to AMO photons and 16 were shielded from the light by aluminum foil which was taped in place with Farlock aluminum Mystik tape. All cells were treated identically and were mounted on the plate using thermal conducting grease (Apiezon H). The cells were manufactured by Applied Solar Energy Corp. (ASEC) under the Air Force Mantech Program. They were 2cm x 2cm and had approximately 4.0 µm-thick buffer layers and 0.1 um-thick $Al_{0.88}Ga_{0.12}As$ window layers. The cells were exposed to the X-25 beam for 407 hours at 28°C. The cells were removed from the plate and their light I-V curves were measured. All of the 16 photon-exposed solar cells showed degradation ranging from severe to minor, while none of those in the dark degraded. The light I-V curves of all the exposed cells are shown in Figure 2. Prior to photon exposure, all cells had I-V curves similar to the top curves in the Figure. It is apparent from these curves that there is a wide variation in the amount of degradation experienced by the exposed cells. The light I-V curves of all cells held in the dark were highly reproducible. All degraded cells showed a loss in fill factor (FF), and maximum power (P_{max}) . In a few cases there were open-circuit voltage (V_{oc}) losses. Interestingly, none of the degraded cells showed a loss in short-circuit current (I_{sc}).

In a second run, an additional 32 GaAs cells of a different type were exposed in the manner described above: 16 solar cells were exposed to AMO photons and 16 were held in the dark. These cells, measuring 2cm x 4cm, were manufactured in a tightly controlled production run. They had approximately 5 µm-thick n-GaAs buffer layers and 0.08 µm-thick ${\rm Al}_{0.86}{\rm Ga}_{0.14}{\rm As}$ window layers. These cells were screened by reverse bias stressing using 40 mA reverse bias current. These cells were exposed for 432 hours at 28°C, removed from the plate, and remeasured as discussed before. Seven out of 16 photon-exposed cells showed noticeable degradation (nine did not), while the light I-V curves of all 16 shaded cells repeated their pre-exposure curves exactly. The light I-V curves of all the exposed cells for this run are shown in Figure 3.

A third additional controlled photon exposure run was made using 15 current production GaAs cells from ASEC. These 15 cells, each of 2cm x 4cm area, had 6 µm-thick n-GaAs buffer layers and 0.05 µm $Al_{0.85}Ga_{0.15}As$ window layers. They were also screened by the reverse bias stress described above. However, each of these cells was fitted with a coverglass (for practical purposes, it is extremely unlikely that any solar cells will be flown without coverglasses) and was mounted on the aluminum exposure plate using Aplezon H grease and permanent hardwired connections. The hardwired connections allowed the measurement of light I-V curves without removing the cells from the plate or placement into and removal from a fixture. In this run, 12 of the 15 cells were exposed to the light beam and 3 were kept in the dark using a quickly removable shadow plate. Light I-V curves were measured several times during the 552 hour exposure. The light I-V curves for all the exposed cells are shown in Figure 4. As can be seen from the figure, none of the exposed cells in this run showed any degradation. As in the previous runs, the shielded cells did not degrade in this run either. Table 1 gives a summary of the properties of all cells used in the three controlled runs.

RESULTS

In the first controlled run, the most severely degraded cell showed decreases in P_{max} from 92.0 mW to 84.0 mW after exposure, V_{OC} from 993 to 986 mV, FF from 0.81 to 0.74, and no decrease in I_{SC} . The exposed cell which degraded the least showed decreases in these parameters as follows: P_{max} from 92.5 to 92.0 mW, V_{OC} from 990 to 983 mV, and FF from 0.80 to 0.79.

In the second run, the most photon degraded cell showed losses in P_{max} from 194.3 to 143.7 mW, V_{OC} from 1015 to 984 mV, and FF from 0.80 to 0.61. The exposed cell which showed the lowest degradation had changes in P_{max} from 204 to 196.5 mW, V_{OC} from 1005 to 1002 mV, and FF from 0.81 to 0.79. As stated before no loss in I_{SC} was observed for any cell, exposed or unexposed, in these experiments.

DISCUSSION

Plausible causes of the photon degradation in two runs and no degradation in the third run need careful consideration. Since there is no degradation in I_{SC} , the photons that are degrading V_{OC} , P_{max} , and FF are, most probably, not producing highly electrically active defects; that is, the minority carrier lifetime is not degraded. The loss in V_{OC} and FF could either be related to p- or n- metal contact reactions with GaAs or with an inherent internal device degradation process of an unknown nature. It is hard to believe that photons alone at about 28°C can degrade the metal contacts, either by photochemical reaction between metal and GaAs or electrochemical as well as thermal migration of metals into the active regions of the cells. However, we do not rule out the possibility of inducing some dislocations in the vicinity of the metal-GaAs interface either during metallization or by contact probes during measurements of the light I-V curves. It is well known (10) that dislocations can be introduced in GaAs by applying excessive pressure. Dislocation loops (10) are generated after scratching the GaAs surface. If the contact probes were responsible for the cell degradation, then some degradation would have been observed on the shaded cells.

