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ABSTRACT 

We describe algorithms for the generation and adaptation of unstructured grids in two 
and three dimensions, as well as Euler solvers for unstructured grids. The main purpose 
of tlie paper is to  demonstrate how unstructured grids may be employed advantageously 
for the economic simulation of both geometrically as well as physically complex flowfields. 

1. INTRODUCTION 

Over the past years the development of flow solvers for unstructured grids has pro- 
gressed rapidly. While tlie insin enipliasis at  tlie beginning was on Euler solvers [l-51, the 
current emphasis has shifted onto those fields which may be considered ‘peripheral’, yet 
very important for a complete siinulatioii capability. These are: efficient implementation on 
vector and parallel machines (GI, ada,ptive refinement (4,7-141, mesh generation [5,11,15-211 
and flow visualization. In w1ia.t follows, we describe briefly the capabilities we developed 
in this area. The main emphasis of the present p p e r  in on applications. Therefore, rather 
than dwelling in depth on each subject, we will show esa.mples to illustrate the relevant 
points. 

2. THE GRID GENERATOR: GENERALIZED ADVANCING FRONT 

Sevcra.1 algorithms for tlie generation of unstructured grids have been proposed in tlie 
literature. We may group theni into two classes: a) those that introcluce gridpoints before 
constructing the triangulation, and 11) those that introduce gridpoints while constructing 
the triangulation. Members of tlie first family of schemes include tlie Voronoi/Delauney 
triangulation schemes [5,7,15,22-241, as well as the advancing-front algorithms [16,20]. The 
generalized advancing-front scheiiie [11,12,17-191 l>elongs to the second family. I t  is advo- 
cated here because it does not require a separate library of modules to introduce points 
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before triangulating, and also allows to regenerate adaptively the domain in a very simple 
manner [ll]. The main steps involved when generating a grid using the advancing-front 
technique [11,12,17-191 are as follows: 

F.l Define the boundaries (surfaces) of the domain to be gridded. 
F.2 Set up a background grid to define the spatial variation of the size, the stretching, 

and the stretching direction of the elements to be generated. The background grid 
consists of tetrahedrons. At the nodes we define the desired element size, stretching 
a,nd stretching direction. This background grid must completely cover the domain to 
be gridded. 

F.3 Using the information stored on the background grid, set up faces on all these bound- 
aries. This yields the initial front. At the same time, find the generation parameters 
(element size, stretching and stretching direction) for the new faces from the back- 
ground grid. 

F.4 Select the next face to be deleted from the front; in order to avoid large elements 
crossing over regions of small elements, the face forming the smallest new element is 
selected as the next face to be deleted from the list of faces. 

F.5 For the face to be deleted: 
F..5.1 Select a ‘best point’ position for the introduction of a new point IPNEW. 
F.5.2 Determine whether a point exists in the already generated grid that should be 

used in lieu of the new point. If there is such a point, set this point to  IPNEW and 
continue searching (go to F.5.2). 

cross any given faces. If it does, select a new point as IPNEW and try again (go to 
F.5.3). 

F.5.3 Determine whether the element formed with the selected point IPNEW does not 

F.G Add the new element, point, and faces to their respective lists. 
F.7 Find the generation parameters for the new faces from the background grid. 
F.8 Delete the known faces from the list of faces. 
F.9 If there are any faces left in the front, go to F.4. 

There are several interesting algorithmic aspects which should be mentioned: 
a) Extensive use is made of optimal data structures to perform the search operations 

involved. In particular, we use heap-lists to find the next face to be deleted (step F.4), 
quad-trees to find the closest given points to a new point (step F.5.2), and linked lists 
to find the faces adjacent to a given point (step F.5.3). We combine quad-trees and 
linked lists to find for any given location the values of generation parameters from 
the background grid (steps F.3 and F.7). The algorithmic complexity of the overall 
algorithm should be of O(N1og N ) .  In practice, we find it to be closer to  O ( N ) ,  as 
we continuously delete domain points from the lists, and the subroutine-calls require 
some overhead. 

b) The checking of face-intersection is a non-trivial problem in 3-D. It also requires a 
large amount of CPU-time due to the algorithmic complexity involved. In order to 
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make this process faster, a layered face-checking approach was implemented [18]. This 
resulted in a significant reduction of CPU time. 

More details about the implementation and the data structures used can be found in 
[ 1 7,181. 

