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Abstract
A new class of explicit finite-difference schemes for the computa-

tion of weak solutions of nonlinear scalar conservation laws is presented
and analyzed. These schemes are uniformly second-order accurate and
nonoscillatory in the sense that the number of extrema of the discrete
solution is not increasing in time.

1. Introduction
It is well-known that TVD (total variation diminishing) schemes,

see e.g., [4] and the references given there, can give high resolution to
discontinuities of the solution. TVD schemes, however, have only first-
order accuracy at extrermna. Of all second-order accurate TVD schemcs,
the Minmod scheme is the most diffusive. In [2], Harten and Osher devise
the concept of nonoscillatory piecewise-linear reconstruction and modify
the Minmod scheme to the UNO2 scheme. Although this latter scheme is
uniformly second-order accurate, it retains some of the diffusive character
of the former. In this paper, we introduce a new class of schemes, named
SONIC, that are uniformly second-order accurate and nonoscillatory.

In section 2, we present TVD and UNO2 schemes from a geometric
framework which is rather different from the original presentations. Our
description and analysis of these schemes naturally lead to the SONIC
schemes later in the section. In section 3, the SONIC schemes are applied
to nonlinear scalar conservation laws. It is then shown that the conjecture
of Harten and Osher that the midpoint rule is nonoscillatory is indeed
correct not only for the UNO2 scheme but also for the SONIC schemes.
In section 4, we present some computational results. We note in passing
that R. Sanders [3] has recently developed a third-order accurate TVD
scheme which degenerates to second-order accuracy near extrema. Our
approach, however, is different and appears to be simpler.



2. Advection equation
Consider the initial value problem for the advection equation with
constant speed a > 0:

Qg Ou

ot Yo
u(z,0) = uo(x).

0, (2.1)

The initial data u¢(z) are assumed to be piecewise smooth functions that
are either periodic or of compact support. Let u} be an approximation
to the solution u at z; = jAz and the n-th time level. Equation (2.1)
can be discretized in conservation form using the midpoint rule

'.1+1:u

uj P= a/\(u"+1/2 "+1/2) (2.2)

j+1/2 — Yi-1)2

where A = At/Az and u?jll//; i1s an approximation to u at x;11/2 =
(j +1/2)Az and t"+1/2 =™ 4 1/2A¢.

Let u7,,/, be an approximation of u(xj41/2,t"). The value 111":11//22
can be approximated by assuming that u™ is linear in [x;,2j41/2]. (See,
e.g., [5].) At time t"*1/2] the profile propagates to the right a distance
aAt/2. The corresponding face value is

+1/2 n n
“;'l+1//2 =Ujpa/2 — T(u?+1/2 — Uy )- (2.3)

where 7 = a(At/Az). Using (2.3), equation (2.2) can be written as

uitt = uj — m(ujy1/2 —uj-1/2) + T (ujs1/2 —uj —uj-1/2 +ujo1) (2.4)

(The superscript n has been omitted here and will be omitted in the
remainder of the paper.) Throughout this section, the CFL number is
assumed to satisfy 7 < 1. Our main task is to definc the face values
ujy1/2 from the data u;. The solution can then be obtained from (2.4).
The following observation is useful for later proofs: let z(7) = a; —
Az and y(r) =RHS of (2.4). The points (z = z(7),y = y(7)) lic on
a parabola P; as r varies (At varies, a and Az are fixed). Clearly,
the points U; = (zj,uj) = (2(0),y(0)) and U;_y = (rj_1,uj—1) =
(z(1),y(1)) are on this parabola. The tangent T; to P; at U; has slope
(wjp1/2 — uj_1/2)/ Az, ie., T; is parallel to the line U;_1/2U; 4172 where
Uj—1/2 = (2j-1/2,uj—1/2). Thus P; is determined by U;,U;_,, and
Tj. The solution u}-’“ in (2.2) is simply the y—component of the point
(z(7),y(7)) on the parabola P; where 0 < 7 <1 as shown in Fig. 1.

