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Abstract 

This study presents the results of a fault-injection experiment that simulates 
a neural network solving the Traveling Salesman Problem (TSP). The network 
is based on a modified version of Hopfield's and Tank's original method. We 
define a performance characteristic for the TSP that allows an overall assess- 
ment of the solution quality for different city-distributions and problem sizes. 
Five different lo-, 20.' and 30-city cases are used for the injection of up to 13 
simultaneous stuck-at-"0" and stuck-at-"1" faults. The results of more than 
4000 simulation-runs show the extreme fault-tolerance of the network, espe- 
cially with respect to stuck-at-"O" faults. One possible explanation for the 
overall surprising result is the redundancy of the problem representation. 

*This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-18605 while the author was in residence at ICASE, NASA Langley Research Center, 
Hampton, VA 23665. 
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1. Introduction 

One of the most intriguing characteristics of biological as well as artificial neu- 

ral networks is their apparently inherent fault-tolerance. The fault-tolerance of 
most conventional systems requires some form of hardware-, software-, and/or time- 
redundancy, which increases the complexity of the system. That is, it is possible 

to construct a simpler system, which is not fault-tolerant and has the same perfor- 

mance under fault-free conditions as the fault-tolerant system. The fault-tolerance 

of neural networks, however, seems to be inseparable from their functional charac- 
teristics, which means it is not possible to have a simpler, not fault-tolerant network 
perform the same task. 

Unlike in conventional systems where the fault-tolerance is a carefully planned 
and calculated design goal, the cause and the degree of the inherent fault-tolerance 

of different neural networks basically is still an unknown factor. There have been 
only a few investigations on the fault-tolerance of artificial neural networks (ANNs) 

that demonstrate the performance degradation under the presence of faults [ 1,2,3,4]. 
For example, Anderson (1983) shows the effect of removing connections from a 

brain-state-in-a-box model with and without intermittent learning [l]. Sejnowski 

and Rosenberg (1986) and Hinton and Sejnowski (1986) report on relearning and 

recovery after random perturbations of the weights for a Backpropagation network 

[4] and the Boltzmann machine [2], respectively. Random weight perturbations were 
also used by Hutchinson and Koch (1986) to demonstrate the robustness of their 

resistive network [3]. 

We also focus our investigations on the fault-tolerance aspect of ANNs with 

the goal of getting more insight into the correlation between fault-tolerant and 
functional characteristics of ANNs. In this paper, we describe first results of a 

fault-injection experiment that simulates an ANN solving the Traveling Salesman 
Problem (TSP) based on the method of Hopfield and Tank (H&T) (1985) (51. In 
order to produce consistently valid tours in the fault-free cases, we had to use a 

modification of H&T’s original equations. Since the performance varies for different 

ci ty-dist ributions and ini tializations, we defined a performance characteris tic that 
can be averaged over different distributions to allow a better assessment of the 
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solution quality. This definition and simulation results of the fault-free case are 
described in the next section. The results of the fault-injection experiment are 
presented in section 3, followed by an interpretation and discussion in section 4, 

and a s u m m a r y  with conclusions in section 5. 

2. Performance Characteristic for the TSP 

Hopfield’s and Tank’s method of ‘programming’ an ANN to solve the TSP created a 

new class of applications for ANNs in the area of combinatorial optimization. H&T’s 
TSP-Solver is also an interesting candidate for the investigation of fault-tolerance 

characteristics because of the way the problem is represented by the network. To 
describe a closed tour for n cities, n2 ‘neurons’ are needed and each represents the 
probability Vxi of city X being in the i-th position of the tour. Thus, the same tour 
can be mapped onto the network in 2n different ways because the starting point 
and the tour direction are free variables. The considerable redundancy produced by 
the %-fold degeneracy of the problem representation raises the question how this 
might affect the performance of the system under the presence of faults. 

Since H&T’s method to solve the TSP has become widely known and is well 
documented, we will not describe the details of the original approach; all the neces- 

sary information can be found in [ 5 ] .  While working with H&T’s method it became 
apparent that the performance varies considerably for different city-distributions. 
These fluctuations make it impossible to prove a point by looking at just one or two 

city-distributions. But if the performance has to be averaged over many different 
city-distributions, we need to d e h e  a normalized performance index that reflects 

the quality of a solution. Each city-distributions has two distinct characteristics, 
the optimal tour length lOpt and the average tour length la,, of a sufficient number 

of randomly generated tours. The quality of a given solution 1 for a specific city- 
distribution can be characterized by its relation to  the optimal and the average tour 

length of this city-distribution. We define the quality of a given solution or tour 
quality q as 
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Therefore, we get a value q = 1 if a given solution is optimal (1 = lopt), and q = 0 

if the answer corresponds to an average random tour (I = This definition 
requires the knowledge of the optimal tour length for each city-distribution. We 

generated a test set consisting of 10 different city-distributions for each problem 
size of 10-, 20-, and 30-cities, and 5 different city-distributions for a 50-city and 