Examples include 

a) Multi-Element Airfoil Configuration (2-D) 

Figure 1 shows a multi-element airfoil case. Figure la gives the boundary information, 
Figure l b  the background grid used and Figure IC the final generated grid. 

b) Missile Launcher (3-D) 

Figure 2 shows a generic missile launcher model. Only half the model is required for 
computational purposes. The surface definition was given by 39 points, 44 lines and 19 
surface segments. The background grid had 48 points and 132 elements. Figure 2a shows 
the complete surface triangulation. The generated grid contains 14,508 points and 75,894 
tetrahedrons. Figure 2b shows the grid along the axis of symmetry, and one can observe 
finer grid zonings close to the missile and the launcher. 

3. THE FLOW SOLVER: FINITE-ELEMENT FLUX-CORRECTED TRANSPORT 
(FEM-FCT) 
The design of flow solvers for compressible flows has reached a high degree of sophisti- 

cation, as witnessed by the many publications dealing with this subject [25-271. At present, 
the central question no longer is:'will it work ?', but rathec'how well will it work for the 
class of problems to  be simulated ?'. Therefore, we define the design criteria we applied 
when constructing our Euler solver: 

a) The solver should be able to operate on unstructured grids. 

b) The solver should be able to operate on moving grids, so that body or interface 

c) The solver should be able to simulate transient compressible flow problems with strong 

dj The phase-accuracy of the solver should be better than second order, so that vortex 

e) The solver should be fast, as transient simulations tend t o  require longer run-times 

Item a) implies that we can only discretize operators, and not stencils. Item b) implies 
that we must formulate the equations of motion for the fluid in an Arbitrary Lagrangian- 
Eulerian (ALE) [28] frame of reference. Item c) implies that the solver must have Total 
Variation Diminishing (TVD) [27,29] properties, and be of first-order accuracy near dis- 
continuities. Item d) implies that for smooth flow regions, the flow solver must reverse to  
a third- or fourth-order accurate scheme in phase. Finally, item e) implies that if possible 
we ought not to use Riemann-solvers, as these require more CPU-time per update than 
ordinary schemes. 

movement can be simulated. 

shocks. 

propagation and linear discontinuities are not spread too fast in time. 

than steady-st ate simulations. 
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We start by writing the governing equations of compressible flow in the following 
ALE-form 

where the summation convention has been employed and 

U =  

Here p, p ,  and e denote the density, pressure and specific total energy of the fluid respec- 
tively, and ui, tu; are the components of the fluid and grid velocities in the direction z; of 
a Cartesian coordinate system. The equation set is completed by the addition of the state 
equation 

which is valid for a perfect gas, where y is the ratio of the specific heats. We now focus 
on the TVD aspects of the flow solver. As is well known, for the compressible flows 
described by Eqn.(l), discontinuities in the variables may arise (e.g. shocks or contact 
discontinuities). Any numerical scheme of order higher than one will produce overshoots 
or ripples at such discontinuities (the so-called 'Godunov theorem'). The idea behind 
Flux-Corrected Transport (FCT), and more generally all TVD schemes, is to  combine 
a high-order scheme with a low-order scheme in such a way that in regions where the 
variables under consideration vary smoothly (so that a Taylor expansion makes sense) the 
high-order scheme is employed, whereas in those regions where the variables vary abruptly 
the schemes are combined, in a conservative manner, in an attempt to ensure a monotonic 
solution. Note that even if the original partial differential equation is linear, the resulting 
scheme will be nonlinear. The temporal discretization of Ecln.( 1) yields 

Unsl  = U'" AU , (4) 
where AU is the increment of the unknowns obtained for a, given scheme at time t = tn.  
Our aim is to  obtain a AU of as high an order as possible without introducing overshoots. 
To this end, we re-write Eqn.(4) as: 

or 
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Here AUh and AU' denote the increments obtained by some high- and low-order scheme 
respectively, whereas U' is the monotone, ripple-free solution at time t = tnS1 of the low- 
order scheme. The idea behind FCT is to limit the second term on the right-hand side of 
Eqn. (6): 

