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ABSTRACT 

The stability of compressible two- and three-dimensional boundary layers i s  
reviewed. The stability of 20 compressible flows differs from that of incompressible 
flows in two important features: There is more than one mode of instability 
contributing to the growth of disturbances in supersonic laminar boundary layers and 
the most unstable first-mode wave is three-dimensional. Whereas viscosity has a 
destabilizing effect on incompressible flows, it is stabilizing for high supersonic 
Mach numbers. Whereas cooling stabilizes first-mode waves, it destabi 1 i zes  second- m q  waves. However, second-order waves can be stabilized by suction and favorable 
pr&%ure gradients. The influence of the nonparallelism on the spatial growth rate 
of disturbances is evaluated. The growth rate depends on the flow variable as well 
as the distance from the body. Floquet theory is used to investigate the subharmonic 
secondary instability. 

1. INTRODUCTION 

The aim of this paper is to review the state of the art of the stability of 
compressible boundary layers. The study discusses the influence of Mach number, 
Reynolds number, cooling, suction, pressure gradients, wave angle, and 
nonparallelism. Subharmonic secondary instability is also discussed. 

The earliest attempt at formulating a compressible stability theory was made by 
Kuchemann (ref. 1) who neglected viscosity, the mean temperature gradient, and the 
curvature of the mean velocity profile. Lees and Lin (ref. 2) and Lees (ref. 3 )  were 
the first to derive the basic equations for the linear parallel stability analysis of 
compressible boundary layers. This theory was extended by Dunn and Lin (ref. 4 ) ,  
Reshotko (ref. 5), and Lees and Reshotko (ref. 6). These early theories were 
asymptotic or approximate in nature and proved to be valid only up to low supersonic 
Mach numbers. The use o f  direct computer solutions to exploit the full compressible 
stability equations was initiated by Brown (ref. 7) and Mack (ref. 8). An extensive 
treatment of the parallel stability theory for compressible flows is given by Mack 
(refs. 9-15). As the Mach number increases, the dissipation terms become important 
and a three-dimensional disturbance cannot be treated by an equivalent two- 
dimensional method as is usually done for the incompressible case. Mack (refs. 
10,15) found that neglecting the dissipation terms can lead to a 10% error in the 
disturbance amplification rate. 

It is an interesting facet o f  compressible two-dimensional boundary layers that 
the most unstable first-mode wave need not be parallel to the freestream as the Mach 
number approaches one. At supersonic speeds the most unstable first-mode wave i s  
oblique or three-dimensional. 

The most important feature of the stability of supersonic laminar boundary 
layers is that there can be more than one mode of instability contributing to the 
growth of the disturbance. The first mode is similar to the Tollmien-Schlichting 
instability mode of incompressible flows, while the second and higher unstable modes 
are unique t o  compressible flows. Mack (ref. 10) found that there are multiple 
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values of wave numbers for a single disturbance phase velocity whenever there is a 
region of supersonic mean flow relative to the disturbance phase velocity. For 
incompressible flows, higher modes are associated with higher wave numbers at 
different phase speeds. In contrast with the first mode, the most unstable second 
mode is two-dimensional. As the Mach number increases to the hypersonic regime, the 
second mode displays growth rates that are higher than those of the three-dimensional 
first mode. However, the maximum growth rate i s  less than that of the first mode at 
zero Mach number. 

These stability theories treat the mean flows as quasiparallel flows. Some 
incomplete attempts to account for the nonparallel flow effects by including either 
the normal velocity or some of the streamwise derivatives of the mean flow were given 
by Brown (ref. 16), Gunness (ref. 17),  and Boehman (ref. 18). Complete nonparallel 
theories for two-dimensional flows were developed by El-Hady and Nayfeh (ref. 19) and 
Gaponov (20) and for three-dimensional flows by Nayfeh (21) and El-Hady (22). The 
growth rate in a parallel flow is independent of the flow variable and the distance 
from the wall, whereas the growth rate in a nonparallel flow (growing boundary layer) 
depends on the flow variable and the distance from the wall. This complicates the 
interpretation of experimental data for comparison with the results of stability 
theory . 

In contrast with the case of incompressible flows, rigorous stability 
experiments are very difficult at supersonic speeds because (a) the spatial and 
temporal resolution of instruments a t  supersonic speeds i s  less than those at low 
speeds, (b)  with the exception of Kendall, experimenters have less control and 
knowledge of the disturbances at supersonic speeds, and (c) the interference of 
traversing probes at high speeds i s  due to the high aerodynamic loads which 
necessitate strong and bulky walls. Therefore, most of the information on the 
stability o f  high-speed flows is macroscopic rather than microscopic. The term 
macroscopic refers to measurements of the onset of turbulence and the extent of the 
transition region, whereas the term microscopic refers to measurements of the 
evolution in space and time of the fluctuations present in the flow that are 
sufficient for the identification of the instabilities that lead to transition and 
the validation of the proposed theoretical models. It should be noted that 
macroscopic experiments are difficult to relate directly to stability theory, whereas 
microscopic experiments, which provide information about the unstable disturbances 
and their growth, can be better related to stability theory, which studies the 
development of individual components of the disturbances corresponding to a certain 
frequency or a wavepacket. Thus, microscopic experiments that use controlled 
disturbances are more desirable for corroboration with theory than experiments that 
study natural disturbances arising from one source or another in the boundary 
layer. The natural disturbances represent a set of space and time components, 
whereas controlled experiments can provide disturbances with a given frequency and a 
given spanwise wavenumber. 

Whereas experimenters developed various credible techniques to introduce 
controlled artificial disturbances in incompressible boundary layers, the technique 
of Kendall seems to be the only credible technique at supersonic speeds. Laufer and 
Vrebalovich (ref. 23) used a high-speed valve and Demetriades used a siren mechanism 
attached to a flat plate to introduce their artificial disturbances. The valve 
opened and closed a narrow slit in the surface of the plate to allow periodic air 
pulses o f  certain frequency to disturb the boundary layer. Kendall introduced small 
artificial disturbances by a glow discharge between two electrodes embedded in the 
surface of the flat plate skewed at a specified angle to the spanwise direction, 
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thereby introducing disturbances with a specified wave angle. The rest of the 
available experiments were performed using natural disturbances. 

Almost all measurements reported on the experimental stability of boundary 
layers were made by means of either hot-wire anemometers or hot films following 
disturbances in these boundary layers. The hot-wire response is a combination of 
velocity, density, and temperature fluctuations. The hot-wire response when operated 
at high constant overheat is proportional to the mean square of the mass-flow 
fluctuations. To describe the disturbance fully, one needs measurements of all 
fluctuation characteristics such as the rms amplitude, spectra, and propagation speed 
as functions of both y and x. Almost all reported experiments for compressible flows 
measured [ P U ~  at various x-stations by placing hot wires or hot films at a transverse 
location where the mean-flow conditions are the same. Laufer and Vrebalovich (ref. 
23) reported measurements at different constant y/L positions, while Kendall (refs. 
24,25), Demetriades (refs. 26-28), Lebiga et a1 (ref. 29), and Stetson, Thompson, 
Dona1 dson and Si 1 er (refs. 30-33) reported measurements at one constant y/L 1 ocated 
in the wideband energy peak. 

Laufer and Vrebalovich (ref. 23) carried out measurements of the neutral 
stability curves, amplification rates, wavelengths, and amplitude distributions at 
the Mach numbers 1.6 and 2.2. They performed their measurements in the JPL 20" 
supersonic wind tunnel where the freestream turbulence level was reduced to about 1% 
by means of damping screens. Laufer and Vrebalovich performed their measurements for 
natural as well as artificial disturbances. The stability characteristics of natural 
disturbances in supersonic flows at Mach numbers between 1.6 and 8.5 were examined by 
Kendall (refs. 24,25) in the JPL 20" supersonic wind tunnel. In some of these 
experiments, the side walls of the tunnel were turbulent and hence radiated sound. 
Mack (ref. 12) tried t o  compare the free oscillations in the parallel stability 
theory with Kendall's data. The comparison was satisfactory only for the case Ma = 
4.5. In an attempt to account for the response of the boundary layer to the incoming 
sound waves, Mack (ref. 12) included a forcing term at the first neutral stability 
point and found a better agreement with Kendall's data. The same characteristic 
features of the boundary-layer response to the incoming sound waves were observed by 
Lebiga et a1 (ref. 29) in their experiments at M = 2. Demetriades (refs. 26,27) 
presented experimental results for hypersonic bounmdary-layer flows. He studied the 
streamwise amplitude variation of both natural disturbances and disturbances 
artificially excited with a siren mechanism attached to a flat plate. 

2. PROBLEM FORMULATION 

In this paper, we consider the linear quasi-parallel as well as the nonparallel 
stability of two- and three-dimensional compressible boundary layers. Moreover, we 
consider the linear secondary instability of two-dimensional primary waves in a two- 
dimensional compressible boundary layer. The basic equations for the linear 
stability analysis of parallel-flow compressible boundary layers were first derived 
by Lees and Lin (ref. 2 ) ,  Lees (ref. 3), and Dunn and Lin (ref. 4), using the small 
disturbance theory. For excellent references on the compressible parallel stability 
theory, we refer the reader to the papers of Mack. For the nonparallel theory of 
compressible boundary layers, we refer the reader to the papers by El-Hady and Nayfeh 
(ref. 19) and Nayfeh (ref. 21). 

Lengths, velocities, and time are made dimensionless using a suitable reference 
length L*, the freestream velocity Uz, and L*/Uz, respectively. The pressure is made 
dimensionless using pzUz2, where 02 is the freestream density. The temperature, 
density, specific heats, viscosity, and thermal conductivity are made dimensionless 
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using their corresponding freestream values. The gas is assumed to be perfect. 
Since the pressure is constant across the boundary layer 

1 
pmTm = 1 and pm = - 2 

yMm 

where the subscript m refers to mean flow quantities, y is the ratio of the specific 
heats o f  the gas, and M 

To formulate the pyoblern so that the disturbance equations can be specialized to 
all these cases, we assume the basic flow to be a time-dependent three-dimensional 
flow and superpose on it small disturbances to obtain total flow quantities of the 
form 

is the freestream Mach number. 