Since all photon exposed cells did not degrade in two of the runs, it could be speculated that the cells which showed degradation might be containing OMCVD growth or metallization-related defects which get activated during the photon exposure. The factors that are important in the dynamics of dislocations (10-12) are: (a) interaction of point defects with dislocations, particularly at the AlGaAs/GaAs interface, (b) stress/strain at the metal-GaAs interface, and (c) different optoelectronic properties of interfaces and defects.

Recently photon-induced degradation of amorphous silicon solar cells has been explained (13) by using a defect reaction process that is induced by the energy release during electron-hole (e-h) recombination. One could postulate that the e-h recombination assists diffusion of defects from the metal-GaAs (top p-GaAs layer) interface into the active area of the cell and consequently degrades the GaAs solar cell.

The fact that ${\rm I}_{\rm SC}$ does not change after photon exposure is a very important experimental observation. Recently, the effect of dislocations in metal-insulator silicon solar cells was explained by a model based on hopping conduction of capture carriers along dislocations (14). In these cells, dislocations of different lengths were intentionally introduced by polishing silicon wafers with Al₂0₃ powder of different grits. The light I-V curves of these cells showed losses in $P_{max}, \ V_{OC}, \ and \ FF, \ but not in \ I_{SC} \ when \ dislocation lengths were increased. If conduction and shunting$ are the important roles of dislocations, then, as shown by the model calculations (14), I_{SC} is unaffected while V_ is strongly decreased. This unaffected while V_{oc} is strongly decreased. This constitutes a piece of compelling evidence in favor of conduction along the dislocations in GaAs. Unfortunately, at present, the conductivity data on dislocations in GaAs is not available.

In our third photon exposure run, we did not observe photo-degradation even in a single cell. These cells are from a current production process. Differences in the properties of these cells compared to those cells used in the other two runs are shown in Table 1. As can be seen, each cell in the third run has a thick n-GaAs buffer layer, a very thin AlGaAs window layer, protection by a coverglass, and is hardwired to avoid direct probing of the cell contacts during light I-V measurements. At present, whether growth process, layer thicknesses, coverglass, or hardwiring has played any role in eliminating the photon decradation effect is unknown. Possible prevention of degradation by the hardwiring is less likely, since shaded cells subjected to repeated testing did not show any degradation. Assuming that the coverglass plays a predominant role, the loss mechanism is likely to be related to interaction by energetic UV photons. For surface dominated devices like GaAs cells, this could perhaps affect either the passivated region at the heteroface, or the shallow emitter properties. It is clear that additional experiments need to be performed to find out what property or properties of cells used in the first two runs contributed to the observed photon degradation.

CONCLUSIONS

[1]. Three well controlled photon exposure runs were made on OMCVD GaAs solar cells. Two runs showed some degree of photon degradation.

[2]. Not all cells in the two runs degraded equally. Some photon exposed cells did not degrade at all.

[3]. Losses in P_{max} , V_{oc} , and FF were observed in photon degraded cells. However, no loss in I_{sc} was observed.

[4]. One run showed no degradation.

[5]. A plausible cause of the photondegradation is presently not known. However. several speculative degradation mechanisms were discussed.

[6]. Additional photon exposure experiments need to be performed to identify the cause and indicate a cure for photon degradation in GaAs solar cells. Future tests must explain the cure demonstrated in the third run, and must relate this cure to plausible causes for the degradation.

ACKNOWLEDGEMENT

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the U.S. Air Force Wright Aeronautical Laboratory and the National Aeronautics and Space Administration.