100-city case. To obtain the optimal tour length for each distribution, we used 
several runs of the heuristic algorithm of Lin and Kernigham (1973) as described 
in [6]. Although this is one of the best algorithms for solving the TSP, it does not 

guarantee to produce the optimal answer. If the reference value Z,t is not optimal 
and the network produces an even better tour with Z < Z o p t ,  it results in a value 

q > 1. If, on the other hand, the solution of the network is worse than the average 
random tour, we get q < 0. The average values Z,,, were obtained by generating 
lo4 random tours for each city-distribution. 

Another difficulty in assessing the performance is the need for a random initial- 
ization [SI and the dependency of the solution on this initialization. We used H&T’s 
method for determining the initial values, but we chose the symmetry-breaking noise 
6uxi uniformly in the interval -low7 5 6uxi 5 These small values for the 
noise were sufficient to break the initial symmetry and produced on the average 
better tours than higher values. In order to  take the variation of the solution for 
different random initializations into account, we performed several initializations 

for each city-distribution and computed the average tour quality. 

Table 1 shows the performance results of the original H&T equations [5] for 

our test set of city-distributions in comparison to our modification described below. 

The values in parentheses show the proportion of valid solutions after convergence. 
Values shown for the 10, 20, and 30 city sizes are averages over 10 different city- 

distributions and 10 different random initializations each, that is, each value is 
averaged over 100 simulations. The 50 city size shows averages of 5 different city- 

distributions and 10 different random initializations, while the single 100 city case 

shows averages over 5 different cities and 5 different initializations. 

We could confirm the observations of Wilson and Pawley (1988) (7) and others 

[8,9,10] that H&T’s original equations do not consistently produce valid tours. The 

3 



TABLE 1 
Fault-free performance of the methods in terms of the defined tour-quality q 

and the proportion of valid solutions (in parentheses). 

OriginalHopfield 
& Tank Method 

Modified 
Method 

number of cities )I Method 1 10 I 20 I 30 I 50 I 100 
0.905 0.903 0.851 0.000 -/- 
(0.15) (0.11) (0.02) (0.00) -/- 
0.836 0.844 0.808 0.817 0.860 

-. 

(1.00) (1.00) (0.99) (1.00) (1.00) - 

proportion of valid solutions in Table 1 declines rapidly as the problem size increases. 
Since none of the 50 city cases converged to a valid solution, we did not investigate 

the performance for 100 cities. H&T use the following equations that describe the 
time evolution of the system that ‘solves’ the TSP by converging to a local minimum 

corresponding to a (locally) optimal solution to the TSP [5] : 

These equations frequently produce invalid tours with more than one neuron in 

a row or column converging to ‘1’. Adding the term 

I 1 ( x  
- E c v x ;  + c v x ;  - 1 (3) 

to the right side of equation (2) introduces an additional inhibition that penalizes 

the occurrence of those events. With the parameter values A=B=C=E=200 and 

D=90 we were able to produce consistently valid tours over a wide range of prob- 
lem sizes. Although Table 1 shows a slightly lower tour quality for the modified 

version, we observed only one single 30-city case that did not converge to a valid 

tour. A comparison to other modifications recently reported in the literature (e.g. 
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[&lo]) is planned, and we are especially interested in investigating a possible cor- 
relation between fault-tolerance characteristics and different ways to enforce the 
constraints. 

3. Fault -1nj ect ion 

Since this type of ANN is readily implementable in hardware, it seems reasonable 
to consider the components with the highest failure rate as the primary candidates 
for a fault-injection experiment. These are the operational amplifiers as the active 

elements of the network, and in our simulations we distinguished between two dif- 
ferent kinds of faults, called stuck-at-"0" and stuck-at-"1". As the self-explanatory 
notation suggests, a stuck-at-"0" fault occurs when the output of an amplifier is 
permanently pulled to ground potential, and a stuck-at-"1" fault corresponds to  an 
amplifier output permanently stuck at  its highest output potential. 