Here q (x,y,z,t) stands for a basic state quantity and q(x,y,z,t) s_taFds f o r  a small 
unsteaay disturbance. Substituting the total flow quantities u, G, w, P ,  b ,  U, and f 
into the Navier-Stokes equations, subtracting the basic state, and linearizing, we 
find to first order that the disturbance equations are given by 

( 2 . 3 )  
a a a - a p  + - (PbU + pu ) + - ( p  v + pVb) + (PbW + OWb) = 0 at ax b ay b 

au 
b az p ( * + u  3 + U K  a u b + v  b at b ax 

a u b + w  - ) = - = + - { - I , ,  l a  (r-+m-+m--) au av aw 
b az ax R ax b ax aY + Vb ay 

+ 'b 

awb a au 3v + -)] avb + m -  avb + + % [ub(s + E)  + p(- ay ax aY + u(r ax 
a aw au awb 

+ E [ub(z + + V ( c  + -111 az 

b 
av av + P(,,. avb + u 'b(X + 'b 

avb 
+ -4 b au l a  au 3v 

av 
aY 

b az $ + R [ub(% + z) + "(r 3x 
b aw b 

+ r -  +.,,I a au av aw 
aY aY az 

aw a av aw avb 
az b az ay aY 

+ - [ub(m ax + r - + rn -) + ;I(m ax 
b T '  

+ - [ u  (- + -) + U ( K  + - ) ] i f  

(2.4) 

3 
3x 
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av m -  
ay 

e=T+P 
'b Tb 'b 

where o i s  t he  p e r t u r b a t i o n  d i s s i p a t i o n  f u n c t i o n  de f ined by 

b av au b aw av 

b ax ax ay ay az az 

b au aw a' + "")I + 2(- au + -)(- av + -) '"b 

b 2  au aw b 
+ 2(- + -)(- + -) + 2(- + -)(- + -)} + U { r [  (F) az ax az ax az ay az ay 

3ub avb aub awb avb awb 

+ (& + (F) I ay ay az ay az 
aw 

ax 

aw 
+ -  -1 + 2 m [ r  (ay + g) b av 

Q = u {2r(- - + - - b au au 

a W  av 

aY (z + ,,I + - az (E ay ay ax ay ax 
+ -  

au 
awb av aw avb awb au 

+ 2m[K - + - - + - -  b 2  aw b 2  

au av 

av 

b *  3w b 2  3 v b  + -) } + (r b +  ax) + (F +-I + (F 
b au b 2  

ay 

The constants r and m are g iven by 

2 2 
3 r = 3 (e + 2)  and m = - (e - 1) (2.10) 

where e = 0 corresponds t o  the  Stokes hypothesis.  
number P r  are g i ven  by 

The Reynolds number R and Prand t l  
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(2.11a) 

where v:, pz, and K* are the freestream kinematic viscosity, dynamic viscosity, and 
thermal conductivify, respectively, and c* is the dimensional specific heat at 
constant pressure. We assume that the Hynamic viscosity is a function of the 
temperature only so that 

p = T -  dT 
Tb 

The boundary conditions at the wall are 

(2.11b) 

u = v = w = T = O  at y = O  (2.12) 

The boundary conditions on the velocity fluctuations u and w represent the no-ship 
conditions and the boundary condition on the velocity fluctuation v represents the 
no-penetration condition. For a gas flowing over a solid wall, the temperature 
remains at its mean value unless the frequency is small (i.e., stationary or near 
stationary disturbances). The boundary conditions as y + m are 

U(Y), V(Y), W(Y), p(y), and T(y) are bounded as y + m (2.13) 

As will be described later, neutral subsonic disturbances decay to zero 
as y + m ,  whereas neutral supersonic disturbances do not vanish as y + m .  

3. QUASIPARALLEL PRIMARY INSTABILITY 

In this section, we consider the three-dimensional stability of a steady three- 
dimensional boundary layer. In general, the mean flow in a boundary layer varies 
with the streamwise coordinate x and spanwise coordinate z. However, at high 
Reynolds numbers, this variation i s  small over distances the order of the wavelengths 
o f  the disturbances. Consequently, most stability analyses neglect the streamwise 
and spanwise variations of the mean flow, the so-called para1 lel-flow assumption. 
Thus, the basic flow is approximated by 

Using the parallel-flow assumption reduces equations (2.3)-(2.9) to a system of 
linear partial differential equations whose coefficients vary only with y. 
Consequently, the variables t, x, and z can be separated using the so-called normal 
mode assumption 

where o and 6 are the wave numbers in the streamwise and spanwise directions, 
respectively, and w is the frequency. For a temporal stability, a and B are real 

I 634 



but  w i s  complex. 
general  case, a, B ,  and w are complex. 

For s p a t i a l  s t a b i l i t y ,  w i s  r e a l  bu t  a and B are complex. For t h e  

S u b s t i t u t i n g  equat ions (3.1) and (3.2) i n t o  equat ions (2.3)-(2.9), (2.12), and 
(2.13) y i e l d s  the  eigenvalue problem 

2 5 5  
5 3  + i(aUm + BWm - w)(~M,‘;~ - -) 

Tm De, + i a c l  - - 
Tm Tm 

= o  

Tm 2 2 
i (aUm + BW - w ) c l  + c,DU m m + iaTmc4 - R { -  pm(ra + 6 ) c l  

(3.5) 

are bounded as y -, m ‘n 

where D = a/ay. 

(3.9) 
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Introducing the Stuart transformation (ref. 34) 

krl, = a c ,  + 85, (3.10) 

(3.11) 

where k = Ja2 + a *  does not reduce the eighth-order system (3.3)-(3.9) into a sixth- 
order system due to the coupling in the energy equation due to a single dissipation 
terms, which couples the energy equation to the other equations for 30 waves in 20 or 
3D boundary layers. Neglecting this term reduces the eigenvalue problem from an 
eight-order complex problem to a sixth-order complex problem, thereby resulting in a 
large saving in computations. The error introduced to this simplification is a 
function of the Mach number, Reynolds number, and wave angle. For the case of 
insulated flat plates, Mack found that the maximum error is less than 5% for all Mach 
numbers at R = 1500. However, most stability calculations being formed are based on 
the eighth-order rather than the sixth-order system. 

Two methods of solution have been employed (refs. 11,35,36). The first reduces 
the system of equations (3.3)-(3.7) into an eighth-order system of ordinary 
differential equations, determines an exact solution outside the boundary layer that 
s a t i s f i e s  t h e  boundary conditions ( 3 . 9 ) ,  uses the resulting linearly independent 
solutions as initial conditions to integrate the first-order equations to the wall, 
employs a Gram-Schmidt orthonormalization scheme to keep the solutions linearly 
independent, and uses an iterative scheme such as Newton-Raphson procedure to 
determine the desired complex eigenvalue. The second method uses a finite-difference 
scheme to reduce the governing equations into a system of algebraic equations that is 
solved using standard techniques to determine the desired eigenvalue. 

According to the first approach, the eigenvalue problem (3.3)-(3.9) is converted 
into a system of first-order equations by letting 

g 2  = DU = Dr; 

Then, the eigenva 

D5 = F(Y)C 

5 ,  - 5 ,  = 5 ,  - 

5 ,  = DT = O c j ,  and c 8  = Dw = DS, (3.12) 

ue problem becomes 

(3.13a) 

- - c 7 = 0  at y = O  (3.13b) 

are bounded as y + (3.13~) ‘n 

where 5 = { c l , c 2 ,  ..., c 8 }  and the elements aij o f  the matrix F are given in Appendix 
A.  For a given R and a mean flow U,, W,, and T,, the eigenvalue problem (3.13) 
provides a dispersion relation of the form 

T 

w = w ( a , f 3 )  (3.14) 
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In general, W ,  a, and 6 are complex. Thus, equation (3.14) provides two relations 
among the six real parameters ar, ai, B,, B ~ ,  wr, and wi. When four of these 
parameters are specified, equation (3.14) can be solved for the remaining two 
parameters. For the case of temporal stability, a and 6 are assumed t o  be real and 
fixed, and equation (3.14) provides w = wr + iw.. Thus, it follows from equation 
(3.2) that the temporal growth rate is w j .  For the case of spatial stability, w is 
assumed to be real and fixed, and equation (3.14) provides two relations among the 
remaining four parameters ar, ai, B ~ ,  and B ~ .  The parameters ar and 6, define a real 
wavenumber vector k whose magnitude k is given by 

and whose direction (wave angle) 6 is given by 

6 = arctan (Br/ar) 

(3.15a) 

(3.15b) 

Moreover, the parameters ai and B~ define a growth vector ;f whose magnitude u is 
g i ven by 

and whose direction (growth direction) is given by 

I 

JI = arctan (Bi/ai) 

(3.15~) 

(3.15d) 

In general, the growth and wave directions need not coincide and two more relations 
need to be specified to complete the formulation of the spatial stability problem. 
Using the method of multiple scales (refs. 37,38), Nayfeh (refs. 21,39) found that 
the ratio of the group velocity components must be real, thereby providing a third 
relation. Maximizing the total growth rate can provide the fourth needed relation. 
These points are discussed further in Section 4. Nayfeh and Padhye (ref. 40) used 
the complex group velocity vector to relate the problems of temporal and spatial 
stabilities. 

In the case of 2D spatial stability, the two additional relations are given by 
6 = B + i6 = 0 and Eq. (3.14) can be used to determine the complex parameter CI for 
any gFven For the case of 30 spatial stability in boundary layers that depend on 
x and y only (such as 20 mean flows and flows over an infinite span swept wing), the 
analysis in Section 4 shows that 6 = constant and hence Eq. (3.14) can be used to 
determine the complex parameter a for any given w and B .  In this case, the growth 
direction i s  often taken in the x-direction (i.e., 6 .  is assumed to be zero). 

To account for the slow growth of the boundary layer, one can improve the 
parallel-flow assumption by calculating the local stability of the mean-flow 
profiles, thereby obtaining values for a and 6 that vary slowly with x and z. Thus, 
equation (3.2) is replaced with 

(3.16) 
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where 
(3.17) 

and the 5 are governed by the eigenvalue problem consisting of equations (3.3)- 
( 3 . 9 ) .  As discussed earlier, the 
growth rate vector is given by 

Ttis is the so-called quasi-parallel assumption. 

+ + -+ 

u = a.i + ~ . j  
1 1 

It is independent of the transverse direction and the flow variable whose growth is 
investigated; neither of these statements is valid for the case of growing boundary 
layers as discussed in Section 4. 