2.1 TVD schemes

From a geometric point of view, we describe and prove some im-
portant properties of TVD schemes. Let I(zy,...,z2;) be the smallest
closed interval containing zy,...,zx. Observe that median(z,y, z) lies
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in the interval defined by any two of the three arguments. Similarly,
median(z;, 22, 73, 24, 25) lies in the interval defined by any three of the
five arguments, e.g.,

median(z,y,z) € I(y,2); median(zy,...,25) € I(z1,24,23) (2.5a,b)

To carry out the analysis, it is convenient to define the following central
and upwind face values

1
Ujyr/2 = 5(“1 +ujy1), (2.6)
u;;il/z = u; + (uj — u;—1/2)’ (2.7)
uitije = uj + (4 — ujo1). (2.8)

Notice that the Lax-Wendroff scheme corresponds to ujti/2 = ujyq/s
and the Warming-Beam scheme, to uj41/2 = u;}, /5.

FIGURE 1. FIGURE 2.

The Minmod scherne, which is the simplest and the most diffusive of
all second-order TVD schemes, can now be described in our framework.
The face value for this scheme is

ujy1/2 = median(uj, u§ 4y 2,51 /2)- (2.9)
For the sake of explaining the terminology, one can observe that
minmod(z, y) = median(z, y,0),

median(z,y, z) = ¢ + minmod(y — =,z — z) = y + minmod(z — y,z — y).

The Minmod scheme posesses the following upwind monotonic property
u;"H € I(uj,uj_y). (2.10)
To show (2.10), observe that from definition (2.9) and property (2.5a),
uj-1/2 € I(uj_1,ui_150);  wjs1/2 € I(uj, uiti/2)-
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: c : . . up ou .
Since U5 _1/2 lies between u;_; and u;, and Uit/ lies between u; and

up2
Ujt1/2

uj—1/2 € I(ujm1,u;);  ujpiyz € I(uj,ujlypy). (2.11)

Properties (2.11) lead to the upwind monotonic property (2.10) by the fol-
lowing reasoning. Another way to state (2.11) is that the point U;_, /2 =
(zj-1/2,uj—1/2) lies on the line segment (x, 1/2,uj-1)(Tj— 1/2,u ) and
Ujt1/2 lies on (2412, u U +1/2 where Urr +1/2 =(Zj+1/2, J+1/2) Since
the points (z;_1/2,%;-1), U; and U'r +1/2 are on the same line, the slope of
Uj-172Uj41/2 lies between 0 and s, where s; = slope(U; ]+1/2) Because
the tangent T} of the parabola P; at U; is parallel to U;_;/2U;41/2 by the
observation following (2.4), slope(Tj) also lies between 0 and s; (see Fig.
2(A)). Let @1, Q2 be the parabolas though U;, U;_; such that at U;, Q,
has horizontal tangent and ¢J; has tangent of slope s;. It can be shown
that @, has horizontal tangent at U;_; (one can show this by using a
linear change of coordinates such that U;—; = (0,0) and U; = (1,1)).

@1, @2 form the boundary of the shaded region in Fig. 2(B). Since P;
also goes through U;_;, U; and at Uy}, its tangent lies between that of @,

(2, one can derive that the parabola P; lies in the above shaded region.

This completes the proof.
Roe’s Superbee scheme can be interpreted in our framework as fol-
lows: The face value for this scheme is

: c
ujy1/2 = median(uj, ujyy 2, U1, u; J+1/2’ J+1/2) (2.12)

The Superbee scheme is also upwind monotonic, that is, it satisfies prop-
erty (2.10). To show this, observe that from (2.5b),

: ¢ - : o UP up2
uj_1/2 € I(’lL]_l,U]-_l/2,’u]), Ujp1/2 € I(u],uj+1/2, u,j+1/2). (2.13)
As in the Minmod case, uj_;/, lies between u;_; and uj, uﬁln lies

between u; and u;-‘ﬁ/z, thus (2.10) follows.
To describe TVD schemes in general, let

r=(ui~ul_y )/ (u5412—u5);  R=(uj—uj—1)/(uj+1—u;), (2.14a,d)
(see [4]). From definition (2.6), r = R. (However, this will not be the

case later when we redefine uj,/,.) The face value w;y1/2 is obtained
by using a limiter function ¢

Ujrryz = uj + S(r)(wG 2 = 5)- (2.15)
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The first-order upwind scheme corresponds to ¢ = 0, the Lax-Wendroff
scheme to ¢ = 1, and the Warming-Beam scheme to ¢ = r.

~V/ /A

(A) (B)
FIGURE 3.