U"+' = U' + Zim(AUh - AU')  , ( 7 )  

in such a way that no new over/undershoots are created. More details on how the limiting 
is performed may be found in [30,31]. As the high-order scheme, we employ a two-step form 
[4,32] of the one-step Taylor-Galerkin schemes described in [1,3]. These schemes belong to 
the Lax-Wendroff class, and could be substituted by any other high-order scheme which 
appears more convenient, including implicit schemes. They have been chosen here, because 
they appear to  offer the best accuracy per cost performance of all the schemes tried. Given 
the system of equations (l), we advance the solution from tn to tn+' = tn  + At as follows: 

a) First stew 

b) Second step : 

n1 

The spatial discretization of Eqns.(8,9) is performed via the classic Galerkin weighted 
residual method [4,32], using linear elements, i.e. 3-noded triangles in 2-D and 4-noded 
tetrahedra in 3-D. For Eqn.(9) the following system of equations is obtained: 

M c  - AUn = R", 

where M c  denotes the consistent mass matrix [1,3], AU the vector of nodal increments and 
R the vector of added element contributions to the nodes. As M c  possesses an excellent 
condition number, Eqn.( 10) is never solved directly, but iteratively, requiring typically 
three passes [l]. We can then recast the converged solution of Eqn.(lO) into the following 
form: 

M L  . A U ~  = R +  ( M L  - M ~ ) .  nuh. (11) 

Here M L  denotes the diagonal, lumped mass-matrix (see [l]). We remark that this high- 
order scheme is better than second-order in phase-space, as the consistent mass adds addi- 
tional information beyond nearest neighbors when iterating. Numerical experiments (see 
below) show that this scheme, when applied on a structured mesh, is comparable to a 
fourth-order accurate scheme. As the low-order scheme, we use the same discretization for 
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the fluxes and source-terms, but revert to a lumped mass and an added numerical diffusion 
term on the right: 

M ~ . A U ’ = R + D I F F .  (12) 

NUMERICAL EXAMPLES 

a) Passive Advection of a Square Wave 

This is the same example as was used by Boris and Book [33] to demonstrate the 
accuracy and monotonicity of their FCT-schemes. As the equation being solved (the 
transport equation) is linear, both amplification- and phase-errors can be identified easily. 
The wave extends over 20 gridpoints, and is convected with a Courant-number of C=0.2 
for 800 steps. In Figure 3 we compare the solutions obtained when using, in the high-order 
scheme, a lumped mass-matrix and a consistent mass-matrix. Observe that the consistent 
mass-matrix gives better phase-accumcy. After 800 steps the initial discontinuity is spread 
over only 5 gridpoints. 

b) Passive Advection in 2-D 

This is the same example that Zalesak [34] used to test his FCT-algorithms. Again, as 
the equation solved is linear, both amplification and phase-errors can be identified easily. 
The problem statement may be found in [34]. The mesh used for this case, as well as the 
results obtained are depicted in Figure 4. 

c) Sod-Problem (1-D) 

This classic example, taken from [35] , solves the Rieniann-problem for the compressible 
Euler equations in l-D. The same grid as in [35] is employed, and the solutions are shown at 
times t=7.36 and t=14.75. Figure 5 shows the results obtained for the described FEM-FCT 
Euler solver. 

d) Shock-Reflection at a Wa.11 

This problem has also been used extensively to assess the accuracy of schemes used for 
the solution of steady state problems [29]. As in all the following steady-state examples, 
local timestepping was used. The problem statement, as well as the pressure distributions 
obtained for the original Ta.ylor-Galerkin scheme and FEM-FCT are shown in Figure 6. 
Observe that the shocks are captured so sharply that the underlying grid structure becomes 
visible in the contour-plots. The steady state solution for this problem took 300 iterations, 
the residuals dropping 4 orders of magnitude. Figure Gd depicts the variation of the density 
along the line y=0.5, and, as one can see, no over/undershoots are present. 

e) Flow Past an Airfoil in Transonic Flow 

This example shows that acceptable solutions can be achieved with the present algo- 
rithm for the transonic flow regime. The case at hand is a NACA-0012 airfoil, and the 
Mach number at infinity and angle of attack were set to A l ,  = 0.85 and Q = 0.0. The 
grid-point distribution was taken from Jameson’s FLO52-code [36] , and corresponds to a 
96 by 16 mesh. The cp  -distributions on the airfoil-surface obtained for FEM-FCT and 
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the original two-step Taylor-Galerkin scheme presented in [4,32] are given in Figure 7. 
Although the solution achieved by FEM-FCT is better than that of the ordinary Taylor- 
Galerkin scheme, for steady-state aerodynamic applications, where shocks are only locally 
important, the additional cost of the high-resolution schemes does not make them attrac- 
tive for production runs. Adaptive refinement [4,7,11,321 is a much more effective way of 
obtaining sharp shocks for steady flows. 