3.1 Inviscid Case 

In contrast with the case of incompressible boundary layers, compressible 

increasing Mach number. The inviscid instability is governed by equations (3 .3) -  
(3.9) with R being set equal to infinity; that is, it is governed by 

I boundary layers, even on flat plates, have inviscid instability, which increases with 

2 5 5  

Tm m 
5 ,  + i(aUm + BW, - ~ ) ( y M ~ g ,  - 7) + iBs, = 0 DTm Or;, + iag, - - (3.18) 

i(aUm + gw, - w ) c l  + c3DUm + iaTmr;, = 0 (3.19) 

i(aU, + gw, - w ) c 3  + TmD<, = 0 (3.20) 

i(aUm + 6wm - w ) ~ ,  + c,OW, + iBT,';, = 0 (3.21) 

2 
i(au, + BW, - w ) c 5  + r,OTm - i(y - l)TmMm(aUm + BW,,, - w)s4 = 0 (3.22) 

~ ~ - r ; ~ = 0  - at y = O  (3.23) 

are bounded as y + (3.24) 5n 

Equations (3.18)-(3.27) can be combined into a second-order equation 
governing 5 ,  or 5,. To accomplish this, we use the transformation (3.10) and 
(3.11). Thus, we add a times equations (3.19) to 8 times equation (3.21) and obtain 

? 

1 ik(aU, + Bwm - w)nl + g,D(aU, + gw m ) + ik-Tmc4 = 0 (3.25) 

I Using equation (3.22) to eliminate c 5  from equation (3.18) and using equation (3 .10) ,  
we obtain 
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2 
ikq, + Ds, + iM m (dm + 6Wm - O)S, = 0 

Eliminating n l  from equations (3.25) and (3.26) yields 

(3.26) 

(“Urn + B W ~  - o)Dr, - c,D(aUm + BW,) = ikLTm(l - M;)c4 (3.27) 

2 2  

i ( 1-Mr)M m 

or 

Dx = 5 4  

M: 
where 

6 3  

(3.28) 

(3.29) 

(3.30) 

can be interpreted as the local Mach number of the mean flow in the direction of the 
wavenumber vector k = a i  + 83 relative to the phase velocity w/k. In general Mr is 
complex and it is only real for neutral disturbances. In terms of x and Mr, equation 
(3.20) can be rewritten as 

2 2  
ik Mr 

X Dg, = - - 
M 2  

(3.31) 
m 

. .  
Eliminating 5, from equations (3.28) and (3.31) yields the following second-order 
equation governing X: 

Eliminating x from equations (3.28) and (3.31) yields 

2 2 2 2 
D c4 - D(lnM,)Dr, - k (1 - Mr)c, = o 

(3.32) 

(3.33) 

In the freestream, T = 1, U = 1 and W = 0 are constants and hence Mr = Mf is 
a constant and equations r3.32) ant (3.33) refuce to 

and 
2 2 2 D 6 ,  - k (1 - Mf)c ,+  = 0 

(3.34) 

(3.35) 

It is clear from equations (3,34) and (3.35) that neutra disturbances decay in the 
freestheam if and only if Mf < 1; these disturbances a,e termed subsonic waves. 
When Mf > 1, neutral disturbances do not vanish in the freestream and they represent 
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sound waves or Mach waves of the relative flow\ they are termed supersonic waves and 
may be outgoing or incoming waves. When Mf = 1, disturbances are termed sonic 
waves. 

For the case of two-dimensional inviscid waves in a two-dimensional boundary 
layer, Lees and Lin (ref. 2) established a number of conclusions for the case of 
temporal waves. 

The above classification is due to Lees and Lin (ref. 2). 

Their main conclusions are 

(i) The necessary and sufficient condition for the existence o f  a neutral subsonic 
wave i s  the presence of a generalized inflection point y, > yo in the boundary layer 
at which 

(3.36) 
where 

u ( y )  = 1 - -  1 (3.37) 
m 

m o  M 

, The phase velocity cs = w/as of this neutral wave is Um(ys), the mean velocity at the 
1 generalized inflection point ys, which is larger than 1 - M. 

(ii) A sufficient condition for the existence of an unstable subsonic wave is the 
presence of a generalized inflection point at ys > yo; its phase velocity 
c > 1 - l/Mm. Compressible boundary-layer flows over insulated flat plates always 
have inflection points and hence they are unstable to inviscid disturbances. 

W 

(iii) There is a neutral subsonic wave having the wavenumber a = 0 and the phase 
velocity c = co. 

(iv) When Mt < 1 everywhere in the boundary layer, there is a unique 
wavenumber as corresponding to the phase velocity cs for the neutral subsonic wave. 

Using extensive numerical calculations, Mack (refs. 11,151) established the 
existence of an infinite sequence of discrete wave numbers CL , corresponding to an 
infinite sequence of discrete modes when Mr > 1 somewhere in $Re boundary layer. He 
referred to the modes that are additional to the mode found by Lees and Lin as higher 
modes. In contrast with the first mode whose existence depend3 on the presence of a 
generalized inflection point, the higher modes exist whenever Mr > 1, irrespective of 
the presence or absence of a generalized inflection point. The lowest Mach number at 
which the higher modes exist in the boundary layer on an insulated flat plate is 
2.2. It turns out that this is also the lowest Mach number at which subsonic higher- 
mode disturbances exist. The lowest of the subsonic modes is called the second node 
and it is the most amplified of the higher modes. 

Later, Mack developed a simple theory that provides an approximation t o  the 
infinite sequence of wave numbers asn. He neglected the second term in (3.32) and 
expressed the solution of the resulting equation that satisfies the boundary 
condition v(0) as I 

I Y 

0 
x = ? sin(ksn r JM; - 1 dy], y < ya 

and the solution that decays as y -e as 

(3.38) 
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Y 
x 3 - i exp[- ksn I 41 - M; dy], y > ya ( 3 . 3 9 )  

Ya 2 where ya is the value of y where M He chose the constant in (3 .39 )  to be -i SO 
that the pressure is real and positive for y > ya. He argued that Dx must go to zero 
as y + ya because the pressure i s  continuous and finite at y = ya, thereby obtaining 
the eigenvalues 

= 1. 

( 3 . 4 0 )  

We note that the second term in equation ( 3 . 3 2 )  is singular at ya and hence the 
expansions ( 3 . 3 8 )  and ( 3 . 3 9 )  are invalid at y = ya. To connect these expansions, one 

determine an expansion there, and match needs to consider the neighborhood of y = 
it to both ( 3 . 3 8 )  and ( 3 . 3 9 ) .  Alternative y, the Langer transformation can be used 
to determine a single uniformly valid expansion. Even such a consistent expansion is 
valid only when Mr does not vanish anywhere, (i.e., there is no critical layer) and 
hence there is no generalized inflection point; otherwise, one cannot neglect the 
second terms in ( 3 . 3 2 )  and ( 3 . 3 3 ) .  An expansion valid when M vanishes somewhere is 
determined below using the Olver transformation. Mack (refs. T1,15) called the waves 
when M, = 0 inflectional neutral waves and those which occur when Mr f 0 non- 
inflectional neutral waves. His numerical results for the case of non-inflectional 
neutral waves (Figs. 1 and 2)  are qualitatively in agreement with his simple theory, 
whereas his calculations for the case of inflectional waves (Figs. 3 and 4 )  differ 
from those obtained from his simple theory. According to his theory, c,(6) is 
positive for all modes, there are no zeros in the interval y > ya, and the number Of 
zeros in y < ya increases by one for each successive mode. 

To determine a single uniformly valid expansion, we eliminate the second term in 
equation ( 3 . 3 3 )  using the transformation 

y4, 

5, = Mr@ 

and obtain 

2M; 2 

+ 7-14 = 0 
M 

For the case of non-inflect 
transformation (refs. 37 ,38)  

1 / 4  

( 3 . 4 1 )  

( 3 . 4 2 )  

’ ‘r 
onal waves (i.e., Mr t 0 everywhere), we use the Langer 
and obtain the approximate solution 

and hence 

( 3 . 4 3 )  

( 3 . 4 4 )  

where Ai and Bi are the Airy functions of the first and second kind, respectively, 
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Y * c 3 / ’  = k ~1 - M; dy 3 
Ya 2 and y = ya is the turning point at which Mr(ya) = 1. Since 

and 

(3.45) 

(3.46) 

(3.47) 

the vanishing o f  the disturbance as y + m demands that cz = 0. Then, the boundary 
condition v(0 )  = 0 or ~ ~ ( 0 )  = 0 demands that 

Ai’=O at y = O  
But 

Hence 

Consequently , 

3 fa 4M; - 1 dy = (n - T)E, n = 1, 2, 3, ... 
0 

ksn 

(3.48) 

(3.49) 

(3.50) 

(3 .51)  

whose righthand side differs from that of Mack by 1 TI. 

M r / 4 / T  and the phase 4 1 ‘TI in the interval y < ya. 
Moreover, the eigenfunction 

(3 .44)  with c, = 0 differs from that o f  Mack in the presence o f  the factor 

For the case of inflectional waves (i.e., Mr = 0 at y = yc, yc > y ) ,  the 
expansion (3 .43)  is not valid as y -+ yc and we need an expansion that i s  valifin the 
neighborhood o f  y = y,. Using the Olver transformation (ref. 37) ,  we find that 

(3.52) 
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which is valid in the interval y > ya. Since 

(3.53) 

the boundary condition that 5, tends to zero as y + m demands that b, = 0. This 
expansion needs to be matched with the expansion (3.43) that is valid at the turning 
point ya. Expanding (3.43) for large k and for y > ya, expanding (3.52) for large k 
and for y < y,, means that b, = 0, we obtain 

(3.54) 

Hence, c, = 0 and 

(3.55) C,& YC b, = - exp[- f ~1 - M; dy] 
Ya 

Imposing the boundary condition at the wall that v(0) = 0 or ~ ~ ( 0 )  = 0 yields the 
eigenvalues as in (3.51). Thus, the difference between inflectional and non- 
inflectional waves is in the shape of the eigenfunction. 

lTJ7 

Using extensive numerical computations, Mack established a number of conclusions 
regarding supersonic stability: 

(i) In contrast with incompressible stability theory, there is more than one mode of 
instability and it is one of the additional modes that is the most unstable. Figure 
5 shows the variation of the maximum temporal amplification rate of 2D waves with 
Mach number. It is clear that below M = 2.2, the boundary layer on an insulated 
flat plate is virtually stable to inv7scid 2D waves and that above M = 2.2 the 
second mode i s  the most unstable mode. Moreover, the maximum amplifiration rate 
increases sharply as M increases beyond 2.2. Furthermore, above Mm = 5, the first 
mode is not even the se?ond most unstable mode. 