Next, it is shown that the fact that ¢ satisfies the TVD condition is
equivalent to the fact that the face value in eq. (2.15) satisfies properties
(2.11). Indeed, the first half of (2.11) with index j replaced by index j+1
is ujr1/2 € I(uj,ujq1). This is equivalent to the condition 0 < ¢(r) < 2
for all r. The second half of (2.11) is equivalent to ¢(r) € I(0,2r). Thus
(2.11) is equivalent to the condition that ¢ lies in the intersection of
the above two regions, which is the shaded region and the negative r-
axis of Fig. 3(A). This is the TVD region as defined by Sweby [4]. Since
the Lax-Wendroff and the Warming-Beam schemes are both second-order
accurate, to assure second-order accuracy away from extrema, the face
value must lie between those of Lax-Wendroff and Warming-Beam,i.e.,
#(r) € I(1,r). The intersection of this region and the TVD region is
named the TVD2 region and is shown in Fig. 3(B). Observe that the
upper boundary of the TVD2 region corresponds to the Superbee scheme,
and the lower, to the Minmod scheme.

2.2 UNO2 schemes
To resolve the problem of first-order accuracy at extrema of TVD
schemes, Harten and Osher developed the UNO2 scheme in [2]. From

our point of view, this scheme is the same as the Minmod scheme except
that the central face value uj,,/, is now obtained by a nonoscillatory
quadratic interpolation.

Let Q; be the parabola through U;_;, Uj, and Uj4;. Since @; and
Qj+1 have two points in common, they are either identical or have no
other point in common. In the interval [z;,z,4], consider the three
curves Q;, Q;+1 and the line segment U;U;41. Let Qj41/2 be the curve
which lies between the other two (Fig. 4). Let Ufy, /5 = (zj41/2,uj41/2)
be the intersection of the two tangents to Q;j+1/2 at U; and Uj4; (notice
the x location). An easy calculation yields the central face value

¢ 1 1
Ujrr/2 = 5(“1‘ +ujp1) = ZDj+l/2' (2.16)
where
D; =uj_y +ujp1 —2uj; Djy1/2 = minmod(Dj, Djt1), (2.17a,b)
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Having defined u$,,,, the face value of the UNO2 scheme can readily
be obtained from eqs. (2.7) and (2.9).

FIGURE 4, FIGURE 5.

The first essential property of this scheme is that the interpolation
(2.17), (2.16) is nonoscillatory in the follovs{ing sense: If uf,,/, is a strict
local maximum (similarly for minimum), i.e., u; < u$y,/ and w4 <
uf41/2, then the data (ux) has a strict local maximum at z; or z4,
ie, uj_; < u; and ujyy < ujyy. To prove this, observe that since
uj4q/2 18 a strict local maximum, the parabola @;+1/2 is concave down
with the maximum value lying between z; and z;41. At least one of the
two points Uj_;, Uj42 lies on this parabola. If both of them belong to
Qj+1/2, the above claim follows. If only one of them lies on Q;./,, then
the other point belongs to the parabola Q41 /2 which lies above Q412
in the interval (z;,z;41) by definition. Since two different parabolas can
have at most two points in common, Q7 ,/, lies below @ t1/2 outside of
[zj,z;41] as shown in Fig. 5(A). This completes the proof. The above
property implies that the interpolation procedure does not increase the
number of strict local extrema.

The next property of the UNO2 scheme is that if uj4q/2 is a strict
local maximum (similarly for minimum), then

Ujt1/2 = Ujp1/p;  Ujtsf2 = Ujyg) - (2.18a, b)

Indeed, let V;_; = (zj-1,vj-1), Viy2 = (¢42,vj+2) be on the parabola
Qj+1/2 (see Fig. 5(B)). From the above proof, u;_; < vj_; and uj4o <
vj+2. Let Vi, = (25_1/2,v5_1/3) be on the line U; Uj,,,,. Then
U1/ < 05—1/2- This 1mplies (2.18a). As for (2.18b), it follows from
uGr172 < Uiagae

Let RQ;_1/2 be the range of the parabola Q;_1/; in [zj_;,z;], that
is, the interval formed by the values Q;_;/2(x) where x varies in [z;_, ;).
We can now show that the UNO2 scheme posesses the following quadratic
upwind monotonic property

uttt € I(uj,uf_y jp,uj-1). (2.19)

In fact, we will show u;-’“ € RQj_1/2 which implies (2.19). Observe
first that (2.13) holds. If uf_,, is not a strict local extremum then
RQj-1/2 = I(uj_1,u;) and (2.19) follows exactly as in the Minmod case.
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If uj_, ), is a strict local extremum, say a maximum, then eqgs. (2.18a,b)
imply that the parabola P; is precisely Q;_1/2. This completes the proof.