REFERENCES

- J. G. Werthen, G. F. Virshup, C. W. Ford, C. R. 1. Lewis, and H. C. Hamaker, Appl. Phys. Letters, 48, 74, 1986.
- M. Yamaguchi and C. Amaro, J. Appl. Phys., 57, 2. 537, 1987.
- R. Loo, R. C. Knechtli, and G. S. Kamath, Conf. з. Record of the 15th IEEE Photovoltaic Specialists Conf., 33, 1981.
- B. E. Anspaugh and R. G. Downing, Conf. Record of the 17th IEEE Photovoltaic Specialists Conf., 23, 1984.
- M. Yamaguchi and C. Amano, J. Appl. Phys., 54, 5. 5021, 1983.
- S. Yoshida, K. Mitsui, T. Oda, and Y. Yukimoto, 6. Japanese J. Appl. Phys., 21, Suppl. 2, 27, 1982.
- 7. S. S. Li, T. T. Chu, and R. Loo, IEEE Trans. Nucl. Sci., <u>NS-28</u>, No. 6, 4113, 1981.
- T. Nakarisi, J. Cryst. Growth, <u>68</u>, 282, 1984. 8.
- J. Van de Ven, H. G. Shoot, and L. J. Giling, 9.
- J. Appl. Phys., <u>60</u>, 1684, 1986. K. H. Knester, B. C. DeCooman, and C. B. 10. Carter, J. Appl. Phys., <u>58</u>, 4065, 1985.
- 11. P. W. Hutchinson, P. S. Dobsen, S. O'Hara, and D. H. Newman, Appl. Phys. Letters, 26, 250, 1975.
- 12. P. Petroff, W. D. Johnston, and R. L. Hartman, Appl. Phys. Letters, 25, 226, 1974.
- D. Redfield, Appl. Phys. Letters, 48, 846, 13. 1986.
- W. M. Ranjith Divigalpitiya, and S. Roy 14. Morrison, J. Appl. Phys., <u>60</u>, 406, 1986.

PROPERTY	MANTECH	LIMITED CUSTOM RUN	CURRENT PRODUCTION
RUN NO.	1	2	3
AlGaAs Substrate	Si doped, 2x10 ¹⁸ , 12 mil	Si doped, 2x10 ¹⁸ , 12 mil	Si doped, 2x10 ¹⁸ , 12 mil
n-GaAs Buffer	Se doped, 2x10 ¹⁷ , 4 µm	Se doped, 2x10 ¹⁷ , 5 µm	Se doped, 2x10 ¹⁷ , 6 µm
p-GaAs Emitter	Zn doped, 1x10 ¹⁸ , ~0.5 µm	Zn doped, 1x10 ¹⁸ , 0.7 µm	Zn doped, 1x10 ¹⁸ , ~0.5 µm
p-AlGaAs Window x value	Zn doped, 1x10 ¹⁸ , 0.1 µm 0.88 (+ in some cases)	Zn doped, 1x10 ¹⁸ , 0.08 µm 0.85 - 0.87	Zn doped, 1×10^{18} , 0.05 µm 0.85 - 0.87
Front Contacts	AuZnAuAg, <u>></u> 4 µm	AuZnAuAg, ≥4 µm	AuZnAuAg, <u>></u> 4 µm
Back Contacts	AuGeNiAg, ≥4 µm	AuGeNiAg, ≥4 µm	AuGeNiAg, ≥4 µm
AR Coating	Dual	Dual	Dual
Reverse Bias Screening	No	Yes	Yes
Coverglass	No	No	Yes
Hardwired	No	No	Yes
Soldered	No	Zone-soldered	Zone-soldered
Light Source	X-25, 135.3 mW/cm ²	X-25, 135.3 mW/cm ²	X−25, 135.3 mW/cm ²
Average Temp. During Exposure	<u><</u> 28°C	<u><</u> 28°C	<u><</u> 28°C
Sample Size Exposed Shielded	16 16	16 16	12 3
Photon Exposure Time	407 hours	432 hours	552 hours

Table 1. Properties of GaAs Cells Used in Photon Exposure Tests

ELEMENT	THICKNESS (μm)	COMPOSITION	DOPANT CONCENTRATION x 10 ¹⁸ cm ⁻³
GRID (p-CONTACT)	3.4	Ag - Au Zn Au	-
AR COATING	0.1	Ti O _X /Al ₂ O ₃	-
WINDOW (p+)	0.1	$Al_X Ga_{1-X} As (Zn)$	2 TO 4
JUNCTION (p)	0.45	GaAs (Zn)	2
BUFFER (n)	·:10	GaAs (Se)	0.2 TO 0.5
SUBSTRATE (n+)	355	GaAs (Si DOPANT)	1 TO 4
n - CONTACT	3.4	Ag - Au Ge Ni Au	-

Figure 1. Schematic of Gallium Arsenide Cell Structure

Figure 3. Light I-V Curves of Custom Run GaAs Cells After 432 hour Photon Exposure

Figure 4. Light I-V Curves of Current Production GaAs Cells After 552 hours Photon Exposure