(ii) In contrast with incompressible stability theory, 30 first modes are more 
unstable than their corresponding 2D waves. However, 3D second modes are more stable 
than their corresponding 2D waves. Figure 6 shows the variation of the temporal 
amplification rate of the first and second modes with frequency for M = 4.5 and 
several wave angles. It clearly shows that the most unstable first-modemwave has a 
wave angle that is approximately 60" and an amplification rate that is approximately 
twice the maximum amplification rate of its corresponding 2D wave. 

(i i i) Whereas cool ing can stabi 1 ize f irst-mode waves in accordance with the pre- 
diction of Lees (ref. 3) ,  cooling destablizes second-mode waves. Figure 7 shows the 
variation of the maximum temporal growth rate of the first mode at M = 3.0, 4.5, 
and 5.8 and the second mode at M = 5.8 with the ratio of the wall Temperature Tw to 
the recovery temperature Tr. fi is clear that 2D and 3D first-mode waves can be 
completely stabi 1 ized by cooling, whereas second-mode waves are destablished by 
cooling. 
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3.2 Viscous Stability for Flat Plates 

Again, using extensive numerical calculations, Mack (refs. 1 0 , l l )  investigated 
the influence of Mach number on the viscous instability of supersonic flows past flat 
plates. He found that viscosity is stabilizing for both 2D and 3D first-mode waves 
when M I 3.0 and for second-mode waves at all Mach numbers; that is, the maximum 
amp1ifTcation rate (over all frequencies, and wave angles in case of 3D waves, at 
constant Reynolds number) decreases with decreasing Reynolds number. This result was 
disputed by Wazzan, Taghavi, and Keltner (ref. 41) who did not find a transition from 
viscous to inviscid instability with increasing Mach number Dut found that viscous 
instability persists to M = 6.0. Mack (ref. 42) reconfirmed his calculations for 
the case of temporal stabflity and obtained spatial stability results that agree with 
his earlier conclusions on the influence of viscosity on compressible stability. 
Moreover, the spatial stability calculations o f  El-Hady and Nayfeh (ref. 19) and 
Nayfeh and Harper (ref. 43) agree with those of Mack for at least three significant 
figures for all the calculations they performed. Moreover, the calculations of Malik 
qualitatively agree with those of Mack. 

Figure 8 shows the neutral stability curves of 2D wavys calculated by Mack at 
M = 1.6, 2.2, 2.6, 3.0, and 3.8. He plotted a vs. R- to emphasize the higher 
Rzynolds number region. Comparing the neutral curve for M = 1.6 with that of the 
Elasius flow (i.e., M = 0) shows that, although they havem the same general type, 
compressiblity drastic5lly reduced the viscous instability, resulting in much lower 
neutral wave numbers. As the Mach number increases beyond 1.6, the  viscous 
instability continues to weaken although the effect of the increase in inviscid 
instability continues to extend to lower and lower Reynolds numbers. When M reaches 
3.8, the viscous instability disappears and viscosity acts only to dampaout the 
inviscid instability. 

As in the case of inviscid instability, the most unstable first-mode waves are 
30 waves. Figure 9 shows the variation o f  the maximum temporal amplification rate of 
?D and 3D waves with Reynolds number for M = 1.3, 1.6, 2.2, and 3.0 and Figure 10 
shows the variation of the maximum spatiar amplification rate of 2D and 30 waves 

are shown in Figure 9. At M = 1.3, the instability of 2D and 3D waves i s  due to 
viscosity. As M increases, The viscous instability decreases for both 20 and 30 
waves. Whereas 'Tncreasing the Mach number results in a drastic decrease in the 20 
maximum growth rates, it produces only a slight change in those o f  the 30 waves. 

I at 6 = 500 with R for Mm = 1.6 (ref. 19). The most unstable wave angles o f  30 waves 

As in the inviscid case, the numerical results of Mack suggest that the 20 
second- and higher-mode waves are more unstable than their corresponding 30 waves. 
Moreover, the maximum growth rate of second-mode waves drops sharply as the wave 
angle increases from zero. 

I The lowest Mach number at which Mack was able to calculate 2D second-mode waves 
is M = 3.0 at which the minimum critical Reynolds number is 13,900. As pointed out 
in txe preceding section, the inviscid instability increases rapidly with increasing 
Mach number and hence one would expect the minimum critical Reynolds number to 
decrease rapidly to lower values as the Mach number decreases. In fact, Mack found 
that the minimum critical Reynolds numbers drops to 235 as the Mach number increases 
to 4.5. Moreover, at high Mach numbers second-mode waves have much higher growth 
rates than oblique first-mode waves. i 

Whereas cooling can stabilize 20 and 3D first-mode waves, second-mode waves 
cannot be stabilized by cooling. On the contrary second-mode waves are destablized 
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by cooling. Malik (ref. 43) studied the influence o f  cooling on oblique first-mode 
waves at = 60” for Ma = 2 and 4.5 and second-mode waves for Mm = 4.5; in these 
calculations R = 1500 and the stagnation temperature is 560”R. Figure 11 shows that 
the oblique first-mode wave at M = 2 is completely stabilized when Tw/T d = 0.7, 
whereas that at Mm = 4.5 is stabfoized only when T /T On the otter hand, 
Figs. 11 and 12 show that the second-mode wave is Xesfiblished by cooling. In fact, 
the maximum growth rate increases rapidly with cooling. Malik found that the 
frequency of most amplified first-mode wave decreases with cooling whereas that of 
the most amplified second-mode wave increases with cooling. 

= 0.48. 

Malik (ref. 43) also investigated the influence o f  favorable pressure gradients 
(Fig. 13) and suction (Fig. 14) on the stabilization of second-mode waves. He found 
that each of them shifts the band of unstable frequencies to higher values and 
reduces the peak amplification. Consequently, it appears that, whereas cooling 
cannot be used to stabilize second-mode waves, they can be stablized using either 
suction or wall shaping to produce a favorable pressure gradient. 

Preliminary results of Malik (ref. 43) indicate that real gas effects tend to 
destabilize hypersonic boundary layers. 

4. NONPARALLEL STABILITY 

is, the normal velocity component V 
and W,. 
of the streamwise and spanwise coodinates. 

We confine our consideration to mean flows that are slightly nonparallel, that 
is small compared with the other components U, 

This in turn implies that a?l the mean-flow variables must be weak functions 
In other words 

where Vf = O(1). We describe the relatively slow variations of the mean-flow 
quantities in the streamwise and spanwise directions by the slow scales x, = EX and 
z 1  = EZ, respectively, where E = 1/R.  

We use the method of multiple scales (refs. 37,38)  to determine a uniformly 
valid asymptotic expansion o f  the solution o f  equations (2.3)-(2.9), (2.12) and 
(2.13) in the form 

where t, = Et, a slow time scale, and 

w - -  ae ae a e  ax = a(X,,Z,) , E = B(X,,Z,) , - at - 

Assuming the phase e to be twice continuously differentiable, we have 

aa a6 
az, ax, 
- = -  

(4.4) 

(4.5) 
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In the case of mean flows that are independent of z, such as 2D mean flows and flows 
over infinite-span swept wings, a = a ( x , )  and B = ~ ( x , ) ,  because the coefficients of 
equations (2.3)-(2.9) are independent of z,. Then, it follows from equation (4.5) 
that B = constant. Substituting equations (4.1)-(4.4) into equations (2.3)-(2.9), 
(2.12) and (2.13) and equating coefficients of like powers of E ,  we obtain problems 
describing the zeroth- and first-order disturbances. 

4.1 Zeroth-Order Problem 

Po To 

Pm Tm 
L,(u ,v ,w , p  ,T ) = - ipm(w - aUm - SW )(- - -) + iPm(auo + sw0) 

0 0 0 0 0  

L,(U 0 0 0 0 0  , v  .w ,p ,T ) = - iPm(w - aUm - 8Wm)v0 + Dpo 

- E 1 {iU,(l + m)(aDuo + BDWo) + im(au0 + BW~)DV, 

2 2 
- (a + B )umvo + D(umrDvo) + i (aDU, + aDW,) d~ 

L,(u , v  ,w ,p ,T ) = - iom(w - oUm - 8Wm)w0 + p m o  v DW m + iapo 
0 0 0 0 0  

- Ti; 1 { -  aBum(l + m ) u o  +iBum(1 + m ) D v o  + ~ B v  DU 
o m  
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2 
L,(u 0 0 0 0 0  ,v .w ,p ,T ) = - ipm(w - d,,, - sWm)To + pmvoDTm + i(y -l)M,po 

(v-1)M: 
* (u - aUm - BW,) - { 2ym( DU,DU~ + DWmDw0) 

2 1  + 2ium(ctDU, t 3DWrn)vo + [ (DU,) ‘+ (DW,) ]To: 

1 i 2 2 2 
- -{2Dy DT + u,O To - (a + B )umT0 + D I+,.,T~} = 0 RPr m o 

(4.10) 

u = v  = w  = T o = O  at y = O  (4.11) 
0 0 0 

U o’vo’ w , T  0 0 + O  as y + m  (4.12) 

The solution o f  the zeroth-order problem can be expressed as 

where 5 is a column vector having 8 components and is governed by the quasi-parallel 
eigenvalue problem ( 3 . 1 3 ) .  The function A(x,,z,,t,) is arbitrary at this level of 
approximation; it will be determined by imposing the solvability condition at the 
next level o f  approximation. 