A quadratic upwind monotoni¢ scheme is nonoscillatory in the sense
that it can not create new strict local extrema. This follows from the
nonoscillatory property of the interpolation (2.16), (2.17).

We next show a simple proof of the second-order accuracy of the
UNO2 scheme. Denoting h = Az, one obtains by using Taylor series
expansions,

(441 /2 — u;)/(R/2) = u}; + O(?), (2.20a)
(w5~ uS_y )/ (R]2) = u}; + O(h?), (2.200)
(58172 = ui)/(R/2) = (uj = w5_y ) /(R/2) = uj + O(R®),  (2.20c)
(uj = uj?y 1)/ (R)2) = u + O(R?). (2.20d)

where u’ denotes Qu/0z. The last expression follows by writing (2.20c¢)

with index j replaced by j —1 and then expanding u};_, and u;_; around
0 . c up

z;. Since the face value u;y /o must lie between U172 and Ujt/2s

(Uj+]/2 - u]'_l/z)/h = u; + 0(’22) (221)

Thus the scheme is second-order accurate.

We have presented the UNO2 scheme as a modification of the Min-
mod scheme. by redeﬁn.ing UF41/2 USING €q. (2.16) above. Will the same
procedure yield a modification of the Superbee scheme? The answer is
yes as will be shown in the next section.

2.3 SONIC (second-order nonoscillatory interpolating conser-
vative) schemes
We combine the names MUSCLE [6] with UNO2 and come up with
VONIC. Of all SONIC schemes, the UNO2 scheme above is the most diffu-
ve and the SONIC-B or Sonicbee scheme below is the most compressive.
\'i\is scheme can be defined by egs. (2.17a,b), (2.16), (2.8),(2.12), (2.3)
1 (2.2). It possesses all the properties of the UNO2 scheme that are
htioned above. To prove the second-order accuracy of the Sonicbee
\me, consider the following cases at face j + 1/2:
?\:’1: US4/ 1s a strict local extremum, then uji1/2 = “;“+1/23
*2: :u;_l./2 is a strict local extremum, thex.l Ujtijz = u; %10
.3: if neither of the above cases hold and if u; is a local extremum,
in other words, (uj — uj_1)(uj; —uj41) 2 0, then w1/, = u; €
I(“§+1/2 ) “;'til/:z);
. if none of the above cases hold, then we are in the regular case
of either ascending order u;_; < u§_1/2 <uj < u§+1/2 < Ujgg
or descending order. The case RG1 corresponds to r = (u; —

“5—1/2)/(“5+1/:: —u;) <1
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RG2: this is the regular case where r > 1.

In any of the above cases, ujt1/2 € I(u$}q/g,u;5,/,) and the above
claim follows.

The Sonicbee scheme is also quadratic upwind monotonic and the
proof is exactly the same as that of the UNO2 scheme. To describe the
class of SONIC schemes, we need some more definitions.

At each face j +1/2, let the linear upwind monotonic interval I} i+1/2

be the intersection of I(u;,u;+1) and I(u;, ;‘121/2) Then condition (2.11)
is equivalent to ujy1/2 € I}+1/2’ and, as shown in section 2.1, these are
equivalent to the TVD condition in [4]. Similarly, let the quadratic up-
wind monotonic interval ]‘2“/2 be the intersection of I(wj,uf /2, % 41)

and I(uj, iy /o, J+1/2) Then condition (2.13) is equivalent to

u]'+1/2 € I j+1/2 (222)
Schemes satisfying (2.22) posess the quadratic monotonic property (2.19).
The proof is similar to that of the UNO2 scheme and is omitted. Observe
that I? +1/2 is equal to I! J+1/2 except in the cases EX1 and EX2 above
where I? ;+1/2 strictly contains I +1/2. Enlarging I}+1/2 to I? j+1/2 in these
cases permits second-order accuracy at extrema.

Let I7,, j2 = I(c1,¢2). Any high-order accurate scheme can be made

nonosc1llatory by defining
Uj+1/2 = median(ﬂj+1/2,cl,c2) (223)

where 1412 is the face value of the scheme.