f )  Sunersonic Flow Past an Obiect in a Ca.vitv (3-D) 

This example shows a 3-D solution for a fairly complex geometry. The problem state- 
ment, as well as the grid employed and the solution obtained, may be seen in Figure 8. The 
grid consisted of 5,426 points and 27,462 tetrahedra. The free-stream Mach-number was 
set to Mw = 1.5. The flow impinges on the back wall of the cavity, creating a recirculation 
zone in the cavity. This is visible in the particle paths plotted in Figure 8c. 

h) Transonic Flow Pa.& Pathfinder in a Wind-Tunnel (3-D) 

This example shows a 3-D solution for the Pathfinder wing-body-tail configuration 
in a windtunnel. The problem statement, as well as the grid employed and the solution 
obtained may be found in Figures 9a-c. The grid consisted of 10,280 points and 55,865 
tetrahedra. The free-stream Mach-number was set to M ,  = 0.82, and convergence was 
achieved in 2000 steps. 

4. ADAPTIVE REFINEMENT 

A very attractive fea.ture of unstructured grids is the ease with which adaptive re- 
finement can be incorporated into them. The addition of further degrees of freedom does 
not destroy any previous structure. Thus, the flow solver requires no further modification 
when operating on an adapted grid. For many practical problems, the regions that need to 
be refined are extremely small as compared to the overall domain. Therefore, the savings 
in storage and CPU requirements typically range between 10-100 as compared to  an over- 
all fine mesh. We find that for the majority of the daily production-type runs, adaptive 
refinement makes the difference between being or not being able to  run the problems to 
an acceptable accuracy in a reasonable time. Without it, we would be forced to  use much 
coarser grids, with lower accuracy, for the same expense. 

1) an optimal-mesh criterion, 
2) an error indicator, and 
3) a method to refine and derefine the mesh. 
They give answers to the questions 
1) how should the optimal mesh be ?, 
2) where is refinement (derefinement) required ?, and 
3) how should the refinement (derefinement ) be accomplished ? 
Many variants of each of these subtopics have been explored and shown to be useful for a 
certain class of problems [4,7,8,9-14,371. Therefore, as was the case with the flow solvers, 
we need to  define our design criteria. before proceeding further. Again, we seek a method 

Any adaptive refinement scheme is composed of three main ingredients. These are 
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that is efficient and reliable for transient conipressible flow problems. This leads us to the 
following design criteria for the error indicator: 

The error indicator should be fast. 
The error indicator should be dimensionless, so that several ‘key variables’ can be 
monitored at the same time. 
The error indicator should be bounded, so that no further user intervention becomes 
necessary as the solution evolves. 
The error indicator should not only mark the regions with strong shocks to be refined, 
but also weak shocks, contact discontinuities and other ‘weak features’ in the flow. 
the refinement method, the design criteria are as follows: 
The method should be conservative, i.e. a mesh change should not result in the 
production or loss of mass, momentum or energy. 
The method should not produce elements that are too small, as this would reduce too 
severely the allowable timestep of the explicit flow solvers employed. 
The method should be fast. In particular, it should lend itself to some degree of 
parallelism. 
The method should not involve major storage overhead. 

An error indicator that meets the design criteria a)-d) was proposed in [37]. In general 
terms, it is of the form 

1i2 \second derivatives1 
h Ifiyst derivatives1 + E \mean  value1 

error  = 

By dividing the second derivatives by the absolute value of the first derivatives the error 
indicator becomes bounded, dimensionless, and the ‘eating up’ effect of strong shocks is 
avoided. The terms following E are added as a ‘noise’ filter in order not to refine ‘wiggles’ 
or ‘ripples’ which may appear due to loss of monotonicity. The value for E thus depends 
on the algorithm chosen to  solve the PDEs describing the physical process at hand. The 
multidimensional form of this error indicator is given by 

where Nx denotes the shape-function of node I. 

Two different methods for grid refinement have been explored. These are 1) local 
h-refinement, and 2) adaptive remeshing. Ta.ble 1 compares the relative merits of both 
approaches. We may summarize our experience with both approaches as follows: 

- For steadv-state or mildlv unsteadv problems, adaptive remeshing represents the best 
adaptive refinement method currently available. Particularly if large stretching ratios 
can be realized, it easily outperforins all other methods. 
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- For stronrrlv unsteadv Droblenis, where a new grid is required every 5-10 timesteps, 
local h-refinement seems to  be preferable. Several reasons can be given for this choice. 
Firstly, h-refinement is more robust than remeshing. The amount of things that can go 
wrong seems to be much less than when remeshing. Secondly, 11-refinement is very well 
suited to vector- and parallel processors. Thirdly, conservation presents no problem 
for h-refinement . 