4.2 First-Order Problem 

Using equation (4.13), we write the first-order problem as 

- 1 anmZlm = On at, a A  + En ax, aA + Fn E + GnA 
8 

m= 1 
(4.14) 

z,, = z,, - - z,, = 0, z,, = 0 at y = 0 (4.15) 

zln is bounded as y .+ 

where 
z:, = u1, z i *  = Du,, z 1 3  = V,’ z,, = P1 

(4.16) 

(4.17) 

z,, = T,, z 1 6  =‘DT,, z,, = wl, z 1 8  = Dw, (4.18) 

and the Dn, En, Fn, and Gn are known functions of the 5 , a, B, and the mean-flow 
quantities; they are defined in Appendix B. Since the hamogeneous problem (4.14)- 
(4.16) has a nontrivial solution, the inhomogeneous problem has a solution only if 
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the right-hand side of equation (4.14) is orthogonal to every solution of the adjoint 
homogeneous problem (ref. 38) 

(4.19) 

c ; = s t = c z = O ,  ~ : = 0  at y = O  (4.20) 

e: is bounded as y + m (4.21) 

The solvability condition takes the form 

a A  aA - aA + GnA]cGdy = 0 m 8  

o n=l 
J 1 [Dn at, + Enax, + Fn az, (4.22) 

Substituting for the D , En, F,, and Gn from Appendix B into equation (4.22) yields 
the following partial-dfferential equation governing the modulation of A: 

(4.23) 

where wQ and wB are the group velocity components in the x and z directions; they, 
along with h,, are given in quadratures, as in Appendix C. 

Equation (4.23) shows that A is a function of x and z as well as a and 8. To 
determine the equations describing a and 6, we differentiate equations (3.13) with 
respect to x, and obtain 

ac3 as, as7 
ax, ax, a x ,  ax, 

= - -  - 0  at y = O  - = -  

is bounded as y + m 
y n  
ax 1 

Imposing the solvability condition on equations (4.24)-(4.26) yields 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

where h ,  is defined in Appendix C. Similarly, differentiating equations ( 3 . 1 3 )  with 
respect to z, and imposing the solvability condition for the resulting problem, we 
obtain 
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where h is defined i n  Appendix C. Using equation (4.5), we rewrite equations (4.27) 
and (4.38) as 

aa 
ax B az w -  aa + w - = Eh, (4.29) 

(4.30) 

Therefore, equations (4.23), (4.29), and (4.30) describe the modulation Of 
A, a ,  and B with x, z, and t. 

For a monochromatic wave, aA/at = 0 and equation (4.23) reduces to 

- E ~ , A  a A + w  _ -  aA 
ax B az w -  (4.31) 

Nayfeh (ref. 21) argued that, in general, /aa is complex and hence equation (4.31) 
is elliptic for real x and z. In or&r that equation (4.31) be hyperbolic 
representing a propagating wave, w S / w  must be real and equations (4.29)-(4.31) 
reduce to the ordinary differential equations 

along the characteristic 

dz w~ 

a 
- and - - dx - =  1 

ds 
Thus, 

A = Aoexp[ ~ J ( h , / ~ , ) d s ]  = Aoexp[ ~ S ( h , / ~ , ) d x ]  

and 
a = Efh,ds, s = EJh,ds 

where A, i s  a constant. Therefore, to the first approximation, 

w B h, u = Aos,(x,y,z)exp[ is(. + B -)dx + ES - dx - i ~ t ]  
w w a a 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

For the case of parallel flows, the condition w g / w  be real reduces to da/dB being 
real, which was obtained by Nayfeh (ref. 21) and tebeci and Stewartson (ref. 44) 
using the saddle-point method. 

4.3 Growth Rate 

Defining the growth rate in the streamwise direction as 

u = Real[% a (lnu)] 
X 
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we find from equation (4.36) that 

(4.37) 

The first term is the quasiparallel contribution and the last two terms are due to 
the growth of the boundary layer. Whereas the second term is independent of the 
transverse direction, the third term strongly depends on the transverse direction. 
Hence, in contrast with the parallel or quasiparallel case, the local growth rate 
depends on both the streamwise and transver5e directions. Moreover, the transverse 
variation depends on the flow variable being investigated. 

, 

i 
It follows from equation (4.36) that the amplification factor is 

(4.38) 

Again, the amplification factor is a function o f  the transverse location. However, 
the variation is a simple one. For a detailed discussion of the case of a wave 
packet, the reader is referred to the article of Nayfeh (ref. 21). 

For the case o f  two-dimensional flows, B is a constant. Then, for the case o f  
I monochromatic waves, equation (4 .36)  reduces t o  

h 
" 1 

u 5 Aor,(x,y)exp[i(sadx + BZ - Ut) + E J  - w dx] 
a 

(4.39) 

Consequently, the growth direction is the streamwise direction and the growth rate 

u = Real [=(lnu) a ] 

i s  given by 

(4 .40)  

Since c 1  is a function of y and, in general, distorts with the streamwise 
distance, one may term stable disturbances unstable and vice versa. Because of the 
mode-shape distortion, neutral stability points are a function of both the transverse 
and streamwise positions. The experiments of Laufer and Vrebalovich (ref. 23)  
clearly show that the growth of the disturbances and the neutral curves obtained 
depend on the value of y*/L* at which the observations were made. Moreover, a 
different growth rate would be obtained if one replaces u with another variable such 
as v, p, w, or T. On the other hand, for the case o f  parallel flows, the last two 
terms in equation (4.40) vanish and the growth rate is unique and independent o f  the 
varible being used or the transverse direction at which the growth rate is 
determined. Therefore, to compare the analytical results with experimental data in 
growing boundary layers, one needs to make the calculations in the same manner in 
which the measurements are taken. Available experimental stability studies almost 
exclusively use hot-wire or hot-film anemometers following disturbances in the 
boundary layer. The hot-wire or hot-film response is a combination o f  velocity, 

I 
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density, and temperature fluctuations. The hot-wire response when operated at high 
constant overheat is proportional to the rms of the mass-flow fluctuations. To 
describe fully the disturbance, one needs measurements of all fluctuation 
characteristics such as the rms amplitude, spectra, wave angle, and propagation speed 
as functions of x, y, and z. Except for the experiment o f  Kendall (ref. 25), no 
information is available on the disturbance waveangle. Laufer and Vrebalovich 
reported measurements at different constant y*/L*, whereas Kendall , Demetriades, 
Legiga et al, and Stetson et a1 reported measurements at one constant y*/L* located 
i n  the wideband energy peak. However, available calculations do not agree with each 
other. Some calculations show large nonparallism influence, whereas other 
calculations show small influence. 

5. SUBHARMONIC INSTABILITY 

In this case, the basic flow is taken as the sum of the mean steady flow and a 
two-dimensional quasiparallel T-S wave; that is 

u = Um(Y) + A[r;,(y)e i e  + cc] b 

v = A[c3(y)eie + cc] b 

Wb = 0 (5.5) 

where cc stands for the complex conjugate of the preceding terms, a and w are real, 
and A and aT: are approximated locally by constant values. Substrtuting equations 
(5.1)-(5.6) into equations (2.3)-(2.9), (2.12) and (2.13) yields a system o f  partial 
differential equations whose coefficients are independent of z, periodic in x and t, 
and dependent in a complicated manner on y. Consequently, the z-variation can be 
separated and using Floquet theory, one can represent the solutions of the problem as 

v = exp(oxx + utt)cossz +3(~,~,t) 

p = exp(oxx + ott)cossz +,(x,Y,z) (5.9) 

T = exp(axx + ~~t)cossz $,(x,y,t) (5.10) 
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w = exp(oxx + att)singz $,(x,y,t) (5.11) 

where ax and at are called the characteristic exponents and the I$ are periodic in x 
and t. For the subharmonic parametric case, the Q, have a perioa that i s  twice the 
period o f  the primary flow and to the first approximation equations (5 .7 ) - (5 .11)  
become 

u = exp(oxx + utt)cossz[5,(y)exp(-ie) 1 + CC] (5.12) 

For the case of temporal stability ax = 0 and at # 0, whereas for the case of spatial 

Substituting equations (5.1) - (5.6) and (5.12)- (5. 16)1 into equations (2.3) - (2.9), 
(2.12) and (2.13) and equating the coefficients o f  exp(-ie) on both sides leads to 
the following problem governing the 5, and either 

I stability at = 0 and ax # 0. 

or u (ref. 45) :  t 

(5.17) 
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(5.18) 
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(5.21) 



where 

E l  = E 3  = c 7  = 0 and c 5  = 0 at y = 0 

c n + O  as y + m  

(5.22) 

(5.23) 

(5.24) 

As an alternative to the collocation technique used by Herbert for the 
incompressible case (refs. 46,47), Nayfeh and Harper (ref. 45) followed Nayfeh and 
Masad (ref. 48) and used a shooting technique to solve the eigenvalue problem 
consisting of equations (5.17)-(5.23) after casting them into a first-order system of 
equations. The boundary conditions (5.23) at infinity were replaced with boundary 
conditions at some finite value y, of y outside the boundary layer. Thus, for y > 
y, x, Urn + 1 and DU Since %e primary eigenfunctions 5 decay exponentially 
outside the boundah layer, Nayfeh and Harper (ref. 45) follhed Nayfeh and Masad 
(ref. 48) and chose a large enough yma The error 
involved was monitored by choosing a cer+ain value of y x ,  and solving the problem, 
then increasing y , resolving the problem and noting !!?e effect of increasing yma, 
on the accuracy opafhe solution. 

+ 0. 

so that the sm are very small. 

Since no numerical or experimental results are available for compressible flows, 
Nayfeh and Harper checked the compressible code against the incompressible results of 
Herbert (refs. 46,47) obtained using a collocation method and those of Nayfeh and 
Masad (ref. 48) obtained using a shooting technique, which are in good agreement with 
the experimental results of Kachanov and Levchenko (ref. 49). The agreement is 
excellent. Next, Nayfeh and Harper produced results to evaluate the influence of 
compressibility on the secondary instability of first- and second-mode waves. 

Letting R = 1048.8 and choosing an F = 8 3 ~ 1 0 - ~ ,  Nayfeh and Harper solved the 
eigenvalue problem and obtained the 20 T-S waves for M = 0.01, 0.8, and 1.6. These 
primary waves are stable having the spatial decaymrates -0.0216, -0.0166, and 
-0.0066. Setting the amplitudes of these primary waves at a = O.OZ/dF, choosing a 
value for B ,  and assuming a value for Y., they solved the secondary eigenvalue 
problem and obtained yr. Varying y. and rdpeating the calculations, they determined 
the maximum value of y over all posiible values o f  yi. 
the maximum value o f  y does not correspond to y. = 0 as in the incompyessible 
case. The results are Shown as the dark curves i A  Figure 15. The growth rates 
corresponding to a = 0.01/~2 are shown as the light curves in Figure 15. Figure 16 
shows the growth rates when a = 0, that is, the growth rates of the free propagating 
waves. The results in Figures 15 and 16 show that the secondary growth rates are 
much larger than the growth rates of the free waves. In fact, for M = 1.6, the free 
wave is stable for all values of B ,  whereas the secondary wave is unztable for a very 
wide range of values of 6. Increasing the amplitude of the primary wave results in 
an increase in the growth rates of all secondary waves. For a given Mach number, the 
growth rate has a broad maximum. This maximum shifts to larger values of 6 as the 
amplitude of the primary wave increases. And for a given amplitude of the primary 
wave, the maximum growth rate shifts to lower values of B as the Mach number 
i ncreases. 