We can now describe the SONIC schemes. Consider first the EX
cases. In each of these cases, both the most diffusive (UNO2) and the
most compressive (Sonicbee) members give the same face value. Thus
all other SONIC schemes must also have the same face value. One can
also come to the above conclusion by observing that the intersection of
I(u$ Ul /20 1LJ+1/2) and I? J+1/2> 1€, the intersection of the second-order ac-
curate interval and the quadratlc upwmd monotonic interval, contains ex-
actly one point. This point must be the face value of all SONIC schemes.

Next, consider the regular case. In the cases RG1, RG2 above,

I2+1/2 = I(uj,uj ]+l 2) If+1/2 = I(uj,ujt1) (2.24a,b)
/

respectively. Let ¢(r) be a continuous function for r > 0. With 1‘?4.1/2
defined by eq. (2.15), using (2.23) and (2.24a,b), one obtains

. [ up2
Ujy1/2 = nledla.n(uj+1/2,uj,uj+l/2), (2.25a)

— : ¢ Y
Ujpy/2 = medlan(ujH/z, Uj, Ujt1) (2.25b)
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respectively. Schemes defined as above are nonoscillatory. They are
second-order accurate if their face values lie between u$,;,, and u;}, /25
and this is the case if ¢ is chosen so that ¢(r) € I(1,7). Observe that
the UNO2 scheme corresponds to ¢(r) = min(1,r) and the Sonicbee, to
é(r) = max(1,r).

The SONIC scheme corresponding to vanLeer’s MUSCLE scheme
can be obtained by simply defining ¢(r) = (1/2)(1 + r), or equivalently

1
“?+1/2 = 5(“§+1/2 + u;—f-l/Z)' (2.26)
We name it the SONIC-A scheme (“A” for “average”).

We conclude this section with the following remark. In defining
US40, the minmod function of eq.(2.17b) can be replaced by any TVD2
limiter function. One then comes up with a class of schemes which
posesses all the properties of SONIC schemes and admits SONIC schemes
as a subclass. We will report on this enlarged class elsewhere.

3. Conservation laws
Consider the following scalar conservation law

ou, of _

ot + Ox
where f is a smooth convex function of u, that is, f lies above all its
tangents. This implies that a(u) = df/du is an increasing function of
u. Let @ be the unique sonic point of f, i.e., a(a) = 0. Using the
- simple change of variables v = u — @ and ¢g(v) = f(u) — f(#), one may
assume without loss of generality that @ = 0 and f(0) = 0. The simplest
conservation law with all the above properties is the inviscid Burgers’
equation

0 (3.1)

ou 100 _
ot ' 20zr
Equation (3.1) can be discretized in conservation form using the midpoint

rule

(3.2)

“?H = uj - /\(fj+1/2 - fj—-l/Z) (3.3)

where, again, A = At/Az and fj+1/2 = f(&j+1/2) and the tilde replaces
the superscript n + 1/2, e.g., @ij11/2 = uyjll/; For simplicity of the
proofs, the CFL number u is assumed to satisty

sup(Ma(u)]) = ju < 1/2

The main problem is to define the face value %;1,/,. To avoid mix-
ing up the numerics and the physics, we adopt the projection-evolution
approach advocated by vanLeer [5].
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The projection stage is purely numerics. First, assuming that the
flow comes from the left, using the SONIC schemes of the previous section,
one can define face value ufﬂ s2- Then, on reversing the flow direction,
a is now negative, one obtains uﬁl /2- This is the end of the projection
stage.

In the evolution stage, physics enters. We have to decide the flow
direction and define the face value ;44 /, properly. To do this, consider
the following cases, (cf. section 6 of (2] and section 4 of [1])

1. aJI-’+1/2 > 0 where aJLf_H/z = a(uJI-‘H/?). This is equivalent to qu-’+1/2 >

0. We have two subcases:

a. aﬁq/2 > 0, then upwind direction corresponds to j;
b. aﬁl/2 < 0, we have a shock.
2. a]LH/2 < 0, equivalently UJL+1/2 < 0. Again, we have two subcases:
a. aﬁl/2 < 0, then upwind direction corresponds to j + 1;
b. aﬁ_l/2 > 0, we have a sonic expansion fan.

In order to prove the nonoscillatory property later, the definitions of
tij+1/2 below are somewhat different from those in the literature.