The fault-locations were randomly selected with one important exception: Two 
simultaneous faults in the same row or column are prohibited. Obviously, two stuck- 

at-"1" faults in the same row or column would preclude a valid solution and repre- 
sent the total system failure. Thus, it is important to keep this exception in mind 
when interpreting the results because this failure mode of the system is explicitly 
excluded from our figures. The same fault-locations were used for the stuck-at-"O" 

and stuck-at-"1" faults in order to compare the effect of different fault types in the 
same location. Therefore, we also excluded two stuck-at-"0" faults in the same row 

or column, although this would not affect the system in the same way as in the 

stuck-at-"1" case. 

We used a subset of 5 different 10-, 20-, and 30-city-distributions and performed 

5 different random initializations for each distribution. These overall 75 simulation- 

runs were repeated for up to 13 injected faults of both types. The 50 and 100 city 
cases were not considered for this experiment simply because the simulations are 

computationally too expensive. The results in terms of the defined tour quality are 

shown in Figure 1 to 4. Figure la-c shows the individual results for three out of five 

10-city-distributions with up to seven injected faults. The Figures 2a-c and 3a-c do 
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the same for the 20- and 30-city case, respectively, but with up to 11 injected faults 
for the 20-city cases, and up to 13 faults for the 30-city cases. The average values 
for all five 10-, 20-, and 30-cities are shown in Figure 4a-c. 

4. Discussion 

At a first glance it is hard to  believe that the injection of multiple, especially stuck- 
at-"0" faults seems to have almost no negative effect on the performance and some- 

times even results in better tours than in the fault-free cases. In fact, we had to 
convince ourselves of the absence of serious software errors in our batch-simulator 

by using a second, interactive simulator to monitor the evolution of the network 

solution. For the interpretation of the results it is important to  realize that the 
two different fault-types have different effects on the network. While stuck-at-"0" 
faults preclude certain configurations or tours, stuck-at-"1" faults impose the order 

in which the corresponding cities are visited on the tour. The latter case has obvi- 
ously a more serious effect on the performance which is reflected in the results. In 
the extreme case of n stuck-at-"1" faults for an n-city-distribution we would simply 

impose a random tour, given our constraint of having only one fault in a row or 

column. This effect can be seen in Figure la  and IC after injecting 7 stuck-at-"1" 
faults for a 10-city case. 

The performance variations for the individual city-distributions are not surpris- 
ing since the fault effect depends on the actual locations of the cities in a given 
distribution. A more general trend of the performance degradation can be seen in 
Figure 4 after averaging over all five city-distributions for each problem size. These 

results indicate that stuck-at-"0" faults are no problem at all, and that the network 
is well capable 'of working around' multiple stuck-at-"1" faults as long as the num- 

ber of faults does not reach the number of cities and as long as there is only one 
fault in each row or column. 

Another very important performance characteristic not reflected in Figures 1-4 

is the number of valid tours after fault-injection. Surprisingly, we observed only 3 

cases (two 30-city and one 20-city case) out of over 4000 simulations in which the 
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network did not converge to a valid solution. Another interesting phenomenon is 
that two or more injected faults of any type 'overwrite' the random initialization, 

that is, we get identical tours for different random initializations. 

5. Summary and Conclusion 

The goal of this study was to investigate the effect of injecting faults into a simulated 
ANN solving the TSP. The network is based on a modified version of the original 

method of Hopfield and Tank. The modified method produces consistently valid 
tours and represents the basis for the fault-injection experiment. Since the quality of 
a solution varies for different city-distributions and different random initializations, 

we defined a characteristic measure for the tour quality in relation to the optimal 
and random tour length for a given city-distribution. This allows the assessment of 

the overall performance for different city-distributions and problem sizes. 

Five different lo-, 20-, and 30-city-distributions were used for the injection 
of up to 13 stuck-at-"0" and stuck-at-"1" faults. The results of more than 4000 

simulation-runs reveal a surprisingly high fault-tolerance. Stuck-at-"0" faults seem 
to have almost no or even a positive effect on the performance. A sufficiently small 

number of stuck-at-"1" faults also has little effect, as long as there is only one fault 
in a row or column. Only three cases produced invalid solutions under the presence 
of faults. 

The results of this experiment show that the only dominant failure mode for 
the network is the simultaneous occurrence of two stuck-at-"1" in the same row 

and column, precluding a valid solution. One important factor that contributes to 
the extreme fault-tolerance exhibited by the network is probably the redundancy 

inherent in the problem representation with its 2n-fold degeneracy. Unfortunately, 
there does not yet exist another, less redundant problem representation for the 
TSP. Further experiments with different model problems are necessary to draw 
more general conclusions and to gain more insight into the relation between the 

redundancy of the problem representation and the fault-tolerance of the network. 
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