We note that when M > 0 

As discussed in Section 3, as M increases beyond 3.0, higher-modes become 
unstable and dominate the instability %t large Mach numbers. Figure 17 shows the 
variation of the growth rates of secondary waves with spanwise wavenumber when the 
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primarx wave is a first- or second-mode wave. 
0.01//2, and y .  = 0. The first-mode primary wave and its corresponding secondary 
waves are calchlated at R = 1150; the primary wave is slightly unstable. The second- 
mode primary wave and its corresponding secondary waves are calculated at R = 1950; 
the primary wave is very stable. I t  follows from Figure 17 that the maxima of the 
growth rates of the secondary waves are comparable. Figure 18 shows the growth rates 
of the free waves (secondary waves when a = 0). The free wave corresponding to the 
second-mode wave is stable for a wide range of 6 ,  whereas the free wave corresponding 
to the first-mode wave is slightly unstable for the same range of 6. Comparing 
Figures 17 and 18, we conclude that a primary first-mode wave having an amplitude of 
0.01//2 increases the growth rate of the secondary wave by an order of magnitude. 
Moreover, the presence of a primary second-mode wave strongly destabilizes the 
secondary wave. 

In both cases, F = 120~10-~, a = 

When the primary wave is a first-mode wave it follows from Figure 17 that the 
maximum growth rate of the secondary wave occurs when B = 0.199. Figure 19 shows the 
variation of the secondary growth rate with fre5uency. The maximum growth rate 
increases by about 25% and shifts to an F = 112x10- . 
6. EFFECT OF IMPERFECTIONS ON STABILITY OF FLOWS OVER PLATES 

The boundary layers over natural laminar-flow components in the presence of 
surface imperfections (e.g., waviness and steps) must accurately be computed so that 
the effect of these imperfections on the stability and transition can be evaluated. 
Moreover, the magnitudes of the imperfections under consideration are such that 
strong viscid-inviscid interaction and small separation bubbles are unavoidable. 
Definitely, solutions to the full Navier-Stokes equations can accurately predict such 
flowfields provided that the grid is so fine that important flow structures are not 
smeared by the truncation errors or artificial dissipation. However, the number of 
flow cases that needs to be investigated is very large, and this makes solving the 
full Navier-Stokes equations a very expensive task. A more economical alternative is 
t o  solve the interacting boundary-layer equations. 

I 

Ragab, Nayfeh and Krishna (ref. 50) investigated the accuracy of the 
compressible interacting boundary-layer computations and their limitations in 
predicting flows over surface imperfections. They compared the results of 
interacting boundary-layer computations with solutions to the full Navier-Stokes 
equations. Comparisons were made for the mean flow profiles as well as the stability 
characteristics such as the growth rates and amplification factors of linear 
stability waves. 

The thin-layer compressible Navier-Stokes equations are solved using the well 
known computer code "ARC2D" which has been developed at NASA Ames (version 1.5 GAMMA, 
72/85). The code incorporates different methods of solutions all o f  which are 
implicit in time, and it uses second-order central differences in space. Ragab et a1 
(ref. 50) selected the method of solution in which the diagonal form of the equations 
are used (refs. 51,52). Mixed second- and fourth-order dissipation terms were added 
explicitly and implicitly, and the obtained pentadiagonal system o f  equations was 
solved directly. 

Sheared Cartesian grids were used for all the cases presented here. An example 
is shown in Figure 20 for a smooth backward-facing step. The equation of the step is 

1 - 3 / 8  5 / 4  
y = 7 h(l + erf X), X = Re x ( x  - 1) 
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where Re is the Reynolds number based on the distance from the leading edge to the 
step center (x = 1) and x = 0.332057. The step specified by equation (6.1) is 
originally given by Smith and Merkin (ref. 53) who analyzed the incompressible flow 
using triple-deck theory. The numerical values used in Figure 20 are Re = 10 and h 
= - 0.003. We note that the y-coordinates in Figure 20 are magnified by a factor of 
20 relative t o  the x-coordinates. The inflow boundary of the computational domain is 
at x = - 0.06 (i.e., the plate leading edge x = 0 is included in the domain), and the 
outflow boundary is located at x = 2.0. More 
details about the grid will be given in the results section. 

The top boundary is placed at y = 0.4. 

Ragab, Nayfeh and Krishna developed a code for solving the compressible 
interacting boundary-layer equations. The numerical method is an extension of 
Veldman's method (ref. 54) to compressible flows. The salient feature of the method 
is the simultaneous solution of the boundary-layer equations and the inviscid flow, 
which is given by the small disturbance theory of compressible potential flow. A 
similar treatment- is presented by Davis (ref. 55) and Nayfeh, Ragab, and Al-Maaitah 
(ref. 56). 

In this subsection we compare the mean flow predicted by the Navier-Stokes code 
ARC2D and the interacting boundary-layer code IBL for the flow over a backward-facing 
step. The,step height is h = - 0.003, the 
Mach number is 0.5, and the Reynolds number is 10 . The wall is assumed to be 
insulated. 

The step is specified by equation (6.1). 

The grid used in the IBL calculations has a uniform streamwise step size of Ax = 
0.005 and a geometrically stretched grid in the q- direction, where is the Levy- 
Lees variable. At the wall ATJ = 0.05 and the stretching factor is 1.05. Four grids 
are used with the Navier-Stokes solver. In grid 1 (136~70)~ a uniform AX = 0.005 is 
used in the range 0.9 5 x I 1.1. For x < 0.9 and x > 1.1, AX is stretched 
geometrically at the rate of 1.05 provided that AX does not exceed 0.03. If Ax 
exceeds 0.03, a uniform spacing AX = 0.03 is used. The step size in the y direction 
is geomFtrically stretched between the wall and the top boundary y z 0.4 with Ay = 
1.5~10- . In grid 2 (136~99)~ the streamwise grid is the same as in grid 1, and khe y 
grid has 99 points between the wall and y 5 0.4 with = 0.3~10- . In  grid 3 
(166x120), the streamwise grid in the interval 0.9 5 x 5 2.0 is the same as that in 
grid 1 and more points are added in -.06 I x I 0.9 so that the number of streamwise 
points t s  166, and the y grid has 120 points between the  wall and y = 0.4  with AY) = 
0.3~10- . In grid 4 (176x153), the streamwise grid is the same as that in grid 1 
except Ax = 0,003, and the y grid has 153 points between the wall and y 5 0.8 with 
Ay, = 0.3~10- . 

The friction-coefficient distribution on the step surface is depicted in Figure 
21. We observe that there is an appreciable difference between the results predicted 
by ARC2D using the different grids. The trends in Figure 21 suggest that the 
agreement can be improved slightly if a finer grid is used with ARCZD. The results 
obtained using the IBL code are in good agreement with those obtained using ARCZD 
with the finest grid. Figure 22 compares the pressure-coefficient distribution 
predicted using the IBL code with that obtained using ARC20 with the finest grid. 
The agreement is fairly good. Thus, we conclude that the IBL code can be used to 
calculate accurately the mean flows over steps, humps, and troughs as long as massive 
separation and vortex shedding do not occur. 

The stability calculations demand highly accurate velocity and temperature 
profiles - their magnitudes as well as their derivatives. Figure 23 compares the 
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spatial growth rates - 0 .  calculated at x = 0.64 for an F = 8 0 ~ 1 0 - ~  using the I B L  
predicted profiles with those calculated using the ARC2D predicted profiles with the 
finest grid. The agreement is very good, indicating that the IBL code predicts 
fairly well the magnitudes as well as the derivatives of the velocity and temperature 
profiles. Using these growth rates, we calculate the amplification factor N from 

R .. 

N = - J 2uidR 
RO 
- 

where R = /Rex. The variation of the N factor calculated using the growth rates 
based on the profiles obtained with the IBL code is compared with those calculated 
using the growth rates based on the profiles obtained with the ARCZD code with the 
four grids in Figure 24. The latter N factor distribution seems to converge as the 
grid is refined to a distribution that comes closer and closer to that obtained using 
the growth rates based on the profiles predicted by the IBL code, providing a further 
credibility to the IBL procedure. 

Figure 25 shows the influence of the Mach number on the N-factor distribution 
for the most amplified 20 wave for a backward-facing step having an h = - 0.003 and a 
slope of -4.349'. It is clear that compressibility is stabilizing. 

I n  Figure 26, f o r  Mm = 0.5, we show the influence of the disturbance frequency 
on the N-factor distribution for waves propagating past the same backward-facing 
step. It is clear that the most dangerous frequency F is about 50x10- . 
7. SWEPT WING BOUNDARY LAYERS 

All of the numerical examples discussed in the preceding sections are concerned 

section, we discuss the stability of 30 boundary layers and in particular boundary 
layers on transonic sweptback wings because of their aeronautical importance. The 
stability of 3D boundary layers differs from that of 20 boundary layers in that a 30 
boundary layer is subject to crossflow instability and in that the growth direction 
in a 30 boundary layer need not coincide with the wave direction. 

I with the 20 and 3D stability of 2D or axisymmetric boundary-layer flows. In this 
I 

From his flight tests on aircraft with sweptback wings, Gray discovered that the 
boundary layer became turbulent closer to the leading edge than on a corresponding 
unswept wing. Using evaporation methods for indicating the state of the boundary 
layer, he discovered the existence of regularly spaced vortices whose axes lie in the 
streamwise direction. Since on a swept wing the spanwise pressure gradient deflects 
the boundary layer toward the region of low static pressure, the flow paths of the 
boundary-layer profiles differ from the potential flow streamlines and a crossflow 
developes in the direction normal to the streamlines (i.e., the mean flow is three- 
dimensional). The crossflow profiles have inflection points, making them dynamically 
unstable and hence leading to the generation o f  the vortices. This crossflow 
instability was confirmed in wind tunnels on large swept wings by Gregory, Stuart and 
Walker (ref. 34). 