In case la above, assume that the approximations for u and a are
linear in [z, ;41/2). Then, using a characteristic argument,

L
~ L L A541/2 L
e =u; — AMus — uy ). 3.4
]+1/2 ]+1/2 1 + /\(aJL+1/2 _a]) ( ]+1/2 J) ( )

The ratio in the above expression is a more accurate approximation to
&]’fﬂ/z. For Burgers’ equation, ﬁJL+1/2 is of the same sign as u]L+1/2- In
general to assure that the sign has not been changed, with ¢ a small
positive number (say, 10™?), we define

af+1/2 = max(e, 11]1-‘+1/2) (3.5)

ﬁj+]/2 = l‘ZJ'L_f_I/z (36)

Case 2a is similar to the above case with proper sign changes,

- R _ . R @i+1/2 R . .
Ujyi/2 =Ujyy/2 + = /\(‘0?4.1/2 n aj+1)/\(uj+1/2 — Ujy1). (3.7)
ﬁJR+1/2 = min(—e, a?ﬂ/z) (3.8)

Ujpr/2 = ﬁJRH/z (3.9)

In case 1b, we define 22]1-’+1/2 and ﬂf_,_l/z as in egs. (3.4), (3.5) and
(3.7), (3.8) respectively. The upwind direction depends on the sign of

Ajt12 = (f(ﬁﬁl/'z) - f(’7]‘L+1/2))/(’~‘]1'{+1/2 - 27’]L+1/2) (3.10)

10



[72%

If Ajy172 20, @j41/2 is obtained from eq. (3.6) and if A;4,/2 < 0, from
eq. (3.9).
Case 2b for the sonic expansion fan is simple:

The above definitions of face values are consistent in the sense that if
tjt1/2 > 0, then u 5-‘+ 172 > 0 and the flow comes from the left. Conversely,
ifdj41/2 <0, then “JR+1/2 < 0 and the flow comes from the right. Finally,
Ujy1/2 = 0 corresponds to a sonic expansion fan where uf_H 250 and
u}'-z“ /220

Next, we show that SONIC schemes defined as above are nonoscilla-
tory. The case @i;41/2 = tj~1/2 is trivial. Assumingthat @;41/2 # 412,
let

Aj = (flajpry2) — f(@-172))/(Gj4172 — Wj—1/2), (3.12)

then eq. (3.3) can be written in a form similar to (2.2)

u?”’"l = u;-" — Aj/\('&j+l/2 - ﬂ]‘_l/g). (313)
If A; = 0 there is nothing to prove. Consider the case 4; > 0. Similar
arguments hold for A; < 0. To show that these schemes are nonoscilla-
tory, it suffices to show that they have the quadratic upwind monotonic
property (2.19) where upwind direction corresponds to index j — 1 since
A; > 0. Indeed, with the CFL condition < 1/2, we only have to show

~ N ~ 2
dj—1/2 € Huj—a,u5 10, u5);  Giprye € I(ujyuidy jp,uilise). (3.14a,b)

Notice that (3.14) is the same as (2.13) except that uj_;/, and ujyq/2
are replaced by %;_1/, and @ ;1/2. We use the above restricted CFL
condition here. In the nonlinear case, the solution is no longer given by
the parabola Pj in the observation following (2.4) but by the straight line
U j-1/2 U j+1/2. Condition (3.14a) follows from the definition of face values.
As for condition (3.14b), if 4j41/2 > 0, then the consistency arguments
after eq. (3.11) assert that at face z;41/2, the flow comes from the left,
thus the above claim. Before considering the case i;;/, < 0, we make an
essential observation. Condition (3.14b) can be replaced by the following
condition and (2.19) still holds:

jt1/2 € L(@j1/2, @541 /)- | (3.15)

See Fig. 6(A). Next, if 44172 = 0, then from the consistency arguments,
12]1-’+1/2 < 0. In order that A; > 0, %;_1/2 > 0 (Fig. 6(B)). Since @ij41/2 =
0, it lies between i;_,/2 and ﬁjL+1/2 which is (3.15). Finally, we consider
the case ;4172 < 0, i.e., in the control interval [:I:j_l/g, Tj4+1/2) there is a
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shock since #;_1/2 > 0 (Fig. 6(C)). The difficulty here is that ;12 =
'&ﬁ_l /2 and yet we must show that (3.15) holds true. We need another
definition.

oy (B ©
FIGURE 6.