- Table 1 also quotes CPU times measured on the CRAY-XMP-24 at  NRL. While these 
times are approximate and could be improved, they indicate a trend. The described 
grid generator is a scalar procedure. Moreover, the introduction of a new point or 
element requires substantially more operations than the equivalent operation done 
with h-refinement. A partial solution to this problem is to generate first a coarser, 
yet stretched grid, and then to  apply global h-refinement [8]. As vectorization of the 
global h-refinement is straightforward, the savings as compared to just remeshing are 
substantial (a factor of 4 in 2-D, a factor of 8 in 3-D). 

- In our experiments adaptive remeshing maintained the conservation sums very well. 
The change during one mesh change was less than 0.01%. We attribute this very good 
performance to the fact that the elements close to  shocks were uniform in size. 

- The combination of both approaches should be pursued further. In this way, the 
advantages of each approach can be employed to its fullest extent. 

H-Refinement 

- Interpolation/Conservation easy 

- Minimum h-size easy 

- Directional Refinement not easy 

- Body/Interface Movement not easy 

- Parallelizable easy 

- Timings ( p s e c / p t . / g r i d )  120 

Table 1 : H-Refinement 

NUMERICAL EXAMPLES 

a) Shock ImDinging on Two Obstacles 

Remeshing 

not easy 

not easy 

easy 

easy 

not easy 

1800 

vs. Remeshing 

We consider a strong shock ( M ,  = 10.0) coming from the left that collides with the two 
bodies shown in Figure loa. Four levels of refinement were activated. Had the grid been 
refined uniformly, this would correspond to 152,320 points. For the run shown the highest 
number of gridpoints required was about 17,000, and during most of the computation 
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considerably less gridpoints were used. As the physics become more complicated, more 
grid points are required, and correspondingly larger portions of the domain are refined. 
The solutions obtained at different times are depicted in Figures lob-c. We show the 
grid, the density contours, and a blow-up of the velocities at  times T=4.0, T=6.0 and 
T=8.0. For the density contours about 100 levels were chosen, so that any ‘wiggle’ in 
the plot corresponds to approximately 1% deviation from a smooth solution. The adaptive 
refinement procedure is capable of producing very accurate calculations with sharp, detailed 
resolution of flow structures. 

b) Shock-Box Interaction 

In this case we consider a weak shock (Ms = 1.4) that interacts with a box some 
distance from the ground. A maximum of four layers was activated, but we also imposed a 
minimum 11-size limit for the refinement. Thus, in the finest regions of the base mesh only 
three levels of refinement were used. The solutions obtained at different times are depicted 
in Figures lla-c. Again, we typically show GO-80 contour levels for the relevant quantities. 
Besides the obvious shock reflections, one can also see the vortex shedding process that 
begins at the sharp corner of the box. More details and further studies of this class of 
problems may be found in [38]. 

c) Object Falling into Supersonic Free Strea.m 

The problem statement is as follows: an object is placed in a cavity surrounded by 
a free stream at M ,  = 1.5. After the steady-state solution is reached (time T=O.O), a 
body motion is prescribed, and the resulting flowfield disturbance is computed. Adaptive 
remeshing was performed every 100 timesteps initially, while at later times the grid was 
modified every 50 timesteps. No subsequent 11-refinement was used in this case, as the mesh 
adaptation process is not done very often. The maximum stretching ratio specified was 
S = 5.0. Figures 12a,b show two different stages during the computation at times T=20 
and T=175. Initially, the velocity flows counterclockwise around the object. At later tinies, 
this motion is reversed in the cavity. One can also see how the location and strength of 
the shocks changes due to  the motion of the object. Notice how the directionality of the 
flow features is reflected in the mesh. 

5 .  CONCLUSIONS 

We have described several algorithnis for the generation and adaptation of unstruc- 
tured grids in two and three dimensions, as well as Euler solvers that operate on these 
grids. The main purpose of the paper was to demonstrate how unstructured grids may 
be employed advantageously for the economic simulation of both geometrically as well as 
physically complex flowfields. Numerous examples taken from daily production runs were 
shown, demonstrating the capabilities developed. Future developments will center on the 
following areas: 

- extension of Euler-solvers to the Navier-Stokes equations, 
- incorporation of chemistry in the current non-reacting flow models, 
- extension of local adaptive h-refinement and adaptive remeshing to  3-D, and 
- adaptive gridding for time-dependent, viscous flows. 
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Figure l(a). Multielement airfoil configuration: boundary information. 