The feasibility of using suction t o  maintain laminar flow in the presence of 
crossflow instability was shown by Pfenninger et a1 (ref. 57), Bacon et a1 (ref. 58), 
Gault, and Pfenninger and Bacon (ref. 59) on a 30-deg sweptback wing. This 
feasibility culminated in the successful maintenance of full-chord laminar flow on an 

I X-21 wing. 
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The problem of laminar-flow control on sweptback wings and the discovery of Gray 
of the crossflow instability stimulated research into the linear stability of three- 
dimensional flows. In contrast with the problem of 2-D flows, disturbances in a 3-0 
flow are always three-dimensional. Stuart (ref. 34) derived the general linear 
equations that describe the 3-D stability of 3-0 incompressible boundary layers over 
bodies, including the effects of boundary-layer growth and body and streamline 
curvatures. He showed that the temporal parallel stability problem of a 3-0 
incompressible flow can be reduced to that of a 2-0 stability problem. For a given R 
and W, his transformation relates the wave numbers a and B in a 3-D flow with the 
streamwise and spanwise velocity components U and W to the wavenumber k = ( a 2  + 
8‘)’5 in a 2-0 flow having the velocity U = (&,, + B#,,)/k. He used the inviscid form 
of these disturbance equations to explain the crossflow instability as an 
inflectional instability. Brown (refs. 7,16) numerically solved the temporal viscous 
eigenvalue problems for flows over a rotating disk and a few sweptback wing boundary 
layers with distributed suction. 

Since the uncoupling of the crosswise stability problem from the streamwise 
stability problem is artificial, a number of attempts have been directed toward 
determining the stability of the combined streamwise and spanwise stability problems 
to determine the suction requirements for maintaining laminar flow over sweptback 
wings. The form of the 3-D disturbance is given by equations (4 .3)  and (4 .4)  leading 
to the dispersion relation w = W(~,@,X,Z). We note that, in contrast with the case 
of parallel flows, a and B are functions of x and z and the phase function e cannot 
be written as ax + BZ - ut. Instead a, B ,  and w are related to e as in equations 

To complete the problem formulation, one needs to specify initial conditions in 
addition to the governing equations and boundary conditions. For the case of a 
general pressure disturbance at say the curve x = a, 

(4 .4) .  

This arbitrary disturbance will generate a continuum of wave components of the form 
given by equations (4 .3)  and (4.4) and the observed wave motion consists of their 
superpositions. For the case of spatial stability in parallel mean flows, the 
pressure disturbance can be expressesd 

~ 

I , 

~ p(x,y,z,t) = 1’s ~,+(y;~,~)exp[ia(s,~)x + isz - iwt]dwds (7.2) 

On the other hand, if the initial condiitons are generated by a source (such as a 
vibrating ribbon) oscillating at the frequency w (i.e., monochromatic wave) at the 
curve defined by x = a, then 

p(x = a,y,z,t) = P(y,z)exp(-iwt) (7 .3)  

I Then, for the case of parallel mean flows, the pressure disturbance can be expressed 
as 



To evaluate the integral in equation (7.2), one needs to solve the eigenvalue problem 
for all possible values of B and w and then perform the integration, an expensive 
procedure. Similarly, to evaluate the integral in equation (7.4), one needs to solve 
the eigenvalue problem for all possible values of B and then perform the integration, 
again an expensive procedure. However, if the disturbances are sufficiently weak 
they will not influence transition until they have traveled a large distance from the 
source. Then, asymptotic methods, namely the saddle-point method, can be effectively 
used to determine the following approximations to the integrals in equations (7.2)and 
(7.4): 

where 

and 

l 

where 
2 -  da 
X d8 

It is clear from equations (7.6) and (7.8) that for a physical wave, a a / a ~  and a a / a w  
must be real for an arbitrary disturbance and da/ds must be real for a monochromatic 
disturbance. 

The preceding discussion shows that by the time the wave motion is important for 
transition, it has already evolved to either the state given by equation (7.5) in the 
case o f  an arbitrary disturbance (corresponding to natural transition) or the state 

I given by equation (7.7) in the case of a monochromatic disturbance. In both cases, 
the disturbance is dominated by a single wave component having a fixed W ,  a, and a.  
Using the method of multiple scales or the method of averaging to account for a weak 
growth of the boundary layer in x and z, one finds that by the time the wave motion 
is important f o r  transition (i.e., for large x ) ,  it has evolved again to the state 
given by equations (4.3) and (4.4); that is, the disturbance is dominated by a wave 
packet centered at the frequency w and spanwise wavenumber B. However, in this case, 
a, 6, and A are not constants; equations (4.23), (4.29) and (4.30) describe their 
modulation with x ,  z, and t. To solve these modulation equations (Cauchy problem), 
one needs t o  specify initial conditions on non-characteristic curves. 

I If the initial data consist of a wavepacket centered at the frequency W, then 

A ( x  = a,z,t) = AO(z,t), a(x = a,z) = B~(Z) (7.9) 

and it follows from equations (4.23), (4.29) and (4.30) that the wave propagates 
along the characteristics 
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I For a physical problem, w and w must be real. Along these characteristics, I a s 

(7.11) 

1 If the initial data consist of a single frequency (i.e., monochromatic wave), then 

(7.12) 

It follows from equations (4.29)-(4.31) that the wave propagates along the 
characteristics defined by equations (4.33), where W ~ / U J ~  is real. The modulation of 
A, a, and B along these characteristics is governed by equations (4.32). The 
solution of equations (4.33) is a one-parameter family of curves. 

The question arises how one can use the results of the linear stability theory 
for transition prediction or evaluation of proposed laminar-f low concepts and 
requirement on swept wings? Motivated by the success of the so-called eN method in 
correlating experimental transition data in incompressible 20 flows, many 
investigators have attempted to extend it to 30 incompressible and compressible 
flows. Whereas in 2D flows, the direction of growth is known, namely, the mean flow 
direction, in 30 flows, the direction of growth is not known a priori. In 20 flows, 
one can either use spatial stability theory and calculate the spatial growth rate 
directly or use temporal stability theory, calculate the temporal growth rate, and 
then calculate the spatial growth rate using the group velocity. Integrating the 
spatial growth rates yields the N factors. 

I Srokowski and Orszag (ref. 60) developed a computer code called SALLY using the 
temporal incompressible stability theory. At any location on the wing, the code 
iterates on a and B (which are taken to be real) to yield the maximum temporal growth 
rate for a given dimensional frequency wr. Then, several frequencies are examined 
until a global local maximum is obtained. The resulting amplification rate is then 
converted into a spatial amplification rate using the real part of the group 
velocity, which is then integrated along a trajectory defined by the direction of the 
real part of the group velocity. Hefner and Bushnell (ref. 61) calibrated the 
results of the envelope method using available transition data on swept-back wings. 
Later, Malik (ref. 36) developed a code called COSAL, which is the compressible 
version of SALLY. Although the envelope method i s  easy to implement, it is 
artificial because one continuously hops from one wave to another. Moreover, the N 
factors calculated using the envelope method increase monotonically to the end of the 
instability region, and hence the envelope method may over estimate the amplitude 
ratios. 

For an infinite swept wing, the mean profiles are independent of the spanwise 
ccordinate, and hence it follows from equations (4.4) and (4.5) that 6 is Constant. 
Mack (ref. 62) performed crossflow stability calculations over the forward region of 
a 35" sweptback wi'ng using this condition and determined the N factors for a zero 
frquency and a band of initial wave numbers. He found that the peak value maximized 
over all wave numbers is 7.8 compared with 11.2, obtained using the SALLY code. In 
contrast with the results of the envelope method, which increase monotonically in the 
instability region, the results of Mack achieve a peak because he followed a given 
wave from a more unstable region to a less unstable region. Using the temporal 
theory, Lekoudis (ref. 63) and Mack (ref. 64) determined the influence o f  suction on 
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the stability of flows over sweptback wings. Lekoudis (ref. 65) ascertained the 
influence of cooling on the stability of flows over sweptback wings. 

If the wing is not infinite, the mean flow will be a function of both spanwise 
and streamwise coordinates and hence a and B are functions of x and z. In this case, 
the wave motion will be dominated by a single frequency spatial wavepacket as 
discussed above. Based on this theory, Nayfeh (ref. 21) proposed a method for 
determining the most amplified disturbance propagating from sovie given initial chord 
location on a wing. We select one specific wave at an initial point and then fo l low 
only that one wave along its trajectory. Then, we change the initial conditions and 
repeat the calculations to determine the most unstable wave. 

To demonstrate the method we choose B,, the dimensional form of B,, to be a 
constant at some initial chordwise location x = a for all z. At this initial point we 
still have three unspecified values B ~ ,  ar, and ai. Two of these are determined 
through numerical integration of the disturbance equations and satisfaction o f  the 
boundary conditions through a Newton-Raphson iteration. The third is found by 
requiring that w / W  be real. This fixes the direction of marching. From here we 
evaluate 

* 

B a  

h2 
- E -  

da _ -  
W a ds 

d8 h 3  
- = E -  

W a ds 

(7.13) 

(7.14) 

To stay on the initial wave, we increment the characteristic variable s by ds, 
evaluate dx and dz from equations (4.33), and correct a and B by 

h2 

h3 

a = a + E - ds 
w a 

B = B + E - ds 
W a 

(7.15) 

(7.16) 

We then renondimensionalize with respect to local edge variables at the new x and z. 
To test that we are on the same wave, we integrate the disturbance equations at the 
new x and z with the new a and B to see if the boundary conditions are satisfied and 
wB/wCr is real. If they are, we evaluate da/ds and ds/ds, increment s, correct CL and 
8 ,  and continue marching along the trajectory. I f  these conditions are not all 
satisfied, we decrease the step size ds until they are and then proceed as above. 
Since A, is the amplitude of the disturbance initially, i t  follows from equations 
(4.32a) that 

s h. 

Hence a " '  a 
X w h .  

+ E --f-]dx 
w a 

iwt ] 

(7.17) 

(7.18) 

and the n-factor is given by 
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V h, 
E (TI r Id‘ n = -  

“ % 1  w 1 a a a 

As we march we compute the  n - fac to r  from where the  d is turbance f i r s t  goes uns tab le  

(;i;; < 0 )  t o  where i t  becomes s tab le  again (;r;; < 0) .  Once we compute n we change 6, 

t o  determine which B, i s  associated w i t h  the  l a r g e s t  value o f  n. This  t e l l s  us the  
i r ; i t i a l  spanwise wavenumber o f  the most dangerous wave f o r  a g iven frequency from a 
g iven chord loca t ion .  Then we vary the dimensional frequency t o  determine t h e  most 
dangerous freqcency. 