For each u, let v be of opposite sign such that f(v) = f(u). In
the case of Burgers’ equation, v = —u. Because of the assumption that
AJ' >0,

'5]'_1/2 < ﬁj+1/2 <0< 5j+1/2 < ﬁj—l/Z- (3.16)

Rewrite (3.12) and (3.13) with @;41/2 replaced by ©;41/2:

Aj = (f(Bj4172) = F(@5-1/2))/(Bj41/2 — Tjm1/2), (3.17)
u;."*'l = u;' — fij/\(ﬁj+1/2 - ﬁj—1/2)- (3'18)

Observe that fij/\ i1s within the above CFL bound since 0 < fij < aj-1/2.
Thus instead of (3.15) it suffices to show that

54172 € H(ij12,i84172). (3.19)

If ﬁf’+1/2 <0, (3.19) follows from (3.16). If ﬁJI-’+1/2 > 0, we have a shock
at face rj11/2 and since the flow comes from the right,

~ ~R ~L ~
Ujri/2 = Ujp1/2 <0 < U4y 0 < Ojg1g2

The last inequality above and the last one in (3.16) implies (3.19). This
completes the proof.

4. Computational results

In the first set of problems, we present computational results for ad-
vection with constant speed. The initial profiles consist of a sin? wave,
a square wave, a triangular wave and a semi-ellipse wave. Each wave
contains 20 grid points on a uniform grid of 200 points. Using periodic
boundary conditions, the profile is advected one period with CFL num-
ber 0.5. The results after 400 time steps are shown in Figs. 7 (A) for

Minmod, (B) for UNO2, (C) for MUSCLE, (D) for SONIC-A, (E) for
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Superbee, and (F) for Sonicbee schemes. The figures on the left corre-
spond to TVD schemes, and those on the right, to SONIC schemes. One
can observe that the SONIC schemes are more accurate than their TVD
counterparts. The Minmod scheme, and to a lesser degree, the UNO2
scheme are somewhat diffusive. The Sonicbee scheme can resolve the
square wave and the triangular wave very accurately, however, it shares
the compressive character of the Superbee scheme in the semi-ellipse wave
and it has an overshoot in the sin? wave. The SONIC-A scheme appears
to be the best of the schemes tested. Although it does not resolve the
square wave as sharply as the Superbee and the Sonicbee schemes, it
gives accurate solutions to the other three waves.

2.0 r— r_
1.5 1— L
1.0 . A B SN
TAOAN CEADAN
. g % u EEEN | : a ; o ]
(A) MINMOD SCHEME. (B) UNO2 SCHEME.
2.0 — —
1.5} -
1.0 — — L —
tAOAL CEADAD
0 1k 1t 11 |
(C) MUSCLE SCHEME. (D) SONIC-A SCHEME.
2.0 — _
1.5 -
1.0 — — A
A AN EANAN
| J
0 .2 .4 .6 .8 1.0 0 ) 4 .6 .8 1.0
(E) SUPERBEE SCHEME. (F) SONIC-B SCHEME.

FIGURE 7. - COMPARISON OF TVD (LEFT) AND SONIC (RIGHT) SCHEMES.

In the second set of problems, results for Burgers’ equation are pre-
sented. The initial condition is a sine wave of 20 grid points in the interval
[-1,1]. The dots represent the numerical solutions and the curves, the
exact solutions. With CFL number 0.5 and periodic boundary conditions,
highly accurate results at time ¢ = 0.4 are obtained in Figs. 8 (A) for
UNO2, (B) for SONIC-A, and (C) for Sonicbee schemes. Observe that
a shock has formed at # = 1 and the solutions have no oscillations.
The SONIC-A scheme is slightly more accurate than the UNO2 and the

13



Sonicbee schemes in this case.

“1.0 -5 0 .5 1.0 -1.0 -.5 0 .5 1.0 -1.0 -.5 0 .5 1.0
(A) UNO2 SCHEME. (B) SONIC-A SCHEME. (C) SONIC-B SCHEME.
FIGURE 8. ~ NUMERICAL SOLUTIONS FOR BURGERS‘ EQUATION, t = 0.4,

5. Conclusion

We have introduced the concept of upwind monotonicity which was
used to show that the new class of schemes, named SONIC, is nonoscil-
latory and second-order accurate.
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