Figure l(b). Multielement airfoil configuration: background grid. 
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Figure l(c). Multielement airfoil configuration: generated grid. 
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Figure 2(a). Missile launcher: surface triangulation. 

Figure 2(b) .  Missile launcher: grid in plane of symmetry 
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(a) High-order scheme: lumped-mass Taylor-Galerkin (niter=l). 

t 

Figure 3. Passive advection of a square wave (1-D); C=0.2, plot every 200 steps. 
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( a )  Solu t fon  a t  t i m e  t = O . O  

1 
(b )  Solu t ion  a f t e r  628 i t e r a t i o n s  (7 r evo lu t ion ) .  The pe r spec t ive  view has 

been r o t a t e d  wi th  t h e  cy l inde r .  

F igure  4 .  Passive advect ion i n  2-D: Zalesak’s  example. 
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Figure 5. Sod-problem ( 1 - D ) .  Solutions at times t=7.37 and t-14.75. 
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p = 1.7,~ = 2 . 6 1 8 5 , ~  = -0.5063,e = 5.806 

p =  1.0 
u = 2.9 

v = 0.0 

e = 5.991 

(a) Grid. 

(b) Pressure distribution obtained for Taylor-Galerkin 
scheme [10,12] (C.I.=O.l). 

(c) Pressure distribution obtained for FEM-FCT (C.I.=O.l). 

"i 
0 

(d) Density distribution along line y=0.5. 

Figure 6. Shock reflexion at a wall (steady state). 
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Figure 7. Comparison of Taylor-Galerkin-Lapidus and FEM-FCT for NACA-0012. 
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( a )  Surface t r i a n g u l a t i o n .  

398 

(b) P res su re  contours  i n  s e l e c t e d  ( c )  Pa r t i c l e  pa ths .  
p lanes .  

Figure 8. Supersonic flow p a s t  an o b j e c t  i n  cav i ty .  



(a) Surface triangulation. (b) Pressure contours. 

Figure 9. Transonic flow past Pathfinder in tunnel. 
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Velocity vecfon at T=4.0 (eolai rgemer l t  1 

Figure 10(a). Shock impinging on t w o  o b s t a c l e s .  
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Figure 10(b) .  Shock impinging on two obstacles .  
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T '=d 0 ienlargernenr) 

Figure 1O(c). Shock impinging on t w o  obstacles. 
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SHOCK INTERACTION WITH AN ELEVATED RAIL CAR 
k 6 . 0  ms 

(a> 

SHOCK INTERACTION WITH AN ELEVATED RAIL CAR 
k 2 2 . 0  ms 

Figure 11. Shock-box interaction. 
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SHOCK INTERACTION WITH AN ELEVATED RAIL CAR 
tz38.0 ms 

PIIESSURE MIN=-O x e t o i  , YAK: o I O E ~ O ?  , DUC: o 2 2 ~ t 0 0  MESH NELEM= 16522 , WPOIN; ( 4 7 7  

VORTICI YIN=-O asct04 , MAX= o 3 o ~ t o 4  , DUC= o i m o 3  YlCH-NR Y I N z  0 5 7 1 - 0 3  , YAK: 0 I O L t O l  , DUC= 0 171-01 

I 

Figure ll(c) Shock-box interaction (concluded) 
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- Mesh: XELEM=2264. NPOIN=1251 

I 

Pressure: Min=0.60, Max=2.30, Duc=O.OS 

llach-Sr.: Mn=O.OO, .\.la.=1.60. Duc=O.lO 

Figure 12(a) .  Object fa l l ing  into Ma - 1.5 free stream, T = 20. 
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Velocitv Vectors 

Figure 12(a). Concluded. 
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Mesk NELEM=3047, NPOIN=1648 

Pressure: Min=0.40, Max=3.30, Duc=O.OS 

Mach-Nr.: Min=O.OO, Max=1.90, Duc=O.lO 

Figure 12(b) .  Object f a l l i n g  into Ma = 1 . 5  f r ee  stream, t = 175. 

407 



Densitv: Min=O.56, Max=3.10, Duc=0.05 

Velocitv Vectors 

Figure 12(b). Concluded. 
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