* dn dn 

* 

This approach has been implemented by Padhye and Nayfeh ( r e f .  66) and Reed and 
Nayfeh ( r e f .  67) f o r  the  X-21 wing w i t h  upper sur face chordwise pressure c o e f f i c i e n t  
and suc t ion  d i s t r i b u t i o n  as shown i n  Figures 1 and 2. A schematic o f  t he  wing i s  
presented i n  F igure  3 showing the coordinate system used. This  wing was designed f o r  
laminar- f low c o n t r o l  and der ived from the NACA 65A210 a i r f o i l .  The sweeps a t  t h e  
leading and t r a i l i n g  edges are 33.2 and 19.1 degrees, respec t i ve l y ,  and the  
freestream v e l o c i t y  i s  774.4 f e e t  per second. Under the  assumption o f  n e g l i g i b l e  
spanwise (along r o o t s )  pressure gradient ,  t he re  are  no t w i s t  and t i p  and wing-body 
e f fec ts  inc luded i n  the analys is .  Also they made the  assumption o f  constant  Prandt l  
number and s p e c i f i c  heat a t  constant  pressure. 

Reed and Nayfeh ( r e f .  67) focused t h e i r  a t t e n t i o n  on the  a f t  r e g i o n  of t he  wing, 
s p e c i f i c a l l y  the  70-percent l o c a t i o n  on the  14.66-foot chord. They in t roduced 
disturbances a t  t h i s  p o i n t  and fo l lowed them along t h e i r  t r a j e c t o r i e s  as descr ibed 
above t o  asce r ta in  t h e i r  s t a b i l i t y  c h a r a c t e r i s t i c s .  Th is  i n i t i a l  l o c a t i o n  l i e s  i n  
the r e a r  adverse chordwise pressure grad ien t  reg ion.  

For a s p e c i f i c  constant  dimensional frequency in t roduced a t  t he  70-percent 
chord, t o  f i n d  the  spanwise wavenumber maximizing the  a m p l i f i c a t i o n  f a c t o r ,  they 
consider the  wavenumber r e s u l t i n g  i n  l o c a l  maximum temporal growth ra te .  That i s ,  
they took the  frequency w t o  be complex and t h e  two wave numbers Q and 8 t o  be 
r e a l .  They s p e c i f i e d  wr  and i t e r a t e d  on a, B and wi t o  s a t i s f y  the  boundary 
cond i t ions  and the c o n d i t i o n  t h a t  w B / w Q  be r e a l .  Then they converted t o  s p a t i a l  
s t a b i l i t y  and marched along the  d i r e c t i o n  def ined by t h e  group v e l o c i t y ,  which i s  
kept  r e a l  as descr ibed above. The a m p l i f i c a t i o n  f a c t o r  was computed i n  marching. 
This  process was done f o r  a whole gamut of f requencies u n t i l  t he  frequency w i t h  
maximum a m p l i f i c a t i o n  f a c t o r  was i d e n t i f i e d .  F igure  4 shows r e s u l t s  of frequency 
p l o t t e d  versus spanwise wavenumber causing maximum growth f o r  d is turbances in t roduced 
a t  the  70-percent-chord l oca t i on .  The d i s t r i b u t i o n  appears t o  be l i n e a r .  

As a r e s u l t  o f  searching, they found t h a t  the  most uns tab le  d is tu rbance 
in t roduced a t  70-percent chord i s  the  one w i t h  a frequency o f  about 330 h e r t z  and 
spanwise wavenumber o f  272 per  foot .  F igure 5 shows d is turbance a m p l i f i c a t i o n  r a t i o s  
f o r  f requencies i n  t h i s  neighborhood. If the s t a b i l i t y  was performed Using 
incompressible theory,  the most unstable frequency would be about 200 Hz. The 
a d d i t i o n  o f  c o m p r e s s i b i l i t y  increases the frequency o f  t he  most uns tab le  
disturbance. Moreover, c o m p r e s s i b i l i t y  s i g n i f i c a n t l y  reduces the  growth r a t e s  and 
a m p l i f i c a t i o n  fac to rs .  
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APPENDIX B 

8 aanm 
O n = i  1 - 

aw 'rn m= 1 

aanm F = - i  1 ~ c ,  
m= 1 n 

where small terms O(R-') can be neglected. The anm are g iven in Appendix A. 

G, = G, = G, = 0 

R Urn ar;, 5 ,  aU, Vm 3 5 ,  5, aUm 

2 v m  Tm ax, Tm ax ,  Tm ay Tm az, 
G = - [ - -  + - -  + - -  + - -  
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APPENDIX C 

h, = ig, - 1  E ~a aanm 

C,,,SidY g 1  = i Jrn aanm 
a w  m,n=l o 

C,Cr*;dY 

s m i  ;dY 
a aanm 

g , = - i  i yc 
rn,n=l 

The an, are defined in Appendix A .  The G,,, are defined in Appendix B. 
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Multiple wave numbers of 20 noninflectional neutral waves (c=l). 
Insulated wall, wind tunnel temperatures, calculations o f  Mack (ref. 
11). 
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Figure 2. Pressure-fluctuation eigenfunctions of first six modes of 20 
noninflectional neutral waves (c=l) at Ma = 10. Insulated wall, T* 
= 50°K, calculations of Mack (ref. 11). 
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Figure 3. Multiple wave numbers o f  20 inflectional neutral waves (c=c,). 
Insulated wall, wind tunnel temperatures, calculations o f  Mack (ref. 
11). 
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Figure 4. Pressure-fluctuation eigenfunctions of first six modes of 20 
inflectional neutral waves (c=c ) at M m  = 10. Insulated wall, T: = 

I 50"K, calculations of Mack (ref. 71). 



Figure 5. Effect of Mach number on maximum temporal amplification rate of 20 waves 
for first four modes. Insulated wall, wind tunnel temperatures (ref. 
11). 
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Figure 6. Temporal amplification rate of first and second modes versus frequency 
for, several wave angles at M m  = 4.5. Insulated wall, T* m = 311°K (ref.  
11). 
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Figure 7. Effect of wall cooling on ratio of maximum temporal amplification rate 
with resoect to bath frequency and wave angle o f  first and second modes 
at M = 3.0, 4.5 and 4.8 to insulated-wall 
Windmtunnel temperatures (ref. 11). 
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Figure 8. Two-dimensional neutral-stability curves at M = 1.6, 2.2, 2.6, 3.0, and 
3.8; asl i s  the first neutral inviscid wavenufiber with c = cs (ref. 11). 
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Figure 9. Distribution of maximum temporal amplification rate with Reynolds number 
at (a) M = 1.3, ( b )  M = 1.6, (c) M = 2.2 and (d) M = 3.0 for 20 and 
30 waves: Insulated w a l ,  wind tunne7 temperatures (rzf. 15). 
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Figure 10. Variation of the maximum spatial amplification rate (with respect to 
frequency) with streamwise position at M = 1.6 for an oblique wave 
at J, = 50" and a two-dimensional wave (ref." 19) 
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Figure 11. Effect of wall cooling on the most amplified first and second mode 
disturbances in a flat plate boundary layer at R = 1500 (ref. 43). 
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Figure 13. 

Effect of wall cooling on second mode instability in a boundary layer 
= 4.5 and R = 1500 (ref. 43). "e 
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Effect of wall suction on the second mode instability in a boundary 
layer at Me = 4.5 and R = 1500 (ref. 43). 
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Figure 15. Variation o f  the maximum growth rate of secondary waves with spanwise 
wavenumber for three Mach numbers and ,two amplitudes a of the primary 
wave at R = 1048.8 and an F = 83x10- for the primary wave. Dashed 
curves - a = 0 . 0 2 / ~ 2  and solid curves - a = O . O l / i ? .  Mach numbers for 
each set. proceeding downward are M = 0, 0.8, and 1.6. 
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Figure 16. Variation o f  the growth rate of $he free wave with spanwise wavenumber 
I a t  R = 1048.8 and an F = 4 2 . 5 ~ 1 0 -  f o r  t h r e e  Mach numbers. 
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Figure 17. Variation o f  the growth rate of secondary waves with spanwise wave 
number for M = 4.5: the amqlitude and frequency o f  the primary \wave are 
a = 0 . 0 1 / ~ 7  grid F = 120x10- : (a) first-mode primary xave at R = 1150 
and (b) second-mode primary wave at 1950. 
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Figure 18. Variation of the growth rate of the free wave with spanwise 
for M3 = 4.5 and F = 60x10-': (a) first-mode wave at R = 
second-mode wave at R = 1950. 
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Figure 20. A typical computational grid for a backward-facing step. 
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Figure 21. The friction-coefficient distribution calculated over a backward-facing 
step whose height is -0.003 and center is at Re = 10' f o r  an M n = 0.5. 
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Figure 22. Pressure-coefficient distr 
whose height is -0.003 and 
- I B L ,  --- Navier-Stokes 
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Figure 23. Spatial growth rates o f  20 waves having the frequnecy ~ O X ~ O - ~  
propagating over a ,backward-facing step whose height is -0.003 and 
center is at Re = 10 for an M = 0.5: - IBL, --- Navier-Stokes solver 
(grid 4). 
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Figure 24. Amplification factor distribution over backward-facing step *dhose 
heightcis -0.003 and center i s  at Re = 10 for an M 9 = 0.5 and an F = 
80x10- . 
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I Figure 25. Influence o f  Mach number on the amplification factor of the most 
amplified 2D wave propagating over a backward-facinq step "hose height 
is -0.003, slope is -4.349", and center is at Re = 10 : - Ma = 0.0, 

~ --- M = 0.5, ... M = 0.8.  
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F i g u r e  26. V a r i a t i o n  o f  t h e  N - f a c t o r  d i s t r i b u t i o n  w i t h  f requency f o r  waves 
p ropaga t ing  p a s t  a backward- fac in9 s tep  whose h e i g h t  i s  -0.003, s l o p e  i s  
-4.349", and c e n t e r  i s  a t  Re = 10 ; Mr, = 0.5. 
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